WO2007142005A1 - 排水処理方法および排水処理装置 - Google Patents
排水処理方法および排水処理装置 Download PDFInfo
- Publication number
- WO2007142005A1 WO2007142005A1 PCT/JP2007/060127 JP2007060127W WO2007142005A1 WO 2007142005 A1 WO2007142005 A1 WO 2007142005A1 JP 2007060127 W JP2007060127 W JP 2007060127W WO 2007142005 A1 WO2007142005 A1 WO 2007142005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- activated carbon
- treatment apparatus
- micro
- waste water
- filler
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/106—Carbonaceous materials
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/06—Aerobic processes using submerged filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/68—Halogens or halogen compounds
- B01D53/70—Organic halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/348—Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
- C02F2101/14—Fluorine or fluorine-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/346—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/06—Nutrients for stimulating the growth of microorganisms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a wastewater treatment method and a wastewater treatment apparatus not only in a semiconductor factory and a liquid crystal factory but also in a factory that manufactures or uses an organic fluorine compound.
- Organofluorine compounds are chemically stable substances.
- the organic fluorine compounds have excellent properties from the viewpoints of heat resistance and chemical resistance, and are therefore used for applications such as surfactants.
- the organic fluorine compound is a chemically stable substance, it is difficult to be decomposed by microorganisms.
- PFOS perfluorootatasulfonic acid
- PFOA perfluorooctanoic acid
- the perfluorooctasulfonic acid (PFOS) and the perfluorooctanoic acid (PFOA) are chemically stable, and therefore require a high temperature of about 1000 ° C. or higher to be thermally decomposed (Japanese Patent Laid-Open No. 2005-260688). (See 2001 302551).
- an object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus capable of effectively decomposing a hardly decomposable organic fluorine compound by a microorganism. Means for solving the problem
- the wastewater treatment method of the present invention comprises:
- the wastewater containing the organic fluorine compound is brought into contact with the activated carbon so that the organic fluorine compound in the wastewater is adsorbed on the activated carbon, and the organic fluorine compound adsorbed on the activated carbon is decomposed by the microorganism.
- the process It is characterized by comprising.
- the micro-nano bubble refers to a bubble having a diameter of about 10 ⁇ m force and several hundred nm.
- the said nutrient is a nutrient required when microorganisms are activated.
- the organic fluorine compounds include perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluoroalkyl alkyl sulfonates (PFAS).
- the step of propagating microorganisms activated with micro-nano bubbles and nutrients on activated carbon, and the wastewater containing the organic fluorine compound are brought into contact with the activated charcoal,
- the organic fluorine compound in the waste water is adsorbed on the activated carbon and the organic fluorine compound adsorbed on the activated carbon is decomposed by the microorganism, so that the hardly decomposable organic contained in the waste water is included.
- Fluorine compounds for example, perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorinated alkyl sulfonates (PFAS)
- PFOS perfluorooctasulfonic acid
- PFOA perfluorooctanoic acid
- PFAS perfluorinated alkyl sulfonates
- the activated carbon can be automatically regenerated. That is, there is no need to regenerate the activated carbon, and maintenance costs and running costs can be reduced.
- the activated carbon comprises activated carbon on which microorganisms activated with micro-nano bubbles and nutrients are propagated.
- the activated carbon is brought into contact with wastewater containing an organic fluorine compound and adsorbs the organic fluorine compound in the wastewater.
- the adsorbed organic fluorine compound is decomposed by the microorganism.
- the micro-nano bubble refers to a bubble having a diameter of about several hundred nm even with a 10 ⁇ m force.
- the said nutrient is a nutrient required when microorganisms are activated.
- the organic fluorine compounds include perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluoroalkyl alkyl sulfonates (PFAS).
- the activated carbon has propagated microorganisms activated with micro-nano bubbles and nutrients, and the activated carbon is contacted with wastewater containing an organic fluorine compound, While adsorbing the organic fluorine compound in the wastewater, this adsorption
- the above-mentioned organic fluorine compound is decomposed by the microorganism, so that the organic fluorine compound (for example, perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), Perfluorinated alkyl sulfonates (PFA S)) can be effectively degraded by microorganisms.
- PFOS perfluorooctasulfonic acid
- PFOA perfluorooctanoic acid
- PFA S Perfluorinated alkyl sulfonates
- the activated carbon decomposes the organic fluorine compound adsorbed on the activated carbon by the microorganism, the activated carbon can be automatically regenerated. That is, there is no need to regenerate the activated carbon, and maintenance costs and running costs can be reduced.
- micro-nano bubble generating aid and nutrients into the filtered waste water, and adding micro-nano bubbles to prepare treated water;
- the micro-nano bubble refers to a bubble having a diameter of about several hundred nm even with a 10 ⁇ m force.
- the above-mentioned micro / nano bubble generation aid means one that can stably maintain the generation state of micro / nano bubbles.
- the nutrient is a nutrient necessary for microorganisms to become active.
- the organic fluorine compound include perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorinated alkyl sulfonates (PFA S).
- the step of filtering wastewater containing an organic fluorine compound, and the filtered wastewater are mixed with microorganisms, micro-nano bubble generation aids and nutrients, and contain micro-nano bubbles.
- the micro-nano bubble generation aid is added. Therefore, an optimal amount of the micro-nano bubbles that activate the microorganisms can be generated.
- PFOS perfluorooctasulfonic acid
- PFOA perfluorooctanoic acid
- PFAS perfluorofluoroalkyl sulfonate
- the organofluorine compound adsorbed on the activated carbon can be decomposed by the microorganism, the activated carbon can be automatically regenerated. That is, there is no need to regenerate the activated carbon, and maintenance costs and running costs can be reduced.
- the wastewater containing the organic fluorine compound is filtered by the filter, and then mixed with microorganisms, micro-nano bubble generation aids and nutrients, and contains micro-nano bubbles to produce water to be treated.
- the treated water is supplied to the activated carbon tower, and the organic fluorine compound in the treated water is decomposed by the microorganism.
- the micro-nano bubble refers to a bubble having a diameter of about several hundred nm even with a 10 ⁇ m force.
- the above-mentioned micro / nano bubble generation aid means one that can stably maintain the generation state of micro / nano bubbles.
- the nutrient is a nutrient necessary for microorganisms to become active.
- the organic fluorine compound include perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorinated alkyl sulfonates (PFA S).
- the wastewater containing an organic fluorine compound is provided with a filter for filtering wastewater containing an organic fluorine compound and an activated carbon tower containing activated carbon.
- a filter for filtering wastewater containing an organic fluorine compound and an activated carbon tower containing activated carbon.
- microorganisms, micro-nano bubble generation aids and nutrients are mixed and micro-nano bubbles are contained to produce water to be treated, and the water to be treated is supplied to the activated carbon tower, The organic in the treated water Since the fluorine compound is decomposed by the microorganism, the microorganism is propagated on the activated carbon of the activated carbon tower, which is a fixed carrier of the microorganism, and is further activated by the micro-nano bubble and the nutrient.
- the organic fluorine compound can be reasonably decomposed.
- an optimal amount of the micro-nano bubbles that activate the microorganism can be generated.
- PFOS perfluorooctasulfonic acid
- PFOA perfluorooctanoic acid
- PFAS perfluorofluoroalkyl sulfonate
- the organofluorine compound adsorbed on the activated carbon can be decomposed by the microorganism, the activated carbon can be automatically regenerated. That is, there is no need to regenerate the activated carbon, and maintenance costs and running costs can be reduced.
- the waste water treatment apparatus of one embodiment includes a waste gas treatment tank that houses the micro-nano bubble generator,
- the water introduced into the exhaust gas treatment tank is added with microorganisms, micro-nano bubble generation aids and nutrients, and the micro-nano bubble is contained by the micro-nano bubble generator to create washing water,
- the exhaust gas generated by decomposing the organofluorine compound in the water to be treated by the microorganisms in the activated carbon tower is introduced into the exhaust gas treatment tank and treated with the washing water.
- the wastewater treatment tank that houses the micro / nano bubble generator is provided, and the water introduced into the exhaust gas treatment tank contains microorganisms, a micro / nano bubble generation aid, and A nutrient solution is added and micronanobubbles are contained by the micronanobubble generator to produce washing water, and the organofluorine compound in the treated water is decomposed by the microorganisms in the activated carbon tower.
- the exhaust gas generated in the exhaust gas is introduced into the exhaust gas treatment tank and treated with the washing water, so that the fluorine in the exhaust gas is rationally treated by the activated microorganisms in the washing water. it can.
- a raw water tank connected to the filter and into which wastewater containing the organic fluorine compound is introduced;
- a first relay tank connected between the filter and the activated carbon tower and having the micro-nano bubble generator
- a second relay tank connected to the activated carbon tower and the exhaust gas treatment tank
- the wastewater containing the organic fluorine compound introduced into the raw water tank is filtered by the filter, and then mixed with the microorganism, the micro-nano bubble generation aid, and the nutrient in the first relay tank.
- the micro-nano bubbles are contained by the micro-nano bubble generator to create the water to be treated.
- the treated water is supplied to the activated carbon tower, and the treated water and the exhaust gas that have passed through the activated carbon tower are introduced into the second relay tank or the raw water tank, and the treated water and the exhaust gas are supplied. And separated
- the exhaust gas is introduced into the exhaust gas treatment tank.
- the treated water and the exhaust gas that have passed through the activated carbon tower are introduced into the second relay tank or the raw water tank, and the treated water and the exhaust gas are introduced. Therefore, the water to be treated and the exhaust gas can be reliably treated separately.
- the water to be treated and the exhaust gas that have passed through the activated carbon tower are introduced into the raw water tank, the water to be treated can be repeatedly treated again.
- the exhaust gas treatment tank includes
- a lower water storage part that is disposed in the lower part and houses the micro / nano bubble generator and stores the washing water
- An upper watering part that is disposed at the upper part and sprays the washing water pumped from the lower water storage part;
- the washing water sprayed from the upper watering part cleans the exhaust gas, is stored in the lower water storage part, and is pumped up again to the upper watering part.
- the cleaning water sprayed from the upper watering part is washed in the exhaust gas, stored in the lower water storage part, and pumped up again in the upper watering part. Therefore, the washing water can be circulated between the upper watering part and the lower water storage part.
- the activated carbon tower contains a filler in addition to the activated carbon.
- the activated carbon tower contains a filler in addition to the activated carbon, the microorganism is propagated in the filler, and the microorganism is used.
- the organic fluorine compound adsorbed by the activated carbon can be efficiently decomposed.
- the second relay tank accommodates a micro / nano bubble generator.
- the second relay tank accommodates a micro / nano bubble generator, so that a small amount of the organofluorine compound in the treated water that has passed through the activated carbon tower.
- the microorganisms can be activated and decomposed in the second relay tank.
- the filler is a polyvinyl chloride vinylidene filler.
- the filler is a polyvinylidene chloride filler
- microorganisms activated in the polysalt vinylidene filler can be cultured at a high concentration, The organic fluorine compound adsorbed by the activated carbon can be treated more efficiently.
- the above-mentioned poly vinylidene filler is commercially available, it can be easily procured at a low price.
- the polysalt vinylidene filler is in a string shape.
- the polysalt vinylidene filler is in a ring shape.
- the polyvinyl chloride vinylidene filler is easily accommodated in the activated carbon tower. can do.
- the first relay tank contains a filler.
- the microorganism can be propagated while fixing the microorganism in the filler, and the microorganism
- the organic fluorinated compound in the water to be treated before being supplied to the activated carbon tower can be decomposed.
- the filler is a polyvinyl chloride vinylidene filler.
- the filler is a polyvinylidene chloride filler
- microorganisms activated in the polysalt vinylidene filler can be cultured at a high concentration, The organofluorine compound in the water to be treated can be more efficiently treated in the first relay tank.
- the above-mentioned polyvinyl chloride filler is commercially available, it can be easily procured at a low price.
- the polysalt vinylidene filler is in a string shape.
- the polyvinyl chloride vinylidene filler since the polyvinyl chloride vinylidene filler has a string shape, a large amount of the polyvinyl chloride vinylidene filler is added to the first relay tank. It can be accommodated.
- the polysalt vinylidene filler is in a ring shape.
- the polyvinyl chloride filler is in a ring shape, the polyvinyl chloride filler is simply added to the first relay tank. It can be accommodated in.
- the lower water storage section of the exhaust gas treatment tank contains a filler.
- the lower water storage section of the exhaust gas treatment tank contains the filler, so that the microorganisms propagate in the filler and the organic matter in the exhaust gas is contained.
- the washing water that has absorbed water can be treated in the lower water reservoir. That is, the organic fluorine compound in the washing water can be decomposed by microorganisms that have propagated and activated on the filler.
- the filler is a polyvinyl chloride vinylidene filler.
- the filler is a polyvinylidene chloride filler
- microorganisms activated in the polysalt vinylidene filler can be cultured at a high concentration, The organic fluorine compound in the water to be treated can be treated more efficiently in the exhaust gas treatment tank.
- the above-mentioned polyvinyl chloride vinylidene filler is commercially available, it can be easily procured at a low price.
- the polysalt vinylidene filler is in a string shape.
- the polyvinyl chloride filler is string-like, a large amount of the polyvinylidene filler is accommodated in the exhaust gas treatment tank. It can be done.
- the polysalt vinylidene filler is in a ring shape.
- the polyvinyl chloride vinylidene filler is in a ring shape, the polyvinyl chloride vinylidene filler can be easily added to the exhaust gas treatment tank. Can be accommodated.
- the filter, the first relay tank, the activated charcoal tower, the second relay tank, and the exhaust gas treatment tank are mounted on a unit table. .
- the filter, the first relay tank, the activated charcoal tower, the second relay tank, and the exhaust gas treatment tank are placed on a unit table. Therefore, the filter, the first relay tank, the activated carbon tower, the second relay tank, and the exhaust gas treatment tank can be easily transported together with the unit table by a truck or the like. And in a short time The start-up time is faster.
- the filter, the first relay tank, the activated charcoal tower, the second relay tank, and the exhaust gas treatment tank are made of resin.
- the filter, the first relay tank, the activated charcoal tower, the second relay tank, and the exhaust gas treatment tank are made of coagulated oil.
- the filter, the first relay tank, the activated carbon tower, the second relay tank, and the exhaust gas treatment tank can be reduced in weight and can be moved more easily.
- the micro / nano bubble generator is a submerged pump type micro / nano bubble generator.
- the micro / nano bubble generator is a submersible pump type micro / nano bubble generator, so that a large amount of micro / nano bubbles can be generated with a simple configuration.
- the step of propagating microorganisms activated with micro-nano bubbles and nutrients on activated carbon, and the wastewater containing the organic fluorine compound are brought into contact with the activated carbon,
- the organic fluorine compound in the waste water is adsorbed on the activated carbon and has a step of decomposing the organic fluorine compound adsorbed on the activated carbon by the microorganism. It can be decomposed by microorganisms.
- the activated carbon has propagated microorganisms activated with micro-nano bubbles and nutrients, and the activated carbon is contacted with wastewater containing an organic fluorine compound,
- the organic fluorine compound in the waste water is adsorbed and the adsorbed organic fluorine compound is decomposed by the microorganism, so that the hardly decomposable organic fluorine compound can be effectively decomposed by the microorganism.
- FIG. 1 is a schematic view showing a first embodiment of a waste water treatment apparatus of the present invention.
- FIG. 2 is a schematic view showing a second embodiment of the waste water treatment apparatus of the present invention.
- FIG. 3 is a schematic view showing a third embodiment of the waste water treatment apparatus of the present invention.
- FIG. 4 is a schematic view showing a fourth embodiment of the waste water treatment apparatus of the present invention.
- FIG. 5 is a schematic view showing a fifth embodiment of the waste water treatment apparatus of the present invention.
- FIG. 6 is a schematic view showing a sixth embodiment of the waste water treatment apparatus of the present invention.
- FIG. 7 is a schematic view showing a seventh embodiment of the waste water treatment apparatus of the present invention.
- FIG. 8 is a schematic view showing an eighth embodiment of the waste water treatment apparatus of the present invention.
- FIG. 1 shows a schematic view of a first embodiment of the waste water treatment apparatus of the present invention.
- This wastewater treatment device comprises a raw water tank 1 into which wastewater containing an organic fluorine compound is introduced, a filter 4 for filtering the wastewater, a first relay tank 5 having a micro / nano bubble generator 7, and activated carbon. It has an activated carbon tower 14 for accommodating, a second relay tank 18, and an exhaust gas treatment tank 22 for accommodating a micro / nano bubble generator 29.
- the raw water tank 1 is connected to the filter 4.
- the first relay tank 5 is connected between the filter 4 and the activated carbon tower 14.
- the second relay tank 18 is connected to the activated carbon tower 14 and the exhaust gas treatment tank 22.
- the waste water introduced into the raw water tank 1 is filtered by the filter 4 and then mixed with microorganisms, micro-nano bubble generation aids and nutrients in the first relay tank 5, and the above-mentioned Micro-nano bubbles are contained by the micro-nano bubble generator 7 to produce water to be treated.
- the treated water is supplied to the activated carbon tower 14, and the organic fluorine compound in the treated water is decomposed by the microorganism.
- microorganisms activated with the micro-nano bubbles and the nutrients are propagated on the activated carbon of the activated carbon tower 14.
- the activated carbon is brought into contact with the waste water to adsorb the organic fluorine compound in the waste water, and the adsorbed organic fluorine compound is decomposed by the microorganism.
- the treated water and the exhaust gas that have passed through the activated carbon tower 14 are the second relay tank 1
- the water introduced into the exhaust gas treatment tank 22 is supplemented with microorganisms, micro-nano bubble generation aids and nutrients, and also contains micro-nano bubbles by the micro-nano bubble generator 29 to produce washing water.
- the exhaust gas generated by decomposing the organic fluorine compound in the water to be treated by the microorganisms in the activated carbon tower 14 is introduced into the exhaust gas treatment tank 22 and treated with the washing water. .
- the above-mentioned micro-nano bubble generation aid refers to one that can stably maintain the generation state of micro-nano bubbles.
- the nutrient is a nutrient that contains nitrogen and phosphorus as main components and contains trace amounts of strength, magnesium and calcium, and is necessary for microorganisms to become active.
- the organic fluorine compound include perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorinated alkyl sulfonates (PFAS).
- the raw water tank 1 is provided with a raw water tank pump 2, and the flow rate is adjusted by a valve 3 to introduce the waste water into the filter 4.
- the filter 4 is, for example, a rapid filter, and is filled with anthracite as a coal-based filter material.
- the water containing the microorganism, the water containing the micro-nano bubble generation aid, and the water containing the nutrient are added to the valve 3
- the flow rate is adjusted at and introduced.
- the waste water is introduced into the first relay tank 5 from the filter 4.
- the micro / nano bubble generator 7 is fixed on a gantry 9 provided in the first relay tank 5.
- the micro / nano bubble generator 7 may be installed on the bottom surface of the first relay tank 5.
- the micro-nano bubble generator 7 is a submersible pump type micro-nano bubble generator.
- the micro / nano bubble generator 7 may be a micro / nano bubble generator without a submersible pump, but in this case, a circulation pump is required.
- the micro-nano bubble generator 7 is connected to an air suction pipe 10, and the micro-nano bubble generator 7 sucks air from the air suction pipe 10 to produce water and air. causess a swirling flow at ultra-high speed, and as a result, micro-nano bubbles are generated after a certain time.
- micro / nano bubble generator 7 is not limited to a specific manufacturer as long as it is commercially available.
- the micro-nano bubble refers to a bubble having a diameter of about 10 ⁇ m force and several hundred nm.
- normal bubbles bubbles
- microbubbles are bubbles having a bubble diameter of 10 m to several tens / z m, shrink in water, and eventually disappear (completely dissolve).
- a nano bubble is a bubble having a diameter of several hundred nm or less and can exist in water forever. And it can be said that the micro-nano bubble is a bubble in which micro-bubbles and nano-bubbles are mixed.
- optimum micro / nano bubbles are generated from the micro / nano bubble generator 7 after a certain time by the addition of the micro / nano bubble generation aid.
- a water flow 8 is generated by the fine bubbles discharged from the micro / nano bubble generator 7, and this water flow 8 becomes a circulating water flow of the first relay tank 5 to pass through the first relay tank 5. Stirring. That is, the water stream 8 mixes the organic fluorine compound-containing waste water, the micro-nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
- a first relay tank pump 6 is installed outside the first relay tank 5, and the treated water in the first relay tank 5 is adjusted in flow rate by a nozzle 13. Then, it is introduced into the upper part of the activated carbon tower 14 by the first relay tank pump 6.
- the activated carbon tower 14 has an activated carbon layer 15, and the activated carbon layer 15 is filled with the activated carbon.
- This activated carbon is, for example, coconut shell activated carbon or coal-based activated carbon. Whether coconut shell activated carbon or coal-based activated carbon is selected may be determined by conducting a treatment experiment and determining the type and shape of the activated carbon or the amount of treated water introduced.
- the activated carbon in the activated carbon tower 14 includes fine particles activated by micro-nano bubbles. Living organisms breed and these microorganisms decompose the organic fluorine compounds. When the organic fluorine compound is decomposed, a gas containing fluorine is generated, but flows out from the lower portion of the activated charcoal tower 14 together with the water to be treated.
- the microorganisms in the water to be treated are activated with micro-nano bubbles.
- the microorganisms When the microorganisms are propagated with the activated carbon as a fixed soot carrier, even if there is an organic matter load in the wastewater, it becomes a so-called biological activated carbon that has strong and automatic regeneration ability, and the regeneration of the activated carbon in the activated carbon tower 14 is unnecessary, Maintenance costs and running costs can be reduced.
- the first relay tank 5 and the second relay tank 18 are connected to the exhaust gas treatment tank 22 through a duct 21.
- the first relay tank 5 and the second relay tank 18 are connected to the activated carbon tower 4 via a pipe.
- the activated carbon tower 14 has a branch pipe on the downstream side, and one side of the branch pipe is connected to the first relay tank 5 via the valve for the first relay tank 16, and the branch The other side of the pipe is connected to the second relay tank 18 via a second relay tank valve 17.
- the amount of water to be treated into the second relay tank 18 is determined by analyzing the water to be treated into the second relay tank 18 as much as 14 parts of the activated carbon tower. Adjust the valves 16, 1 and 7 to increase the return amount to the first relay tank 5. If the water quality is below the target value, adjust the valves 16, 17 to increase the amount introduced into the second relay tank 18. [0094]
- the treated water that has exited the relay tank 5 is treated in the next-stage wastewater treatment facility according to the content of the treated water (that is, water quality). This wastewater treatment facility in the next process is often treated with fluorine-containing wastewater.
- the exhaust gas 12 containing fluorine in the first relay tank 5 and the second relay tank 18 passes through the duct 21 to the exhaust gas treatment tank 22 by the fan 20. be introduced.
- the exhaust gas treatment tank 22 has a lower water storage section 24 disposed in a lower portion and an upper water sprinkling section 23 disposed in an upper portion.
- the lower water reservoir 24 accommodates the micro / nano bubble generator 29 and stores the washing water.
- the upper water sprinkling unit 23 sprinkles the washing water pumped up from the lower water storage unit 24.
- the washing water sprayed from the upper watering part 23 is washed in the exhaust gas, stored in the lower water storage part 24, and pumped again to the upper watering part 23 via the watering pump 34. Raised.
- the upper water sprinkling section 23 includes a porous plate 28, a plastic filler 27 (for example, trade name Teralet) and a watering nozzle 26 in order from the bottom to the top.
- the upper water sprinkling part 23 is provided with an exhaust outlet 35 at the upper part of the watering nozzle 26.
- the exhaust gas containing fluorine flows into the exhaust gas treatment tank 22 from the duct 21 provided between the upper water sprinkling part 23 and the lower water storage part 24, and the water sprinkling nozzle 2
- micro-nano bubble generator 29 is accommodated in the lower water reservoir 24.
- the above-mentioned micro / nano bubble generator 29 has the same configuration as the micro / nano bubble generator 7, and therefore the description thereof is omitted.
- the micro / nano bubble generator 29 is a platform 3 provided in the exhaust gas treatment tank 22.
- An air suction pipe 31 is connected to the micro-nano bubble generator 29, and the micro-nano bubble generator 29 sucks air from the air suction pipe 31 to generate water and air.
- Qi causes a swirling flow at an ultra-high speed, resulting in micro-nano bubbles.
- micro / nano bubbles are generated from the micro / nano bubble generator 29 by the addition of the micro / nano bubble generation aid.
- the water bubbles 32 are generated by the fine bubbles discharged from the micro / nano bubble generator 29, and this water stream 32 becomes a circulating water flow of the exhaust gas treatment tank 22, and the exhaust gas treatment tank.
- the inside of 22 is being stirred. That is, the water flow 32 mixes the washing water, the micro / nano bubble generation aid, the microorganisms, and the nutrient. Microorganisms activated by micro-nano bubbles are further activated by the addition of the above nutrients.
- Water is sprayed from the watering nozzle 26 of the upper watering part 23 via 25.
- the cleaning water in the exhaust gas treatment tank 22 decreases automatically by evaporation or scattering from the exhaust outlet 35 with the start of operation, but automatically supplies makeup water that is microorganism-containing water.
- a replenishing ball tap 48 is installed to automatically replenish makeup water and maintain the liquid level in the lower reservoir 24. Note that the fluorine treated in the exhaust gas treatment tank 22 The contained exhaust gas dissolves in the cleaning water, and the cleaning water becomes fluorine-containing waste water, and the fluorine is treated in the waste water treatment facility for the next process.
- the next-stage wastewater treatment facility is a treatment with a chelate resin tower when the fluorine concentration in the treated water and the washing water is low, or the fluorine concentration in the treated water and the washing water. If it is high, there is a treatment using a coagulation sedimentation facility with calcium additive. That is, the method may be determined according to the fluorine concentration of the water to be treated and the washing water.
- the filter 4, the first relay tank 5, the activated carbon tower 14, the second relay tank 18, and the exhaust gas treatment tank 22 are mounted on a unit table 36.
- the filter 4, the first relay tank 5, the activated carbon tower 14, the second relay tank 18, and the exhaust gas treatment tank 22 are preferably made of resin.
- the wastewater containing the organic fluorine compound is filtered.
- the filtered waste water is mixed with microorganisms, micro-nano bubble generation aids and nutrients and contains micro-nano bubbles to prepare water to be treated.
- the water to be treated is supplied to the activated carbon tower 14 in which the activated carbon is accommodated, and the organic fluorine compound in the water to be treated is decomposed by the microorganism.
- the microorganisms activated with the micro-nano bubbles and the nutrient are propagated on activated carbon. Then, the wastewater containing the organic fluorine compound is brought into contact with the activated carbon to adsorb the organic fluorine compound in the wastewater to the activated carbon, and the organic fluorine adsorbed to the activated carbon by the microorganism. Decomposes the compound.
- the activated carbon has propagated microorganisms activated with micro-nano bubbles and nutrients, and the activated carbon is contacted with wastewater containing an organic fluorine compound,
- the organic fluorine compound in the waste water is adsorbed and the adsorbed organic fluorine compound is decomposed by the microorganism, so that the hardly-decomposable organic fluorine compound contained in the waste water (for example, perfluorocarbon) Kutasulfonic acid (PFO S), perfluorooctanoic acid (PFOA) and perfluorinated alkyl sulfonates (PFAS)) can be effectively decomposed by microorganisms.
- perfluorocarbon Kutasulfonic acid
- PFOA perfluorooctanoic acid
- PFAS perfluorinated alkyl sulfonates
- the activated carbon can be automatically regenerated. That is, there is no need to regenerate the activated carbon, and maintenance costs and running costs can be reduced.
- the filter 4 filters the wastewater containing the organic fluorine compound and the activated carbon tower 14 containing activated carbon, and the wastewater containing the organic fluorine compound is filtered by the filter 4. Then, microorganisms, micro-nano bubble generation aids and nutrients are mixed and micro-nano bubbles are contained to prepare water to be treated, and the water to be treated is supplied to the activated carbon tower 14 and the above-mentioned water to be treated. Since the organofluorine compound in the treated water is decomposed by the microorganism, the microorganism is propagated on the activated carbon of the activated carbon tower 14 which is an immobilization carrier for the microorganism, and the micro-nano bubbles and the nutrient are used. Therefore, the organic fluorine compound can be rationally decomposed by further activation. In addition, by adding the above-mentioned micro / nano bubble generation aid, an optimal amount of the micro / nano bubbles that activate the microorganism can be generated.
- the hardly-decomposable organic fluorine compounds contained in the waste water for example, perfluorooctasulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluoroalkyl sulfonates (PFAS))
- PFOS perfluorooctasulfonic acid
- PFOA perfluorooctanoic acid
- PFAS perfluoroalkyl sulfonates
- the activated carbon can be automatically regenerated. That is, there is no need to regenerate the activated carbon, and maintenance costs and running costs can be reduced.
- an exhaust gas treatment tank 22 that accommodates the micro / nano bubble generator 29, and the water introduced into the exhaust gas treatment tank 22 is added with microorganisms, micro-nano bubble generation aids, and nutrients, and the micro
- the exhaust gas generated by the nanobubble generator 29 containing micro-nanobubbles to create washing water and decomposing the organic fluorine compound in the treated water by the microorganisms in the activated carbon tower 14 is the exhaust gas treatment. Since it is introduced into the tank 22 and treated with the washing water, the fluorine in the exhaust gas can be rationally treated with the activated microorganisms in the washing water.
- the treated water and the exhaust gas that have passed through the activated carbon tower 14 are the second medium. Since it is introduced into the connecting tank 18 and separated into the water to be treated and the exhaust gas, the water to be treated and the exhaust gas can be treated individually and reliably.
- washing water sprayed from the upper watering part 23 is washed in the exhaust gas, stored in the lower water storage part 24, and pumped up again in the upper watering part 23. Can be circulated between the upper watering part 23 and the lower water storage part 24.
- the filter 4, the first relay tank 5, the activated carbon tower 14, the second relay tank 18 and the exhaust gas treatment tank 22 are mounted on the unit table 36,
- the filter 4, the first relay tank 5, the activated carbon tower 14, the second relay tank 18, and the exhaust gas treatment tank 22 can be easily transported together with the unit table 36 by a truck or the like. And it can be installed in a short time, and the start-up time is shortened.
- the filter 4 since the filter 4, the first relay tank 5, the activated carbon tower 14, the second relay tank 18 and the exhaust gas treatment tank 22 are made of resin, the filter 4.
- the first relay tank 5, the activated carbon tower 14, the second relay tank 18 and the exhaust gas treatment tank 22 can be made lighter and can be moved more easily.
- micro-nano bubble generators 7 and 29 are submersible pump type micro-nano bubble generators, a large amount of micro-nano bubbles can be generated with a simple configuration.
- FIG. 2 shows a second embodiment of the waste water treatment apparatus of the present invention.
- the activated carbon tower 14 is packed with a ring-shaped polysalt / vinylidene as a filler in addition to the activated carbon.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the ring-shaped polysalt vinylidene filler 37 is filled in the upper part of the activated carbon layer 15. Therefore, micro-nano bubbles are propagated in large quantities in the above-mentioned ring-like polysalt-vinylidene filler 37 by the activated microbial force.
- the microorganisms propagated at a high concentration in the ring-shaped polyvinyl chloride filler 37 are partly detached from the ring-shaped polyvinyl chloride filler 37 and transferred to the activated carbon layer 15. Shi Thus, the activated carbon of the activated carbon layer 15 also propagates in large quantities.
- the organofluorine compound can be decomposed by microorganisms adsorbed on the activated carbon and then activated, the upper part of the ring-shaped polysalt The combination of bililidene filler 37 and the activated carbon layer 15 at the bottom improves the decomposition of the organic fluorine compound. Further, it is effective in circulating the water to be treated repeatedly between the first relay tank 5 and the activated carbon tower 14.
- the activated carbon tower 14 accommodates the ring-shaped polyvinyl chloride-vinylidene filler 37 in addition to the activated carbon.
- the above-described organic fluorine compound adsorbed by the activated carbon can be efficiently decomposed by the propagation of the above-described microorganisms.
- microorganisms activated in the ring-shaped polysalt / vinylidene filler 37 can be cultivated at a high concentration, and the organofluorine compound adsorbed by the activated carbon can be treated more efficiently. Further, since the ring-shaped poly (vinylidene) filler 37 is commercially available, it can be easily procured at a low price.
- the ring-shaped polysalt vinylidene filler 37 is ring-shaped, the ring-shaped polysalt vinylidene filler 37 can be easily accommodated in the activated carbon tower 14.
- FIG. 3 shows a third embodiment of the waste water treatment apparatus of the present invention.
- the activated carbon tower 14 is packed with a cord-like polysalt / vinylidene as a filler in addition to the activated carbon.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the activated carbon layer 15 is filled with the cord-like polysalt vinylidene filler 38. Therefore, the microorganism power activated by the micro / nano bubbles propagates in a large amount on the above-mentioned string-like polyvinylidene chloride filler 38.
- microorganisms propagated at a high concentration in the cord-like polysalt / vinylidene filler 38 are Part of the activated carbon layer 15 is peeled off from the cord-like polysalt / vinylidene filler 38 and transferred to the activated carbon layer 15, so that the activated carbon of the activated carbon layer 15 is also propagated in large quantities.
- the upper portion of the activated carbon tower 14 has the above-mentioned string-like polysalt.
- the combination of bilidenid filler 38 and the activated carbon layer 15 at the bottom improves the decomposition of the organic fluorine compound.
- it is effective in circulating the water to be treated repeatedly between the first relay tank 5 and the activated carbon tower 14.
- the activated carbon tower 14 accommodates the string-like polysalt vinylidene filler 38 in addition to the activated carbon. A microorganism is propagated, and the organic fluorine compound adsorbed by the activated carbon can be efficiently decomposed by the microorganism.
- microorganisms activated in the cord-like polysalt-vinylidene filler 38 can be cultivated at a high concentration, and the organofluorine compound adsorbed by the activated carbon can be treated more efficiently. Further, since the above-mentioned cord-like polysalt / vinylidene filler 38 is commercially available, it can be easily procured at a low price.
- the lace-like polysalt / vinylidene packing material 38 has a lace shape, many of the lace-like polysalt / vinylidene packing materials 38 can be accommodated in the activated carbon tower 14. .
- FIG. 4 shows a fourth embodiment of the waste water treatment apparatus of the present invention.
- the first relay tank 5 contains a string-like polyvinyl chloride filler 38 as a filler. is doing. Note that in the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the microorganism power activated by the micro-nano bubbles is propagated in a large amount on the above-mentioned string-like polychlorinated vinylidene filler 38.
- the microorganisms that proliferated in high concentration in the cord-like polysalt / vinylidene filler 38 are partly detached from the cord-like polysalt / vinylidene filler 38 and transferred to the activated carbon layer 15.
- the activated carbon of the activated carbon layer 15 also propagates in large quantities.
- the inside of the first relay tank 5 is in the form of the polyvinyl chloride vinylidene.
- a system in which the filler 38 is filled and a large amount of activated microorganisms are propagated and then transferred to the activated carbon layer 15 for treatment is effective in decomposing the organic fluorine compound.
- the water to be treated is circulated and repeatedly passed between the first relay tank 5 and the active coal tower 14.
- the first relay tank 5 accommodates the string-like polyvinyl chloride filler material 38. Therefore, the microorganisms are propagated in the string-like polyvinyl chloride filler 38. The microorganism can efficiently decompose the organic fluorine compound in the water to be treated before being supplied to the activated carbon tower 14.
- microorganisms activated in the cord-like polysalt-vinylidene filler 38 can be cultivated at a high concentration, and the organofluorine compound in the treated water is further layered in the first relay tank 5. It can be processed efficiently. Further, since the above-mentioned cord-like polysalt / vinylidene filler 38 is commercially available, it can be easily procured at a low price.
- the lace-like polysalt / vinylidene filler 38 has a string shape, a large amount of the lace-like polysalt / vinylidene filler 38 is accommodated in the first relay tank 5. Can do.
- FIG. 5 shows a fifth embodiment of the waste water treatment apparatus of the present invention.
- the water to be treated and the exhaust gas that have passed through the activated carbon tower 14 are not the first relay tank 5. It is introduced into the raw water tank 1 and separated into the treated water and the exhaust gas.
- the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the raw water tank 1 is connected to the exhaust gas treatment tank 22 via ducts 51 and 21.
- the raw water tank 1 is connected to the activated carbon tower 4 through a pipe.
- a branch pipe is provided on the downstream side of the first relay tank valve 16 downstream of the activated carbon tower 14, and one side of the branch pipe is connected to the first relay tank valve 40 via the other first relay tank valve 40.
- First The other side of the branch pipe connected to the relay tank 5 is connected to the raw water tank 1 via the valve 41 for the raw water tank.
- the exhaust gas separated in the raw water tank 1 is introduced into the exhaust gas treatment tank 22 via the ducts 51 and 21.
- the organic fluorine compound can be treated with a low removal rate. That is, the water to be treated that has passed through the activated carbon tower 14 can be introduced into the raw water tank 1 and repeatedly treated again.
- FIG. 6 shows a sixth embodiment of the waste water treatment apparatus of the present invention. The difference from the first embodiment shown in FIG. 1 will be described.
- a micro / nano bubble generator 42 is accommodated in the second relay tank 18. Note that in the sixth embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- micro / nano bubble generator 42 is fixed on a gantry 44 provided in the second relay tank 18. Since the micro-nano bubble generator 42 has the same configuration as the micro-nano bubble generator 7 of the first embodiment shown in FIG. 1, its description is omitted.
- An air suction pipe 45 is connected to the micro-nano bubble generator 42, and the micro-nano bubble generator 42 sucks air from the air suction pipe 45 so that water and air swirl at a very high speed. As a result, micro-nano bubbles are generated.
- a water stream 43 is generated by the fine bubbles discharged from the micro / nano bubble generator 42, and this water stream 43 is a circulating water stream of the second relay tank 18.
- this water stream 43 is a circulating water stream of the second relay tank 18.
- the treated water containing the micro-nano bubbles does not contain the treated water, which has a better removal rate of the organic fluorine compound than the treated water.
- Yo I was able to confirm.
- the second relay tank 18 accommodates the micro-nano bubble generator 42. Therefore, the second relay tank 18 also has a small amount of the organic fluorine compound in the water to be treated that has passed through the activated carbon tower 14. 2 The microorganism can be activated and decomposed in the relay tank 18.
- FIG. 7 shows a seventh embodiment of the waste water treatment apparatus of the present invention.
- the second relay tank 18 includes a micro / nano bubble generator 42 and a string-like polysalt as a filler. Included is a polyvinylidene filler 38.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the micro / nano bubble generator 42 is fixed on a gantry 44 provided in the second relay tank 18. Since the micro-nano bubble generator 42 has the same configuration as the micro-nano bubble generator 7 of the first embodiment shown in FIG. 1, its description is omitted.
- An air suction pipe 45 is connected to the micro-nano bubble generator 42, and the micro-nano bubble generator 42 sucks air from the air suction pipe 45 so that water and air swirl at a very high speed. As a result, micro-nano bubbles are generated.
- a water stream 43 is generated by the fine bubbles discharged from the micro-nano bubble generator 42, and this water stream 43 is the circulating water stream of the second relay tank 18.
- this water stream 43 is the circulating water stream of the second relay tank 18.
- the treated water containing the michro nano bubbles does not contain, but compared to the treated water, the treated water contained in the treated water had a better removal rate of the organic fluorine compound. It was confirmed more.
- the second relay tank 18 accommodates the micro-nano bubble generator 42.
- the trace amount of the organic fluorine compound in the treated water that has passed through the activated carbon tower 14 can be decomposed by activating microorganisms in the second relay tank 18.
- the second relay tank 18 accommodates the string-like polysalt / vinylidene filler 38, the microorganisms are propagated in the string-like polysalt / vinylidene filler 38, By this microorganism, the organofluorine compound in the treated water before being discharged from the second relay tank 18 can be efficiently decomposed.
- microorganisms activated in the cord-like polysalt-vinylidene filler 38 can be cultivated at a high concentration, and the organofluorine compound in the treated water is further layered in the second relay tank 18. Can be processed efficiently. Further, since the above-mentioned cord-like polysalt / vinylidene filler 38 is commercially available, it can be easily procured at a low price.
- FIG. 8 shows an eighth embodiment of the waste water treatment apparatus of the present invention. The difference from the first embodiment shown in FIG. 1 will be described.
- the lower water reservoir 24 of the exhaust gas treatment tank 22 has a string-like polyvinyl chloride as a filler. Reden filler 3 8 is contained.
- the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the string-like polysalt / vinylidene filler 38 is accommodated in the exhaust gas treatment tank 22, the microorganisms activated by the micro / nano bubbles are removed from the string-like polysalt / biliden. It can be propagated while being fixed to the filler 38.
- the organic fluorine compound gasified in the process of decomposing the organic fluorine compound is absorbed by washing with the washing water, and microorganisms are produced by the active microorganisms propagated on the string-like polysalt / vinylidene filler 38. Decompose.
- many of the above-described cord-like polysalt vinylidene fillers 38 can be stored in the upper and lower water storage portions 24 of the exhaust gas treatment tank 22.
- An experimental device corresponding to the first embodiment of FIG. 1 was manufactured.
- the capacity of the raw water tank 1 is about 4 m 3
- the capacity of the filter 4 is lm 3
- the capacity of the first relay tank 5 is lm 3
- the capacity of the activated carbon tower 14 is 2 m.
- Test run was performed by introducing the microorganism-containing water, the micro-nano bubble generating auxiliary agent-containing water, and the nutrient-containing water into the relay tank 5 and the lower water reservoir 24 of the exhaust gas treatment tank 22.
- PFOS perfluorooctane sulfone powder
- concentration of PFOS at the inlet of the raw water tank 1 and the concentration of PFOS at the outlet of the second relay tank 18 were measured, and the removal rate of PFOS was measured. 96%. In other words, persistent PFOS can be effectively decomposed by microorganisms.
- this ring-shaped polysalt polyvinylidene filler may be used in place of the string-like polysalt vinylidene filler 38.
- the polyvinylidene filler can be easily accommodated in the first relay tank 5, the second relay tank 18, and the exhaust gas treatment tank 22.
- at least one of the first relay tank 5, the second relay tank 18, and the exhaust gas treatment tank 22 is filled with the string-like polysalt-vinylidene. Material 38 and the ring-shaped polysalt vinylidene filler may be accommodated.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Biodiversity & Conservation Biology (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Materials Engineering (AREA)
- Molecular Biology (AREA)
- Water Treatment By Sorption (AREA)
- Biological Treatment Of Waste Water (AREA)
- Treating Waste Gases (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
原水槽1に導入された有機フッ素化合物を含有する排水は、濾過器4によって濾過されてから、第1中継槽5で微生物、マイクロナノバブル発生助剤および栄養剤を混合されると共にマイクロナノバブル発生機7によってマイクロナノバブルを含有されて、被処理水が作成される。上記被処理水は、活性炭塔14に供給されて、上記被処理水中の上記有機フッ素化合物が、上記微生物によって分解される。
Description
明 細 書
排水処理方法および排水処理装置
技術分野
[0001] この発明は、例えば、半導体工場や液晶工場のみならず、有機フッ素化合物を製 造または使用する工場における排水処理方法および排水処理装置に関する。
背景技術
[0002] 有機フッ素化合物は化学的に安定な物質である。特に、上記有機フッ素化合物は 、耐熱性および耐薬品性の観点から優れた性質を有することから、界面活性剤等の 用途に用いられている。
[0003] し力しながら、上記有機フッ素化合物は、化学的に安定な物質であるが故に、微生 物によって分解され難い。例えば、上記有機フッ素化合物としてのパーフルォロオタ タスルホン酸(PFOS)やパーフルォロオクタン酸(PFOA)は、生態系での分解が進 まないことから、生態系への影響が懸念されている。すなわち、上記パーフルォロォ クタスルホン酸(PFOS)や上記パーフルォロオクタン酸(PFOA)は、化学的に安定 なため、熱分解させるためには、約 1000°C以上の高温を必要としていた(特開 2001 302551号公報参照)。
発明の開示
発明が解決しょうとする課題
[0004] そこで、この発明の課題は、難分解性の有機フッ素化合物を効果的に微生物によ つて分解することができる排水処理方法および排水処理装置を提供することにある。 課題を解決するための手段
[0005] 上記課題を解決するため、この発明の排水処理方法は、
マイクロナノバブルおよび栄養剤で活性ィ匕した微生物を活性炭に繁殖させる工程と
有機フッ素化合物を含有する排水を、上記活性炭に接触させて、上記排水中の上 記有機フッ素化合物を、上記活性炭に吸着させると共に、上記微生物によって、上 記活性炭に吸着した上記有機フッ素化合物を分解する工程と
を備えることを特徴として 、る。
[0006] ここで、上記マイクロナノバブルとは、 10 μ m力 数百 nm前後の直径を有する気泡 をいう。上記栄養剤とは、微生物が活性ィ匕する際に必要な栄養素をいう。上記有機フ ッ素化合物とは、例えば、パーフルォロォクタスルホン酸(PFOS)やパーフルォロォ クタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類(PFAS)を!、う。
[0007] この発明の排水処理方法によれば、マイクロナノバブルおよび栄養剤で活性ィ匕した 微生物を活性炭に繁殖させる工程と、有機フッ素化合物を含有する排水を、上記活 性炭に接触させて、上記排水中の上記有機フッ素化合物を、上記活性炭に吸着さ せると共に、上記微生物によって、上記活性炭に吸着した上記有機フッ素化合物を 分解する工程とを有するので、上記排水に含まれる難分解性の有機フッ素化合物( 例えば、パーフルォロォクタスルホン酸(PFOS)やパーフルォロオクタン酸(PFOA) やペルフルォロ化スルホン酸アルキル類 (PFAS) )を効果的に微生物によって分解 することができる。
[0008] また、上記活性炭に吸着した上記有機フッ素化合物を、上記微生物によって分解 するので、上記活性炭を自動的に再生できる。つまり、上記活性炭の再生の必要性 がなくなって、メンテナンスコストおよびランニングコストを低減できる。
[0009] また、この発明の排水処理装置は、
マイクロナノバブルおよび栄養剤で活性ィ匕した微生物が繁殖された活性炭を備え、 上記活性炭は、有機フッ素化合物を含有する排水が接触されて、上記排水中の上 記有機フッ素化合物を吸着すると共に、この吸着した上記有機フッ素化合物を上記 微生物によって分解されることを特徴としている。
[0010] ここで、上記マイクロナノバブルとは、 10 μ m力も数百 nm前後の直径を有する気泡 をいう。上記栄養剤とは、微生物が活性ィ匕する際に必要な栄養素をいう。上記有機フ ッ素化合物とは、例えば、パーフルォロォクタスルホン酸(PFOS)やパーフルォロォ クタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類(PFAS)を!、う。
[0011] この発明の排水処理装置によれば、マイクロナノバブルおよび栄養剤で活性ィ匕した 微生物が繁殖された活性炭を有し、上記活性炭は、有機フッ素化合物を含有する排 水が接触されて、上記排水中の上記有機フッ素化合物を吸着すると共に、この吸着
した上記有機フッ素化合物を上記微生物によって分解されるので、上記排水に含ま れる難分解性の有機フッ素化合物(例えば、パーフルォロォクタスルホン酸 (PFOS) やパーフルォロオクタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類(PFA S) )を効果的に微生物によって分解することができる。
[0012] また、上記活性炭は、上記活性炭に吸着した上記有機フッ素化合物を上記微生物 によって分解されるので、上記活性炭を自動的に再生できる。つまり、上記活性炭の 再生の必要性がなくなって、メンテナンスコストおよびランニングコストを低減できる。
[0013] また、この発明の排水処理方法は、
有機フッ素化合物を含有する排水を濾過する工程と、
この濾過した排水に、微生物、マイクロナノバブル発生助剤および栄養剤を混合す ると共にマイクロナノバブルを含有させて、被処理水を作成する工程と、
上記被処理水を、活性炭が収容された活性炭塔に供給して、上記被処理水中の 上記有機フッ素化合物を、上記微生物によって分解する工程と
を備えることを特徴として 、る。
[0014] ここで、上記マイクロナノバブルとは、 10 μ m力も数百 nm前後の直径を有する気泡 をいう。上記マイクロナノバブル発生助剤とは、マイクロナノバブルの発生状態を安定 して維持できるものをいう。上記栄養剤とは、微生物が活性ィ匕する際に必要な栄養素 をいう。上記有機フッ素化合物とは、例えば、パーフルォロォクタスルホン酸(PFOS )やパーフルォロオクタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類(PFA S)をいう。
[0015] この発明の排水処理方法によれば、有機フッ素化合物を含有する排水を濾過する 工程と、この濾過した排水に、微生物、マイクロナノバブル発生助剤および栄養剤を 混合すると共にマイクロナノバブルを含有させて、被処理水を作成する工程と、上記 被処理水を、活性炭が収容された活性炭塔に供給して、上記被処理水中の上記有 機フッ素化合物を、上記微生物によって分解する工程とを有するので、上記微生物 を、上記微生物の固定化担体である上記活性炭塔の上記活性炭に繁殖させて、上 記マイクロナノバブルと上記栄養剤によって一層活性ィ匕し、上記有機フッ素化合物を 合理的に分解処理できる。また、上記マイクロナノバブル発生助剤を添加することに
よって、上記微生物を活性ィ匕する上記マイクロナノバブルを、最適量発生できる。
[0016] したがって、上記排水に含まれる難分解性の有機フッ素化合物(例えば、パーフル ォロォクタスルホン酸(PFOS)やパーフルォロオクタン酸(PFOA)やペルフルォロ ィ匕スルホン酸アルキル類 (PFAS) )を効果的に微生物によって分解することができる
[0017] また、上記活性炭に吸着した上記有機フッ素化合物を、上記微生物によって分解 できるので、上記活性炭を自動的に再生できる。つまり、上記活性炭の再生の必要 性がなくなって、メンテナンスコストおよびランニングコストを低減できる。
[0018] また、この発明の排水処理装置は、
有機フッ素化合物を含有する排水を濾過する濾過器と、
活性炭を収容する活性炭塔と
を備え、
上記有機フッ素化合物を含有する排水は、上記濾過器によって濾過されてから、 微生物、マイクロナノバブル発生助剤および栄養剤を混合されると共にマイクロナノ バブルを含有されて、被処理水が作成され、
上記被処理水は、上記活性炭塔に供給されて、上記被処理水中の上記有機フッ 素化合物が、上記微生物によって分解されることを特徴としている。
[0019] ここで、上記マイクロナノバブルとは、 10 μ m力も数百 nm前後の直径を有する気泡 をいう。上記マイクロナノバブル発生助剤とは、マイクロナノバブルの発生状態を安定 して維持できるものをいう。上記栄養剤とは、微生物が活性ィ匕する際に必要な栄養素 をいう。上記有機フッ素化合物とは、例えば、パーフルォロォクタスルホン酸(PFOS )やパーフルォロオクタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類(PFA S)をいう。
[0020] この発明の排水処理装置によれば、有機フッ素化合物を含有する排水を濾過する 濾過器と、活性炭を収容する活性炭塔とを有し、上記有機フッ素化合物を含有する 排水は、上記濾過器によって濾過されてから、微生物、マイクロナノバブル発生助剤 および栄養剤を混合されると共にマイクロナノバブルを含有されて、被処理水が作成 され、上記被処理水は、上記活性炭塔に供給されて、上記被処理水中の上記有機
フッ素化合物が、上記微生物によって分解されるので、上記微生物を、上記微生物 の固定ィ匕担体である上記活性炭塔の上記活性炭に繁殖させて、上記マイクロナノバ ブルと上記栄養剤によって一層活性化し、上記有機フッ素化合物を合理的に分解処 理できる。また、上記マイクロナノバブル発生助剤を添加することによって、上記微生 物を活性ィ匕する上記マイクロナノバブルを、最適量発生できる。
[0021] したがって、上記排水に含まれる難分解性の有機フッ素化合物(例えば、パーフル ォロォクタスルホン酸(PFOS)やパーフルォロオクタン酸(PFOA)やペルフルォロ ィ匕スルホン酸アルキル類 (PFAS) )を効果的に微生物によって分解することができる
[0022] また、上記活性炭に吸着した上記有機フッ素化合物を、上記微生物によって分解 できるので、上記活性炭を自動的に再生できる。つまり、上記活性炭の再生の必要 性がなくなって、メンテナンスコストおよびランニングコストを低減できる。
[0023] また、一実施形態の排水処理装置では、マイクロナノバブル発生機を収容する排 ガス処理槽を備え、
上記排ガス処理槽に導入された水は、微生物、マイクロナノバブル発生助剤および 栄養剤を添加されると共に上記マイクロナノバブル発生機によってマイクロナノパブ ルを含有されて、洗浄水が作成され、
上記活性炭塔で上記被処理水中の上記有機フッ素化合物を上記微生物によって 分解することで発生する排ガスは、上記排ガス処理槽に導入されて、上記洗浄水に よって処理される。
[0024] この実施形態の排水処理装置によれば、マイクロナノバブル発生機を収容する排 ガス処理槽を有し、上記排ガス処理槽に導入された水は、微生物、マイクロナノパブ ル発生助剤および栄養剤を添加されると共に上記マイクロナノバブル発生機によつ てマイクロナノバブルを含有されて、洗浄水が作成され、上記活性炭塔で上記被処 理水中の上記有機フッ素化合物を上記微生物によって分解することで発生する排ガ スは、上記排ガス処理槽に導入されて、上記洗浄水によって処理されるので、上記 排ガス中のフッ素を、上記洗浄水中の活性ィ匕した上記微生物によって、合理的に処 理できる。
[0025] また、一実施形態の排水処理装置では、上記濾過器に接続されると共に上記有機 フッ素化合物を含有する排水が導入される原水槽と、
上記濾過器と上記活性炭塔との間に接続されると共に上記マイクロナノバブル発生 機を有する第 1中継槽と、
上記活性炭塔および上記排ガス処理槽に接続された第 2中継槽と
を備え、
上記原水槽に導入された上記有機フッ素化合物を含有する排水は、上記濾過器 によって濾過されてから、上記第 1中継槽で上記微生物、上記マイクロナノバブル発 生助剤および上記栄養剤を混合されると共に上記マイクロナノバブル発生機によつ て上記マイクロナノバブルを含有されて、上記被処理水が作成され、
上記被処理水は、上記活性炭塔に供給され、上記活性炭塔を通過した上記被処 理水および上記排ガスは、上記第 2中継槽または上記原水槽に導入されて、上記被 処理水と上記排ガスとに分離され、
上記排ガスは、上記排ガス処理槽に導入される。
[0026] この実施形態の排水処理装置によれば、上記活性炭塔を通過した上記被処理水 および上記排ガスは、上記第 2中継槽または上記原水槽に導入されて、上記被処理 水と上記排ガスとに分離されるので、上記被処理水および上記排ガスを個別に確実 に処理できる。
[0027] また、上記活性炭塔を通過した上記被処理水および上記排ガスを、上記原水槽に 導入する場合、上記被処理水を再度繰り返し処理できる。
[0028] また、一実施形態の排水処理装置では、上記排ガス処理槽は、
下部に配置されると共に、上記マイクロナノバブル発生機を収容して上記洗浄水を 貯水する下部貯水部と、
上部に配置されると共に、上記下部貯水部から汲み上げられた上記洗浄水を散水 する上部散水部と
を有し、
上記上部散水部から散水された上記洗浄水は、上記排ガスを洗浄して、上記下部 貯水部に貯水され、再度、上記上部散水部に汲み上げられる。
[0029] この実施形態の排水処理装置によれば、上記上部散水部から散水された上記洗 浄水は、上記排ガスを洗浄して、上記下部貯水部に貯水され、再度、上記上部散水 部に汲み上げられるので、上記洗浄水を上記上部散水部と上記下部貯水部との間 を循環して利用することができる。
[0030] また、一実施形態の排水処理装置では、上記活性炭塔は、上記活性炭に加えて、 充填材を収容している。
[0031] この実施形態の排水処理装置によれば、上記活性炭塔は、上記活性炭に加えて、 充填材を収容しているので、上記充填材に上記微生物を繁殖させて、この微生物に よって、上記活性炭が吸着した上記有機フッ素化合物を効率よく分解処理できる。
[0032] また、一実施形態の排水処理装置では、上記第 2中継槽は、マイクロナノバブル発 生機を収容している。
[0033] この実施形態の排水処理装置によれば、上記第 2中継槽は、マイクロナノバブル発 生機を収容するので、上記活性炭塔を通過した上記被処理水中の微量の上記有機 フッ素化合物に対しても、上記第 2中継槽で微生物を活性ィ匕して分解処理できる。
[0034] また、一実施形態の排水処理装置では、上記充填材は、ポリ塩ィ匕ビ二リデン充填 材である。
[0035] この実施形態の排水処理装置によれば、上記充填材は、ポリ塩化ビニリデン充填 材であるので、上記ポリ塩ィ匕ビユリデン充填材に活性ィ匕した微生物を高濃度に培養 できて、上記活性炭が吸着した上記有機フッ素化合物を一層効率よく処理できる。ま た、上記ポリ塩ィ匕ビユリデン充填材は、市販されているので、容易に低価格で調達可 能である。
[0036] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 である。
[0037] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 であるので、多くの上記ポリ塩ィ匕ビユリデン充填材を、上記活性炭塔に、収容すること ができる。
[0038] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、リング 状である。
[0039] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビ二リデン充填材は、リング 状であるので、上記ポリ塩ィ匕ビユリデン充填材を、上記活性炭塔に、簡単に収容する ことができる。
[0040] また、一実施形態の排水処理装置では、上記第 1中継槽は、充填材を収容して 、 る。
[0041] この実施形態の排水処理装置によれば、上記第 1中継槽は、充填材を収容するの で、上記充填材に上記微生物を固定ィ匕しつつ繁殖させることができて、この微生物 によって、上記活性炭塔に供給される前の上記被処理水中の上記有機フッ素化合 物を分解処理できる。
[0042] また、一実施形態の排水処理装置では、上記充填材は、ポリ塩ィ匕ビ二リデン充填 材である。
[0043] この実施形態の排水処理装置によれば、上記充填材は、ポリ塩化ビニリデン充填 材であるので、上記ポリ塩ィ匕ビユリデン充填材に活性ィ匕した微生物を高濃度に培養 できて、上記第 1中継槽内で上記被処理水中の上記有機フッ素化合物を一層効率 よく処理できる。また、上記ポリ塩ィ匕ビユリデン充填材は、市販されているので、容易 に低価格で調達可能である。
[0044] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 である。
[0045] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビ二リデン充填材は、ひも状 であるので、多くの上記ポリ塩ィ匕ビユリデン充填材を、上記第 1中継槽に、収容するこ とがでさる。
[0046] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、リング 状である。
[0047] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビ二リデン充填材は、リング 状であるので、上記ポリ塩ィ匕ビユリデン充填材を、上記第 1中継槽に、簡単に収容す ることがでさる。
[0048] また、一実施形態の排水処理装置では、上記排ガス処理槽の上記下部貯水部は、 充填材を収容している。
[0049] この実施形態の排水処理装置によれば、上記排ガス処理槽の上記下部貯水部は 、充填材を収容するので、上記充填材に上記微生物が繁殖して、上記排ガス中の有 機物を吸収した上記洗浄水を、上記下部貯水部で、処理できる。つまり、上記充填 材に繁殖して活性化した微生物によって、上記洗浄水中の有機フッ素化合物を分解 できる。
[0050] また、一実施形態の排水処理装置では、上記充填材は、ポリ塩ィ匕ビ二リデン充填 材である。
[0051] この実施形態の排水処理装置によれば、上記充填材は、ポリ塩化ビニリデン充填 材であるので、上記ポリ塩ィ匕ビユリデン充填材に活性ィ匕した微生物を高濃度に培養 できて、上記排ガス処理槽内で上記被処理水中の上記有機フッ素化合物を一層効 率よく処理できる。また、上記ポリ塩ィ匕ビ二リデン充填材は、市販されているので、容 易に低価格で調達可能である。
[0052] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、ひも状 である。
[0053] この実施形態の排水処理装置によれば、上記ポリ塩ィヒビユリデン充填材は、ひも状 であるので、多くの上記ポリ塩ィ匕ビ二リデン充填材を、上記排ガス処理槽に、収容す ることがでさる。
[0054] また、一実施形態の排水処理装置では、上記ポリ塩ィ匕ビユリデン充填材は、リング 状である。
[0055] この実施形態の排水処理装置によれば、上記ポリ塩ィ匕ビ二リデン充填材は、リング 状であるので、上記ポリ塩ィ匕ビユリデン充填材を、上記排ガス処理槽に、簡単に収容 することができる。
[0056] また、一実施形態の排水処理装置では、上記濾過器、上記第 1中継槽、上記活性 炭塔、上記第 2中継槽および上記排ガス処理槽は、ユニット台に、載置されている。
[0057] この実施形態の排水処理装置によれば、上記濾過器、上記第 1中継槽、上記活性 炭塔、上記第 2中継槽および上記排ガス処理槽は、ユニット台に、載置されているの で、上記濾過器、上記第 1中継槽、上記活性炭塔、上記第 2中継槽および上記排ガ ス処理槽を、上記ユニット台ごと、トラック等で容易に運搬できる。そして、短時間で設
置できて、立ち上げ時間が早くなる。
[0058] また、一実施形態の排水処理装置では、上記濾過器、上記第 1中継槽、上記活性 炭塔、上記第 2中継槽および上記排ガス処理槽は、榭脂でつくられている。
[0059] この実施形態の排水処理装置によれば、上記濾過器、上記第 1中継槽、上記活性 炭塔、上記第 2中継槽および上記排ガス処理槽は、榭脂でつくられているので、上 記濾過器、上記第 1中継槽、上記活性炭塔、上記第 2中継槽および上記排ガス処理 槽を、軽量にできて、一層容易に移動できる。
[0060] また、一実施形態の排水処理装置では、上記マイクロナノバブル発生機は、水中ポ ンプ型のマイクロナノバブル発生機である。
[0061] この実施形態の排水処理装置によれば、上記マイクロナノバブル発生機は、水中 ポンプ型のマイクロナノバブル発生機であるので、簡単な構成で多量のマイクロナノ バブルを発生できる。
発明の効果
[0062] この発明の排水処理方法によれば、マイクロナノバブルおよび栄養剤で活性ィ匕した 微生物を活性炭に繁殖させる工程と、有機フッ素化合物を含有する排水を、上記活 性炭に接触させて、上記排水中の上記有機フッ素化合物を、上記活性炭に吸着さ せると共に、上記微生物によって、上記活性炭に吸着した上記有機フッ素化合物を 分解する工程とを有するので、難分解性の有機フッ素化合物を効果的に微生物によ つて分解することができる。
[0063] この発明の排水処理装置によれば、マイクロナノバブルおよび栄養剤で活性ィ匕した 微生物が繁殖された活性炭を有し、上記活性炭は、有機フッ素化合物を含有する排 水が接触されて、上記排水中の上記有機フッ素化合物を吸着すると共に、この吸着 した上記有機フッ素化合物を上記微生物によって分解されるので、難分解性の有機 フッ素化合物を効果的に微生物によって分解することができる。
図面の簡単な説明
[0064] [図 1]本発明の排水処理装置の第 1実施形態を示す模式図である。
[図 2]本発明の排水処理装置の第 2実施形態を示す模式図である。
[図 3]本発明の排水処理装置の第 3実施形態を示す模式図である。
[図 4]本発明の排水処理装置の第 4実施形態を示す模式図である。
[図 5]本発明の排水処理装置の第 5実施形態を示す模式図である。
[図 6]本発明の排水処理装置の第 6実施形態を示す模式図である。
[図 7]本発明の排水処理装置の第 7実施形態を示す模式図である。
[図 8]本発明の排水処理装置の第 8実施形態を示す模式図である。
発明を実施するための最良の形態
[0065] 以下、この発明を図示の実施の形態により詳細に説明する。
[0066] (第 1の実施形態)
図 1は、この発明の排水処理装置の第 1の実施形態である模式図を示している。こ の排水処理装置は、有機フッ素化合物を含有する排水が導入される原水槽 1と、上 記排水を濾過する濾過器 4と、マイクロナノバブル発生機 7を有する第 1中継槽 5と、 活性炭を収容する活性炭塔 14と、第 2中継槽 18と、マイクロナノバブル発生機 29を 収容する排ガス処理槽 22とを有する。
[0067] 上記原水槽 1は、上記濾過器 4に接続される。上記第 1中継槽 5は、上記濾過器 4と 上記活性炭塔 14との間に接続される。上記第 2中継槽 18は、上記活性炭塔 14およ び上記排ガス処理槽 22に接続される。
[0068] そして、上記原水槽 1に導入された上記排水は、上記濾過器 4によって濾過されて から、上記第 1中継槽 5で微生物、マイクロナノバブル発生助剤および栄養剤を混合 されると共に上記マイクロナノバブル発生機 7によってマイクロナノバブルを含有され て、被処理水が作成される。
[0069] 上記被処理水は、上記活性炭塔 14に供給されて、上記被処理水中の上記有機フ ッ素化合物が、上記微生物によって分解される。
[0070] つまり、上記活性炭塔 14の上記活性炭には、上記マイクロナノバブルおよび上記 栄養剤で活性ィ匕した微生物が繁殖されている。上記活性炭は、上記排水が接触され て、上記排水中の上記有機フッ素化合物を吸着すると共に、この吸着した上記有機 フッ素化合物を上記微生物によって分解される。
[0071] 上記活性炭塔 14を通過した上記被処理水および上記排ガスは、上記第 2中継槽 1
8に導入されて、上記被処理水と上記排ガスとに分離され、上記排ガスは、上記排ガ
ス処理槽 22に導入される。
[0072] 上記排ガス処理槽 22に導入された水は、微生物、マイクロナノバブル発生助剤お よび栄養剤を添加されると共に上記マイクロナノバブル発生機 29によってマイクロナ ノバブルを含有されて、洗浄水が作成される。
[0073] 上記活性炭塔 14で上記被処理水中の上記有機フッ素化合物を上記微生物によつ て分解することで発生する排ガスは、上記排ガス処理槽 22に導入されて、上記洗浄 水によって処理される。
[0074] ここで、上記マイクロナノバブル発生助剤とは、マイクロナノバブルの発生状態を安 定して維持できるものをいう。上記栄養剤は、例えば、窒素やリンを主成分として、力 リウム、マグネシウムやカルシウムを微量に含み、微生物が活性ィ匕する際に必要な栄 養素をいう。上記有機フッ素化合物とは、例えば、パーフルォロォクタスルホン酸 (P FOS)やパーフルォロオクタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類( PFAS)をいう。
[0075] 上記原水槽 1には、原水槽ポンプ 2が設置されており、バルブ 3で流量を調整して、 上記濾過器 4に上記排水を導入している。上記濾過器 4は、例えば、急速濾過器で あり、石炭系のろ過材としてのアンスラサイトを充填している。
[0076] 上記第 1中継槽 5には、上記微生物を含有している水、上記マイクロナノバブル発 生助剤を含有している水、および、上記栄養剤を含有している水が、バルブ 3で流量 を調整されて導入される。上記第 1中継槽 5には、上記濾過器 4から上記排水が導入 される。
[0077] 上記マイクロナノバブル発生機 7は、上記第 1中継槽 5内に設けられた架台 9上に 固定されている。なお、上記マイクロナノバブル発生機 7を、上記第 1中継槽 5の底面 に設置してもよい。
[0078] 上記マイクロナノバブル発生機 7は、水中ポンプ型のマイクロナノバブル発生機で ある。なお、上記マイクロナノバブル発生機 7として、水中ポンプを具備しないマイクロ ナノバブル発生機であってもよいが、この場合、循環ポンプが必要になる。
[0079] 上記マイクロナノバブル発生機 7には、空気吸い込み管 10が接続され、上記マイク ロナノバブル発生機 7は、上記空気吸い込み管 10から空気を吸い込んで、水と空気
が超高速で旋回流を起こして、結果的に一定時間後にマイクロナノバブルを発生す る。
[0080] 上記マイクロナノバブル発生機 7としては、市販されているものならば、メーカーを限 定するものではなぐ具体的には、野村電子工業株式会社や株式会社オーラテック の商品がある。
[0081] ここで、上記マイクロナノバブルとは、 10 μ m力 数百 nm前後の直径を有する気泡 をいう。なお、通常のバブル (気泡)は、水の中を上昇して、ついには表面でパンとは じけて消滅する。また、マイクロバブルとは、 10 m〜数十/ z mの気泡径を有する気 泡をいい、水中で縮小していき、ついには消滅 (完全溶解)してしまう。また、ナノパブ ルとは、数百 nm以下の直径を有する気泡をいい、いつまでも水の中に存在できる。 そして、マイクロナノバブルは、マイクロバブルとナノバブルとが混合したバブルであ るといえる。
[0082] そして、上記第 1中継槽 5内では、上記マイクロナノバブル発生助剤の添カ卩によつ て、上記マイクロナノバブル発生機 7から、一定時間後に最適なマイクロナノバブル が発生している。
[0083] 上記マイクロナノバブル発生機 7から吐出される微細な泡によって、水流 8が発生し 、この水流 8が、上記第 1中継槽 5の循環水流となって、上記第 1中継槽 5内を攪拌し ている。つまり、上記水流 8は、上記有機フッ素化合物含有排水、上記マイクロナノバ ブル発生助剤、上記微生物および上記栄養剤を混合する。マイクロナノバブルによ つて活性化した微生物は、上記栄養剤の添加によって、一層活性化する。
[0084] 上記第 1中継槽 5の外部には、第 1中継槽ポンプ 6が設置されており、上記第 1中継 槽 5内の上記被処理水は、ノ レブ 13で流量を調整されてから、上記第 1中継槽ポン プ 6によって、上記活性炭塔 14の上部に導入される。
[0085] 上記活性炭塔 14は、活性炭層 15を有し、この活性炭層 15に、上記活性炭が充填 されている。この活性炭は、例えば、ヤシガラ活性炭または石炭系の活性炭である。 ヤシガラ活性炭を選定するか、石炭系の活性炭を選定するかは、処理実験を実施し て、活性炭の種類や形状、または、上記被処理水の導入量などを決定すれば良い。
[0086] 上記活性炭塔 14内の上記活性炭には、マイクロナノバブルによって活性ィ匕した微
生物が繁殖し、この微生物が上記有機フッ素化合物を分解する。上記有機フッ素化 合物を分解すると、フッ素を含むガスを発生するが、上記被処理水と共に、上記活性 炭塔 14の下部から流出する。
[0087] 上記活性炭に微生物が繁殖していない場合、上記活性炭に水を導入し続けると、 上記活性炭の有機物を吸着する能力が減少する。しかし、上記活性炭に繁殖した微 生物の活性度が強力であると、上記活性炭が吸着した有機物を分解し、あた力も上 記活性炭が再生された状態となる。
[0088] 従来、水道に関する浄水場では、流入水の有機物負荷が低!、ので、上記活性炭 が微生物によって再生されていたが、排水では、有機物負荷がある程度高いので、 上記活性炭の再生は稀であった。
[0089] そこで、本発明では、マイクロナノバブルで、上記被処理水中の微生物を活性化し
、固定ィ匕担体としての上記活性炭で微生物を繁殖させると、排水で有機物負荷があ つても、強力で自動再生能力のある、いわゆる生物活性炭となり、上記活性炭塔 14 の活性炭の再生が不要で、メンテナンスコストおよびランニングコストの低減が可能と なる。
[0090] 上記第 1中継槽 5および上記第 2中継槽 18は、ダクト 21を介して、上記排ガス処理 槽 22に接続している。上記第 1中継槽 5および上記第 2中継槽 18は、配管を介して 、上記活性炭塔 4に接続している。
[0091] 上記活性炭塔 14は、下流側に、分岐配管を有し、上記分岐配管の一方側は、第 1 中継槽行きバルブ 16を介して、上記第 1中継槽 5に接続し、上記分岐配管の他方側 は、第 2中継槽行きバルブ 17を介して、上記第 2中継槽 18に接続する。
[0092] そして、上記活性炭塔 14から排出された上記被処理水と上記フッ素を含む排ガス とは、その一部が上記第 1中継槽 5に返送されると同時に、その他が上記第 2中継槽 18に導入される。
[0093] 上記第 2中継槽 18への被処理水の導入量は、上記第 2中継槽 18への上記活性炭 塔 14力もの被処理水を分析して、目的値以上の悪い水質ならば、上記バルブ 16, 1 7を調整して、上記第 1中継槽 5への返送量を多くする。また、目的値以下の良い水 質ならば、上記バルブ 16, 17を調整して、上記第 2中継槽 18への導入量を多くする
[0094] 上記中継槽 5を出た上記被処理水は、上記被処理水の内容 (すなわち水質)によ つて、次工程排水処理設備で処理される。この次工程排水処理設備では、フッ素含 有排水の処理となる場合が多 ヽ。
[0095] 一方、上記第 1中継槽 5および上記第 2中継槽 18内のフッ素を含む (矢印で示す) 排ガス 12は、上記ダクト 21を経由して、ファン 20により、上記排ガス処理槽 22に導 入される。
[0096] 上記排ガス処理槽 22は、下部に配置される下部貯水部 24と、上部に配置される上 部散水部 23とを有する。
[0097] 上記下部貯水部 24は、上記マイクロナノバブル発生機 29を収容して上記洗浄水 を貯水する。上記上部散水部 23は、上記下部貯水部 24から汲み上げられた上記洗 浄水を散水する。
[0098] 上記上部散水部 23から散水された上記洗浄水は、上記排ガスを洗浄して、上記下 部貯水部 24に貯水され、再度、散水ポンプ 34を介して、上記上部散水部 23に汲み 上げられる。
[0099] 上記上部散水部 23は、下から上に順に、多孔板 28、プラスチック充填材 27 (例え ば、商品名テラレット)および散水ノズル 26を有する。上記上部散水部 23には、上記 散水ノズル 26の上部に、排気出口 35が設けられている。
[0100] そして、上記フッ素を含む排ガスは、上記上部散水部 23と上記下部貯水部 24との 間に設けられた上記ダクト 21から、上記排ガス処理槽 22に流入し、上記散水ノズル 2
6から散水される上記洗浄水によって洗浄されて、上記排気出口 35から排出される。
[0101] 上記下部貯水部 24には、上記マイクロナノバブル発生機 29が収容されている。上 記マイクロナノバブル発生機 29は、上記マイクロナノバブル発生機 7と同様の構成で あるので、その説明を省略する。
[0102] 上記マイクロナノバブル発生機 29は、上記排ガス処理槽 22内に設けられた架台 3
0上に固定されている。
[0103] 上記マイクロナノバブル発生機 29には、空気吸い込み管 31が接続され、上記マイ クロナノバブル発生機 29は、上記空気吸い込み管 31から空気を吸い込んで、水と空
気が超高速で旋回流を起こして、結果的にマイクロナノバブルを発生する。
[0104] 上記排ガス処理槽 22の上記下部貯水部 24には、上記マイクロナノバブル発生助 剤を含有する水、上記微生物を含有する水、および、上記栄養剤を含有する水が、 バルブ 3によって流量を調整されて、導入される。
[0105] 上記排ガス処理槽 22内では、上記マイクロナノバブル発生助剤の添カ卩によって、 上記マイクロナノバブル発生機 29から、最適なマイクロナノバブルが発生して 、る。
[0106] 上記マイクロナノバブル発生機 29から吐出される微細な泡によって、水流 32が発 生し、この水流 32が、上記排ガス処理槽 22の循環水流となって、上記排ガス処理槽
22内を攪拌している。つまり、上記水流 32は、上記洗浄水、上記マイクロナノバブル 発生助剤、上記微生物および上記栄養剤を混合する。マイクロナノバブルによって 活性化した微生物は、上記栄養剤の添加によって、一層活性化する。
[0107] 上記下部貯水部 24内の上記洗浄水は、上記散水ポンプ 34によって、洗浄水配管
25を経由して、上記上部散水部 23の上記散水ノズル 26より、散水される。
[0108] そして、マイククロナノバブルを含んだ洗浄水を、マイクロナノバブルを含んで ヽな い洗浄水と比較すると、マイクロナノバブルを含んだ洗浄水の方力 上記有機フッ素 化合物の除去率が良いことが、実験により確認できた。
[0109] この理由として、マイクロナノバブルを含んだ洗浄水の気体中の汚れ成分に対する 洗浄効果の拡大が考えられる。
[0110] よって、蒸発性またはガス化しやすい有機フッ素化合物が発生した場合、洗浄水に 吸収されて、上記下部貯水部 24でマイクロナノバブルによって活性ィ匕した微生物に より分解されること〖こなる。
[0111] 従来は、工業用水等が補給水として一般に利用されていたが、本発明では、スクラ バー方式の排ガス処理槽 22の補給水として、多種微生物を含有して!/ヽる微生物含 有水を利用した。
[0112] そして、上記排ガス処理槽 22の洗浄水は、運転開始とともに、水分が上記排気出 口 35より、蒸発または飛散によって、減少してくるが、微生物含有水である補給水を 自動的に補給するボールタップ 48が設置されて、補給水を自動的に補給し、上記下 部貯水部 24の液面が維持される。なお、上記排ガス処理槽 22で処理されたフッ素を
含む排ガスは、洗浄水に溶解して、洗浄水は、フッ素含有排水となり、次工程排水処 理設備でフッ素が処理されることとなる。
[0113] 次工程排水処理設備とは、上記被処理水および上記洗浄水中のフッ素濃度が低 い場合は、キレート榭脂塔による処理があり、または、上記被処理水および上記洗浄 水中のフッ素濃度が高い場合は、カルシウム剤添カ卩による凝集沈澱設備による処理 がある。つまり、上記被処理水および上記洗浄水のフッ素濃度によって、方式を決定 すれば良い。
[0114] 上記濾過器 4、上記第 1中継槽 5、上記活性炭塔 14、上記第 2中継槽 18および上 記排ガス処理槽 22は、ユニット台 36に、載置されている。上記濾過器 4、上記第 1中 継槽 5、上記活性炭塔 14、上記第 2中継槽 18および上記排ガス処理槽 22は、好ま しくは、榭脂でつくられている。
[0115] 次に、上記構成の排水処理装置を用いて、排水を処理する方法を説明する。
[0116] 有機フッ素化合物を含有する排水を濾過する。この濾過した排水に、微生物、マイ クロナノバブル発生助剤および栄養剤を混合すると共にマイクロナノバブルを含有さ せて、被処理水を作成する。そして、上記被処理水を、活性炭が収容された活性炭 塔 14に供給して、上記被処理水中の上記有機フッ素化合物を、上記微生物によつ て分解する。
[0117] つまり、上記マイクロナノバブルおよび上記栄養剤で活性ィ匕した微生物を活性炭に 繁殖させる。そして、上記有機フッ素化合物を含有する排水を、上記活性炭に接触さ せて、上記排水中の上記有機フッ素化合物を、上記活性炭に吸着させると共に、上 記微生物によって、上記活性炭に吸着した上記有機フッ素化合物を分解する。
[0118] 上記構成の排水処理装置によれば、マイクロナノバブルおよび栄養剤で活性ィ匕し た微生物が繁殖された活性炭を有し、上記活性炭は、有機フッ素化合物を含有する 排水が接触されて、上記排水中の上記有機フッ素化合物を吸着すると共に、この吸 着した上記有機フッ素化合物を上記微生物によって分解されるので、上記排水に含 まれる難分解性の有機フッ素化合物(例えば、パーフルォロォクタスルホン酸 (PFO S)やパーフルォロオクタン酸(PFOA)やペルフルォロ化スルホン酸アルキル類(PF AS) )を効果的に微生物によって分解することができる。
[0119] また、上記活性炭は、上記活性炭に吸着した上記有機フッ素化合物を上記微生物 によって分解されるので、上記活性炭を自動的に再生できる。つまり、上記活性炭の 再生の必要性がなくなって、メンテナンスコストおよびランニングコストを低減できる。
[0120] また、有機フッ素化合物を含有する排水を濾過する濾過器 4と、活性炭を収容する 活性炭塔 14とを有し、上記有機フッ素化合物を含有する排水は、上記濾過器 4によ つて濾過されてから、微生物、マイクロナノバブル発生助剤および栄養剤を混合され ると共にマイクロナノバブルを含有されて、被処理水が作成され、上記被処理水は、 上記活性炭塔 14に供給されて、上記被処理水中の上記有機フッ素化合物が、上記 微生物によって分解されるので、上記微生物を、上記微生物の固定化担体である上 記活性炭塔 14の上記活性炭に繁殖させて、上記マイクロナノバブルと上記栄養剤に よって一層活性ィ匕し、上記有機フッ素化合物を合理的に分解処理できる。また、上記 マイクロナノバブル発生助剤を添加することによって、上記微生物を活性化する上記 マイクロナノバブルを、最適量発生できる。
[0121] したがって、上記排水に含まれる難分解性の有機フッ素化合物 (例えば、パーフル ォロォクタスルホン酸(PFOS)やパーフルォロオクタン酸(PFOA)やペルフルォロ ィ匕スルホン酸アルキル類 (PFAS) )を効果的に微生物によって分解することができる
[0122] また、上記活性炭に吸着した上記有機フッ素化合物を、上記微生物によって分解 できるので、上記活性炭を自動的に再生できる。つまり、上記活性炭の再生の必要 性がなくなって、メンテナンスコストおよびランニングコストを低減できる。
[0123] また、マイクロナノバブル発生機 29を収容する排ガス処理槽 22を有し、上記排ガス 処理槽 22に導入された水は、微生物、マイクロナノバブル発生助剤および栄養剤を 添加されると共に上記マイクロナノバブル発生機 29によってマイクロナノバブルを含 有されて、洗浄水が作成され、上記活性炭塔 14で上記被処理水中の上記有機フッ 素化合物を上記微生物によって分解することで発生する排ガスは、上記排ガス処理 槽 22に導入されて、上記洗浄水によって処理されるので、上記排ガス中のフッ素を、 上記洗浄水中の活性化した上記微生物によって、合理的に処理できる。
[0124] また、上記活性炭塔 14を通過した上記被処理水および上記排ガスは、上記第 2中
継槽 18に導入されて、上記被処理水と上記排ガスとに分離されるので、上記被処理 水および上記排ガスを個別に確実に処理できる。
[0125] また、上記上部散水部 23から散水された上記洗浄水は、上記排ガスを洗浄して、 上記下部貯水部 24に貯水され、再度、上記上部散水部 23に汲み上げられるので、 上記洗浄水を上記上部散水部 23と上記下部貯水部 24との間を循環して利用するこ とがでさる。
[0126] また、上記濾過器 4、上記第 1中継槽 5、上記活性炭塔 14、上記第 2中継槽 18およ び上記排ガス処理槽 22は、ユニット台 36に、載置されているので、上記濾過器 4、上 記第 1中継槽 5、上記活性炭塔 14、上記第 2中継槽 18および上記排ガス処理槽 22 を、上記ユニット台 36ごと、トラック等で容易に運搬できる。そして、短時間で設置で きて、立ち上げ時間が早くなる。
[0127] また、上記濾過器 4、上記第 1中継槽 5、上記活性炭塔 14、上記第 2中継槽 18およ び上記排ガス処理槽 22は、榭脂でつくられているので、上記濾過器 4、上記第 1中 継槽 5、上記活性炭塔 14、上記第 2中継槽 18および上記排ガス処理槽 22を、軽量 にできて、一層容易に移動できる。
[0128] また、上記マイクロナノバブル発生機 7, 29は、水中ポンプ型のマイクロナノバブル 発生機であるので、簡単な構成で多量のマイクロナノバブルを発生できる。
[0129] (第 2の実施形態)
図 2は、この発明の排水処理装置の第 2の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 2の実施形態では、上記活性炭塔 14は、上記活性炭に加えて、充填材としてのリング状ポリ塩ィ匕ビユリデン充填材 37を 収容している。なお、この第 2の実施形態において、上記第 1の実施形態と同一の部 分には、同一の参照番号を付して、詳細な説明を省略する。
[0130] つまり、上記活性炭層 15の上部に上記リング状ポリ塩ィ匕ビユリデン充填材 37を充 填している。したがって、マイクロナノバブルによって、活性ィ匕した微生物力 上記リン グ状ポリ塩ィ匕ビユリデン充填材 37に多量に繁殖する。
[0131] また、上記リング状ポリ塩ィ匕ビ二リデン充填材 37に高濃度に繁殖した微生物は、一 部上記リング状ポリ塩ィ匕ビユリデン充填材 37から剥離して上記活性炭層 15に移行し
て、上記活性炭層 15の活性炭にも多量に繁殖することになる。
[0132] 要するに、上記有機フッ素化合物を、上記活性炭に吸着させて、その後活性ィ匕し た微生物によって、分解できることを見出したので、上記活性炭塔 14内で、上部を上 記リング状ポリ塩ィ匕ビユリデン充填材 37、下部を上記活性炭層 15の組み合わせが 上記有機フッ素化合物の分解に効果が上がることになる。また、上記被処理水を上 記第 1中継槽 5と上記活性炭塔 14との間で、通水を繰り返し、循環通水することに効 果がある。
[0133] したがって、上記活性炭塔 14は、上記活性炭に加えて、上記リング状ポリ塩ィ匕ビ- リデン充填材 37を収容して 、るので、上記リング状ポリ塩ィ匕ビユリデン充填材 37に上 記微生物を繁殖させて、この微生物によって、上記活性炭が吸着した上記有機フッ 素化合物を効率よく分解処理できる。
[0134] また、上記リング状ポリ塩ィ匕ビユリデン充填材 37に活性ィ匕した微生物を高濃度に培 養できて、上記活性炭が吸着した上記有機フッ素化合物を一層効率よく処理できる 。また、上記リング状ポリ塩ィ匕ビユリデン充填材 37は、市販されているので、容易に低 価格で調達可能である。
[0135] また、上記リング状ポリ塩ィ匕ビユリデン充填材 37は、リング状であるので、上記リング 状ポリ塩ィ匕ビユリデン充填材 37を、上記活性炭塔 14に、簡単に収容することができ る。
[0136] (第 3の実施形態)
図 3は、この発明の排水処理装置の第 3の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 3の実施形態では、上記活性炭塔 14は、上記活性炭に加えて、充填材としてのひも状ポリ塩ィ匕ビユリデン充填材 38を 収容している。なお、この第 3の実施形態において、上記第 1の実施形態と同一の部 分には、同一の参照番号を付して、詳細な説明を省略する。
[0137] つまり、上記活性炭層 15の上部に上記ひも状ポリ塩ィ匕ビユリデン充填材 38を充填 している。したがって、マイクロナノバブルによって、活性ィ匕した微生物力 上記ひも 状ポリ塩化ビニリデン充填材 38に多量に繁殖する。
[0138] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に高濃度に繁殖した微生物は、一
部上記ひも状ポリ塩ィ匕ビユリデン充填材 38から剥離して上記活性炭層 15に移行し て、上記活性炭層 15の活性炭にも多量に繁殖することになる。
[0139] 要するに、上記有機フッ素化合物を、上記活性炭に吸着させて、その後活性ィ匕し た微生物によって、分解できることを見出したので、上記活性炭塔 14内で、上部を上 記ひも状ポリ塩ィ匕ビユリデン充填材 38、下部を上記活性炭層 15の組み合わせが上 記有機フッ素化合物の分解に効果が上がることになる。また、上記被処理水を上記 第 1中継槽 5と上記活性炭塔 14との間で、通水を繰り返し、循環通水することに効果 がある。
[0140] したがって、上記活性炭塔 14は、上記活性炭に加えて、上記ひも状ポリ塩ィ匕ビユリ デン充填材 38を収容して 、るので、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に上記 微生物を繁殖させて、この微生物によって、上記活性炭が吸着した上記有機フッ素 化合物を効率よく分解処理できる。
[0141] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に活性ィ匕した微生物を高濃度に培 養できて、上記活性炭が吸着した上記有機フッ素化合物を一層効率よく処理できる 。また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38は、市販されているので、容易に低 価格で調達可能である。
[0142] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38は、ひも状であるので、多くの上記 ひも状ポリ塩ィ匕ビユリデン充填材 38を、上記活性炭塔 14に、収容することができる。
[0143] (第 4の実施形態)
図 4は、この発明の排水処理装置の第 4の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 4の実施形態では、上記第 1中継 槽 5は、充填材としてのひも状ポリ塩ィ匕ビユリデン充填材 38を収容している。なお、こ の第 4の実施形態において、上記第 1の実施形態と同一の部分には、同一の参照番 号を付して、詳細な説明を省略する。
[0144] したがって、マイクロナノバブルによって、活性ィ匕した微生物力 上記ひも状ポリ塩 化ビニリデン充填材 38に多量に繁殖する。
[0145] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に高濃度に繁殖した微生物は、一 部上記ひも状ポリ塩ィ匕ビユリデン充填材 38から剥離して上記活性炭層 15に移行し
て、上記活性炭層 15の活性炭にも多量に繁殖することになる。
[0146] 要するに、上記有機フッ素化合物は、上記活性炭に吸着させて、その後活性ィ匕し た微生物によって、分解できることを見出したので、上記第 1中継槽 5内を上記ひも 状ポリ塩化ビ-リデン充填材 38を充填して、多量の活性化した微生物を繁殖させて 、その後上記活性炭層 15に移行させて処理するシステムが上記有機フッ素化合物 の分解に効果が上がることになる。また、上記被処理水を上記第 1中継槽 5と上記活 性炭塔 14との間で、通水を繰り返し、循環通水することに効果がある。
[0147] したがって、上記第 1中継槽 5は、上記ひも状ポリ塩ィ匕ビユリデン充填材 38を収容 して 、るので、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に上記微生物を繁殖させて、 この微生物によって、上記活性炭塔 14に供給される前の上記被処理水中の上記有 機フッ素化合物を効率よく分解処理できる。
[0148] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に活性ィ匕した微生物を高濃度に培 養できて、上記第 1中継槽 5内で上記被処理水中の上記有機フッ素化合物を一層効 率よく処理できる。また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38は、市販されている ので、容易に低価格で調達可能である。
[0149] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38は、ひも状であるので、多くの上記 ひも状ポリ塩ィ匕ビユリデン充填材 38を、上記第 1中継槽 5に、収容することができる。
[0150] (第 5の実施形態)
図 5は、この発明の排水処理装置の第 5の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 5の実施形態では、上記活性炭塔 14を通過した上記被処理水および上記排ガスは、上記第 1中継槽 5ではなく上記原 水槽 1に導入されて、上記被処理水と上記排ガスとに分離される。なお、この第 5の 実施形態において、上記第 1の実施形態と同一の部分には、同一の参照番号を付し て、詳細な説明を省略する。
[0151] 具体的に述べると、上記原水槽 1は、ダクト 51, 21を介して、上記排ガス処理槽 22 に接続している。上記原水槽 1は、配管を介して、上記活性炭塔 4に接続している。
[0152] 上記活性炭塔 14の下流の上記第 1中継槽行きバルブ 16の下流側に、分岐配管を 設け、上記分岐配管の一方側は、他の第 1中継槽行きバルブ 40を介して、上記第 1
中継槽 5に接続され、上記分岐配管の他方側は、原水槽行きバルブ 41を介して、上 記原水槽 1に接続される。
[0153] そして、上記活性炭塔 14から排出された上記被処理水と上記フッ素を含む排ガス とを、上記他の第 1中継槽行きバルブ 40を閉とし、上記原水槽行きバルブ 41を開と して、上記第 1中継槽 5に返すのではなぐ上記原水槽 1に返している。
[0154] 上記原水槽 1で分離された上記排ガスは、上記ダクト 51, 21を介して、上記排ガス 処理槽 22に導入される。一方、上記原水槽 1で分離された上記被処理水は、上記マ イクロナノバブルで活性ィ匕した微生物を含んで ヽるので、上記有機フッ素化合物を 少ない除去率で処理できる。つまり、上記活性炭塔 14を通過した上記被処理水を、 上記原水槽 1に導入して、再度繰り返し処理できる。
[0155] (第 6の実施形態)
図 6は、この発明の排水処理装置の第 6の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 6の実施形態では、上記第 2中継 槽 18に、マイクロナノバブル発生機 42が収容されている。なお、この第 6の実施形態 において、上記第 1の実施形態と同一の部分には、同一の参照番号を付して、詳細 な説明を省略する。
[0156] 上記マイクロナノバブル発生機 42は、上記第 2中継槽 18内に設けられた架台 44 上に固定されている。上記マイクロナノバブル発生機 42は、図 1に示す上記第 1の実 施形態の上記マイクロナノバブル発生機 7と同様の構成であるので、その説明を省略 する。
[0157] 上記マイクロナノバブル発生機 42には、空気吸い込み管 45が接続され、上記マイ クロナノバブル発生機 42は、上記空気吸い込み管 45から空気を吸い込んで、水と空 気が超高速で旋回流を起こして、結果的にマイクロナノバブルを発生する。
[0158] そして、上記第 2中継槽 18内では、上記マイクロナノバブル発生機 42から吐出され る微細な泡によって、水流 43が発生し、この水流 43が、上記第 2中継槽 18の循環水 流となって、上記第 2中継槽 18内を攪拌している。
[0159] そして、マイククロナノバブルを含んだ被処理水は、含んで 、な 、被処理水と比較 すると、含んだ被処理水の方が、有機フッ素化合物の除去率が良いことが、実験によ
り確認できた。
[0160] この理由としては、マイクロナノバブルを含んだ被処理水は、マイクロナノバブルに よって、微生物が活性化し、残存している有機フッ素化合物を分解するためである。
[0161] したがって、上記第 2中継槽 18は、上記マイクロナノバブル発生機 42を収容するの で、上記活性炭塔 14を通過した上記被処理水中の微量の上記有機フッ素化合物に 対しても、上記第 2中継槽 18で微生物を活性ィ匕して分解処理できる。
[0162] (第 7の実施形態)
図 7は、この発明の排水処理装置の第 7の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 7の実施形態では、上記第 2中継 槽 18に、マイクロナノバブル発生機 42、および、充填材としてのひも状ポリ塩ィ匕ビ- リデン充填材 38が収容されている。なお、この第 7の実施形態において、上記第 1の 実施形態と同一の部分には、同一の参照番号を付して、詳細な説明を省略する。
[0163] 上記マイクロナノバブル発生機 42は、上記第 2中継槽 18内に設けられた架台 44 上に固定されている。上記マイクロナノバブル発生機 42は、図 1に示す上記第 1の実 施形態の上記マイクロナノバブル発生機 7と同様の構成であるので、その説明を省略 する。
[0164] 上記マイクロナノバブル発生機 42には、空気吸い込み管 45が接続され、上記マイ クロナノバブル発生機 42は、上記空気吸い込み管 45から空気を吸い込んで、水と空 気が超高速で旋回流を起こして、結果的にマイクロナノバブルを発生する。
[0165] そして、上記第 2中継槽 18内では、上記マイクロナノバブル発生機 42から吐出され る微細な泡によって、水流 43が発生し、この水流 43が、上記第 2中継槽 18の循環水 流となって、上記第 2中継槽 18内を攪拌している。
[0166] そして、マイククロナノバブルを含んだ被処理水は、含んで 、な 、被処理水と比較 すると、含んだ被処理水の方が、有機フッ素化合物の除去率が良いことが、実験によ り確認できた。
[0167] この理由としては、マイクロナノバブルを含んだ被処理水は、マイクロナノバブルに よって、微生物が活性化し、残存している有機フッ素化合物を分解するためである。
[0168] したがって、上記第 2中継槽 18は、上記マイクロナノバブル発生機 42を収容するの
で、上記活性炭塔 14を通過した上記被処理水中の微量の上記有機フッ素化合物に 対しても、上記第 2中継槽 18で微生物を活性ィ匕して分解処理できる。
[0169] また、上記第 2中継槽 18は、上記ひも状ポリ塩ィ匕ビユリデン充填材 38を収容してい るので、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に上記微生物を繁殖させて、この微 生物によって、上記第 2中継槽 18から排出される前の上記被処理水中の上記有機 フッ素化合物を効率よく分解処理できる。
[0170] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に活性ィ匕した微生物を高濃度に培 養できて、上記第 2中継槽 18内で上記被処理水中の上記有機フッ素化合物を一層 効率よく処理できる。また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38は、市販されて いるので、容易に低価格で調達可能である。
[0171] また、上記ひも状ポリ塩ィ匕ビユリデン充填材 38は、ひも状であるので、多くの上記 ひも状ポリ塩ィ匕ビユリデン充填材 38を、上記第 2中継槽 18に、収容することができる
[0172] (第 8の実施形態)
図 8は、この発明の排水処理装置の第 8の実施形態を示している。図 1に示す上記 第 1の実施形態と相違する点を説明すると、この第 8の実施形態では、上記排ガス処 理槽 22の上記下部貯水部 24に、充填材としてのひも状ポリ塩化ビ-リデン充填材 3 8が収容されている。なお、この第 8の実施形態において、上記第 1の実施形態と同 一の部分には、同一の参照番号を付して、詳細な説明を省略する。
[0173] したがって、上記排ガス処理槽 22に、上記ひも状ポリ塩ィ匕ビユリデン充填材 38が 収容されているので、上記マイクロナノバブルで活性ィ匕した上記微生物を、上記ひも 状ポリ塩ィ匕ビユリデン充填材 38に固定しつつ繁殖させることができる。
[0174] よって、微生物濃度が高まり、微生物が活性ィ匕しているので、フッ素を含む排ガスを 散水処理した時に、同時に上記洗浄水に吸収移行する有機物を効率的に微生物処 理することができる。
[0175] すなわち、有機フッ素化合物の分解過程でガス化した有機フッ素化合物を、上記 洗浄水によって洗浄しつつ吸収し、上記ひも状ポリ塩ィ匕ビユリデン充填材 38に繁殖 した活性ィ匕微生物によって微生物分解する。
[0176] また、多くの上記ひも状ポリ塩ィ匕ビユリデン充填材 38を、上記排ガス処理槽 22の上 記下部貯水部 24に、収容することができる。
[0177] (実験例)
図 1の第 1の実施形態に対応する実験装置を製作した。この実験装置において、上 記原水槽 1の容量を約 4m3とし、上記濾過器 4の容量を lm3とし、上記第 1中継槽 5 の容量を lm3とし、上記活性炭塔 14の容量を 2m3とし、上記第 2中継槽 18の容量を lm3とし、上記排ガス処理槽 22の全体容量を約 3m3として、 1ヶ月、上記原水槽 1に 、有機フッ素化合物含有排水を導入し、上記第 1中継槽 5と上記排ガス処理槽 22の 上記下部貯水部 24とに、上記微生物含有水、上記マイクロナノバブル発生助剤含 有水および上記栄養剤含有水を導入して、試運転をおこなった。
[0178] 試運転後、上記原水槽 1の入口における PFOS (パーフルォロオクタンスルホン散) 濃度と上記第 2中継槽 18の出口における PFOSの濃度とを測定し、 PFOSの除去率 を測定したところ、 96%であった。つまり、難分解性の PFOSを微生物によって効果 的に分解することができる。
[0179] なお、この発明は上述の実施形態に限定されない。例えば、上記第 4, 7, 8の実施 形態において、上記ひも状ポリ塩ィ匕ビユリデン充填材 38の代わりに、リング状ポリ塩 化ビ-リデン充填材を用いてもよぐこのリング状ポリ塩ィ匕ビユリデン充填材を、上記 第 1中継槽 5、上記第 2中継槽 18や上記排ガス処理槽 22に、簡単に収容することが できる。また、上記第 1〜上記第 8の実施形態において、上記第 1中継槽 5、上記第 2 中継槽 18および上記排ガス処理槽 22の少なくとも一つに、上記ひも状ポリ塩ィ匕ビ- リデン充填材 38や上記リング状ポリ塩ィ匕ビユリデン充填材を収容してもよい。
Claims
[1] マイクロナノバブルおよび栄養剤で活性ィ匕した微生物を活性炭に繁殖させる工程と 有機フッ素化合物を含有する排水を、上記活性炭に接触させて、上記排水中の上 記有機フッ素化合物を、上記活性炭に吸着させると共に、上記微生物によって、上 記活性炭に吸着した上記有機フッ素化合物を分解する工程と
を備えることを特徴とする排水処理方法。
[2] マイクロナノバブルおよび栄養剤で活性ィ匕した微生物が繁殖された活性炭を備え、 上記活性炭は、有機フッ素化合物を含有する排水が接触されて、上記排水中の上 記有機フッ素化合物を吸着すると共に、この吸着した上記有機フッ素化合物を上記 微生物によって分解されることを特徴とする排水処理装置。
[3] 有機フッ素化合物を含有する排水を濾過する工程と、
この濾過した排水に、微生物、マイクロナノバブル発生助剤および栄養剤を混合す ると共にマイクロナノバブルを含有させて、被処理水を作成する工程と、
上記被処理水を、活性炭が収容された活性炭塔に供給して、上記被処理水中の 上記有機フッ素化合物を、上記微生物によって分解する工程と
を備えることを特徴とする排水処理方法。
[4] 有機フッ素化合物を含有する排水を濾過する濾過器と、
活性炭を収容する活性炭塔と
を備え、
上記有機フッ素化合物を含有する排水は、上記濾過器によって濾過されてから、 微生物、マイクロナノバブル発生助剤および栄養剤を混合されると共にマイクロナノ バブルを含有されて、被処理水が作成され、
上記被処理水は、上記活性炭塔に供給されて、上記被処理水中の上記有機フッ 素化合物が、上記微生物によって分解されることを特徴とする排水処理装置。
[5] 請求項 4に記載の排水処理装置において、
マイクロナノバブル発生機を収容する排ガス処理槽を備え、
上記排ガス処理槽に導入された水は、微生物、マイクロナノバブル発生助剤および
栄養剤を添加されると共に上記マイクロナノバブル発生機によってマイクロナノパブ ルを含有されて、洗浄水が作成され、
上記活性炭塔で上記被処理水中の上記有機フッ素化合物を上記微生物によって 分解することで発生する排ガスは、上記排ガス処理槽に導入されて、上記洗浄水に よって処理されることを特徴とする排水処理装置。
[6] 請求項 5に記載の排水処理装置において、
上記濾過器に接続されると共に上記有機フッ素化合物を含有する排水が導入され る原水槽と、
上記濾過器と上記活性炭塔との間に接続されると共に上記マイクロナノバブル発生 機を有する第 1中継槽と、
上記活性炭塔および上記排ガス処理槽に接続された第 2中継槽と
を備え、
上記原水槽に導入された上記有機フッ素化合物を含有する排水は、上記濾過器 によって濾過されてから、上記第 1中継槽で上記微生物、上記マイクロナノバブル発 生助剤および上記栄養剤を混合されると共に上記マイクロナノバブル発生機によつ て上記マイクロナノバブルを含有されて、上記被処理水が作成され、
上記被処理水は、上記活性炭塔に供給され、上記活性炭塔を通過した上記被処 理水および上記排ガスは、上記第 2中継槽または上記原水槽に導入されて、上記被 処理水と上記排ガスとに分離され、
上記排ガスは、上記排ガス処理槽に導入されることを特徴とする排水処理装置。
[7] 請求項 6に記載の排水処理装置において、
上記排ガス処理槽は、
下部に配置されると共に、上記マイクロナノバブル発生機を収容して上記洗浄水を 貯水する下部貯水部と、
上部に配置されると共に、上記下部貯水部から汲み上げられた上記洗浄水を散水 する上部散水部と
を有し、
上記上部散水部から散水された上記洗浄水は、上記排ガスを洗浄して、上記下部
貯水部に貯水され、再度、上記上部散水部に汲み上げられることを特徴とする排水 処理装置。
[8] 請求項 4に記載の排水処理装置において、
上記活性炭塔は、上記活性炭に加えて、充填材を収容していることを特徴とする排 水処理装置。
[9] 請求項 6に記載の排水処理装置において、
上記第 2中継槽は、マイクロナノバブル発生機を収容していることを特徴とする排水 処理装置。
[10] 請求項 8に記載の排水処理装置において、
上記充填材は、ポリ塩ィ匕ビユリデン充填材であることを特徴とする排水処理装置。
[11] 請求項 10に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、ひも状であることを特徴とする排水処理装置。
[12] 請求項 10に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、リング状であることを特徴とする排水処理装置。
[13] 請求項 6に記載の排水処理装置において、
上記第 1中継槽は、充填材を収容して!ヽることを特徴とする排水処理装置。
[14] 請求項 13に記載の排水処理装置にお!/ヽて、
上記充填材は、ポリ塩ィ匕ビユリデン充填材であることを特徴とする排水処理装置。
[15] 請求項 14に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、ひも状であることを特徴とする排水処理装置。
[16] 請求項 14に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、リング状であることを特徴とする排水処理装置。
[17] 請求項 7に記載の排水処理装置において、
上記排ガス処理槽の上記下部貯水部は、充填材を収容して ヽることを特徴とする 排水処理装置。
[18] 請求項 17に記載の排水処理装置において、
上記充填材は、ポリ塩ィ匕ビユリデン充填材であることを特徴とする排水処理装置。
[19] 請求項 18に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、ひも状であることを特徴とする排水処理装置。
[20] 請求項 18に記載の排水処理装置において、
上記ポリ塩ィ匕ビユリデン充填材は、リング状であることを特徴とする排水処理装置。
[21] 請求項 6に記載の排水処理装置において、
上記濾過器、上記第 1中継槽、上記活性炭塔、上記第 2中継槽および上記排ガス 処理槽は、ユニット台に、載置されていることを特徴とする排水処理装置。
[22] 請求項 21に記載の排水処理装置にぉ 、て、
上記濾過器、上記第 1中継槽、上記活性炭塔、上記第 2中継槽および上記排ガス 処理槽は、榭脂でつくられていることを特徴とする排水処理装置。
[23] 請求項 6に記載の排水処理装置において、
上記マイクロナノバブル発生機は、水中ポンプ型のマイクロナノバブル発生機であ ることを特徴とする排水処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/303,510 US8057676B2 (en) | 2006-06-07 | 2007-05-17 | Drainage water-treating method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-157955 | 2006-06-07 | ||
JP2006157955A JP3974929B1 (ja) | 2006-06-07 | 2006-06-07 | 排水処理方法および排水処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007142005A1 true WO2007142005A1 (ja) | 2007-12-13 |
Family
ID=38556261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/060127 WO2007142005A1 (ja) | 2006-06-07 | 2007-05-17 | 排水処理方法および排水処理装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8057676B2 (ja) |
JP (1) | JP3974929B1 (ja) |
KR (1) | KR101022687B1 (ja) |
TW (1) | TWI383960B (ja) |
WO (1) | WO2007142005A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202100018806A1 (it) | 2021-07-15 | 2023-01-15 | Erica S R L | Processo di adsorbimento da liquidi |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3974928B1 (ja) * | 2006-06-07 | 2007-09-12 | シャープ株式会社 | 排水処理方法および排水処理装置 |
JP5440095B2 (ja) * | 2009-10-22 | 2014-03-12 | 栗田工業株式会社 | フッ素含有水の処理方法および処理装置 |
TWI396585B (zh) * | 2010-09-03 | 2013-05-21 | Ind Tech Res Inst | 有機固體物水解方法及其裝置 |
TWI486311B (zh) * | 2013-05-16 | 2015-06-01 | 吳倍任 | 去除水體中之全氟辛烷磺酸根離子(pfos)的方法 |
JP6239911B2 (ja) * | 2013-09-19 | 2017-11-29 | ダイキン工業株式会社 | 排水の処理方法および処理装置 |
CN105948413A (zh) * | 2016-07-04 | 2016-09-21 | 北方工程设计研究院有限公司 | 一种高浓度液晶废水的处理工艺 |
CN109851092B (zh) * | 2019-01-23 | 2024-03-05 | 北京爱尔斯生态环境工程有限公司 | 一种水处理系统 |
US11447401B1 (en) | 2019-05-06 | 2022-09-20 | Arrowhead Center, Inc. | Separation columns for per- and polyfluoroalkyl substances (PFAS) remediation |
WO2021096529A1 (en) * | 2019-11-15 | 2021-05-20 | Hydrus Technology Pty. Ltd. | Method of capturing an organofluorine |
WO2023177909A1 (en) * | 2022-03-17 | 2023-09-21 | Gautham Parangusa Das | Apparatus and process for removing pfas and pfas compounds from water |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6354998A (ja) * | 1986-08-27 | 1988-03-09 | Ebara Infilco Co Ltd | リンを含有する有機性汚水の処理方法 |
JPH0751686A (ja) * | 1993-08-18 | 1995-02-28 | Purio:Kk | 汚水処理法 |
JPH1015348A (ja) * | 1996-07-05 | 1998-01-20 | Kurita Water Ind Ltd | 揮発性有機ハロゲン化合物を含む気体の処理方法 |
JPH11267677A (ja) * | 1998-03-24 | 1999-10-05 | Sharp Corp | 排水処理装置および排水処理方法 |
JP2003080290A (ja) * | 2001-09-07 | 2003-03-18 | Tokyo Baiotsukusu:Kk | 排水系の汚れ防止剤およびそれを用いた排水系の汚れ防止方法 |
JP2003136087A (ja) * | 2001-11-06 | 2003-05-13 | Sharp Corp | 排水処理方法および排水処理装置 |
JP2004267869A (ja) * | 2003-03-06 | 2004-09-30 | Kosuke Chiba | 加圧式生物的排水浄化処理法 |
JP2007075723A (ja) * | 2005-09-14 | 2007-03-29 | Sharp Corp | 水処理装置および水処理方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3763040A (en) * | 1971-08-13 | 1973-10-02 | Environmental Protection Agenc | Processes for reducing the organic-carbon content of water contaminated with organic compounds by continuous countercurrent multistage treatment with activated carbon |
US4983299A (en) * | 1989-04-10 | 1991-01-08 | Allied-Signal | Removal of phenols from waste water by a fixed bed reactor |
US5057221A (en) * | 1988-12-19 | 1991-10-15 | Weyerhaeuser Company | Aerobic biological dehalogenation reactor |
US5151187A (en) * | 1991-11-19 | 1992-09-29 | Zenon Environmental, Inc. | Membrane bioreactor system with in-line gas micronizer |
JP3350353B2 (ja) * | 1996-05-28 | 2002-11-25 | シャープ株式会社 | 排水処理方法および排水処理装置 |
JP4450944B2 (ja) | 2000-04-19 | 2010-04-14 | 日本パイオニクス株式会社 | パーフルオロカーボンの回収方法及び分解方法 |
JP4016099B2 (ja) | 2002-05-20 | 2007-12-05 | 独立行政法人産業技術総合研究所 | ナノ気泡の生成方法 |
JP2004121962A (ja) * | 2002-10-01 | 2004-04-22 | National Institute Of Advanced Industrial & Technology | ナノバブルの利用方法及び装置 |
JP2004321959A (ja) | 2003-04-25 | 2004-11-18 | Hitachi Eng Co Ltd | 廃液の処理装置 |
-
2006
- 2006-06-07 JP JP2006157955A patent/JP3974929B1/ja not_active Expired - Fee Related
-
2007
- 2007-05-17 WO PCT/JP2007/060127 patent/WO2007142005A1/ja active Application Filing
- 2007-05-17 US US12/303,510 patent/US8057676B2/en not_active Expired - Fee Related
- 2007-05-17 KR KR20087030521A patent/KR101022687B1/ko not_active IP Right Cessation
- 2007-05-23 TW TW96118420A patent/TWI383960B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6354998A (ja) * | 1986-08-27 | 1988-03-09 | Ebara Infilco Co Ltd | リンを含有する有機性汚水の処理方法 |
JPH0751686A (ja) * | 1993-08-18 | 1995-02-28 | Purio:Kk | 汚水処理法 |
JPH1015348A (ja) * | 1996-07-05 | 1998-01-20 | Kurita Water Ind Ltd | 揮発性有機ハロゲン化合物を含む気体の処理方法 |
JPH11267677A (ja) * | 1998-03-24 | 1999-10-05 | Sharp Corp | 排水処理装置および排水処理方法 |
JP2003080290A (ja) * | 2001-09-07 | 2003-03-18 | Tokyo Baiotsukusu:Kk | 排水系の汚れ防止剤およびそれを用いた排水系の汚れ防止方法 |
JP2003136087A (ja) * | 2001-11-06 | 2003-05-13 | Sharp Corp | 排水処理方法および排水処理装置 |
JP2004267869A (ja) * | 2003-03-06 | 2004-09-30 | Kosuke Chiba | 加圧式生物的排水浄化処理法 |
JP2007075723A (ja) * | 2005-09-14 | 2007-03-29 | Sharp Corp | 水処理装置および水処理方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202100018806A1 (it) | 2021-07-15 | 2023-01-15 | Erica S R L | Processo di adsorbimento da liquidi |
Also Published As
Publication number | Publication date |
---|---|
US20090152193A1 (en) | 2009-06-18 |
US8057676B2 (en) | 2011-11-15 |
JP3974929B1 (ja) | 2007-09-12 |
TWI383960B (zh) | 2013-02-01 |
KR101022687B1 (ko) | 2011-03-22 |
TW200812921A (en) | 2008-03-16 |
KR20090018640A (ko) | 2009-02-20 |
JP2007326009A (ja) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007142005A1 (ja) | 排水処理方法および排水処理装置 | |
JP3974928B1 (ja) | 排水処理方法および排水処理装置 | |
JP4685676B2 (ja) | 排水処理装置 | |
KR101028983B1 (ko) | 액체 처리 장치 및 액체 처리 방법 | |
KR101024296B1 (ko) | 고농도 복합 악취 및 휘발성 유기 화합물을 제거하기 위한 생물학적 탈취 장치 | |
CN108557985A (zh) | 一种臭氧催化氧化搅拌式反应器及污水处理方法 | |
WO2006095510A1 (ja) | 排ガス排水処理装置および排ガス排水処理方法 | |
JP5275121B2 (ja) | 揮発性有機化合物を含有する排ガス処理装置 | |
JP2007209922A (ja) | 排ガス処理方法および排ガス処理装置 | |
JP4685673B2 (ja) | 排水処理方法および排水処理システム | |
JP4949742B2 (ja) | 排水処理方法および排水処理装置 | |
JP4927415B2 (ja) | 排ガス排水処理装置 | |
JP2007245118A (ja) | 排ガス処理方法および排ガス処理システム | |
JP5037479B2 (ja) | 浄化処理装置及び浄化処理方法 | |
JP2007319832A (ja) | 排ガス処理方法および排ガス処理装置 | |
JP2009165992A (ja) | 排ガス処理装置 | |
JP4869122B2 (ja) | 冷却方法および冷却装置 | |
JP4619971B2 (ja) | 排水処理方法および排水処理装置 | |
JP2007237042A (ja) | 排ガス処理方法および排ガス処理装置 | |
JP4870708B2 (ja) | 水処理装置および水処理方法 | |
JP2006289344A (ja) | 排ガス処理装置および排ガス処理方法 | |
US7713410B2 (en) | Wastewater treatment apparatus | |
JP4870707B2 (ja) | 水処理装置および水処理方法 | |
JP2006281041A (ja) | 有機物含有水処理装置とその運転方法 | |
JP2021000577A (ja) | 水質浄化システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07743562 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12303510 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087030521 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07743562 Country of ref document: EP Kind code of ref document: A1 |