WO2007138672A1 - 分散補償装置および分散補償方法 - Google Patents

分散補償装置および分散補償方法 Download PDF

Info

Publication number
WO2007138672A1
WO2007138672A1 PCT/JP2006/310725 JP2006310725W WO2007138672A1 WO 2007138672 A1 WO2007138672 A1 WO 2007138672A1 JP 2006310725 W JP2006310725 W JP 2006310725W WO 2007138672 A1 WO2007138672 A1 WO 2007138672A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
dispersion
dispersion compensation
refractive index
optical
Prior art date
Application number
PCT/JP2006/310725
Other languages
English (en)
French (fr)
Inventor
Akira Miura
Hiroki Ooi
Kiyotoshi Noheji
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008517734A priority Critical patent/JP4774103B2/ja
Priority to PCT/JP2006/310725 priority patent/WO2007138672A1/ja
Publication of WO2007138672A1 publication Critical patent/WO2007138672A1/ja
Priority to US12/292,956 priority patent/US8306430B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator

Definitions

  • the present invention relates to an optical signal generated due to dispersion characteristics of an optical transmission line using an optical component that changes a transmission wavelength characteristic of an optical signal by using refractive index changing means such as temperature and stress change.
  • the present invention relates to a dispersion compensation device that compensates for waveform deterioration.
  • FIG. 15 is a diagram showing a configuration of the VIPA dispersion compensator.
  • the optical signal to be compensated for dispersion is input to the condenser lens system 11 via the optical circulator 10 and input to the VIPA plate 12.
  • the optical signal undergoes multiple reflections at the VIPA plate 12, but is emitted from the VIPA plate 12 so that the reflection direction for each wavelength is different.
  • the emitted optical signal reaches the free-form curved mirror 14 through the focusing lens 13, is reflected by the free-form curved mirror 14, and is incident on the VIPA plate 12 again, but the VIPA plate 12 reflects the reflected optical signal.
  • the number of multiple reflections varies depending on the incident position, so that the optical path difference for each wavelength is varied to return to the condenser lens system 11.
  • a desired dispersion compensation value can be obtained by changing the reflection characteristic of the free-form curved mirror 14 (changing the reflection position of the optical signal on the free-form curved mirror 14). .
  • the dispersion compensation value becomes positive, and when the incident optical signal is reflected by the convex portion of the free-form curved mirror 14, the dispersion compensation value becomes negative.
  • the VIPA dispersion compensator has a transmission center wavelength slightly different for each dispersion compensation value mainly because the transmission characteristic of the optical signal is asymmetric with respect to the loss axis. It was necessary to adjust the transmission wavelength. Therefore, a method of adjusting the transmission wavelength by adjusting the temperature of the VIPA plate 12 and changing the refractive index of the VIPA plate 12 every time the dispersion compensation value is changed is applied (see Patent Document 1). Note that FBG (Fiber Bragg Grating) is used as a dispersion compensator other than the VIPA dispersion compensator (see Patent Document 2).
  • FBG Fiber Bragg Grating
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-77969
  • Patent Document 2 JP 2001-99709 A
  • the transmission wavelength is set to the optimum value for the optical signal (the wavelength with the least penalty). This required value varies depending on the bit rate and modulation method of the optical signal. Therefore, depending on the type of signal light, the transmission wavelength characteristics are not necessarily optimal, and it was impossible to compensate for wavelength dispersion efficiently.
  • FIG. 16 is a diagram showing the relationship between the transmission wavelength shift and the time when the temperature is adjusted. As shown in the figure, it takes about 5 minutes to stabilize the transmission wavelength control by adjusting the temperature.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a dispersion compensation device that can efficiently compensate for the chromatic dispersion of an optical signal. Means for solving the problem
  • the present invention provides an optical transmission using an optical component that changes a transmission wavelength characteristic of an optical signal by using refractive index changing means such as temperature and stress change.
  • a dispersion compensator that compensates for waveform deterioration of an optical signal caused by the dispersion characteristics of a path, and the relationship between the characteristics of the optical signal and a reference value at which an error rate for the optical signal is a predetermined value or less
  • the reference value information recording means for recording the reference value information indicating the reference value, the reference value is identified based on the characteristics of the optical signal to be compensated and the reference value information, and the optical component is identified using the identified reference value.
  • a refractive index adjusting means for adjusting the refractive index of the optical component by changing temperature or stress.
  • the characteristics of the optical signal include at least one of a wavelength, a bit rate, a modulation method, and a wavelength interval of the optical signal.
  • the refractive index adjusting unit adjusts the refractive index of the optical component while keeping a dispersion compensation value indicating a degree of compensation for the waveform deterioration of the optical signal constant. It is characterized by doing.
  • the present invention provides an optical signal generated due to the dispersion characteristics of an optical transmission line using an optical component that changes the transmission wavelength characteristics of an optical signal by using refractive index changing means such as temperature and stress change.
  • a dispersion compensation device that compensates for the waveform degradation of the optical component when the refractive index of the optical component is not adjusted in accordance with a change in the dispersion compensation value indicating the degree of compensation for the waveform degradation of the optical signal.
  • An error rate information recording unit that records error rate information indicating an error rate of an optical signal, and when the dispersion compensation value is changed, the refraction of the optical component is based on the dispersion compensation value and the error rate information.
  • Refractive index adjustment determining means for determining whether or not the power to adjust the rate is included.
  • the refractive index adjustment determination unit may perform an error corresponding to the dispersion compensation value after the change based on the dispersion compensation value after the change and the error rate information.
  • the refractive index is equal to or higher than a predetermined value, it is determined that the refractive index of the optical component is adjusted.
  • the invention's effect when the reference value information indicating the relationship between the characteristics of the optical signal and the reference value at which the error rate for the optical signal is equal to or less than a predetermined value is recorded, and the optical signal to be compensated is acquired.
  • the reference value is specified based on the characteristics of the optical signal and the reference value information, and the refractive index of the optical component is adjusted using the specified reference value, so that chromatic dispersion can be compensated efficiently.
  • the characteristics of the optical signal recorded in the reference value information include at least one of the wavelength, bit rate, modulation method, and wavelength interval of the optical signal. It is possible to perform appropriate chromatic dispersion compensation for the optical signal.
  • the error rate of the optical signal when the refractive index of the optical component is not adjusted in accordance with the change of the dispersion compensation value indicating the degree of compensation for the waveform deterioration of the optical signal is obtained.
  • the error rate information is recorded and the dispersion compensation value changes, it is determined whether or not the power to adjust the refractive index of the optical component is determined based on the dispersion compensation value and the error rate information. Rate adjustment can be omitted.
  • the refractive index of the optical component when the error rate corresponding to the dispersion compensation value after the change is a predetermined value or more. Therefore, it is possible to efficiently compensate for chromatic dispersion.
  • FIG. 1 is a diagram illustrating a configuration of a dispersion compensation apparatus according to the present embodiment.
  • FIG. 2 is a functional block diagram showing a configuration of a control circuit.
  • FIG. 3 is a diagram showing an example of a mirror position adjustment table.
  • FIG. 4 is a diagram showing an example of transmission characteristic data.
  • FIG. 5 is a diagram showing an example of a reference specification table.
  • FIG. 6 is a diagram for supplementing the explanation of the reference and the transmission center wavelength specified by the reference.
  • FIG. 7 is a diagram showing a relationship between a dispersion compensation value and a wavelength shift with respect to predetermined optical signal information.
  • FIG. 8 is a diagram showing an example of a VIPA set temperature specifying table.
  • FIG. 9 is a diagram showing an example of a deviation amount correction table.
  • FIG. 10 is a diagram showing an example of a penalty management table.
  • Fig. 11 is a diagram showing the relationship between the penalty when the temperature of the VIPA plate is adjusted according to the change of the dispersion compensation value and when the temperature is not adjusted.
  • FIG. 12 is a diagram showing the relationship between the residual dispersion value and the penalty.
  • FIG. 13 is a flowchart showing a processing procedure of the dispersion compensation apparatus according to the present embodiment
  • FIG. 14 is a flowchart showing the processing procedure of the dispersion compensator according to the present embodiment (
  • FIG. 15 is a diagram showing the configuration of the VIPA dispersion compensator.
  • FIG. 16 is a diagram showing a relationship between a transmission wavelength shift and time when temperature adjustment is performed.
  • the dispersion compensator includes information indicating the characteristics of an optical signal (information indicating the wavelength, bit rate, modulation method, wavelength interval, etc. of the optical signal; hereinafter referred to as optical signal information) and the optical signal.
  • optical signal information information indicating the wavelength, bit rate, modulation method, wavelength interval, etc. of the optical signal
  • the error rate hereinafter referred to as a penalty
  • the dispersion compensation value set to the value of the optical component for example, VIP A plate
  • the dispersion compensator adjusts the refractive index of the optical component based on the optical signal information and the reference value information, and thus can cope with various characteristics of the optical signal.
  • the chromatic dispersion of the optical signal can be efficiently compensated.
  • the dispersion compensation apparatus has a penalty caused by an optical signal (hereinafter, referred to as the following) when the refractive index of the optical component is not optimally adjusted along with the adjustment of the dispersion compensation value for the optical signal.
  • filtering error information indicating a filtering penalty
  • filtering penalty value it is determined whether or not to adjust the refractive index of the optical component based on this filtering error information (filtering penalty value). If is less than the predetermined value, it is determined that the refractive index of the optical component is not adjusted! /).
  • the dispersion compensation value determines whether or not the power to adjust the refractive index of the optical component is based on the filtering error information when the dispersion compensation value is adjusted. Unnecessary temperature adjustment can be omitted (the time until transmission wavelength control is stabilized by temperature adjustment can be omitted), and chromatic dispersion can be compensated efficiently.
  • FIG. 1 is a diagram showing a configuration of a dispersion compensating apparatus 100 that is useful in the present embodiment.
  • the dispersion compensation apparatus 100 includes a tunable dispersion compensator 110, an optical receiver circuit 120, an error correction circuit 130, and a control circuit 140.
  • the tunable dispersion compensator 110 is a known optical device capable of variably compensating the chromatic dispersion of an optical signal.
  • an optical device using a VIPA dispersion compensator (see Fig. 15) or FB G (Fiber Bragg Grating) can be used.
  • the force to use the VIPA dispersion compensator as the variable dispersion compensator 110 is not limited to this (an FBG or the like can be used instead).
  • the optical receiving circuit 120 receives the optical signal output from the tunable dispersion compensator 110, converts it into an electrical signal, performs known reception processing such as clock recovery and data identification, and shows the processing result. This is a device for outputting a received data signal to the error correction circuit 130.
  • the error correction circuit 130 is a device that corrects an error in the received data signal from the optical receiving circuit 120 and outputs the corrected received data signal to an external device. Further, the error correction circuit 130 measures the penalty of the received data signal power from the optical receiving circuit 120 and outputs the measured penalty data (hereinafter referred to as penalty data) to the control circuit 140. As a specific method of measuring the penalty, for example, the penalty can be measured by using a method of judging a code error by performing a parity check of the received data signal.
  • the control circuit 140 adjusts the temperature of the VIPA plate 12 of the tunable dispersion compensator 110 to compensate for chromatic dispersion (by adjusting the temperature of the VIPA plate 12, the refractive index of the VIPA plate 12 is adjusted). And the position of the free-form surface mirror 14 are adjusted.
  • FIG. 2 is a functional block diagram showing the configuration of the control circuit 140. As shown in the figure, the control circuit 140 includes a storage unit 150, a control unit 160, and an input receiving unit 170.
  • the storage unit 150 is a storage unit that stores data and programs necessary for various types of processing by the control unit 160.
  • the mirror position is closely related to the present invention.
  • An adjustment table 151, a transmission characteristic data 152, a reference specification table 153, a VIPA set temperature specification table 154, a deviation correction table 155, and a penalty management table 156 are provided.
  • the mirror position adjustment table 151 is a table showing the relationship between the position of the free-form curved mirror 14 (see FIG. 15) and the dispersion compensation value.
  • Figure 3 shows an example of the mirror position adjustment table 151. It is a figure. As shown in the figure, the mirror position adjustment table 151 records the position of the free-form curved mirror corresponding to the dispersion compensation value.
  • the transmission characteristic data 152 is data indicating the relationship between the temperature of the predetermined VIPA plate 12 (see FIG. 15), the wavelength (Wavelength) of the optical signal at a predetermined outside air temperature, and the transmittance (Transmittance).
  • FIG. 4 is a diagram illustrating an example of the transmission characteristic data 152. As shown in the figure, the transmission characteristics of the optical signal differ depending on the dispersion compensation value!
  • the reference specification table 153 is a table in which optical signal information is associated with an optimal reference (reference for specifying a transmission center wavelength) for this optical signal information.
  • FIG. 5 is a diagram showing an example of the reference specifying table 153. As shown in FIG. As shown in the figure, in this reference specification table 153, appropriate standards corresponding to the bit rate and the modulation method are stored in association with each other. In the following, the reference (xdB down) and the transmission center wavelength specified by the reference are described.
  • FIG. 6 is a diagram for supplementing the description of the reference and the transmission center wavelength specified by the reference.
  • 3dB down is explained here.
  • the standard of 3 dB down means that the position is 3 dB lower than the peak value of transmission characteristics data (the value that maximizes the transmittance).
  • the reference “3 dB downj” is “one 16 dB” (note that each reference is different for each dispersion correction value).
  • the transmission center wavelength can be calculated from this wavelength. More specifically, the wavelength at which the waveform based on the transmission characteristic data intersects with the transmittance “ ⁇ 16 dB” is “1580.96 nm” and “1581.4 nm”, so the center of each wavelength, ie “1581.18 nm” Is the transmission center wavelength.
  • the transmission characteristics of the optical signal are asymmetric with respect to the loss axis (axis related to the transmittance)
  • the transmission center wavelength differs for each dispersion compensation value.
  • Figure 7 shows the relationship between predetermined optical signal information. It is a figure which shows the relationship between the dispersion compensation value to perform and wavelength shift. In the example shown in the figure, the penalty becomes small at the transmission center wavelength of 6 to 12 dB down. That is, it is only necessary to specify the transmission center wavelength using the 6 to 12 dB down criterion and adjust the tunable dispersion compensator 110.
  • the transmission center wavelength and the optimum center wavelength for each optical signal information differ for each optical signal information, the transmission center wavelength and the optimum center wavelength for each optical signal information (transmission center wavelength such that the penalty is a predetermined value or less)
  • the optimal reference for each optical signal information by obtaining the difference (difference for each dispersion correction value) in advance by experiment or simulation. Standard can be 6-12dB down) (see Figure 5).
  • the VIPA set temperature specifying table 154 matches the deviation amount between the transmission center wavelength and the signal light wavelength (value defined by ITU-T Grid) for each reference. It is the table which specifies the temperature of VIPA board 12 for.
  • FIG. 8 is a diagram showing an example of the VIPA set temperature specifying table.
  • the dispersion compensation value is “1 1200”
  • the VIPA plate temperature is “80 ° C.”
  • the outside air temperature is “25 ° C.”
  • the deviation amount is “ ⁇ 1”
  • the temperature is set to “80 ° C + ⁇ ⁇ 1 X ⁇ ( ⁇ is a constant indicating the amount of transmission characteristic wavelength shift per degree of VIPA plate temperature change)”.
  • ⁇ 1 to 7 shown in FIG. 8 are values derived from the outside air temperature and the dispersion compensation value.
  • the shift amount correction table 155 is a table provided with information for correcting the shift amount of the VIPA set temperature specifying table 154 (the shift amount between the optimum transmission center wavelength and the transmission center wavelength with respect to each reference).
  • FIG. 9 is a diagram showing an example of the deviation amount correction table 155. As shown in FIG. As shown in the figure, this deviation amount correction table 155 stores deviation amounts with respect to the outside air temperature and the dispersion compensation value. In other words, the amount of deviation in the VIPA set temperature identification table 154 (see Fig. 8) is different from that in the deviation amount correction table every time the outside air temperature and dispersion compensation value change. Exchanged for quantity.
  • the penalty management table 156 shows the amount of shift ⁇ in the transmission center wavelength and the size of the filtering penalty (adjust the temperature of the VIPA plate 12! / ,!), and the size of the filtering penalty. ).
  • FIG. 10 shows an example of the penalty management table 156. As shown in FIG. This penalty management table 156 is obtained in advance by experiments, simulations, etc. on optical signals.
  • FIG. 11 is a diagram showing the relationship between the penalty when the temperature of the VIPA plate 12 is adjusted in accordance with the change of the dispersion compensation value and when the force is applied without adjustment.
  • the dispersion compensation value changes within a predetermined range
  • the penalty when the temperature adjustment is performed and the magnitude of the penalty when the temperature adjustment is not performed are almost the same.
  • the penalty when adjusting the temperature of the VIPA plate 12 and the temperature of the VIPA plate 12 If the difference between the penalty and the penalty is not more than the specified value, the temperature of the VIPA plate 12 should be adjusted. Can be compensated for.
  • the VIPA plate 1 It is not necessary to adjust the temperature of 2.
  • control unit 160 has an internal memory for storing programs and control data that define various processing procedures, and is a control means for executing various types of processing using these.
  • the reference specifying unit 161, the dispersion compensation value setting unit 162, and the VIPA plate temperature adjusting unit 163 are closely related to the present invention.
  • the various types of data that are input to the control circuit 140 are input to the control unit 160 via the input receiving unit 170.
  • the reference specifying unit 161 is a processing unit that acquires optical signal information and specifies a reference (X dB down) based on the acquired optical signal information and the reference specifying table 153.
  • the optical signal information is input to the dispersion compensator 100 by the administrator of the dispersion compensator 100.
  • the dispersion compensation value setting unit 162 acquires penalty data from the error correction circuit 130, and sets the dispersion compensation value of the tunable dispersion compensator 110 so that the penalty value is equal to or smaller than a predetermined value.
  • Fig. 12 shows the relationship between the residual dispersion value and the penalty.
  • the difference between the dispersion value of the optical signal and the dispersion compensation value applied to the tunable dispersion compensator 110 deviates from the optimum value (for example, the residual dispersion value OnpZnm), Penalty increases.
  • the dispersion compensation value setting unit 162 adjusts the free-form surface mirror 14 of the tunable dispersion compensator 110 so that the residual dispersion value takes an optimum value.
  • the dispersion compensation value setting unit 162 selects the free-form surface mirror 14 so that the penalty takes a minimum value. By adjusting, the residual dispersion value can be set to the optimum value.
  • the VIPA plate temperature adjustment unit 163 adjusts the temperature of the VIPA plate 12 so as to correspond to the changed dispersion correction value.
  • the refractive index of the VIPA plate 12 can be adjusted by adjusting the temperature of the VIPA plate 12).
  • the VIPA plate temperature adjusting unit 163 transmits the transmission based on the reference (X dB down) specified by the reference specifying unit 161 and the dispersion compensation value and transmission characteristic data set by the dispersion compensation value setting unit 162.
  • the center wavelength is specified, and the amount of deviation between the transmission center wavelength and the center wavelength of the signal light defined by ITU-T Grid is calculated.
  • the VIPA plate temperature adjustment unit 163 compares the calculated deviation amount, the outside air temperature and the dispersion compensation value with the VIPA set temperature specifying table 154, identifies the set temperature of the VIPA plate 12, and determines the VIPA Adjust the temperature of plate 12.
  • the VIPA plate temperature adjustment unit 163 includes a transmission center wavelength specified by the dispersion compensation value and the reference (xdB down) changed by the dispersion compensation value setting unit 162 and a signal defined by the ITU-TG rid. The amount of deviation from the center wavelength of the light is compared with the penalty management table 156 to determine whether or not to adjust the temperature of the VIPA plate 12.
  • the VIPA plate temperature adjusting unit 163 can efficiently perform wavelength dispersion of the optical signal by omitting unnecessary temperature adjustment of the VIPA plate 12.
  • FIG. 13 and FIG. 14 are flowcharts showing the processing procedure of the dispersion compensator 100 according to the present embodiment.
  • the dispersion compensator 100 includes various data (mirror position adjustment table 151, transmission characteristic data 152, reference specification table 153, VIPA set temperature specification table 154, deviation amount correction table 155, and penalty management table). 156) is acquired and stored in the storage unit 150 (step S101).
  • the VIPA plate temperature adjustment unit 163 acquires the allowable value of the filtering penalty (step S102), the reference specifying unit 161 acquires the optical signal information (step S103), and the reference specifying unit 161 is the optical signal information.
  • the reference (X dB down) is specified based on (Step S104), and the dispersion compensator 100 determines whether or not to perform the optimum residual dispersion value search (Step S1 05).
  • step S106 When the optimum residual dispersion value search is not executed (step S106, No), the dispersion compensation value setting unit 162 acquires a predetermined dispersion compensation value D-ope (step S107), and variable dispersion compensation The device 110 is controlled to set the dispersion compensation value to D_ope (step S108).
  • the VIPA plate temperature adjustment unit 163 sets the temperature of the VIPA plate 12 so that the transmission center wavelength matches the ITU-TG rid with the dispersion compensation value D-ope (step S109), and proceeds to step 113. (Explanation regarding step S113 will be described later).
  • the VIPA temperature adjustment unit 163 has a certain dispersion correction value (for example, OpsZnm) and the transmission center wavelength is ITU — T
  • the temperature of the VIPA plate 12 is set so as to meet the wavelength specified in the grid (step S1 10).
  • the dispersion compensation value setting unit 162 detects the dispersion compensation value D-opt that minimizes the penalty while keeping the temperature of the VIPA plate 12 constant (step S111), and the VIPA plate temperature adjustment unit 163 is a dispersion compensation value D-opt, and sets the temperature of the VIPA plate 12 so that the transmission center wavelength matches the wavelength specified in the ITU-T Grid (step S112), and starts system operation. (Step SI 13).
  • the dispersion compensation apparatus 100 determines whether or not to perform an optimum dispersion value search during system operation (step S114). If not (step S115, No), the dispersion compensation value is determined. And the VIPA plate temperature are kept constant, the system operation is continued (step S116), and the process is terminated.
  • the dispersion compensation value setting unit 162 detects the optimum dispersion compensation value (step S117), and the VIPA plate temperature is detected.
  • the adjustment unit 163 determines whether or not the filtering penalty due to the dispersion compensation value change is smaller than the allowable value (step S118).
  • step S119, Yes the VIPA plate temperature adjustment unit 163 keeps the temperature of the VIAP version 12 constant (step S 120 ), And the process proceeds to step S117.
  • the VIPA plate temperature adjustment unit 163 sets the transmission center wavelength of the changed dispersion compensation value to ITU-T Grid. The temperature of the VIPA plate 12 is adjusted to match the specified wavelength (step S121), and the process proceeds to step S117.
  • the reference specifying unit 161 specifies the reference based on the optical signal information, and the dispersion compensation value setting unit 162 executes the residual dispersion value search, so that the adjustment of the variable dispersion compensator 110 can be performed efficiently. It can be performed.
  • the reference specifying unit 161 uses the optical signal information and the reference specifying table 153 as a basis for which the penalty becomes a predetermined value or less (X dB down ) And the VIPA plate temperature adjustment unit 163 adjusts the temperature of the VIPA plate 12 so that the transmission center wavelength guided by the specified reference force becomes the value specified in the IT UT Grid. Efficiently compensates chromatic dispersion according to the characteristics of the signal.
  • the VIPA plate temperature adjustment unit 163 is based on the penalty management table 156. To determine whether the filtering penalty is less than or equal to the predetermined value. If the filtering penalty is less than the predetermined value, the temperature of the VIPA plate 12 is not adjusted! Unnecessary temperature adjustment can be omitted (the time until the transmission wavelength control by temperature adjustment stabilizes). Chromatic dispersion can be compensated efficiently.
  • the VIPA plate temperature adjusting unit 163 adjusts the temperature of the VIPA plate 12 to change the refractive index of the VIPA plate 12.
  • the VIPA plate 12 is not limited to this.
  • the refractive index may be changed by applying a stress to.
  • the dispersion compensator according to the present invention is useful for an optical communication system or the like that needs to efficiently compensate for the waveform deterioration of a signal caused by the dispersion characteristics of the optical transmission line. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

 分散補償装置は、基準特定部(161)が光信号情報および基準特定テーブル(153)を基にしてペナルティが所定値以下となる基準(×dB down)を特定し、この特定された基準から導かれる透過中心波長がITU-T Gridに規定される波長となるようにVIPA板温度調整部(163)がVIPA板の温度を変更してその屈折率を調整する。また、分散補償値設定部(162)が最適残留分散値検索を行った場合に、VIPA板温度調整部(163)がペナルティ管理テーブル(156)を基にしてフィルタリングペナルティが所定値以下となるか否かを判定し、フィルタリングペナルティが所定値以下となる場合には、VIPA板の温度調整を行わない。

Description

明 細 書
分散補償装置および分散補償方法
技術分野
[0001] 本発明は、温度や応力変更などの屈折率変化手段を用いて光信号の透過波長特 性を変化させる光部品を用いて光伝送路の分散特性に起因して発生する光信号の 波形劣化を補償する分散補償装置に関するものである。
背景技術
[0002] 近年のインターネットの普及によって、光通信システムには、大容量化および高速 化が求められている。そして、この大容量化および高速化の要求から、現在の光通 信システムにおける通信速度は、 lOGbZsを既に達成し、次世代の光通信システム の通信速度である 40GbZsの実現に向けて開発が進められている。
[0003] しかし、通信速度が 40GbZsになると、光ファイバ中を伝搬する際の光の波長分散 を無視することができず、この波長分散によって信号光波形歪などが発生し、誤り率 ( ペナルティ)の増加を招来することになる。そこで、従来では、波長分散を補償すべく VIPA (Virtually Imaged Phased Array)分散補償器等の分散補償器が用いられて いた。
[0004] 図 15は、 VIPA分散補償器の構成を示す図である。図 15において、分散補償すベ き光信号は、光サーキユレータ 10を介して集光レンズ系 11に入力され、 VIPA板 12 に入力される。光信号は、 VIPA板 12で多重反射をするが、波長毎の反射方向が異 なるように VIPA板 12から出射される。出射された光信号は、焦点レンズ 13を介して 自由曲面ミラー 14到達し、この自由曲面ミラー 14によって反射され、再度 VIPA板 1 2に入射するが、 VIPA板 12では、反射された光信号の入射位置によって多重反射 回数が異なり、これによつて波長毎の光路差が異なるようにして集光レンズ系 11に戻 すようにしている。
[0005] この結果、自由曲面ミラー 14の反射特性を変化させる(自由曲面ミラー 14上で、光 信号の反射位置を変更する)ことによって所望の分散補償値を得ることができるように している。例えば、入射する光信号を自由曲面ミラー 14の凹部分で反射させると、分 散補償値は正となり、入射する光信号を自由曲面ミラー 14の凸部分で反射させると、 分散補償値は負となる。
[0006] また、 VIPA分散補償器は、主に、光信号の透過特性が損失軸に対して非対称で あるという理由により、分散補償値ごとに透過中心波長が少しずつ異なるため、分散 補償値ごとに透過波長を調整する必要があった。そこで、分散補償値を変更するた びに VIPA板 12の温度を調整し、 VIPA板 12の屈折率を変化させることによって透 過波長を調整する方法が適用されている (特許文献 1参照)。なお、 VIPA分散補償 器以外の分散補償器としては、 FBG (Fiber Bragg Grating)が利用されている(特 許文献 2参照)。
[0007] 特許文献 1 :特開 2005— 77969号公報
特許文献 2:特開 2001 - 99709号公報
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、上述した従来の技術では、光信号の波長分散を効率よく補償するこ とができな!/ヽと!ヽぅ問題があった。
[0009] 具体的には、 VIPA分散補償器のように、透過特性が損失軸に対して非対称な場 合、透過波長を光信号に対して最適な値 (ペナルティの最も少なくなる波長)に設定 する必要がある力 この最適値は光信号のビットレートや変調方式によって異なるた め、信号光種類によっては透過波長特性が必ずしも最適ではなぐ効率よく波長分 散を補償することができな力つた。
[0010] また、特許文献 1のように分散補償値を変更するたびに VIPA板 12の温度を調整 する方法では、温度調整による透過波長制御が安定するまでに分単位の時間がか かり、透過波長が安定するまでは、波長分散を補償することができな力つた。図 16は 、温度調整を行った場合の透過波長のずれと時間との関係を示す図である。同図に 示すように、温度調整による透過波長制御が安定するまでに 5分程度の時間が必要 となることがわかる。
[0011] 本発明は、上記に鑑みてなされたものであって、光信号の波長分散を効率よく補償 することができる分散補償装置を提供することを目的とする。 課題を解決するための手段
[0012] 上述した課題を解決し、目的を達成するために、本発明は、温度や応力変更など の屈折率変化手段を用いて光信号の透過波長特性を変化させる光部品を用いて光 伝送路の分散特性に起因して発生する光信号の波形劣化を補償する分散補償装 置であって、前記光信号の特徴と当該光信号に対する誤り率が所定値以下となる基 準値との関係を示す基準値情報を記録する基準値情報記録手段と、補償対象となる 光信号の特徴と前記基準値情報とを基にして基準値を特定し、特定した基準値を用 いて前記光部品の温度または応力を変更して、光部品の屈折率を調整する屈折率 調整手段と、を備えたことを特徴とする。
[0013] また、本発明は、上記発明において、前記光信号の特徴は、光信号の波長、ビット レート、変調方式および波長間隔のうち少なくとも一つを含んでいることを特徴とする
[0014] また、本発明は、上記発明において、前記屈折率調整手段は、前記光信号の波形 劣化に対する補償の度合いを示す分散補償値を一定に保ったまま前記光部品の屈 折率を調整することを特徴とする。
[0015] また、本発明は、温度や応力変更などの屈折率変化手段を用いて光信号の透過 波長特性を変化させる光部品を用いて光伝送路の分散特性に起因して発生する光 信号の波形劣化を補償する分散補償装置であって、前記光信号の波形劣化に対す る補償の度合いを示す分散補償値の変化に伴って前記光部品の屈折率を調整しな かった場合の前記光信号の誤り率を示す誤り率情報を記録する誤り率情報記録手 段と、前記分散補償値が変化した場合に、当該分散補償値と前記誤り率情報とを基 にして前記光部品の屈折率を調整する力否かを判定する屈折率調整判定手段と、 を備えたことを特徴とする。
[0016] また、本発明は、上記発明において、前記屈折率調整判定手段は、変化後の前記 分散補償値と前記誤り率情報とを基にして、変化後の前記分散補償値に対応する誤 り率が所定値以上の場合に前記光部品の屈折率を調整すると判定することを特徴と する。
発明の効果 [0017] 本発明によれば、光信号の特徴とこの光信号に対する誤り率が所定値以下となる 基準値との関係を示す基準値情報を記録し、補償対象となる光信号を取得した場合 に、この光信号の特徴と基準値情報とを基にして基準値を特定し、特定した基準値 を用いて光部品の屈折率を調整するので、効率よく波長分散を補償することができる
[0018] また、本発明によれば、基準値情報に記録される光信号の特徴は光信号の波長、 ビットレート、変調方式および波長間隔のうち少なくとも一つを含んでいるので、様々 な特徴の光信号に対して適切な波長分散補償を行うことができる。
[0019] また、本発明によれば、光信号の波形劣化に対する補償の度合!、を示す分散補償 値の変化に伴って光部品の屈折率を調整しなかった場合の光信号の誤り率を示す 誤り率情報を記録し、分散補償値が変化した場合に、この分散補償値と誤り率情報と を基にして光部品の屈折率を調整する力否かを判定するので、不必要な屈折率調 整を省略することができる。
[0020] また、本発明によれば、変化後の分散補償値と誤り率情報とを基にして、変化後の 分散補償値に対応する誤り率が所定値以上の場合に光部品の屈折率を調整すると 判定するので、効率よく波長分散を補償することができる。
図面の簡単な説明
[0021] [図 1]図 1は、本実施例にかかる分散補償装置の構成を示す図である。
[図 2]図 2は、制御回路の構成を示す機能ブロック図である。
[図 3]図 3は、ミラー位置調整テーブルの一例を示す図である。
[図 4]図 4は、透過特性データの一例を示す図である。
[図 5]図 5は、基準特定テーブルの一例を示す図である。
[図 6]図 6は、基準およびその基準によって特定される透過中心波長の説明を補足す るための図である。
[図 7]図 7は、所定の光信号情報に対する分散補償値と波長ずれとの関係を示す図 である。
[図 8]図 8は、 VIPA設定温度特定テーブルの一例を示す図である。
[図 9]図 9は、ずれ量補正テーブルの一例を示す図である。 [図 10]図 10は、ペナルティ管理テーブルの一例を示す図である。
圆 11]図 11は、分散補償値の変化に伴って VIPA板の温度を調整した場合と、調整 しなかった場合のペナルティの関係を示す図である。
[図 12]図 12は、残留分散値とペナルティとの関係を示す図である。
[図 13]図 13は、本実施例にカゝかる分散補償装置の処理手順を示すフローチャート(
1)である。
[図 14]図 14は、本実施例にカゝかる分散補償装置の処理手順を示すフローチャート(
2)である。
圆 15]図 15は、 VIPA分散補償器の構成を示す図である。
[図 16]図 16は、温度調整を行った場合の透過波長のずれと時間との関係を示す図 である。
符号の説明
10 光サーキユレータ
11 集光レンズ系
12 VIPA板
13 焦点レンズ
14 自由曲面ミラー
100
110 可変分散補償器
120 光受信回路
130 誤り訂正回路
140 制御回路
150
151 ミラー位置調整テーブル
152 透過特性データ
153 基準特定テーブル
154 VIPA設定温度特定テーブル
155 ずれ量 正テープノレ 156 ペナルティ管理テーブル
160 制御部
170 入力受付部
発明を実施するための最良の形態
[0023] 以下に、本発明にかかる分散補償装置の実施例を図面に基づいて詳細に説明す る。なお、この実施例によりこの発明が限定されるものではない。
実施例
[0024] まず、本実施例にかかる分散補償装置の概要および特徴について説明する。本実 施例にかかる分散補償装置は、光信号の特徴を示す情報 (光信号の波長、ビットレ ート、変調方式、波長間隔などを示す情報;以下、光信号情報と表記する)と光信号 に設定された分散補償値によって発生する誤り率 (以下、ペナルティと表記する)が 所定値以下となる基準値との関係を示す基準値情報を基にして光部品 (例えば VIP A板など)の屈折率を調整する。
[0025] このように、本実施例に力かる分散補償装置は、光信号情報および基準値情報を 基にして光部品の屈折率を調整するので、様々な光信号の特徴に対応することがで き、効率よく光信号の波長分散を補償することができる。
[0026] また、本実施例にかかる分散補償装置は、光信号に対する分散補償値の調整に伴 つて光部品の屈折率を最適に調整しな力つた場合の光信号に起因するペナルティ( 以下、フィルタリングペナルティ)を示すフィルタリング誤り情報を保持し、分散補償値 を調整した場合に、このフィルタリング誤り情報を基にして光部品の屈折率を調整す るカゝ否かを判定する(フィルタリングペナルティの値が所定値以下の場合には、光部 品の屈折率調整を行わな!/、と判定する)。
[0027] このように、本実施例にかかる分散補償値は、分散補償値を調整した場合に、フィ ルタリング誤り情報を基にして、光部品の屈折率を調整する力否かを判定するので、 不必要な温度調整などを省略することができ (温度調整による透過波長制御が安定 するまでの時間を省略することができ)、効率よく波長分散を補償することができる。
[0028] つぎに、本実施例に力かる分散補償装置の構成について説明する。図 1は、本実 施例に力かる分散補償装置 100の構成を示す図である。同図に示すように、この分 散補償装置 100は、可変分散補償器 110と、光受信回路 120と、誤り訂正回路 130 と、制御回路 140とを備えて構成される。
[0029] このうち、可変分散補償器 110は、光信号の波長分散を可変に補償することが可 能な公知の光ディバイスである。具体的には、 VIPA分散補償器(図 15参照)や FB G (Fiber Bragg Grating)を利用した光ディバイスを用いることができる。なお、本実 施例では一例として、 VIPA分散補償器を可変分散補償器 110として用いることとす る力 これに限定されるものではな ヽ (FBG等で代用可能である)。
[0030] 光受信回路 120は、可変分散補償器 110から出力される光信号を受光して電気信 号に変換し、クロック再生およびデータ識別等の公知の受信処理を行い、その処理 結果を示す受信データ信号を誤り訂正回路 130に出力する装置である。
[0031] 誤り訂正回路 130は、光受信回路 120からの受信データ信号の誤りを訂正し、訂 正した受信データ信号を外部の装置に出力する装置である。また、誤り訂正回路 13 0は、光受信回路 120からの受信データ信号力もペナルティなどを測定し、測定した ペナルティのデータ(以下、ペナルティデータ)を制御回路 140に出力する。ペナル ティを測定する具体的な方法としては、例えば、受信データ信号のパリティチェックを 行って符号誤りを判断する方法などを利用してペナルティを測定することができる。
[0032] 制御回路 140は、波長分散を補償するために可変分散補償器 110の VIPA板 12 の温度調整 (VIPA板 12の温度を調整することによって、 VIPA板 12の屈折率を調 整することができる)および自由曲面ミラー 14の位置調整を行う装置である。図 2は、 制御回路 140の構成を示す機能ブロック図である。同図に示すように、この制御回路 140は、記憶部 150と、制御部 160と、入力受付部 170とを備えて構成される。
[0033] 記憶部 150は、制御部 160による各種処理に必要なデータおよびプログラムを記 憶する記憶手段であり、特に本発明に密接に関連するものとしては、図 2に示すよう に、ミラー位置調整テーブル 151と、透過特性データ 152と、基準特定テーブル 153 と、 VIPA設定温度特定テーブル 154と、ずれ量補正テーブル 155と、ペナルティ管 理テーブル 156とを備える。
[0034] ミラー位置調整テーブル 151は、自由曲面ミラー 14 (図 15参照)の位置と分散補償 値との関係を示すテーブルである。図 3は、ミラー位置調整テーブル 151の一例を示 す図である。同図に示すように、このミラー位置調整テーブル 151には、分散補償値 に対応する自由曲面ミラーの位置が記録されている。
[0035] 透過特性データ 152は、所定の VIPA板 12 (図 15参照)の温度、所定の外気温度 における光信号の波長(Wavelength)と透過率(Transmittance)との関係を示すデー タである。図 4は、透過特性データ 152の一例を示す図である。同図に示すように、 光信号の透過特性は、分散補償値ごとにそれぞれ異なって!/ヽる。
[0036] 基準特定テーブル 153は、光信号情報と、この光信号情報に最適な基準 (透過中 心波長を特定するための基準)とを関連付けたテーブルである。図 5は、基準特定テ 一ブル 153の一例を示す図である。同図に示すように、この基準特定テーブル 153 では、ビットレートおよび変調方式に対応する適切な基準が対応付けられて記憶され ている。以下において、基準 (xdB down)およびその基準によって特定される透過 中心波長の説明を行う。
[0037] 図 6は、基準およびその基準によって特定される透過中心波長の説明を補足する ための図である。なお、ここでは、説明の便宜上、 3dB downについて説明する。基 準が 3dB downとは、透過特性データのピーク値 (透過率が最大となる値)から 3dB 低い位置を基準とすることを意味する。例えば、透過特性データのピーク値が— 13d Bの時には、基準「3dB downjは「一 16dB」となる(なお、各基準は、分散補正値ご とに異なる)。
[0038] 続いて、基準力 透過中心波長を特定する方法を図 6を用いて説明する。基準を 3 dBdownとして説明すると、まず透過特性データによる波形が「一 16dB」の透過率と 交わる波長を特定し、この波長から透過中心波長が算出できる。具体的に説明する と、透過特性データによる波形が透過率「— 16dB」と交わる波長は、「1580. 96nm 」と「1581. 4nm」となるため、各波長の中心、すなわち「1581. 18nm」が透過中心 波長となる。光信号の透過特性が損失軸 (透過率にかかる軸)に対して非対称である 場合には、分散補償値ごとに透過中心波長が異なる。
[0039] 続いて、分散補償値および各基準 (ピーク値〜 12dB down)の透過中心波長と最 適波長 (信号光ペナルティが最小となる波長)との波長ずれ (波長ずれが大きいほど ペナルティが大きくなる)の関係について説明する。図 7は、所定の光信号情報に対 する分散補償値と波長ずれとの関係を示す図である。同図に示す例では、 6〜12dB downの透過中心波長において、ペナルティが小さくなることがわかる。すなわち、 6〜12dB downの基準を用いて透過中心波長を特定し、可変分散補償器 110を 調整すればよいことになる。
[0040] 図 7に示した特性は、光信号情報ごとに異なるため、光信号情報ごとに各基準の透 過中心波長と最適な中心波長 (ペナルティが所定値以下となるような透過中心波長) との差 (分散補正値ごとの差)を実験あるいはシミュレーションによって予め求めてお くことで、各光信号情報に対する最適な基準 (ペナルティが所定値以下となるような 基準。図 7に示す場合の基準は、 6〜12dB downとなる)を作成することができる( 図 5参照)。
[0041] 図 2の説明に戻ると、 VIPA設定温度特定テーブル 154は、各基準に対する透過 中心波長と信号光波長 (ITU— T Gridによって定義されて 、る値)とのずれ量を一 致するための VIPA板 12の温度を特定するテーブルである。図 8は、 VIPA設定温 度特定テーブルの一例を示す図である。
[0042] 図 8より、例えば、分散補償値「一 1200」、 VIPA板温度「80°C」、外気温度「25°C」 、ずれ量「 Δ λ 1」である場合には、 VIPA板の温度を「80°C+ Δ λ 1 X Α(Αは VIPA 板温度変化 1度あたりの透過特性波長シフト量を示す定数)」に設定することとなる。 なお、図 8に示す Δ λ 1〜7は、外気温度と分散補償値とによって導かれる値である。 なお、ここでは、説明の便宜上、基準が 6dB downとなる透過中心波長のずれ量に 力かる VIPA板 12の設定温度のみを示している力 その他の基準(X dB down)に 力かる透過中心波長のずれ量と VIPA板 12の設定温度との関係を示す情報も備え る。
[0043] ずれ量補正テーブル 155は、 VIPA設定温度特定テーブル 154のずれ量 (最適な 透過中心波長と各基準に対する透過中心波長とのずれ量)を補正する情報を備えた テーブルである。図 9は、ずれ量補正テーブル 155の一例を示す図である。同図に 示すように、このずれ量補正テーブル 155は、外気温度および分散補償値に対する ずれ量を記憶している。すなわち、 VIPA設定温度特定テーブル 154のずれ量(図 8 参照)は、外気温度および分散補償値が変わるごとに、ずれ量補正テーブルのずれ 量と交換される。例えば、外気温度「25°C」、分散補償値「- 1200nm」であった環境 力 外気温度「10°C」、分散補償値「一 1200nm」に変化した場合は、図 8に示すず れ量 Δ λ 1は、図 9に示すずれ量 Δ λ 1— 1と交換される。
[0044] ペナルティ管理テーブル 156は、透過中心波長のずれ量 Δ λと、フィルタリングぺ ナルティの大きさ(VIPA板 12の温度調整を行って!/、な!/、場合のフィルタリングペナ ルティの大きさ)との関係を示すテーブルである。図 10は、ペナルティ管理テーブル 156の一例を示す図である。このペナルティ管理テーブル 156は、光信号に対する 実験およびシミュレーションなどによって予め求められているものとする。
[0045] 図 11は、分散補償値の変化に伴って VIPA板 12の温度を調整した場合と、調整し な力つた場合のペナルティの関係を示す図である。同図に示すように、分散補償値 が所定の範囲内で変化する場合には、温度調整を行った場合のペナルティと温度 調整を行わなかった場合のペナルティの大きさはほとんど変わらない。 VIPA板 12の 温度を変化させた場合に、透過波長制御が安定するまで分単位の時間が必要となる ことを鑑みれば、 VIPA板 12の温度を調整した場合のペナルティと VIPA板 12の温 度を調整しなカゝつた場合のペナルティとの差が所定値以上の場合に VIPA版の温度 を調整すればよぐそれ以外は、 VIPA板 12の温度を変化させないことによって、効 率よく光信号の波長分散を補償することができる。
[0046] また、分散補償値の変化に伴って VIPA板 12の温度を調整しなカゝつた場合のフィ ルタリングペナルティの大きさが許容値を下回っている場合にも、同様に、 VIPA板 1 2の温度調整を行う必要はな 、。
[0047] 図 2の説明に戻ると、制御部 160は、各種の処理手順を規定したプログラムや制御 データを格納するための内部メモリを有し、これらによって種種の処理を実行する制 御手段であり、特に本発明に密接に関連するものとしては、基準特定部 161と、分散 補償値設定部 162と、 VIPA板温度調整部 163とを備える。なお、制御回路 140〖こ 入力される種種のデータは、入力受付部 170を介して制御部 160に入力される。
[0048] 基準特定部 161は、光信号情報を取得し、取得した光信号情報と基準特定テープ ル 153とを基にして、基準( X dB down)を特定する処理部である。光信号情報は、 分散補償装置 100の管理者によって分散補償装置 100に入力される。 [0049] 分散補償値設定部 162は、誤り訂正回路 130からペナルティデータを取得し、ペナ ルティの値が所定値以下ある 、は最小値となるように可変分散補償器 110の分散補 正値を調整する処理部である。図 12は、残留分散値とペナルティとの関係を示す図 である。同図に示すように、光信号の分散値と可変分散補償器 110にかかる分散補 償値との差 (すなわち、残留分散値)が最適値 (例えば、残留分散値 OnpZnm)から ずれることによって、ペナルティが大きくなる。分散補償値設定部 162は、残留分散 値が最適値をとるように、可変分散補償器 110の自由曲面ミラー 14を調整する。
[0050] 誤り訂正回路 130から出力されるペナルティデータを基にして残留分散値を算出 することはできないが、分散補償値設定部 162は、ペナルティが最小値を取るよう〖こ 自由曲面ミラー 14を調整することによって残留分散値を最適値に設定することができ る。
[0051] VIPA板温度調整部 163は、分散補償値設定部 162によって分散補償値が変更さ れた場合に、変更した分散補正値に対応するように VIPA板 12の温度を調整する処 理部である (VIPA板 12の温度を調整することによって VIPA板 12の屈折率を調整 することができる)。具体的に、 VIPA板温度調整部 163は、基準特定部 161によって 特定された基準( X dB down)と、分散補償値設定部 162によって設定された分散 補償値および透過特性データを基にして透過中心波長を特定し、透過中心波長と I TU-T Gridによって定義された信号光の中心波長とのずれ量を算出する。
[0052] そして、 VIPA板温度調整部 163は、算出したずれ量、外気温度および分散補償 値と、 VIPA設定温度特定テーブル 154とを比較して、 VIPA板 12の設定温度を特 定し、 VIPA板 12の温度を調整する。
[0053] また、 VIPA板温度調整部 163は、分散補償値設定部 162によって変更された分 散補償値および基準 (xdB down)によって特定される透過中心波長と ITU— T G ridによって定義された信号光の中心波長とのずれ量を、ペナルティ管理テーブル 1 56と比較し、 VIPA板 12の温度調整を行うか否かを判定する。
[0054] そして、 VIPA板 12の温度を調整しない場合であってもペナルティが所定値以下と なる場合、あるいは、 VIPA板 12の温度を調整した場合のペナルティと VIPA板 12の 温度を調整しなカゝつた場合のペナルティとの差が所定値を下回った場合には、 VIP A板 12の温度調節を行わない。このように、 VIP A板温度調整部 163が、 VIPA板 1 2の不要な温度調節を省略することによって、効率よく光信号の波長分散を実行する ことができる。
[0055] つぎに、本実施例に力かる分散補償装置 100の処理について説明する。図 13およ び図 14は、本実施例に力かる分散補償装置 100の処理手順を示すフローチャート である。同図に示すように、分散補償装置 100は、各種データ (ミラー位置調整テー ブル 151、透過特性データ 152、基準特定テーブル 153、 VIPA設定温度特定テー ブル 154、ずれ量補正テーブル 155およびペナルティ管理テーブル 156)を取得し て記憶部 150に記憶する(ステップ S 101)。
[0056] そして、 VIPA板温度調整部 163がフィルタリングペナルティの許容値を取得し (ス テツプ S102)、基準特定部 161が光信号情報を取得し (ステップ S103)、基準特定 部 161が光信号情報を基にして基準(X dB down)を特定し (ステップ S 104)、分 散補償装置 100は、最適残留分散値検索を実行するか否かを判定する (ステップ S1 05)。
[0057] 最適残留分散値検索を実行しない場合には (ステップ S106, No)、分散補償値設 定部 162は予め定められた分散補償値 D— opeを取得し (ステップ S107)、可変分散 補償器 110を制御して、分散補償値を D_opeに設定する (ステップ S108)。
[0058] VIPA板温度調整部 163は、分散補償値 D— opeで、透過中心波長が ITU— T G ridに合うように VIPA板 12の温度を設定し (ステップ S 109)、ステップ 113に移行す る (ステップ S 113に関する説明は後述する)。
[0059] 一方、最適残留分散値検索を実行する場合には (ステップ S 106, Yes)、 VIPA板 温度調整部 163が、ある分散補正値 (例えば、 OpsZnm)で、透過中心波長が ITU — T Gridに規定された波長にあうように VIPA板 12の温度を設定する(ステップ S1 10)。
[0060] そして、分散補償値設定部 162は、 VIPA板 12の温度を一定に保ったままペナル ティが最小となる分散補償値 D— optを検出し (ステップ S 111)、 VIPA板温度調整部 163は、分散補償値 D— optで、透過中心波長が ITU— T Gridに規定された波長 にあうように VIPA板 12の温度を設定し (ステップ S 112)、システムの運用を開始する (ステップ SI 13)。
[0061] そして、分散補償装置 100は、システム運用中に最適分散値検索を実行するか否 かを判定し (ステップ S 114)、実行しない場合には (ステップ S 115, No)、分散補償 値と VIPA板温度とを一定に保ったままシステムの運用を継続した後 (ステップ S116 )、処理を終了する。
[0062] 一方、システム運用中に最適分散値検索を実行する場合には (ステップ S115, Ye s)、分散補償値設定部 162が最適な分散補償値を検出し (ステップ S117)、 VIPA 板温度調整部 163が分散補償値変更によるフィルタリングペナルティが許容値よりも 小さいか否かを判定する(ステップ S 118)。
[0063] 分散補償値変更によるフィルタリングペナルティが許容値よりも小さ!/、場合には (ス テツプ S119, Yes)、 VIPA板温度調整部 163は VIAP版 12の温度を一定に保ち( ステップ S 120)、ステップ S 117に移行する。一方、分散補償値変更によるフィルタリ ングペナルティが許容値以上の場合には (ステップ S 119, No)、 VIPA板温度調整 部 163は、変更された分散補償値の透過中心波長が ITU— T Gridに規定された 波長に合うように VIPA板 12の温度を調整し (ステップ S121)、ステップ S117に移行 する。
[0064] このように、基準特定部 161が光信号情報を基にして基準を特定し、分散補償値 設定部 162が残留分散値検索を実行するので、効率よく可変分散補償器 110の調 整を行うことができる。
[0065] 上述してきたように、本実施例に力かる分散補償装置 100は、基準特定部 161が 光信号情報および基準特定テーブル 153を基にしてペナルティが所定値以下となる 基準( X dB down)を特定し、この特定された基準力 導かれる透過中心波長が IT U-T Gridに規定される値となるように VIPA板温度調整部 163が VIPA板 12の温 度を調整するので、様々な光信号の特徴に対応して効率よく波長分散を補償するこ とがでさる。
[0066] また、本実施例にかかる分散補償装置 100は、分散補償値設定部 162が最適残 留分散値検索を行った場合に、 VIPA板温度調整部 163がペナルティ管理テープ ル 156を基にしてフィルタリングペナルティが所定値以下となるカゝ否かを判定し、フィ ルタリングペナルティが所定値以下となる場合には、 VIPA板 12の温度調整を行わ な!、ので、不必要な温度調整を省略することができ (温度調整による透過波長制御 が安定するまでの時間を省略することができ)、効率よく波長分散を補償することがで きる。
[0067] なお、本実施例では、 VIPA板温度調整部 163が VIPA板 12の温度を調整して、 VIPA板 12の屈折率を変化させていた力 これに限定されるものではなぐ VIPA板 12に応力を加えることによって、屈折率を変化させても良い。
産業上の利用可能性
[0068] 以上のように、本発明に力かる分散補償装置は、光伝送路の分散特性に起因して 発生する信号の波形劣化を効率よく補償する必要のある光通信システムなどに対し て有用である。

Claims

請求の範囲
[1] 温度や応力変更などによって屈折率を変化させることによって光信号の透過波長 特性を変化させる光部品を用いて光伝送路の分散特性に起因して発生する光信号 の波形劣化を補償する分散補償装置であって、
前記光信号の特徴と当該光信号に対する誤り率が所定値以下となる基準値との関 係を示す基準値情報を記録する基準値情報記録手段と、
補償対象となる光信号の特徴と前記基準値情報とを基にして基準値を特定し、特 定した基準値を用いて前記光部品の屈折率を調整する屈折率調整手段と、 を備えたことを特徴とする分散補償装置。
[2] 前記光信号の特徴は、光信号の波長、ビットレート、変調方式および波長間隔のう ち少なくとも一つを含んでいることを特徴とする請求項 1に記載の分散補償装置。
[3] 前記屈折率調整手段は、前記光信号の波形劣化に対する補償の度合!、を示す分 散補償値を一定に保ったまま前記光部品の屈折率を調整することを特徴とする請求 項 1または 2に記載の分散補償装置。
[4] 温度や応力変更などによって屈折率を変化させることによって光信号の透過波長 特性を変化させる光部品を用いて光伝送路の分散特性に起因して発生する光信号 の波形劣化を補償する分散補償装置であって、
前記光信号の波形劣化に対する補償の度合いを示す分散補償値の変化に伴って 前記光部品の屈折率を調整しな力つた場合の前記光信号の誤り率を示す誤り率情 報を記録する誤り率情報記録手段と、
前記分散補償値が変化した場合に、当該分散補償値と前記誤り率情報とを基にし て前記光部品の屈折率を調整するか否かを判定する屈折率調整判定手段と、 を備えたことを特徴とする分散補償装置。
[5] 前記屈折率調整判定手段は、変化後の前記分散補償値と前記誤り率情報とを基 にして、変化後の前記分散補償値に対応する誤り率が所定値以上の場合に前記光 部品の屈折率を調整すると判定することを特徴とする請求項 4に記載の分散補償装 置。
[6] 温度や応力変更などによって屈折率を変化させることによって光信号の透過波長 特性を変化させる光部品を用いて光伝送路の分散特性に起因して発生する光信号 の波形劣化を補償する分散補償方法であって、
前記光信号の特徴と当該光信号に対する誤り率が所定値以下となる基準値との関 係を示す基準値情報を記録装置に記録する基準値情報記録工程と、
補償対象となる光信号の特徴と前記基準値情報とを基にして基準値を特定し、特 定した基準値を用いて前記光部品の屈折率を調整する屈折率調整工程と、 を含んだことを特徴とする分散補償方法。
[7] 前記光信号の特徴は、光信号の波長、ビットレート、変調方式および波長間隔のう ち少なくとも一つを含んでいることを特徴とする請求項 6に記載の分散補償方法。
[8] 前記屈折率調整工程は、前記光信号の波形劣化に対する補償の度合 、を示す分 散補償値を一定に保ったまま前記光部品の屈折率を調整することを特徴とする請求 項 6または 7に記載の分散補償方法。
[9] 温度や応力変更などによって屈折率を変化させることによって光信号の透過波長 特性を変化させる光部品を用いて光伝送路の分散特性に起因して発生する光信号 の波形劣化を補償する分散補償方法であって、
前記光信号の波形劣化に対する補償の度合いを示す分散補償値の変化に伴って 前記光部品の屈折率を調整しな力つた場合の前記光信号の誤り率を示す誤り率情 報を記録装置に記録する誤り率情報記録工程と、
前記分散補償値が変化した場合に、当該分散補償値と前記誤り率情報とを基にし て前記光部品の屈折率を調整するか否かを判定する屈折率調整判定工程と、 を含んだことを特徴とする分散補償方法。
[10] 前記屈折率調整判定工程は、変化後の前記分散補償値と前記誤り率情報とを基 にして、変化後の前記分散補償値に対応する誤り率が所定値以上の場合に前記光 部品の屈折率を調整すると判定することを特徴とする請求項 9に記載の分散補償方 法。
PCT/JP2006/310725 2006-05-30 2006-05-30 分散補償装置および分散補償方法 WO2007138672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008517734A JP4774103B2 (ja) 2006-05-30 2006-05-30 分散補償装置
PCT/JP2006/310725 WO2007138672A1 (ja) 2006-05-30 2006-05-30 分散補償装置および分散補償方法
US12/292,956 US8306430B2 (en) 2006-05-30 2008-12-01 Dispersion compensating apparatus and dispersion compensating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/310725 WO2007138672A1 (ja) 2006-05-30 2006-05-30 分散補償装置および分散補償方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/292,956 Continuation US8306430B2 (en) 2006-05-30 2008-12-01 Dispersion compensating apparatus and dispersion compensating method

Publications (1)

Publication Number Publication Date
WO2007138672A1 true WO2007138672A1 (ja) 2007-12-06

Family

ID=38778201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310725 WO2007138672A1 (ja) 2006-05-30 2006-05-30 分散補償装置および分散補償方法

Country Status (3)

Country Link
US (1) US8306430B2 (ja)
JP (1) JP4774103B2 (ja)
WO (1) WO2007138672A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013082A (ja) * 2009-07-01 2011-01-20 Anritsu Corp 光スペクトラムアナライザ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138672A1 (ja) * 2006-05-30 2007-12-06 Fujitsu Limited 分散補償装置および分散補償方法
US8873615B2 (en) * 2012-09-19 2014-10-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and controller for equalizing a received serial data stream
EP3656069A1 (en) * 2017-07-21 2020-05-27 Telefonaktiebolaget LM Ericsson (publ) Chromatic dispersion compensation
US11290184B2 (en) * 2019-03-01 2022-03-29 Molex, Llc Switchable dispersion compensating module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208892A (ja) * 2001-01-10 2002-07-26 Fujitsu Ltd 分散補償方法、分散補償装置および光伝送システム
JP2002261692A (ja) * 2001-03-02 2002-09-13 Fujitsu Ltd 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
JP2003224523A (ja) * 2002-01-30 2003-08-08 Mitsubishi Electric Corp 分散等化装置および分散等化方法
JP2004222060A (ja) * 2003-01-16 2004-08-05 Fujitsu Ltd フィルタデバイスの調整方法と装置
JP2005318474A (ja) * 2004-04-30 2005-11-10 Fujitsu Ltd 分散補償方法,光伝送システムおよび光伝送装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049413A (en) * 1998-05-22 2000-04-11 Ciena Corporation Optical amplifier having first and second stages and an attenuator controlled based on the gains of the first and second stages
JP2001099709A (ja) 1999-07-28 2001-04-13 Sumitomo Electric Ind Ltd 波長モニタ装置および光製品
US6363187B1 (en) * 1999-08-30 2002-03-26 Northern Telecom Limited Chromatic dispersion compensation
US6889347B1 (en) * 2001-06-15 2005-05-03 Big Bear Networks, Inc. Automatic configuration and optimization of optical transmission using raw error rate monitoring
JP4278913B2 (ja) * 2002-03-29 2009-06-17 富士通株式会社 波長分散と偏波モード分散を共に補償するシステム及び方法
JP4137746B2 (ja) * 2003-09-03 2008-08-20 富士通株式会社 波長分散補償器の制御方法および波長分散補償器
JP4810083B2 (ja) * 2004-11-10 2011-11-09 富士通株式会社 分散補償装置及び光伝送システム
WO2007043121A1 (ja) * 2005-09-30 2007-04-19 Fujitsu Limited 光信号伝送制御装置および光信号伝送制御方法
WO2007138672A1 (ja) * 2006-05-30 2007-12-06 Fujitsu Limited 分散補償装置および分散補償方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208892A (ja) * 2001-01-10 2002-07-26 Fujitsu Ltd 分散補償方法、分散補償装置および光伝送システム
JP2002261692A (ja) * 2001-03-02 2002-09-13 Fujitsu Ltd 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
JP2003224523A (ja) * 2002-01-30 2003-08-08 Mitsubishi Electric Corp 分散等化装置および分散等化方法
JP2004222060A (ja) * 2003-01-16 2004-08-05 Fujitsu Ltd フィルタデバイスの調整方法と装置
JP2005318474A (ja) * 2004-04-30 2005-11-10 Fujitsu Ltd 分散補償方法,光伝送システムおよび光伝送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013082A (ja) * 2009-07-01 2011-01-20 Anritsu Corp 光スペクトラムアナライザ

Also Published As

Publication number Publication date
JP4774103B2 (ja) 2011-09-14
JPWO2007138672A1 (ja) 2009-10-01
US20090080901A1 (en) 2009-03-26
US8306430B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
US20050265724A1 (en) Optical-transmission-space determining apparatus and optical-space transmission apparatus
WO2007138672A1 (ja) 分散補償装置および分散補償方法
US20060215545A1 (en) Controlling loss of signal thresholds in an optical receiver
US8412045B2 (en) Propagation apparatus and dispersion value setting method
US7103283B2 (en) Transmission characteristic compensation control system
US8385750B2 (en) Optical transmission device
JP4461141B2 (ja) 偏波モード分散補償器および偏波モード分散補償方法
US7146107B2 (en) Method and apparatus for adjusting filter device
US8326160B2 (en) Dispersion compensation device, optical reception device, method for dispersion compensation, and method for optical reception
JP4526705B2 (ja) 波長分散等化方法と装置
US7418206B2 (en) Control method of wavelength dispersion compensator, and wavelength dispersion compensator
JP5025503B2 (ja) 分散補償装置
US11290184B2 (en) Switchable dispersion compensating module
CN102349007B (zh) 配置用于连续设定点控制的可调色散补偿器
US20050249508A1 (en) Method and system for controlling laser diodes in optical communications systems
US20050226613A1 (en) Net chromatic dispersion measurement and compensation method and system for optical networks
US6819480B2 (en) Method and apparatus for controlling the extinction ratio of transmitters
JP2002016318A (ja) 波長ロッカーモジュール
CN114156722A (zh) 可变增益掺铒光纤放大器中voa的控制方法
US20080101799A1 (en) Polarization mode dispersion monitoring and fault correlation
CN113206704B (zh) 一种带有edc功能且能实时校准接收信号的光模块及方法
EP1432088A1 (en) Semiconductor laser diode wavelength stabilisation
CN115857121A (zh) 一种多通道光模块波长调试方法和光模块
CN116388860A (zh) 一种多通道光模块波长调试方法和光模块
JP2017220777A (ja) 光通信システム、光通信器、及び通信回線切替方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06756721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517734

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756721

Country of ref document: EP

Kind code of ref document: A1