WO2007138866A1 - 3次元投影法および3次元図形表示装置 - Google Patents

3次元投影法および3次元図形表示装置 Download PDF

Info

Publication number
WO2007138866A1
WO2007138866A1 PCT/JP2007/060106 JP2007060106W WO2007138866A1 WO 2007138866 A1 WO2007138866 A1 WO 2007138866A1 JP 2007060106 W JP2007060106 W JP 2007060106W WO 2007138866 A1 WO2007138866 A1 WO 2007138866A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
projection
line
area
display
Prior art date
Application number
PCT/JP2007/060106
Other languages
English (en)
French (fr)
Inventor
Yasushi Hiraoka
Original Assignee
Furuno Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co., Ltd. filed Critical Furuno Electric Co., Ltd.
Publication of WO2007138866A1 publication Critical patent/WO2007138866A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/12Panospheric to cylindrical image transformations

Definitions

  • the present invention relates to a three-dimensional projection method for performing a display that gives a visual effect as if looking down at an oblique force on a map, and a three-dimensional graphic display device to which the method is applied.
  • a map and a landscape are often displayed in a bird's eye view as the processing capability of a computer has improved in recent years (for example, patent documents). 1).
  • FIG. 1 and FIG. 2 show examples of coordinate transformation for bird's-eye view display shown in Patent Document 1.
  • FIG. 1 is a perspective view showing the relationship between a trapezoidal display target region and an image display device screen (projection region).
  • FIG. 2 is a cross-sectional view in a plane including the z axis and the y axis in FIG.
  • the image display device screen (projection area) is a rectangular plane perpendicular to the central line of sight, which is the center of the depression angle when the display target area is viewed from the viewpoint of height h.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-220055
  • Obstacles and azimuth lines that exist in a specific direction are also visible on the 3D display image. It is important to be able to grasp clearly.
  • the sense of distance differs between the center (front) direction of the screen and the left and right edge directions of the screen.
  • targets for a specific orientation are displayed (projected) in a straight line, but without any auxiliary line such as an isoazimuth line, it is not clear what the azimuth is.
  • auxiliary line such as an isoazimuth line
  • the viewpoint is at a certain height.
  • both near and far are projected onto a rectangular area (2D screen) like a camera shot, and a three-dimensional representation is obtained.
  • the image over the medium range and the far range is generally “compressed” and displayed at the top of the display screen. In other words, most of the display screen is occupied by the current image. Or, depending on how the projection area is adopted, only the vicinity is displayed.
  • the conventional 3D display method using the camera-like projection method scans the built-in geographical information database together with the 3D position information of the display target area and the display attributes such as colors, one by one.
  • the force projected on the projection area was calculated, and the calculation result was plotted in a drawing memory equivalent to the projection area.
  • the relationship between the display target area and the projection area is not "parallel" in terms of both coordinates and graphics. Projection calculation of the next transformation was performed.
  • the present invention solves the above problems, makes it easy to grasp the position and distance of a target on a three-dimensional display image, and enables display with high visibility including the vicinity of the viewpoint,
  • the object is to provide a 3D projection method and a 3D graphic display device with reduced computational complexity.
  • the three-dimensional projection method and the three-dimensional figure display device of the present invention are configured as follows.
  • a three-dimensional projection is performed including a data display step of displaying the projection data in an orthogonal coordinate system in which one axis is an azimuth direction and the other axis is a distance direction.
  • the three-dimensional information is projected onto the rotation plane from a viewpoint at a predetermined height on the vertical line.
  • a viewpoint is set on an arc that is perpendicular to the vertical line and intersects the vertical line at a predetermined height and that is centered on the intersection of the plane and the vertical line. Therefore, the viewpoint is moved along the arc according to the orientation of the display target area projected onto the rotation plane.
  • a vertical plane at a predetermined position in three dimensions is set as a rotation center line, and a rotation plane whose apex faces downward is in an azimuth direction and a distance direction as viewed from a viewpoint at a predetermined height on the vertical line.
  • a region that extends by a predetermined range is set as a virtual projection region, and when the display target region is viewed from the viewpoint through the projection region, the display target region at the tip of the line of sight is deselected.
  • a three-dimensional projection is performed by a data display step of displaying the data in the drawing memory as an image in an orthogonal coordinate system having the azimuth direction as one axis and the distance direction as the other axis.
  • a three-dimensional projection is performed by a data display step of displaying the data in the drawing memory as an image in an orthogonal coordinate system having the azimuth direction as one axis and the distance direction as the other axis.
  • the rotating surface is, for example, an inverted conical surface centered on a vertical line at a predetermined position in the three dimensions.
  • each point on a straight line facing the distance direction (vertical direction on the display screen) of the projection area and each point on the straight line facing the distance direction of the display target area is obtained by a parameter indicating the correspondence relationship with the point.
  • the projection area for projecting the data of the display target area has a three-dimensional The azimuth direction and distance direction (this “direction” from the viewpoint) of the rotating surface with the vertical line at the predetermined position as the rotation center line and the viewpoint power at the predetermined height on the vertical line with the vertex facing downwards If you think of the direction of the angle change as you look down, it can also be called the “declining angle direction.”)
  • Each area extends by a predetermined range, and the data of the drawing memory that is the data of each point on the projection area.
  • the image can be displayed as an image of an orthogonal coordinate system having the azimuth direction as one axis and the distance direction as the other axis.
  • iso-azimuth lines are drawn on the display screen, the iso-azimuth lines are aligned in parallel at equal intervals in the vertical direction of the display screen. If equidistant lines are drawn on the display screen, the equidistant lines are aligned in parallel in the horizontal direction of the display screen. Therefore, it becomes easy to grasp the azimuth and distance of the target.
  • the parameter (distance direction map) that represents the correspondence between each point on the straight line that faces the distance direction of the display target area and each point on the straight line that faces the distance direction of the projection area.
  • the point data on the projection area is obtained by the webbing parameter, and by setting this parameter, it is possible to display with high visibility by focusing on the near field power and the far field.
  • an object having coordinates in the distance direction and the azimuth direction of the display target region is extracted in advance from a geographic information database, and the object is scanned in the distance direction and the azimuth direction. If each point of the display target area is projected onto each point of the projection area, each point aligned in the distance direction of the display target area can be easily projected onto each point aligned in the distance direction of the projection area.
  • FIG. 3 is a diagram illustrating the relationship among the display target area, the projection area, the viewpoint, the line of sight, and the like.
  • Fig. 3 (A) consider an inverted conical surface RC with a vertical line passing through the three-dimensional origin O as the center line of rotation, and the viewpoint V force at a predetermined height on the vertical line also looks at the display target area OA.
  • the region where the line of sight intersects with the inverted conical surface RC is the projection region PA.
  • the display target area OA is a line segment L1 on two straight lines opened by a constant angle passing through the origin O.
  • the projection area PA has two straight line segments PL1 -PL2, PR1-PR2 that are opened at a predetermined angle passing through the origin O, and a substantially trapezoidal trapezoid that connects these two line segments with a substantially elliptic arc. It is made.
  • the straight line V—C is the line of sight when the viewpoint V force is viewed from the central point C of the display target area OA. This central point C is the center of the angle formed by the two line segments LI-L2 and R1-R in the azimuth direction, and is determined under predetermined conditions in the distance direction.
  • the vertical direction of the projection area PA (the straight line direction passing through the origin O) is a force that can be essentially referred to as “the depression angle direction”. This direction corresponds to the distance direction of the display target area OA.
  • the vertical direction of the projection area PA (the straight direction passing through the origin O) is referred to as the “distance direction”.
  • the substantially elliptical arc direction of the projection area PA is the azimuth direction, and corresponds to the azimuth direction of the display target area OA.
  • the projection area PA and the viewpoint V shown in Fig. 3 (A) are determined, for example, as follows: First, the coordinates (0, 0, 0) of the origin 0 (own ship position), the viewpoint V Determine (0, 0, Z).
  • a central point C (X, Y, 0) that is a reference position of the display target area OA is determined.
  • This reference position C can be arbitrarily set such as the center of the display target area OA, the center of gravity, the center of line segment R1-R2, and the center of L1 L2.
  • FIG. 3B is a plan view of the projection area PA shown in FIG. 3A developed on a plane. like this In the projection area PA ′ expanded in the direction, the straight lines in the distance direction are arranged radially.
  • FIG. 3C is a plan view of a display screen that displays an image virtually projected onto the projection area shown in FIG.
  • Each pixel on the display screen PA ⁇ corresponds to each pixel in the drawing memory.
  • the four corner points respectively correspond to the four corners PL1, PL2, PR1, and PR2 of the projection area PA shown in FIG.
  • the line segments PL1-PL2 and the line segments PR1-PR2 are parallel, and the line segments PL1-PR1, PL2-PR2 are also parallel.
  • the vertical axis in the figure is the distance direction and the horizontal axis is the azimuth direction, and they are orthogonal.
  • iso-azimuth lines are drawn on the display screen, the iso-azimuth lines are aligned in parallel in the vertical direction of the display screen as indicated by the solid line AL in FIG. If equidistant lines are drawn on the display screen, the equidistant lines are aligned in parallel in the horizontal direction of the display screen as shown by the broken line DL in FIG.
  • the viewpoint V is on a vertical line passing through the origin O
  • the projection area PA is on an inverted conical surface having the origin O as a vertex.
  • the angle change in the azimuth direction and the movement distance in the horizontal direction of the projection area PA have a proportional relationship. Therefore, if iso-azimuth lines are drawn with a constant azimuth angle, they will be lined up at regular intervals as shown by the solid line AL in Fig. 3 (C).
  • Fig. 4 (A) is a display example of an image virtually projected onto the projection area on the display screen, similar to that shown in Fig. 3 (C).
  • the lower side of the display screen is the viewpoint.
  • Fig. 4 (B) shows an example of a display screen using the conventional dynamic projection method.
  • the viewpoint becomes one point at the center of the lower side of the display screen, and if an equi-azimuth line is displayed, it is displayed as a straight line extending radially from the viewpoint as shown by the solid line in the figure. Further, if an iso-azimuth line is displayed, it is displayed as a concentric elliptical curve with the viewpoint as the center.
  • FIG. 5 is a plan view including the display target area where the target exists, and FIG. 5A shows an auxiliary line in a polar coordinate grid centered on the origin O (own ship position). .
  • Fig. 5 (B) shows a grid grid-like auxiliary line consisting of a straight line parallel to the bow direction and a straight line parallel to the starboard port direction perpendicular to it.
  • the distance from the ship to the target S22 is 500m.
  • the height of each target shown in the shape of a pyramid is 100m.
  • FIG. 6 shows an example of a display image by three-dimensional projection when the target shown in FIG. 5 is viewed from a viewpoint on a vertical line passing through the origin O.
  • FIG. 5 shows an auxiliary line in a polar coordinate grid centered on the origin O (own ship position).
  • Fig. 5 (B) shows a grid grid-like auxiliary line consisting of a straight line parallel to the bow direction and a straight line parallel to the starboard port direction perpendicular to it
  • FIG. 6 (A) shows a display example by the three-dimensional projection method of the present invention
  • FIG. 6 (B) shows a display example by the conventional camera projection method.
  • the white line is a polar grid-like auxiliary line shown in Fig. 5 (A).
  • the altitude of the viewpoint is 500 m
  • the lower side of the display screen is the own ship position (below).
  • the straight lines extending in the radial direction of the polar coordinate grid auxiliary lines are displayed as equi-azimuth lines aligned in the vertical direction of the display screen. It is done. (In this figure, since the auxiliary line is drawn thickly, the equi-azimuth line is displayed thicker as the distance is shorter.) Also, the arc line extending in the circumferential direction of the polar coordinate grid auxiliary line is displayed on the display screen. Displayed as equidistant lines parallel to the horizontal direction.
  • the viewpoint is one point at the center of the lower side of the display screen, and a straight line extending in the radial direction of the polar coordinate grid auxiliary line is Displayed as iso-azimuth lines extending radially from the viewpoint.
  • An arc line extending in the circumferential direction of the polar grid-like auxiliary line is displayed as a concentric elliptic arc-shaped curve centered on the viewpoint.
  • the targets Sl l, S12, and S13 are in the same direction as viewed from the origin O as shown in FIG.
  • the targets S21, S22, and S23 are in the same direction as seen from the O force, and the targets S31, S32, and S3 3 are also in the same direction as seen from the origin O. Therefore, in the conventional camera projection method, as shown in Fig. 6 (B), these targets are arranged in a radial direction, so it is difficult to grasp the azimuth relationship of these targets without auxiliary lines. there were.
  • the three-dimensional projection method of the present invention as shown in FIG. 6 (A), these targets are displayed side by side in the vertical direction of the display screen. The orientation relationship can be easily grasped.
  • FIG. 7 is a diagram illustrating the relationship among the display target region, the projection region, the viewpoint, the line of sight, and the like.
  • the viewpoint V is arranged on a vertical line passing through the origin O, but in this second embodiment, a line of sight looking at a predetermined position force display target area on the vertical line passing through the origin O is used. Considering this, the viewpoint V is placed behind the line of sight by a predetermined offset. However, the viewpoint V is moved so that the line of sight of the display target area OA from the viewpoint V that is not a single point passes through the vertical line. Therefore, the viewpoint V moves on a plane perpendicular to the vertical line and intersects at a predetermined height along an arc centered on the intersection of the plane and the vertical line.
  • the line of sight to the point L2 on the left rear side (far left) of the display target area OA is a straight line V-Q2-L2.
  • the line of sight of the right rear point R2 is the straight line V-Q2-R2.
  • the line of sight to the left front point L1 of the display target area OA viewed from the viewpoint V force is a straight line VQ 1—L 1
  • the line R3 of the display target area OA right front of the display target area OA viewed from the viewpoint V Is the straight line of V—Q1—R1.
  • the line of sight of the central point C of the display target area OA is the V—QC—C straight line.
  • a central point C (X, Y, 0), which is a reference position of the display target area OA, is determined.
  • This reference position C can be arbitrarily set such as the center of the display target area OA, the center of gravity, the center of the line segment R1-R2, and the center of LI-L2.
  • the viewpoint V is set to a position where the reference viewpoint QC force and the offset are provided. That is, the point on the extension of the straight line connecting C—QC is set as the viewpoint V.
  • the offset amount QC—V distance
  • the perspective of the display target area OA changes.
  • the projected area on the inverted conical surface is the part OT indicated by the thick line in the figure of the inverted cone bus, and the display target area compared to the projection area of the short distance area O of the display target area
  • the far-field CS projection area becomes smaller. This means that an image of a long-distance area is compressed and displayed at the top of the screen.
  • the projection area on the inverted conical surface becomes the genera OU of the inverted cone, and the far-field area CS of the display area near the projection area of the near-field area OC
  • the projection area expands. Therefore, the problem that the far-range area is compressed and displayed can be solved by providing the offset and appropriately determining the offset amount.
  • FIG. 9 is an example in which an offset is given to the position of the viewpoint when the display target area shown in FIG. 5 is displayed in a three-dimensional figure.
  • the altitude of viewpoint V is 500 m
  • the offset amount is 1000 m
  • the bottom of the display screen is the ship position.
  • the vicinity of the ship is expanded in the distance direction and the distant area is compressed in the distance direction, but by providing such an offset, the bottom of the display screen is displayed. From the (short range) to the upper part of the display screen (long range), the difference in compression and expansion in the distance direction does not appear significantly, making it easy to grasp both the short range and the long range.
  • the projection area PA is set to form an inverted conical surface.
  • the projection area is a rotation surface in which the vertical line passing through the origin O is the rotation center line and the apex faces downward. If it is, it does not necessarily have to be an inverted conical surface.
  • FIG. 10 is a cross-sectional view including a vertical line passing through the origin O.
  • RC1 is the inverted conical surface shown in the first and second embodiments, and appears as a straight bus in FIG.
  • RC2 and RC3 are both non-inverted conical surfaces, although the vertical line passing through the origin O is the rotation center line and the apex faces downward. These also appear as curve buses in Figure 10.
  • P A1 is a projection area that is part of the inverted conical surface RC1
  • PA2 and PA3 are projection areas that are part of the rotation surfaces RC2 and RC3.
  • FIG. 11 is a diagram showing how the distance change in the vertical axis direction of the display screen changes according to the shape of the projection areas PA1, PA2, and PA3.
  • the horizontal axis represents the depression angle
  • the vertical axis represents the vertical axis of the display screen.
  • Curve DY1 represents the characteristics of projection area PA1
  • curve DY2 represents the characteristics of projection area PA2
  • curve DY3 represents the characteristics of projection area PA3.
  • the horizontal axis represents the distance from the origin O of the display target area OA
  • the vertical axis represents the vertical axis of the display screen.
  • the curve LY1 represents the characteristic due to the projection area PA1
  • LY2 represents the characteristic due to the projection area PA2
  • LY3 represents the characteristic due to the projection area PA3.
  • the scale of the vertical axis of the display screen changes depending on the curved surface shape of the projection area.
  • the projection area PA1 with an inverted conical surface is used, the image in the long-distance area is compressed and displayed above the display screen. It will be displayed relatively linearly over the distance range.
  • Each of the projection areas PA1, PA2, PA3, etc. shown in FIG. 10 is a virtual curved surface.
  • the problem of how to shape the projection area depends on the display area OA. It can be seen that this is equivalent to the problem of how to map each point in the distance direction onto a straight line (on the bus) in the distance direction of the projection area.
  • scaling on the vertical axis of the display screen corresponds to performing the mapping nonlinearly using a predetermined monotonically increasing function, if generalized.
  • the viewpoint V can be offset, and operations equivalent to adjusting the offset can be performed. Therefore, the force that gives an offset to the position of the viewpoint V.
  • the distance direction force of the display target area with the offset amount set to 0. Whether to use a non-linear function for mapping in the distance direction of the projection area should be less computationally expensive. Take it.
  • FIG. 12 shows the relationship between the projection area and the display screen.
  • the predetermined area of the inverted conical surface RC with the vertical line passing through the origin O on the third dimension as the rotation center line is the projection area PA.
  • Figure 12 (B) shows the shape of the display screen. Display screen P A ⁇ forms part of the surface visible from the inside of the cylindrical surface.
  • the distance direction of the projection area PA is displayed in the vertical direction of the display screen PA ⁇ .
  • the display screen PA ⁇ is displayed in correspondence with the direction (bus line direction) and the azimuth direction of the projection area PA corresponding to the orientation seen from the center of the cylindrical surface of the display screen PA ⁇ .
  • FIG. 13 is a diagram showing the relationship between the projection area and the display screen.
  • the predetermined area of the inverted conical surface RC with the vertical line passing through the origin O on the third dimension as the rotation center line is the projection area PA.
  • the width of the projection area PA in the azimuth direction is less than 360 degrees.
  • the width of the projection area PA in the azimuth direction is 360 degrees. It is the whole circumference.
  • Fig. 13 (B) shows the shape of the display screen.
  • Display screen PA ⁇ forms a cylindrical surface and is displayed all around its inner surface. Therefore, this display screen PA ⁇ can display 3D figures around the ship.
  • the outer peripheral surface of the cylindrical surface may be used as the display screen PA.
  • FIG. 14 is a flowchart showing processing for displaying a three-dimensional figure on the display screen based on the data of the display target area.
  • a geographical database corresponding to the display target area is selected, and data (objects) of each point in polar coordinate format centered on the origin O are selected from the geographical database for each orientation.
  • This process corresponds to an “object extraction step” according to the present invention.
  • This plotting to the drawing memory is repeated for each distance and each direction. This process corresponds to the “data plot step” according to the present invention.
  • the amount of calculation by the conventional camera projection method is compared with the amount of calculation by the three-dimensional projection method of the present invention.
  • FIG. 15 is a plan view of a range including the viewpoint and the display target area.
  • the viewing direction is ⁇
  • the target direction is ⁇
  • the horizontal viewing angle is Q
  • the horizontal dot position from the center position of the display screen width w is gx.
  • gx can be obtained by the following calculation of [Equation 3], so that the coordinate rotation necessary for the conventional camera-like projection method can be obtained. This calculation is not necessary.
  • the ratio gxZ (wZ2) of the horizontal dot position from the center position of the screen width w can be obtained simply by taking the angle ratio.
  • FIG. 16 is a block diagram showing a configuration of the three-dimensional graphic display device.
  • the external navigation sensor 1 is a device that detects the position, speed, heading, etc. of the ship in real time.
  • Input device Device 2 is a keyboard and pointing device, and is used to perform operations such as changing the viewpoint position, center line of sight, and display area size.
  • the data processing device 8 includes a CPU, a memory for storing a program executed by the CPU, and an interface with the external navigation sensor 1 and the input device 2.
  • Navigation data 3 is a part that records (stores) navigation data (dynamic information and static information of the ship).
  • Projection parameter 4 is a data group that stores parameters such as the position of the viewpoint, the depression angle, and the line-of-sight direction.
  • Geographic information 5 is a database of maps, typically 3D or 2D map information. This geographical information may be recorded on a storage medium independent of the data processing device 8.
  • the arithmetic processing unit 6 generates the above-described three-dimensional projection and drawing data using the navigation data 3, the projection parameters 4, and the geographical information 5.
  • the drawing data is output to the two-dimensional display device of the display device 7 and displayed in real time or statically.
  • the present invention shows three-dimensional information of a display target region, one axis being an azimuth direction, and the other axis being This applies to equipment that displays in the Cartesian coordinate system with the distance direction. Therefore, the present invention is not limited to navigation equipment mounted on a ship, but can be applied to, for example, car navigation equipment. Further, for example, the contents of the geographic information database can be similarly applied to an apparatus that displays an orthogonal coordinate system in which one axis is an azimuth direction and the other axis is a distance direction.
  • FIG. 1 is a diagram showing an example of coordinate conversion for bird's-eye view display by a conventional camera-like projection method.
  • FIG. 2 is a cross-sectional view of FIG.
  • FIG. 3 is a diagram for explaining the three-dimensional projection method according to the first embodiment, and is a perspective view and a plan view showing a relationship between a viewpoint, a display target area, and a projection area.
  • FIG. 4 is a diagram showing an example of a display screen, where (A) is an example according to the present invention, and (B) is Italy 1 according to a conventional method.
  • FIG. 5 is a plan view of a display target area.
  • FIG. 6 is a diagram showing an example of a display screen, where (A) is an example according to the present invention and (B) is Italy by a conventional method.
  • FIG. 7 is a diagram for explaining the three-dimensional projection method according to the second embodiment, and is a perspective view showing a relationship between a viewpoint, a display target area, and a projection area.
  • FIG. 8 is a diagram showing a method for determining a display target area, a viewpoint, and a projection area.
  • FIG. 9 is a diagram showing an example of a display screen when an offset is provided.
  • (A) is an example according to the present invention, and (B) is an example according to a conventional method.
  • FIG. 10 is a diagram showing the shape of a projection region in the three-dimensional projection method according to the third embodiment.
  • FIG. 11 is a diagram showing the relationship between the depression angle versus the vertical axis of the display screen and the relationship between the distance versus the vertical axis of the display screen in each projection area shown in FIG.
  • FIG. 12 is a diagram for explaining the three-dimensional projection method according to the fourth embodiment, and is a diagram showing the relationship between the projection area and the display screen.
  • FIG. 13 is a diagram for explaining the three-dimensional projection method according to the fourth embodiment, and is a diagram illustrating a relationship between another projection area and the display screen.
  • FIG. 15 is a diagram for explaining a calculation amount necessary for three-dimensional projection.
  • FIG. 16 is a block diagram showing a configuration of a three-dimensional graphic display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Instructional Devices (AREA)
  • Processing Or Creating Images (AREA)

Abstract

原点Oを通る鉛直線を回転中心線とする逆円錐面RCに仮想の投影用領域PAを設定し、扇型の表示対象領域OAを投影用領域PAに投影する。視点Vには、鉛直線上の基準位置QCからオフセットをもたせ、視点Vから投影用領域PAを通して表示対象領域OAを見たときの視線が前記鉛直線を通るように視点Vを円弧状に移動させる。 これにより、3次元的表示画像上において物標の方位と距離の把握を容易にし、自船近傍を含めた視認性の高い表示を可能とし、投影のための計算量を削減する。

Description

明 細 書
3次元投影法および 3次元図形表示装置
技術分野
[0001] この発明は地図を斜め方向力 見下ろしたような視覚効果を与える表示を行うため の 3次元投影法およびそれを適用した 3次元図形表示装置に関するものである。 背景技術
[0002] 例えばナビゲーシヨンシステムのような地図を表示するシステムにおいて、近年のコ ンピュータの処理能力の向上にともない、地図や風景を鳥瞰図的に表示するようにし たものが多くみられる(例えば特許文献 1参照)。
[0003] それらは、基本的にカメラで写したような画像を表示することを前提にしていて、仮 想的な現実感を確保する意味で利便性をもって ヽる。このカメラで写したような画像 を得る操作を以下「カメラ的投影法」という。このカメラ的投影法は、視点を定め、一定 の開口角を有する矩形平面の投影用領域 (開口:アパーチャ)を中心視線に対して 垂直に配置し、表示対象領域の各点を前記投影用領域に投影 (その矩形領域に対 応する表示用メモリにプロット)し、これを表示装置で表示するという方法である。
[0004] 図 1 ·図 2は特許文献 1に示されている鳥瞰図表示のための座標変換の例を示して いる。図 1は、台形状の表示対象領域と画像表示装置画面 (投影用領域)との関係を 示す斜視図である。また図 2は、図 1における z軸と y軸を含む平面での断面図である 。画像表示装置画面 (投影用領域)は、高さ hの視点から表示対象領域を見た俯角 の中央である中心視線に対して垂直な矩形平面である。
特許文献 1:特開平 7— 220055号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、ナビゲーシヨン機器などにおいて地図を表示する場合には、前記カメラ的 投影法を用いることは以下に述べる点で不都合であった。
[0006] 第 1に、方位や距離が明確でないことが挙げられる。
特定の方位に存在する障害物や方位線は 3次元的表示画像上においても視覚的 に瞭然と把握できることが重要である。し力し従来のカメラ的投影法では画面の中央 (正面)方向と画面の左右端方向とでは距離感が異なる。このことに関連して、特定 方位についてのターゲットは一直線に並んで表示 (投影)されはするが、等方位線な どの補助線無しではどのような方位角に位置するの力判然としない。また、複数の物 標がほぼ同じ方位で別の距離に位置するような場合に、それらの相対的な方位関係 が直感的には把握しにくい。このことは距離についても同様である。例えば 2つの物 標がほぼ同じ距離で別方位に表示されるような場合に、等距離線などの補助線無し では、どちらの物標が遠 、のか近 、のかが判然としな!、。
[0007] 第 2に、視点近傍 (足下 [あしもと])を含めた表示に不便さがあることである。
3次元的表示においては、視点が一定の高さにあることが前提である。その視点か ら俯瞰する形で、近傍と遠方の両方をカメラ撮影のように矩形領域 (2次元画面)に投 影することで 3次元的表現を得るわけであるが、限られた矩形領域へ投影するので、 表示画面の表示範囲に足下を含めると一般的に中距離域力 遠距離域にかけての 画像が、表示画面上の上部に「圧縮」されて表現されてしまう。すなわち、表示画面 の大半が足下の画像で占められることになる。あるいは、投影用領域の採り方によつ ては近傍のみの表示になってしまう。人間や TVカメラの場合には、足下を見るときは 遠方を見るのをあきらめ、俯角を変える (パンする)ことで遠方をみる習性があるので 不都合は感じないが、固定的な投影条件が多い 3次元的表示の場合には、足下を 表現することを事実上捨てなければ良好な画像が得られないことになる。しかし、例 えば航海機器の表示装置においては、足下すなわち自船近傍をオミットして中距離 域以遠だけを表示すると 、う固定的な投影は安全の観点力 採ることのできな 、選 択である。
[0008] 第 3に、画像を作成するための計算量の問題である。
従来のカメラ的投影法で 3次元的表示を行う方法は、表示対象領域の 3次元位置 情報と色などの表示属性とともに静的に内蔵している地理的情報データベースを逐 一スキャンし、それらが投影用領域のどこに投影される力を計算し、その投影用領域 と等価な描画用メモリへ計算結果をプロットしていくというものであった。そして、この 表示対象領域と投影用領域との関係は、座標的にも図形的にも「平行」ではなぐ一 次変換の投影計算を行うものであった。
[0009] つまり、オブジェクトの位置が決まって、表示属性を得て、投影用領域にヒットするこ とがわ力つたとき、その投影用領域の X方向、 y方向それぞれについて、元のオブジェ タトの位置情報 (少なくとも 2つの変数)による 1次変換とスケーリング計算 (通常割り算 )が必要である。
[0010] すなわち、表示対象領域の各点毎に実数マトリクス演算が必要であるので、全体と しては大きな計算負荷となる。
[0011] そこで、本発明は前記各課題を解消して、 3次元的表示画像上において物標の方 位と距離の把握を容易にし、視点近傍を含めた視認性の高い表示を可能とし、投影 のための計算量を削減した 3次元投影法および 3次元図形表示装置を提供すること にある。
課題を解決するための手段
[0012] 前記課題を解決するために、この発明の 3次元投影法および 3次元図形表示装置 は、次のように構成する。
[0013] (1) 3次元上の所定位置にある鉛直線を回転中心線とする回転面上に、表示対象 領域の 3次元情報を投影するデータプロットステップと、
前記投影データを、一方の軸を方位方向、他方の軸を距離方向とする直交座標系 に表示するデータ表示ステップと、を含んで 3次元投影を行う。
[0014] (2)前記データプロットステップは、例えば、前記鉛直線上の所定高さにある視点 から、前記回転面上に前記 3次元情報を投影するものとする。
[0015] (3)前記データプロットステップは、例えば、前記鉛直線に対して垂直且つ所定高 さで交わる平面上で、該平面と前記鉛直線との交点を中心とした円弧上に視点を設 け、前記回転面へ投影する表示対象領域の方位に応じて、前記視点を前記円弧に 沿って移動させるものとする。
[0016] (4) 3次元上の所定位置にある鉛直線を回転中心線とし、頂点が下方を向く回転面 の、前記鉛直線上の所定高さにある視点から見た方位方向および距離方向にそれ ぞれ所定範囲だけ広がる領域を仮想の投影用領域とし、前記視点から前記投影用 領域を通して表示対象領域を見たとき、視線の先端にある前記表示対象領域のデ ータを前記視線が交わる前記投影用領域上の点のデータとして求めるとともに、前記 投影用領域に対応する描画用メモリへ前記データを書き込むデータプロットステップ と、
前記描画用メモリのデータを、前記方位方向を一方の軸、前記距離方向を他方の 軸とする直交座標系の画像として表示するデータ表示ステップと、によって 3次元投 影を行う。
[0017] (5) 3次元上の所定位置にある鉛直線を回転中心線とし、頂点が下方を向く回転面 の、前記鉛直線を通り且つ該鉛直線に対して垂直に交差する平面上で、当該平面と 前記鉛直線との交点を中心とする円弧上に位置する視点力 見た方位方向および 距離方向にそれぞれ所定範囲だけ広がる領域を仮想の投影用領域とし、前記視点 力も前記投影用領域を通して表示対象領域を見たとき、視線の先端にある前記表示 対象領域のデータを前記視線が交わる前記投影用領域上の点のデータとして求め るとともに、前記投影用領域に対応する描画用メモリへ前記データを書き込むデータ プロットステップと、
前記描画用メモリのデータを、前記方位方向を一方の軸、前記距離方向を他方の 軸とする直交座標系の画像として表示するデータ表示ステップと、によって 3次元投 影を行う。
[0018] (6)前記回転面は、前記 3次元上の所定位置にある鉛直線を中心とする例えば逆 円錐面とする。
[0019] (7)前記データプロットステップは、例えば前記表示対象領域の距離方向を向く直 線上の各点と前記投影用領域の距離方向(表示画面上での縦方向)を向く直線上の 各点との対応関係を表すパラメータによって、前記投影用領域上の点のデータを求 めるものとする。
[0020] (8)地理的情報のデータベースから前記表示対象領域の距離方向と方位方向を 座標とするオブジェクトを抽出するオブジェクト抽出ステップを備え、前記データプロ ットステップは、前記オブジェクトを距離方向と方位方向に走査するものとする。 発明の効果
[0021] この発明によれば、表示対象領域のデータを投影する投影用領域が、 3次元上の 所定位置にある鉛直線を回転中心線とし、頂点が下方を向く回転面の、前記鉛直線 上の所定高さにある視点力も見た方位方向および距離方向(この「方向」を、視点か ら見下ろす角度変化の方向と捕らえると、「俯角方向」と言うこともできる。)にそれぞ れ所定範囲だけ広がる領域であり、投影用領域上の各点のデータである描画用メモ リのデータを、方位方向を一方の軸、距離方向を他方の軸とする直交座標系の画像 として表示することができる。そのため、表示画面に等方位線を描くとすれば、その等 方位線は表示画面の縦方向を向いて等間隔に平行に並ぶことになる。また、表示画 面に等距離線を描くとすれば、その等距離線は表示画面の横方向を向いて平行に 並ぶことになる。したがって、物標の方位と距離の把握が容易となる。
[0022] また、従来のカメラ的投影法では、画面の各ピクセル (画面幅 wドット、画面高さ hド ットの場合 w X h)について三角関数の演算による座標変換 (回転操作)を行う必要が あるが、この発明では、投影用領域の方位方向への投影位置を求める計算自体が 簡易であり、投影用領域の距離方向のどの位置でも表示対象領域の方位が一定で あるので、演算回数も従来のカメラ的投影法に比べて lZhで済む。全体で見た場合 には、距離方向の計算量は従来どおり同じで、方位方向の計算量は lZhに減少す る。そのため、全体の計算量は、従来が「縦方向の計算」 +「横方向の計算」に対して 、本発明は「縦 (距離)方向の計算」 +「横 (方位)方向の計算 Zh」になり、約半分に なる。
[0023] また、この発明によれば、表示対象領域の距離方向を向く直線上の各点と投影用 領域の距離方向を向く直線上の各点との対応関係を表すパラメータ (距離方向のマ ッビングパラメータ)によって、前記投影用領域上の点のデータを求め、このパラメ一 タの設定によって近距離域力 遠距離域に力けて視認性の高い表示が可能となる。
[0024] また、この発明によれば、地理的情報のデータベースから表示対象領域の距離方 向と方位方向を座標とするオブジェクトを予め抽出し、そのオブジェクトを距離方向と 方位方向に走査することによって、表示対象領域の各点を投影用領域の各点へ投 影すれば、表示対象領域の距離方向に並ぶ各点を投影用領域の距離方向に並ぶ 各点へ容易に投影できる。
発明を実施するための最良の形態 [0025] 《第 1の実施形態》
この発明の第 1の実施形態に係る 3次元投影法について図 3を参照して説明する。 図 3は、表示対象領域、投影用領域、視点、視線等の関係を示す図である。図 3 (A )において、 3次元上の原点 Oを通る鉛直線を回転中心線とする逆円錐面 RCを考え 、前記鉛直線上の所定高さにある視点 V力も表示対象領域 OAを見たとき、その視線 が逆円錐面 RCと交わる点が存在する領域が投影用領域 PAである。
[0026] ここで、表示対象領域 OAは原点 Oを通る一定角度開いた 2つの直線上の線分 L1
-L2, R1— R2と、この 2つの線分を円弧でつないだ扇状台形を成している。これに 対応して投影用領域 PAは、原点 Oを通る所定角度開いた 2つの直線上の線分 PL1 -PL2, PR1— PR2、およびこの 2つの線分を略楕円弧でつないだ略扇状台形を成 している。なお直線 V— Cは、視点 V力も表示対象領域 OAの中央地点 Cを見たとき の視線である。この中央地点 Cは、方位方向については 2つの線分 LI— L2, R1 - Rが成す角度の中央であり、距離方向につ!、ては所定の条件で定めたものである。
[0027] 図 3 (A)において投影用領域 PAの縦方向(原点 Oを通る直線方向)は本来「俯角 方向」と言うことができる力 この方向は表示対象領域 OAの距離方向に対応するの で、前記投影用領域 PAの縦方向 (原点 Oを通る直線方向)を「距離方向」と言う。ま た投影用領域 PAの略楕円弧方向は方位方向であり、表示対象領域 OAの方位方 向に対応している。
[0028] 図 3 (A)に示した投影用領域 PAおよび視点 Vの決定は、例えば次のようにして行う まず原点 0 (自船の位置)の座標(0, 0, 0)、視点 V (0, 0, Z)を決定する。
[0029] 次に、表示対象領域 OAの基準位置である中央地点 C (X, Y, 0)を決定する。この 基準位置 Cは表示対象領域 OAの中心、重心、線分 R1— R2の中心、 L1 L2の中 心等任意に設定できる。
[0030] 次に、原点 Oから V— Cを結ぶ直線に対して垂直に交わる直線 O— Pを引く。この直 線 O— Pを、原点 Oを通る鉛直線を中心として回転させることにより、図 3 (A)に示した 逆円錐面 RCが形成される。
[0031] 図 3 (B)は、(A)に示した投影用領域 PAを平面に展開した平面図である。このよう に展開した状態の投影用領域 PA' では、距離方向の直線は放射状に配置されるこ とになる。
[0032] 図 3 (C)は、 (B)に示した投影用領域に仮想的に投影した画像を表示する表示画 面の平面図である。表示画面 PA〃の各画素が描画用メモリの各画素に相当する。 その四隅の点は、図 3 (A)に示した投影用領域 P Aの四隅 PL1, PL2, PR1, PR2に それぞれ対応している。線分 PL1— PL2と線分 PR1— PR2は平行であり、線分 PL1 — PR1、 PL2— PR2も平行である。図における縦軸が距離方向、横軸が方位方向で あり、両者は直交している。そのため、表示画面に等方位線を描くとすれば、図 3 (C) の実線 ALのように等方位線は表示画面の縦方向を向いて平行に並ぶことになる。ま た、表示画面に等距離線を描くとすれば、図 3 (C)の破線 DLのように等距離線は表 示画面の横方向を向いて平行に並ぶことになる。
[0033] また、図 3 (A)に示したように、視点 Vは原点 Oを通る鉛直線上にあり、投影用領域 PAは原点 Oを頂点とする逆円錐面上にある。このような投影用領域 PAで、視点 Vか ら投影用領域 PAの方位方向に視線を移動させると、方位方向の角度変化と投影用 領域 PAの横方向の移動距離とは比例関係になる。そのため、等方位線を一定方位 角で描くとすれば、図 3 (C)の実線 ALのように等間隔に並ぶことになる。
図 4〜図 6はこの発明の 3次元投影法による表示例について示している。図 4 (A)は 図 3 (C)に示したものと同様の、投影用領域に仮想的に投影した画像の表示画面上 への表示例であり、表示画面の下辺が視点となる。これに対して図 4 (B)は従来の力 メラ的投影法による表示画面の例である。カメラ的投影法では、視点が表示画面の 下辺中央の 1点となり、等方位線を表示すれば、図中実線で示すように、視点から放 射状に延びる直線として表示される。また、等方位線を表示すれば、前記視点を中 心とする同心楕円状の曲線として表示される。
[0034] 図 5は、物標が存在する表示対象領域を含む平面図であり、図 5 (A)では原点 O ( 自船位置)を中心とする極座標グリッド状の補助線を表して 、る。また図 5 (B)では船 首方向に平行な直線と、それに直交する右舷 左舷方向に平行な直線とによる方眼 グリッド状の補助線を表している。ここで、自船から物標 S22までの距離は 500m、例 としてピラミッド状に表した各物標の高さは 100mである。 [0035] 図 6は、図 5に示した物標を、原点 Oを通る鉛直線上の視点から見た 3次元投影に よる表示画像の例を示している。図 6 (A)はこの発明の 3次元投影法による表示例、 図 6 (B)は従来のカメラ的投影法による表示例である。いずれも白線は図 5 (A)に示 した極座標グリッド状の補助線である。ここで、視点の高度は 500mであり、表示画面 の下辺が自船位置 (真下)である。
[0036] この発明の 3次元投影法によれば、図 6 (A)に示すように、前記極座標グリッド状補 助線の放射方向に延びる直線が表示画面の縦方向に並ぶ等方位線として表示され る。(この図では、前記補助線を敢えて太く描いているので、等方位線は近距離ほど 太く表示している。)また、前記極座標グリッド状補助線の円周方向に延びる円弧線 が表示画面の水平方向に平行に並ぶ等距離線として表示される。
[0037] これに対し、従来のカメラ的投影法では、図 6 (B)のように、視点が表示画面の下辺 中央の 1点となり、前記極座標グリッド状補助線の放射方向に延びる直線が、視点か ら放射状に延びる等方位線として表示される。また、前記極座標グリッド状補助線の 円周方向に延びる円弧線が、前記視点を中心とする同心楕円弧状の曲線として表 示される。
[0038] 物標 Sl l、 S12、 S13は、図 5 (B)に示したように原点 Oから見て同一方位にある。
同様に物標 S21、 S22, S23ち原^; O力ら見て同一方位にあり、物標 S31、 S32, S3 3も原点 Oから見て同一方位にある。したがって従来のカメラ的投影法では、図 6 (B) に示したように、これらの物標は視点力 放射状に並ぶため、補助線無しではこれら の物標の方位関係を把握することは困難であった。これに対してこの発明の 3次元投 影法によれば、図 6 (A)に示したように、これらの物標が表示画面の縦方向に並んで 表示されるので、複数の物標の方位関係が容易に把握できる。
[0039] このようにして表示対象領域の画像が直交座標系の画像として表示される際、立体 的な画像の構成を保ちつつ、方位と距離が瞭然とし、物標の方位と距離の把握が容 易となる。また、この 3次元投影法では、逆円錐表面の曲率が十分小さければカメラ 的投影法と同等の 3次元的画像表現の感覚を失うことなぐそれでいて方位線は表 示画面の縦方向を向く。方位を把握し易いということは、航行する上で航路上の障害 物がどの方角にある力、複数の物標が相対的にどういう方位にある力 、つた情報を 読み取り易いという点で重要な意味を持つ。同様に、距離についても表示画面の縦 方向に同じ高さにある物標は、等距離にあることが約束されるので距離比較が簡単 に行える。
[0040] 《第 2の実施形態》
次に、第 2の実施形態に係る 3次元投影法について図 7〜図 9を参照して説明する 図 7は、表示対象領域、投影用領域、視点、視線等の関係を示す図である。
[0041] 第 1の実施形態では、原点 Oを通る鉛直線上に視点 Vを配置したが、この第 2の実 施形態では、原点 Oを通る鉛直線上の所定位置力 表示対象領域を見る視線を考 えたとき、その視線力 所定オフセット分だけ後方に視点 Vを配置するものである。伹 し、視点 Vは 1点ではなぐ視点 Vから表示対象領域 OAを見る視線が、前記鉛直線 上を必ず通るように、前記視点 Vを移動させる。したがって、視点 Vは前記鉛直線に 対して垂直且つ所定高さで交わる平面上で、該平面と前記鉛直線との交点を中心と した円弧に沿って移動することになる。
[0042] 例えば、視点 Vから見て表示対象領域 OAの左後方 (左遠方)の点 L2への視線は V—Q2—L2の直線である。また、右後方の点 R2を見る視線は V—Q2—R2の直線 である。同様に、視点 V力 見て表示対象領域 OAの左手前の点 L1を見る視線は V Q 1— L 1の直線であり、視点 Vから見て表示対象領域 OAの右手前の点 R1を見る 視線は V—Q1—R1の直線である。また、表示対象領域 OAの中央地点 Cを見る視 線は V—QC— Cの直線である。
[0043] 次に、図 7に示した投影用領域 P Aおよび視点 Vの決定方法について図 8を基に説 明する。
まず図 8 (A)に示すように、原点 O (自船の位置)の座標 (0, 0, 0)、基準視点 QC ( 0, 0, Z)を決定する。
[0044] 次に図 8 (B)に示すように表示対象領域 OAの基準位置である中央地点 C (X, Y, 0)を決定する。この基準位置 Cは表示対象領域 OAの中心、重心、線分 R1— R2の 中心、 LI— L2の中心等任意に設定できる。
[0045] 次に図 8 (C)に示すように、原点 O力 QC— Cを結ぶ直線に対して垂直に交わる 直線 O Pを引く。この直線 O Pを、原点 oを通る鉛直線を中心として回転させるこ とにより、図 7に示した逆円錐面 RCが形成される。
[0046] 次に図 8 (D)に示すように、視点 Vを基準視点 QC力もオフセットをもたせた位置と する。すなわち C— QCを結ぶ直線の延長線上にある点を視点 Vとする。このオフセッ ト量 (QC—Vの距離)を調整することにより、表示対象領域 OAの遠近感 (パースぺク ティブ)が変化する。基準視点 QCから見た場合、前記逆円錐面上の投影領域は、逆 円錐の母線の図中太線で示す部分 O Tとなり、表示対象領域の近距離域 O じの 投影領域に比べて表示対象領域の遠距離域 C Sの投影領域が小さくなる。これは 、遠距離域の画像が画面上部に圧縮されて表示されることを意味する。
[0047] 一方、前記オフセットをもたせた視点 V力 見ると、逆円錐面上の投影用領域は、 逆円錐の母線 O Uとなり、表示対象領域の近距離域 O Cの投影領域に対する遠 距離域 C Sの投影領域が広がる。そのため、前記オフセットをもたせ、そのオフセッ ト量を適当に定めことにより、遠距離域が圧縮されて表示されるという問題が解消でき る。
[0048] 図 9は、図 5に示した表示対象領域を 3次元図形表示する際に、視点の位置にオフ セットをもたせた例である。ここで、視点 Vの高度は 500m、オフセット量は 1000m、 表示画面の下辺が自船位置である。図 6に示した例では、自船近傍が距離方向に拡 大され、遠方が距離方向に圧縮されて表示される傾向があるが、このようにオフセット をもたせること〖こよって、表示画面の下方 (近距離域)から表示画面の上方 (遠距離 域)にかけて、距離方向の圧縮'拡大の差が顕著に表れず、近距離域も遠距離域も 把握しやすくなる。
[0049] すなわち、オフセットがない図 3のような視点では、遠方と自船近傍の両方を見るた めに投影用領域を広げ、且つ俯角を下げる必要があるが、それによる表示画面の表 示内容には自船近傍の情報が多く占めることになる。これに対してオフセットを設け て視点を後方にずらせることによって、遠方の情報をより精細に大きく表現し、自船近 傍は比較的圧縮して表示される。
[0050] 前方を含めた一定の視野角を表示する際に、自船近傍を表示範囲に含めない方 式は航行上安全な情報表示方式とはいえない。したがって、どうしても近傍は表示範 囲に含めた 、と 、う事情はあるけれども、遠方を含む広範囲に亘つて表示した ヽと ヽ う要求がある。このような事情を勘案すれば、この視点位置にオフセットをもたせる方 式の優位性は明らかである。
[0051] 《第 3の実施形態》
次に、第 3の実施形態に係る 3次元投影法について図 10·図 11を参照して説明す る。
第 1 ·第 2の実施形態では投影用領域 PAが逆円錐面をなすように設定したが、投 影用領域は、原点 Oを通る鉛直線を回転中心線とし、頂点が下方を向く回転面であ ればよぐ必ずしも逆円錐面でなくてもよい。図 10は原点 Oを通る鉛直線を含む断面 図である。図 10において RC1は第 1 ·第 2の実施形態で示した逆円錐面であり、図 1 0では直線の母線として現れている。 RC2, RC3は、いずれも原点 Oを通る鉛直線を 回転中心線とし、頂点が下方を向く回転面であるが、非逆円錐面である。これらも図 10では曲線の母線として現れている。
[0052] この例では、原点 Oを通る直線上の視点 Vから表示対象領域 OAを見るとき、仰角 範囲は Dal〜Da2、表示対象領域 OAの距離範囲は L1〜L2である。したがって、 P A1は逆円錐面 RC1の一部である投影用領域、 PA2, PA3は回転面 RC2, RC3の 一部である投影用領域である。
[0053] 図 11は前記投影用領域 PA1、 PA2、 PA3の形状に応じて表示画面の縦軸方向 の距離変化がどのように変化するかを示す図である。図 11 (A)は横軸に前記俯角を とり、縦軸に表示画面の縦軸をとつたものである。曲線 DY1は投影用領域 PA1によ る特性、曲線 DY2は投影用領域 PA2による特性、曲線 DY3は投影用領域 PA3によ る特性をそれぞれ表している。また図 11 (B)は横軸に表示対象領域 OAの原点 Oか らの距離、縦軸に表示画面の縦軸をとつたものである。ここで曲線 LY1は投影用領 域 PA1による特性、 LY2は投影用領域 PA2による特性、 LY3は投影用領域 PA3に よる特性をそれぞれ表して 、る。
[0054] このように投影用領域の曲面形状によって表示画面の縦軸のスケールが変化する 。この例では逆円錐面の投影用領域 PA1を用いた場合に表示画面の上方に遠距離 域の画像が圧縮されて表示されるが、投影用領域 PA3を用いれば近距離域力ゝら遠 距離域にかけて比較的リニアに表示されることになる。
[0055] 図 10に示した投影用領域 PA1、 PA2、 PA3等はいずれも仮想的な曲面である。こ の投影用領域の形状を変えることによって表示画面の縦軸のスケールが変化する、 という考えを更に進めると、前記投影領域をどのような形状にするかという問題は、表 示対象領域 OAの距離方向の各点を投影用領域の距離方向の直線上 (母線上)へ どのようにマッピングするかという問題と等価であることが分かる。すなわち、表示画面 の縦軸のスケーリングは、一般化すれば、所定の単調増加関数を用いて前記マツピ ングを非線形に行うことに相当する。このマッピングに用いる単調増加関数の設定に よって、視点 Vにオフセットをもたせるとともに、そのオフセット量を調節することと同等 の操作も行える。したがって、視点 Vの位置にオフセットをもたせる力 オフセット量は 0にしたまま表示対象領域の距離方向力 投影用領域の距離方向へのマッピングに 非線形の関数を利用するかは計算量の少な ヽ方を採ればょ 、。
[0056] 《第 4の実施形態》
次に、第 4の実施形態に係る 3次元投影法について図 12·図 13を参照して説明す る。
図 12は投影用領域と表示画面との関係を示す図である。図 12 (A)において、 3次 元上の原点 Oを通る鉛直線を回転中心線とする逆円錐面 RCの所定領域が投影用 領域 PAである。この投影用領域 PAをどのように定めるかについては第 1〜第 3の実 施形態の場合と同様である。図 12 (B)は表示画面の形状を示している。表示画面 P A〃 は円筒面内部から見える面の一部を成している。
[0057] 図 12 (A)に示した仮想的な投影用領域 PAにプロットすることによって得られる描 画用メモリの内容を表示する際、投影用領域 PAの距離方向を表示画面 PA〃 の縦 方向(母線方向)に対応させ、且つ投影用領域 PAの方位方向を表示画面 PA〃 の 円筒面の中心から見た方位に対応させて、表示画面 PA〃の表示を行う。
[0058] 図 13は投影用領域と表示画面との関係を示す図である。図 13 (A)において、 3次 元上の原点 Oを通る鉛直線を回転中心線とする逆円錐面 RCの所定領域が投影用 領域 PAである。図 12に示した例では、この投影用領域 PAの方位方向の幅が 360 度未満であつたが、この図 13に示す例は、投影用領域 PAの方位方向の幅を 360度 全周にしたものである。図 13 (B)は表示画面の形状を示している。表示画面 PA〃 は 円筒面を成し、その内面の全周に表示する。したがって、この表示画面 PA〃 には、 自船の全周囲の 3次元図形を表示することができる。なお、円筒面の外周面を表示 画面 PA としてもよい。
[0059] 《第 5の実施形態》
次に、この発明の実施形態に係る 3次元図形表示装置について図 14 ·図 15を参照 して説明する。
図 14は、表示対象領域のデータを基に表示画面に 3次元図形を表示するための 処理について示すフローチャートである。まず表示対象領域が決定されると、その表 示対象領域に対応する地理的データベースを選択し、その地理的データベースから 、原点 Oを中心とする極座標形式の各点のデータ (オブジェクト)を方位毎に生成す る。この処理が本発明に係る「オブジェクト抽出ステップ」に相当する。
[0060] 次に、前記方位毎の地理的データのそれぞれにっき、各点が投影用領域のどの点 に写像されるかを、視点の位置および投影用領域のパラメータに基づいて計算し、 投影用領域に相当する描画用メモリへプロットする。
[0061] この描画用メモリへのプロットを距離毎および方位毎に繰り返す。この処理が本発 明に係る「データプロットステップ」に相当する。
[0062] その後、前記描画用メモリの内容を、方位方向を一方の軸、距離方向を他方の軸と する直交座標系に表示することによって 3次元図形表示を行う。この表示の処理が本 発明に係る「データ表示ステップ」に相当する。
[0063] ここで、従来のカメラ的投影法による計算量と、この発明の 3次元投影法による計算 量との比較を行う。
図 15は視点および表示対象領域を含む範囲の平面図である。ここで視線方位を Θ、物標方位を φ、水平視野角を Q;、表示画面幅 wの中心位置からの横方向ドット 位置を gxとする。
[0064] 従来のカメラ的投影法では次の [数 1]の演算によって座標の回転を行った後に、 [ 数 2]の演算によって gxを求めることになる。
[0065] [数 1] 1 Y"'' / -ヽ' ■S v
yl J —11 I
[0066] [数 2]
一 c s o c s
Figure imgf000016_0001
J s
[0067] これに対してこの発明の 3次元投影法によれば、次の [数 3]の演算によって gxを求 めることができるので、従来のカメラ的投影法に必要な座標回転のための演算が不 要である。
[0068] [数 3]
Figure imgf000016_0002
[0069] すなわち角度の比をとるだけで画面幅 wの中心位置からの横方向ドット位置の割合 gxZ(wZ2)を求めることができる。
[0070] すなわち、従来のカメラ的投影法では、画面の各ピクセル (画面幅 wドット、画面高 さ hドットの場合 w X h)について三角関数の演算による座標変換を行う必要があるが 、この発明では、投影用領域の方位方向への投影位置を求める計算自体が簡易で あり、投影用領域の距離方向のどの位置でも表示対象領域の方位が一定であるの で、演算回数も従来のカメラ的投影法に比べて lZhで済む。全体で見た場合には、 距離方向の計算量は従来と同じで、方位方向の計算量は lZhに減少する。そのた め、全体の計算量は、従来が「縦方向の計算」 +「横方向の計算」に対して、本発明 は「縦 (距離)方向の計算」 +「横 (方位)方向の計算 Zh」になり、約半分になる。
[0071] なお、以上の説明では表示対象領域が 2次元平面であるように説明した力 表示対 象領域の図形が 3次元の情報である場合でも同様である。
[0072] 図 16は 3次元図形表示装置の構成を示すブロック図である。ここで外部航法セン サ 1は自船の位置や速度、船首方位等をリアルタイムで検出する装置である。入力装 置 2はキーボードやポインティングデバイスであり、視点位置、中心視線、表示対象 領域の広さを変更する操作等を行うために用いる。データ処理装置 8は、 CPU,その CPUが実行するプログラムをストアするメモリ、前記外部航法センサ 1および入力装 置 2とのインタフェースを備えて 、る。
[0073] 航法データ 3は航法データ(自船の動的な情報と静的な情報)を記録 (記憶)する部 分である。投影パラメータ 4は視点の位置や俯角、視線方向等のパラメータを記憶し ているデータ群である。地理的情報 5は地図のデータベースであり、典型的には 3次 元または 2次元の地図情報である。この地理的情報はデータ処理装置 8の外部に独 立した記憶媒体に記録してぉ 、てもよ 、。
[0074] 演算処理部 6は、前記航法データ 3、投影パラメータ 4、地理的情報 5を利用して前 述の 3次元投影および描画データの生成を行う。その描画データは表示装置 7の 2 次元表示装置に出力し、リアルタイムにまたは静的にそれを表示する。
[0075] なお、以上の各実施形態では、船舶に搭載する航海機器に適用した例を示したが 、この発明は表示対象領域の 3次元情報を、一方の軸を方位方向、他方の軸を距離 方向とする直交座標系に表示する機器に適用するものである。したがって、この発明 は船舶に搭載する航海機器に限られるものではなぐ例えばカーナビゲーシヨン機器 にも同様に適用できる。また、例えば地理的情報データベースの内容を、一方の軸 を方位方向、他方の軸を距離方向とする直交座標系に表示する装置に同様に適用 できる。
図面の簡単な説明
[0076] [図 1]従来のカメラ的投影法による鳥瞰図表示のための座標変換の例を示す図であ る。
[図 2]図 1の断面図である。
[図 3]第 1の実施形態に係る 3次元投影法を説明するための図であり、視点、表示対 象領域、および投影用領域の関係等を示す斜視図および平面図である。
[図 4]表示画面の例を示す図であり、(A)はこの発明による例、(B)は従来の方法に よる伊 1である。
[図 5]表示対象領域の平面図である。 [図 6]表示画面の例を示す図であり、(A)はこの発明による例、(B)は従来の方法に よる伊 Iである。
圆 7]第 2の実施形態に係る 3次元投影法を説明するための図であり、視点、表示対 象領域、および投影用領域の関係等を示す斜視図である。
[図 8]表示対象領域、視点、および投影用領域の決定方法について示す図である。
[図 9]オフセットをもたせた場合の表示画面の例を示す図であり、 (A)はこの発明によ る例、(B)は従来の方法による例である。
圆 10]第 3の実施形態に係る 3次元投影法における投影用領域の形状を示す図であ る。
圆 11]図 10に示した各投影用領域での俯角対表示画面の縦軸との関係および距離 対表示画面の縦軸との関係を示す図である。
圆 12]第 4の実施形態に係る 3次元投影法を説明するための図であり、投影用領域と 表示画面との関係を示す図である。
圆 13]第 4の実施形態に係る 3次元投影法を説明するための図であり、別の投影用 領域と表示画面との関係を示す図である。
圆 14]第 5の実施形態に係る 3次元図形表示装置の描画変換処理の手順を示すフ ローチャートである。 圆 15]3次元投影に必要な計算量を説明するための図である。
[図 16]3次元図形表示装置の構成を示すブロック図である。

Claims

請求の範囲
[1] 3次元上の所定位置にある鉛直線を回転中心線とする回転面上に、表示対象領域 の 3次元情報を投影するデータプロットステップと、
前記投影データを、一方の軸を方位方向、他方の軸を距離方向とする直交座標系 に表示するデータ表示ステップと、
を含むことを特徴とする 3次元投影法。
[2] 前記データプロットステップは、前記鉛直線上の所定高さにある視点から、前記回 転面上に前記 3次元情報を投影することを特徴とする請求項 1に記載の 3次元投影 法。
[3] 前記データプロットステップは、前記鉛直線に対して垂直且つ所定高さで交わる平 面上で、該平面と前記鉛直線との交点を中心とした円弧上に視点を設け、前記回転 面へ投影する表示対象領域の方位に応じて、前記視点を前記円弧に沿って移動さ せることを特徴とする請求項 1に記載の 3次元投影法。
[4] 3次元上の所定位置にある鉛直線を回転中心線とし、頂点が下方を向く回転面の、 前記鉛直線上の所定高さにある視点力 見た方位方向および距離方向にそれぞれ 所定範囲だけ広がる領域を仮想の投影用領域とし、前記視点から前記投影用領域 を通して表示対象領域を見たとき、視線の先端にある前記表示対象領域のデータを 前記視線が交わる前記投影用領域上の点のデータとして求めるとともに、前記投影 用領域に対応する描画用メモリへ前記データを書き込むデータプロットステップと、 前記描画用メモリのデータを、前記方位方向を一方の軸、前記距離方向を他方の 軸とする直交座標系に表示するデータ表示ステップと、
カゝらなる 3次元投影法。
[5] 3次元上の所定位置にある鉛直線を回転中心線とし、頂点が下方を向く回転面の、 前記鉛直線に対して垂直に交差する平面上で、当該平面と前記鉛直線との交点を 中心とする円弧上に位置する視点から見た方位方向および距離方向にそれぞれ所 定範囲だけ広がる領域を仮想の投影用領域とし、前記視点から前記投影用領域を 通して表示対象領域を見たとき、視線の先端にある前記表示対象領域のデータを前 記視線が交わる前記投影用領域上の点のデータとして求めるとともに、前記投影用 領域に対応する描画用メモリへ前記データを書き込むデータプロットステップと、 前記描画用メモリのデータを、前記方位方向を一方の軸、前記距離方向を他方の 軸とする直交座標系に表示するデータ表示ステップと、
カゝらなる 3次元投影法。
[6] 前記回転面は、前記 3次元上の所定位置にある鉛直線を中心とする逆円錐面であ る請求項 4または 5に記載の 3次元投影法。
[7] 前記データプロットステップは、前記表示対象領域の距離方向を向く直線上の各点 と前記投影用領域の距離方向を向く直線上の各点との対応関係を表すパラメータに よって、前記投影用領域上の点のデータを求めるものである請求項 4、 5または 6に 記載の 3次元投影法。
[8] 地理的情報のデータベースから前記表示対象領域の距離方向と方位方向を座標 とするオブジェクトを抽出するオブジェクト抽出ステップを備え、
前記データプロットステップは、前記オブジェクトを距離方向と方位方向に走査する ものである請求項 1〜7のうちいずれか 1項に記載の 3次元投影法。
[9] 3次元上の所定位置にある鉛直線を回転中心線とし、頂点が下方を向く回転面の、 前記鉛直線に対して垂直に交差する平面上で、当該平面と前記鉛直線との交点を 中心とする円弧上に位置する視点から見た方位方向および距離方向にそれぞれ所 定範囲だけ広がる領域を仮想の投影用領域とし、前記視点から前記投影用領域を 通して表示対象領域を見たとき、視線の先端にある前記表示対象領域のデータを前 記視線が交わる前記投影用領域上の点のデータとして求めるとともに、前記投影用 領域に対応する描画用メモリへ前記データを書き込むデータプロット手段と、 前記描画用メモリのデータを、前記方位方向を一方の軸、前記距離方向を他方の 軸とする直交座標系に表示するデータ表示手段と、
からなる 3次元図形表示装置。
PCT/JP2007/060106 2006-05-26 2007-05-17 3次元投影法および3次元図形表示装置 WO2007138866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006147226A JP5164341B2 (ja) 2006-05-26 2006-05-26 投影法および図形表示装置
JP2006-147226 2006-05-26

Publications (1)

Publication Number Publication Date
WO2007138866A1 true WO2007138866A1 (ja) 2007-12-06

Family

ID=38778386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060106 WO2007138866A1 (ja) 2006-05-26 2007-05-17 3次元投影法および3次元図形表示装置

Country Status (2)

Country Link
JP (1) JP5164341B2 (ja)
WO (1) WO2007138866A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100115A1 (en) * 2016-11-30 2018-06-07 Cup Print Method and system for rendering image on conical surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116473678B (zh) * 2023-06-21 2023-09-29 杭州键嘉医疗科技股份有限公司 一种虚拟墙引导末端执行器移动的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149177A (ja) * 1987-12-07 1989-06-12 Hitachi Ltd 3次元シーンの表示・入力方式
JP2003216983A (ja) * 2002-01-25 2003-07-31 Mitsubishi Electric Corp 三次元地図表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900632B2 (ja) * 1991-04-19 1999-06-02 株式会社日立製作所 ディジタル地図処理装置及びディジタル地図の表示方法
JPH0667605A (ja) * 1992-08-21 1994-03-11 Hitachi Ltd 地図処理装置及び地図処理方法
JPH07120564A (ja) * 1993-10-22 1995-05-12 Hitachi Ltd 気象データ表示システム
JPH11126019A (ja) * 1997-10-20 1999-05-11 Sokken:Kk Gps用経緯線読取り地図と、この地図を用いたナビゲ−ションシステム
JP3507717B2 (ja) * 1999-01-07 2004-03-15 株式会社光電製作所 レーダ装置
JP2000338238A (ja) * 1999-05-26 2000-12-08 Mitsubishi Electric Corp レーダ装置
JP3427798B2 (ja) * 1999-10-06 2003-07-22 株式会社デンソー 地図表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149177A (ja) * 1987-12-07 1989-06-12 Hitachi Ltd 3次元シーンの表示・入力方式
JP2003216983A (ja) * 2002-01-25 2003-07-31 Mitsubishi Electric Corp 三次元地図表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100115A1 (en) * 2016-11-30 2018-06-07 Cup Print Method and system for rendering image on conical surface
US10891713B2 (en) 2016-11-30 2021-01-12 Huhtamaki Cupprint Ltd Method and system for rendering image on conical surface

Also Published As

Publication number Publication date
JP2007316439A (ja) 2007-12-06
JP5164341B2 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
US10282915B1 (en) Superimposition device of virtual guiding indication and reality image and the superimposition method thereof
US9317945B2 (en) Detail-in-context lenses for navigation
JP4896761B2 (ja) 立体地図表示システム、立体地図の表示方法、及びそのプログラム
KR101799945B1 (ko) 3차원 지도 묘화 시스템, 지물 데이터 생성 방법, 3차원 지도 묘화 방법 및 컴퓨터 판독가능한 기록 매체
US8154547B2 (en) Method and system for early Z test in title-based three-dimensional rendering
US8466894B2 (en) Apparatus and method for displaying information
WO2014020663A1 (ja) 地図表示装置
JP6153366B2 (ja) 画像生成システム及びプログラム
US20100245352A1 (en) Method and system for 3d object positioning in 3d virtual environments
JP2015075966A (ja) 画像処理装置、画像処理方法、及び、プログラム
US10863154B2 (en) Image processing apparatus, image processing method, and storage medium
US8675013B1 (en) Rendering spherical space primitives in a cartesian coordinate system
JPH05334438A (ja) カメラ映像内の物体位置のマッピング方法及び物体同定方法
US7825926B2 (en) Point-based rendering apparatus, method and medium
JPH11161159A (ja) 3次元地図表示装置
CN108090212B (zh) 兴趣点的展示方法、装置、设备及存储介质
JP2007041692A (ja) 三次元地形データ制御装置及び三次元地形データ制御方法
WO2007138866A1 (ja) 3次元投影法および3次元図形表示装置
JP2003233836A (ja) モデリング時の距離成分を用いてレンダリング陰影処理を行う画像処理装置とその方法
JP5378143B2 (ja) 画像変換装置及び操作支援システム
JP5075659B2 (ja) 物体軌道演算装置及びそのプログラム
JP2005165283A (ja) 地図表示装置
JP5846373B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、および、画像処理システム
JP5964611B2 (ja) 3次元地図表示システム
JP4551355B2 (ja) 3次元地図表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743541

Country of ref document: EP

Kind code of ref document: A1