JP4434612B2 - 顕微鏡およびズーム対物レンズ - Google Patents

顕微鏡およびズーム対物レンズ Download PDF

Info

Publication number
JP4434612B2
JP4434612B2 JP2003100186A JP2003100186A JP4434612B2 JP 4434612 B2 JP4434612 B2 JP 4434612B2 JP 2003100186 A JP2003100186 A JP 2003100186A JP 2003100186 A JP2003100186 A JP 2003100186A JP 4434612 B2 JP4434612 B2 JP 4434612B2
Authority
JP
Japan
Prior art keywords
lens
optical path
lens group
group
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003100186A
Other languages
English (en)
Other versions
JP2004309621A (ja
Inventor
英二 中正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003100186A priority Critical patent/JP4434612B2/ja
Publication of JP2004309621A publication Critical patent/JP2004309621A/ja
Application granted granted Critical
Publication of JP4434612B2 publication Critical patent/JP4434612B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、顕微鏡およびズーム対物レンズに関する。
【0002】
【従来の技術】
従来、被検物の観察中に顕微鏡の倍率を切り換えるには、レボルバに設けられた倍率の異なる複数の対物レンズを回転して切り換えることが一般的であった。
一方、特許文献1には、ハーフミラーとシャッタにより光路切換が可能とされた倍率の異なる2つの光学系を、対物レンズと結像レンズの間に設けた変倍光学系が記載されている。
【0003】
【特許文献1】
実公平4−3291号公報(第1−2頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来の顕微鏡には以下のような問題があった。
レボルバで倍率を切り換える場合には、倍率が異なる対物レンズを光軸と交差する方向に回転させるので、レボルバの機械的精度や、レボルバ操作のばらつきにより、対物レンズの芯ずれを起こしやすいという問題があった。したがって、低倍率から高倍率に切り換える際に、視野中心の位置がずれやすくなり、その結果、倍率を切り換えるたびにステージの位置を調整しなければならなくなって観察や測定に多大の手間がかるという問題があった。
特許文献1に記載の技術では、対物レンズを移動させることなく、2つの光学系を切り換えて倍率を切り換えることができるが、通常使用される顕微鏡のように、多段の倍率切換を行うには、さらに多くの光学系を設ける必要があり、装置が複雑化、大型化するという問題がある。また、そのような多数の光学系を対物レンズと結像レンズを共通にして収差をとる設計をしなければならないので、制約が大きく、高価なレンズとなりやすいという問題がある。
本発明は、このような問題に鑑みてなされたものであって、幅広い変倍範囲に対応しながら芯ずれの非常に少ない倍率切換を行え、それにより顕微鏡観察の作業性を向上でき、しかも低コスト化、小型化が図れる顕微鏡およびズーム対物レンズを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明では、標本の像を所定の倍率範囲でズーム変倍して結像するための無限遠補正されたズーム対物レンズと結像レンズとを備えた顕微鏡において、標本側からの入射光束を、前記ズーム対物レンズを経由して前記結像レンズに入射させる主光路と、前記ズーム対物レンズに標本側から入射した光束の一部を、前記主光路における倍率と異なる倍率の像とするための副倍率光学系を経由して前記結像レンズに入射させる副光路と、前記標本側からの入射光束を前記結像レンズの結像面に導くために、前記主光路と副光路とを選択的に切り換える光路切換手段とを備え、前記ズーム対物レンズが、標本側に設けられた固定群であり、出射される光束が略平行光束である第1レンズ群と、該第1レンズ群の後段に設けられたズーム群からなる第2レンズ群と、前記第1レンズ群と前記第2レンズ群との間に、前記第1レンズ群から出射された光束の光路を、前記第2レンズ群に入射して前記結像レンズに向かう前記主光路と前記副光路とに分割する光路分割手段とを備えた構成とする。
この発明によれば、ズーム対物レンズに標本側から入射した光束を、主光路を進んで標本の像をズーム変倍範囲内で変倍して観察できる状態と、副光路を進んで 副倍率光学系を経由して、標本の像を主光路と異なる倍率で観察できる状態とに、光路切換手段により選択的に切り換えることができる。したがって、レボルバ のように対物レンズを光軸外に移動させることなく、倍率を切り換えて観察することができる。
また、主光路と副光路とで異なる倍率とするので、例えば、主光路のズーム変倍範囲より低い倍率を副光路の倍率とすることにより、副光路を選択した場合に視 野を広域とし観察目標の探索を容易にすることができる。また例えば、主光路のズーム変倍範囲より高い倍率を副光路の倍率とすることにより、鏡筒の繰り出してズーム操作をすることなく、迅速に高倍率とズーム変倍範囲との間を迅速に行き来して観察することができる。
また、固定群である第1レンズ群の後段に光路分割手段を配置するので、光路分割手段の配置が容易となる。また、副光路の倍率を主光路のズーム変倍の状態によらず一定に保つことができる。
また、第1レンズ群から出射される光束が略平行光束なので、第1レンズ群と第2レンズ群のレンズ間を比較的自由にレイアウトできる。例えば、距離を適宜に離すことができ、また反射素子を配置した場合でも、収差劣化が生じにくい。
【0008】
請求項に記載の発明では、請求項に記載の顕微鏡において、前記第2レンズ群の最も標本側のレンズが前記第1レンズ群に対して所定距離をおいて位置が固定された固定レンズからなり、該固定レンズの直前に前記光路分割手段が配置されたことを特徴とする。
この発明によれば、第2レンズ群の最も標本側のレンズが第1レンズ群に対して所定距離をおいて位置が固定された固定レンズなので、ズーム変倍する場合でも、その直前に配置された光路分割手段に対して移動することがなく、光路分割手段の配置が容易となる。
【0009】
請求項に記載の発明では、請求項1または2に記載の顕微鏡において、前記第2レンズ群および前記副倍率光学系が、入射した略平行光束を略平行光束として出射する光学系である。
この発明によれば、無限遠補正された対物レンズ光学系が容易に形成できる。
また、第2レンズ群および副倍率光学系の前段と後段とが略平行光束となるので、それらの光路中に平面反射素子を配置してほとんど収差を劣化させることなく光路を折り曲げることができるから、レイアウト配置が容易となる。
【0010】
請求項に記載の発明では、請求項のいずれかに記載の顕微鏡において、標本を照明するための照明光学系を備え、該照明光学系による照明光を前記副光路側から前記光路分割手段に入射させて、前記標本を照明するようにした構成とする。
この発明によれば、照明光を副光路側から光路分割手段に入射させるので、光路分割手段を落射照明用の反射素子として兼用することができる。そして、倍率切換を行っても共通に使用できる照明光学系とすることができる。
特に、光路分割手段の前段が固定群である場合は、照明光がズーム群を経由しないので、ズーム対物レンズのズーム変倍状態によらず、一定条件で照明することができる。また、ズーム群中のレンズの面反射により発生するフレアなどの影響を防止することができる。
【0011】
請求項に記載の発明では、ズーム対物レンズにおいて、標本側に設けられた固定群であり、後段に出射される光束が略平行光束である第1レンズ群と、該第1レンズ群の後段に設けられたズーム群からなる第2レンズ群と、前記第1レンズ群と前記第2レンズ群との間に、前記第1レンズ群から出射された光束の光路を、前記第2レンズ群を経て後段に出射される光路と前記第2レンズ群を経ることなく後段に出射される光路とに分割する光路分割手段を備え、無限遠補正された構成とする。
この発明によれば、固定群である第1レンズ群とズーム群である第2レンズ群の間に配置された光路分割手段により、第2レンズ群を経て後段に出射される光路 と第2レンズ群を経ることなく後段に出射される光路とに光路を分割するので、第1レンズ群を共通使用して、後段にそれぞれ別の光学系を構成することができる。したがって、請求項1に記載のズーム対物レンズとして用いるのに好適である。
また、第1レンズ群にから後段に出射される光束が略平行光束であるから、第2レンズ群を経由する光路および第2レンズ群を経由しない光路のレイアウトの自由度を高めることができる。また、光路分割手段における収差の劣化を低減することができる。
【0013】
請求項に記載の発明では、請求項に記載のズーム対物レンズにおいて、前記第2レンズ群の最も標本側のレンズが前記第1レンズ群に対して所定距離をおいて位置が固定された固定レンズからなり、該固定レンズの直前に前記光路分割手段が配置された構成とする。
この発明によれば、光路分割手段が固定群および固定レンズの間に配置されるので、光路分割手段の配置や取付が容易となる。
【0014】
【発明の実施の形態】
以下では、本発明の実施の形態を、添付図面を参照して説明する。なお、すべての図面において、実施形態が異なる場合でも、同一または相当する部材には同一符号を付し、共通する説明は省略する。
本発明の実施形態に係る顕微鏡1について説明する。
図1は、本発明の実施形態に係る顕微鏡1の概略構成を説明するための模式説明図である。図1において、各光路は、光軸主光線の進む進路のみを図示している。なお、これは模式図であり見易さのために誇張や省略しているところがある。例えば、同一線上にあるべき光路を離して描いたり、複数枚のレンズから構成されたレンズ群でも1枚のレンズの絵で表示したりしている。
【0015】
本実施形態の顕微鏡1は、標本9を所定範囲の変倍率でズーム変倍して観察することができ、必要に応じてそのズーム変倍範囲より低い所定の固定倍率に切り換えて観察することができる正立型の落射顕微鏡である。その概略構成は、顕微鏡本体1aに設けられたステージ1b、ズーム対物レンズ2、照明光学系8、ハーフミラー12(光路切換手段)、固定倍率用レンズ11(副倍率光学系)、可動ミラー14(光路切換手段)、結像レンズ10および観察部7からなる。
【0016】
ステージ1bは、顕微鏡本体1aの下部側に設けられ、標本9を顕微鏡1の焦点深度内に配置するために鉛直方向に移動可能に載置する機構である。
ズーム対物レンズ2は、ステージ1bの上方に光軸が略鉛直方向を向くように固定されたレンズ鏡筒2aに保持されている。そして、レンズ鏡筒2a内に、標本側から、固定群である第1レンズ群3、光路分割ユニット4およびズーム群である第2レンズ群5がこの順に設けられてズーム変倍が可能な無限遠補正されたズーム対物レンズである。なお、レンズ群という名称を用いているが、複数枚からなるレンズを機能上複数の群に分けたものがレンズ群であって、それぞれのレンズ群は複数枚または1枚のレンズからなる。
【0017】
第1レンズ群3は、ズーム対物レンズ2の焦点位置に配置された標本9からの反射光を集光し、略平行光とするレンズである。例えば、標本側から順に、像側に強いパワーを有する正のメニスカスレンズ、正のパワーを有するレンズ、少なくとも一つの負のパワーを有するレンズを含むレンズ群を採用することができる。負のパワーを有することにより、第1レンズ群3内でペッツバール和を0に近づけるように収差補正を行うことができる。
第1レンズ群3のレンズの瞳面(後側焦点面)の近傍には、周辺光量不足を防止するためにズーム変倍率および固定倍率に応じて開口径を可変できる開口絞りSが設けられている。
【0018】
光路分割ユニット4は、ズーム対物レンズ2の光軸に対して傾斜して配置されたハーフミラー4a(光路分割手段)を備え、第1レンズ群3から出射された略平行光束が光路50を通って入射したとき、第1レンズ群3の光軸上を進む光路52(主光路)と、第1レンズ群3の光軸に交差する方向の光路51(副光路)とに適宜の割合で分かれて進むように光路を分割するものである。ハーフミラー4aは、例えば、ガラス製の平行平板の表面に誘電体多層膜コートを施すなどして製作することができる。
そして、光路分割ユニット4は、レンズ鏡筒2aの所定位置に固定されていてもよいし、着脱可能とされていてもよい。その際の着脱機構は、どのようなものでもよいが、例えば、レンズ鏡筒2aの側方に開口窓を形成してレンズ鏡筒2a内部にガイド部と位置決め部を設け、そのガイド部に沿って光路分割ユニット4を光軸に交差する方向に挿脱可能とし、所定位置まで挿入した後に位置決め部に係止された状態で、例えば、固定ねじ、固定レバーなどによって固定する、などといった方式を好適に採用できる。
【0019】
第2レンズ群5は、少なくとも、標本側の初段に第1レンズ群3に対して光軸方向の位置が所定距離だけ離して固定された固定レンズ5a(固定群)と光軸方向中間部に設けられズーム変倍時に光軸方向に移動する少なくとも1群の移動群からなる可動レンズ5bとを備えている。固定レンズ5aを離す所定距離は、光路分割ユニット4などを適宜に収める距離とする。また本実施形態では、さらに像側の最後段に第1レンズ群3に対して光軸方向の位置が固定された固定レンズ5c(固定群)が配置されている。
例えば、標本側から順に、正のパワーを有する固定群、正のパワーを有する第1移動群、正のパワーを有する第2移動群、負のパワーを有する第3移動群、正のパワーを有する第2固定群からなる構成を採用できる。
そして、可動レンズ5bをズームリング(不図示)などにより光軸方向に移動して、所定倍率の範囲でズーム変倍することが可能とされている。
【0020】
ここで、本実施形態のズーム対物レンズ2に好適な光学系の一例について説明する。
図2は、本実施形態のズーム対物レンズ2の光学系の一例を示すもので、後述するように、例えば、ズーム変倍範囲が、倍率20×〜100×であるような構成とすることができるものである。図2(a)、(b)、(c)は、それぞれ倍率20×、50×、100×の場合の光路図を示している。なお、見易さのため、各レンズ群の名称Gi(iは整数)、後記する構成パラメータ表と対応する曲率半径r、面間隔d(iは整数)は、各図に分けて記載している。
このズーム対物レンズ2は、無限遠補正されたズームレンズであり、標本側より順に、第1レンズ群G1(固定群)と第2レンズ群G2(ズーム群)とからなる。第1レンズ群G1と第2レンズ群G2との間には、第1レンズ群G1の後段で選択する倍率に応じて絞り径が可変される開口絞りSが設けられている。ここで、第1レンズ群G1、第2レンズ群G2は、それぞれ上記の第1レンズ群3、第2レンズ群5に対応している。
【0021】
第1レンズ群G1は、標本側より順に、負のメニスカスレンズと正のメニスカスレンズとを接合した接合レンズと、正のメニスカスレンズと、負レンズと正レンズとを接合した接合レンズと、負レンズと正レンズを接合した接合レンズと、正レンズと負のメニスカスレンズとを接合した接合レンズとからなる。第1レンズ群G1は、正のパワーを有している。
【0022】
第2レンズ群G2は、正レンズと負レンズとを接合した接合レンズよりなる1群G21と、正レンズと負レンズとを接合した接合レンズよりなる2群G22と、正レンズと、正レンズと負レンズとを接合した接合レンズとよりなる3群G23と、正のメニスカスレンズと負のメニスカスレンズとを接合した接合レンズと、負レンズとよりなる4群G24と、正レンズと、正レンズと負レンズとを接合した接合レンズとよりなる5群G25とからなる。
ここで、1群G21と5群G25とは、それぞれ正のパワーを有する固定群であり、上記の固定レンズ5a、5cに対応する。また、2群G22と3群G23とは正のパワーを有する移動群、4群G24は負のパワーを有する移動群であり、上記の可動レンズ5bに対応する。
【0023】
このようなズーム対物レンズ2によれば、図2に示したように、標本面の反射光は、第1レンズ群G1により集光されて平行光束とされ、開口絞りSによりズーム倍率に応じた光束径に規制され、第2レンズ群G2において、2群G22、3群G23および4群G24をそれぞれ光軸方向に移動させることにより、ズーム変倍された平行光束として出射することができる。
倍率20×(図2(a)参照)では、3群G23と4群G24とが1群G21と5群G25との中間に位置し、2群G22が1群G21と3群G23との間の標本側寄りに位置している。
そして、図2(b)、(c)に示したように、2群G22と3群G23とを標本側に移動し、4群G24を像側に移動することにより、倍率50×、100×となるようにしている。
第1レンズ群G1と1群G21とは固定群であるが、第1レンズ群G1から出射されるのは平行光束なので、これらのレンズ間距離は光路分割ユニット4、複屈折プリズム17など(図1、7参照)を収めるために十分な間隔とすることができる。なお、上記では、第1レンズ群G1から出射されるのが平行光束として説明したが、略平行光束であれば十分である。
【0024】
次に、図1を参照して照明光学系8について説明する。
照明光学系8は、標本9に照明光束8d(照明光)を照射するためのもので、適宜の波長を有する光源8aと、光源8aから出射された光束を第1レンズ群3に入射させて照明光束を形成する照明用レンズ8bと、絞り8cとを備えるものである。そして、光路分割ユニット4により分割される光路51上を照明光束8dの光軸主光線が進むような位置に配置される。すなわち、照明光学系8は、ズーム対物レンズ2に対して、照明光学系8から出射された照明光束8dがハーフミラー4aに入射し、その反射光が第1レンズ群3の光軸上を進んで標本9を同軸照明する位置に配置されている。すなわち、ハーフミラー4aは、照明光束8dを標本9に導くミラーを兼用しているため、顕微鏡1を簡素な構成とすることができるという利点がある。
これらの具体的な構成は、顕微鏡1の使用目的に応じて、周知の種々の照明光学系を採用することができる。本実施形態では、落射顕微鏡の明視野観察に適するものを採用する。
【0025】
ハーフミラー12は、光路分割ユニット4と照明光学系8との間の光路中に進退可能に設けられた、ハーフミラー面を有する平行平板である。すなわち、光路分割ユニット4と照明光学系8との間の光路中に移動されたときにも、照明光束8dは透過されて標本9に照明される。一方、光路51を進む標本9からの反射光は、ハーフミラー12の進退に応じて、光路51を進む反射光を、上方に反射してズーム対物レンズ2の光軸と略平行な光路54(副光路)上を進むように光路を変更する状態と、光路51のまま直進させる状態とが切り換え可能となっている。
ハーフミラー12を進退させる手段は、どのような手段でもよく、例えば案内溝をスライドさせる機械的な切換機構でもよいし、アクチュエータなどにより駆動するものでもよい。
【0026】
固定倍率用レンズ11は、その光軸が光路54上に配置され、入射する光束の像を拡大して投影することが可能な焦点距離を備え、その拡大倍率が適宜の値となるように、第1レンズ群3および後述する結像レンズ10に対して所定位置に設けられた固定レンズである。
【0027】
ここで、本実施形態の固定倍率用レンズ11に好適な光学系の一例について説明する。
図3は、本実施形態の固定倍率用レンズ11の光学系の一例を示す光路図である。曲率半径r、面間隔d(iは整数)の符号は、後記する構成パラメータ表と対応している。
この固定倍率用レンズ11は、標本側から順に、正レンズと負レンズとを接合した接合レンズと、正レンズと負レンズとを接合した接合レンズと、負レンズと、正レンズと、正のメニスカスレンズと負のメニスカスレンズとを接合した接合レンズとからなる。そして、標本側から2つの接合レンズがそれぞれ正のパワーを備え、最も像側の接合レンズが負のパワーを備えることにより、標本側から入射する略平行光束を所定の固定倍率で拡大した略平行光束とすることが可能とされている。
例えば、図2の第1レンズ群G1と組み合わせることにより、後述するように倍率12×の固定倍率光学系を構成することができる。
【0028】
固定倍率用レンズ11の上方には、固定倍率用レンズ11から光路54を通って出射される光束を対物レンズ2の光軸に交差する方向の光路55(副光路)に沿う向きに反射するミラー13が設けられている。
【0029】
可動ミラー14は、ズーム対物レンズ2と後述する結像レンズ10との間において、光路52に交差する方向に進退可能とされた平面ミラーである。そして、光路52中に移動したとき、光路52を進む光束を側方に反射して光路52と交差する方向の光路53に光路を切り換えるとともに、光路55を進む光束を上方に反射して、光路52と同軸上の光路56(副光路)上を進むように光路を切り換えるものである。
可動ミラー14を進退させる手段は、どのようなものでもよく、ハーフミラー12を進退させる手段と同様の手段が採用できる。また可動ミラー14とハーフミラー12との進退は別々に行ってもよいが、光路の切り換えを迅速に行うためには、互いに同期する構成とすることが好ましい。
【0030】
結像レンズ10は、光路52上に光軸を有し、入射光束の像を所定位置に結像するレンズである。入射光束は、ハーフミラー12および可動ミラー14の進退の状態に応じて、それぞれズーム対物レンズ2または固定倍率用レンズ11から出射された光束である。
本実施形態に好適な結像レンズ10の一例について説明する。
図4は、本実施形態の結像レンズ10に好適な光学系の一例について説明するための光軸方向の断面図である。曲率半径r、面間隔d(iは整数)は、後記する構成パラメータ表と対応している。本例の結像レンズ10は、図2に示したズーム対物レンズ2、図3に示した固定倍率用レンズ11と組み合わせて、後述する収差図の計算に用いているものである。
この結像レンズ10は、標本側から、正レンズと負のメニスカスレンズとを接合した接合レンズと、正レンズと負レンズとを接合した接合レンズとからなる。これらの接合レンズはそれぞれ正のパワーを有する。
【0031】
観察部7は、結像レンズ10による像を所望の方法で観察するための光学系からなり、例えば、標本9の像を肉眼で観察するための接眼レンズ7a、標本9の像をモニタするためのテレビカメラ7b、標本9の像を写真撮影するための標本撮影用カメラ7cなどを備えている。結像レンズ10による標本9の像をそれぞれ観察するための光学系については周知のことであるので説明を省略する。
【0032】
次に、本実施形態の顕微鏡1の動作について説明する。
図5は、本発明の実施形態に係る顕微鏡1の光路を切り換える動作について説明するための模式光路図である。図5において、各光路は、光軸主光線の進む進路のみを図示している。
顕微鏡1では、ハーフミラー12および可動ミラー14を進退させることにより、第1レンズ群3、光路分割ユニット4、固定倍率用レンズ11および結像レンズ10からなる固定倍率光学系と、第1レンズ群3、光路分割ユニット4、第2レンズ群5および結像レンズ10からなるズーム変倍光学系とを切り換えることができる。
【0033】
図5(a)は、ハーフミラー12および可動ミラー14を、それぞれ光路51および光路52から退避させて、ズーム変倍光学系を構成した様子を示す。すなわち、照明光学系8から出射された照明光束8dがハーフミラー4aで反射され、第1レンズ群3を通って標本9に照明される。そして、照明光束8dによる標本9の反射光が第1レンズ群3を介してハーフミラー4aに入射する。このとき、第1レンズ群3の作用により、反射光は略平行光束とされている。ハーフミラー4aで分割された光束のうち、光路52を進む光束が第2レンズ群5を透過して、第2レンズ群5のレンズ配置に応じた所定倍率に拡大され、光軸上を直進して、結像レンズ10に入射する。そして、結像レンズ10により、標本9の像が結像面に結像される。
そして、第2レンズ群5の移動群を適宜移動して、レンズ配置を変えることにより、ズーム変倍を行うことができる。
【0034】
図5(b)は、ハーフミラー12および可動ミラー14をそれぞれ光路51および光路52内に進出させて、固定倍率光学系を構成した様子を示す。すなわち、照明光学系8から出射された照明光束8dがハーフミラー12を透過して、ハーフミラー4aで反射され、第1レンズ群3を通って標本9に照明される。そして、照明光束8dによる標本9の反射光が第1レンズ群3を介してハーフミラー4aに入射する。このとき、第1レンズ群3の作用により、反射光は略平行光束とされている。ハーフミラー4aで分割された光束のうち、光路52を進む光束は第2レンズ群5を透過してから可動ミラー14で反射され、結像レンズ10に到達しない光路53に向かって進む。一方、光路51を進む光束はハーフミラー12で反射されて光路54を進み、固定倍率用レンズ11を透過してミラー13で折り曲げられて光路55を進み、可動ミラー14で光路が切り換えられて光路56を進み、結像レンズ10に入射し、結像面に結像する。このように、標本9の像は、第1レンズ群3、固定倍率用レンズ11および結像レンズ10により所定の固定倍率で結像される。
【0035】
所定の固定倍率はどのように選んでもよい。例えば、ズーム変倍範囲より低倍率としておけば、広い視野が観察できるので、拡大観察したい部位を広い視野範囲から選んで視野中心に位置合わせし、それからズーム変倍光学系に切り換えて、種々の倍率で詳細に観察することができる。そうすれば、拡大観察すべき部位を見失うことなく迅速に探せるので効率よく観察することができる。
図3に示した固定倍率用レンズ11は、このような低倍率の固定倍率光学系を形成するために好適なレンズとなっている。
【0036】
また、所定の固定倍率をズーム変倍範囲より高倍率としてもよい。そうすれば、ズーム変倍しながら観察している部位の一部を一時的に高倍率で拡大観察したい場合などに、迅速に高倍率を切り換え、すぐに元通りの倍率に戻すことができる。また、ズーム変倍を利用して徐々に拡大してから高倍率の固定倍率に切り換えることにより、所望の拡大部位を視野中心に正確に位置合わせした後に、拡大することができて好都合である。
このような高倍率の固定倍率光学系に好適な固定倍率用レンズ11の一例として、図6のような構成を挙げることができる。
図6に示した固定倍率用レンズ11は、標本側から順に、正レンズと、正レンズと負レンズとを接合した接合レンズと、負のメニスカスレンズと、正のメニスカスレンズと、負のメニスカスレンズと負レンズとを接合した接合レンズとからなり、負のメニスカスレンズと正のメニスカスレンズとの間に、比較的長い空気間隔dを設けてなるものである。このような構成により、図2の第1レンズ群G1、結像レンズ10と組み合わせることにより、例えば倍率150×の固定倍率光学系を得ることができる。
【0037】
このような倍率切換において、本実施形態では、レンズを光軸に交差する方向に動かさないので、精度よく切り換えることができるという利点がある。つまり、光路切換手段が移動するのは、光軸を有しない平面状の反射面なので、レンズを移動する場合に比べて、光学性能を劣化させることなく移動することが容易となり、簡素な機構により移動を行うことができるという利点がある。
【0038】
また、本実施形態では、固定倍率光学系が、標本9に最も近い第1レンズ群3と、最も像側の結像レンズ10とを共通使用しているので、簡素な構成となり、装置を安価に構成できるという利点がある。
また、これらの倍率範囲を上記の固定倍率を変倍範囲に含むような単独のズーム変倍光学系を設計する場合と比べて、光学系の収差補正が容易となるので、それぞれの光学系を安価で高性能の構成とすることができるという利点がある。
【0039】
また、本実施形態では、第1レンズ群3を出射される光束が略平行光束となるように構成しているので、第2レンズ群5の光軸方向の位置を自由に選ぶことができ、第1レンズ群3と第2レンズ群5との間に光路分割ユニット4を配置するスペースを必要に応じて確保できるという利点がある。また、副光路においても、固定倍率用レンズ11の配置位置の自由度が高くなるので、光学系のレイアウトが容易となるという利点がある。したがって、製作性、組付性も向上することができるという利点がある。
また、ハーフミラー4a、ハーフミラー12などが略平行光束を反射するので、反射時の収差劣化を著しく低減でき、高精度な光学系とすることができるという利点がある。
【0040】
次に、本実施形態の第1変形例について説明する。
図7は、本実施形態の第1変形例に係る顕微鏡100の概略構成を説明するための模式説明図である。
本変形例に係る顕微鏡100は、顕微鏡1のズーム対物レンズ2において、光路分割ユニット4に代えて光路分割ユニット40を設けるとともに、光路分割ユニット40と第1レンズ群3との間に複屈折プリズム17を設けて、落射型の微分干渉顕微鏡を構成したものである。
光路分割ユニット40は、光路分割ユニット4と同様に、例えばズーム対物レンズ2に挿脱可能な形状とハーフミラー4aとを備える。そして、光路分割ユニット4とは異なり、ハーフミラー4aと照明光学系8との間の光路中に照明光束8dを直線偏光にするポラライザ16(偏光子)を、ハーフミラー4aと第2レンズ群5との間の光路中に第2レンズ群5の間にアナライザ15(検光子)をそれぞれ備えている。
【0041】
複屈折プリズム17は、上方から入射する照明光束8dを振動方向が互いに直交する直線偏光を有する2つの光束に分け、標本9からのそれぞれの反射光を同一光路に合成するための光学素子である。
このような複屈折プリズム17として、ウォラストンプリズムやノマルスキープリズムが知られている。ウォラストンプリズムの場合には、第1レンズ群3の瞳面(後側焦点面)の近傍に配置する。また、ノマルスキープリズムを用いる場合には、入射光が分離され光軸上で互いに交差する面、いわゆるローカライズ面を、第1レンズ群3の後側焦点面に一致させる。
本実施形態では、第1レンズ群3が略平行光束を射出する固定群とされているので、複屈折プリズム17を後側焦点面に配置することが容易となっている。
複屈折プリズム17は、レンズ鏡筒2aの側部に設けられた開口窓から挿脱可能とされている。
【0042】
本変形例によれば、照明光束8dがポラライザ16により直線偏光され、ハーフミラー4aにより標本9に向けて反射されるが、その間に複屈折プリズム17、第1レンズ群3を透過することにより偏光方向が互いに直交する平行光に分離されてから標本9に照明される。そして、標本9の凹凸に応じて互いに光路差を有する光束として反射され、複屈折プリズム17、複屈折プリズム17を透過することにより、それぞれ同一の光路に合成されて、ハーフミラー4aを透過し、アナライザ15内で干渉を起こすことにより、標本9の凹凸に応じた光量分布が形成される。そして、第2レンズ群5から結像レンズ10を経て、標本9の濃淡像が所定のズーム変倍率に拡大されて結像される。
以上は、ハーフミラー12、可動ミラー14がそれぞれ、光路51、52から退避したズーム変倍光学系の場合で説明したが、固定倍率光学系の場合も容易に理解されるので説明は省略する。
【0043】
このように本変形例の顕微鏡100は、ズーム変倍光学系と固定倍率光学系の切り換えに関し、上記実施形態と同様な作用効果を有する微分干渉顕微鏡の例となっている。そして、光路分割ユニット40および複屈折プリズム17に代えて光路分割ユニット4を装着すれば、ただちに通常の落射顕微鏡として用いることができるという利点がある。
【0044】
また、第2変形例として、上記第1変形例において、複屈折プリズム17を抜き取った状態とし、偏光顕微鏡として用いる例を挙げることができる。もし、偏光顕微鏡として用いる必要がなければ、上記第1変形例において、複屈折プリズム17を光路分割ユニット40に一体に設けておいてもよい。
【0045】
なお、上記の説明では、顕微鏡1、100を落射顕微鏡として説明したが、照明光束8dをハーフミラー4aに入射させず、標本9の裏面側から照明することにより、透過顕微鏡を構成してもよい。その場合でも、ズーム変倍光学系と固定倍率光学系とを切り換えられるから、その点では上記実施形態と同様の作用効果を有する。
ただし、微分干渉顕微鏡、偏光顕微鏡として用いる場合は、照明光学系8の移動に対応して、照明光学系8と標本9との間に、ポラライザ16、複屈折プリズム17などを配置しておくことは言うまでもない。
【0046】
また、上記の説明では、照明光学系8は、明視野観察用の照明光学系として説明したが、照明光束8dをハーフミラー4aに入射させず、透過型または落射型の暗視野観察用の照明光学系としてもよい。例えば、光ファイバで第1レンズ群3の近傍に照明光束8dを導き、暗視野ミラーを介して標本9に照射することにより、落射型の暗視野観察用の照明光学系を構成とすることができる。本実施形態では、第1レンズ群3が固定群からなるので、第1レンズ群3の近傍に光ファイバや暗視野ミラーを配置することが容易となるという利点がある。
【0047】
また、上記の説明では、光路分割手段がハーフミラーである例で説明したが、光路分割手段にはハーフミラー以外のビームスプリッタも好適に採用できる。例えば、光路分割による光量損失を低減するために偏光ビームスプリッタを用いてもよい。
【0048】
また、上記の説明では、光路切換手段がハーフミラー12および可動ミラー14からなる例で説明したが、ハーフミラー12は光路中に進出した状態で固定し、可動ミラー14のみを光路切換手段としてもよい。
また、光路切換手段は、反射面以外の手段によってもよい。例えば、第2レンズ群5の後段と固定倍率用レンズ11の後段とにおいて、光路内を遮光したり遮光を解除したりするシャッタ機構を設けることにより、光路切換手段を構成してもよい。
【0049】
また、上記の説明では、副倍率光学系に固定倍率用レンズ11を用いて、固定倍率光学系を形成する例で説明したが、固定倍率用レンズ11に代えて、第2レンズ群5のような略平行光束を入射して、変倍された略平行光束を出射するズーム光学系を用いることにより、副倍率光学系をズーム変倍光学系としてもよい。そのように構成すれば、2つのズーム変倍光学系により、広範囲のズーム変倍が可能な顕微鏡とすることができるという利点がある。その際、光学系を2つの変倍範囲に分割しているので、それぞれのレンズ設計が容易となり、高精度で安価な光学系により、広範囲のズーム変倍を実現できるという利点がある。
またその際、2つのズーム変倍範囲の一部が重なりあった構成としてもよい。
【0050】
以下では、図2に示したズーム対物レンズ2(実施例1)、図4に示した結像レンズ10(実施例2)、図3に示した固定倍率用レンズ11(実施例3)、および図6に示した固定倍率用レンズ11(実施例4)の実施例について構成パラメータ表および収差図を挙げて説明する。
以下の構成パラメータ表および収差図において、曲率半径r、面間隔d(iは整数)の単位は(mm)である。また、屈折率n、アッベ数ν(iは整数)は、各硝材のn、νを示す。また、fは焦点距離(mm)、NAは開口数を表す。
次に示すのは、ズーム変倍範囲が、倍率20×〜100×のズーム変倍光学系を構成する実施例1、2の構成パラメータ表である。ここで、図2には図示していないが、面番号16はハーフミラー4aに相当する。
【0051】
(実施例1)
Figure 0004434612
Figure 0004434612
【0052】
(実施例2)
Figure 0004434612
【0053】
図8は、実施例1、2を組み合わせたズーム変倍光学系の倍率20×の収差図である。図8(a)は球面収差、図8(b)は非点収差、図8(c)はコマ収差、図8(d)は歪曲収差を示す。いずれも像径は11mm、横軸の単位は、(m)である。また、図中の符号F、C、dは、それぞれ波長486.1nm(F線)、656.3nm(C線)、587.56nm(d線)に対応する計算結果である。また、図9、10はそれぞれ倍率50×、100×の場合の収差図である。それぞれの(a)、(b)、(c)、(d)および単位、符号の意味は、図8と同様である。
図8〜10から理解されるように、実施例1、2により倍率20×〜100×の範囲において、収差性能の良好なズーム変倍光学系が形成されている。
【0054】
次に示すのは、実施例1の第1レンズ群G1と実施例2の結像レンズ10と組み合わせて固定倍率12×の固定倍率光学系を構成するための実施例3の構成パラメータ表である。下記の面番号1が、実施例1の面番号17、すなわちハーフミラー4aの固定倍率光学系側の面に相当する。
【0055】
(実施例3)
Figure 0004434612
【0056】
図11は、実施例1、2、3を組み合わせた固定倍率光学系の収差図である。それぞれの(a)、(b)、(c)、(d)および単位、符号の意味は、図8と同様である。
図11から理解されるように、実施例1、2、3により倍率12×の収差性能の良好な固定倍率光学系が形成されている。
【0057】
次に、図6に示す固定倍率用レンズ11(実施例4)の構成パラメータ表を示す。実施例1の第1レンズ群G1と実施例2の結像レンズ10と実施例4の固定倍率用レンズ11とを組み合わせることにより、固定倍率150×の固定倍率光学系を構成することができる。下記の面番号0が、実施例1の面番号17、すなわちハーフミラー4aの固定倍率光学系側の面に相当する。
【0058】
(実施例4)
Figure 0004434612
【0059】
【発明の効果】
以上に述べたように、本発明の顕微鏡によれば、主光路のズーム対物レンズと倍率が異なる副倍率光学系を副光路に設け、光軸を有する光学素子を移動させない光路変更手段により、主光路と副光路を容易に切り換えることができるので、幅広い変倍範囲に対応しながら芯ずれの非常に少ない倍率切換を行え、それにより顕微鏡観察の作業性を向上できるという効果を奏する。
また、本発明のズーム対物レンズによれば、このような本発明の顕微鏡に好適に用いることができる組付や製作が容易で安価となるズーム対物レンズを提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る顕微鏡の概略構成を説明するための模式説明図である。
【図2】 本発明の実施形態に係るズーム対物レンズの光学系の一例を示す光路図である。
【図3】 本発明の実施形態に係る固定倍率用レンズの光学系の一例を示す光路図である。
【図4】 本発明の実施形態に係る結像レンズの光学系の一例を示す光軸方向の断面図である。
【図5】 本発明の実施形態に係る顕微鏡の光路を切り換える動作について説明するための模式光路図である。
【図6】 本発明の実施形態に係る固定倍率用レンズの光学系の別の例を示す光路図である。
【図7】 本発明の実施形態の第1変形例に係る顕微鏡の概略構成を説明するための模式説明図である。
【図8】 本発明の実施例1、2に係るズーム変倍光学系の倍率20×の収差図である。
【図9】 本発明の実施例1、2に係るズーム変倍光学系の倍率50×の収差図である。
【図10】 本発明の実施例1、2に係るズーム変倍光学系の倍率100×の収差図である。
【図11】 本発明の実施例1、2、3を組み合わせた固定倍率光学系の収差図である。
【符号の説明】
1、100 顕微鏡
2 ズーム対物レンズ
2a レンズ鏡筒
3、G1 第1レンズ群(固定群)
4 光路分割ユニット
4a ハーフミラー(光路分割手段)
5、G2 第2レンズ群(ズーム群)
5a、5c 固定レンズ(固定群)
5b 可動レンズ(移動群)
8 照明光学系
8d 照明光束(照明光)
9 標本
10 結像レンズ
11 固定倍率用レンズ(副倍率光学系)
12 ハーフミラー(光路切換手段)
14 可動ミラー(光路切換手段)
15 アナライザ(検光子)
16 ポラライザ(偏光子)
17 複屈折プリズム
50 光路(主光路、副光路)
51、54、55、56 光路(副光路)
52 光路(主光路)
S 開口絞り

Claims (6)

  1. 標本の像を所定の倍率範囲でズーム変倍して結像するための無限遠補正されたズーム対物レンズと結像レンズとを備えた顕微鏡において、
    標本側からの入射光束を、前記ズーム対物レンズを経由して前記結像レンズに入射させる主光路と、
    前記ズーム対物レンズに標本側から入射した光束の一部を、前記主光路における倍率と異なる倍率の像とするための副倍率光学系を経由して前記結像レンズに入射させる副光路と、
    前記標本側からの入射光束を前記結像レンズの結像面に導くために、前記主光路と副光路とを選択的に切り換える光路切換手段とを備え
    前記ズーム対物レンズが、
    標本側に設けられた固定群であり、出射される光束が略平行光束である第1レンズ群と、
    該第1レンズ群の後段に設けられたズーム群からなる第2レンズ群と、
    前記第1レンズ群と前記第2レンズ群との間に、前記第1レンズ群から出射された光束の光路を、前記第2レンズ群に入射して前記結像レンズに向かう前記主光路と前記副光路とに分割する光路分割手段とを備えたことを特徴とする顕微鏡。
  2. 前記第2レンズ群の最も標本側のレンズが前記第1レンズ群に対して所定距離をおいて位置が固定された固定レンズからなり、
    該固定レンズの直前に前記光路分割手段が配置されたことを特徴とする請求項に記載の顕微鏡。
  3. 前記第2レンズ群および前記副倍率光学系が、入射した略平行光束を略平行光束として出射する光学系であることを特徴とする請求項1または2に記載の顕微鏡。
  4. 標本を照明するための照明光学系を備え、
    該照明光学系による照明光を前記副光路側から前記光路分割手段に入射させて、前記標本を照明するようにしたことを特徴とする請求項のいずれかに記載の顕微鏡。
  5. 標本側に設けられた固定群であり、後段に出射される光束が略平行光束である第1レンズ群と、
    該第1レンズ群の後段に設けられたズーム群からなる第2レンズ群と、
    前記第1レンズ群と前記第2レンズ群との間に、前記第1レンズ群から出射された光束の光路を、前記第2レンズ群を経て後段に出射される光路と前記第2レンズ群を経ることなく後段に出射される光路とに分割する光路分割手段を備え、無限遠補正されたことを特徴とするズーム対物レンズ。
  6. 前記第2レンズ群の最も標本側のレンズが前記第1レンズ群に対して所定距離をおいて位置が固定された固定レンズからなり、
    該固定レンズの直前に前記光路分割手段が配置されたことを特徴とする請求項に記載のズーム対物レンズ。
JP2003100186A 2003-04-03 2003-04-03 顕微鏡およびズーム対物レンズ Expired - Fee Related JP4434612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100186A JP4434612B2 (ja) 2003-04-03 2003-04-03 顕微鏡およびズーム対物レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100186A JP4434612B2 (ja) 2003-04-03 2003-04-03 顕微鏡およびズーム対物レンズ

Publications (2)

Publication Number Publication Date
JP2004309621A JP2004309621A (ja) 2004-11-04
JP4434612B2 true JP4434612B2 (ja) 2010-03-17

Family

ID=33464390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100186A Expired - Fee Related JP4434612B2 (ja) 2003-04-03 2003-04-03 顕微鏡およびズーム対物レンズ

Country Status (1)

Country Link
JP (1) JP4434612B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862368B2 (ja) * 2004-11-29 2012-01-25 株式会社ニコン ズーム顕微鏡
JP2006154230A (ja) * 2004-11-29 2006-06-15 Nikon Corp ズーム顕微鏡
US7593157B2 (en) 2004-11-29 2009-09-22 Nikon Corporation Zoom microscope
JPWO2009093530A1 (ja) * 2008-01-23 2011-05-26 株式会社ニコン 顕微鏡授精観察方法および顕微授精用の顕微鏡システム
JP5389390B2 (ja) * 2008-07-25 2014-01-15 オリンパス株式会社 観察装置
JP5273453B2 (ja) * 2008-08-28 2013-08-28 株式会社ニコン 顕微鏡
JP5489804B2 (ja) * 2010-03-23 2014-05-14 オリンパス株式会社 Cars光用ユニットおよび顕微鏡システム
JP5673365B2 (ja) * 2010-07-15 2015-02-18 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム

Also Published As

Publication number Publication date
JP2004309621A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
US10895720B2 (en) Imaging optical system, microscope apparatus including the imaging optical system, and stereoscopic microscope apparatus
JP4671463B2 (ja) 照明光学系及び照明光学系を備えた顕微鏡
JP3563800B2 (ja) 観察光学装置
US20060114554A1 (en) Zoom microscope
US7551351B2 (en) Microscope with evanescent sample illumination
US8964289B2 (en) Microscope including micro and macro objectives
US7405874B2 (en) Microscope for epi fluorescence and total internal reflection microscopy
JPWO2008069220A1 (ja) 結像装置及び顕微鏡
US20140313589A1 (en) Telecentric modular zoom system
US20060250689A1 (en) Objective for evanescent illumination and microscope
US5764408A (en) Lens-barrel optical system and microscope apparatus
US6366398B1 (en) Observation apparatus
JP4434612B2 (ja) 顕微鏡およびズーム対物レンズ
JP2002365555A (ja) 顕微鏡用照明光学系
JP3544564B2 (ja) 顕微鏡装置
JP2006178440A (ja) ズーム顕微鏡
JP5055568B2 (ja) 位相差顕微鏡
JP3861372B2 (ja) 顕微鏡
JP2009008701A (ja) 照明装置及びこの照明装置を備えたズーム顕微鏡
JP2002031762A (ja) 顕微鏡用照明装置
US8817368B2 (en) Lens for evanescent wave illumination and corresponding microscope
JP2001356278A (ja) 顕微鏡システム
JP2004133341A (ja) ズーム対物レンズ
US20110069380A1 (en) Variable microscope system
JP3204712B2 (ja) 高倍から極低倍観察用顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R151 Written notification of patent or utility model registration

Ref document number: 4434612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees