WO2007132588A1 - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
WO2007132588A1
WO2007132588A1 PCT/JP2007/054934 JP2007054934W WO2007132588A1 WO 2007132588 A1 WO2007132588 A1 WO 2007132588A1 JP 2007054934 W JP2007054934 W JP 2007054934W WO 2007132588 A1 WO2007132588 A1 WO 2007132588A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
main surface
detection element
holding member
Prior art date
Application number
PCT/JP2007/054934
Other languages
English (en)
French (fr)
Inventor
Takeshi Eimori
Jun Tabota
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007541518A priority Critical patent/JP4692546B2/ja
Publication of WO2007132588A1 publication Critical patent/WO2007132588A1/ja
Priority to US12/266,575 priority patent/US7624639B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type

Definitions

  • the present invention relates to an acceleration sensor using piezoelectric ceramics.
  • an acceleration sensor in which both main surfaces at one end in the length direction of a detection element in which a plurality of piezoelectric ceramic layers are stacked is held by a pair of holding members is expressed as 1/2 of the product of charge sensitivity and voltage sensitivity.
  • the generated energy is large, and it can be a sensor with high S / N, that is, high sensitivity.
  • FIG. 6 shows an example of the acceleration sensor disclosed in Patent Documents 1 and 2.
  • the acceleration sensor 1 has a main surface at one end in the length direction of the detection element 2 held by a pair of holding members 10 and 11.
  • the detection element 2 is obtained by laminating four piezoelectric ceramic layers 2a to 2d and firing them integrally.
  • the first layer 2a, the first layer 2a, and the second main surface of the detection element 2 are directed from one main surface side to the other main surface side.
  • the second layer 2b, the third layer 2c, and the fourth layer 2d are formed.
  • An interlayer electrode 3 is formed in the thickness direction center of the detection element 2, that is, between the second layer 2b and the third layer 2c, between the first layer 2a and the second layer 2b, and between the third layer 2c and Between the fourth layer 2d, interlayer electrodes 4 and 5 are formed, respectively.
  • Main surface electrodes 6 and 7 are provided on both main surfaces of the detection element 2, respectively.
  • the first layer 2a and the fourth layer 2d have the same thickness
  • the second layer 2b and the third layer 2c have the same thickness
  • the thickness of the second layer 2b and the third layer 2c is larger than the thickness of the first layer 2a and the fourth layer 2d.
  • the piezoelectric ceramic layers 2a to 2d are polarized in the thickness direction as indicated by an arrow P in FIG. That is, the second layer 2b and the third layer 2c are polarized in the same direction, the first layer 2a and the second layer 2b are polarized in the opposite directions, and the fourth layer 2d and the third layer 2c are polarized in the opposite directions. Yes.
  • One end of the interlayer electrodes 4, 5 extends to the end face of one end of the detection element 2 held by the holding portions 10a, 11a of the holding members 10, 11,
  • the detection element 2 is electrically connected to the external electrode 8 continuously formed on one end surface.
  • Interlayer electrode The other ends of 4 and 5 are terminated at a position a predetermined dimension before the free end of the detection element 2.
  • One end of the interlayer electrode 3 terminates at a position corresponding to the inner edge of the holding portions 10a and 11a of the holding members 10 and 11, and the other end extends to the free end of the detection element 2. . Further, one end of the main surface electrodes 6, 7 extends to an intermediate portion of the portion sandwiched by the holding portions 10 a, 11 a of the holding members 10, 11, and the other end extends to the free end of the detection element 2.
  • the lead electrodes 12 and 13 formed on the inner surfaces of the holding portions 10a and 11a are electrically connected to the main surface electrodes 6 and 7 by the anisotropic conductive adhesive 14.
  • one end of the main surface electrodes 6 and 7 extends to the intermediate position of the holding portions 10a and 11a of the holding members 10 and 11 formed on the inner surfaces of the main surface electrodes 6 and 7 and the holding portions 10a and 11a. This is to secure a facing area with the extracted extraction electrodes 12 and 13 and to increase the connection area.
  • the lead electrodes 12 and 13 and the main surface electrodes 6 and 7 are not electrically connected to the external electrode 8.
  • the extraction electrodes 12 and 13 are continuously formed from the inner surfaces of the holding portions 10a and 11a to the inner surfaces of the other end portions of the holding members 10 and 11.
  • the other ends of the extraction electrodes 12 and 13 are electrically connected to the external electrodes 9 formed on the other end surfaces of the holding members 10 and 11 and the end surface of the end member 15.
  • connection electrode 18 is formed on the side surface of the detection element 2 on the free end side by vapor deposition or sputtering.
  • the connection electrode 18 is for connecting the interlayer electrode 3 and the main surface electrodes 6 and 7 to each other, and is formed in a region where the interlayer electrodes 4 and 5 do not extend. Not connected to 5.
  • the connection electrode 18 may be provided on the end surface of the detection element 2 on the free end side in addition to the case where it is provided on the side surface of the detection element 2 as described above.
  • the electrode 19 is formed on the side surfaces of the holding members 10, 11 and the end member 15, but the electrode 19 can be omitted.
  • the interlayer electrodes 4 and 5 are connected to the external electrode 8
  • the interlayer electrode 3 and the main surface electrodes 6 and 7 are connected to each other by the connection electrode 18, and the inner surfaces of the holding members 10 and 11 It is connected to the external electrode 9 through the extraction electrodes 12 and 13 provided in FIG. Therefore, as shown in FIG. 7, the four piezoelectric ceramic layers 2a to 2d are electrically connected in parallel between the outer electrodes 8 and 9.
  • the acceleration sensor 1 generates an unnecessary output (thermal fluctuation noise) without being canceled between 2b and the third layer 2c.
  • the heat is transferred from the holding portion 10 a of the holding member 10 to the upper surface of one end of the detection element 2. Therefore, a temperature difference occurs between the upper surface and the lower surface of the detection element 2, and unnecessary output due to the pyroelectric effect occurs.
  • the piezoelectric ceramic layers 2a to 2d of the detection element 2 are polarized in the direction of the arrow P, and the polarization range thereof is a piezoelectric ceramic sandwiched between opposing electrodes as shown by a satin pattern in FIG. It has become a range of layers.
  • the reason is that the interlayer electrodes 3, 4, 5 and the main surface electrodes 6, 7 are also used as polarization electrodes. Among these, pyroelectric charges are generated in the polarization regions (indicated by S in FIG. 8) of the first layer 2a and the fourth layer 2d in the region held by the holding members 10 and 11.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-337140
  • Patent Document 2 JP 2005-164505 A
  • an object of the present invention is to provide an acceleration sensor that can suppress the generation of unnecessary output due to the pyroelectric effect within the region held by the holding member.
  • the present invention includes a detection element in which a plurality of piezoelectric ceramic layers are stacked, and a holding member that holds both main surfaces of one end portion in the length direction of the detection element.
  • the output element has electrodes on the interlayer and main surface of each piezoelectric ceramic layer, and the voltage or charge generated in the detection element when acceleration is applied is extracted from between the main surface electrode and the interlayer electrode.
  • the main surface electrode and an interlayer electrode not electrically connected to the main surface electrode are extended in a region held by the holding member of the detection element, and the inner surface of the holding member is extended.
  • Is formed with an extraction electrode, and at least a part of the main surface electrode extended in the region held by the holding member and at least a part of the extraction electrode formed on the inner surface of the holding member are Opposite They are electrically connected to each other, and are sandwiched between the main surface electrode and an interlayer electrode that is not electrically connected to the main surface electrode in the region held by the holding member of the detection element.
  • an acceleration sensor characterized in that the region of the piezoelectric ceramic layer formed is not polarized.
  • the acceleration sensor for example, when one holding member has a higher temperature than the other holding member, the heat is transmitted from the holding portion of the holding member to the upper surface of the one end of the detection element. A temperature difference may occur between the top and bottom surfaces, and unnecessary output may occur due to the pyroelectric effect.
  • the piezoelectric ceramic layer sandwiched between the main surface electrode and the main surface electrode which is within the region held by the holding member of the detection element and sandwiched between the main electrode and the interlayer electrode. Since no region is polarized, pyroelectric charge is not generated. Therefore, an unnecessary output of the partial force held by the holding member can be eliminated.
  • the heat applied to one end of the detection element is caused by the acceleration detection unit (the holding member) of the detection element.
  • the area of the acceleration detection part of the force detection element is exposed to the outside, and the temperature change of each ceramic layer becomes almost uniform, which may cause thermal fluctuation noise.
  • the pyroelectric charge is canceled.
  • the detection element has the first to fourth piezoelectric ceramic layers from one main surface side to the other main surface side, and is arranged in the thickness direction of the detection element.
  • the central inter-layer electrode and the two main surface electrodes are electrically connected, and at least one main surface electrode is drawn to the end portion held by the holding member and before the end surface, and at least one main surface electrode is drawn.
  • the surface electrode is electrically connected to the extraction electrode formed on the inner surface of the holding member facing the electrode via an anisotropic conductive adhesive, and is a layer of the first layer and the second layer of the detection element.
  • a structure may be adopted in which the interlayer electrode and the interlayer electrode of the third layer and the fourth layer are electrically connected and are drawn to the end face of the end held by the holding member.
  • the detection element has a four-layer piezoelectric ceramic laminated structure, and charges generated in each layer by application of acceleration are taken out in parallel connection. Since the voltage or charge generated by the application of acceleration can be reliably pulled out to different parts of the holding member, it is easy to configure as a surface-mounted component. Further, since the main surface electrode of the detection element is electrically connected to the extraction electrode of the holding member using an anisotropic conductive adhesive, even if the distance between the main surface electrode or the extraction electrode and the end surface of the holding member is short, Insulation from the external electrodes can be ensured. Therefore, the acceleration sensor can be reduced in size.
  • the first layer and the fourth layer have the same thickness
  • the second layer and the third layer have the same thickness
  • the first layer The thickness of the second layer may be larger than the thickness. If the two layers on the inner side in the thickness direction are made thicker than the two outer layers, and the potentials generated in both layers are made as equal as possible, the generated energy can be increased.
  • the detection element has a force from one main surface side to the other main surface side, that is, the first and second piezoelectric ceramic layers.
  • the lead electrode formed on the inner surface of the holding member facing the two main surface electrodes and the anisotropic conductive adhesive is pulled out to the front surface of the end surface where the main surface electrode is held by the holding member.
  • the interlayer electrode of the detection element is connected to the end face of the end held by the holding member. It is good also as a structure pulled out by.
  • This detection element has a two-layer structure, which makes the structure simple.
  • the two piezoelectric ceramic layers are connected in parallel to each other.
  • the main surface electrode in the region held by the holding member is not formed when the piezoelectric ceramic layer is polarized, and the main surface electrode in the region not held by the holding member is used. After being polarized, it may be formed so as to be electrically connected to the main surface electrode in a region not held by the holding member.
  • the end of the detection element held by the holding member can be simplified so that it is not polarized, and the electrical connection from the main surface electrode to the extraction electrode on the inner side surface of the holding member is also simple. it can.
  • the main surface electrode and the interlayer not electrically connected to the main surface electrode are within the region held by the holding member of the detection element. Since the region of the piezoelectric ceramic layer sandwiched between the electrodes is unpolarized, generation of pyroelectric charges due to temperature changes can be prevented, and unnecessary output of partial force held by the holding member can be prevented. Can be eliminated.
  • FIG. 1 and 2 show a first embodiment of an acceleration sensor according to the present invention. Since the basic structure of this acceleration sensor 1A is the same as that of the conventional acceleration sensor 1 shown in FIG. 6, the same parts as those in FIG.
  • the acceleration sensor 1A is characterized in that it is in the region held by the holding members 10 and 11 of the detection element 2 and the electrodes facing each other with the piezoelectric ceramic layers 2a to 2d interposed therebetween.
  • the region of the piezoelectric ceramic layer (region S in FIGS. 1 and 2) that is electrically connected and sandwiched between the electrodes is not polarized. That is, as shown in FIG. 1 by a pear-like pattern, the region of the piezoelectric ceramic layer that is outside the region held by the holding members 10 and 11 of the detection element 2 and is sandwiched between the electrodes 3 to 7 having different potentials. Only polarized.
  • the region held by the holding members 10 and 11 of the first layer 2a is not polarized, and the region held by the holding members 10 and 11 of the fourth layer 2d is polarized.
  • the second layer 2b and the third layer 2c in the region sandwiched between the holding members 10 and 11 may be polarized because the interlayer electrodes 4 and 5 are connected to each other by the outer electrode 8. . Further, it is not necessary that the entire region held by the holding members 10 and 11 of the first layer 2a and the fourth layer 2d is unpolarized.
  • the electrodes 16 and 17 connected to the interlayer electrodes 4 and 5 are connected to the first layer 2a and the first layer 2a. If it exists on the outer surface of the 4 layer 2d, the portion sandwiched between the electrodes 16 and 17 and the interlayer electrodes 4 and 5 may be polarized.
  • FIG. 2 In order to make the regions held by the holding members 10 and 11 of the first layer 2a and the fourth layer 2d unpolarized, as shown in FIG. It consists of two electrodes, 6a and 7a, and extraction electrodes 6b and 7b.
  • the detection unit electrode 6a is used to polarize the first layer 2a with the interlayer electrode 4, and after the first layer 2a is polarized, the extraction electrode 6b is formed so as to partially overlap the detection unit electrode 6a. .
  • the detection unit electrode 7a is used to polarize the fourth layer 2d with the interlayer electrode 5, and after the fourth layer 2d is polarized, the extraction electrode 7b partially overlaps the detection unit electrode 7a. It is formed.
  • the method of making the regions held by the holding members 10 and 11 of the first layer 2a and the fourth layer 2d unpolarized regions is not limited to the method shown in FIG. 2, and the detection unit electrodes 6a and 7a and the extraction electrodes May be separated in advance, and after polarization using the detection part electrodes 6a and 7a, the extraction electrode and the detection part electrodes 6a and 7a may be connected by a connection electrode provided later.
  • the acceleration detection part of the detection element 2 not held by the holding members 10 and 11 is not limited to the case where the temperature change applied to the acceleration sensor 1A is uniform. Therefore, the charges generated by pyroelectricity are canceled between the first layer 2a and the fourth layer 2d, and between the second layer 2b and the third layer 2c. Therefore, unnecessary output from the portion sandwiched between the holding members 10 and 11 can be eliminated, and the thermal fluctuation noise can be greatly reduced.
  • the polarization region of the detection element 2 is sandwiched between holding members 10 and 11. There is a method of moving the polarization region of the detection element 2 away from the covered area to the free end side of the detection element 2 simply by eliminating it.
  • the sensitivity is greatly reduced.
  • the same sensitivity as the conventional structure shown in FIG. 6 can be obtained. That is, in this embodiment, the thermal fluctuation noise can be greatly reduced without lowering the sensitivity as compared with the conventional structure.
  • FIG. 3 shows a temperature distribution of the acceleration sensor 1A shown in FIG. Fig. 3 shows the FEM analysis of the temperature distribution of the acceleration sensor 1A when the acceleration sensor 1A is held at 25 ° C and heated from the top of the figure at 50 ° C for 1 second.
  • the dimension of the acceleration sensor 1A is 2.0 X 3.8 mm (detection element thickness: 0.27 mm)
  • the length of the holding portion D is 0.8 mm
  • H represents a high temperature region (50 ° C)
  • C represents a low temperature region (25 ° C)
  • M represents an intermediate temperature region (37 ° C).
  • FIG. 4 shows the temperature distribution in the center portion in the thickness direction of each of the piezoelectric ceramic layers 2a to 2d when heated under the same conditions as in FIG.
  • the portion (X> 0.8 mm) that is not held by the holding members 10 and 11 of the detection element 2 it is understood that there is almost no temperature difference in the thickness direction. Therefore, almost no thermal fluctuation noise is generated from the portions of the detection element 2 that are not held by the holding members 10 and 11.
  • the pyroelectric effect is affected by the temperature difference between the first layer 2a and the fourth layer 2d of the detection element 2 held by the holding members 10 and 11, where the temperature of the first layer 2a is about 42 ° C.
  • the temperature of the fourth layer 2d was about 35 ° C.
  • FIG. 5 shows a second embodiment of the acceleration sensor according to the present invention. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
  • the acceleration sensor 1B of this embodiment includes a detection element 20 whose one end is cantilevered by holding members 10 and 11, and the detection element 20 is formed by laminating two piezoelectric ceramic layers 20a and 20b. Baked.
  • An interlayer electrode 21 is provided at the center of the detection element 20 in the thickness direction, and main surface electrodes 22 and 23 are provided on the front and back surfaces.
  • the two piezoelectric ceramic layers 20a and 20b are polarized in the same direction in the thickness direction as indicated by an arrow P.
  • the interlayer electrode 21 extends from one end of the detection element 20 provided with the external electrode 8 to an intermediate portion of the detection element 20. That is, an electrode gap is provided on the free end side of the detection element 20.
  • the main surface electrodes 22, 23 extend from one end of the detection element 20 held by the holding members 10, 11 to the free end, and the main surface electrodes 22, 23 are different from the lead electrodes 12, 13 of the holding members 10, 11.
  • the conductive conductive adhesive 14 is electrically connected.
  • a connection electrode 18 is formed on the side surface of the detection element 20 on the free end side, and the main surface electrodes 22 and 23 are connected to each other by the connection electrode 18. However, it is not electrically connected to the interlayer electrode 21. Also in this case, the piezoelectric ceramic layers 20a and 20b are electrically connected in parallel.
  • the polarization regions of the piezoelectric ceramic layers 20a and 20b are outside the region held by the holding members 10 and 11 of the detection element 20, as shown by a pear-like pattern in FIG. , Only between the electrodes 21 and 22 and the region sandwiched between the electrodes 21 and 23. That is, electrodes 21 that are in the region D held by the holding members 10 and 11 of the detection element 20 and are not electrically connected to each other among the electrodes facing each other with the piezoelectric ceramic layers 20a and 20b interposed therebetween. The region of the piezoelectric ceramic layer sandwiched between the electrodes 21 and 23 (region S in FIG. 5) is not polarized. As a result, no charge is generated by the pyroelectric effect, and the thermal fluctuation noise can be greatly reduced.
  • the present invention is not limited to the above embodiments.
  • the piezoelectric ceramic layer that constitutes the sensing element is not limited to a four-layer structure or a two-layer structure, and may be a multilayer structure such as six or eight layers. Further, the piezoelectric ceramic layer constituting the detection element may be integrally fired or may be bonded after firing.
  • FIG. 1 is a front view of a first embodiment of an acceleration sensor according to the present invention.
  • FIG. 2 is a partially enlarged view of the acceleration sensor shown in FIG.
  • FIG. 3 is a temperature distribution diagram when a temperature change is given to the acceleration sensor shown in FIG. 1.
  • FIG. 5 is a front view of a second embodiment of the acceleration sensor that works according to the present invention.
  • FIG. 6 is a front view of an example of a conventional acceleration sensor.
  • FIG. 7 is a circuit diagram of the acceleration sensor shown in FIG.
  • FIG. 8 is a diagram showing charges generated by the pyroelectric effect of the acceleration sensor shown in FIG.

Abstract

【課題】保持部材によって保持された領域内で焦電効果による不要な出力が発生するのを改善できる加速度センサを提供することにある。 【解決手段】加速度センサ1Aは、複数の圧電セラミックス層2a~2dを積層した検出素子2と、検出素子の長さ方向一端部の主面を保持する一対の保持部材10,11とを備える。検出素子2は各セラミックス層の層間および主面に電極3~7を持ち、加速度の印加によって検出素子2に発生する電圧または電荷を主面電極6,7と層間電極4,5とから取り出す。検出素子2の保持部材10,11によって保持された領域内であって、主面電極6,7と層間電極4,5間に挟まれた圧電セラミックス層2a,2dの領域Sが分極されていない。

Description

明 細 書
加速度センサ
技術分野
[0001] 本発明は圧電セラミックスを用いた加速度センサに関するものである。
背景技術
[0002] 従来、圧電セラミックスを利用した加速度センサとして、種々のものが提案されている 。特に、複数の圧電セラミックス層を積層した検出素子の長さ方向一端部の両主面を 一対の保持部材で保持した加速度センサは、電荷感度と電圧感度の積の 1/2とし て表される発生エネルギーが大きく、高 S/Nすなわち高感度のセンサとすることが できる。
[0003] 図 6は特許文献 1および 2に開示された加速度センサの一例を示す。この加速度セン サ 1は、検出素子 2の長さ方向一端部の主面を一対の保持部材 10, 1 1で保持したも のである。検出素子 2は、 4層の圧電セラミックス層 2a〜2dを積層し、一体に焼成した ものであり、検出素子 2の一方の主面側から他方の主面側に向かって第 1層 2a、第 2 層 2b、第 3層 2c、第 4層 2dとなっている。検出素子 2の厚み方向中心、つまり第 2層 2 bと第 3層 2cとの間には層間電極 3が形成され、第 1層 2aと第 2層 2bとの間、および 第 3層 2cと第 4層 2dとの間にはそれぞれ層間電極 4, 5が形成されている。検出素子 2の両主面には主面電極 6, 7がそれぞれ設けられている。
[0004] 圧電セラミックス層のうち、第 1層 2aと第 4層 2dは同一厚みであり、第 2層 2bと第 3層 2 cは同一厚みである。第 1層 2aおよび第 4層 2dの厚みに比べて第 2層 2bおよび第 3 層 2cの厚みの方が厚レ、。圧電セラミックス層 2a〜2dは、図 6に矢印 Pで示すように、 厚み方向に分極されている。すなわち、第 2層 2bと第 3層 2cは同一方向に分極され 、第 1層 2aと第 2層 2bは逆向きに分極され、第 4層 2dと第 3層 2cは逆向きに分極され ている。
[0005] 層間電極 4, 5の一端は、保持部材 10, 11の保持部 10a, 11aによって保持された検 出素子 2の一端部の端面まで延ばされ、保持部材 10, 11の一端面および検出素子 2の一端面に連続的に形成された外部電極 8と電気的に接続されている。層間電極 4, 5の他端は検出素子 2の自由端から所定寸法だけ手前の位置で終端となってい る。
[0006] 層間電極 3の一端は、保持部材 10, 11の保持部 10a, 11aの内側縁部と対応する位 置で終端となっており、他端は検出素子 2の自由端まで延びている。また、主面電極 6, 7の一端は保持部材 10, 11の保持部 10a, 11aによって挟持された部分の中間 部まで延びており、他端は検出素子 2の自由端まで延びている。保持部 10a, 11aの 内面に形成された引出電極 12, 13は、異方性導電接着剤 14によって主面電極 6, 7と電気的に接続されている。このように主面電極 6, 7の一端が保持部材 10, 11の 保持部 10a, 11aの中間位置まで延びているのは、主面電極 6, 7と保持部 10a, 11 aの内面に形成された引出電極 12, 13との対向面積を確保し、接続面積を大きくす るためである。なお、引出電極 12, 13および主面電極 6, 7は外部電極 8と導通して いない。引出電極 12, 13は、保持部 10a, 11aの内面から保持部材 10, 11の他端 部内面にかけて連続的に形成されている。引出電極 12, 13の他端部は、保持部材 10, 11の他端面および端部材 15の端面に形成された外部電極 9と電気的に接続さ れている。
[0007] 検出素子 2の自由端側の側面には、蒸着やスパッタリングなどによって接続電極 18 が形成されている。この接続電極 18は、層間電極 3と主面電極 6, 7とを相互に接続 するためのものであり、層間電極 4, 5が延びていない領域に形成されているため、層 間電極 4, 5とは接続されない。なお、接続電極 18は、上記のように検出素子 2の側 面に設ける場合のほか、検出素子 2の自由端側の端面に設けてもよい。接続電極 18 の形成と同時に、保持部材 10, 11および端部材 15の側面にも電極 19が形成される 、電極 19は省略可能である。
[0008] 上記のように、層間電極 4, 5は外部電極 8に接続され、層間電極 3と主面電極 6, 7と が接続電極 18によって互いに接続されるとともに、保持部材 10, 11の内面に設けた 引出電極 12, 13を介して外部電極 9と接続される。そのため、図 7に示すように、外 部電極 8, 9間において、 4つの圧電セラミックス層 2a〜2dが電気的に並列接続され る。
[0009] 図 6で矢印方向に加速度 Gが加わると、 1貫性により検出素子 2は加速度方向と逆方 向に橈み、検出素子 2の上半分には圧縮応力、下半分には引張応力が発生する。 そのため、層間電極 3と主面電極 6, 7には正の電荷が発生し、層間電極 4, 5には負 の電荷が発生する。その結果、層間電極 4, 5と導通する一方の外部電極 8から負の 電荷が、層間電極 3および主面電極 6, 7と導通する他方の外部電極 9から正の電荷 が取り出される。
[0010] 上記のような構造の加速度センサにおいて、外部から温度変化が加わると、その熱 は保持部材 10, 11を介して検出素子 2に伝達され、焦電効果により、図 8に正負の 記号で示すような電荷が各圧電セラミックス層 2a〜2dに発生する。各圧電セラミック ス層 2a〜2dに加わる温度変化が均一な場合には、焦電効果により発生した電荷は 、第 1層 2aと第 4層 2dとの間、および第 2層 2bと第 3層 2cとの間でキャンセルされるた め、外部には出力として現れない。しかし、部分的に温度が高くなつた場合、各圧電 セラミックス層 2a〜2dの温度変化が異なり、焦電効果により発生した電荷が第 1層 2a と第 4層 2dとの間、および第 2層 2bと第 3層 2cとの間でキャンセルされず、加速度セ ンサ 1が不要な出力(熱ゆらぎノイズ)を発生してしまうという問題があった。例えば、 一方の保持部材 10が他方の保持部材 11より高温になると、その熱は保持部材 10の 保持部 10aから検出素子 2の一端部上面へと伝達される。そのため、検出素子 2の上 面と下面とで温度差が発生し、焦電効果による不要な出力が発生してしまう。
[0011] ここで、焦電効果による不要な出力が発生する原因をさらに詳しく説明する。上記検 出素子 2の圧電セラミックス層 2a〜2dは、矢印 P方向に分極されており、その分極範 囲は、図 8に梨子地状模様で示すように、対向する電極で挟まれた圧電セラミックス 層の範囲となっている。その理由は、層間電極 3, 4, 5と主面電極 6, 7とを分極用電 極としても利用しているからである。このうち、焦電電荷の発生原因となるのは、保持 部材 10, 11によって保持された領域内の第 1層 2aおよび第 4層 2dの分極領域(図 8 に Sで示す)である。分極されていない領域には焦電電荷が発生しないし、同一電位 の電極間では焦電電荷が発生しないからである。つまり、主面電極 6, 7の一部が保 持部材 10, 11の保持部 10a, 11aと対向する領域まで延びているため、この主面電 極 6, 7の引出部と層間電極 4, 5との間の領域 Sで発生した焦電電荷が不要な出力と して取り出されるのである。 特許文献 1 :特開 2003— 337140号公報
特許文献 2 :特開 2005— 164505号公報
発明の開示
発明が解決しょうとする課題
[0012] そこで、本発明の目的は、保持部材によって保持された領域内で焦電効果による不 要な出力が発生するのを抑制できる加速度センサを提供することにある。
課題を解決するための手段
[0013] 上記目的を達成するため、本発明は、複数の圧電セラミックス層を積層した検出素子 と、この検出素子の長さ方向一端部の両主面を保持する保持部材とを備え、上記検 出素子は各圧電セラミックス層の層間および主面に電極を持ち、加速度の印加によ つて上記検出素子に発生する電圧または電荷を上記主面電極と層間電極との間か ら取り出すようにした加速度センサにおいて、上記検出素子の保持部材によって保 持された領域内に上記主面電極とこの主面電極に電気的に接続されていない層間 電極とが延ばされており、上記保持部材の内面には引出電極が形成されており、上 記保持部材によって保持された領域内に延ばされた上記主面電極の少なくとも一部 と上記保持部材の内面に形成された引出電極の少なくとも一部とが対向して相互に 電気的に接続されており、上記検出素子の保持部材によって保持された領域内であ つて、上記主面電極とこの主面電極に電気的に接続されていない層間電極との間に 挟まれた圧電セラミックス層の領域が分極されていないことを特徴とする加速度セン サを提供する。
[0014] 本発明に係る加速度センサの場合、例えば一方の保持部材が他方の保持部材より 高温になると、その熱は保持部材の保持部から検出素子の一端部上面へと伝達され 、検出素子の上面と下面とで温度差が発生し、焦電効果による不要な出力が発生す る恐れがある。しかし、検出素子の保持部材によって保持された領域内であって、主 面電極とこの主面電極に電気的に接続されてレ、なレ、層間電極との間に挟まれた圧 電セラミックス層の領域が分極されていないため、焦電電荷が発生しない。そのため 、保持部材によって保持されている部分力 の不要な出力をなくすことができる。
[0015] なお、検出素子の一端部に加わる熱が、検出素子の加速度検出部(保持部材によつ て保持されていない領域)まで伝達され、熱ゆらぎノイズの原因になる可能性がある 力 検出素子の加速度検出部については外部に露出しているため、各セラミックス層 の温度変化がほぼ均一となり、焦電電荷はキャンセルされる。
[0016] 好ましい実施の形態によれば、検出素子は、一方の主面側から他方の主面側に向 かって第 1層〜第 4層の圧電セラミックス層を有し、検出素子の厚み方向の中心の層 間電極と両主面電極とが電気的に接続され、かつ少なくとも一方の主面電極が上記 保持部材によって保持された端部であって端面の手前まで引き出され、少なくとも一 方の主面電極は、この電極と対面する保持部材の内側面に形成された引出電極と 異方性導電性接着剤を介して電気的に接続され、検出素子の第 1層と第 2層との層 間電極と、第 3層と第 4層との層間電極とが電気的に接続され、かつ保持部材によつ て保持された端部の端面まで引き出されている構造としてもよい。この場合には、検 出素子を 4層の圧電セラミック積層構造とし、加速度の印加によって各層で発生した 電荷を並列接続で取り出すようにしてある。加速度の印加によって発生した電圧また は電荷をそれぞれ保持部材の異なる部位へ確実に引き出すことができるため、表面 実装型部品として構成しやすい。また、異方性導電性接着剤を用いて検出素子の主 面電極を保持部材の引出電極に導通させるので、主面電極あるいは引出電極と保 持部材の端面までの距離が短くても、一方の外部電極との絶縁を確保することがで きる。そのため、加速度センサを小型化できる。
[0017] 好ましい実施の形態によれば、検出素子の圧電セラミックス層のうち、第 1層と第 4層 は同一厚みであり、第 2層と第 3層は同一厚みであり、第 1層の厚みに比べて第 2層 の厚みの方を大きくしてもよい。厚み方向内側の 2層の厚みを外側の 2層に比べて厚 くし、両層で発生する電位をできるだけ等しくすれば、発生エネルギーを増大させる こと力 Sできる。
[0018] 好ましい実施の形態によれば、検出素子は、一方の主面側から他方の主面側に向 力、つて第 1層と第 2層の圧電セラミックス層を有し、検出素子の両主面電極が保持部 材によって保持された端部であって端面の手前まで引き出され、両主面電極と対面 する保持部材の内側面に形成された引出電極と異方性導電性接着剤を介して電気 的に接続され、検出素子の層間電極は保持部材によって保持された端部の端面ま で引き出されている構造としてもよい。この検出素子は 2層構造としたものであり、構 造が簡単になる。 2層の圧電セラミックス層は互いに並列接続される。
[0019] 好ましい実施の形態によれば、保持部材によって保持された領域の主面電極は、圧 電セラミックス層の分極時には形成されておらず、保持部材によって保持されない領 域の主面電極を用いて分極した後、保持部材によって保持されない領域の主面電 極と導通するように形成してもよい。この場合には、保持部材によって保持された検 出素子の端部が分極されない状態に簡単にすることができるとともに、主面電極から 保持部材の内側面の引出電極への電気的接続も簡単にできる。
発明の効果
[0020] 以上の説明で明らかなように、本発明によれば、検出素子の保持部材によって保持 された領域内であって、主面電極とこの主面電極に電気的に接続されていない層間 電極との間に挟まれた圧電セラミックス層の領域を未分極としたので、温度変化によ る焦電電荷の発生を防止することができ、保持部材によって保持されている部分力 の不要な出力をなくすことができる。
発明を実施するための最良の形態
[0021] 以下に、本発明の好ましい実施の形態を、実施例を参照して説明する。
実施例 1
[0022] 図 1 ,図 2は本発明にかかる加速度センサの第 1実施例を示す。この加速度センサ 1 Aの基本構造は、図 6に示した従来の加速度センサ 1と同様であるため、図 6と同一 部分には同一符号を付して重複説明を省略する。
[0023] 本発明の加速度センサ 1Aの特徴は、検出素子 2の保持部材 10, 11によって保持さ れた領域内であって、圧電セラミックス層 2a〜2dを間にして対向する電極のうち互い に電気的に接続されてレ、なレ、電極間に挟まれた圧電セラミックス層の領域(図 1 ,図 2の領域 S)が分極されていない点である。つまり、図 1に梨子地状模様で示すように 、検出素子 2の保持部材 10, 11によって保持された領域外であって、異なる電位の 電極 3〜7間に挟まれた圧電セラミックス層の領域のみ分極されている。したがって、 第 1層 2aの保持部材 10, 11によって保持された領域は分極されておらず、第 4層 2d の保持部材 10, 11によって保持された領域は分極されてレ、なレ、。 [0024] 保持部材 10, 11で挟まれた領域の第 2層 2bおよび第 3層 2cは、層間電極 4, 5が外 部電極 8によって相互に接続されているため、分極があってもよい。また、第 1層 2aお よび第 4層 2dの保持部材 10, 11によって保持された全領域が未分極である必要は ない。例えば、第 1層 2aおよび第 4層 2dの保持部材 10, 11によって保持された領域 のうち、層間電極 4, 5と接続された電極 16, 17 (図 2参照)が第 1層 2aおよび第 4層 2 dの外表面に存在する場合には、その電極 16, 17と層間電極 4, 5とで挟まれた部分 に分極があってもよい。
[0025] 第 1層 2aおよび第 4層 2dの保持部材 10, 11によって保持された領域を未分極とする ために、図 2に示すように、主面電極 6, 7は、それぞれ検出部電極 6a, 7aと引出電 極 6b, 7bとの 2つの電極で構成されている。検出部電極 6aは層間電極 4との間で第 1層 2aを分極するために使用され、第 1層 2aを分極した後に引出電極 6bが検出部 電極 6aと一部で重なるように形成される。同様に、検出部電極 7aは層間電極 5との 間で第 4層 2dを分極するために使用され、第 4層 2dを分極した後に引出電極 7bが 検出部電極 7aと一部で重なるように形成される。
[0026] 第 1層 2aおよび第 4層 2dの保持部材 10, 11によって保持された領域を未分極領域 とする方法として、図 2に示す方法に限らず、検出部電極 6a, 7aと引出電極とを予め 分離して形成しておき、検出部電極 6a, 7aを用いて分極した後、引出電極と検出部 電極 6a, 7aとを後で設けた接続電極で接続するようにしてもよい。
[0027] 加速度センサ 1Aに温度変化が加わった場合、温度変化は保持部材 10, 11を介し て検出素子 2に伝わるが、保持部材 10, 11に挟まれた領域の圧電セラミックス層 2a , 2dには分極がないため、焦電効果による電荷が発生しない。また、保持部材 10, 1 1によって保持されていない検出素子 2の加速度検出部は、加速度センサ 1Aに加わ る温度変化が均一の場合に限らず、不均一の場合でも、各セラミックス層の温度変化 がほぼ均一になるので、焦電により発生する電荷は、第 1層 2a,第 4層 2d間、および 第 2層 2b,第 3層 2c間でキャンセルされる。従って、保持部材 10, 11で挟まれた箇 所からの不要な出力をなくすことができ、熱ゆらぎノイズを大幅に低減することができ る。
[0028] 熱ゆらぎノイズを小さくする方法として、検出素子 2の分極域を保持部材 10, 11で挟 まれた領域からなくすだけでなぐ検出素子 2の分極域を検出素子 2の自由端側へ 離していく方法がある。しかし、この場合には感度が大きく低下してしまう。本実施例 のように、保持部材 10, 11で保持された領域のみ分極をなくした構造では、図 6に示 す従来構造と同一の感度が得られる。つまり、本実施例では従来構造に比べて感度 を低下させずに、熱ゆらぎノイズを大幅に低減できる。
[0029] 図 3は、図 1に示す加速度センサ 1Aの温度分布を示す。図 3は、加速度センサ 1Aを 25°Cに保持した上、図上方から 50°C、 1秒加熱した際の加速度センサ 1Aの温度分 布を FEM解析したものである。ここで、加速度センサ 1Aの寸法を 2. 0 X 3. 8mm ( 検出素子の厚み:0. 27mm)とし、保持部分の長さ D = 0. 8mmとし、主面電極 6, 7 の保持部材 10, 11によって保持された領域の長さ S = 0. 4mmとした。図 3において 、 Hは高温領域(50°C)、 Cは低温領域(25°C)、 Mは中間温度領域(37°C)を示す。
[0030] 図 4は、図 3と同一条件で加熱した際の各圧電セラミックス層 2a〜2dの厚み方向中 央部分の温度分布を示す。 X=0〜0. 8mmの範囲が保持部材 10, 11で保持され た領域 Dである。図 4から明らかなように、検出素子 2の保持部材 10, 11によって保 持されていない部分 (X> 0. 8mm)では、厚み方向の温度差は殆どないことがわか る。そのため、検出素子 2の保持部材 10, 11によって保持されていない部分からは 熱ゆらぎノイズは殆ど発生しない。焦電効果に影響するのは保持部材 10, 11で保持 された検出素子 2の第 1層 2aと第 4層 2dとの温度差であり、ここでは第 1層 2aの温度 は約 42°C、第 4層 2dの温度は約 35°Cであつた。
[0031] 次表は、図 3,図 4の温度分布から本発明(図 1)と従来例(図 6)との熱ゆらぎノイズを 比較したものである。表 1から明らかなように、保持部材で保持された領域のうち第 1 層 2aと第 4層 2dの分極をなくすことによって、本発明の熱ゆらぎノイズは従来比で半 減以下に改善されたことがわかる。
[0032] [表 1] 本発明 [mG rms] 従来例 [mG rms] 従来比
6 2 . 3 1 3 6 . 3 4 6 % 実施例 2
[0033] 図 5は本発明に係る加速度センサの第 2実施例を示す。なお、第 1実施例と同一部 分には同一符号を付して重複説明を省略する。この実施例の加速度センサ 1Bは、 一端部が保持部材 10, 11によって片持ち支持された検出素子 20を備えており、検 出素子 20は 2層の圧電セラミック層 20a, 20bを積層し、一体に焼成したものである。 検出素子 20の厚み方向中心には層間電極 21が設けられ、表裏面には主面電極 22 , 23が設けられている。 2つの圧電セラミックス層 20a, 20bは、矢印 Pで示すように厚 み方向に同一方向に分極されている。
[0034] 層間電極 21は外部電極 8が設けられた検出素子 20の一端から検出素子 20の中間 部まで延びている。つまり、検出素子 20の自由端側には電極ギャップが設けられて いる。主面電極 22, 23は、保持部材 10, 11によって保持された検出素子 20の一端 部から自由端まで延び、主面電極 22, 23は保持部材 10, 11の引出電極 12, 13と 異方性導電接着剤 14によって電気的に接続されている。検出素子 20の自由端側の 側面には接続電極 18が形成され、この接続電極 18によって主面電極 22, 23は相 互に接続されている。但し、層間電極 21とは導通していなレ、。この場合も、各圧電セ ラミックス層 20a, 20bが電気的に並列に接続される。
[0035] 加速度センサ 1Bの場合も、圧電セラミックス層 20a, 20bの分極域は図 5に梨子地状 模様で示すように、検出素子 20の保持部材 10, 11によって保持された領域外であ つて、電極 21 , 22間、および電極 21 , 23間に挟まれた領域のみとなつている。つま り、検出素子 20の保持部材 10, 11によって保持された領域 D内であって、圧電セラ ミックス層 20a, 20bを間にして対向する電極のうち互いに電気的に接続されていな い電極 21, 22間、電極 21 , 23間に挟まれた圧電セラミックス層の領域(図 5の領域 S )が分極されていなレ、。そのため、焦電効果による電荷が発生せず、熱ゆらぎノイズを 大幅に低減できる。
[0036] 本発明は上記実施例に限定されるものではない。検出素子を構成する圧電セラミツ タス層は、 4層構造または 2層構造に限るものではなぐ 6層、 8層など多層構造であ つてもよレ、。さらに、検出素子を構成する圧電セラミックス層は、一体に焼成したもの でもよいし、それぞれを焼成後に貼り合わせたものでもよい。 図面の簡単な説明
[図 1]本発明にかかる加速度センサの第 1実施例の正面図である。
[図 2]図 1に示した加速度センサの一部拡大図である。
[図 3]図 1に示した加速度センサに温度変化を与えた時の温度分布図である。
[図 4]図 3と同一条件で温度変化を与えた時の各圧電セラミックス層の中心部の温度 分布である。
[図 5]本発明に力かる加速度センサの第 2実施例の正面図である。
[図 6]従来の加速度センサの一例の正面図である。
[図 7]図 6に示した加速度センサの回路図である。
[図 8]図 6に示した加速度センサの焦電効果による発生電荷を示す図である。
符号の説明
1A, 1B 加速度センサ
2, 20 検出素子
2 &〜 2d 圧電セラミックス層
3, 4, 5 層間電極
6, 7 王 [ϋίΐ極
8, 9 外部電極
10, 11 保持部材
12, 13 引出電極
14 異方性導電性接着斉 1
18 接冗電極

Claims

請求の範囲
[1] 複数の圧電セラミックス層を積層した検出素子と、この検出素子の長さ方向一端部の 両主面を保持する保持部材とを備え、
上記検出素子は各圧電セラミックス層の層間および主面に電極を持ち、
加速度の印加によって上記検出素子に発生する電圧または電荷を上記主面電極と 層間電極との間から取り出すようにしたカ卩速度センサにぉレ、て、
上記検出素子の保持部材によって保持された領域内に上記主面電極とこの主面電 極に電気的に接続されていない層間電極とが延ばされており、
上記保持部材の内面には引出電極が形成されており、
上記保持部材によって保持された領域内に延ばされた上記主面電極の少なくとも一 部と上記保持部材の内面に形成された引出電極の少なくとも一部とが対向して相互 に電気的に接続されており、
上記検出素子の保持部材によって保持された領域内であって、上記主面電極とこの 主面電極に電気的に接続されてレ、なレ、層間電極との間に挟まれた圧電セラミックス 層の領域が分極されてレ、なレ、ことを特徴とする加速度センサ。
[2] 上記検出素子は、一方の主面側から他方の主面側に向かって第 1層〜第 4層の圧 電セラミックス層を有し、
上記検出素子の厚み方向の中心の層間電極と両主面電極とが電気的に接続され、 かつ少なくとも一方の主面電極が上記保持部材によって保持された端部であって端 面の手前まで引き出され、
上記少なくとも一方の主面電極は、この電極と対面する上記保持部材の内側面に形 成された引出電極と異方性導電性接着剤を介して電気的に接続され、
上記検出素子の第 1層と第 2層との層間電極と、第 3層と第 4層との層間電極とが電 気的に接続され、かつ上記保持部材によって保持された端部の端面まで引き出され ていることを特徴とする請求項 1に記載の加速度センサ。
[3] 上記検出素子の圧電セラミックス層のうち、第 1層と第 4層は同一厚みであり、第 2層 と第 3層は同一厚みであり、
上記第 1層の厚みに比べて第 2層の厚みの方が厚いことを特徴とする請求項 2に記 載の加速度センサ。
[4] 上記検出素子は、一方の主面側から他方の主面側に向かって第 1層と第 2層の圧電 セラミックス層を有し、
上記検出素子の両主面電極が上記保持部材によって保持された端部であって端面 の手前まで引き出され、
両主面電極と対面する上記保持部材の内側面に形成された引出電極と異方性導電 性接着剤を介して電気的に接続され、
上記検出素子の層間電極は上記保持部材によって保持された端部の端面まで引き 出されていることを特徴とする請求項 1に記載の加速度センサ。
[5] 上記保持部材によって保持された領域の上記主面電極は、上記圧電セラミックス層 の分極時には形成されておらず、上記保持部材によって保持されない領域の主面 電極を用いて分極した後、上記保持部材によって保持されない領域の主面電極と導 通するように形成されたものであることを特徴とする請求項 1ないし 4のいずれかに記 載の加速度センサ。
PCT/JP2007/054934 2006-05-15 2007-03-13 加速度センサ WO2007132588A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007541518A JP4692546B2 (ja) 2006-05-15 2007-03-13 加速度センサ及びその製造方法
US12/266,575 US7624639B2 (en) 2006-05-15 2008-11-07 Acceleration sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-134608 2006-05-15
JP2006134608 2006-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/266,575 Continuation US7624639B2 (en) 2006-05-15 2008-11-07 Acceleration sensor

Publications (1)

Publication Number Publication Date
WO2007132588A1 true WO2007132588A1 (ja) 2007-11-22

Family

ID=38693690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054934 WO2007132588A1 (ja) 2006-05-15 2007-03-13 加速度センサ

Country Status (3)

Country Link
US (1) US7624639B2 (ja)
JP (1) JP4692546B2 (ja)
WO (1) WO2007132588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404938B2 (en) 2010-12-24 2016-08-02 Murata Manufacturing Co., Ltd. Acceleration sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093680A1 (ja) * 2007-01-29 2008-08-07 Kyocera Corporation 加速度センサ
US20100043552A1 (en) * 2007-03-26 2010-02-25 Bjorn Henrik Stenbock Andersen 3-axial accelerometer
CN102611967B (zh) * 2011-12-09 2014-07-16 张家港市玉同电子科技有限公司 双晶压电陶瓷片及由其制备的双晶压电陶瓷扬声器
KR101255962B1 (ko) * 2011-12-30 2013-04-23 삼성전기주식회사 관성센서 및 그 제조방법
KR101659127B1 (ko) * 2013-09-25 2016-09-22 삼성전기주식회사 압전 액추에이터 모듈의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232267A (ja) * 1988-03-11 1989-09-18 Matsushita Electric Ind Co Ltd 振動加速度センサ
JP2003337140A (ja) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd 加速度センサ
JP2005164505A (ja) * 2003-12-05 2005-06-23 Murata Mfg Co Ltd 加速度センサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4428124B4 (de) * 1994-08-09 2005-08-18 Robert Bosch Gmbh Beschleunigungssensor
TW382164B (en) * 1996-04-08 2000-02-11 Hitachi Ltd Semiconductor IC device with tunnel current free MOS transistors for power supply intercept of main logic
JP4779423B2 (ja) * 2005-04-26 2011-09-28 パナソニック株式会社 振動型圧電加速度センサ素子とこれを用いた振動型圧電加速度センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232267A (ja) * 1988-03-11 1989-09-18 Matsushita Electric Ind Co Ltd 振動加速度センサ
JP2003337140A (ja) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd 加速度センサ
JP2005164505A (ja) * 2003-12-05 2005-06-23 Murata Mfg Co Ltd 加速度センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404938B2 (en) 2010-12-24 2016-08-02 Murata Manufacturing Co., Ltd. Acceleration sensor

Also Published As

Publication number Publication date
JPWO2007132588A1 (ja) 2009-09-24
JP4692546B2 (ja) 2011-06-01
US7624639B2 (en) 2009-12-01
US20090056450A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2007132588A1 (ja) 加速度センサ
JP3183177B2 (ja) 加速度センサ
WO2006098092A1 (ja) 積層セラミックコンデンサ
JP2015523672A5 (ja)
JP4190208B2 (ja) 加速度センサ
JP3114538B2 (ja) 圧電体素子及びその製造方法
US10502542B2 (en) Piezoelectric element and piezoelectric sensor
JP5403170B2 (ja) 積層型圧電アクチュエータ及び圧電振動装置
JP3966020B2 (ja) 加速度センサ
JP3966025B2 (ja) 加速度センサ
JP3574898B2 (ja) 加速度センサおよびその製造方法
JP5527545B2 (ja) 圧電素子及び圧力センサ
JP2007304019A (ja) 静電容量型力学量センサ
JP4894363B2 (ja) 加速度センサ
JP7040722B2 (ja) Mems素子
JP3203523B2 (ja) 加速度センサ
JP7167766B2 (ja) 圧電センサ
US9404938B2 (en) Acceleration sensor
JP2000261055A (ja) 圧電アクチュエータ
JPH0246907B2 (ja)
JP2003046156A (ja) 積層電気−機械エネルギー変換素子および振動波駆動装置
JPH11241966A (ja) 静電容量式圧力検出器
KR100217983B1 (ko) 압전체 소자 및 이의 제조방법
JP3184991B2 (ja) 積層型圧電アクチュエータ
JPH0555658A (ja) 積層型圧電アクチユエータおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007541518

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738406

Country of ref document: EP

Kind code of ref document: A1