JP2011013082A - 光スペクトラムアナライザ - Google Patents

光スペクトラムアナライザ Download PDF

Info

Publication number
JP2011013082A
JP2011013082A JP2009157030A JP2009157030A JP2011013082A JP 2011013082 A JP2011013082 A JP 2011013082A JP 2009157030 A JP2009157030 A JP 2009157030A JP 2009157030 A JP2009157030 A JP 2009157030A JP 2011013082 A JP2011013082 A JP 2011013082A
Authority
JP
Japan
Prior art keywords
optical
light
measured
spectrum
optical spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157030A
Other languages
English (en)
Other versions
JP5059060B2 (ja
Inventor
Hiroshi Furukawa
浩 古川
Hiroshi Shimotahira
寛 下田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2009157030A priority Critical patent/JP5059060B2/ja
Publication of JP2011013082A publication Critical patent/JP2011013082A/ja
Application granted granted Critical
Publication of JP5059060B2 publication Critical patent/JP5059060B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】被測定光の光スペクトラムの良否判定を簡単かつ迅速に行う。
【解決手段】算出処理部14は、入力部12から入力される変調方式とビットレートと信号光中心波長の情報に基づいて基準となる信号光スペクトラムを算出する。判別部は、算出された基準となる信号光スペクトラムに対する光雑音レベルを第1の判定基準とするとともに、信号光スペクトラムに対するレベル方向及び波長方向の許容範囲を第2の判定基準とし、被測定光の光スペクトラムを第1の判定基準及び第2の判定基準と比較し、第1の判定基準及び第2の判定基準に対する被測定光の光スペクトラムの合否を判定する。
【選択図】図1

Description

本発明は、光通信などに用いられ、電磁波の一種である近赤外線から可視光線領域の光の特性(例えば波長、レベル(光出力)、S/N、波長分散など)を測定する光スペクトラムアナライザに関する。
光通信用光送信機の研究開発や製造において、或いは、実際の光ファイバ回線において、変調された光信号を観測する場合には、回折格子を用いた光スペクトラムアナライザが従来より一般的に用いられている。しかし、この種の従来の回折格子を用いた光スペクトラムアナライザでは、波長分解能が最小値で50pm(1.55μm帯の光周波数に換算して6.2GHz)程度であった。
従って、この種の従来の回折格子を用いた光スペクトラムアナライザにより、幹線系光通信で多用されるクロック周波数10GHzで強度変調された信号を測定した場合には、図4の実線で示すように、単純な単峰性のスペクトラムが表示されるだけであった。このため、変調によって発生する側帯波の強度などの詳細な情報を得ることができなかった。また、この種の従来の光スペクトラムアナライザでは、表示されたスペクトラムの解析機能として、単純な波長マーカやレベルマーカがあるだけであった。そして、この単純な波長マーカやレベルマーカによる解析機能だけでは、得られたスペクトラム波形が目的にかなった特性を持っているかを判断することが不可能であった。
ところで、光通信におけるOSNR(Optical Signal Noise Ratio)を測定する技術として、下記特許文献1に開示される光測定装置が知られている。
この特許文献1の光測定装置では、同公報の段落番号〔0041〕に記載されるように、光スペクトラムアナライザの分解能不足によってノイズレベルの正確な測定が困難であることをOSNR測定に関する従来の問題点として掲げており、この分解能を向上させるための方法が開示されている。
尚、OSNRとは、特許文献1の段落番号〔0005〕にも記載があるように、信号光のトータルパワーとノイズレベルの比である。この際、ノイズの主成分は、通常光アンプからの自然放出光であり、ここで言うノイズレベルとは、本発明における光雑音レベル(ノイズフロアレベル)と同じ意味である。
特開2006−29884号公報
しかしながら、実際の光通信機の開発や製造においては、光変調器のαパラメータ自体、或いは駆動電圧やバイアス電圧の最適値とのずれが光信号品質に大きな影響を与えるが、上述したOSNRは、これらに関する情報を与える指標ではなかった。
そして、光変調器のαパラメータ自体、或いは駆動電圧やバイアス電圧とのずれは、光スペクトラムの形状全体に変化を与えるため、OSNRのように、ある2点間のレベルの比のみで被測定物の良否を表すのは困難であった。
ところで、近年、ヘテロダイン法を用い、波長分解能5pm(1.55μm帯の光周波数に換算して0.62GHz)以下を実現した高波長分解能の光スペクトラムアナライザが提案され実用化されている。この高波長分解能の光スペクトラムアナライザを用いて変調信号を測定した場合には、図4の破線で示すように、搬送波と側帯波を明確に分離して観測することができる利点を有している。
そこで、本発明は上記問題点に鑑みてなされたものであり、上述した高波長分解能による変調信号の測定を活かし、被測定光の光スペクトラムの良否判定を簡単かつ迅速に行うことができる光スペクトラムアナライザを提供することを目的としている。
上記目的を達成するため、本発明の請求項1に記載された光スペクトラムアナライザは、被測定物からの被測定光の光スペクトラムを測定する光スペクトラムアナライザ1において、
基準となる信号光スペクトラムに対する光雑音レベルを第1の判定基準とし、前記信号光スペクトラムに対するレベル方向及び波長方向の許容範囲を第2の判定基準としてそれぞれの判定基準を設定するための入力部12と、
前記被測定光の光スペクトラムと前記第1の判定基準及び前記第2の判定基準とをそれぞれ比較し、前記第1の判定基準及び前記第2の判定基準に対する前記被測定光の光スペクトラムのそれぞれの合否を判定する判別部15とを備えたことを特徴とする。
請求項2に記載された光スペクトラムアナライザは、請求項1の光スペクトラムアナライザにおいて、
前記入力部12から入力される変調方式とビットレートと信号光中心波長の情報に基づいて前記基準となる信号光スペクトラムを算出する算出処理部14を備えたことを特徴とする。
本発明によれば、被測定光の光スペクトラムの良否判定を高速、かつ、容易に行うことができる。
また、光雑音レベル(ノイズフロアレベル)の判定とスペクトラム形状の判定とを組み合わせて被測定光の光スペクトラムの良否を総合的に判定することができる。
本発明に係る光スペクトラムアナライザのブロック構成図である。 (a)〜(c) 本発明に係る光スペクトラムアナライザにおける各判定線の説明図である。 (a)〜(d) 本発明に係る光スペクトラムアナライザにおける各判定線との比較による光スペクトラムの判定結果を示す図である。 光スペクトラムアナライザの波長分解能の違いによる光スペクトラムの違いを説明するための図である。
以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。
[本発明の実施形態]
<装置のシステム構成>
まず、本発明に係る光スペクトラムアナライザの全体構成について、図1〜3を参照しながら説明する。
本例の光スペクトラムアナライザ1は、光通信用光源としての光通信用半導体レーザダイオードモジュール21(以下、「LDモジュール21」と称する)への駆動電圧を一定とし、ニオブ酸リチウム(LiNbO3 )結晶を用いた外部光変調器22(以下、「光変調器22」と称する)、光変調器22用の光変調器ドライバ23、所望のパルスパターン(例えば擬似ランダムビット系のPseudo−Random Bit Sequence:PRBS)を発生させるパルスパターン発生器24を備えた光送信機20が被測定物として光ファイバ30を介して接続され、被測定物である光変調器22によって変調された被測定光の光スペクトラムを測定するとともに、前述した従来のOSNR評価に加え、予め設定された複数種類の判定線に基づいて被測定光の光スペクトラムの良否を判別している。
このため、本例の光スペクトラムアナライザ1は、図1に示すように、光変換部11、入力部12、記憶部13、算出処理部14、判別部15、表示制御部16、表示部17を備えて概略構成される。
光変換部11は、従来より公知のヘテロダイン型光スペクトラムアナライザ(例えば特開2001−249053号を参照)における局部光発振器、光カプラ、光電変換手段、A/D変換手段の機能を備えており、光送信機20からの被測定光を光電変換処理により電気信号に変換し、さらにこの電気信号をA/D変換処理によりディジタル信号に変換して算出処理部14に出力している。
入力部12は、本体に備えた例えば各種操作ボタンやテンキー、キーボードなどの入力機器で構成され、被測定光の光スペクトラムの測定の開始や停止の指示入力、後述する算出処理部14で基準となる信号光スペクトラムを算出するために必要な光送信機20の変調条件(変調方式、ビットレート、信号光中心波長など)の情報入力、後述する複数種類の判定線の元になる情報入力などを行っている。
記憶部13は、基準となる信号光スペクトラムを算出するための処理プログラム(後述する数1〜数9の計算式を含むプログラム)を記憶している。また、記憶部13は、算出処理部14で算出された基準となる信号光スペクトラムのパワーレベルを、測定した被測定光の光スペクトラムのパワーレベルに合わせて再配置した状態で保存している。この信号光スペクトラムと被測定光スペクトラムのパワーレベル合わせは、両者間の最小2乗誤差が最も小さくなるよう、信号光スペクトラムを再配置するか、あるいは簡便にピークパワーレベルが一致するように再配置しても良い。さらに、記憶部13は、複数種類の判定基準に関する情報を記憶している。
ここで、複数種類の判定基準とは、基準となる最適時の信号光スペクトラムに対する許容範囲を示すものである。本例では、基準となる最適時の信号光スペクトラムに対し、許容できる光雑音レベル(以下、ノイズフロアレベルと称する)C[dBm]を第1の判定基準とし、レベル方向の許容範囲±A[dB]と波長方向の許容範囲±B[nm]とを第2の判定基準としている。そして、これらの判定基準は、入力部12からの情報入力により判定線として予め設定され、これら判定線に関する設定情報が記憶部13に記憶される。
尚、本例において、基準となる最適時の信号光スペクトラムとは、後述する設計値に基づく計算式を用いて計算された理論的な光スペクトラム、或いは光送信機20の符号誤り率を測定しながら駆動電圧やバイアス電圧を調整し、符号誤り率が最低となった状態での光スペクトラムである。
そして、後述する計算式を用いた方法では、例えば、設計上において光変調器22の駆動電圧やバイアス電圧の許容できるずれ量を求めておき、その各最大値での光スペクトラムを計算させ、これらが含まれる領域を判定基準として設定する。また、符号誤り率を実測しながら最適な光スペクトラムを求める方法では、この最適条件から例えば光変調器22の駆動電圧やバイアス電圧をずらすと符号誤り率が上昇して悪化するので、設計上において許容される符号誤り率まで上昇した場合の光スペクトラムを測定し、これが含まれる領域を判定基準として設定する。
尚、上述した何れの方法においても、波長方向で設計上許容している中心波長の誤差(変動)分と、レベル方向で設計上許容している出力パワーの誤差(変動)分とをそれぞれ加算しても良い。
算出処理部14は、記憶部13に記憶された処理プログラムに従って基準となる信号光スペクトラムを算出している。この算出された基準となる信号光スペクトラムは、そのパワーレベルを被測定光の光スペクトラムのパワーレベルに合わせて再配置した状態で記憶部13に保存される。尚、上記処理プログラムに従って算出される信号光スペクトラムの算出方法については追って詳述する。
判別部15は、記憶部13に記憶された基準となる信号光スペクトラムに対する複数種類の判定基準(判定線)に基づいて被測定光の光スペクトルの良否を判別するもので、ノイズフロア判別手段15aとスペクトル形状判別手段15bとを有している。
ノイズフロア判別手段15aは、被測定光の光スペクトラムが、予め設定されるノイズフロア評価領域で第1の判定基準であるノイズフロアレベルC[dBm]を越えるか否かによって被測定光の光スペクトラムに対するノイズフロアの合否を判別している。
さらに説明すると、ノイズフロア判別手段15aは、波長λ1 未満の領域もしくは波長λ2 を超える領域をノイズフロア評価領域とし、被測定光の光スペクトラムのレベルがノイズフロア評価領域でノイズフロアレベルC[dBm]を越えていなければ、その被測定光の光スペクトラムを「合格」と判定している。これに対し、被測定光の光スペクトラムのレベルがノイズフロア評価領域でノイズフロアレベルC[dBm]を越えていれば、その被測定光の光スペクトラムを「不合格」と判定している。
スペクトル形状判別手段15bは、基準となる信号光スペクトラムとパワーレベルが一致する被測定光の光スペクトラムが、予め設定されるスペクトラム形状評価領域で第2の判定基準であるレベル方向の許容範囲±A[dB]と波長方向の許容範囲±B[nm]に収まっているか否かによってスペクトル形状の合否を判別している。
さらに説明すると、スペクトル判別手段15bは、波長λ1 以上かつ波長λ2 以下の領域をスペクトラム形状評価領域とし、被測定光の光スペクトラムがスペクトラム形状評価領域で許容範囲±A[dB]、±B[nm]に収まっていれば、その被測定光の光スペクトラムを「合格」と判定している。これに対し、被測定光の光スペクトラムがスペクトラム形状評価領域で許容範囲±A[dB]、±B[nm]に収まっていなければ、その被測定光の光スペクトラムを「不合格」と判定している。
表示制御部16は、複数種類の判定線を設定する際の設定入力画面の表示、被測定光の光スペクトラムの良否結果の表示などを行うべく、表示部17の表示を制御している。
表示部17は、例えば液晶ディスプレイ(LCD)などの表示機器で構成され、表示制御部16の制御により、不図示の設定入力画面の表示、図3に示す表示形態による被測定光の光スペクトラムと複数種類の判定線の表示などを行っている。
尚、表示部17は、判別部15の判別結果に基づく表示制御部16の制御により、被測定光の光スペクトラムを、合格か不合格かの判定結果に応じて色分け表示するようにしても良い。
例えば、被測定光の光スペクトラムに対し、複数種類の判定基準(第1の判定基準、第2の判定基準)の全てで合格の判定がなされた場合は、その被測定光の光スペクトラムを黒色で表示し、複数種類の判定基準の何れか一つでも不合格の判定がなされた場合には、その被測定光の光スペクトラムを黒色以外の色(例えば赤色)で強調表示する。
これにより、利用者は、表示部17に表示された被測定光の光スペクトラムの波形の色を見るだけで、その被測定光の光スペクトラムが合格か不合格かを認識することができる。
<装置の処理動作>
次に、上述した光スペクトラムアナライザ1において、被測定光の光スペクトラムの良否を判定するまでの一連の処理動作について説明する。
まず、基準となる信号光スペクトラムを算出する。ここでは、パルスパターン発生器24から供給される信号として擬似ランダムビット系のPRBSを使用し、光送信器20からの被測定光の変調方式としてNRZーOOKを使用した場合について説明する。
最初に、データ信号をa[n],n=0,1,・・・,N−1とおく。a[n]の値は0または1で、Nはデータ数を表し、ここではPRBSのデータ列を入れる。次に1ビット内を時間的に分割する数Rを適宜定める。この値は時間分解能に相当する。NR個のメモリ領域b[m],m=0,1,・・・,(NR−1)を用意し、下記数1で定める値を格納する。
Figure 2011013082
光変調器ドライバ23を帯域幅Be のフィルタとみたて、信号b[m]をこのフィルタを通過させて得られる信号をc[m]とおく。具体的には、b[m]を離散Fourier変換(以下、「DFT」と称する)した後、Be とビットレートB,およびフィルタの周波数特性(例えば5次ベッセルフィルタなど)に対応する関数形から定まる数値を掛け算し、その結果を逆DFTすることでc[m]が得られる。
光変調器22からの出力電場を表す信号e[m]=x[m]+jy[m]を、下記数2〜数6の一連の式を用いて算出する。電場e[m]は複素信号であり、x[m]、y[m]はその実部と虚部を、jは虚数単位をそれぞれ表す。
Figure 2011013082
Figure 2011013082
Figure 2011013082
Figure 2011013082
Figure 2011013082
なお、数5のεA は光変調器22において最大振幅を与える駆動電圧を1とした場合のオフセット値を、εB は50%透過時の駆動電圧をバイアス電圧とした場合のこれに対するオフセット値を、数6のαは光変調器22のαパラメータ値を表す。
以上で、NRZ−OOKの場合のe[m]の計算までが終了する。RZ−OOK信号の場合は数1におけるb[・]の定め方を、またOOK以外の変調方式の場合には、数3〜数6を変調方式に応じて変更すればよい。
下記数7は、求めたe[m]より光スペクトラムI[m]を求める方法であり、各変調方式に共通である。信号e[m]をDFTして電場の周波数成分をE[m]を求め、I[m]を数7で算出する。
Figure 2011013082
そして、数7で得られた光スペクトラムに対し、光スペクトラムアナライザ1の波長分解能に応じた丸め処理を行う。丸め処理の一実施例を説明する。データ数Kを適宜定め、フィルタ特性G[k]を下記数8で算出する。
Figure 2011013082
但し、Cは規格化定数、WはλRES に応じて定める数である。またKは数8でG[K]が十分小さくなるように定める。
次に、丸め処理した光スペクトラムI’[m]を下記数9で演算する。
Figure 2011013082
数9右辺で、G[・]の引数は添字kの絶対値|k|であり、和の中のI[・]の添字m+kが負となる場合はNRを足し、NR以上となる場合はNRを引くことで0以上NR−1以下となるようにする。
以上のようにして算出された光スペクトラムI’[m]のピークを、測定した光スペクトラムのピークに合わせて再配置したものを基準となる信号光スペクトラムとして記憶部13に保存する。
尚、上述した構成では、光スペクトラムアナライザ1の記憶部13に記憶された処理プログラムに基づいて光スペクトラムI’を算出しているが、光スペクトラムアナライザ1と接続される外部のパソコンなどの端末装置で上記光スペクトラムI’の算出を行い、その算出結果を端末装置から光スペクトラムアナライザ1に転送させるようにしても良い。この場合、算出結果が基準となる信号光スペクトラムとして、光スペクトラムアナライザ1の記憶部13に保存される。
次に、この基準となる信号光スペクトラムに対する許容範囲として、図2(a)に示すようなレベル方向の許容範囲±A[dB]、図2(b)に示すような波長方向の許容範囲±B[nm]、図2(c)に示すような許容できる光雑音レベル(ノイズフロアレベル)C[dBm]をそれぞれ入力部12からの情報入力により設定する。
ここで、上述した複数種類の許容範囲の判定線を合成したものが図3(a)〜(d)である。ここで、判別部15は、波長λ1 未満の領域もしくは波長λ2 を超える領域をノイズフロア評価領域とし、波長λ1 以上かつ波長λ2 以下の領域をスペクトラム形状評価領域として、図3(a)〜(d)に示すように、被測定光の実測値が各々の評価領域内にあるか否かによって被測定光の光スペクトラムの良否を判定している。
すなわち、判別部15のノイズフロア判別手段15aは、ノイズフロア評価領域での被測定光の実測値が第1の判定基準であるC[dBm]以下の場合はノイズフロア項目で合格と判定し、それ以外は不合格と判定する。また、判別部15のスペクトラム形状判別手段15bは、スペクトラム形状評価領域での被測定光の実測値が全て許容範囲±A[dB]、±B[nm]内であれば光スペクトラム形状項目で合格と判定し、それ以外は不合格と判定する。そして、表示制御部16は、判別部15の判定結果を表示部17に出力表示する。
具体的に、図3(a)の場合は、波長λ1 未満の領域と波長λ2 を超える領域で測定した被測定光の光スペクトラムがノイズフロア判定線以下である。従って、判別部15のノイズフロア判別手段15aは、その被測定光の光スペクトラムをノイズフロア検査で「合格」と判定する。また、波長λ1 以上波長λ2 以下の領域で測定した光スペクトラムが光スペクトラム判定線で囲まれた領域内にある。従って、判別部15のスペクトラム形状判別手段15bは、その被測定光の光スペクトラムを光スペクトラム形状検査でも「合格」と判定する。そして、被測定光の光スペクトラムが、ノイズフロア検査及び光スペクトラム形状検査の両方で「合格」の旨を表示部17に表示する。
図3(b)の場合は、波長λ1 未満の領域では測定した被測定光の光スペクトラムがノイズフロア判定線以下であるが、波長λ2 を超える領域でオーバーする部分(図中のA)がある。従って、判別部15のノイズフロア判別手段15aは、その被測定光の光スペクトラムをノイズフロア検査で「不合格」と判定する。これに対し、波長λ1 以上波長λ2 以下の領域で測定した被測定光の光スペクトラムが光スペクトラム判定線で囲まれた領域内にある。従って、判別部15のスペクトラム形状判別手段15bは、その被測定光の光スペクトラムを光スペクトラム形状検査では「合格」と判定する。そして、被測定光の光スペクトラムが、ノイズフロア検査で「不合格」、光スペクトラム形状検査で「合格」の旨を表示部17に表示する。
図3(c)の場合は、波長λ1 未満の領域と波長λ2 を超える領域で測定した被測定光の光スペクトラムがノイズフロア判定線以下である。従って、判別部15のノイズフロア判別手段15aは、その被測定光の光スペクトラムをノイズフロア検査で「合格」と判定する。これに対し、波長λ1 以上波長λ2 以下の領域で測定した被測定光の光スペクトラムが光スペクトラム判定線で囲まれた領域から一部オーバーする(図中のB)。従って、判別部15のスペクトラム形状判別手段15bは、その被測定光の光スペクトラムを光スペクトラム形状検査では「不合格」と判定する。そして、被測定光の光スペクトラムが、ノイズフロア検査で「合格」、光スペクトラム形状検査で「不合格」の旨を表示部17に表示する。
図3(d)の場合は、波長λ1 未満の領域では測定した被測定光の光スペクトラムがノイズフロア判定線以下であるが、波長λ2 を超える領域でオーバーする部分(図中のA)がある。従って、判別部15のノイズフロア判別手段15aは、その被測定光の光スペクトラムをノイズフロア検査で「不合格」と判定する。また、波長λ1 以上波長λ2 以下の領域で測定した被測定光の光スペクトラムが光スペクトラム判定線で囲まれた領域から一部オーバーする(図中のB)。従って、判別部15のスペクトラム形状判別手段15bは、その被測定光の光スペクトラムを光スペクトラム形状検査でも「不合格」と判定する。そして、被測定光の光スペクトラムが、ノイズフロア検査及び光スペクトラム形状検査の両方で「不合格」の旨を表示部17に表示する。
このように、本発明に係る光スペクトラムアナライザは、光源や光増幅器から発生する誘導自然放出光の許容レベルを含め、利用者が複数種類の判定基準(第1の判定基準、第2の判定基準)による許容範囲を設定して記憶部13に保存できるようにし、これら複数種類の判定基準の許容範囲内に被測定光の光スペクトラムが含まれるか否かを判定する判別部15を設けた構成である。その際、基準となる信号光スペクトラムは、所定の変調条件を与えて計算を行い、その結果を記憶部13に保存するか、或いは、合格品を測定した時の光スペクトラムを記憶部13に保存することで得られる。これにより、被測定光の光スペクトラムの良否判定を簡単かつ迅速に行うことができる。
そして、本例の光スペクトラムアナライザのように、光通信の場合は、無線通信と違って、光ファイバ増幅器によって広い波長帯域に亘る自然放出光が雑音として重畳されることが多く、ノイズフロアとスペクトラム形状の両方で良否を判定する必要性があるが、本例の光スペクトラムアナライザによれば、光雑音レベル(ノイズフロアレベル)の判定とスペクトラム形状の判定とを組み合わせて被測定光の光スペクトラムの良否を総合的に判定することができる。
ところで、上述した実施の形態において、計算で求めた光スペクトラム理論値の代わりに、例えば被測定装置が光送信装置であれば、実際にビット誤り率評価を行い、合格と判定された装置の光スペクトラムを測定して、これを光スペクトラムアナライザ内部の記憶部に基準とする信号光スペクトラムとして保存しても良い。その場合、複数種類の判定基準の設定については、上述した実施の形態と同様に行われる。
また、光スペクトラムの実測値を判定基準とする方法では、上述した実施の形態で示したような変調による光スペクトラムに限ることは無く、例えば光部品の透過損失特性を測定し、その良品時の光スペクトラムを基準値としても良い。
また、本発明を実施する光スペクトラムアナライザは、ヘテロダイン型に限定されず、被測定光の側帯波が観測されるならば従来より公知の回折格子型光スペクトラムアナライザ(例えば特許第2892670号)であっても良い。
1 光スペクトラムアナライザ
11 光変換部
12 入力部
13 記憶部
14 算出処理部
15 判別部
16 表示制御部
17 表示部
20 光送信機
21 LDモジュール
22 光変調器
23 光変調器ドライバ
24 パルスパターン発生器
30 光ファイバ

Claims (2)

  1. 被測定物からの被測定光の光スペクトラムを測定する光スペクトラムアナライザ(1)において、
    基準となる信号光スペクトラムに対する光雑音レベルを第1の判定基準とし、前記信号光スペクトラムに対するレベル方向及び波長方向の許容範囲を第2の判定基準としてそれぞれの判定基準を設定するための入力部(12)と、
    前記被測定光の光スペクトラムと前記第1の判定基準及び前記第2の判定基準とをそれぞれ比較し、前記第1の判定基準及び前記第2の判定基準に対する前記被測定光の光スペクトラムのそれぞれの合否を判定する判別部(15)とを備えたことを特徴とする光スペクトラムアナライザ。
  2. 前記入力部(12)から入力される変調方式とビットレートと信号光中心波長の情報に基づいて前記基準となる信号光スペクトラムを算出する算出処理部(14)を備えたことを特徴とする請求項1記載の光スペクトラムアナライザ。
JP2009157030A 2009-07-01 2009-07-01 光スペクトラムアナライザ Expired - Fee Related JP5059060B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157030A JP5059060B2 (ja) 2009-07-01 2009-07-01 光スペクトラムアナライザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157030A JP5059060B2 (ja) 2009-07-01 2009-07-01 光スペクトラムアナライザ

Publications (2)

Publication Number Publication Date
JP2011013082A true JP2011013082A (ja) 2011-01-20
JP5059060B2 JP5059060B2 (ja) 2012-10-24

Family

ID=43592141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157030A Expired - Fee Related JP5059060B2 (ja) 2009-07-01 2009-07-01 光スペクトラムアナライザ

Country Status (1)

Country Link
JP (1) JP5059060B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066220A (ja) * 1999-08-26 2001-03-16 Ando Electric Co Ltd 波長計
JP2001249053A (ja) * 2000-01-20 2001-09-14 Agilent Technol Inc 光信号の監視方法及び光学ヘテロダイン検出システム
JP2002368696A (ja) * 2001-05-02 2002-12-20 Samsung Electronics Co Ltd 波長分割多重化された光信号の監視方法及び装置
WO2007138672A1 (ja) * 2006-05-30 2007-12-06 Fujitsu Limited 分散補償装置および分散補償方法
JP2008098873A (ja) * 2006-10-11 2008-04-24 Nec Corp 監視システム、光伝送装置、光伝送システム及び監視レベル設定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066220A (ja) * 1999-08-26 2001-03-16 Ando Electric Co Ltd 波長計
JP2001249053A (ja) * 2000-01-20 2001-09-14 Agilent Technol Inc 光信号の監視方法及び光学ヘテロダイン検出システム
JP2002368696A (ja) * 2001-05-02 2002-12-20 Samsung Electronics Co Ltd 波長分割多重化された光信号の監視方法及び装置
WO2007138672A1 (ja) * 2006-05-30 2007-12-06 Fujitsu Limited 分散補償装置および分散補償方法
JP2008098873A (ja) * 2006-10-11 2008-04-24 Nec Corp 監視システム、光伝送装置、光伝送システム及び監視レベル設定方法

Also Published As

Publication number Publication date
JP5059060B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
JPWO2003042652A1 (ja) 波長分散測定システムおよび方法
US20210310897A1 (en) Optical Fiber Loss Measurement Device and Optical Fiber Loss Measurement Method
US10809150B2 (en) Methods and assemblies for using electrostriction to characterize properties of optical fiber
EP2477021B1 (en) Method and system for evaluating characteristic of optical modulator having mach-zehnder interferometer
JP2008536100A (ja) 光変調振幅測定のための方法及び装置
CN113098595B (zh) 一种少模光纤差分模式群时延测量方法、系统和装置
JP4552977B2 (ja) 光信号品質モニタ装置
EP1669730A2 (en) Heterodyne-based optical spectrum analysis using data clock sampling
CN105227233A (zh) 基于并联不对称马赫增德干涉仪的带内光信噪比监测法
US20030011835A1 (en) Method for determining signal quality in optical transmission systems
RU193095U1 (ru) Волоконно-оптическое устройство измерения мгновенных частот множества СВЧ-сигналов
JP5059060B2 (ja) 光スペクトラムアナライザ
CN117614545A (zh) 基于光纤非线性效应抑制的激光能量传输方法及系统
RU2721739C1 (ru) Волоконно-оптическая система измерения мгновенных частот множества СВЧ-сигналов
US20030128946A1 (en) Measuring method for detecting non-linearities of an optical fiber
JP5086310B2 (ja) 光変調器における動作条件推定方法及び光スペクトラムアナライザ
US6477311B2 (en) Method and device for selecting light source for optical communication
CN112327035B (zh) 一种射频半波电压的测量方法、装置及系统
Andreev et al. CD monitoring based on Bragg Notch filter reflection spectrum analysis
JP2014077712A (ja) 光共振器測定法及び測定装置
US20130302027A1 (en) Optical measurement method and system
Bui et al. Parallel all-optical instantaneous frequency measurement system using channel labeling
US20240094087A1 (en) Method for measuring light transmission medium, device for measuring light transmission medium, program for measuring light transmission medium, and recording medium
WO2022029995A1 (ja) 電界分布変動周期測定方法、及び電界分布変動周期測定装置
CN108955886B (zh) 一种超高偏振光谱分析系统及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees