WO2007128509A1 - Dispositif et procédé permettant un enregistrement géométrique combiné interférométrique et basé sur l'imagerie, en particulier dans une technique de micro-système - Google Patents

Dispositif et procédé permettant un enregistrement géométrique combiné interférométrique et basé sur l'imagerie, en particulier dans une technique de micro-système Download PDF

Info

Publication number
WO2007128509A1
WO2007128509A1 PCT/EP2007/003940 EP2007003940W WO2007128509A1 WO 2007128509 A1 WO2007128509 A1 WO 2007128509A1 EP 2007003940 W EP2007003940 W EP 2007003940W WO 2007128509 A1 WO2007128509 A1 WO 2007128509A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination
illumination device
beam splitter
measuring
Prior art date
Application number
PCT/EP2007/003940
Other languages
German (de)
English (en)
Inventor
Norbert Steffens
Peter Lehmann
Original Assignee
Carl Mahr Holding Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Mahr Holding Gmbh filed Critical Carl Mahr Holding Gmbh
Priority to CN200780016669.8A priority Critical patent/CN101438127B/zh
Priority to JP2009508215A priority patent/JP5541916B2/ja
Publication of WO2007128509A1 publication Critical patent/WO2007128509A1/fr
Priority to US12/290,063 priority patent/US8072608B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes

Definitions

  • the invention relates to a device and method for optically measuring a measurement object.
  • the device and the method are particularly suitable for measuring tasks in microsystem technology.
  • Vertical scanning of white light interferometry is especially suitable for the optical measurement of height structures even on stepped objects (WLI).
  • WLI stepped objects
  • Common interferometric arrangements are the Michelson interferometer, the Linnik interferometer and the Mirau interferometer.
  • the WLI uses a white light source, typically a halogen lamp, for lighting.
  • the optical path length difference between the measurement beam path and the reference beam path is continuously increased or decreased while at a distance of less than 100 nm, interference images of the object are generally recorded with a flat resolution pixel sensor (eg CCD or CMOS array).
  • the optical path length change may be generated by movement of the measurement object in the direction of the interferometer, movement of the interferometer toward or away from the object, movement of the interference objective or a reference mirror. This process is referred to as "vertical scanning.”
  • the intensity profile for each camera pixel, the so-called correlogram which is dependent on the optical path length difference, is supplied to the further signal evaluation.
  • coherence-peak evaluation which " provides a comparatively rough estimate of the altitude of a measuring point with deviations of in some cases more than 100 nm
  • phase evaluation which allows measurement uncertainties in the nanometer or subnanometer range Millimeters.
  • Lateral geometry features of measurement objects can be determined via the digital evaluation of pixel images, eg with edge detection algorithms.
  • measuring microscopes are equipped with suitable cameras to record such pixel images and then evaluate them digitally.
  • An advantage of this method is the high measuring speed that allows it, with appropriate synchronization between the image input and the excitation of the measurement object also to make investigations of the dynamic behavior of corresponding measurement objects.
  • all microscopic methods are subject to the restrictions imposed by the diffraction-limited imaging with regard to the achievable lateral resolution. When using visible light, this generally leads to lateral resolutions of approx. 0.5 ⁇ m.
  • WO 2005/108915 A1 proposes a measuring device which can operate with one and the same objective both in an interferometric and in an imaging operating mode.
  • two light sources are provided which emit light of different spectral composition.
  • a filter is arranged which allows only light of one spectral composition, not pass over the light of the other composition.
  • This principle defines the application to different types of light in the different operating modes.
  • At least two operating modes are used. namely, an interferometric operating mode and an imaging operating mode in which image processing or even manual observation of the measurement object or image recording for image archiving or later image analysis can be performed.
  • the measuring device has a first and a second illumination device with light sources which emit light with different or even the same spectral composition.
  • the switching between the two modes of operation is carried out by switching the two lighting devices, of which then either only the first or only the second are operated.
  • the different modes of operation with alternative activation of the illumination devices is achieved by the light from the one (first) light source passing through a beam splitter, via which a reference light path is connected to the beam path, in a first direction, in which it branches off a reference light beam, while the light the other (second) light source passes through this beam splitter only in the opposite direction, in which the beam splitter does not branch off any light in the reference light path.
  • the light of the first illumination device is coupled into the beam path of the measuring device at a location located between said beam splitter and the image recording device.
  • the light of the second illumination device is coupled into the beam path of the measuring device at a point located between the said beam splitter and the measurement object, or alternatively, it is radiated directly onto the measurement object.
  • the light of the first illumination device then passes through the beam splitter in the direction of the measurement object and the light reflected back from the measurement object passes through the beam splitter in the opposite direction.
  • the light therefore passes through the beam splitter twice, ie in the direction of return and in return. Direction. From the radiated to the measurement object and passing through the beam splitter light, a part is diverted into the reference light path.
  • the light of the second illumination device does not pass through the beam splitter in the direction to the measurement object in which it could branch off light in the reference light path. Therefore, the reference light path for the light of the second illumination device is completely inactive, even if the first and the second illumination device use the same light sources. Restrictions existing in the prior art with regard to the choice of the light sources for the illumination devices for generating the different measurement modes are thus eliminated.
  • Short-coherent light sources, long-coherent light sources, colored light sources, white light sources, such as laser diodes, light-emitting diodes, colored light-emitting diodes, white light-emitting diodes, superluminescent diodes, halogen lamps and the like come into consideration as light sources for both the first and the second illumination device.
  • Switching between the operating modes is purely electronic in nature - only the lighting devices need to be activated or deactivated. Neither a mechanical adjustment nor a lens change is required. While incident light illumination of the measurement object takes place through the objective in the interference-optical operating mode, the illumination in the imaging operating mode can be determined arbitrarily within wide limits.
  • a lighting through the lens in the form of a reflected light illumination and a transmitted light illumination and a dark field illumination or other illumination of the measurement object with light sources possible on the lens, outside of the lens on separate carriers or holders in the vicinity of the lens or even behind the measured object or the measuring object are arranged.
  • a dark Keifeldbeleuchtungs be provided with annular light emitting diode array.
  • the objective used is preferably a Mirau interference lens with integrated beam splitter plate and integrated reference mirror.
  • the e.g. Light microscopic image taken using blue light is used for lateral detection of high resolution geometry elements. Due to the low wavelength of the blue light alone, lateral resolutions of less than 0.5 ⁇ m can be achieved.
  • an external light source based on blue LEDs e.g. a segment-by-segment activatable ring light illumination, can also be measured on inclined reflecting flanks in the image processing mode, without having to tilt the measurement object consuming.
  • the interferometric arrangement can also be operated as a phase-shifting interferometer. In this case, an approximately monochromatic light source is used for the interferometric measurement.
  • the additional mounting of a tactile micro-probe in the field of view of the microscope makes it possible to determine geometry measurement data even on structures which are not accessible to the optical measurement, wherein the tactile measurement due to the mechanical coupling with the optical device takes place in the same reference frame as the interferometric measurement and the image processing.
  • the tactile micro-probe can e.g. be performed as a silicon bending beam, which is provided with a piezoresistive bridge circuit for measuring the Tasterauslenkung.
  • the coupling of the measuring device with mechanical positioning units for the X, Y and Z axes which can be equipped with suitable incremental measuring systems, makes it possible to relate measurements of different object areas to one another. Depending on the measuring task, rotary positioning axes can also be appropriate.
  • the device according to the invention can be implemented as a compact sensor module and, with comparatively low device costs, enables a multiplicity of applications, especially in the field of microsystem technology. It takes into account the growing demands on measuring accuracy, measuring speed and process-oriented and flexible usability.
  • the use of LEDs as light sources offers advantages in terms of freedom of design, compactness, service life and reduction of thermal interference effects compared to the widespread in white light interferometry thermal radiators.
  • the individual systems of the measuring device are operated in a coordinated manner so that the respective measuring task is optimally solved.
  • lateral structure sizes are analyzed by means of image processing, height structures are detected by means of white light interferometry, and further features, eg microstructures on vertical flanks, optionally detected with a tactile microprobe. All measurement data are in the same frame of reference and can therefore be combined with each other.
  • Interferometer-based device for optically measuring a test object in schematic representation
  • FIG. 2 is a schematic representation of a device according to the invention based on a Mirau interferometer
  • FIG 3 shows the device of Figure 2 in fragmentary
  • FIG. 4 is a perspective view of the dark field illumination device according to FIG. 3;
  • FIG. 5 shows a device according to the invention permitting three measuring modes based on a Mirau interferometer and
  • FIG 6 shows a measuring device with interferometric operating mode, imaging operating mode and additional mechanical button, in schematic representation,
  • FIG. 1 illustrates an apparatus for the combined areal detection of height values of a measuring object 9 alternatively in an interferometric operating mode and in an image processing mode by means of optical imaging of the measuring object 9.
  • the device includes a lighting arrangement 1 with a first illumination device Ia and a second illumination device Ib for illuminating the measurement object 9.
  • the illumination devices Ia, Ib contain light sources, e.g. with a connected optics, which directs the light respectively to the surface of the measuring object 9.
  • the illumination devices Ia, Ib emit light with the same or different spectral composition.
  • the first illumination device Ia is formed by a white-light LED, which generates a relatively wide light spectrum.
  • the second illumination device Ib is represented, for example, by a blue, i. Shortwave emitting LED formed.
  • both illumination devices Ia, Ib can be provided by white light LED or by colored, e.g. blue LED or other light sources are formed.
  • the measuring device has a beam path which leads from the measurement object to an image recording device 12.
  • a beam splitter 2 is arranged, which adds a reference light path 3 to the beam path.
  • a mirror 4 is arranged in the reference light path 3.
  • the light source of the first illumination device Ia is imaged onto an entrance pupil 7 of an objective 8, which contains the beam splitter 2 and the reference mirror 4.
  • a part of the light of the light source Ia which is branched off from the beam path by the jet 2, becomes the reference mirror 4 through the beam splitter 2 guided and reflected by this.
  • Another part of the light is first guided by the beam splitter 2 to a further beam splitter 10, which serves to reflect the light source of the second illumination device Ib as required. This happens to the light of the first illumination device Ia and passes to the measurement object 9 and is reflected by this.
  • the reference mirror 4 and the part of the measuring object 9 located within the depth of field are projected by means of the objective 8 and a tube lens 11 onto a detector array 12, e.g. a pixel camera with 800 x 600 pixels, shown.
  • the light reflected by the measurement object 9 and the mirror 4 is in this case brought together by the beam splitter 2, it passes through the beam splitter 6 and reaches the detector array 12 for interference.
  • a positioning unit 13 serves to adjust the objective 8 perpendicular to the measuring object 9, ie in the Z direction.
  • a digital computer 14 serving as a control device picks up the images emitted by the detector array 12 and controls the positioning unit 13.
  • the interferometric measurement is effected by moving the objective 8 along the optical axis by means of the positioning unit 13 and by applying interference images for different height positions of the objective recorded and evaluated in the digital computer 14.
  • the illumination device Ia eg a white light source
  • the illumination device Ib eg blue LEDs
  • the light of the illumination device Ia passes the beam splitter 2, which is coupled to the reference light path 3, two times, once forward to the measurement object 9 and once back to the image recording device 12.
  • the illumination device Ia is taken out of operation and the illumination device Ib is turned on.
  • the light is coupled via a condenser 15 and the beam splitter 10 in the beam path so that the reference light path 3 is bypassed.
  • the beam-expensive 10 is arranged between the beam splitter 2 and the measurement object.
  • the light of the illumination device Ib illuminates the measurement object 9 and serves in conjunction with the tube lens 11 for imaging the object regions located within the depth of field of the objective 8 onto the detector array 12. This records the image of the object and leads it to the digital computer 14 for the downstream digital evaluation to.
  • the positioning unit 13 is adjusted until interference phenomena occur and they are evaluated.
  • the measurement object 9 illuminated with light of the illumination device 1 b is optically imaged on the detector array 12.
  • the image obtained can be stored by the digital computer 14 or further processed.
  • image structures can be detected and measured by means of edge finder routines.
  • the light of the illumination device Ia for the interferometric measurement first hits the beam splitter 2 and then the measurement object 9.
  • the light of the illumination device Ib hits first the measurement object 9 and then the beam splitter 2.
  • FIG. 2 illustrates another embodiment of the device according to the invention as a Mirau interferometer.
  • the beam splitter 2 is formed as a partially reflecting plate.
  • the reference mirror 4 is arranged on the optical axis.
  • the illumination device Ib is arranged outside the objective. It shines its light on the measurement object, so that it, as in the previous example, achieved this, before it can pass the first beam splitter 2. Only the light coming from the measuring object 9 passes through the beam splitter 2 and reaches the image processing device 12.
  • FIG. 3 illustrates the illumination device Ib in its embodiment as a dark field illumination device.
  • the dark field illumination device has a plurality of light sources, for example light-emitting diodes, which are arranged below a plane 16 on which the measurement object 9 is mounted.
  • the measuring object 9 can have a plurality of steps and edges 17, 18, 19, 20 and side surfaces 21, 22 which are illuminated by the illumination device 1b.
  • it comprises a number of light sources, for example light-emitting diodes, which, as illustrated in FIG. can be grouped into one or more rings. They each have an opening or light exit angle ⁇ of, for example, 25 °. Their optical axes preferably meet at a common point.
  • the LEDs are preferably arranged so that the light emitted by them can not get directly into the lens 8.
  • the illumination device 1 may include a further light source 23, for example in the form of a light-emitting diode or another light source, such as an incandescent lamp, which is arranged below the measuring object 9 on the optical axis of the device.
  • This light source can be used to illuminate measured objects in transmitted light mode. This may be useful, for example, in translucent or transparent DUTs.
  • the LEDs may be colored LEDs, short-wave blue LEDs, ultraviolet emitting LEDs or white light LEDs.
  • Figure 5 illustrates a further embodiment of the device according to the invention, which is based on the embodiment of Figure 2. Reference is made to the corresponding description.
  • the illumination device Ib is arranged above the measuring object 9 and designed as reflected-light illumination.
  • the illumination device Ib can be formed by one or more light sources, which radiate their light onto the measurement object 9, but not into the objective 8. Thus, only the backscattered from the measurement object 9 light of the illumination device Ib enters the lens 8.
  • the reference beam 3 is inactive in this mode - it is working with optical imaging.
  • the illumination device Ia can comprise two light sources 24, 25 whose light is combined via a beam splitter 26 and is reflected into the beam path of the device via the condenser 5 and the beam splitter 6.
  • the light sources 24, 25 may have different spectral properties, both of which are suitable for the interferometric mode of operation. For example, one may be long-coherent and the other short-coherent.
  • an interference-generating objective an arrangement according to Michelson, Mirau or Linnik can be used.
  • a point-type probe 16 can additionally be introduced into the field of view of the imaging optics. This applies correspondingly to all the above-described embodiments.
  • the punctiform probe 26 is preferably connected to the digital computer 14. By means of translational and / or rotational adjustment devices, ie axes which are assigned to the measurement object 9 and / or the device, in particular the objective 8, a change in the relative position between the measurement object and the measurement device can be made.
  • the device according to the invention has a lens that can operate in at least two different measurement modes.
  • a measurement object 9 is measured interference-optical.
  • a second imaging mode of operation e.g. generates an optical image on a trained like a camera detector array, which can be fed to an image processing routine. Switching between the two measuring modes takes place by switching over the lighting devices which are connected to different points of the beam path of the device - from the perspective of the camera one in front of the beam splitter and the other behind the beam splitter, which couples the reference light path to the beam path.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Le dispositif selon l'invention comporte un objectif (8), qui peut opérer dans au moins deux modes de mesure différents. Dans un premier mode d'interférence, un objet à mesurer (9) est mesuré par optique d'interférence. Dans un second mode opératoire d'imagerie, une image optique, qui peut être alimentée dans une routine de traitement d'image, est produite par exemple sur une matrice de détection réalisée selon le type d'une caméra (12). Le basculement entre l'un et l'autre des deux modes de mesure est effectué par la commutation de dispositifs d'éclairage qui sont raccordés à différents endroits de la trajectoire de rayonnement du dispositif – du point de vue de la caméra l'un étant devant le séparateur de rayon et l'autre derrière le séparateur de rayon, qui est couplé au chemin de la lumière de référence sur la trajectoire de rayonnement.
PCT/EP2007/003940 2006-05-08 2007-05-04 Dispositif et procédé permettant un enregistrement géométrique combiné interférométrique et basé sur l'imagerie, en particulier dans une technique de micro-système WO2007128509A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780016669.8A CN101438127B (zh) 2006-05-08 2007-05-04 尤其适用于微系统技术领域,运用干涉测量和基于成像处理进行组合式几何测量的设备和方法
JP2009508215A JP5541916B2 (ja) 2006-05-08 2007-05-04 特にマイクロシステムにおける、組み合わされた干渉及びイメージに基づく形状決定のための装置及び方法
US12/290,063 US8072608B2 (en) 2006-05-08 2008-10-27 Apparatus and method for a combined interferometric and image based geometric determination, particularly in the microsystem technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006021557A DE102006021557B3 (de) 2006-05-08 2006-05-08 Vorrichtung und Verfahren zur kombinierten interferometrischen und abbildungsbasierten Geometrieerfassung, insbesondere in der Mikrosystemtechnik
DE102006021557.5 2006-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/290,063 Continuation-In-Part US8072608B2 (en) 2006-05-08 2008-10-27 Apparatus and method for a combined interferometric and image based geometric determination, particularly in the microsystem technology

Publications (1)

Publication Number Publication Date
WO2007128509A1 true WO2007128509A1 (fr) 2007-11-15

Family

ID=38170177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/003940 WO2007128509A1 (fr) 2006-05-08 2007-05-04 Dispositif et procédé permettant un enregistrement géométrique combiné interférométrique et basé sur l'imagerie, en particulier dans une technique de micro-système

Country Status (5)

Country Link
US (1) US8072608B2 (fr)
JP (1) JP5541916B2 (fr)
CN (1) CN101438127B (fr)
DE (1) DE102006021557B3 (fr)
WO (1) WO2007128509A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519016A (ja) * 2007-12-14 2011-06-30 インテクプラス カンパニー、リミテッド 表面形状測定システム及びそれを用いた測定方法
EP3387368B1 (fr) 2015-12-11 2019-10-16 Nanojet Oy Propriétés de structures de surface et subsurface avec interférométrie en lumière blanche utilisant des jets photoniques

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038829A (ja) * 2009-08-07 2011-02-24 Topcon Corp 干渉顕微鏡及び測定装置
FR2959305B1 (fr) * 2010-04-26 2014-09-05 Nanotec Solution Dispositif optique et procede d'inspection d'objets structures.
DE102011115027A1 (de) * 2011-10-07 2013-04-11 Polytec Gmbh Kohärenzrasterinterferometer und Verfahren zur ortsaufgelösten optischen Vermessung der Oberflächengeometrie eines Objekts
US9684149B2 (en) 2012-08-07 2017-06-20 Carl Zeiss Industrielle Messtechnik Gmbh Coordinate measuring machine and method for determining spatial coordinates on a measurement object
US9036157B2 (en) * 2012-10-19 2015-05-19 National Applied Research Laboratories System of computing surface reconstruction, in-plane and out-of-plane displacements and strain distribution
CN103268009B (zh) * 2013-06-07 2015-05-06 北京师范大学 垂直照明暗场显微镜
JP2015040825A (ja) 2013-08-23 2015-03-02 キヤノン株式会社 計測装置
DE102013020705B4 (de) * 2013-12-10 2018-01-25 Carl Zeiss Smt Gmbh Verfahren zur Untersuchung einer Maske
JP6576059B2 (ja) * 2015-03-10 2019-09-18 キヤノン株式会社 情報処理、情報処理方法、プログラム
US10520832B2 (en) * 2015-05-19 2019-12-31 Kla-Tencor Corporation Topographic phase control for overlay measurement
CN106289048A (zh) * 2015-06-08 2017-01-04 中国科学院沈阳自动化研究所 基于微透镜的三维超分辨率干涉仪
US10136120B2 (en) 2016-04-15 2018-11-20 Microsoft Technology Licensing, Llc Depth sensing using structured illumination
DE102016225484B3 (de) * 2016-12-19 2018-06-07 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und optischer Sensor zur Bestimmung mindestens einer Koordinate mindestens eines Messobjekts
CN108982433B (zh) * 2017-06-05 2021-09-03 锐准医光股份有限公司 采用进阶光学干涉显微术的光学切层装置
TWI654443B (zh) * 2017-06-05 2019-03-21 銳準醫光股份有限公司 採用進階光學干涉顯微術之光學切層裝置
TWI674089B (zh) * 2017-10-31 2019-10-11 銳準醫光股份有限公司 整合米洛(Mirau)光學干涉顯微術之光學切層裝置
CN110726702A (zh) * 2018-07-17 2020-01-24 锐准医光股份有限公司 采用进阶光学干涉显微术的光学切层装置
CN109163673B (zh) * 2018-08-17 2019-07-05 华中科技大学 一种多波长和相移干涉双同步的表面实时测量方法及系统
CN109211934B (zh) * 2018-08-29 2021-01-26 南京理工大学 基于干涉显微的微球面缺陷检测装置及其检测方法
KR102057956B1 (ko) * 2019-05-07 2019-12-20 주식회사 카이스 카메라 일체형 광학 센서 장치
CN115421311B (zh) * 2022-11-04 2023-01-13 中国航天三江集团有限公司 高精度光束合成光路辅助对准装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740678A1 (de) * 1997-09-16 1999-03-18 Polytec Gmbh Vorrichtung zur berührungslosen Schwingungsmessung
US20030218673A1 (en) * 2000-12-28 2003-11-27 Cameron Abnet Microscopic motion measuring
WO2005108915A1 (fr) * 2004-05-04 2005-11-17 Carl Mahr Holding Gmbh Dispositif et procede pour la combinaison d'interferometrie et de determination basee sur l'image de geometrie, notamment pour utilisation dans la technologie de microsystemes
EP1610088A1 (fr) * 2004-06-22 2005-12-28 Polytec GmbH Dispositif de mesure optique d'un objet

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830562A (en) * 1973-06-25 1974-08-20 Codman & Shurtleff Slit lamp having combination slit and lamp intensity control device
US4818110A (en) * 1986-05-06 1989-04-04 Kla Instruments Corporation Method and apparatus of using a two beam interference microscope for inspection of integrated circuits and the like
CN1026353C (zh) * 1991-11-22 1994-10-26 中国科学院上海光学精密机械研究所 主动式激光位移传感器
JPH05240628A (ja) * 1992-03-02 1993-09-17 Toshiba Corp パターン検査装置
US5644642A (en) * 1995-04-03 1997-07-01 Carl Zeiss, Inc. Gaze tracking using optical coherence tomography
JPH10239589A (ja) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd 干渉顕微鏡装置
DE19721882C2 (de) * 1997-05-26 1999-04-29 Bosch Gmbh Robert Interferometrische Meßvorrichtung
JP2000292705A (ja) * 1999-04-05 2000-10-20 Olympus Optical Co Ltd 走査型顕微鏡
US6361167B1 (en) * 2000-06-13 2002-03-26 Massie Research Laboratories, Inc. Digital eye camera
JP2002122555A (ja) * 2000-10-16 2002-04-26 Nippi:Kk 透明体検査用光源、透明体検査装置およびその検査方法
JP4223349B2 (ja) * 2003-08-13 2009-02-12 フジノン株式会社 耐振動型干渉計装置
JP4474535B2 (ja) 2004-02-27 2010-06-09 株式会社テクノネットワーク四国 立体形状測定及び分析装置
DE102004026193B4 (de) * 2004-05-28 2012-03-29 Carl Mahr Holding Gmbh Messverfahren zur Formmessung
JP4916779B2 (ja) * 2005-09-29 2012-04-18 株式会社トプコン 眼底観察装置
EP1785690A1 (fr) * 2005-11-10 2007-05-16 Haag-Streit Ag Procédé et dispositif destiné à la détermination de valeurs géométriques d un objet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740678A1 (de) * 1997-09-16 1999-03-18 Polytec Gmbh Vorrichtung zur berührungslosen Schwingungsmessung
US20030218673A1 (en) * 2000-12-28 2003-11-27 Cameron Abnet Microscopic motion measuring
WO2005108915A1 (fr) * 2004-05-04 2005-11-17 Carl Mahr Holding Gmbh Dispositif et procede pour la combinaison d'interferometrie et de determination basee sur l'image de geometrie, notamment pour utilisation dans la technologie de microsystemes
EP1610088A1 (fr) * 2004-06-22 2005-12-28 Polytec GmbH Dispositif de mesure optique d'un objet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519016A (ja) * 2007-12-14 2011-06-30 インテクプラス カンパニー、リミテッド 表面形状測定システム及びそれを用いた測定方法
EP3387368B1 (fr) 2015-12-11 2019-10-16 Nanojet Oy Propriétés de structures de surface et subsurface avec interférométrie en lumière blanche utilisant des jets photoniques

Also Published As

Publication number Publication date
CN101438127A (zh) 2009-05-20
JP2009536326A (ja) 2009-10-08
US20090059208A1 (en) 2009-03-05
DE102006021557B3 (de) 2007-07-12
CN101438127B (zh) 2013-08-14
US8072608B2 (en) 2011-12-06
JP5541916B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
DE102006021557B3 (de) Vorrichtung und Verfahren zur kombinierten interferometrischen und abbildungsbasierten Geometrieerfassung, insbesondere in der Mikrosystemtechnik
DE112005000639B4 (de) Vorrichtung und Verfahren zur kombinierten interferometrischen und abbildungsbasierten Geometrieerfassung, insbesondere in der Mikrosystemtechnik
EP3230683B1 (fr) Machine de mesure de coordonnées et procédés de mesure de caractéristiques sur des pièces
AT514500B1 (de) Optische Messvorrichtung und optisches Messverfahren
EP2592462B1 (fr) Procédé et agencement pour la mise au point automatique d'un microscope
DE10392754T5 (de) Interferometrisches optisches System und Verfahren, die eine optische Pfadlänge und einen Fokus bzw. Brennpunkt liefern, die gleichzeitig abgetastet werden
DE102014108353A1 (de) Verfahren und Vorrichtung zur Bestimmung von Geometrien an Messobjekten mittels eines kombinierten Sensorsystems
DE102017128158A1 (de) Abstandsmessungsvorrichtung und Verfahren zur Messung von Abständen
DE202010010932U1 (de) Vorrichtung zur Abbildung einer Probenoberfläche
DE102012009836A1 (de) Lichtmikroskop und Verfahren zur Bildaufnahme mit einem Lichtmikroskop
WO2006042696A1 (fr) Ensemble et procede interferometrique
EP2863167B1 (fr) Procédé et dispositif de mesure de la déviation de rayons lumineux à travers la structure d'un objet ou d'un support
DE102009044151A1 (de) Vorrichtung zur optischen Waferinspektion
DE102013016367A1 (de) Lichtmikroskop und Verfahren zum Untersuchen einer Probe mit einem Lichtmikroskop
EP1311801B1 (fr) Dispositif de mesure de forme interferometrique a faible coherence pour plusieurs surfaces (siege de soupape) a travers plusieurs plans de reference
WO2016193037A1 (fr) Procédé pour la détermination d'une information de hauteur à résolution spatiale d'un échantillon au moyen d'un microscope à champ large et microscope à champ large
DE102019201272B4 (de) Vorrichtung, Vermessungssystem und Verfahren zur Erfassung einer zumindest teilweise spiegelnden Oberfläche unter Verwendung zweier Spiegelungsmuster
DE19740678A1 (de) Vorrichtung zur berührungslosen Schwingungsmessung
DE102010016462B4 (de) Schichtmessverfahren und Messvorrichtung
DE10337896A1 (de) Interferometrische Messvorrichtung zum Erfassen von Geometriedaten von Oberflächen
EP3101385A1 (fr) Dispositif et procede de detection de topographies de surface
DE10047495B4 (de) Interferometrische Messvorrichtung zur Formvermessung
DE102007054734B4 (de) Verfahren zum Erfassen eines Oberflächenprofils
DE102016125451B4 (de) Vorrichtung und Verfahren zur interferometrischen Bestimmung einer Oberflächentopographie eines Messobjekts
DE10321886A1 (de) Robuster interferometrischer Sensor und Verfahren zur Objektabtastung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07724865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009508215

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780016669.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07724865

Country of ref document: EP

Kind code of ref document: A1