WO2007129463A2 - 生体成分測定装置及び生体成分測定装置の較正方法 - Google Patents

生体成分測定装置及び生体成分測定装置の較正方法 Download PDF

Info

Publication number
WO2007129463A2
WO2007129463A2 PCT/JP2007/000466 JP2007000466W WO2007129463A2 WO 2007129463 A2 WO2007129463 A2 WO 2007129463A2 JP 2007000466 W JP2007000466 W JP 2007000466W WO 2007129463 A2 WO2007129463 A2 WO 2007129463A2
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
sample
biological component
body fluid
calibration
Prior art date
Application number
PCT/JP2007/000466
Other languages
English (en)
French (fr)
Other versions
WO2007129463A3 (ja
Inventor
Motoaki Murakami
Original Assignee
Nikkiso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co., Ltd. filed Critical Nikkiso Co., Ltd.
Priority to EP07737122.7A priority Critical patent/EP2011438B1/en
Priority to US12/298,523 priority patent/US8236257B2/en
Priority to JP2008514385A priority patent/JP5025639B2/ja
Publication of WO2007129463A2 publication Critical patent/WO2007129463A2/ja
Publication of WO2007129463A3 publication Critical patent/WO2007129463A3/ja
Priority to US13/541,532 priority patent/US8663579B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration

Definitions

  • the present invention relates to a biological component measuring device and a calibration method for the biological component measuring device, and more particularly, to a biological component measuring device used for a medical support device and the like, not only a sensor included in the biological component measuring device Biological component measurement device that can easily calibrate the entire device, and can be equipped with a flow path mounting substrate with a single touch, improving workability and being hygienic, and calibrating not only the sensor but also the entire device
  • the present invention relates to a biological component measuring apparatus that can be simply performed, and a method for calibrating a biological component measuring apparatus that can easily calibrate the entire apparatus during a period of measuring a biological component of a patient.
  • an artificial spleen device is a medical device incorporating this glucose measuring device.
  • body fluid components such as glucose in blood, which is a body fluid
  • medicinal fluids such as glucose and insulin are injected into the body to determine the patient's condition.
  • an artificial visceral device that performs closed-loop control to be controlled can be operated accurately and safely even for a long time.
  • it is very important to calibrate the sensor periodically and calculate the required amount of medicinal solution to be injected into the patient. is important
  • this flow path system is usually also referred to as a piping system because it is formed of a flexible and elastic tube.
  • a piping system Provided in the middle of the pipe for feeding the collected blood to the glucose sensor If the output value from the glucose sensor becomes inaccurate due to the piping in the handling pump being changed over time, the sensor itself changes over time and the measured value, which is output data from the sensor, is incorrect.
  • a conventional artificial spleen device blood sampling from a patient and injection of a medical solution into the patient are periodically suspended to calibrate the sensor. Specifically, for example, after the indwelling needle placed in the patient's vein is removed from the vein, the artificial visceral device and the patient are separated, and then the sensor in the artificial visceral device is calibrated and the calibration operation is performed. When the procedure is completed, the indwelling needle is again stabbed into the patient's vein, and then the patient's blood glucose level is measured using an artificial spleen device. Yes.
  • Patent Document 1 discloses a blood substance monitoring device for continuously measuring components in blood.
  • the invention is disclosed.
  • blood is continuously collected from the blood vessel indwelling force neule, and the substance in the blood is measured by the sensor, and the sensor supply liquid is immediately upstream of the sensor without interrupting blood collection.
  • the sensor was calibrated by switching from a blood sample to a calibration solution, and then immediately returned to its original state to resume measurement. Since the calibration is brief, the collected blood sample is discarded from the waste line.
  • Patent Document 2 discloses an invention of a method for calibrating a sensor such as a darose measuring device.
  • Patent Document 3 discloses an invention of a method for measuring a specific component in a body fluid that is measured while diluting a blood sample or the like at a plurality of dilution rates.
  • An invention of a blood glucose level control device or an artificial visceral device by controlling the injection amount of insulin by a specific method based on accurate blood glucose level measurement is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-8-1 5 2 5 3 7
  • Patent Document 2 JP-A-5 2 _ 1 3 5 7 9 5
  • Patent Document 3 Japanese Patent Application Laid-Open No. Sho 5 8 _ 1 9 8 3 5 1
  • Patent Document 4 JP-A-5 4 _ 8 2 8 8 5
  • Patent Document 5 Japanese Patent Laid-Open No. 5-5-2 1 90 5
  • Patent Document 6 Japanese Patent Laid-Open No. Sho 5 6 _ 2 8 7 6 5
  • the biological component measuring apparatus as described above has an advantage that the calibration of the sensor can be performed quickly and easily. However, if only the sensor in the biological component measurement device is calibrated, accurate measurement values may not be obtained due to changes over time in elements other than the sensor. That is, in the conventional biological component measuring apparatus, the measured value varies as each element of the biological component measuring apparatus other than the sensor changes with time. Even if only the sensor is calibrated when there is a change in the sample flow rate due to changes in the pump or sample flow path, or a change in the dilution ratio between the sample and diluent, Variations cannot be avoided.
  • the present invention has an object to provide a biological component measuring apparatus capable of solving such conventional problems, performing simple and reliable calibration of the entire apparatus, and accurately measuring biological components.
  • Another object of the present invention is to provide a biological component measuring apparatus capable of cleanly and easily exchanging various channels included in the biological component measuring apparatus and capable of accurately measuring biological components. It is.
  • Still another object of the present invention is to provide a safe, reliable and simple calibration method for the whole biological component measuring apparatus.
  • a biological component measuring apparatus for feeding a sample containing body fluid collected by a body fluid collecting device to a sensor by a sample flow path and a pump, and measuring a biological component in the sample by the sensor, the pump upstream of the sample flow path
  • the first flow provided on the side A living body comprising: a path switching valve; and a calibration liquid channel connected to the first channel switching valve and enabling the calibration liquid to be supplied to the sensor through the sample channel by the switching operation of the first channel switching valve.
  • the biological component measuring device comprising a body fluid diluent flow path for introducing a body fluid diluent into the body fluid collecting device,
  • a second flow path switching valve provided in the middle of the body fluid dilution liquid flow path and connected to the second flow path switching valve. By switching the second flow path switching valve, The biological component measuring device according to claim 1 or 2, further comprising a second bodily fluid dilution liquid flow path that enables mixing of the bodily fluid diluent with the calibration liquid.
  • the flushing liquid is connected between the body fluid collecting device of the sample channel and the first channel switching valve and / or between the second channel switching valve and the body fluid sampling device via the channel switching valve.
  • the biological component measuring apparatus according to any one of claims 1 to 3, comprising a flushing liquid flow path for circulating the liquid.
  • the biological component measuring device according to any one of claims 1 to 4, wherein the flushing liquid contains a biological component having a predetermined concentration.
  • any one of claims 1 to 5 further comprising a first diluent channel for diluting the sample in the sample channel connected downstream of the first channel switching valve provided in the sample channel.
  • the biological component measuring device further comprising a gas flow channel connected to a first diluent flow channel or a joining portion of the first diluent flow channel and the sample flow channel.
  • the flow path mounting substrate is:
  • the sample flow path can be connected to the calibration liquid tank, and the first flow path switching valve is provided on the upstream side of the pump of the sample flow path, and the calibration liquid in the calibration liquid tank is sampled.
  • a calibration liquid flow path mounted on the substrate so that liquid can be fed into the flow path;
  • the biological component measuring device can be connected to a bodily fluid diluent tank, and further includes a bodily fluid diluent flow path for introducing the bodily fluid diluent in the bodily fluid diluent tank into the bodily fluid collecting device.
  • a second flow path switching valve provided in the middle of the body fluid dilution liquid flow path and connected to the second flow path switching valve. By switching the second flow path switching valve, The biological component measuring device according to claim 8 or 9, further comprising a second bodily fluid dilution liquid flow path that enables mixing of the bodily fluid diluent with the calibration liquid.
  • the biological component measuring device according to any one of claims 8 to 11, wherein the flushing liquid contains a biological component having a predetermined concentration.
  • the device according to claim 8 further comprising a first diluent channel that is connectable to a diluent tank and is connected downstream of a first channel switching valve provided in the sample channel.
  • a biological component measuring apparatus according to claim 1,
  • the biological component measuring device calibration method according to any one of claims 4 to 7 and 1 1 to 15, wherein the diluent is sampled from the first diluent channel before the biological component is collected.
  • Introducing into the flow path and calibrating the zero point of the biological component measurement device The operation of introducing the flushing liquid into the sample flow path during the measurement of the minute, and switching the first flow path switching valve without introducing the flushing liquid into the sensor, and passing the calibration liquid in the calibration liquid flow path to the sample flow path.
  • a method for calibrating a biological component measuring device including an operation to be introduced into a sensor through
  • a method for calibrating a biological component measuring apparatus including an operation of introducing into the apparatus to prevent inflow of body fluids into this part.
  • the calibration liquid flow path for supplying the calibration liquid for calibrating the measurement value is connected to the upstream side of the pump of the sample flow path via the first flow path switching valve.
  • the biological component measurement device such as the sample flow path, pump, and sensor.
  • accurate measurement is always possible. In other words, in this biological component measuring apparatus, when the time elapses from the start of use, the output value output from the sensor fluctuates and an inaccurate measurement value is output and displayed.
  • a biological component measuring apparatus for example, an artificial spleen apparatus, is provided with a body fluid diluent flow path for introducing the body fluid diluent into the body fluid collecting device.
  • this bodily fluid diluted solution is mixed with bodily fluid collected from the bodily fluid collecting device, for example, blood, it is prevented that, for example, blood in the bodily fluid coagulates while the collected bodily fluid is sent to the sensor through the sample channel. .
  • the biological component measuring apparatus that can reduce the amount of collected body fluid and supply the body fluid dilution liquid to the body fluid collecting device and can adjust the concentration of the measured component within the sensor's output possible range. Can be provided.
  • a second flow path switching valve is interposed in the body fluid diluent flow path, and the second body fluid diluent flow path is coupled to the second flow path switching valve. ing .
  • the bodily fluid dilution liquid in the bodily fluid dilution liquid path can be mixed with the calibration liquid in the calibration liquid flow path.
  • the calibration fluid diluted with the bodily fluid diluent flows to the sample flow path and the sensor, so that the calibration data can be obtained with the calibration fluid with the concentration diluted with the bodily fluid diluent. can get. Therefore, according to the present invention, there is provided a biological component measuring apparatus capable of outputting a precisely calibrated measurement value by calibrating with calibration solutions having different concentrations.
  • the bodily fluid dilution liquid is mixed with the calibration liquid in the calibration liquid flow path via the second bodily fluid dilution liquid flow path, A liquid mixture of the calibration liquid and the body fluid dilution liquid is sent to the sensor through the sample flow path via the first flow path switching valve, so that the liquid is inserted in the sample flow path. It is possible to calibrate the fluctuation of the measured value in the sensor based on the change over time of the suction and discharge amount in the pump that pumps the pump and the body fluid diluent.
  • Both the pump that sends the body fluid diluent to the body fluid diluent flow path and the pump that sends the sample to the sample flow path handle the tube made of an elastic body, such as a pump or peristaltic pump, and push this tube.
  • a change over time such as a change in the inner diameter of the tube occurs during the operation of such a pump, and the amount of suction and discharge in the pump changes over time.
  • Variations in measured values output from sensors based on changes over time in such pumps are calibrated by simultaneous switching of the first flow path switching valve and the second flow path switching valve.
  • the second provided on the body fluid diluent channel so as to branch between the body fluid sampling device of the sample channel and the first channel switching valve and / or the body fluid diluent channel. Since the flushing fluid channel connected between the channel switching valve and the body fluid sampling device is provided, the flushing fluid led out from the flushing fluid channel is passed through the sample channel, body fluid sampling device, sensor, etc. Thrombus and gelled body fluid can be discharged from the biological component measuring device along with the sample after washing. Therefore, at the beginning of the calibration operation or immediately before the start of the calibration, the sample flow path, body fluid collection device, and sensor can be cleaned to prevent coagulation or alteration of body fluids such as blood in the sample. You can resume. In addition, during the calibration operation, it is possible to prevent coagulation of bodily fluids such as blood by introducing a flushing liquid into the sample channel between the body fluid sampling device and the first channel switching valve. .
  • the flushing liquid contains the same component to be measured as the component to be measured in the body fluid at a predetermined concentration
  • only the sensor can be calibrated by circulating the flushing liquid through the sensor. it can. If only the sensor can be calibrated, it is possible to detect fluctuations in measured values based on changes over time of the sample flow path and the pump interposed in the middle. As a result, if the pump is formed by a part of the sample flow path and the squeezing roller, it can be determined that changes over time in the sample flow path are making the measured value inaccurate. The sump It can be easily determined that the flow path should be replaced.
  • a check valve upstream of the first flow path switching valve of the calibration liquid flow path.
  • a check valve it is possible to prevent the sample collected by the body fluid collection device from entering the calibration fluid flow path due to a failure, malfunction, malfunction, or human error of the biological component measurement device.
  • unnecessary body fluid leakage from the living body can be prevented. Therefore, it is possible to reliably prevent the possibility of harming human safety.
  • a check valve in the body fluid diluent flow path. If a check valve is provided, the sample collected by the bodily fluid collection device can be prevented from entering the dilute fluid flow path due to a failure, malfunction, malfunction, or artificial malfunction of the biological component measurement device. In addition, it is possible to prevent unnecessary body fluid leakage from the living body. Therefore, it is possible to reliably prevent the possibility of harming the safety of the human body.
  • the diluent since the first diluent channel connected downstream of the first channel switching valve provided in the sample channel is provided, the diluent, for example, Improve measurement sensitivity and accuracy by adjusting the concentration of measurement components within the measurable range of the sensor and improving measurement stability by circulating phosphate buffer, physiological saline, etc. be able to.
  • the biological component sensor is, for example, a glucose sensor
  • the phosphate buffer adjusts the pH in the fluid collected from the body fluid collection device to ensure accurate measurement in the biological component sensor.
  • the time from collection of the body fluid with the body fluid collection device to measurement with the biological component sensor ie, time constant
  • the diluting liquid containing the surfactant also exhibits the effect of promoting the mixing of the body fluid and the diluting liquid.
  • the gas flow path connected to the first diluent flow path or the junction of the first diluent flow path and the sample flow path is provided, air, nitrogen, etc.
  • An active gas can be sent to the junction of the first diluent channel and the sample channel. Therefore, the mixing efficiency of the sample and the diluent is improved, and the residence time of the sample in the sample channel can be shortened, so the collected biological components can be measured quickly.
  • the biological component measuring device of the present invention includes a biological component measuring device main body and a flow path mounting substrate that is detachably formed on the biological component measuring device main body.
  • the flow path mounting substrate can be used as a disposable part.
  • the flow path mounting substrate is mounted with at least a sample flow path and a calibration liquid flow path.
  • One end of the sample flow path mounted on the flow path mounting substrate is detachably formed on a body fluid collecting device existing outside the flow path mounting board, and the other end of the sample flow path is external to the flow path mounting substrate. It is formed to be detachable from the sensor existing in
  • the first flow path switching valve provided in the middle of the sample flow path is also installed on this flow path mounting substrate.
  • the calibration liquid channel mounted on the channel mounting substrate is also installed and fixed on the channel mounting substrate.
  • the other end of the calibration liquid flow path that is, the end opposite to the one connected to the first flow path switching valve, is attached to or removed from a calibration liquid supply means existing outside the flow path mounting substrate, for example, a calibration liquid tank.
  • Join freely. A structure that detachably connects one end of the sample flow path and the body fluid collection device, a structure that removably connects the other end of the sample flow path and the sensor, and a detachment of the calibration liquid tank and the end of the calibration liquid flow path.
  • the structure that can be freely combined can be liquid-tightly combined, and various structures can be adopted as long as the bonding operation can be easily performed.
  • the liquid sample existing in the sample channel fixedly installed on the channel mounting substrate is transferred toward the sensor by a pump.
  • this pump may be installed and fixed on this flow path mounting board, but a part of the sample flow path installed and fixed on the flow path mounting board and the biological component measuring device It can also be formed with a rotating roller installed in the main body and capable of squeezing a part of the sample flow path.
  • a pump capable of transferring the liquid in the flow path in one direction in cooperation with a part of the flow path and the rotating roller can be employed as a pump in this biological component measuring apparatus.
  • the flow path mounting substrate includes the sample flow path and the calibration liquid flow path according to the purpose.
  • the body fluid diluent channel, the second body fluid diluent channel, the flushing fluid channel, the first diluent channel, and the gas channel can be mounted and fixed to the substrate.
  • the bodily fluid diluent flow path functions as a flow path for circulating the bodily fluid diluted liquid used for diluting the bodily fluid collected by the bodily fluid collecting means.
  • One end of this bodily fluid diluent flow path is separate from the flow path mounting substrate, and in some cases is detachably formed in a bodily fluid diluent tank that is a part of the biological component measuring device main body.
  • the other end of the liquid diluent flow path is detachably formed on the body fluid sampling device.
  • the end structure to be detachable can be the same as the end structure of the sample flow path and the calibration liquid flow path.
  • the biological component measurement apparatus of the present invention is configured such that the sample flow path and the calibration liquid flow path are further formed on the substrate in the flow path mounting substrate mounted on the biological component measurement apparatus main body, and further according to the purpose or as necessary. It is preferable to arrange and fix the body fluid diluent channel, the second body fluid diluent channel, the flushing channel, the first diluent channel, and the gas channel in an orderly manner.
  • Other parts existing outside the flow path mounting substrate such as body fluid sampling devices, body fluid dilution liquid tanks, calibration liquid tanks, sensors, etc., are less likely to malfunction, and easily Replacement is possible, and the usability of the biological component measuring device is very good and hygienic.
  • the biological component measurement device when the biological component measurement device is formed of a flow path mounting substrate and a biological component measurement device body to which the flow path mounting substrate is detachably attached, it is preferable that the calibration fluid tank is installed at a position lower than the body fluid collecting device. If the calibration fluid tank is installed at a position lower than the body fluid sampling device, the sample flow will not occur for some reason when the calibration fluid is supplied from the calibration fluid tank to the sample passage through the first passage switching valve. This prevents the force of the calibration fluid from reaching the body fluid sampling device by flowing backward in the path.
  • the calibration liquid tank By adjusting the positional relationship between the fluid and the body fluid sampling device to a high or low positional relationship, it is possible to prevent accidents such as the invasion of calibration fluid into the living body due to malfunction or malfunction of the biological component measurement device.
  • the calibration method of the present invention the variation of the measured value due to the change of the sensor over time, of course, the change of the sample flow path due to the change of the pump, the change of the flow rate of the diluent, etc. Since calibration is performed together, the operation required to calibrate the entire system is easy and time-consuming, which is convenient for the measurer. In general, only a limited number of proven materials can be used as the material for the flow path for body fluids used in medical devices such as biological component measurement devices, and at the same time, it is inexpensive. Is required. Even in such a case, according to the present invention, it is possible to calibrate the passage change of the flow path.
  • the biological component measuring device of the present invention is almost continuously used for blood glucose measurement during a long operation. It can be measured and is suitable.
  • the calibration method of the present invention it is possible to perform the zero point calibration of the biological component measuring device by introducing the diluent from the first diluent flow channel into the sample flow channel before collecting the biological component. .
  • the fluctuation of the zero point during measurement of biological components is small, so if zero calibration is performed once before measuring biological components, zero calibration is often unnecessary until the measurement is completed.
  • the normally installed flow path and the flow path switching valve for switching the flow path can be omitted so as to connect to the sensor downstream of the sample flow path for zero point calibration.
  • a flushing solution is introduced into the sample channel during the measurement of biological components, and a first channel switching valve between the sample and the calibration solution provided on the sample channel before the flushing solution is introduced into the sensor. Since the calibration liquid can be introduced into the sensor and the biological component measuring device can be calibrated, the overall time required for calibration can be shortened.
  • the flushing liquid is a component to be measured contained in the body fluid, such as a group
  • the course can be included at a predetermined concentration. In this way, when a flushing liquid containing a component to be measured having a predetermined concentration is used, only the sensor can be calibrated. If only the sensor can be calibrated, it is possible to determine whether the sample channel needs to be replaced, as already explained. That is, maintenance of this biological component measuring apparatus can be performed accurately.
  • the method includes the operation (first step) of introducing the flushing liquid from the flushing liquid channel into the sample channel during the measurement of the biological component.
  • the fluid can wash the sample flow path, body fluid collection device, and inside the sensor, etc., and discharge the thrombus and gelled body fluid together with the sample from the biological component measurement device, and the flushing fluid does not contain the measurement component If it is, zero-point calibration can be performed even when the body fluid collecting device and the living body are connected.
  • the first flow path switching valve between the sample and the calibration liquid provided on the sample flow path is switched to introduce the calibration liquid into the sensor to calibrate the biological component measurement device.
  • the measured value of the sensor at a specific measurement component concentration can be obtained by using a calibration solution containing a specific measurement component.
  • a calibration curve can be made from this measured value and the measured value obtained in the first step, and the whole biological component measuring apparatus can be calibrated.
  • less flushing liquid than the flushing solution introduced in the first step is introduced into the sample flow channel upstream of the first flow path switching valve and the body fluid collecting device, and the body fluid is introduced into this part.
  • Operation to prevent inflow (third step) Including the body fluid sampling device and the first channel switching valve during the calibration operation to prevent the body fluid such as blood from coagulating in the sample channel Can do.
  • FIG. 1 is a flow diagram showing an example of an embodiment of a biological component measuring apparatus provided with a bodily fluid dilution channel of the present invention.
  • FIG. 2 is a flow diagram showing an example of an embodiment of a biological component measuring apparatus provided with a flushing liquid channel of the present invention.
  • FIG. 3 is a flow diagram showing an example of an embodiment of a biological component measuring apparatus provided with a body fluid diluent channel and a first diluent channel according to the present invention.
  • FIG. 4 is a flow chart showing an example of an embodiment of a biological component measuring apparatus including a flushing fluid channel, a body fluid diluent channel, a first diluent channel, and a gas channel according to the present invention.
  • FIG. 5 is a flow diagram showing an example of an embodiment of the biological component measuring apparatus of the present invention equipped with the flow path arrangement substrate of the present invention.
  • FIG. 6 is a flowchart showing an example of a conventional biological component measuring apparatus.
  • FIG. 7 is a schematic diagram showing the structure of a tube pump.
  • FIG. 8 is a schematic diagram showing the structure of a pump.
  • FIG. 9 is a cross-sectional view showing a mixer structure.
  • FIG. 10 is a cross-sectional view showing the structure of the mixer, and is a cross-sectional view taken from a plane different from FIG. 9 by 90 degrees.
  • FIG. 11 is a schematic diagram showing the structure of a pyro type reciprocating pump.
  • FIG. 12 is a schematic view of the reciprocating pump shown in FIG. 11 as viewed from above (the presser plate 21 e is not shown).
  • the present invention relates to an improvement of a biological component measuring apparatus that measures and analyzes various biological components of body fluids in a living body including a human body.
  • the body fluid in the living body is, for example, blood, urine, lymph fluid, cerebrospinal fluid, or a mixture thereof, and examples of biological components that require qualitative or quantitative analysis of biological components include glucose, urea, uric acid, Examples include lactose, sucrose, lactate (lactic acid), ethanol, glutamic acid, ammonia, creatinine, and oxygen.
  • the concept of a biological component includes the pH value of body fluid, the oxygen concentration, and the like.
  • the biological component measurement device is a medical support device that is necessary for accurately grasping the state of the living body when performing a medical practice or the like.
  • a medical support device for example, an artificial spleen device that measures blood sugar level in blood and supplies insulin to the living body based on the result, an artificial dialysis device that performs dialysis, and contained in a body fluid of the living body Urea concentration meter that measures the concentration of urea, uric acid concentration meter that measures the concentration of uric acid contained in body fluids of living organisms, a sugar content measuring device that measures sugar content such as lactose and sucrose in body fluids, Examples thereof include a lactic acid measuring device that measures tate, a glutamic acid concentration meter that measures glutamic acid concentration, an ammonia concentration meter that measures ammonia concentration, a creatinine concentration meter that measures creatinine concentration, and the like.
  • these various biological component measuring devices are necessary for accurately performing medical practice. According to the present invention, such a biological component measuring apparatus can be operated efficiently and hygienically.
  • sensors that measure biological components with this biological component measuring device, depending on the type of biological component.
  • the sensor include biosensors such as enzyme sensors using enzymes, microorganism sensors using microorganisms, and hybrid sensors using enzymes and microorganisms.
  • the enzyme or microorganism used in such a biosensor is selected according to the component to be measured, that is, the biological component.
  • the component to be measured is glucose / S-D-glucosoxidase or Pseudomo nasf Iorecens
  • urease when the component to be measured is urea
  • uricase when the component to be measured is uric acid
  • Lactate toxidase when the measurement target component is lactate
  • lactase or _galactosidase when the measurement target component is lactose
  • alcohol oxidationase or T richosporonbrassicaes when the measurement target component is ethanol
  • measurement target Glutamate dehydrogenase or Escherichiacoli can be selected when the component is glutamic acid
  • nitrifying bacteria can be selected when the component to be measured is ammonia.
  • an osmium polymer is applied as a sensor on a carbon electrode, and then dried at room temperature, and an enzyme solution is overlaid thereon, and a cross-linking agent such as glutaraldehyde is used.
  • a cross-linking agent such as glutaraldehyde
  • One example is an immobilized biosensor.
  • the peroxidase enzyme is immobilized on the osmium polymer, so an oxidation reaction occurs with hydrogen peroxide, followed by a reduction reaction between the osmium polymer, peroxidase and the electrode.
  • the reaction condition at this time is OmV with respect to the silver-silver chloride electrode.
  • the glucose sensor includes a glucose sensor using an osmium (II) -biviridine complex, a glucose sensor using a ruthenium complex, a glucose sensor having a polypyrrole modified electrode with a tris-type osmium complex introduced, and the like. It can also be adopted.
  • the biosensor using an osmium polymer is preferable.
  • the preferred glucose sensor as this biosensor is preferably a thin film sensor comprising a working electrode such as platinum, silver or carbon and an enzyme membrane layer containing peroxidase in an osmium polymer layer.
  • the measurable biological component may be one type or two or more types.
  • two or more types of biosensors and the like may be connected in the middle of the biological component measurement channel for transferring body fluid collected from the living body.
  • the biological component measurement channel can be branched into a plurality of channels, and one or more biosensors can be connected to each branched channel.
  • the body fluid collected from the living body may be a body fluid collected as it is, for example, blood, urine, lymph fluid, cerebrospinal fluid, etc., and the body fluid collected from the living body and other fluids such as physiological saline, diluted solution, buffer solution, etc. It may be a mixed solution with the like.
  • the configuration of the biological component measuring apparatus of the present invention will be described with reference to the flowchart shown in FIG.
  • the basic configuration of the biological component measuring apparatus 1 of the present invention is composed of a body fluid collecting device 3a, a sensor 5, and a sample flow channel 1 1a, 1 1d, for transferring body fluid from the body fluid collecting device 3a to the sensor 5.
  • the calibration liquid tank 8 containing the calibration solution, the calibration solution channel 1 1 h for guiding the calibration solution to the sample channel 1 1 d, and the sample channel 1 1 a and the calibration solution channel 1 1 h Switch the sample collected by connecting to channel 1 1d and the calibration solution so that it can flow to sample channel 11 1d.
  • the calibration liquid tank 8 is expressed as a tank, but includes a container for storing a liquid such as a bag, a can, or a box.
  • the bodily fluid dilution tank, dilution liquid tank, drainage tank, and flushing liquid tank, which will be described later, are also used as general terms for storage containers.
  • the sensor itself may have a function of processing and storing the measurement result by itself, or displaying and outputting it. However, as shown in FIG. It is preferable to send a signal to the sensor signal calculation output device 7 as described above, and to process and store the measurement result by the sensor signal calculation output device 7, to display / output, and to transmit the result. Further, in an actual biological component measuring apparatus, the drainage liquid after measurement by a sensor such as a sample containing body fluid is guided from the sensor 5 to the drainage tank 6 through the drainage flow path 1 1 f and processed hygienically. It is preferable.
  • a body fluid dilution liquid such as an anticoagulant solution is introduced into the body fluid sampling device 3a, and the collected body fluid is diluted with the body fluid dilution liquid at the same time as the collection. It is preferable to use this sample.
  • a bodily fluid diluent tank 4a may be provided, and the bodily fluid diluent may be introduced into the bodily fluid collecting device 3a by the bodily fluid diluent channels 1 1c and 11b and the pump 10a.
  • a second flow path switching valve 9a and a second body fluid diluent flow path 11g connected thereto are provided downstream of the body fluid dilution flow path 11c, which is downstream of the pump 10a. It is preferable that the body fluid diluent can be introduced into the calibration fluid suction device 3 b provided for sucking the body fluid diluent from the calibration fluid tank 8 to the calibration fluid channel 11 h.
  • the calibration fluid suction device 3b has a structure similar to that of the body fluid collection device 3a, and the dilution ratio between the body fluid and the body fluid dilution fluid in the body fluid collection device 3a and the calibration fluid in the calibration fluid suction device 3b A structure in which the dilution ratio with the body fluid diluent is the same is preferable.
  • the bodily fluid collection device 3a such as a catheter with a dilution function
  • the above dilution ratios can be made the same.
  • the measurement and calibration method of the biological component by the biological component measuring apparatus 1 shown in Fig. 1 will be described.
  • the first flow path switching valve 9 b keeps the sample flow path 1 1 a and the sample flow path 1 1 d open, and shuts off the calibration liquid flow path 1 1 h side. This operation can be easily performed by using a three-way valve as the first flow path switching valve 9b.
  • the body fluid dilution flow path 11b and the body fluid dilution flow path 11c are opened, and the second body fluid dilution flow path 11g Keep the side cut off.
  • the pumps 1 O a and 1 O b are operated to collect a sample from the body fluid sampling device 3 a while supplying the body fluid diluted solution to the body fluid sampling device 3 a and lead it to the sensor 5.
  • the pumping amounts of the pump 10a and the pump 1Ob are adjusted so that the amount of sample introduced from the bodily fluid collection device 3a to the sample channel 11a is larger than the diluent supply amount.
  • the amount of sample guided to the sample flow path 1 1 a is less than or equal to the diluent supply amount, body fluid cannot be collected from the body fluid collection device 3 a.
  • Any biological fluid may be used as long as it does not adversely affect the living body, does not interfere with sensor measurement, and does not alter or coagulate the body fluid.
  • Saline or Ringer's solution Is preferred. If the amount is small, distilled water, phosphate buffer, etc. can be used. Further, since it is necessary to prevent blood or body fluid from gelling at the catheter tip or the like, a liquid in which an anticoagulant is mixed with the Ringer's solution, physiological saline, or distilled water is also suitable.
  • Anticoagulants include heparin, nafamostat mesylate, and urokinase.
  • a blood glucose level measuring device can measure for one to several days.
  • biosensors that use enzymes and microorganisms as described above, such as blood glucose level sensors, and if you do not calibrate within a few hours to tens of hours, you will get correct measurements. Often not.
  • the flow channels such as the sample flow channel and the diluent flow channel and pumps for fluid transfer are of the so-called disposable type, and inexpensive tubes such as PVC tubes and polyethylene tubes are used. Often. Made with these inexpensive tubes
  • the flow rate of the sampled flow rate is changed by changing the flow rate of the sample amount due to changes over time, such as the thickness of the flow channel in use, especially the inner diameter of the flow channel, that is, the cross-sectional area of the flow channel, changes in operating temperature during measurement, and changes in pump performance. Or the dilution ratio may change. Such changes in sample flow rate and dilution ratio cannot be handled by sensor calibration alone.
  • the calibration liquid is introduced from the sample flow path 1 1 a as close to the body fluid collection device 3 a as possible, and the sample flow path, the bodily fluid dilution liquid flow path, the pumps 1 O b and 1 O a and the sensor 5
  • the sample flow path, the bodily fluid dilution liquid flow path, the pumps 1 O b and 1 O a and the sensor 5 By calibrating as a whole, accurate calibration as the biological component measuring apparatus 1 can be performed. Therefore, it is possible to use a channel made of a material that changes the thickness of the channel, particularly the inner diameter of the channel, that is, the cross-sectional area of the channel when used for a long time.
  • the materials used in medical devices such as biological component measuring devices for the distribution of body fluids can be limited to proven materials, and at the same time are required to be inexpensive.
  • the passage of time can be calibrated, so that an unproven material can be used, and an inexpensive and highly safe material can be used.
  • the first flow path switching valve 9 b between the sample flow path 1 1 a and the calibration liquid flow path 1 1 h is preferably arranged in the sample flow path 1 1 a near the outlet of the body fluid sampling device 3 a. .
  • the second flow path switching valve 9a when a bodily fluid diluent is introduced into the bodily fluid collection device 3a, during calibration, the same amount of bodily fluid diluent as when collecting bodily fluids is calibrated using the second flow path switching valve 9a. It is convenient and easy to calibrate if the dilution ratio of the calibration fluid with the body fluid dilution is the same as the body fluid dilution ratio.
  • the biological component measuring device 1 of the present invention includes a body fluid collecting device 3 a and other parts constituting the biological component measuring device 1 ⁇ parts such as a body fluid diluent tank 4 a, a calibration fluid tank 8, It is preferable to use the sensor 5 and the drainage tank 6 in a higher position.
  • the calibration solution may cause free flow due to the difference in gravity and flow into the living body.
  • the calibration solution is the same component as the biological component, for example, a glucose solution having a concentration similar to that in the living body in the measurement of glucose concentration, so there is little risk to the living body, but it does not require sterilization. If calibration fluid flows into the body, it may cause infection. In order to prevent this, it is preferable to arrange the calibration liquid tank 8 below the body fluid sampling device 3a.
  • the calibration liquid tank 8 below the bed or the like on which the human body or the like that is the body fluid collection target is placed.
  • the height of the bed is about 45 cm, so if the liquid level of the calibration liquid tank 8 is 45 cm or less from the floor, such an arrangement can be secured. That is, it is preferable to collect the body fluid by attaching the body fluid sampling device 3a to the living body above the biological component measuring device 1, particularly the calibration fluid tank 8, or calibrate the body component measuring device 1. Since the calibration fluid may adversely affect the living body if it flows back into the living body, the calibration fluid tank 8 should be used in a state where the body fluid in the living body and the fluid in the body fluid collecting device 3a can move relative to each other.
  • the calibration fluid tank 8 When attaching the body fluid sampling device 3a to the living body, the calibration fluid tank 8 is placed below the body fluid sampling device 3a, and the sample channel 1 1a, the first channel switching valve 9b and the calibration fluid channel 1 1 It is preferable that the calibration liquid in the calibration liquid tank 8 does not easily flow into the living body due to gravity even if a malfunction occurs in h or the like or a human malfunction occurs.
  • the body fluid sampling device 3a does not necessarily have to be installed above the liquid level of the calibration fluid tank 8, and body fluid such as blood fluid can be removed from the site where the body fluid sampling device 3a is connected to the living body. If the sum of the pressure head and the position head is larger than the position head of the liquid surface of the calibration liquid tank 8, the calibration liquid will not flow into the living body.
  • the pressure of the peripheral vein is about 18 mm Hg, so the liquid level of the calibration fluid tank 8 is the body fluid sampling device. It is also possible to make the position 3a about 2440 mm higher than the part connected to the living body.
  • the pressure of the artery is higher than the pressure of the peripheral vein. It becomes possible to install.
  • the pump provided in each flow path is preferably a pump having a backflow prevention function.
  • a pump having a backflow prevention function such as a tube pump or a peristaltic pump is preferable. In this way, the backflow of the liquid in each flow path into the living body due to the abnormal flow of the fluid in each flow path is prevented, and unexpected fluid flow into the tank provided in the biological component measurement device such as a calibration tank is prevented. Intrusion can be suppressed.
  • the example of the biological component measuring apparatus of the present invention shown in FIG. 2 is obtained by adding a flushing liquid channel 1 1 m to the biological component measuring device described in the example shown in FIG.
  • the flushing fluid channel 1 1 m is connected to the body fluid dilution fluid channel 1 1 b via a channel switching valve 9 c and a channel switching valve 9 e, respectively.
  • the check flow valves for preventing backflow 1 4 a, 14 b, 14 c, respectively, for the calibration fluid flow channel 1 1 h, the body fluid dilution fluid flow channel 1 1 b, and the flushing fluid flow channel 1 1 m It has.
  • the body fluid collecting device 3a if the body fluid collecting device 3a is left attached to the living body even during the calibration of the device, the body fluid collecting device 3a and the sample flow channel 11a will A sample containing body fluid remains. If the sample stays in such a state, the body fluid in the sample, such as blood, may coagulate. In particular, if the diluent is not used or if the dilution amount is small, the components in the sample are likely to coagulate. In the embodiment of the invention shown in FIG. 2, the bodily fluid collecting device is used at the start of the calibration operation or immediately before the start so that the measurement can be resumed as soon as the calibration is completed to prevent the coagulation or alteration of the body fluid in the sample.
  • a flushing liquid introduction facility is provided for the purpose of cleaning the interior of the chamber 3a and the sample channel 11a.
  • Flushing liquid introduction equipment includes: flushing liquid tank 13, flushing liquid pump 10 d, flushing liquid flow path 11 k, 11 m, and flow path switching valves 9 c, 9 e and preferably Check valve 1 4 c Contains.
  • the pump 1 O d for flushing liquid delivery is a pump with a backflow prevention function such as a tube pump or a peristaltic pump
  • the flow switching valves 9 c and 9 e and the check valve Even if the valve 14 c is not installed, a back flow from the sample flow path side or the body fluid dilution liquid flow path side to the flushing liquid flow path side does not occur, so that these can be omitted.
  • the flushing liquid flow path is a flushing liquid pump 1 0 If there is a problem with the liquid d, the flow path switching valve 9 c, 9 e and check valve 1 4 with the function of a three-way valve c exhibits a backflow prevention function effectively.
  • the flushing liquid in the flushing liquid tank 1 3 passes through the flushing liquid flow path 1 1 k to the flushing liquid flow path 1 1 m by the pump 1 0 d. Then, the sample is introduced into the sample channel 1 1 a and / or the body fluid diluent channel 1 1 b from the channel switching valve 9 c and / or the channel switching valve 9 e through the check valve 14 c. Part of the introduced flushing liquid reaches the sensor through the sample flow path, and is further discharged to the drain tank through the drain flow path. Some flushing fluid flows into the living body through the body fluid sampling device.
  • the sample flow path, the sensor, the flow path of the body fluid collection device, etc. are washed with the flushing liquid, and the body fluid and the like that have become a thrombi together with the sample are discharged from the biological component measurement device (this The operation is called crotting removal.)
  • the sample channel 11a, the sensor, and the body fluid collection device 3a are filled with the flushing liquid, and the biological component is coagulated in the sample channel 11a, the sensor, and the body fluid collection device 3a.
  • the first flow path switching valve 9 b and the second flow path switching valve 9 a are switched to introduce the calibration liquid from the calibration liquid flow path 1 1 h to the sample flow path 1 1 d and its downstream, Calibrate component measuring device 1.
  • the flow path switching valve 9 c and the flow path switching valve 9 e are connected to the sample flow path 1 1 a, the body fluid diluent flow path 1 1 b, and the flushing liquid flow path 11 m during normal biological component measurement. It is preferable to block.
  • the senor can be cleaned not only by flushing but also by circulation of a calibration solution.
  • the first flow path switching valve When the tube 9b and the second flow path switching valve 9a are switched so as to be able to flow into the calibration liquid tank 8, the sample flow path 11a is held in a state filled with the flushing liquid. In this state, even if the flushing liquid delivery pump 10 d stops, it is in the same state as the generally-known saline lock, so that it is prevented from being clotted. If the pump for flushing liquid delivery 10 d is not stopped and then released slowly, for example, at a very small flow rate, the possibility of occurrence of clotting can be further reduced.
  • the flow rate of the flushing liquid is smaller than that when removing the mouthpiece (the operation of introducing the flushing liquid in this state is called anti-clotting).
  • the flushing solution at 5 to 50 O m I, preferably 10 to 3 OO m I is used at 1 to 60. It is introduced for about 2 seconds, preferably about 3 to 20 seconds, but when clotting is prevented, it should be introduced at 0.5 to 60 ml Z, preferably 1 to 2 O m I.
  • a smaller amount of flushing liquid may be introduced as long as it is possible to prevent clogging in the flow path. If there is no concern about coagulation of body fluid components etc. even if the sample remains in the sample flow path 1 1 a between the flow path switching valve 9 c and the first flow path switching valve 9 b, sample the flushing liquid. Calibration may be started at the same time as it is introduced into the channel 1 1 a and the body fluid sampling device 3 a. Usually, a flushing solution that does not harm the living body even if it enters the living body, such as physiological saline, may be used.
  • the introduction of the flushing liquid may be stopped after the sample channel 11 a and the body fluid collection device 3 a are filled with the flushing liquid.
  • the flushing liquid any liquid may be used as long as it does not adversely affect the body and does not alter or coagulate the body fluid or sample, or interfere with sensor measurement.
  • physiological saline or Ringer's solution can be preferably used. There is no problem with distilled water if the amount is small.
  • anticoagulants such as heparin, fuzan and urokinase are mixed with them. The combined solution is also suitable for use.
  • check valves 14 a, 14 b and 14 c The operation of the check valves 14 a, 14 b and 14 c will be described. These check valves prevent the sample collected by the body fluid sampling device 3a from entering an unexpected part due to a failure, malfunction, malfunction or human malfunction of the biological component measurement device.
  • the check valves 14 a and 14 b prevent the sample from flowing back into the calibration liquid tank 8 even when the calibration liquid flow path 11 h is not attached to the valves 9 a and 9 b.
  • Check valve 14 b prevents the sample from flowing back into body fluid diluent tank 4 a.
  • the check valve 1 4 c prevents the sample from flowing back into the flushing liquid tank 1 3.
  • These backflow prevention effects not only prevent the liquid in each tank from being contaminated, but also prevent unnecessary body fluid leakage from the living body.
  • the purpose of providing these check valves is to reliably prevent the possibility of harming the safety of the human body. If an incorrect operation is performed when the flow path is assembled or the flow path switching valve is operated, or if a malfunction occurs in the flow path device, the human body is more likely than the biological component measurement device including the calibration liquid tank. If the position is high, there is a risk of fluid loss such as unintentional blood removal from the human body, and a check valve is effective to prevent this.
  • the first flow path switching valve 9b and the first flow path switching valve 9a may be opened when the valves are switched. In such a case, if check valves 14a, 14b, etc. are installed, backflow is prevented.
  • the flow paths for sample flow such as sample flow paths 1 1 a, 1 1 d, 1 1 e, 1 1 o and drainage flow path 1 1 f are also reversed.
  • a stop valve can be installed.
  • the biological component measuring apparatus of the present invention illustrated in FIG. 3 introduces a dilute solution into the sample flow path 11 e to increase the measurement range of the sensor and improve measurement stability. Can be improved. In addition, by increasing the flow velocity, the time to reach the sensor can be shortened, so the time delay can be reduced. This greatly contributes to safety in devices such as artificial organs that perform feedback control that injects medicinal solutions using the measurement results, as it leads to ensuring control stability.
  • the biological component measuring apparatus according to the present invention includes a diluent tank 4 b and a first diluent flow channel 1 1 for introducing the diluent from the diluent tank 4 b to the pump 10 0 c in the biological component measuring apparatus shown in FIG.
  • pump 1 O c for pumping the diluent in diluent tank 4 b into sample channel 1 1 e, and first for transferring diluent from pump 1 O c to sample channel 1 1 e Diluent channel 1 1 j is added.
  • the diluent is preferably introduced into the sample flow channel 11 e downstream of the sample pump 1 O b.
  • the diluent can be supplied to the sample flow path 11 e so as to obtain a desired sample concentration that provides the best sensor sensitivity and accuracy.
  • the diluent can stabilize the pH of the sample, keep the sample temperature constant, prevent gas generation from the sample in the sensor, and prevent sample deterioration.
  • any fluid can be used as long as it does not interfere with sensor measurement and does not alter the sample.
  • physiological saline, phosphate buffer, or the above-mentioned body fluid diluent may be used.
  • the phosphate buffer has the effect of increasing the charge transfer capability of the diluted sample, which may improve the accuracy of the sensor and can be a suitable diluent.
  • the diluent may contain a surfactant.
  • the diluent containing a surfactant also has the effect of promoting mixing of the sample and the diluent.
  • the diluent in blood glucose level measurement by the biological component measurement apparatus of the present invention, can dilute the sample transferred by the sample flow path 1 1 e, Furthermore, a solution capable of maintaining the pH of the sample supplied to the sensor 5 constant, for example, a buffer solution such as a phosphate buffer solution is preferable.
  • a buffer solution such as a phosphate buffer solution
  • the pH of the sample solution is kept constant by the buffer solution, so that a stable blood glucose level can be measured with a glucose sensor sensitive to pH.
  • the sample diluted with the diluent can be quickly introduced into the sensor at a stable temperature, and the glucose level can be measured with high accuracy.
  • the biological component measuring device illustrated in FIG. 4 is the same as the biological component measuring device shown in FIG.
  • the first diluent channel In order to complete the mixing of the sample and the diluent in the sample channel 11e in which the biological component measuring device shown in Fig. 3 is combined and the diluent is further introduced, the first diluent channel, or This is a mode in which a gas flow channel is connected to the junction of the first diluent flow channel and the sample flow channel so that a gas for promoting mixing, for example, air can be introduced.
  • a mixer 15 is disposed in the mixing portion of the sample flow path 11 e and a gas-liquid separator 16 is disposed downstream of the mixer 15, so that the mixing effect of the mixer 15 and gas introduction is exerted. Yes.
  • gas is separated by the gas-liquid separator 16 and removed to the exhaust gas tank 6 through the exhaust gas flow path 11 p, and only the uniformly mixed sample is sent to the sensor. If there is an excess sample, the excess sample is discharged from the gas-liquid separator 16 to the exhaust gas tank 6 through the exhaust gas passage 11 p. If the sample is thoroughly mixed with the diluent and introduced into the sensor 5 in this way, measurement stability by the sensor 5 is improved, and measurement sensitivity and measurement accuracy are further improved.
  • the sample that has been measured by sensor 5 is sucked by pump 10 f that is set to a lower flow rate than the sum of the flow rates of pumps 1 O b and 1 O c from drainage channel 1 1 f. And discharged to the drainage tank 6.
  • FIG. 5 is an example of an embodiment in which a flow path arrangement substrate is arranged in the biological component measuring apparatus of the embodiment shown in FIG.
  • the flow path arrangement substrate 19 includes a sample flow path, a body fluid dilution flow path, a first dilution liquid flow path, a second dilution liquid flow path, a drainage flow path, and a gas flow.
  • Various flow paths such as body flow paths, and pump tubes 10, flow path confluencers 17, mixers 15, and gas-liquid separators 16 existing on these flow paths are arranged.
  • at least a part of the sample flow path is disposed on the flow path arrangement substrate 19 of the present invention.
  • the flow path arrangement substrate 19 includes the sample flow path 1 1 d, 1 1 e, 1 1 ⁇ (refer to FIG. 4), the body fluid dilution liquid flow path 1 1 c, and the first dilution.
  • Various flow paths used in biological component measuring devices such as liquid flow paths 1 1 i, 1 1 j, second dilution liquid flow path 1 1 q, drainage flow path 1 1 f, and gas flow path 1 1 n,
  • a pump tube 10 a flow confluencer 17, a mixer 15, and a gas-liquid separator 16 existing on these flow paths. See also Figure 5.
  • the biological component measuring apparatus of the embodiment shown in FIG. 5 will be further described.
  • the body fluid collected from the body fluid collecting device 3a is diluted with the body fluid diluent supplied from the body fluid diluent tank 4a, and passes through the sample flow paths 1 1a, 1 1d, 1 1e, and the sensor. Led to 5. Meanwhile, the diluent and the gas from the gas channel are introduced into the sample channel 11 e, and the sample and the diluent are completely mixed by the mixer 15.
  • the gas and liquid separator 16 discharges the gas and the excessively diluted sample, and an appropriate amount of sample is guided to the sensor 5.
  • the sample that has been measured is guided from the sensor 5 to the drainage tank 6 through the drainage channel 1 1 f.
  • the first flow path switching valve 9 b When calibrating instead of measuring, first flush the sample flow path and sensor with the flushing liquid in the flushing tank 13 as described above, then the first flow path switching valve 9 b, the second flow path switching valve. 9 Calibrate the biocomponent measurement device by switching a to guide the calibration solution. At this time, in order to calibrate the zero point, it is only necessary to introduce only the diluent from the second diluent flow path 1 1 q into the sensor 5 and measure the sensor indicated value. Another method for zero calibration is to supply the dilution liquid to the sensor before collecting the body fluid components, and zero calibration is possible if the dilution liquid is supplied in a sufficient amount to fill the sensor flow path.
  • the fluctuation of the zero point during the measurement of the body fluid component is small, so if zero calibration is performed once before the body fluid measurement, in many cases, no mouth calibration is required until the measurement is completed. In this case, the second diluent flow channel 1 1 q and this flow channel switching The flow path switching valve for can be omitted.
  • zero calibration can be performed using the flushing solution. Normally, the body fluid measurement component is not included in the flushing fluid, so if the flushing pump is activated and the clotting removal operation is performed on the sample channel during the operation of the biological component measurement device, the flushing fluid flows into the sensor. . If the flushing solution has no sugar concentration, such as physiological saline or Ringer's solution, zero calibration can be performed even when the biological component collection device 3a is connected to the living body. Sensor flushing can also be performed with calibration fluid instead of flushing fluid.
  • the flow paths on these flow path arrangement substrates 19 are detachable from the corresponding flow paths on the biological component measurement apparatus or devices such as tanks and valves at their ends. When these are mounted on the biological component measuring apparatus, these flow paths are connected, and when the flow path arrangement substrate 19 is detached, these flow paths are also removed. In this way, the flow path arrangement board 19 and the flow path arranged on the flow path arrangement board 19 can be easily and hygienically replaced when the DUT 2 changes or the measurement time is different. Can do. In particular, in order to prevent leakage of body fluid when removing the flow path arrangement substrate 19, before removing the flow path arrangement board 19, flushing liquid, bodily fluid dilution liquid, calibration liquid, dilution liquid, etc. should be added to the sample flow path etc.
  • Such a channel arrangement substrate 19 is called a so-called disposable type channel arrangement substrate.
  • Substrate materials used for such disposable-type flow path placement substrates and equipment materials such as flow paths are usually not used for a long period of time, so those that are inexpensive and readily available are preferred.
  • These substrate materials are generally used as equipment materials such as flow paths, for example, relatively inexpensive resins such as vinyl chloride, polyethylene, polypropylene, polystyrene, polyester, nylon, natural rubber, butadiene rubber, isoprene rubber, and SBR. And rubber.
  • Sensor 5 and pump for introducing flushing liquid 1 O d, etc. Force that can be placed on the flow path placement board 19 Increased cost of use and simplification and hygiene when mounting the flow path placement board upper
  • a preferred arrangement may be selected from considerations.
  • the first diluent flow path 11 i includes a heater 18 that is an example of a heating means for heating the diluent.
  • the heater only needs to be able to heat the diluent flowing through the first diluent channel 11 i.
  • This heater 18 has the purpose of controlling the temperature of the diluted solution and finally the temperature of the sample introduced into the sensor 5.
  • the sensor 5 is controlled to the same temperature as the living body in consideration of measurement stability. In the case of measuring body fluid from the human body, it is often controlled at 36 to 38 degrees. However, the sample containing the collected body fluid often falls due to the temperature of the diluted solution due to the outside air temperature in the flow path. In particular, when the outside air temperature is low, the impact is large.
  • the sensitivity and accuracy of the sensor may change, or bubbles may be generated from the sample whose temperature has risen suddenly in the temperature-controlled sensor, and measurement may be disturbed.
  • body fluids, especially blood are easily gelled or altered when the temperature is higher than the temperature in the living body. For example, in the case of human blood, if it is 40 ° C. or more, gelation may occur. For this reason, when controlling the temperature of the sample by keeping the sample flow path, strict temperature control is required to prevent the sample temperature from exceeding 40 degrees.
  • the diluted solution does not contain bodily fluids and is relatively stable, so there is no problem even at a high temperature of 50 ° C or higher.
  • the heater 18 is installed from such a viewpoint.
  • the heater 18 is installed so as to keep the temperature of the first diluent flow path 1 1 i between the diluent tank 4 b and the pump. It only needs to be on the first diluent flow path between the channel merger 17 and can also be installed downstream of the pump.
  • the biological component measuring device can be calibrated as a whole device including not only the sensor but also the flow path pump. Calibration is usually zero calibration.For example, if the measurement item is a blood glucose level, the sugar concentration is zero and span calibration.If the measurement item is a blood glucose level, the measurement is performed at a sugar concentration of 200 mg / dL. Make a line and calibrate.
  • the span calibration value fluctuates greatly, but the zero calibration fluctuates little, so it may be omitted and calibration can be performed, but more accurate calibration can be performed by calibrating zero.
  • the second dilution liquid flow path 1 1 i of the second dilution liquid tank 4 b is a flow path for introducing the dilution liquid directly from the second dilution liquid flow path 1 1 j to the sensor 5.
  • the zero calibration calibrate the sensor 5 by supplying only the diluent.
  • the diluted solution is suitable as a zero calibration solution because there are no components to be measured, such as sugar.
  • the zero calibration of the sensor 5 can be started when the flushing process, which is the pre-calibration stage, is entered.
  • a zero time calibration is performed by introducing the diluent for a required time, for example, about 1 minute. Good. If zero calibration is performed at the same time as flushing begins, the overall calibration time can be reduced.
  • accurate calibration can also be performed by multi-point calibration. Multi-point calibration is not a zero calibration and a single point span calibration, but a multi-point span calibration to create a calibration curve. Naturally, the multi-point calibration has a higher system than the two-point calibration.
  • multi-point calibration To perform multi-point calibration, provide multiple calibration fluid tanks 8 with different concentrations, switch them and introduce them into the calibration fluid flow path, or change the flow rate ratio between the body fluid dilution fluid or the dilution fluid and the calibration fluid. It is also possible to perform multi-point calibration by adjusting the concentration of the calibration solution when introduced into the sensor 5.
  • the flow path switching valves 9a and 9b are not three-way valves but 4-way valves, 6-way valves, etc. Multiple calibrations may be performed.
  • the pump can be any type of pump that can quantitatively transfer the required amount of each fluid.
  • the gas transfer means is also referred to as a pump.
  • a so-called tube pump in which a tube as a flow path can be used as it is and a pump called a caulking pump are preferable (referred to as a tube pump for convenience).
  • a tube pump for convenience.
  • this tube pump includes a roller 20 0 a for squeezing an elastic pump tube 10 that forms a flow path, a shaft 20 0 c for supporting the roller 20 a, A rotating shaft 2 O b that rotates the roller 20 a by coupling and supporting the shaft 20 c and a pressing plate 2 0 d, and the rotating roller 2 0 a squeezes against the pump tube 10 Works.
  • the roller 20 a also rotates around the rotary shaft 20 b by the rotation of the rotary shaft 20 b, and the pump tube 10 can be squeezed by the rotational motion of the roller 20 a. It has become so.
  • Roller 2 0 a cooperates with holding plate 2 0 d to pinch pump tube 1 0, crush pump tube 1 0, and roller 2 0 a
  • the fluid is extruded downstream of the pump tube 10.
  • the pump tube 10 is a part of the flow path such as the sample flow path 11 d and at the same time a part of the pump 10 b.
  • the various parts of the tube pump 20 connected to this flow path together with various flow paths arranged on this flow path arrangement substrate 19
  • a pump tube 10 is also arranged.
  • the pump tube 10 is provided with a roller 20 a and a pressing plate 20 provided in the biological component measuring device.
  • the tube pump 20 is formed.
  • the fluid in all the flow paths can be forcibly transferred by acting on all the flow paths where the fluid needs to be transferred.
  • the pump tubes 10 for the flow paths to be transferred are arranged in parallel on the flow path arrangement substrate 19 so that they can be transferred.
  • the roller 20 0a of the tube pump 20 is elongated, and all the above pump tubes 1 0 Can be rubbed simultaneously with the same roller 2 0 a.
  • the flow rate per unit time of the fluid transferred in the flow path is determined by the sectional area of the pump tube 10 and the rotational speed of the rotary shaft 20 b.
  • the flow velocity of the fluid in each flow path is determined only by the cross-sectional area of the pump tube 10. That is, the flow rate when the fluid is transferred by being squeezed by the roller 20a can be appropriately determined by adjusting the inner diameter of the pump tube 10 in the flow path.
  • a pump is called a multi-pump.
  • the multi-pump has a simple structure and the flow rate ratio between the channels can always be kept constant.
  • a peristaltic pump can be mentioned as a structure having the same operation as the tube pump 20 shown in FIG.
  • a pump having a pressing action shown in FIG. 8 can be cited as a suitable pump.
  • the pressing pump 21 having the pressing action shown in FIG. 8 has a pump tube 10 sandwiched between pressing plates 2 1 d and 2 1 e, and an opening 2 provided in the lower pressing plate 2 1 d. 1 f is provided with a pressing element 21a that can be projected and retracted from the upper end opening of the opening 21f, and an eccentric rotating cam 21b that rotatably contacts one end of the pressing element 21a.
  • the pump When the eccentric rotating cam 21 rotates eccentrically by the rotation shaft 21c, the pump performs a translational movement so that the pressing member 21a protrudes and retracts from the opening 21f.
  • the lower holding plate 21 1 d can also be used as the flow path arrangement board 19, and the flow path arranged on the flow path arrangement board 19, for example, the sample flow path 11 d
  • the pump tube 10 has a first poppet valve 21 g and a second poppet valve 21 h.
  • the holding plate 2 1 e holds the elastic pump tube 10. According to this pump 21, the pump tube 1 sandwiched between the first poppet valve 2 1 g and the second poppet valve 2 1 h when the presser 2 1 a presses the pump tube 10.
  • the first poppet valve 21 g When the internal volume in 0 is reduced, the first poppet valve 21 g is closed, while the second poppet valve 21 h is opened, and the fluid present in the pump tube 10 Is the second poppet bal Spills out of 2 h.
  • the pusher 2 1 a moves backward after the internal volume in the pump tube 10 becomes minimum, the internal volume of the pump tube 10 returns to the original volume due to the elastic force of the pump tube 10. Become.
  • the first poppet valve 21 g is opened, while the second poppet valve 21 h is closed, so that fluid flows into the pump tube 10. 2 Enter through 1 g.
  • the pump shown in FIG. 8 repeats inflow and discharge of fluid into the pump tube 10 in cooperation with the flow path which is also the pump tube 10.
  • the pump for the flushing liquid may be one of the above-described multi-pumps. However, since the flow rate is often larger than the flow rate of the pump such as a sample, it may be provided individually.
  • the pump for flushing liquid is tube pump, peristaltic pump, pump shown in Fig. 8 above, diaphragm type pump, elastic tube of pump shown in Fig. 8 as shown in Fig. 11 and Fig. 12 is thickened A so-called pyro type reciprocating pump which is inflated is preferably used. These pumps are preferably pumps having a backflow prevention function.
  • the material of the flow path arrangement substrate 19 is not particularly limited as long as the above-described various flow paths and the like can be mounted.
  • the flow path arrangement substrate 19 is made of a hard synthetic resin, and sometimes soft. And may be made of a soft soft synthetic resin.
  • the substrate 3 may be made of PVC sheet material, rigid PVC, hard film such as PET, or soft PVC material that can be easily bonded to the PVC tube.
  • the manufacturing method of the flow path arrangement substrate 19 may be machining from a raw material plate, but molding is preferable in consideration of price, reduction of waste materials such as processing waste, and mass productivity. As the molding process, compression molding, injection molding, etc. are generally suitable for medium volume and mass production.
  • the tube is attached to the board by adhering and placing the tube at a predetermined position on the base board. It is also possible to use a hollow, high-precision molding method without tube bonding, and a method of integrally forming tube piping. It is also possible to use molding by the melt core method in which a core made of a soluble material is molded and then the core in the pipe is melted to form a hollow core.
  • the substrate 3 is preferably an elastic soft material so that dimensional accuracy can be afforded.
  • the flow path arrangement substrate 19 may be attached to the mounting surface of the biological component measuring apparatus 1 with pins or hooks. In particular, the flow path arrangement substrate 19 made of a stretchable resin or the like is suitable because it can be attached to and detached from the biological component measuring apparatus 1 with a single touch.
  • the connection with the flow path is preferably a simple connector that can be freely attached and detached.
  • both flow paths are made of a flexible material in a tube shape, and the inner diameter of one flow path end is made approximately equal to the outer diameter of the other flow path end, and the latter tube is used as the former. Just plug it into the tube.
  • both flow paths are formed of a flexible material into a tube with the same outer diameter, a short tube with an inner diameter equal to the outer diameter of the tube is used as the connector for connection, and the ends of both tubes to be connected are connected to this connector.
  • a luer type connector used in a tube made of soft vinyl chloride can be suitably used. Since the flow path tube in the present invention is assumed to be replaceable, it is often manufactured in consideration of economy. In this case, a tube made of soft vinyl chloride is a suitable material. Soft vinyl chloride-polycarbonate luer-type connectors can be easily connected to soft vinyl chloride tubes, and are also suitable in terms of manufacturing cost, difficulty in leaking internal fluid, and difficulty in disconnection. In addition, as a simple connector, there may be a type in which a tube having a so-called bamboo shoot shape in which the outer surface of the tip of the tube is thin in a step shape is fitted inside.
  • the mixer 15 can mix the sample supplied from the sample flow path 1 1 e and a diluent such as a buffer supplied from the first diluent flow path 1 1 j. As long as various structures can be adopted. For example, only a certain length of tube may be used. In this biological component measurement device, the sample flow path 1 1 o from the mixer 15 to the sensor 5 is often short, so a structure that sufficiently mixes the sample and the diluent before the sensor 5 is used. It is preferable to do.
  • An example of a suitable mixer 15 is a mixer having a structure shown in a sectional view in FIG.
  • This mixer 15 includes a concave-convex portion 15 c in which concave and convex portions continue along a fluid flow direction on a part of the inner wall forming the internal flow space 15 b of the rectangular parallelepiped mixer main body 15 a.
  • the internal circulation space 15 b is connected to the sample channel 1 1 e, the first diluent channel 1 1 j, and the gas channel 1 1 n at the lower part, and to the sample channel 1 1 o at the upper part. It is connected.
  • a cross section of the mixer 15 corresponding to the section A_A in FIG. 9 is shown in FIG.
  • the concavo-convex portion 15 c has a central shape formed in a rhombus shape.
  • the concavo-convex portion 15 c is a V-shaped concavo-convex portion that is initially formed in a V shape along the fluid flow direction, in other words, a plurality of V-shaped concavo-convex portions that are initially formed in a V shape.
  • a V-shaped concavo-convex portion comprising a convex portion and a V-shaped concave portion formed between the convex portions, and an inverted V-shaped concavo-convex portion formed in a reverse V-shape from the central portion inside, Then, it comprises an inverted V-shaped concavo-convex portion including a plurality of convex portions formed in an inverted V shape and concave portions formed between the convex portions.
  • the sample and the diluent introduced into the mixer main body 15 a collide with the first convex portion in the uneven portion 15 c.
  • the flow of the sample and the diluent is disturbed, and the disturbed sample and the diluent get over the first convex part and reach the next concave part.
  • the sample and the diluent collide with the next convex part.
  • the liquid flow is disturbed.
  • the flow is divided so that the sample and the diluting liquid are turbulent, and the sample and the diluting liquid collide with the convex portion and are turbulent, and the component in the straight direction
  • the sump is repeated by repeatedly dividing the uneven part with the diagonal component of 15 c And the diluent can be mixed.
  • the mixer 15 is a case where only the sample and the diluent are mixed.
  • the mixer 15 is not limited to this, and in order to improve the mixing efficiency, the sample and the diluent are mixed.
  • An inert gas such as air or nitrogen, may be introduced into the mixer internal space 15 b to mix the sample and the diluent.
  • FIG. 4 illustrates a flow chart of the biological component measuring apparatus of such an embodiment. In this embodiment, a gas flow path 11 n is provided.
  • the gas channel 1 1 n is an elastic tube, similar to the sample channel 1 1 d, etc., and the gas channel 1 1 n is squeezed by a roller in the pump tube section, and the gas in the channel, for example, air Can be supplied to the mixer 15 side.
  • the diluent and air are mixed and the sample is mixed therewith.
  • a gas-liquid separator 16 is provided downstream of the mixer 15 to separate the liquid, which is a mixture of the diluent and the sample, and a gas such as air, and the gas and excess liquid are exhaust gas. Exhaust from channel 1 1 P.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • External Artificial Organs (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

装置全体として簡便に確実な較正を行い、正確な生体成分測定が可能な生体成分測定装置1と、この生体成分測定装置による較正方法を提供する。 体液採取装置3aで採取した体液を含むサンプルを、ポンプ10bによりサンプル流路11a,11d,11eを介してセンサ5に送液してサンプル中の生体成分を測定する生体成分測定装置であって、前記サンプル流路の前記ポンプの上流側に較正液を供給する較正液流路11hと、該較正液流路と前記サンプル流路とを接続する第一流路切換バルブ9bを設け、該第一流路切換バルブを切り替えることにより較正液を前記較正液流路および前記サンプル流路を介して前記センサに導入することにより、センサの較正を行う。

Description

明 細 書
生体成分測定装置及び生体成分測定装置の較正方法
技術分野
[0001 ] この発明は、 生体成分測定装置及び生体成分測定装置の較正方法に関し、 詳しくは、 医療支援装置等に使用する生体成分測定装置であって、 生体成分 測定装置に含まれるセンサだけでなく装置全体の較正を簡便に行える生体成 分測定装置、 更にはワンタッチで流路搭載基板を装着することができて作業 性が向上し、 しかも衛生的であり、 センサだけでなく装置全体の較正を簡便 に行うことのできる生体成分測定装置、 及び患者の生体成分を測定する期間 中に、 装置全体の較正を簡便に行うことのできる生体成分測定装置の較正方 法に関する。
背景技術
[0002] 従来、 医療現場等で使用される生体成分測定装置として、 例えば血液中の 血糖値を測定するグルコース測定装置がある。 このグルコース測定装置を組 み込んだ医療装置として人工塍臓装置がある。 人工塍臓装置の中でも、 例え ば、 連続的あるいは間欠的に体液である血液中のグルコース等の体液成分を 測定し、 それによりグルコースやインスリンなどの薬液を体内に注入し、 患 者の状態をコントロールするクローズドループ制御を行う人工塍臓装置は、 長時間の使用でも正確に安全に運転できることが重要である。 具体的には、 人工塍臓装置においては、 4時間から一週間程度にわたる期間中、 正確な測 定値の得られることが重要であるとされている。 正確で変動のない測定値を 得るためには定期的にセンサの較正を行い、 患者への正確な必要薬液注入量 を算出することが、 人工塍臓装置の安全性を保持する上で非常に重要である
[0003] ところが、 例えば、 人工塍臓装置における各種の流路系 (この流路系は、 通常、 柔軟で弾力性のあるチューブで形成されるので配管系とも称される。 ) 、 特に、 採取された血液をグルコースセンサに送液する配管の途中に設け られた扱きポンプにおける配管が経時変化してしまうことによりグルコース センサからの出力値が不正確なものとなる場合、 センサ自体が経時変化して しまってセンサからの出力データである測定値が不正確なものとなる場合が あ^
[0004] そこで、 従来の人工塍臓装置にあっては、 患者からの採血や患者への薬液 の注入を定期的に一時中断してセンサの較正を行っている。 具体的には、 例 えば患者の静脈に留置している留置針を静脈から取り外すなどして人口塍臓 装置と患者とを分離した上で、 人工塍臓装置におけるセンサの較正を行い、 較正操作が完了すると、 再び患者の静脈に留置針を刺し留め、 その後に人工 塍臓装置により患者の血糖値を測定し、 測定された血糖値に基づいて決定さ れる量の薬液を患者に注入している。
[0005] 患者からの体液採取を中止することなくセンサの較正を行うことのできる 生体成分測定装置として、 例えば特許文献 1には、 血液中の成分を連続測定 するための血中物質モニター装置の発明が開示されている。 この発明によれ ば、 血管留置力ニューレから血液を連続的に採取し、 血中物質をセンサによ り測定しており、 血液の採取を中断することなく、 センサ供給液をセンサの すぐ上流で血液サンプルから較正液に切り替えてセンサを較正して、 その後 すぐに元に戻して測定を再開している。 較正している間は短時間なので採取 した血液サンプルは廃棄ラインから廃棄している。 特許文献 2には、 ダルコ ース測定装置用等のセンサの較正方法の発明が開示されている。 この発明に おいても、 較正液は血液サンプルの流路の送液ポンプより下流のセンサに近 い部位で切り替えて導入されることを前提にしている。 関連するその他の発 明として、 特許文献 3には血液サンプル等を複数の希釈率で希釈しながら測 定する体液中の特定成分の測定方法の発明が、 特許文献 4〜 6には、 連続的 な血糖値測定から特定の方法によるィンスリンの注入量制御による血糖値制 御装置や人工塍臓装置の発明が開示されている。
[0006] 特許文献 1 :特開昭 5 8— 1 5 2 5 3 7号公報
特許文献 2:特開昭 5 2 _ 1 3 5 7 9 5号公報 特許文献 3:特開昭 5 8 _ 1 9 8 3 5 1号公報
特許文献 4:特開昭 5 4 _ 8 2 8 8 5号公報
特許文献 5:特開昭 5 5— 2 1 9 0 5号公報
特許文献 6:特開昭 5 6 _ 2 8 7 6 5号公報
発明の開示
発明が解決しょうとする課題
[0007] 上述のような生体成分測定装置においては、 センサの較正を迅速、 簡便に 行うことができるという利点がある。 しかし、 生体成分測定装置におけるセ ンサだけを較正しているのでは、 センサ以外の要素の経時変化により正確な 測定値を得ることができない場合がある。 すなわち、 従来の生体成分測定装 置では、 センサ以外の生体成分測定装置の各要素が経時変化することにより 、 測定値が変動する。 ポンプやサンプル流路の変化によるサンプル流量の変 化や、 特にサンプルと希釈液との希釈比の変化等があつた場合にはセンサの みを較正しても、 生体成分測定装置による測定値の変動を避けることができ ない。
[0008] そこで、 この発明は、 このような従来の問題点を解消し、 装置全体の較正 を簡便かつ確実に行い、 正確に生体成分の測定が可能な生体成分測定装置の 提供を課題としている。 この発明の他の課題はまた、 この生体成分測定装置 に含まれる各種の流路を清潔かつ簡便に交換することができ、 しかも正確に 生体成分の測定が可能な生体成分測定装置を提供することである。 この発明 の更に他の課題は、 生体成分測定装置全体の安全、 かつ確実で簡便な較正方 法を提供することである。
課題を解決するための手段
[0009] 上記課題を解決するための手段として、
請求項 1は、
体液採取装置で採取した体液を含むサンプルをサンプル流路及びポンプに よりセンサに送液し、 前記センサによりサンプル中の生体成分を測定する生 体成分測定装置であって、 サンプル流路のポンプ上流側に設けられた第一流 路切替バルブと、 この第一流路切替バルブに接続され、 この第一流路切替バ ルブの切替操作により、 較正液をサンプル流路を通じてセンサに供給可能に する較正液流路とを含んで成る生体成分測定装置」 であり、
請求項 1は、
「 体液採取装置に体液希釈液を導入する体液希釈液流路を含んで成る請求 項 1に記載の生体成分測定装置」 であり、
請求項 2は、
「 前記体液希釈液流路の途中に設けられた第二流路切替バルブと、 この第 二流路切替バルブに接続され、 この第二流路切替バルブの切替操作により、 体液希釈液流路内の体液希釈液を前記較正液と混合可能にする第二体液希釈 液流路とを含んでなる前記請求項 1又は 2に記載の生体成分測定装置」 であ し」、
請求項 3は、
「 サンプル流路の体液採取装置と第一流路切替バルブとの間に、 及び 又 は前記第二流路切替バルブと体液採取装置との間に、 流路切替バルブを介し て接続され、 フラッシング液を流通させるフラッシング液流路を含んで成る 請求項 1 ~ 3のいずれか 1項に記載の生体成分測定装置」 であり、
請求項 5は、
「 前記フラッシング液は、 所定濃度の生体成分を含有してなる前記請求項 1 ~ 4のいずれか 1項に記載の生体成分測定装置」 であり、
請求項 6は、
「 サンプル流路に設けた第一流路切替バルブの下流に接続した、 サンプル 流路内のサンプルを希釈するための第一希釈液流路を含んで成る請求項 1〜 5のいずれか 1項に記載の生体成分測定装置」 であり、
請求項 7は、
「 第一希釈液流路、 又は第一希釈液流路とサンプル流路との合流部に接続 した気体流路を含んで成る請求項 6に記載の生体成分測定装置」 であり、 請求項 8は、 「 生体成分測定装置本体とこの生体成分測定装置本体に着脱可能な流路搭 載基板とで形成され、 体液採取装置で採取した体液を含むサンプルをサンプ ル流路及びポンプによリセンサに送液し、 前記センサによりサンプル中の生 体成分を測定する生体成分測定装置であって
前記流路搭載基板は、
生体成分測定装置本体に着脱可能に形成された基板と、
体液採取装置に接続可能であり、 体液採取装置で採取した体液を含むサン プル中の生体成分を測定するセンサに接続可能であり、 前記サンプルをボン プによりセンサに送液可能に前記基板に搭載されたサンプル流路と、 較正液タンクに接続可能であり、 サンプル流路の前記ポンプ上流側に第一 流路切替バルブを設けて接続され、 かつ、 前記較正液タンク内の較正液をサ ンプル流路内に送液可能に前記基板に搭載された較正液流路と、
を有して成ることを特徴とする生体成分測定装置」 であり、
請求項 9は、
「 ¾IJ記基板は、
体液希釈液タンクに接続可能であり、 かつ、 体液採取装置に体液希釈液タ ンク内の体液希釈液を導入する体液希釈液流路を搭載してなる前記請求項 8 に記載の生体成分測定装置」 であり、
請求項 1 0は、
「 前記体液希釈液流路の途中に設けられた第二流路切替バルブと、 この第 二流路切替バルブに接続され、 この第二流路切替バルブの切替操作により、 体液希釈液流路内の体液希釈液を前記較正液と混合可能にする第二体液希釈 液流路とを含んでなる前記請求項 8又は 9に記載の生体成分測定装置」 であ し」、
請求項 1 1は、
「 前記基板は、
フラッシング液タンクに接続可能であり、 かつ、 サンプル流路の体液採取 装置と第一流路切替バルブとの間に、 及び 又は第二流路切替バルブと体液 採取装置との間に接続され、 フラッシング液を流通させるフラッシング液流 路を搭載してなる前記請求項 8 ~ 1 0のいずれか 1項に記載の生体成分測定 装置」 であり、
請求項 1 2は、
「 前記フラッシング液は、 所定濃度の生体成分を含有してなる前記請求項 8〜 1 1のいずれか 1項に記載の生体成分測定装置」 であり、
請求項 1 3は、
「 前記基板は、
希釈液タンクに接続可能であり、 かつ、 サンプル流路に設けた第一流路切 替バルブの下流に接続した第一希釈液流路を搭載してなる前記請求項 8〜 1 2のいずれか 1項に記載の生体成分測定装置」 であり、
請求項 1 4は、
「 前記基板は、 第一希釈液流路、 又は第一希釈液流路とサンプル流路との 合流部に接続した気体流路を搭載してなる前記請求項 8 ~ 1 3のいずれか 1 項に記載の生体成分測定装置」 であり、
請求項 1 5は、
「 較正液タンクが体液採取装置よりも低い位置に設置されてなることを特 徴とする前記請求項 8 ~ 1 5のいずれか 1項に記載の生体成分測定装置」 で あり、
請求項 1 6は、
「 請求項 1 ~ 1 6のいずれか 1項に記載の生体成分測定装置の較正方法で あって、 第一流路切替バルブを切り替えて較正液流路からサンプル流路を経 てセンサに較正液を導入することを特徴とする生体成分測定装置の較正方法 」 であり、
請求項 1 7は、
「 請求項 4〜7、 1 1〜 1 5のいずれか 1項に記載の生体成分測定装置の 較正方法であって、 生体成分を採取する前に希釈液を第一希釈液流路からサ ンプル流路に導入して生体成分測定装置のゼロ点較正をする操作と、 生体成 分の測定中に前記フラッシング液をサンプル流路に導入する操作と、 前記フ ラッシング液をセンサ内に導入させることなく第一流路切替バルブを切り替 えて較正液流路内の較正液をサンプル流路を通じてセンサに導入する操作と を含む生体成分測定装置の較正方法」 であり、
請求項 1 8は、
「 請求項 4 ~ 7、 1 1 ~ 1 5のいずれか 1項に記載の生体成分測定装置の 較正方法であって、 生体成分の測定中にサンプル流量よりも多いフラッシン グ液をフラッシング液流路からサンプル流路に導入する操作と、 フラッシン グ液がサンプル流路及びセンサ内に導入された後にサンプル流路に設けた第 —流路切替バルブを切り替えて較正液をセンサに導入する操作と、 較正液を センサに導入する前記操作中にフラッシング液をサンプル流路に導入する前 記操作において導入したフラッシング液よりも少ないフラッシング液を第一 流路切替バルブよりも上流のサンプル流路及び体液採取装置に導入してこの 部分への体液の流入を防止する操作とを含む生体成分測定装置の較正方法で あ^ ο
発明の効果
この発明によると、 測定値を較正するための較正液を供給する較正液流路 力 サンプル流路のポンプ上流側に、 第一流路切替バルブを介して接続され ているので、 生体成分測定装置に組み込まれているセンサのみを較正するの ではなく、 生体成分測定装置における各要素例えばサンプル流路、 ポンプ、 及びセンサ等の経時的変化に基づいて生じる誤差を較正することができるの で、 生体成分測定装置として常に正確な測定が可能である。 つまり、 この生 体成分測定装置においては、 使用開始後から時間が経過すると、 センサから 出力される出力値が変動して不正確な測定値が出力表示されるのであるが、 較正液を流通させることにより、 センサから出力される出力値が初期のセン ザの出力値との乖離を明らかにすることができ、 較正後におけるセンサから の出力値を補正して正確な測定値としてこの生体成分測定装置で出力するこ とができる。 [001 1 ] この発明に係る生体成分測定装置例えば人工塍臓装置は、 体液採取装置に 体液希釈液を導入するための体液希釈液流路が設けられている。 体液採取装 置から採取された体液例えば血液にこの体液希釈液を混合すると、 採取され た体液をサンプル流路を通じてセンサに送液する間に、 体液中の例えば血液 が凝固するのが防止される。 体液例えば血液の凝固が防止されることにより 、 例えばサンプル流路内に血栓が生じることにより測定値が、 この生体成分 測定装置による測定開始時における初期測定値に対して変動するといつた現 象が無視可能な程度に小さくなる。 したがって、 この発明によると、 サンプ ル流路中を流通する体液例えば血液が凝固するのを防止するとともに、 体液 を体液希釈液で希釈したサンプルが円滑にサンプル流路中を流通させること ができる。 血液の凝固を防止するには、 へパリン等の抗凝固剤を体液希釈液 に含有させるとさらに好ましい。 この発明によると、 また、 体液希釈液を体 液採取装置に供給するので体液採取量を低減することができ、 センサの出力 可能範囲に測定成分の濃度を調整することができる生体成分測定装置を提供 することができる。
[001 2] この発明に係る生体成分測定装置は、 体液希釈液流路に第二流路切替バル ブを介装し、 この第二流路切替バルブに第二体液希釈液流路を結合している 。 そして、 この第二流路切替バルブを切り替えることにより、 体液希釈液流 路内の体液希釈液を較正液流路内の較正液に混合することができる。 較正液 に体液希釈液を混合することにより、 体液希釈液で希釈された較正液が、 サ ンプル流路及びセンサに流通することにより、 体液希釈液で希釈された濃度 の較正液で較正データが得られる。 したがって、 この発明によると、 濃度の 異なる較正液で較正することにより、 正確に較正された測定値を出力するこ とのできる生体成分測定装置が、 提供される。
[001 3] 更にまた、 第一流路切替バルブ及び第二流路切替バルブを同時に切り替え て、 体液希釈液を第二体液希釈液流路を介して較正液流路内の較正液と混合 し、 較正液と体液希釈液との混合液を第一流路切替バルブを介してサンプル 流路を通じてセンサに送り込むことにより、 サンプル流路内に介装されるポ ンプ及び体液希釈液を送液するポンプにおける吸引吐出量の経時変化に基づ くセンサにおける測定値の変動を較正することができる。 体液希釈液流路に 体液希釈液を送液するポンプ、 サンプル流路にサンプルを送液するポンプが いずれも扱きポンプ又は蠕動ポンプ等の、 弾性体で形成されたチューブとこ のチューブを押しっぷす部材例えばローラ部材とで形成されている場合には 、 このようなポンプを運転する間に前記チューブの内径の変化等の経時変化 が生じてポンプにおける吸引吐出量が経時変化する。 このようなポンプにお ける経時変化に基づくセンサで出力される測定値の変動が、 第一流路切替バ ルブ及び第二流路切替バルブの同時切替により、 較正される。
[0014] この発明によれば、 サンプル流路の体液採取装置と第一流路切替バルブと の間、 及び 又は体液希釈液流路を分岐するように体液希釈液流路上に設け られている第二流路切替バルブと体液採取装置との間に接続したフラッシン グ液流路を設けているので、 フラッシング液流路から導出されるフラッシン グ液がサンプル流路、 体液採取装置、 及びセンサ内等を洗浄してサンプルと ともに血栓やゲル化した体液等を生体成分測定装置から排出することができ る。 したがって、 較正操作開始時又は開始直前に、 サンプル流路、 体液採取 装置、 センサ内を洗浄することでサンプル中の血液などの体液の凝固や変質 を防ぐことができ、 較正終了後すぐに測定を再開することができる。 また、 較正操作中には、 体液採取装置と第一流路切替バルブとの間のサンプル流路 に、 フラッシング液を導入しておくことで、 血液などの体液が凝固するのを 防止することができる。
[001 5] また、 フラッシング液中に体液中の被測定成分と同じ被測定成分が所定濃 度で含有されていると、 フラッシング液をセンサに流通させることにより、 センサのみの較正を行うことができる。 センサのみの較正を行うことができ ると、 サンプル流路及びその途中に介装されたポンプの経時変化に基づく測 定値の変動を検出することができる。 その結果、 ポンプがサンプル流路の一 部とそれをしごく扱きローラとで形成されている場合には、 サンプル流路の 経時変化が測定値を不正確なものにしていると判断することができ、 サンプ ル流路を交換するべきであると、 容易に判断されることができる。
[001 6] この発明においては、 較正液流路の第一流路切替バルブ上流に逆止弁を設 けるのが好ましい。 逆止弁が設けられていると、 生体成分測定装置の故障、 不具合、 誤作動、 人為的な誤動作等により体液採取装置で採取したサンプル が較正液流路に浸入することを防止することができるとともに、 生体からの 不用な体液漏出も防止することができる。 したがって、 人体の安全を損ねる 可能性を確実に防ぐことができる。
[001 7] この発明においては、 体液希釈液流路に逆止弁を設けるのが好ましい。 逆 止弁が設けられていると、 生体成分測定装置の故障、 不具合、 誤作動、 人為 的な誤動作等により体液採取装置で採取したサンプルが体液希釈液流路に浸 入することを防止することができるとともに、 生体からの不用な体液漏出も 防止することができる。 したがって、 人体の安全を損ねる可能性を確実に防 ぐことができる。
[001 8] この発明によれば、 サンプル流路に設けた第一流路切替バルブの下流に接 続した第一希釈液流路を設けているので、 第一希釈液流路に希釈液、 例えば リン酸緩衝液や生理食塩水等を流通させることにより、 センサの測定可能範 囲に測定成分の濃度を調整することができること、 及び測定安定性の向上を 通じて、 測定感度及び精度を向上させることができる。 リン酸緩衝液は、 生 体成分センサが例えばグルコースセンサである場合には、 体液採取装置から 採取される流体中の P Hを調整して生体成分センサにおける正確な測定を確 保する。 また、 希釈液の流速を大きくすること及び/又はこの希釈液に界面活 性剤を含有させることにより、 体液採取装置で体液を採取してから生体成分 センサで測定するまでの時間短縮つまり時定数の低減が実現される。 界面活 性剤を含有する希釈液は、 流体の流動性を向上させるほかに、 体液と希釈液 との混合を促進する作用も発揮する。
[001 9] この発明によれば、 第一希釈液流路、 又は第一希釈液流路とサンプル流路 との合流部に接続した気体流路を設けているので、 空気や窒素等の不活性な 気体を第一希釈液流路とサンプル流路との合流部に送気することができる。 したがって、 サンプルと希釈液との混合効率が向上し、 サンプル流路内のサ ンプルの滞留時間を短くできるので、 採取した生体成分を迅速に測定できる
[0020] この発明の生体成分測定装置は、 生体成分測定装置本体とこの生体成分測 定装置本体に着脱自在に形成された流路搭載基板とを有する。 流路搭載基板 は、 使い捨て部品として使用されることができる。 流路搭載基板は、 少なく ともサンプル流路と較正液流路とが搭載される。 この流路搭載基板に搭載さ れたサンプル流路の一端は、 流路搭載基板の外部に存在する体液採取装置に 着脱自在に形成され、 またサンプル流路の他端は流路搭載基板の外部に存在 するセンサに着脱自在に形成される。 サンプル流路の途中に設けられる第一 流路切替バルブもまた、 この流路搭載基板に設置されている。 この流路搭載 基板に搭載された前記較正液流路もまた、 この流路搭載基板に設置固定され ている。 この較正液流路の他端、 つまり第一流路切替バルブに結合された一 端とは反対側の端部は、 この流路搭載基板の外部に存在する較正液供給手段 例えば較正液タンクに着脱自在に、 結合される。 サンプル流路の一端と体液 採取装置とを着脱自在に結合する構造、 サンプル流路の他端とセンサとを着 脱自在に結合する構造、 較正液タンクと較正液流路の端部とを着脱自在に結 合する構造は、 液密に結合することができ、 結合操作を簡単に行うことがで きる限り様々の構造を採用することができる。
[0021 ] 流路搭載基板に固定設置されるサンプル流路内に存在する液状のサンプル は、 ポンプによりセンサに向けて移送される。 このポンプは、 小型で簡単な 構造であるならば、 この流路搭載基板に設置固定してもよいが、 流路搭載基 板に設置固定されるサンプル流路の一部と、 生体成分測定装置本体に設置さ れ、 かつ前記サンプル流路の一部をしごくことのできる回転ローラとで形成 されることもできる。 流路の一部と回転ローラと共同して流路内の液体を一 方向に移送することができるポンプを、 この生体成分測定装置におけるボン プとして採用することができる。
[0022] この流路搭載基板には、 目的に応じて、 前記サンプル流路及び較正液流路 に加えて、 体液希釈液流路、 第二体液希釈液流路、 フラッシング液流路、 第 —希釈液流路、 及び気体流路を搭載し、 これらを基板に固定しておくことが できる。
[0023] 前記体液希釈液流路は、 体液採取手段で採取される体液を希釈するために 使用される体液希釈液を流通させる流路として機能する。 この体液希釈液流 路の一端は、 流路搭載基板とは別体であり、 場合によっては生体成分測定装 置本体の一部となっている体液希釈液タンクに着脱自在に形成され、 また体 液希釈液流路の他端は、 体液採取装置に、 着脱自在に形成される。 着脱自在 にする端部構造は、 サンプル流路及び較正液流路の端部構造と同様にするこ とができる。
[0024] この体液希釈液を体液採取装置に供給する理由については既に説明したと おりである。
[0025] この発明の生体成分測定装置は、 生体成分測定装置本体に装着される流路 搭載基板における基板に、 前記サンプル流路及び較正液流路、 更には目的に 応じて、 又は必要に応じて体液希釈液流路、 第二体液希釈液流路、 フラッシ ング流路、 第一希釈液流路、 及び気体流路を整然とまとめて配置固定してお くのが好ましく、 各流路の端部と流路搭載基板の外部に存在する他の部材例 えば体液採取装置、 体液希釈液タンク、 較正液タンク、 センサ等とを結合す る際の誤動作を起こし難く、 しかも簡便に流路部分の取替えが可能であり、 生体成分測定装置の使い勝手が非常によく衛生的でもある。
[0026] この発明に係る生体成分測定装置においては、 この生体成分測定装置が 流路搭載基板とこの流路搭載基板が着脱自在に装着される生体成分測定装置 本体とから形成されている場合、 及びそうではない場合において、 較正液タ ンクが体液採取装置よりも低い位置に設置しておくのが好ましい。 較正液タ ンクが体液採取装置よりも低い位置に設置しておくと、 較正液タンクから較 正液を、 第一流路切替バルブを通じてサンプル流路に供給する場合に、 何ら かの原因によりサンプル流路を逆流して較正液が体液採取装置に到達するの 力 防止される。 つまり、 この発明の生体成分測定装置において較正液タン クと体液採取装置との配置関係を高低の位置関係に調整することにより、 生 体成分測定装置の故障や誤作動による生体内への較正液の浸入などの事故を 防ぐことができる。
[0027] この発明の較正方法によれば、 センサの経時変化による測定値の変動は勿 論、 サンプル流路ゃポンプの経時変化、 希釈液の流量変化等による変動も、 —回の較正操作で合わせて較正してしまうので、 その結果、 装置全体の較正 に要する操作も簡単で、 時間も短縮でき、 測定者としては好都合である。 ま た、 一般に、 生体成分測定装置のような医療機器で使用される、 体液等を流 通するための流路の材質は、 実績のある限定された材質しか使用できず、 同 時に安価であることが要求される。 このような場合にも、 この発明によれば 、 流路の経時変化を較正することができるので、 これまでに実績のない材質 を使用することができ、 安価で安全性の高い材質を有する流路を幅広く選定 できるという利点がある。 また、 生体成分測定装置の較正のための時間が短 くなれば、 連続測定における測定中断時間が短くなり、 この発明の生体成分 測定装置は長時間の手術中の血糖値測定などにもほとんど連続測定ができ好 適である。
[0028] この発明の較正方法によれば、 生体成分を採取する前に希釈液を第一希釈 液流路からサンプル流路に導入して生体成分測定装置のゼロ点較正をするこ とができる。 一般に、 生体成分の測定中のゼロ点の変動はわずかなので生体 成分を測定する前に一回ゼロ点較正をしておけば多くの場合、 測定終了まで ゼロ点較正を必要としない。 この場合、 ゼロ点較正をするためにサンプル流 路のセンサ下流に接続するように、 通常に設置されている流路及びこの流路 切替のための流路切替バルブを省略することができる。 また、 生体成分の測 定中にフラッシング液をサンプル流路に導入し、 前記フラッシング液がセン サ内に導入される前にサンプル流路上に設けたサンプルと較正液との第一流 路切替バルブを切り替えて較正液をセンサに導入して生体成分測定装置を較 正することができるので、 較正にかかる全体の時間が短縮できる。
[0029] また、 このフラッシング液は、 体液中に含まれる被測定成分たとえばグル コースを所定濃度で含むことができる。 このように所定濃度の被測定成分を 含有するフラッシング液を使用すると、 センサのみの較正を行うことができ る。 センサのみの較正を行うことができると、 既に説明したようにサンプル 流路の交換の必要性等を判断することができる。 つまり、 この生体成分測定 装置のメンテナンスを的確に行うことができる。
[0030] この発明の較正方法によれば、 生体成分の測定中にサンプル流量よリも多 いフラッシング液をフラッシング液流路からサンプル流路に導入する操作 ( 第一工程) を含むので、 フラッシング液がサンプル流路、 体液採取装置、 及 びセンサ内等を洗浄してサンプルとともに血栓やゲル化した体液等を生体成 分測定装置から排出することができるとともに、 フラッシング液が測定成分 を含まないものであれば、 体液採取装置と生体とが接続した状態でもゼロ点 較正をすることができる。 また、 フラッシング液がサンプル流路及びセンサ 内に導入された後にサンプル流路上に設けたサンプルと較正液との第一流路 切替バルブを切り替えて較正液をセンサに導入して生体成分測定装置を較正 する操作 (第二工程) を含むので、 特定の測定成分を含む較正液を使用する ことにより、 特定の測定成分濃度におけるセンサの測定値を得ることができ る。 この測定値と第一工程において得られた測定値とにより検量線を作って 生体成分測定装置全体として較正をすることができる。 前記第二工程として の操作中に前記第一工程において導入したフラッシング液よりも少ないフラ ッシング液を第一流路切替バルブ上流のサンプル流路及び体液採取装置に導 入してこの部分への体液の流入を防止しておく操作 (第三工程) を含むので 、 較正操作中に体液採取装置と第一流路切替バルブとの間のサンプル流路に 、 血液などの体液が凝固するのを防止することができる。
図面の簡単な説明
[0031 ] [図 1 ]図 1は、 本発明の体液希釈液流路を備えた生体成分測定装置の態様例を 示すフロー図である。
[図 2]図 2は、 本発明のフラッシング液流路を備えた生体成分測定装置の態様 例を示すフロー図である。 [図 3]図 3は、 本発明の体液希釈液流路及び第一希釈液流路を備えた生体成分 測定装置の態様例を示すフロー図である。
[図 4]図 4は、 本発明のフラッシング液流路、 体液希釈液流路、 第一希釈液流 路及び気体流路を備えた生体成分測定装置の態様例を示すフロー図である。
[図 5]図 5は、 本発明の流路配置基板が装着された本発明の生体成分測定装置 の態様例を示すフロー図である。
[図 6]図 6は、 従来の生体成分測定装置の例を示すフロー図である。
[図 7]図 7は、 チューブポンプの構造を示す模式図である。
[図 8]図 8は、 ポンプの構造を示す模式図である。
[図 9]図 9は、 混合器構造を示す断面図である。
[図 10]図 1 0は、 混合器の構造を示す断面図であり、 図 9とは 9 0度異なつ た面のからの断面図である。
[図 1 1 ]図 1 1は、 ピロ一タイプの往復動ポンプの構造を示す模式図である。
[図 1 2]図 1 2は、 図 1 1に示した往復動ポンプの上から見た模式図である ( 押さえ板 2 1 eは図示せず。 ) 。
符号の説明
1 :生体成分測定装置
2 :被測定体
3 a :体液採取装置
3 b :較正液吸引装置
4 a :体液希釈液タンク
4 b :希釈液タンク
5 :センサ
6 :排液タンク
7 :センサ信号演算出力装置
8 :較正液タンク
9 a :第二流路切替バルブ
9 b :第一流路切替バルブ c, 9 d, 9 e :流路切替バルブ
0 :ポンプ用チューブ
0 a, 1 0 b, 1 0 c, 1 0 d , 1 0 e , 1 0 f :ポンプ1 a :サンプル流路
1 , 1 1 c :体液希釈液流路
1 d, 1 1 e :サンプル流路
1 f :排液流路
1 :第二体液希釈液流路
1 h :較正液流路
1 i , 1 1 j :第一希釈液流路
1 q :第二希釈液流路
1 1 1 m, 1 1 r : フラッシング液流路
1 η :気体流路
1 ο :サンプル流路
1 Ρ :排ガス流路
2 :センサ信号伝送路
: フラッシング液タンク
, 1 4 a, 1 4 b, 1 4 c, 1 4 d :逆止弁
:混合器
a :混合器本体
b : 内部流通空間
c :凹凸部
:気液分離器
:流路合流器
: ヒーター
:流路配置基板
a : ローラ
b :回転軸 2 0 c :軸
2 0 d :押さえ板
2 1 ポンプ
2 1 a :押圧子
2 1 b :偏芯回転カム
2 1 c :回転軸
2 1 d , 2 1 e :押さえ板
2 1 f :開口部
2 1 g :第一ポぺットバルブ
2 1 h :第二ポぺットバルブ
2 1 i : ピロ一型に成形したチューブ
2 2 ピロ一タイプの往復動ポンプ
発明を実施するための最良の形態
[0033] この発明は、 人体をはじめとする生体内の体液の各種生体成分を測定■分 析する生体成分測定装置の改良に関するものである。 生体内の体液とは、 例 えば血液、 尿、 リンパ液、 髄液、 あるいはこれらの混合物等であり、 生体成 分の定性ないし定量分析を必要とする生体成分としては、 例えばグルコース 、 尿素、 尿酸、 乳糖、 ショ糖、 ラクテート (乳酸) 、 エタノール、 グルタミ ン酸、 アンモニア、 クレアチニン、 酸素等が挙げられる。 なお、 医療行為を 実施するときには場合により体液中の p H値、 酸素濃度等を測定する必要が ある。 なお、 この発明においては、 生体成分なる概念に体液の p H値、 酸素 濃度等を含める。
[0034] 生体成分測定装置は、 医療行為等を行う場合に生体の状態を正確に把握す るために必要な医療支援装置である。 このような医療支援装置として、 例え ば血液中の血糖値を測定して、 その結果に基づいてィンスリンを生体に供給 する人工塍臓装置、 透析を行う人工透析装置、 生体の体液中に含まれる尿素 の濃度を測定する尿素濃度計、 生体の体液中に含まれる尿酸の濃度を測定す る尿酸濃度計、 体液中の乳糖、 蔗糖等の糖分を測定する糖分測定装置、 ラク テート等を測定する乳酸測定装置、 グルタミン酸濃度を測定するグルタミン 酸濃度計、 アンモニア濃度を測定するアンモニア濃度計、 クレアチニンの濃 度を測定するクレアチニン濃度計等を挙げることができる。
[0035] これら各種の生体成分測定装置は、 医療行為を的確に行うために必要であ る。 この発明は、 このような生体成分測定装置の稼働を効率的かつ衛生的に 行うことのできる。 この生体成分測定装置で生体成分を測定するセンサは、 生体成分の種類に応じて各種のセンサがある。 センサとしては、 例えば、 酵 素を用いた酵素センサ、 微生物を用いた微生物センサ、 酵素と微生物とを用 いたハイブリッド型センサ等のバイオセンサが挙げられる。 そして、 このよ うなバイオセンサにおいて利用される酵素又は微生物は被測定対象成分、 つ まり生体成分に応じて選択される。 例えば、 被測定対象成分がグルコースで あるときには/ S— D—グルコースォキシダーゼ又は P s e u d omo n a s f I u o r e c e n s、 被測定対象成分が尿素であるときにはゥレアーゼ 、 被測定対象成分が尿酸であるときにはゥリカーゼ、 被測定対象成分がラク テー卜であるときにはラクテ一トォキシダーゼ、 被測定対象成分が乳糖であ るときにはラクターゼ又は _ガラクトシダーゼ、 被測定対象成分がェタノ ールであるときにはアルコールォキシダーゼ又は T r i c h o s p o r o n b r a s s i c a e s、 被測定対象成分がグルタミン酸であるときにはグ ルタメ一トデヒドロゲナーゼ又は E s c h e r i c h i a c o l i、 被測 定対象成分がアンモニアであるときには硝化細菌等を選択することができる
[0036] グルコース測定の場合、 センサとして例えばオスミウムポリマーをカーボ ン電極の上に塗布した後、 室温で乾燥させ、 その上に酵素溶液を重層し、 グ ルタルアルデヒドのような架橋剤を用いて、 固定化してなるバイオセンサを 挙げることができる。 このバイオセンサを採用すると、 オスミウムポリマー にはペルォキシダーゼ酵素が固定化されているので、 過酸化水素と酸化反応 が起り、 引続きオスミウムポリマー、 ペルォキシダーゼと電極間で還元反応 が起る。 この時の反応条件は銀塩化銀電極に対して OmVである。 よって、 酸化反応系の酵素としてグルコースォキシダーゼを用いることにより、 簡単 にグルコースの検出及び濃度測定を行うことができる。 グルコースセンサと しては、 上記の外に、 オスミウム ( I I ) —ビビリジン錯体を利用したグル コースセンサ、 ルテニウム錯体を利用したグルコースセンサ、 トリス型ォス ミゥム錯体導入ポリピロール修飾電極を有するグルコースセンサ等を採用す ることもできる。 これら各種のグルコースセンサの中でも、 オスミウムポリ マーを用いた前記バイオセンサが好ましい。 このバイオセンサである好適な グルコースセンサは、 白金、 銀又はカーボン等の作用極と、 オスミウムポリ マー層にペルォキシダーゼを含有させた酵素膜層とを備えて成る薄膜センサ が好ましい。
[0037] この発明に係る生体成分測定装置においては、 測定可能な生体成分は一種 であっても二種以上であってもよい。 測定する生体成分が二種以上であると きには、 生体から採取した体液を移送する生体成分測定流路の途中に二種以 上のバイオセンサ等を接続すればよい。 また、 複数の生体成分を測定すると きには、 前記生体成分測定流路を複数に分岐させ、 各分岐流路に一つ又は二 つ以上のバイオセンサ等を接続させることもできる。 なお、 生体から採取し た体液とは、 採取したままの体液、 例えば血液、 尿、 リンパ液、 髄液等でも よく、 生体から採取した体液と他の液、 例えば生理食塩水、 希釈液、 緩衝液 等との混合液でもよい。
[0038] この発明の生体成分測定装置の構成について、 図 1に示したフロー図を参 照にして説明する。 この発明の生体成分測定装置 1の基本的な構成は、 体液 採取装置 3 a、 センサ 5、 体液採取装置 3 aからセンサ 5に体液を移送する ためのサンプル流路 1 1 a , 1 1 d , 1 1 e、 サンプル流路 1 1 d, 1 1 e の間にあってサンプル流路 1 1 a , 1 1 d , 1 1 e中の体液を含むサンプル を強制的に移送するポンプ 1 O b、 較正液を入れてある較正液タンク 8、 較 正液をサンプル流路 1 1 dに導くための較正液流路 1 1 h、 及びサンプル流 路 1 1 aと較正液流路 1 1 hとをサンプル流路 1 1 dに接続し採取したサン プルと較正液とを切り替えてサンプル流路 1 1 dに流通できるようにする第 —流路切替バルブ 9 bを含んでいる。 なお、 この発明では、 較正液タンク 8 は、 タンクと表現しているがバック、 缶、 箱など液体を収納する容器を含む ものである。 後述の体液希釈液タンク、 希釈液タンク、 排液タンク、 フラッ シング液タンクなども同じように収納容器一般を指す言葉として使用してい る。
[0039] センサはそれ自身で測定結果を処理して保存したり、 表示■出力したりす る機能を備えていてもよいが、 図 1に示すようにセンサ信号伝送路 1 2によ りマイクロコンピュータのようなセンサ信号演算出力装置 7に信号を送り、 センサ信号演算出力装置 7により測定結果を処理して保存したり、 表示■出 力したりさらに結果を伝送したりすることが好ましい。 また、 現実の生体成 分測定装置においては、 体液を含むサンプル等のセンサでの測定後の排液は 、 センサ 5から排液流路 1 1 f により排液タンク 6に導き衛生的に処理する ことが好ましい。 通常、 採取した体液の変化を防ぐため、 体液採取装置 3 a には、 抗凝血剤液等の体液希釈液を導入して、 採取した体液を採取と同時に 体液希釈液で希釈して測定用のサンプルとすることが好ましい。 図 1に示す ように、 体液希釈液タンク 4 aを設け、 体液希釈液流路 1 1 c, 1 1 b及び ポンプ 1 0 aにより体液希釈液を体液採取装置 3 aに導入してやればよい。 この際、 ポンプ 1 0 aの下流である体液希釈液流路 1 1 cの下流側に第二流 路切替バルブ 9 a及びこれに接続した第二体液希釈液流路 1 1 gを設けて、 体液希釈液を較正液タンク 8から較正液流路 1 1 hに吸引するために設けた 較正液吸引装置 3 bに体液希釈液を導入できるようにすることが好ましい。 較正液吸引装置 3 bは体液採取装置 3 aと類似の構造をしており、 体液採取 装置 3 aにおける体液と体液希釈液との希釈比と、 較正液吸引装置 3 bにお ける較正液と体液希釈液との希釈比とが同じになるような構造が好ましい。 通常は、 較正液吸引装置 3 bとして希釈機能付きカテーテルなどの体液採取 装置 3 aと同じものを使用すれば上述の希釈比同士も同じにできる。
[0040] 図 1に示した生体成分測定装置 1による生体成分の測定、 及び較正方法に ついて説明する。 まず最初に測定可能な状態の生体成分測定装置 1を準備し 、 第一流路切替バルブ 9 bは、 サンプル流路 1 1 aとサンプル流路 1 1 dと を開通の状態として、 較正液流路 1 1 h側は遮断しておく。 なお、 この操作 は第一流路切替バルブ 9 bとして三方弁を使用すれば容易にできる。 同様に 、 第二流路切替バルブ 9 aの状態としては、 体液希釈液流路 1 1 bと体液希 釈液流路 1 1 cとを開通して、 第二体液希釈液流路 1 1 g側は遮断しておく 。 そして、 ポンプ 1 O a, 1 O bを作動させて、 体液希釈液を体液採取装置 3 aに供給しながら体液採取装置 3 aからサンプルを採取してセンサ 5に導 く。 この際、 希釈液供給量より体液採取装置 3 aからサンプル流路 1 1 aに 導かれるサンプル量が多くなるように、 ポンプ 1 0 a及びポンプ 1 O bの送 液量を調整する。 サンプル流路 1 1 aに導かれるサンプル量が希釈液供給量 以下になると体液採取装置 3 aから体液は採取できなくなる。 なお、 体液希 釈液としては、 生体に悪影響がなく、 センサの測定を妨害せず、 体液を変質 させたり凝固させたりしない液体であればどのようなものでも良いが、 生理 食塩水あるいは、 リンゲル液が好適である。 少量であれば蒸留水、 リン酸緩 衝液なども使用できる。 さらに、 カテーテル先端などで血液あるいは体液が ゲル化しないようにする必要があるため抗凝固剤が前記リンゲル液、 生理食 塩水、 蒸留水に混合された液も好適である。 抗凝固剤としては、 へパリン、 メシル酸ナファモスタツト、 ゥロキナーゼなどがある。
このようにして、 採取された体液中の生体成分が測定され、 このまま測定 を続ければ連続的に測定が可能である (なお、 採取された体液、 又はこの採 取された体液を希釈液で希釈した溶液をサンプルと呼ぶことがある。 ) 。 例 えば、 血糖値測定装置では 1〜数日間の測定が可能である。 しかし、 血糖値 測定センサをはじめとする生体成分測定用のセンサは、 上述のように酵素や 微生物を利用したバイオセンサが多く、 数時間から数十時間で較正をしない と、 正しい測定値が得られないことが多い。 また、 サンプル流路ゃ希釈液流 路などの流路及び流体移送のためのポンプは、 衛生上の観点からいわゆるデ ィスポーザブルタィプのものが多く、 塩ビチューブゃポリエチレンチューブ など安価なチューブが使われる場合が多い。 これらの安価なチューブ等で作 られた流路ゃポンプは、 使用中の流路の太さ特に流路の内径つまり流通断面 積等の経時変化、 測定時の使用温度の変化、 ポンプ性能の変化等によりサン プル量の流量変化や希釈比の変化が起こる虞がある。 このようなサンプルの 流量変化や希釈比の変化は、 センサの較正だけでは対応できない。 そこで、 本発明においては、 較正液をできるだけ体液採取装置 3 aに近いサンプル流 路 1 1 aから導入して、 サンプル流路、 体液希釈液流路、 ポンプ 1 O b, 1 O a及びセンサ 5をまとめて全体として較正してしまうことにより、 生体成 分測定装置 1 としての正確な較正をすることができる。 したがって、 長時間 使用した場合に、 流路の太さ特に流路の内径つまり流通断面積等が変化して しまうような材質で作られた流路を使用することが可能となる。 一般に、 生 体成分測定装置のような医療機器で使用される、 体液等を流通するための流 路の材質は、 実績のある限定された材質しか使用できず、 同時に安価である ことが要求される。 このような場合にも、 この実施形態によれば、 流路の経 時変化を較正することができるので、 これまでに実績のない材質を使用する ことができ、 安価で安全性の高い材質を有する流路を幅広く選定できるとい う利点がある。 このため、 サンプル流路 1 1 aと較正液流路 1 1 hとの第一 流路切替バルブ 9 bは、 体液採取装置 3 aの出口付近のサンプル流路 1 1 a に配置することが好ましい。 さらに、 体液採取装置 3 aに体液希釈液を導入 している場合は、 較正の際、 第二流路切替バルブ 9 aにより体液採取時と同 じ量の体液希釈液を較正液吸引装置 3 bに導入して、 較正液の体液希釈液に よる希釈比を体液の希釈比と同じにすると較正が簡単で好都合である。
[0042] また、 この発明の生体成分測定装置 1は、 体液採取装置 3 aをそれ以外の 生体成分測定装置 1を構成する装置■部品など、 例えば体液希釈液タンク 4 a、 較正液タンク 8、 センサ 5及び排液タンク 6より高い位置に配置して使 用することが好ましい。
[0043] 実際の体液採取操作中において、 体液採取装置 3 aと較正液タンク 8との 間はチューブポンプ等により遮断されていないため、 生体よりも較正液タン ク 8が高い位置にあると、 流路切替バルブが完全に流路を切り替え終わって いない間、 あるいは流路切替バルブ等に作動不良が起こった場合、 較正液が 重力差によってフリーフローを起こし、 生体内に流入する虞がある。 較正液 は、 生体成分と同じ成分、 例えばグルコース濃度測定では生体内と同程度の 濃度をもつグルコース溶液であるため生体への危険性は小さいが、 本来滅菌 を必要としないものであるため、 生体内へ較正液が流れ込む場合は、 感染症 を引き起こしたりする可能性がある。 これを防ぐために較正液タンク 8を体 液採取装置 3 aより下部に配置しておくことが好ましい。 現実的には体液採 取対象である人体等を乗せたべッド等より下に較正液タンク 8を置いておく ことが好ましい。 通常、 ベッドの高さは 4 5 c m程度なので較正液タンク 8 の液面高さを床から 4 5 c m以下にすればこのような配置は確保できる。 すなわち、 生体成分測定装置 1、 特に較正液タンク 8より上部で体液採取 装置 3 aを生体に取り付けて体液を採取したり、 生体成分測定装置 1の較正 を行ったりすることが好ましい。 較正液は生体中に逆流すると生体に悪影響 がある虞があるので、 生体内の体液と体液採取装置 3 a中の液体とが相互移 動できる可能性のある状態においては、 較正液タンク 8は、 体液採取装置 3 aを生体に取り付ける際、 較正液タンク 8は体液採取装置 3 aより下部に配 置し、 サンプル流路 1 1 a、 第一流路切替バルブ 9 b及び較正液流路 1 1 h 等に誤作動があつたり、 人為的な誤動作があっても、 較正液タンク 8内の較 正液が重力により生体内に流入し難いようにすることが好ましい。 ただし、 必ず体液採取装置 3 aを較正液タンク 8の液面より上部に設置しなければな らない訳ではなく、 体液採取装置 3 aが生体に接続される部位における、 血 液等の体液の圧力へッドと位置へッドとの和が較正液タンク 8の液面の位置 ヘッドより大きければ、 較正液が生体内へ流れ込む虞はない。 したがって、 例えば、 体液採取装置 3 aの接続される部位が抹消静脈である場合は、 抹消 静脈の圧力は約 1 8 m m H gであるので、 較正液タンク 8の液面高さが体液 採取装置 3 aが生体に接続される部位よリも約 2 4 0 m m高い位置とするこ とも可能である。 動脈に体液採取装置 3 aを接続した場合には、 抹消静脈の 圧力よりも動脈の圧力の方が高いので、 さらに高い位置に較正液タンク 8を 設置することが可能となる。
[0045] なお、 排液タンクには、 排液流路からタンク内の液面へ排液が自然に滴下 するようにしておき、 液面下に排液流路が入り込んでいない状態にしておき 、 排液が排液流路からサンプル流路を経てサイフォン現象等で逆流しない構 造にすることが好ましい。 また、 各流路に備えられるポンプは逆流防止機能 のあるタイプのポンプが好ましい。 例えば、 チューブポンプや蠕動ポンプな どの逆流防止機能のあるボンプが好ましい。 このようにして各流路内の流体 の異常な流動による生体内への各流路内の液体の逆流を防ぎ、 較正タンク等 の生体成分測定装置に備えたタンク内への予期せぬ流体の浸入を押さえるこ とができる。
[0046] 図 2に示す本発明の生体成分測定装置の例は、 図 1に示す例で説明した生 体成分測定装置にフラッシング液流路 1 1 mを追加して、 サンプル流路 1 1 a及び体液希釈液流路 1 1 bにそれぞれ流路切替バルブ 9 c及び流路切替バ ルブ 9 eを介してフラッシング液流路 1 1 mを接続している。 さらに、 較正 液流路 1 1 h, 体液希釈液流路 1 1 b, 及びフラッシング液流路 1 1 mにそ れぞれ逆流防止用の逆止弁 1 4 a, 1 4 b , 1 4 cを備えている。 図 1に示 す態様の生体成分測定装置においては、 装置の較正中も体液採取装置 3 aを 生体に取り付けたままにしておくと、 体液採取装置 3 a及びサンプル流路 1 1 a内には体液を含むサンプルが残ったままになっている。 このような状態 で、 サンプルが滞留していると、 サンプル中の体液、 例えば血液等が凝固す る虞がある。 特に希釈液を使用していなかったり、 希釈液の希釈量が少ない 場合はサンプル中の成分の凝固は起こり易い。 この図 2に示す発明の態様で は、 このようなサンプル中の体液の凝固や変質を防ぎ、 較正が終了したらす ぐに測定が再開できるように、 較正操作開始時又は開始直前に、 体液採取装 置 3 a及びサンプル流路 1 1 a内を洗浄することを目的にフラッシング液の 導入設備を設けている。 フラッシング液の導入設備は、 フラッシング液タン ク 1 3、 フラッシング液送液用のポンプ 1 0 d、 フラッシング液流路 1 1 k , 1 1 m , 及び流路切替バルブ 9 c、 9 e並びに好ましくは逆止弁 1 4 cを 含んでいる。 なお、 原理的には、 フラッシング液送液用のポンプ 1 O dをチ ュ一ブポンプゃ蠕動ポンプのような逆流防止機能付きのポンプとすれば、 流 路切替バルブ 9 c、 9 e及び逆止弁 1 4 cは設置しなくても、 サンプル流路 側や体液希釈液流路側からフラッシング液流路側への逆流は起こらないので 、 これらを省くこともできる。 し力、し、 フラッシング液流路ゃフラッシング 液送液用のポンプ 1 0 dに不具合がある場合には、 3方弁の機能のある流路 切替バルブ 9 c、 9 e及び逆止弁 1 4 cは有効に逆流防止機能を発揮する。
[0047] フラッシングをはじめる際には、 ポンプ 1 O dを作動し、 流路切替バルブ
9 c及び 又は流路切替バルブ 9 eを切り替えることにより、 フラッシング 液タンク 1 3中のフラッシング液が、 フラッシング液流路 1 1 kを通ってポ ンプ 1 0 dによりフラッシング液流路 1 1 mに導かれ、 逆止弁 1 4 cを通り 流路切替バルブ 9 c及び 又は流路切替バルブ 9 eからサンプル流路 1 1 a 及び 又は体液希釈液流路 1 1 bに導入される。 導入されたフラッシング液 の一部はサンプル流路を通ってセンサに到達し、 さらに排液流路を通って排 液タンクに排出される。 また、 一部のフラッシング液は体液採取装置を通つ て生体内へ流入する。 このようにして、 フラッシング液でサンプル流路、 セ ンサ内、 体液採取装置などの流路等を洗浄して、 サンプルとともに血栓ゃゲ ル状化した体液などを生体成分測定装置から排出する (この操作をクロッテ イング除去と称する。 ) 。 そして、 サンプル流路 1 1 a、 センサ内、 及び体 液採取装置 3 a内がフラッシング液で満たされ、 生体成分がサンプル流路 1 1 a、 センサ内、 及び体液採取装置 3 a内で凝固する虞がなくなれば、 第一 流路切替バルブ 9 b, 第二流路切替バルブ 9 aを切り替えて較正液流路 1 1 hからサンプル流路 1 1 d及びその下流に較正液を導入して生体成分測定装 置 1の較正を行う。 なお、 流路切替バルブ 9 c及び流路切替バルブ 9 eは、 通常の生体成分の測定中はサンプル流路 1 1 a及び体液希釈液流路 1 1 bと フラッシング液流路 1 1 mとを遮断していることが好ましい。
[0048] また、 センサは、 フラッシングによるほかに、 較正液の流通により洗浄さ れることができる。 フラッシングによる洗浄の終了後に、 第一流路切替バル ブ 9 bと第二流路切替バルブ 9 aを切り替えて、 較正液タンク 8に流通可能 な状態にすると、 サンプル流路 1 1 aはフラッシング液で満たされた状態で 保持されることになる。 この状態で、 フラシング液送出用のポンプ 1 0 dが 停止しても、 一般的に言われている生食ロックと同じ状態になっているので 、 クロッテイングが防止される。 フラッシング液送出用のポンプ 1 0 dを駆 動停止することなく、 徐放例えばごく少量の流量で送出すると、 さらにクロ ッティング発生の可能性を低下させることができる。
較正操作中は、 フラッシング液の流量はク口ッティング除去時よりも少な くすることが好ましい (この状態のフラッシング液の導入操作をクロッティ ング防止という。 ) 。 例えば、 通常の人工塍臓装置用の生体成分測定装置で は、 クロッテイング除去では、 5〜5 0 O m I 時、 好ましくは 1 0 0〜3 O O m I 時のフラッシング液を 1〜6 0秒程度、 好ましくは 3〜2 0秒程 度導入するが、 クロッティング防止時は 0 . 5 ~ 6 0 m l Z時、 好ましくは 1 ~ 2 O m I 時で導入しておくことが望ましい。 マイクロマシン化した生 体成分測定装置を採用する場合には、 流路内のク口ッティング除去ゃク口ッ ティング防止ができれば、 さらに少量のフラッシング液の導入でもよい。 な お、 流路切替バルブ 9 cから第一流路切替バルブ 9 bまでの間のサンプル流 路 1 1 aにサンプルが残っていても体液成分等の凝固の心配がない場合は、 フラッシング液をサンプル流路 1 1 a及び体液採取装置 3 aに導入すると同 時に較正をはじめてもよい。 通常、 フラッシング液は生理食塩水のように生 体内に浸入しても生体に害のないものを用いればよい。 また、 できるだけ生 体内にフラッシング液を浸入させたくない場合は、 サンプル流路 1 1 a及び 体液採取装置 3 aがフラッシング液で満たされた後はフラッシング液の導入 を停止してもよい。 なお、 フラッシング液としては、 生体内に浸入しても悪 影響がなく、 体液やサンプルを変質させたり凝固させたり、 センサの測定を 妨害したりしない液体であればどのようなものでも良いく、 例えば生理食塩 水あるいは、 リンゲル液が好適に使用できる。 少量であれば蒸留水でも問題 ない。 また、 それらにへパリン、 フザン、 ゥロキナーゼなどの抗凝固剤を混 合した液も使用に適している。 抗凝固剤は、 救急集中治療時などの不安定な 状態の人体に対しては抗血栓性メカニズムに影響をあたえ、 逆に血液、 体液 が凝固しやすくなる場合があるので、 抗凝固剤を使用しないことが好ましい 逆止弁 1 4 a, 1 4 b , 1 4 cの作用について説明する。 これらの逆止弁 は生体成分測定装置の故障、 不具合、 誤作動、 人為的な誤動作等により体液 採取装置 3 aで採取したサンプルが、 予期しない部分に浸入することを防ぐ ものである。 逆止弁 1 4 a、 1 4 bは、 バルブ 9 a、 9 bに較正液流路 1 1 hを装着していない状態でも、 サンプルが較正液タンク 8に逆流することを 防止している。 逆止弁 1 4 bはサンプルが体液希釈液タンク 4 aに逆流する ことを防止している。 逆止弁 1 4 cはサンプルがフラッシング液タンク 1 3 に逆流することを防止している。 これらの逆流防止の効果は、 それぞれのタ ンク内の液体を汚染から防ぐだけでなく、 生体からの不用な体液漏出を防い でいる。 特に、 生体として人体を対象とした場合は、 これらの逆止弁を設け る目的は、 人体の安全を損ねる可能性を確実に防ぐことにある。 流路を組み 立てたり、 流路切替バルブを操作したりする際に誤操作をしたり流路ゃ機器 に不具合が合ったりすると、 人体の方が較正液タンクをはじめとする生体成 分測定装置より高い位置あると、 意図しない人体からの脱血などの体液喪失 の虞があり、 これを防ぐために逆止弁は有効である。 また、 第一流路切替バ ルブ 9 b、 第一流路切替バルブ 9 aはバルブの構造によっては、 バルブの切 替時に全ての流路が開放状態となる場合がある。 このような場合にも、 逆止 弁 1 4 a, 1 4 bなどが設置されていれば、 逆流が防止される。 なお、 この 実施形態においては設置されていないが、 サンプル流路 1 1 a, 1 1 d , 1 1 e , 1 1 o及び排液流路 1 1 f などのサンプルが流通する流路にも逆止弁 を設置することができる。 このような逆止弁を設けることにより、 生体から の不用な体液漏出を防止することができるとともに、 サンプルが、 生体、 較 正液タンク 8、 体液希釈液タンク 4 a、 フラッシング液タンク 1 3、 又はセ ンサ 5に逆流することを防止できる。 [0051 ] 図 3に例示する本発明の生体成分測定装置は、 サンプル流路 1 1 e中に希 釈液を導入してセンサの測定範囲の拡大や測定安定性の向上を通じて、 測定 感度及び精度を向上させることができる。 また、 流速を大きくすることで、 センサに到達する時間を短くすることが可能になるため、 時間遅れを少なく することができる。 これは、 測定結果を利用して薬液を注入するようなフィ 一ドバック制御を行う人工塍臓のような装置においては、 制御の安定性を確 保することにつながるため安全に大きく寄与する。 本発明の生体成分測定装 置は、 図 1に示した生体成分測定装置に、 希釈液タンク 4 b、 希釈液タンク 4 bから希釈液をポンプ 1 0 cに導く第一希釈液流路 1 1 i、 希釈液タンク 4 b中の希釈液をサンプル流路 1 1 e中に圧送するポンプ 1 O c、 及びボン プ 1 O cからサンプル流路 1 1 eに希釈液を移送するための第一希釈液流路 1 1 j を付加している。 なお、 希釈液はサンプル送液用ポンプ 1 O bの下流 のサンプル流路 1 1 eに導入することが好ましい。 この生体成分測定装置に おいては、 センサ感度及び精度を最もよい状態にするような所望のサンプル 濃度になるように、 希釈液をサンプル流路 1 1 eに供給することができる。 希釈液は、 サンプルの p Hを安定させたり、 サンプル温度を一定にしたり、 センサ中でのサンプルからのガス発生を防いだり、 サンプルの変質を防いだ りすることができる。 希釈液としては、 センサの測定を妨害せず、 サンプル の変質をさせない液体であればどのようなものでも良いが、 例えば生理食塩 水、 リン酸緩衝液、 上述の体液希釈液などを用いればよい。 リン酸緩衝液は 希釈されたサンプルの電荷移送能力を高める作用があり、 センサの精度を向 上できる場合があり好適な希釈液とすることができる。 希釈液は界面活性剤 を含むことがある。 界面活性剤を含有する希釈液は、 サンプルの流動性を向 上させるほかに、 サンプルと希釈液との混合を促進する作用も発揮する。 サ ンプルの流動性の向上により体液採取装置で体液を採取してから生体成分セ ンサで測定するまでの時間短縮つまり時定数の低減が実現される。
[0052] 例えば、 本発明の生体成分測定装置による血糖値測定においては、 希釈液 は、 サンプル流路 1 1 eにより移送されるサンプルを希釈することができ、 更に、 センサ 5に供給されるサンプルの p Hを一定に維持することのできる 液、 例えばリン酸緩衝液のような緩衝液が好ましい。 希釈液として緩衝液を 使用すると、 緩衝液により試料液の p Hが一定に維持されるので、 p Hに対 する感度の鋭敏なグルコースセンサで安定した血糖値測定を行うことができ る。 また、 温度を一定にした比較的多量の希釈液を使用すれば、 希釈液で希 釈されたサンプルは、 安定した温度で迅速にセンサに導入でき、 精度よく血 糖値測定ができる。
[0053] 図 4に例示した生体成分測定装置は、 図 2に示した生体成分測定装置と図
3に示した生体成分測定装置とを組合せ、 さらに希釈液を導入したサンプル 流路 1 1 eにおいて、 サンプルと希釈液との混合を完全なものとするために 、 第一希釈液流路、 又は第一希釈液流路とサンプル流路との合流部に混合促 進用の気体、 たとえば空気を導入できるように気体流路を接続した態様であ る。 そして、 サンプル流路 1 1 eの混合部には、 混合器 1 5を、 その下流に は気液分離器 1 6を配置して、 混合器 1 5及び気体導入による撹拌効果を発 揮させている。 撹拌、 混合が終わったサンプルからは気液分離器 1 6により 気体を分離し排ガス流路 1 1 pを介して排ガスタンク 6へと除去し、 均一混 合されたサンプルのみがセンサに送られる。 なお、 余剰のサンプルがある場 合は、 余剰のサンプルは気液分離器 1 6から排ガス流路 1 1 pを通って排ガ スタンク 6へと排出される。 このようにサンプルが希釈液と完全に均一混合 されてからセンサ 5に導入されれば、 センサ 5による測定の安定性がまし、 測定感度や測定精度はさらに向上する。 なお、 センサ 5により測定され終わ つたサンプルは、 排液流路 1 1 f からポンプ 1 O bと 1 O cの流量を足し合 わせた流量よりも低い流量に設定されたポンプ 1 0 f により吸引されて排液 タンク 6に排出される。 なお、 第一希釈液流路にも体液希釈液流路等と同様 に逆止弁 1 4 dを設けておくことが好ましい。
[0054] 図 5は、 図 4に示した態様の生体成分測定装置に流路配置基板を配置した 態様例である。 図 5の態様例においては、 流路配置基板 1 9にはサンプル流 路、 体液希釈液流路、 第一希釈液流路、 第二希釈液流路、 排液流路、 及び気 体流路などの各種の流路、 並びにこれらの流路上に存在するポンプ用チュー ブ 1 0、 流路合流器 1 7、 混合器 1 5及び気液分離器 1 6が配置されている 。 この態様の本発明の流路配置基板 1 9には、 少なくともサンプル流路の一 部が配置されている。 この流路配置基板 1 9には、 上述のようにサンプル流 路 1 1 d, 1 1 e , 1 1 ο (図 4を参考にすること) 、 体液希釈液流路 1 1 c、 第一希釈液流路 1 1 i , 1 1 j、 第二希釈液流路 1 1 q、 排液流路 1 1 f 、 及び気体流路 1 1 nなどの生体成分測定装置に使用する各種の流路、 並 びにこれらの流路上に存在するポンプ用チューブ 1 0、 流路合流器 1 7、 混 合器 1 5及び気液分離器 1 6を配置することが好ましい (流路等の符号は図 4又は図 5も参照する。 ) 。
図 5に示した態様例の生体成分測定装置についてさらに説明する。 体液採 取装置 3 aから採取された体液は、 体液希釈液タンク 4 aから供給された体 液希釈液により希釈されて、 サンプル流路 1 1 a, 1 1 d, 1 1 eを通って センサ 5に導かれる。 その間に、 サンプル流路 1 1 eには希釈液及び気体流 路からの気体が導入され、 混合器 1 5によりサンプルと希釈液とが完全に混 合される。 そして、 気液分離器 1 6により気体と過剰の希釈されたサンプル は排出され、 適正な量のサンプルがセンサ 5に導かれる。 測定が終わったサ ンプルは、 センサ 5から排液流路 1 1 f から排液タンク 6に導かれる。 測定 に代えて較正を行う際には、 上述のようにまずフラッシングタンク 1 3のフ ラッシング液でサンプル流路及びセンサをフラッシングした後、 第一流路切 替バルブ 9 b、 第二流路切替バルブ 9 aを較正液を導くように切り替えて生 体成分測定装置を較正する。 この際、 ゼロ点の較正をするには第二希釈液流 路 1 1 qから希釈液のみをセンサ 5に導入してセンサ指示値を計測してやれ ばよい。 別のゼロ較正の方法としては、 体液成分の採取前に希釈液をセンサ に供給し、 希釈液がセンサ流路を満たす十分な量供給されていれば、 それで ゼロ較正が可能となる。 一般に、 体液成分の測定中のゼロ点の変動はわずか なので、 体液測定前に一回ゼロ較正しておけば多くの場合、 測定終了までゼ 口較正を必要としない。 この場合、 第二希釈液流路 1 1 q及びこの流路切替 のための流路切替バルブを省略することができる。 また、 フラッシング液を 活用して、 ゼロ較正を行うこともできる。 通常フラッシング液には体液測定 成分は含まないので、 生体成分測定装置の運転中にフラッシングポンプを起 動してサンプル流路のクロッテイング除去操作をすれば、 センサには、 フラ ッシング液が流入する。 このフラッシング液が生理食塩水やリンゲル液など の糖濃度のないものであれば生体成分採取装置 3 aと生体とが接続状態でも ゼロ較正ができる。 なお、 センサのフラッシングはフラッシング液の代わり に較正液で行うこともできる。
これらの流路配置基板 1 9上の流路は、 その端部において生体成分測定装 置上の対応する流路又はタンクやバルブ等の機器と脱着可能となっており、 流路配置基板 1 9を生体成分測定装置上に装着する際にはこれらの流路を接 続し、 流路配置基板 1 9を脱着する場合にはこれらの流路も取り外す。 この ようにして、 流路配置基板 1 9及び流路配置基板 1 9上に配置した流路は、 被測定体 2が変わったり、 測定時期が異なったりする場合には簡単に衛生的 に取り替えることができる。 特に、 流路配置基板 1 9の取り外しの際の体液 の漏洩を防ぐためには、 流路配置基板 1 9の取り外し前にフラッシング液、 体液希釈液、 較正液又は希釈液等をサンプル流路などの流路配置基板 1 9上 のサンプルを保持している機器中に導入してやり、 これらの液で洗浄してか ら流路配置基板 1 9を取り外すことが好ましい。 このような流路配置基板 1 9は、 所謂ディスポーザブルタイプの流路配置基板と呼ばれている。 このよ うなディスポーザブルタィプの流路配置基板に用いられる基板材料や流路等 の機器材料は、 通常長期間使用はしないので安価で入手し易いものが好まし し、。 これらの基板材料ゃ流路等の機器材料としては、 例えば、 塩化ビニル、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポリエステル、 ナイロンな どの比較的安価な樹脂や天然ゴム、 ブタジエンゴム、 イソプレンゴム、 S B Rなどの一般的なゴム等が挙げられる。 センサ 5やフラッシング液導入用の ポンプ 1 O dなども流路配置基板 1 9上に配置することもできる力 使い捨 てにすることのコストアップと、 流路配置基板取付け時の簡便性、 衛生上の 配慮等から好ましい配置を選択すればよい。
図 5に示す態様においては、 第一希釈液流路 1 1 iは、 希釈液を加温する ための加熱手段の一例であるヒータ 1 8を備えている。 ヒータは、 第一希釈 液流路 1 1 i内を流通する希釈液を加温することができればよい。 このヒー タ 1 8には希釈液の温度を制御して、 最終的にはセンサ 5に導入されるサン プルの温度を制御する目的がある。 通常、 センサ 5は測定の安定性を考慮し て生体と同じ程度の温度に制御されている。 人体からの体液測定の場合は 3 6〜3 8度に制御している場合が多い。 ところが、 採取した体液を含むサン プルは、 希釈液の温度ゃ流路中の外気温などの影響で低下することが多い。 特に、 外気温が低い場合は影響が大きい。 センサに導入されるサンプルの温 度が低いとセンサの感度や精度が変化したり、 温度制御されているセンサ内 で温度が急に上昇したサンプルから気泡が発生して測定が乱れることがある 。 このような不具合を解消するため、 サンプル流路を保温する方法がある。 しかし、 体液、 特に血液は生体内の温度より高温になるとゲル化したり変質 したりし易く、 例えば人間の血液の場合は 4 0度以上にするとゲル化の虞が ある。 このため、 サンプル流路の保温によるサンプルの温度制御をする場合 には、 サンプル温度が 4 0度以上にならないようにするための厳密な温度制 御が要求される。 一方、 希釈液は体液を含まず比較的安定であるので 5 0度 以上の高温になっても問題はない。 また、 希釈液による希釈比を大きくして おけば希釈液の温度でセンサ入口のサンプルの温度を制御し易い。 この態様 の生体成分測定装置は、 このような観点からヒータ 1 8を設置してある。 な お、 この態様では、 ヒータ 1 8は、 希釈液タンク 4 bとポンプとの間の第一 希釈液流路 1 1 i を保温するように設置されているが、 希釈液タンク 4 bと 流路合流器 1 7との間の第一希釈液流路上であればよく、 ポンプ下流側にも 設置することができる。 なお、 補助的にサンプル流路ゃ第一希釈液流路も保 温しておくことは、 サンプルの温度制御には有効な手段である。 但し、 サン プル流路の保温にあたっては、 サンプルの一部であっても過熱されないよう な注意が必要である。 [0058] この発明の生体成分測定装置の較正は、 従来の生体成分測定装置における 較正とは違って、 センサだけでなく、 流路ゃポンプを含む装置全体として較 正することができる。 較正は、 通常、 ゼロ較正、 例えば測定項目が血糖値で あれば糖濃度ゼロとスパン較正、 測定項目が血糖値であれば例えば糖濃度 200 mg/dLとで測定を行い、 この 2点から検量線を作って較正する。 一般に、 スパ ン較正値の変動は大きいが、 ゼロ較正の変動は少ないのでこれを省略して較 正を行ってもよいが、 ゼロを較正することでより正確な較正ができる。 図 5 を参考に説明すると、 第二稀釈液タンク 4 bの第二稀釈液流路 1 1 iから分 岐した第二稀釈液流路 1 1 jから直接センサ 5に希釈液を導入する流路を設 け、 ゼロ較正の際は、 センサ 5に希釈液のみを供給して較正する。 希釈液は 測定対象成分、 例えば糖分などは存在しないのでゼロ較正液として好適であ る。 図 5に示す態様では、 較正の前段階であるフラッシング工程に入ったら センサ 5のゼロ較正をはじめることができる。 その際、 センサ 5の手前にあ る流路切替弁は、 サンプル流路側から第一希釈液流路側に切り替えられて所 用の時間、 例えば 1分程度希釈液を導入してゼロ較正をすればよい。 フラッ シングが始まると同時にゼロ較正を行えば、 較正にかかる全体の時間が短縮 できる。 2点較正だけでなく、 多点較正により正確な較正をすることもでき る。 多点較正は、 ゼロ較正と 1点のみのスパン較正ではなく、 多点のスパン 較正を行い検量線を作成するものである。 当然、 多点較正のほうが 2点較正 よりも制度の高い較正がでる。 多点較正をするには、 濃度を変えた較正液タ ンク 8を複数個設けてこれらを切り替えて較正液流路に導入したり体液希釈 液又は希釈液と較正液との流量比を変更したりしてセンサ 5に導入される際 の較正液濃度を調整して多点較正することもできる。 複数の較正液タンク 8 を設けて流路を切り替えて多点較正する場合は、 流路切替弁 9 a、 9 bを三 方弁でなく 4方弁、 6方弁などとして流路を切り替えて複数の較正を行って もよい。
[0059] この発明の生体成分測定装置における好適なポンプ、 ポンプ用チューブ及 びマルチポンプに付いて説明する。 この発明の生体成分測定装置におけるポ ンプはそれぞれの流体を必要量だけ定量的に移送できるものであれば、 どの ようなタイプのポンプでもよい。 なお、 この発明においては、 気体の移送手 段についてもポンプと称する。 この発明のポンプとしては、 簡便で流路とし てのチューブがそのまま利用できる所謂チューブポンプとかしごきポンプと 称されるポンプが好適である (便宜上チューブポンプと称する。 ) 。 このチ ユーブポンプは、 例えば図 7に示すように、 流路を形成する弾性のあるボン プ用チューブ 1 0をしごくローラ 2 0 aと、 このローラ 2 0 aを支持する軸 2 0 cと、 この軸 2 0 cを結合支持してローラ 2 0 aを回転させる回転軸 2 O bと、 押さえ板 2 0 dとを備え、 回転するローラ 2 0 aが前記ポンプ用チ ユーブ 1 0に対してしごき作用をする。 このチューブポンプによると、 回転 軸 2 0 bの回転によりこのローラ 2 0 aも回転軸 2 0 bを中心にして回転し 、 ローラ 2 0 aの回転運動によりポンプ用チューブ 1 0をしごくことができ るようになっている。 ローラ 2 0 aが押さえ板 2 0 dと協働してポンプ用チ ユーブ 1 0を挟みつけ、 ポンプ用チューブ 1 0をつぶして、 ローラ 2 0 aの 回転に伴ってポンプ用チューブ 1 0内の流体をポンプ用チューブ 1 0の下流 側へ押出していく。 ポンプ用チューブ 1 0はサンプル流路 1 1 dなどの流路 の一部であると同時に、 ポンプ 1 0 bの一部であるとも言える。 図 5に示す 生体成分測定装置の流路配置基板 1 9上には、 この流路配置基板 1 9に配置 された各種の流路とともにこの流路に接続されているチューブポンプ 2 0の —部であるポンプ用チューブ 1 0も配置されている。 そして、 このポンプ用 チューブ 1 0は、 流路配置基板 1 9が生体成分測定装置に装着されて使用さ れる際には、 生体成分測定装置に備えられているローラ 2 0 aと押さえ板 2 0 dとにより挟まれて、 これらと共にチューブポンプ 2 0を構成する。 この発明の一実施形態である図 5に示す生体成分測定装置においては、 流 体を移送する必要のある全ての流路に作用して全ての流路内の流体を強制的 に移送することができるように、 移送すべき流路のポンプ用チューブ 1 0を 流路配置基板 1 9上に平行に整列して並べて配置しておく。 そしてチューブ ポンプ 2 0のローラ 2 0 aを長尺にして上記の全てのポンプ用チューブ 1 0 を同じローラ 2 0 aで同時にしごけるようにする。 そうすると、 流路内を移 送される流体の単位時間あたりの流量は、 ポンプ用チューブ 1 0の断面積及 び回転軸 2 0 bの回転速度により決定される。 回転軸 2 0 bが一本であれば 、 ポンプ用チューブ 1 0の断面積のみでそれぞれの流路の流体の流速は決定 される。 つまり、 このローラ 2 0 aでしごかれることにより流体を移送する ときの流量は、 流路中のポンプ用チューブ 1 0の内径を調整することにより 、 適宜に決定することができる。 このようなポンプをマルチポンプと称する 。 マルチポンプは構造が簡単で各流路間の流量比も常に一定にすることがで きる。
この発明においては、 ポンプは図 7に示すチューブポンプ 2 0と同様の作 用を有する構造として、 蠕動ポンプを挙げることができる。 また、 好適なポ ンプとして、 このようなしごき作用を有する構造の外に、 図 8に示す押圧作 用を有するポンプを挙げることができる。 この図 8に示す押圧作用を有する 押圧ポンプ 2 1は、 ポンプ用チューブ 1 0を押さえ板 2 1 d, 2 1 eで挟ん でおき、 下側の押さえ板 2 1 dに設けられた開口部 2 1 f に、 この開口部 2 1 f の上端開口部から出没可能な押圧子 2 1 aと、 この押圧子 2 1 aの一端 に回転可能に接触する偏芯回転カム 2 1 bとを備える。 このポンプは、 前記 偏芯回転カム 2 1が回転軸 2 1 cにより偏芯回転すると、 前記押圧子 2 1 a が前記開口部 2 1 f を出没するように並進運動をする。 一方、 下側の押さえ 板 2 1 dは、 流路配置基板 1 9と兼用することもでき、 流路配置基板 1 9に 配設される流路例えばサンプル流路 1 1 dは、 その流路でもあるポンプ用チ ユーブ 1 0内に第 1ポぺットバルブ 2 1 g及び第 2ポぺットバルブ 2 1 hを 備える。 押さえ板 2 1 eは弾性のあるポンプ用チューブ 1 0を押さえている 。 このポンプ 2 1によると、 前記押圧子 2 1 aがポンプ用チューブ 1 0を押 圧することにより前記第 1ポぺットバルブ 2 1 gと第 2ポぺットバルブ 2 1 hとで挟まれるポンプ用チューブ 1 0内の内容積を小さくする際は、 第 1ポ ぺットバルブ 2 1 gは閉鎖状態となる一方、 第 2ポぺットバルブ 2 1 hが開 放状態となり、 ポンプ用チューブ 1 0内に存在する流体が第 2ポぺットバル ブ 2 1 hから流出する。 ポンプ用チューブ 1 0内の内容積が最小になってか ら押圧子 2 1 aが後退すると、 ポンプ用チューブ 1 0の弾性力によりポンプ 用チューブ 1 0の内容積が元に戻って最大容積となる。 その際、 第 1ポぺッ トバルブ 2 1 gが開放状態となり、 一方第 2ポぺットバルブ 2 1 hが閉鎖状 態となり、 これによつてこのポンプ用チューブ 1 0内に流体が第 1ポベット バルブ 2 1 gを通じて流入する。 したがって押圧子 2 1 aの並進運動、 換言 すると前進及び後進を繰り返すことにより、 ポンプ用チューブ 1 0内への流 体の流入及び排出がくりかえされて流路内を流体が強制的に移送されること にある。 この図 8に示されるポンプは、 ポンプ用チューブ 1 0でもある流路 と協働してポンプ用チューブ 1 0内への流体の流入及び排出が繰り返してい る。
[0062] フラッシング液用のポンプは上述のマルチポンプのひとつとしてもよいが 、 その流量がサンプル等のポンプの流量より大容量の場合が多いので、 個別 に備えてもよい。 フラッシング液用のポンプとしてはチューブポンプ、 蠕動 ポンプ、 上述の図 8に示したポンプ、 ダイアフラ厶タイプのポンプ、 図 1 1 、 図 1 2に示すような図 8に示すポンプの弾性チューブが太めに膨らんだ、 所謂ピロ一タイプの往復動ポンプなどが好適に用いられる。 なお、 これらの ポンプは逆流防止機能を持っているポンプであることが好ましい。
[0063] 流路配置基板 1 9は、 前記各種の流路等を装着することができる限りその 材質に特に制限がなく、 この実施形態においては、 硬質の合成樹脂製であり 、 場合によっては軟質で柔軟な軟質合成樹脂樹脂製であってもよい。 基板 3 は、 P V C製のシート材、 硬質 P V C、 P E Tなどの硬質なフィルム製、 P V Cチューブと接着が容易な軟質 P V C製などの材料を用いればよい。 流路 配置基板 1 9の製造方法としては、 素材板からの機械加工でもよいが、 価格 、 加工くずなどの廃材の低減、 大量生産性を考慮すると成形加工が望ましい 。 成形加工としては、 圧縮成形、 射出成形など一般に中量■大量生産に適す る成形加工が望ましい。 基板へのチューブの装着は、 ベースとなる基板の所 定の位置にチューブを接着して配置することにより行われ、 D S I (ダイス ライ ドインジェクションの略称) でチューブを接着配置することなく中空で 高精度の成形方法を用い、 チューブ配管も一体成形してしまう方法で行われ ることもできる。 また、 溶解性の材質からなる中子を用いて配管を成形した 後に配管中の中子を溶解し、 中空の成形を行う溶融中子法による成形も利用 できる。 基板 3は、 寸法精度に余裕をもたせられるように弾性のある軟質材 料であることが好ましい。 流路配置基板 1 9は、 生体成分測定装置 1の装架 面にピンやフックなどで装着すればよい。 特に、 伸縮性のある樹脂等で作製 された流路配置基板 1 9は生体成分測定装置 1へのワンタツチで着脱が可能 で好適である。
[0064] 図 5に示されるような流路配置基板 1 9を備えた生体成分測定装置 1にお いては、 流路配置基板 1 9上の各流路と流路配置基板 1 9外の各流路との接 続は、 着脱自在の簡単なコネクタによることが好ましい。 例えば、 両方の流 路を柔軟な材質でチューブ状に形成し、 一方の流路端部の内径を接続すべき 他方の流路の端部外径とほぼ等しくしておき、 後者のチューブを前者のチュ ーブに差し込んでやればよい。 あるいは、 両方の流路を柔軟な材質で同じ外 径のチューブ状に形成し、 チューブの外径に等しい内径を持つ短いチューブ を接続用のコネクタとして、 接続すべき両チューブの端部をこのコネクタに 差し込んでやればよい。 軟質塩化ビニル製のチューブなどで使用されるルァ 一タイプコネクタは好適に利用できる。 この発明における流路用のチューブ は取り替え可能なことを前提としているので、 経済性を考慮して製造するこ とが多い。 この場合、 軟質塩化ビニル製のチューブは好適な材料である。 軟 質塩化ビニル製ゃポリカーボネート製のルアータイブコネクタは軟質塩化ビ ニル製のチューブと容易に接続でき、 製造コスト、 内部流体の漏れ難さ、 は ずれ難さ等の面からも適している。 その他にも、 簡単なコネクタとして、 チ ュ一ブの先端部外表面が階段状に細くなつた所謂タケノコと称される形状の チューブを内側にはめ込むタイプなどでもよい。
[0065] 混合器 1 5は、 サンプル流路 1 1 eから供給されるサンプルと、 第一希釈 液流路 1 1 jから供給される希釈液例えば緩衝液とを混合することができる 限り各種の構造を採用することができる。 例えば、 ある程度の長さのチュー ブのみでもよい。 この生体成分測定装置においては、 混合器 1 5からセンサ 5迄のサンプル流路 1 1 oが短い場合が多いので、 センサ 5に至るまでにサ ンプルと希釈液とを十分に混合する構造を採用することが好ましい。 好適な 混合器 1 5の一例として図 9にその断面図を示す構造の混合器を挙げること ができる。 この混合器 1 5は、 直方体形状の混合器本体 1 5 aの内部流通空 間 1 5 bを形成する内壁の一部に、 流体の流通方向に沿って凹凸が連続する 凹凸部 1 5 cを有する。 内部流通空間 1 5 bは、 その下部でサンプル流路 1 1 e、 第一希釈液流路 1 1 j及び気体流路 1 1 nに接続されており、 上部で はサンプル流路 1 1 oに接続されている。 図 9における A _ A切断線に対応 する混合器 1 5の断面を図 1 0に示す。 図 1 0においては、 凹凸部 1 5 cは 、 その中央部がひし形状に形成されてなる。 さらに詳述すると、 凹凸部 1 5 cは、 流体の流通方向に沿って最初は V字状に凹凸が形成されてなる V字状 凹凸部、 換言すると最初は V字状に形成された複数の凸部と、 これら凸部の 間に形成される V字状の凹部とを備える V字状凹凸部と、 内部の中央部から 逆 V字状に形成されてなる逆 V字状凹凸部、 換言すると逆 V字状に形成され た複数の凸部とこれら凸部の間に形成される凹部とを備える逆 V字状凹凸部 とを備えて成る。
凹凸部 1 5 cを備えた混合器 1 5にあっては、 例えば、 混合器本体 1 5 a 内部に導入されたサンプルと希釈液とは、 凹凸部 1 5 cにおける最初の凸部 に衝突してサンプルと希釈液との流れが乱れ、 乱れたサンプルと希釈液とが 最初の凸部を乗り越えてつぎの凹部に至り、 次の凹部では次の凸部によリサ ンプルと希釈液とが衝突し、 液流が乱れる。 また、 凹凸部 1 5 (=は 字状及 び逆 V字状に形成されているので、 サンプルと希釈液とは、 直進方向の成分 と、 凹凸部 1 5 cの斜め方向の成分とに分割され、 このように流れが分割さ れることによりサンプルと希釈液とが乱れた流れとなる。 このようにサンプ ルと希釈液とが、 凸部に衝突して乱れこと、 及び直進方向の成分と、 凹凸部 1 5 cの斜め方向の成分とに分割されることを繰り返すことにより、 サンプ ルと希釈液とが混合されることができる。
なお、 上記説明においては、 混合器 1 5は、 サンプルと希釈液とのみで混 合している場合であるが、 これに限定されず、 混合効率を向上させるために 、 サンプルと希釈液に対して不活性な気体、 例えば、 空気や窒素を混合器内 部空間 1 5 bに導入して、 サンプルと希釈液とを混合するようにしてもよい 。 このような実施形態の生体成分測定装置のフロー図を図 4に例示している 。 この実施形態では、 気体流路 1 1 nを設けている。 気体流路 1 1 nは、 サ ンプル流路 1 1 d等と同様に弾力性のあるチューブで、 気体流路 1 1ポンプ 用チューブ部においてローラによりしごかれて流路内の気体、 例えば空気を 混合器 1 5側に供給できるようになつている。 混合器 1 5で又は混合器 1 5 の上流側で、 希釈液と空気とが混合され、 さらにこれにサンプルが混合され る。 この場合には、 混合器 1 5の下流に、 気液分離器 1 6を設けて、 希釈液 及びサンプルの混合液である液体と空気等の気体とを分離し、 気体及び余剰 の液体は排ガス流路 1 1 Pから排出される。 このように空気を混合器 1 5に 送気することにより、 サンプルと希釈液との混合効率を向上でき、 また混合 器 1 5及びサンプル流路 1 1 o内のサンプルの滞留時間を短くできるので、 採取した体液成分を迅速に測定できる。

Claims

請求の範囲
[1 ] 体液採取装置で採取した体液を含むサンプルをサンプル流路及びポンプに よりセンサに送液し、 前記センサによりサンプル中の生体成分を測定する生 体成分測定装置であって、 サンプル流路のポンプ上流側に設けられた第一流 路切替バルブと、 この第一流路切替バルブに接続され、 この第一流路切替バ ルブの切替操作により、 較正液をサンプル流路を通じてセンサに供給可能に する較正液流路とを含んで成る生体成分測定装置。
[2] 体液採取装置に体液希釈液を導入する体液希釈液流路を含んで成る請求項
1に記載の生体成分測定装置。
[3] 前記体液希釈液流路の途中に設けられた第二流路切替バルブと、 この第二 流路切替バルブに接続され、 この第二流路切替バルブの切替操作により、 体 液希釈液流路内の体液希釈液を前記較正液と混合可能にする第二体液希釈液 流路とを含んでなる前記請求項 1又は 2に記載の生体成分測定装置。
[4] サンプル流路の体液採取装置と第一流路切替バルブとの間に、 及び 又は 前記第二流路切替バルブと体液採取装置との間に、 流路切替バルブを介して 接続され、 フラッシング液を流通させるフラッシング液流路を含んで成る請 求項 1〜 3のいずれか 1項に記載の生体成分測定装置。
[5] 前記フラッシング液は、 所定濃度の生体成分を含有してなる前記請求項 1
〜 4のいずれか 1項に記載の生体成分測定装置。
[6] サンプル流路に設けた第一流路切替バルブの下流に接続した、 サンプル流 路内のサンプルを希釈するための第一希釈液流路を含んで成る請求項 1〜5 のいずれか 1項に記載の生体成分測定装置。
[7] 第一希釈液流路、 又は第一希釈液流路とサンプル流路との合流部に接続し た気体流路を含んで成る請求項 6に記載の生体成分測定装置。
[8] 生体成分測定装置本体とこの生体成分測定装置本体に着脱可能な流路搭載 基板とで形成され、 体液採取装置で採取した体液を含むサンプルをサンプル 流路及びポンプによりセンサに送液し、 前記センサによりサンプル中の生体 成分を測定する生体成分測定装置であって 前記流路搭載基板は、
生体成分測定装置本体に着脱可能に形成された基板と、
体液採取装置に接続可能であり、 体液採取装置で採取した体液を含むサン プル中の生体成分を測定するセンサに接続可能であり、 前記サンプルをボン プによりセンサに送液可能に前記基板に搭載されたサンプル流路と、 較正液タンクに接続可能であり、 サンプル流路の前記ポンプ上流側に第一 流路切替バルブを設けて接続され、 かつ、 前記較正液タンク内の較正液をサ ンプル流路内に送液可能に前記基板に搭載された較正液流路と、
を有して成ることを特徴とする生体成分測定装置。
言己基板は、
体液希釈液タンクに接続可能であり、 かつ、 体液採取装置に体液希釈液タ ンク内の体液希釈液を導入する体液希釈液流路を搭載してなる前記請求項 8 に記載の生体成分測定装置。
前記体液希釈液流路の途中に設けられた第二流路切替バルブと、 この第二 流路切替バルブに接続され、 この第二流路切替バルブの切替操作により、 体 液希釈液流路内の体液希釈液を前記較正液と混合可能にする第二体液希釈液 流路とを含んでなる前記請求項 8又は 9に記載の生体成分測定装置。
BIJ記基板は、
フラッシング液タンクに接続可能であり、 かつ、 サンプル流路の体液採取 装置と第一流路切替バルブとの間に、 及び 又は第二流路切替バルブと体液 採取装置との間に接続され、 フラッシング液を流通させるフラッシング液流 路を搭載してなる前記請求項 8〜 1 0のいずれか 1項に記載の生体成分測定 装置。
前記フラッシング液は、 所定濃度の生体成分を含有してなる前記請求項 8 〜 1 1のいずれか 1項に記載の生体成分測定装置。
言己基板は、
希釈液タンクに接続可能であり、 かつ、 サンプル流路に設けた第一流路切 替バルブの下流に接続した第一希釈液流路を搭載してなる前記請求項 8〜 1 2のいずれか 1項に記載の生体成分測定装置。
[14] 前記基板は、 第一希釈液流路、 又は第一希釈液流路とサンプル流路との合 流部に接続した気体流路を搭載してなる前記請求項 8 ~ 1 3のいずれか 1項 に記載の生体成分測定装置。
[15] 較正液タンクが体液採取装置よりも低い位置に設置されてなることを特徴 とする前記請求項 8〜 1 5のいずれか 1項に記載の生体成分測定装置。
[16] 請求項 1〜 1 6のいずれか 1項に記載の生体成分測定装置の較正方法であ つて、 第一流路切替バルブを切り替えて較正液流路からサンプル流路を経て センサに較正液を導入することを特徴とする生体成分測定装置の較正方法。
[17] 請求項 4〜7、 1 1〜 1 5のいずれか 1項に記載の生体成分測定装置の較 正方法であって、 生体成分を採取する前に希釈液を第一希釈液流路からサン プル流路に導入して生体成分測定装置のゼロ点較正をする操作と、 生体成分 の測定中に前記フラッシング液をサンプル流路に導入する操作と、 前記フラ ッシング液をセンサ内に導入させることなく第一流路切替バルブを切り替え て較正液流路内の較正液をサンプル流路を通じてセンサに導入する操作とを 含む生体成分測定装置の較正方法。
[18] 請求項 4 ~ 7、 1 1 ~ 1 5のいずれか 1項に記載の生体成分測定装置の較 正方法であって、 生体成分の測定中にサンプル流量よりも多いフラッシング 液をフラッシング液流路からサンプル流路に導入する操作と、 フラッシング 液がサンプル流路及びセンサ内に導入された後にサンプル流路に設けた第一 流路切替バルブを切り替えて較正液をセンサに導入する操作と、 較正液をセ ンサに導入する前記操作中にフラッシング液をサンプル流路に導入する前記 操作において導入したフラッシング液よりも少ないフラッシング液を第一流 路切替バルブよりも上流のサンプル流路及び体液採取装置に導入してこの部 分への体液の流入を防止する操作とを含む生体成分測定装置の較正方法。
PCT/JP2007/000466 2006-04-26 2007-04-26 生体成分測定装置及び生体成分測定装置の較正方法 WO2007129463A2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07737122.7A EP2011438B1 (en) 2006-04-26 2007-04-26 Biological component measuring equipment and method of calibration of biological component measuring equipment
US12/298,523 US8236257B2 (en) 2006-04-26 2007-04-26 Biological component-measuring device and method for calibrating the same
JP2008514385A JP5025639B2 (ja) 2006-04-26 2007-04-26 生体成分測定装置及び生体成分測定装置の較正方法
US13/541,532 US8663579B2 (en) 2006-04-26 2012-07-03 Biological component-measuring device and method for calibrating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-122469 2006-04-26
JP2006122469 2006-04-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/298,523 A-371-Of-International US8236257B2 (en) 2006-04-26 2007-04-26 Biological component-measuring device and method for calibrating the same
US13/541,532 Division US8663579B2 (en) 2006-04-26 2012-07-03 Biological component-measuring device and method for calibrating the same

Publications (2)

Publication Number Publication Date
WO2007129463A2 true WO2007129463A2 (ja) 2007-11-15
WO2007129463A3 WO2007129463A3 (ja) 2008-12-18

Family

ID=38668177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000466 WO2007129463A2 (ja) 2006-04-26 2007-04-26 生体成分測定装置及び生体成分測定装置の較正方法

Country Status (4)

Country Link
US (2) US8236257B2 (ja)
EP (2) EP2220993B1 (ja)
JP (2) JP5025639B2 (ja)
WO (1) WO2007129463A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512218A (ja) * 2008-02-19 2011-04-21 スフェア メディカル リミテッド 患者監視装置中のセンサーを校正する方法
JP2012135499A (ja) * 2010-12-27 2012-07-19 Asahi Kasei Medical Co Ltd 血液浄化システム
JP2018525647A (ja) * 2015-07-24 2018-09-06 ノベル マイクロデバイシズ, エルエルシー (ディービーエー ノベル デバイシズ)Novel Microdevices, Llc (Dba Novel Devices) 検体抽出デバイス及びその使用の方法
EP4257667A1 (en) * 2022-04-06 2023-10-11 Sartorius Stedim Biotech GmbH Device assembly and method for calibrating a single-use sensor
JP7490283B2 (ja) 2020-09-24 2024-05-27 ユンゼフィトン (ベイジン) テクノロジー カンパニー リミテッド 液体を定量的に処理するための装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856777B2 (ja) * 2008-03-27 2012-01-18 パナソニック株式会社 試料測定装置、試料測定システム及び試料測定方法
US9488627B2 (en) * 2011-07-29 2016-11-08 James Skourlis Automated stationary gas sensor calibration system and method
WO2013086230A1 (en) * 2011-12-06 2013-06-13 Edan Diagnostics In vitro medical diagnostic device, cartridge, and systems and methods
CN102565436B (zh) * 2012-01-19 2013-09-18 湖州凯立特医疗器械有限公司 便携式检测仪器的自校准多次测量模块及其使用方法
JP5713465B2 (ja) * 2012-09-14 2015-05-07 株式会社タニタ バイオセンサの校正方法
US9907503B2 (en) * 2012-10-31 2018-03-06 Edwards Lifesciences Corporation Sensor systems and methods of using the same
USD717459S1 (en) 2012-11-12 2014-11-11 Edan Diagnostics Diagnostic device
USD706930S1 (en) 2012-11-12 2014-06-10 Edan Diagnostics Fluid cartridge
USD717438S1 (en) 2012-11-12 2014-11-11 Edan Diagnostics Fluid cartridge
CN103543280B (zh) * 2012-12-06 2015-10-14 理邦(美国)诊断有限公司 一种体外医疗诊断装置和系统
CN103543185B (zh) * 2012-12-06 2015-06-24 理邦(美国)诊断有限公司 一种用于体外医疗诊断装置的测试卡
DE102013114011A1 (de) * 2013-12-13 2015-06-18 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Analysegerät und Verfahren zur automatisierten Bestimmung einer aus einer Vielzahl von Messparametern ausgewählten Messgröße
WO2016129087A1 (ja) * 2015-02-12 2016-08-18 学校法人東北学院 生体管理システム及び生体管理方法
GB2538731B (en) 2015-05-26 2019-05-22 Imperial Innovations Ltd Methods
JP6846304B2 (ja) * 2017-07-06 2021-03-24 日機装株式会社 生体成分測定装置
DE102017211693A1 (de) * 2017-07-07 2019-01-10 Resuscitec Gmbh Fluidanalysemodul sowie Fluidanalysator
JP7150324B2 (ja) * 2018-11-16 2022-10-11 株式会社テクノメデイカ 使い捨て検査具及び該検査具を用いる分析装置
WO2021153442A1 (ja) * 2020-01-27 2021-08-05 ビーエルテック株式会社 流れ分析方法、流れ分析装置
JP6903366B1 (ja) * 2020-01-27 2021-07-14 ビーエルテック株式会社 流れ分析方法、流れ分析装置
AU2021228614A1 (en) * 2020-02-27 2022-09-22 Carefusion 303, Inc. Peristaltic pumping segment with check valve
CN112545444B (zh) * 2020-12-10 2022-11-11 中国人民解放军空军军医大学 一种适用于宫腔镜检查及手术的计量冲洗控制器
WO2024100260A1 (en) * 2022-11-11 2024-05-16 Analog Devices International Unlimited Company Extracorporeal blood circuit priming solution sampling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135795A (en) 1976-05-06 1977-11-14 Miles Lab Apparatus for correcting sensor
JPS5482885A (en) 1977-11-25 1979-07-02 Miles Lab Blood glucose controller
JPS5521905A (en) 1978-08-02 1980-02-16 Nikkiso Co Ltd Improvement of artificial pancreas
JPS5628765A (en) 1979-08-17 1981-03-20 Nikkiso Co Ltd Artificial pancreas
JPS58152537A (ja) 1982-03-09 1983-09-10 日機装株式会社 血中物質の連続モニタ−装置
JPS58198351A (ja) 1982-05-15 1983-11-18 株式会社京都第一科学 希釈される体液中の特定成分を連続的に測定する装置

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US613093A (en) * 1898-10-25 William g
US1000385A (en) * 1911-01-19 1911-08-15 Karl Eberle Mixing device for gas-burners.
US1126275A (en) * 1913-11-09 1915-01-26 Gen Electric Flow-meter of the venturi type.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1535702A (en) * 1924-02-15 1925-04-28 Walsh Liquid-fuel burner
US1810131A (en) * 1929-05-25 1931-06-16 American Ozone Company Device for mixing gases and liquids
US2021092A (en) * 1931-02-09 1935-11-12 Teliet Jean Antoine Marcel Improved method and means for incorporating a fluid to a stream of a fluid or of a pulverulent solid
US1942293A (en) * 1932-03-11 1934-01-02 Kane Carburetor Corp Carburetor
US2068567A (en) * 1935-01-11 1937-01-19 Herbert R Palmer Air and gas mixer for gas burners
US2595720A (en) * 1946-11-16 1952-05-06 Charles R Snyder Carburetor
US2585205A (en) * 1947-08-14 1952-02-12 Carl T Young Liquid fuel injector
US2805966A (en) * 1953-02-19 1957-09-10 Staley Mfg Co A E Starch pasting process and apparatus
US2942465A (en) * 1955-02-23 1960-06-28 Carbone Nettie Frishman Fluid flow meter
US3049009A (en) * 1958-11-10 1962-08-14 Mccall Floyd Flow meter
US3143401A (en) * 1961-08-17 1964-08-04 Gen Electric Supersonic fuel injector
US3196680A (en) * 1962-01-03 1965-07-27 Itt Flow tubes
DE1258835B (de) * 1964-08-28 1968-01-18 James R Lage Dr Mischeinrichtung
US3467072A (en) * 1966-08-31 1969-09-16 Energy Transform Combustion optimizing devices and methods
US3489396A (en) * 1968-03-14 1970-01-13 Paul D Aragon Stream water aerator
US3572117A (en) * 1968-05-27 1971-03-23 Eastech Bluff body flowmeter
US3733898A (en) * 1970-06-05 1973-05-22 Oval Eng Co Ltd Flow conditioning apparatus
US3675901A (en) * 1970-12-09 1972-07-11 Phillips Petroleum Co Method and apparatus for mixing materials
US3671025A (en) * 1971-05-03 1972-06-20 Perry R Elliott Fluid mixing device
US3759095A (en) * 1971-07-16 1973-09-18 Research Technology Strip detection apparatus
US4051204A (en) * 1973-12-21 1977-09-27 Hans Muller Apparatus for mixing a liquid phase and a gaseous phase
US3968912A (en) * 1974-11-11 1976-07-13 Norton Horwitz Ball and racket carrier
US4008611A (en) * 1975-07-01 1977-02-22 S. P. Kinney Engineers, Inc. Fluid flow measuring apparatus
JPS5490633A (en) * 1977-12-28 1979-07-18 Takerou Takeyama Burner for combustion apparatus
US4299655A (en) * 1978-03-13 1981-11-10 Beloit Corporation Foam generator for papermaking machine
US4202747A (en) * 1978-07-06 1980-05-13 Beckman Instruments, Inc. Flow cell fluid and sample supply mechanism
US4240438A (en) * 1978-10-02 1980-12-23 Wisconsin Alumni Research Foundation Method for monitoring blood glucose levels and elements
US4237739A (en) * 1979-03-01 1980-12-09 Sybron Corporation Integral flow metering assembly using a segmental wedge
US4350047A (en) * 1980-09-18 1982-09-21 Fisher Controls Company, Inc. Vortex-shedding flowmeter having two bluff bodies
US4491551A (en) * 1981-12-02 1985-01-01 Johnson Dennis E J Method and device for in-line mass dispersion transfer of a gas flow into a liquid flow
JPS598939A (ja) * 1982-07-06 1984-01-18 藤沢薬品工業株式会社 血糖値測定装置
US4522151A (en) * 1983-03-14 1985-06-11 Arbisi Dominic S Aerator
CA1199854A (en) * 1983-08-31 1986-01-28 Majesty (Her) The Queen In Right Of Canada As Represented By The Minister Of National Defence Laminar flow element
US4638672A (en) * 1984-09-11 1987-01-27 Ametek, Inc. Fluid flowmeter
US4812049A (en) * 1984-09-11 1989-03-14 Mccall Floyd Fluid dispersing means
JPS621603U (ja) * 1985-06-18 1987-01-08
US4786394A (en) * 1985-08-29 1988-11-22 Diamond Sensor Systems, Inc. Apparatus for chemical measurement of blood characteristics
US4871439A (en) * 1987-02-05 1989-10-03 Steven Enzer Disposable self-calibratable electrode package
US4926698A (en) * 1989-03-03 1990-05-22 Process Automation Business, Inc. Dual wedge flow element
US5133937A (en) * 1989-06-01 1992-07-28 Iniziative Marittime, 1991 S.R.L. Analysis system having a removable reaction cartridge and temperature control
JPH0312134A (ja) * 1989-06-09 1991-01-21 Terumo Corp 検体等の被検液の計測方法及びそのための計測装置
US5118473A (en) * 1989-09-18 1992-06-02 Nova Biomedical Corporation Apparatus for determining the concentration of water soluble species in biological fluid
JP2784949B2 (ja) * 1989-12-06 1998-08-13 テルモ株式会社 検体等の被検液の計測装置
SE500754C2 (sv) * 1991-12-17 1994-08-29 Goeran Bahrton Flödesmätare
US5363699A (en) * 1993-08-25 1994-11-15 Ketema, Inc. Method and apparatus for determining characteristics of fluid flow
AU4967596A (en) * 1995-02-07 1996-09-04 Gensia, Inc. Feedback controlled drug delivery system
US5814738A (en) * 1997-05-01 1998-09-29 Mccrometer, Inc. Fluid flow meter and mixer having removable and replaceable displacement member
SE9702739D0 (sv) * 1997-07-17 1997-07-17 Siemens Elema Ab Förfarande för sköljning och kalibrering av sensor ingående i ett kroppsvätskeanalyssystem
US20030057108A1 (en) * 1999-12-10 2003-03-27 Ramamurthi Sridharan Device and method for accelerated hydration of dry chemical sensors
JP2003107080A (ja) * 2001-09-30 2003-04-09 Jun Kikuchi 血液分析装置ならびに血液分析方法
WO2005007223A2 (en) * 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
JP2005237938A (ja) * 2004-02-29 2005-09-08 Ogawa Hiroteru 採血装置ならびに方法
DK1800090T3 (en) * 2004-08-10 2015-01-12 Mccrometer Inc Fluid flow meter and mixes with removable and replaceable shifter
JP4808461B2 (ja) 2004-10-05 2011-11-02 日機装株式会社 生体成分測定ユニット、生体成分測定ユニット包装体、医療支援器具キット及び医療支援器具キット包装体
US20100129897A1 (en) * 2005-10-05 2010-05-27 Nikkiso Co., Ltd. Biological component-measuring unit, biological component-measuring unit package, medical support instrument kit, and medical support instrument kit package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135795A (en) 1976-05-06 1977-11-14 Miles Lab Apparatus for correcting sensor
JPS5482885A (en) 1977-11-25 1979-07-02 Miles Lab Blood glucose controller
JPS5521905A (en) 1978-08-02 1980-02-16 Nikkiso Co Ltd Improvement of artificial pancreas
JPS5628765A (en) 1979-08-17 1981-03-20 Nikkiso Co Ltd Artificial pancreas
JPS58152537A (ja) 1982-03-09 1983-09-10 日機装株式会社 血中物質の連続モニタ−装置
JPS58198351A (ja) 1982-05-15 1983-11-18 株式会社京都第一科学 希釈される体液中の特定成分を連続的に測定する装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2011438A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512218A (ja) * 2008-02-19 2011-04-21 スフェア メディカル リミテッド 患者監視装置中のセンサーを校正する方法
JP2012135499A (ja) * 2010-12-27 2012-07-19 Asahi Kasei Medical Co Ltd 血液浄化システム
JP2018525647A (ja) * 2015-07-24 2018-09-06 ノベル マイクロデバイシズ, エルエルシー (ディービーエー ノベル デバイシズ)Novel Microdevices, Llc (Dba Novel Devices) 検体抽出デバイス及びその使用の方法
US11260392B2 (en) 2015-07-24 2022-03-01 Novel Microdevices, Inc. Sample processing device comprising magnetic and mechanical actuating elements using linear or rotational motion and methods of use thereof
US11660599B2 (en) 2015-07-24 2023-05-30 Novel Microdevices, Inc. Sample extraction device and methods of use thereof
JP7490283B2 (ja) 2020-09-24 2024-05-27 ユンゼフィトン (ベイジン) テクノロジー カンパニー リミテッド 液体を定量的に処理するための装置
EP4257667A1 (en) * 2022-04-06 2023-10-11 Sartorius Stedim Biotech GmbH Device assembly and method for calibrating a single-use sensor
WO2023194457A1 (en) * 2022-04-06 2023-10-12 Sartorius Stedim Biotech Gmbh Device assembly and method for calibrating a single-use sensor

Also Published As

Publication number Publication date
US20120272709A1 (en) 2012-11-01
US20110198241A1 (en) 2011-08-18
EP2011438A4 (en) 2010-01-20
JPWO2007129463A1 (ja) 2009-09-17
US8663579B2 (en) 2014-03-04
US8236257B2 (en) 2012-08-07
EP2220993B1 (en) 2014-06-18
JP5342037B2 (ja) 2013-11-13
EP2011438A2 (en) 2009-01-07
JP5025639B2 (ja) 2012-09-12
JP2012150130A (ja) 2012-08-09
WO2007129463A3 (ja) 2008-12-18
EP2220993A1 (en) 2010-08-25
EP2011438B1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2007129463A2 (ja) 生体成分測定装置及び生体成分測定装置の較正方法
US8317168B2 (en) Mixer, mixing device and unit for measuring medical component
US8348844B2 (en) Automated blood sampler and analyzer
JP5306883B2 (ja) センサモジュール固定装置、生体成分測定装置及び人工膵臓装置
JP5196832B2 (ja) 生体成分測定ユニット、生体成分測定ユニット包装体、医療支援器具キット及び医療支援器具キット包装体
JP4808461B2 (ja) 生体成分測定ユニット、生体成分測定ユニット包装体、医療支援器具キット及び医療支援器具キット包装体
US9687185B2 (en) Biological component-measuring unit
EP3596461A1 (en) A monitoring device
JP5096286B2 (ja) 気泡検出装置及び生体成分測定装置
US20220251495A1 (en) Biological component treatment system, biological component treatment device, and cell culturing method
EP2108312B1 (en) Monitor and living body measuring device
JP5498084B2 (ja) 流量変動監視装置及び生体成分測定装置
JPH0765978B2 (ja) 微量成分測定方法及び微量成分測定装置
CN117999338A (zh) 细胞培养装置及细胞培养系统
GB2560712A (en) A monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737122

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008514385

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12298523

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007737122

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE