DE102004026193B4 - Messverfahren zur Formmessung - Google Patents

Messverfahren zur Formmessung Download PDF

Info

Publication number
DE102004026193B4
DE102004026193B4 DE102004026193A DE102004026193A DE102004026193B4 DE 102004026193 B4 DE102004026193 B4 DE 102004026193B4 DE 102004026193 A DE102004026193 A DE 102004026193A DE 102004026193 A DE102004026193 A DE 102004026193A DE 102004026193 B4 DE102004026193 B4 DE 102004026193B4
Authority
DE
Germany
Prior art keywords
measuring method
light
signal
determined
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102004026193A
Other languages
English (en)
Other versions
DE102004026193A1 (de
Inventor
Dr.-Ing. Lehmann Peter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Mahr Holding GmbH
Original Assignee
Carl Mahr Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Mahr Holding GmbH filed Critical Carl Mahr Holding GmbH
Priority to DE102004026193A priority Critical patent/DE102004026193B4/de
Priority to PCT/EP2005/005661 priority patent/WO2005116578A2/de
Priority to US11/579,090 priority patent/US7599068B2/en
Publication of DE102004026193A1 publication Critical patent/DE102004026193A1/de
Priority to US12/572,935 priority patent/US7808647B2/en
Application granted granted Critical
Publication of DE102004026193B4 publication Critical patent/DE102004026193B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Abstract

Messverfahren zur Erfassung der Abweichung Δz des Abstandes z wenigstens eines Oberflächenpunktes (3) von einem Objektiv (4), wobei bei dem Messverfahren das Licht zweier Lichtquellen, deren Schwerpunktwellenlängen sich um die Wellenlängendifferenz Δλ unterscheiden und die eine unterschiedliche Bandbreite aufweisen, in einen Messstrahl und in einen Referenzlichtstrahl aufgespalten und nach Reflektion an dem Oberflächenpunkt (3) wieder zusammengeführt und an einem Photoempfänger (5) zur Interferenz gebracht wird, wobei zur Durchführung der Messung die Länge des Messlichtwegs (8), den der Messstrahl durchläuft, verändert wird und wobei währenddessen der Photoempfänger (5) ein zeitvariantes Messsignal abgibt, das spektrale Anteile enthält, von denen wenigstens zwei durch eine Rechenschaltung (16) oder durch Zeitversatz extrahiert und zur Bestimmung der Abweichung Δz genutzt werden, indem aus einem Satz von Abtastwerten (sm+m0) des Messsignals für eine erste Signalfrequenz f0 und für eine zweite Signalfrequenz f0 + Δf die jeweils zugeordneten Phasenwinkel φ1e und φ2e bestimmt werden und daraus die Abweichung...

Description

  • Die Erfindung betrifft ein Messverfahren zur Erfassung der Form einer Werkstückoberfläche auf interferometrischem Wege sowie eine entsprechende Messeinrichtung zur Durchführung des Verfahrens.
  • Zur Abstands- oder auch Formmessung werden in der Praxis häufig interferometrische Verfahren eingesetzt, mit deren Hilfe der Abstand eines Punkts oder eines Punktfelds einer Oberfläche zu einer Messeinrichtung bestimmt wird. Dabei können sich Schwierigkeiten ergeben, wenn die Werkstückoberfläche Sprünge oder Kanten enthält oder wenn die abzubildende Form so groß ist, dass sie entweder die Schärfentiefe oder den Messbereich des Messgeräts übersteigt.
  • Beispielsweise ist aus der US-PS 5 133 601 ein der Weißlichtinterferometrie zuzurechnendes Verfahren zur Bestimmung eines Oberflächenprofils geoffenbart. Die Messeinrichtung beruht auf einem Zweistrahlinterferometer mit einem Messzweig und einem Referenzzweig. Eine Interferenz ist nur dann zu verzeichnen, wenn sich die optischen Weglängen zwischen der Objektwelle und der Referenzwelle sich um weniger als die Kohärenzlänge des verwendeten Lichts unterscheiden. Wegen der Verwendung weißen Lichts ergibt sich somit eine sehr geringe Tiefenauflösung der Messeinrichtung.
  • Aus der US-PS 5 398 113 ist ein ebenfalls der Weißlichtinterferometrie zuzurechnendes Verfahren bekannt, bei dem das Objekt durch ein Zweistrahlinterferometer hindurch mit einer Kamera beobachtet wird. Als Lichtquelle wird eine vielfarbige oder weiße Lichtquelle verwendet. Die von der Kamera aufgenommenen Bilder sind Interferenzbilder. Das Interferenzbild ändert sich bei einer Relativbewegung des Objektivs und des Werkstücks in Z-Richtung. Somit entstehen an den einzelnen Pixeln der Kamera Signale, die pixelweise einer digitalen Fourier-Analyse unterworfen werden.
  • Aus ”Step height measurement using two-wavelength phase-shifting interferometry”, Kathreen Creath, Applied Optics, Vol. 26, No. 14, 15. Juli 1987, Seite 2810 ist die Messung von Oberflächen mittels zweier verschiedener Wellenlängen λa und λb bekannt. Aus diesen Wellenlängen kann eine Schiebungswellenlänge gebildet werden, um Mehrdeutigkeiten der Interferenzbilder zu beseitigen. Hinsichtlich der Größe des Messbereichs ist das Verfahren auf die Schwebungswellenlänge bzw. ein Viertel hiervon begrenzt.
  • EP 05 06 296 A2 schlägt ein interferometrisches Messverfahren durch Licht mit mehreren Lichtwellenlängen λ1, λ2, λ3 vor. Die Lichtquellen weisen im Wesentlichen identische Bandbreiten auf.
  • Mit der digitalen Fourier-Analyse werden diskrete Frequenzen eines Spektrums erfasst, wobei die diskreten Frequenzen nicht beliebig dicht liegen können. Es ergibt sich dadurch eine begrenzte Tiefenauflösung. Des Weiteren können sich Probleme an Körperkanten oder -stufen ergeben.
  • Daraus leitet sich die der Erfindung zugrunde liegende Aufgabe ab, ein Messverfahren zur Erfassung des Höhenprofils oder der Form eines Werkstücks auf interferometrischer Basis zu schaffen, das mit geringem apparatetechnischen Aufwand auskommt und eine gute Messgenauigkeit erzielt.
  • Diese Aufgabe wird mit dem Messverfahren nach Anspruch 1 gelöst:
    Erfindungsgemäß werden zur Beleuchtung des Objekts zwei Lichtquellen eingesetzt, deren mittlere Wellenlängen (Schwerpunktwellenlängen) sich um Δλ unterscheiden. Vorzugsweise werden die Lichtquellen zeitversetzt aktiviert oder deaktiviert. Der Unterschied zwischen den Schwerpunktwellenlängen beträgt vorzugsweise weniger als 1 nm bis hin zu ca. 200 nm.
  • Geeignetes Licht kann durch die Aufeinanderführung von Lichtstrahlen mehrerer, bei unterschiedlichen Wellenlängen emittierender Lichtquellen erzeugt werden. Wird die spektrale Breite der zur Messung verwendeten Spektrallinien ausreichend groß gewählt, resultieren Schwebungssignale, deren Nebenmaxima im Vergleich zum Hauptmaximum stark abfallende Amplituden aufweisen, so dass durch Auswertung der Amplitude des gemessenen Schwebungssignals die Höhenlage eines zugehörigen Objektpunktes grob eingegrenzt werden kann. Die diskreten Wellenlängenanteile werden im Gegensatz zu bekannten Zwei- oder Mehrwellenlängen-Verfahren nicht durch physikalische Filterung gewonnen sondern durch eine geeignete rechnerische Signalauswertung, die aus dem gemessenen, aus den überlagerten Anteilen bestehenden Signal die gewünschten Frequenzen extrahiert. Dies geschieht nicht durch Bestimmung des Spektrums des erhaltenen Signals, wie es bei Anwendung der Fourier-Analyse der Fall wäre, sondern durch gezielte mathematische Herausfilterung von vorzugsweise lediglich zwei spektralen Anteilen aus dem Messsignal. Im Gegensatz zu bisherigen Verfahren, die beispielsweise auf der Fourier-Analyse beruhen, können damit die untersuchten Frequenzen beliebig dicht aneinander heran gelegt werden, d. h. die Signalfrequenzdifferenz Δf kann beliebig klein gemacht werden. Dadurch können bei Messgenauigkeiten im Nanometerbereich Tiefenmessbereiche von deutlich mehr als 300 μm erreicht werden. Höhenänderungen, die über diesen Wert hinausgehen, können im Allgemeinen mittels einer Fokusüberwachung erfasst und eindeutig zugeordnet werden. Mit dem erfindungsgemäßen Messverfahren lassen sich somit Oberflächen mit starker Profilierung untersuchen, die sich bislang einer interferometrischen Vermessung entzogen haben. Das Verfahren ist wenig oder nicht anfällig gegenüber Diskontinuitäten, Oberflächensteigungen und -krümmungen des Messobjekts und 2π-Phasensprüngen. Es ist insoweit robust, einfach und präzise. Des Weiteren spielt die Oberflächenbeschaffenheit des zu untersuchenden Werkstücks eine untergeordnete Rolle. Es sind sowohl optische Oberflächen als auch diffus streuende Oberflächen untersuchbar. Aufgrund der Verwendung farbigen, nicht monochromatischen aber sehr schmalbandigen Lichts spielen Reflexionseigenschaften von Werkstückoberflächen eine untergeordnete Rolle.
  • Bei Verwendung zweier im Zeit-Multiplex-Betrieb getakteter Lichtquellen, die somit abwechselnd leuchten, vereinfacht sich die Signalauswertung. Es wird somit abwechselnd zunächst ein Kamerabild unter Verwendung der ersten Lichtquelle und anschließend ein Kamerabild unter Verwendung der zweiten Lichtquelle eingelesen. Dabei kann die optische Weglängendifferenz zwischen Mess- und Referenzstrahl während der beiden Bildaufnahmen konstant bleiben oder sie kann sich um das Abtastintervall Δl ändern.
  • Die wechselweise Abtastung, d. h. die Ausnutzung eines Zeitversatzes zwischen den Aktivitäten der beiden Lichtquellen gestattet die Trennung der spektralen Anteile der beiden Lichtquellen bei der Bildauswertung auf einfachste Weise. Es können die Phasenlagen der Interferenzsignale für die beiden Schwerpunktwellenlängen mit hoher Genauigkeit bestimmt werden. Über die Phasendifferenz und die bekannte, aus den Signalen zu ermittelnde synthetische Wellenlänge Λ ergibt sich der erste Schätzwert für die Höhenlage mit einem Eindeutigkeitsbereich von ±Λ/4. Die genauere Schätzung der Höhenlage erfolgt dann auf der Grundlage einer der beiden Schwerpunktwellenlängen λ1 oder λ2. Wenn die Höhendifferenz eines Objekts ±λ1/4 oder ±λ2/4 überschreitet, gestattet das erfindungsgemäße Verfahren eine weitaus zuverlässigere und/oder genauere Topographieerfassung als die bekannten Verfahren. Zudem ist der gerätetechnische Aufwand im Vergleich zur konventionellen Mehrwellenlängen-Interferometrie gering.
  • Vorzugsweise werden schnell schaltbare Lichtquellen, wie beispielsweise halbleiterbasierte Lichtquellen (Laserdioden, LEDs, Superlumineszenzdioden) verwendet. Ein Vorteil der wechselweisen Abtastung besteht darin, dass sich die Spektren der einzelnen Lichtquellen in weiten Bereichen überlappen können und sich lediglich in ihren Schwerpunktwellenlängen unterscheiden müssen. Dies erlaubt es, mit geringem Aufwand Signale mit Schwerpunktwellenlängendifferenzen im Nanometerbereich zu erzeugen. Mindestens eine der beiden verwendeten Lichtquellen ist kurzkohärent, so dass sich mit dem erfindungsgemäßen Verfahren die Vorteile der Zweiwellenlängen-Interferometrie und die Vorteile der Weißlichtinterferometrie miteinander verbinden lassen. Es wird zunächst die Höhenlage des Objekts mittels einer aus der Weißlichtinterferometrie bekannten Kohärenzpeak-Auswertung vergleichsweise grob eingegrenzt werden. In einem zweiten Schritt kann dann die Phasenlage der synthetischen Wellenlänge relativ zu der Position des Kohärenzpeaks genutzt werden, um die Höhenlage des betroffenen Messpunkts weiter einzugrenzen. In einem dritten Schritt wird dann die Höhenlage mit einer der beiden oder mit beiden Schwerpunktwellenlängen genau bestimmt.
  • Die zur Auswertung heran gezogene Frequenzdifferenz Δf betrifft die Signalfrequenz. Sie ist so festgelegt, dass die dementsprechende Wellenlängendifferenz Δλ der Lichtquelle in dem am meisten zu bevorzugenden Fall kleiner als 100 nm ist. Dadurch ergibt sich eine synthetische Wellenlänge Λ, die im Bereich von wenigen μm bis zu einigen Hundert μm liegen kann. Damit ergibt sich eine extrem gute Tiefenauflösung für das erfindungsgemäße Messverfahren mit einem großen Eindeutigkeitsbereich.
  • Außerdem können unstabilisierte Lichtquellen verwendet werden. Eine mögliche Drift der mittleren Lichtwellenlänge des verwendeten Lichts ist unkritisch, da die für die Auswertung heran gezogenen mittleren Wellenlängen aus den Signalverläufen ermittelt werden können. Die Verwendung schmalbandiger Lichtquellen hat darüber hinaus den Vorteil, dass sich die beobachteten Interferenzen über einen vergleichsweise großen Höhenbereich des Objekts erstrecken, so dass das Auffinden des Messbereichs im Allgemeinen unproblematisch ist. Außerdem steht eine im Vergleich zur Weißlichtinterferometrie größere Anzahl von Signalperioden für die Auswertung zur Verfügung, wodurch sich eine größere Messgenauigkeit erreichen lässt. Die Vermessung kann auch linienförmig erfolgen.
  • Einzelheiten des erfindungsgemäßen Verfahrens sowie einer entsprechenden Vorrichtung ergeben sich aus der nachfolgenden Beschreibung, ggf. in Verbindung mit der beigefügten Zeichnung und/oder Unteransprüchen. In der Zeichnung sind Ausführungsbeispiele der Erfindung veranschaulicht. Es zeigen:
  • 1 eine Vorrichtung zur Formmessung in einer schematischen Darstellung, die mit nur einer Lichtquelle kein Ausführungsbeispiel der Erfindung ist,
  • 2 und 3 erfindungsgemäße Ausführungsformen von Messvorrichtungen zur Durchführung eines Messverfahrens in schematischer Darstellung,
  • 4 Spektren verschiedener, zur Beleuchtung eingesetzter Lichtquellen,
  • 5 und 6 Zeitschemata für den Betrieb der Lichtquellen und für die Bildaufnahme als Zeitdiagramm.
  • In 1 ist eine Vorrichtung zur Formmessung in aufs Äußerste schematisierter Darstellung veranschaulicht. Zu der Vorrichtung gehört ein Interferometer 1, das beispielsweise als interferometrisches Mikroskop ausgebildet sein kann. Es dient zur Vermessung einer Objektoberfläche 2. Die Vermessung erfolgt entweder punktweise oder, wie es bevorzugt wird, flächenhaft. Dazu wird eine Matrix von Oberflächenpunkten 3 von einem Objektiv 4 erfasst und über das Interferometer 1 auf einem Kameraschaltkreis 5 abgebildet.
  • Zu dem Interferometer 1 gehören außerdem ein Strahlteiler 6, der einen Messlichtweg 8, in dem das Objektiv 4 angeordnet ist, und einen Referenzlichtweg 9 festlegt. In dem Referenzlichtweg 9 ist ein Spiegel 11 angeordnet, während die Objektoberfläche 2 in dem Messlichtweg 8 angeordnet ist. Beide Lichtwege unterscheiden sich um weniger als die Kohärenzlänge der verwendeten Lichtquelle 12. Als solche wird eine schmalbandige nahezu monochromatische Lichtquelle, wie beispielsweise eine Leuchtdiode 14 oder dergleichen, verwendet. Die Leuchtdiode 14 erzeugt ein schmalbandiges Spektrum, dessen Breite nur wenige Nanometer beträgt. Die Breite des diskreten Spektrums ist dabei so gering, dass in der Fourier-Rücktransformation eine Schwebung auftreten würde. Wird die spektrale Breite der zur Messung verwendeten Spektrallinien ausreichend groß gewählt, resultieren Schwebungssignale, deren Nebenmaxima im Vergleich zum Hauptmaximum stark abfallende Amplituden aufweisen, so dass durch Auswertung der Amplitude des gemessenen Schwebungssignals die Höhenlage eines zugehörigen Objektpunktes grob eingegrenzt werden kann.
  • Mit einer nicht weiter veranschaulichten Vorrichtung kann das Interferometer 1 gegen die Objektoberfläche 2 in Richtung der optischen Achse 15 bewegt werden. Diese steht im Wesentlichen senkrecht zu der Objektoberfläche 2. Die von der optischen Achse 15 festgelegte Richtung wird auch als Z-Richtung bezeichnet. Ziel der durchzuführenden Messung ist es, Abweichungen Δz der in Z-Richtung zu messenden Höhe des Oberflächenpunkts 3 (sowie benachbarte Oberflächenpunkte) von einem gegebenen Grundabstand Z zwischen dem Objektiv 4 und der Objektoberfläche 2 zu bestimmen.
  • Dazu dient eine Auswerteschaltung 16, die als Rechenschaltung ausgebildet ist. Ihre einzelnen Blöcke können durch ein geeignetes Rechnerprogramm realisiert werden. Die Auswerteschaltung 16 wird nachfolgend anhand ihrer Funktion näher beschrieben:
    Die in der Zeichnung dargestellte Auswerteschaltung 16 enthält ein entsprechendes Auswerteprogramm, das für jeden Pixel des Kameraschaltkreises 5 oder ggf. auch für zu Pixelgruppen zusammengefasste Pixel die nachfolgend beschriebenen Operationen durchführt. Die Auswerteschaltung enthält zunächst einen Block 17, der an seinem Eingang das von dem jeweils betrachteten Pixel gelieferte Intensitätssignal als Messsignal s empfängt. Dies geschieht beispielsweise periodisch beim Auslesen des Kameraschaltkreises 5 oder auch als kontinuierliches Signal. An seinem Ausgang gibt der Block 17 das abgetastete Intensitätssignal sn ab. Ohne Relativbewegung zwischen der Werkstückoberfläche 2 und dem Interferometer 1 ändert sich das Intensitätssignal nicht. Bei Durchführung der Messung ist jedoch eine Relativbewegung in Z-Richtung (stimmt mit Richtung der optischen Achse 15 überein) vorhanden. Die während der Bewegung gelieferten Abtastwerte sn werden an einen Block 18 geliefert. Dieser multipliziert die Abtastwerte sn des Messsignals zunächst mit einer geeigneten Fensterfunktion der Breite 2M. Als Fensterfunktion eignet sich eine Funktion, die nur in einem vorgegebenen Zeitfenster liegende Wert zulässt und außerhalb liegende Werte ausblendet. Vorzugsweise werden dabei die an den Fensterrändern liegenden Werte geringer gewichtet. Beispielsweise kann ein Fenster zur Anwendung kommen, das einer Glockenkurve oder einer β-Verteilungskurve ähnelt. Außerhalb der 2M-Abtastwerte nimmt die Fensterfunktion den Funktionswert 0 an. In einem weiteren Rechenschritt wird aus den Produkten der Fensterfunktion und den Abtastwerten eine komplexwertige Summe mit nachfolgender Gleichung bestimmt:
    Figure 00110001
  • Dabei ist S(f0) eine komplexwertige Funktion einer gewählten ersten Signalfrequenz. N ist die Gesamtzahl der Abtastwerte sn des Messsignals. n0 ist der Abtastwert um den die vorzugsweise symmetrische Fensterfunktion zentriert ist. wm ist der m-te Abtastwert, der um den 0-ten Abtastwert zentrierten Fensterfunktion. f0 ist die normierte Signalfrequenz. Sie entspricht der Anzahl der Signalperioden, innerhalb des Abtastfenster, das N-Abtastwerte umfasst.
  • Block 18 bestimmt in einem weiteren Rechenschritt die komplexwertige Summe:
    Figure 00120001
    für eine um Δf verschobene Signalfrequenz.
  • Aus beiden komplexwertigen Summen bildet ein nachgeschalteter Block 19 die Phasenwerte φ1e und φ2e nach nachfolgenden Beziehungen:
    Figure 00120002
  • Die oben angegebene Frequenzdifferenz Δf korrespondiert zu einer Wellenlängendifferenz Δλ. Für die Signalfrequenz f0 gilt:
    Figure 00120003
    mit dem Abtastintervall Z = ν0/fframe.
  • Dabei ist ν0 die Scangeschwindigkeit mit der sich die optische Weglängendifferenz ändert. fframe ist die Bildaufnahmefrequenz der Kamera. λ0 ist eine erste Lichtwellenlänge innerhalb des schmalbandigen Spektrums der Lichtquelle. Eine zweite Wellenlänge λ0 + Δλ, die ebenfalls innerhalb des Wellenlängenspektrums der Lichtquelle liegt, führt auf eine zweite Frequenzkomponente bei f0 + Δf, wobei die gesuchte Frequenzänderung
    Figure 00130001
    beträgt. Sie ist im Allgemeinen weitaus kleiner als die bei der diskreten Fourier-Transformation resultierende Diskretisierungsschrittweite.
  • Sind die Phasenwerte φ1e und φ2e bestimmt kann mittels folgender Gleichung ein erster Schätzwert Δzsyn für die Höhendifferenz Δz bestimmt werden:
    Figure 00130002
    dabei gilt für die synthetische Wellenlänge Λ:
    Figure 00130003
  • ΔL ist dabei die Weglängendifferenz zwischen Referenzstrahl und Messstrahl (ΔL = l1 – l2). Der Vollständigkeit wegen sei angemerkt, dass φ1 die Phasendifferenz zwischen Objekt und Referenzwelle ist: φ1 = 2πΔL/λ1
  • Dies bezieht sich auf die Lichtwellenlänge λ1. Für die zweite Lichtwellenlänge λ2 gilt: φ2 = 2πΔL/λ2
  • Somit gilt für die Phasendifferenz Δφ:
    Figure 00140001
  • Nach der Bestimmung des ersten Schätzwerts Δzsyn für die Höhendifferenz lässt sich ein verbesserter Schätzwert finden, indem gemäß der Bedingung
    Figure 00140002
    zunächst ein geeignetes ganzzahliges Vielfaches m0 bestimmt wird, so dass sich der gesuchte Schätzwert Δzhr aus: Δzhr = m0λ0/2 + φ1eλ0/(4π) ergibt. Somit ist die gesuchte Höhenabweichung Δz bestimmt.
  • Der vorgestellte Algorithmus kann für alle Bildpunkte des Kameraschaltkreises durchgeführt werden.
  • Ein Vorteil des vorgestellten Verfahrens im Vergleich zu den gebräuchlichen Zwei-Wellenlängenverfahren besteht darin, dass die Wellenlängendifferenz Δλ sehr gering gewählt werden kann, weil die diskreten Wellenlängenanteile nicht physikalisch, z. B. mittels eines Spektrometers, aus dem Signal extrahiert werden müssen. Daraus resultiert ein großer Eindeutigkeitsbereich. Für λ0 = 800 nm und Δλ = 1 nm ergibt sich eine synthetische Wellenlänge Λ von 640 μm und folglich ein Eindeutigkeitsbereich bezüglich der Höhenänderung Δz von ±160 μm Höhenänderungen, die über diesen Wert hinausgehen, können im Allgemeinen mittels einer Fokusüberwachung erfasst und eindeutig zugeordnet werden.
  • In 2 ist eine abgewandelte Messeinrichtung veranschaulicht, die als Interferometer 1 ein Michelson-Interferometer nutzt und die mit zwei Lichtquellen ein Ausführungsbeispiel der Erfindung darstellt. Zu diesem gehört ein Objektiv 4 mit einem Strahlteiler 6 sowie einer Linse 21. Die Lichtquellen werden in die Eingangspupille der Linse 21 abgebildet. Der Strahlteiler 6 dient dazu, den Referenzlichtweg 9 und den Messlichtweg 8 zu trennen und wieder zusammen zu führen. Dem Referenzlichtweg 9 ist der Spiegel 11 zugeordnet. Das Objektiv 4 ist an einer Positioniereinheit 22 gehalten, um dieses in Richtung des Pfeils 23 im Wesentlichen rechtwinklig zu der Objektoberfläche 2 verfahren zu können. Jedoch sei angemerkt, dass an Stelle des Objektivs auch der Referenzspiegel, das gesamte Interferometer oder auch das Messobjekt bewegt werden kann, um die benötigte Folge von Interferenzbildern aufzuzeichnen.
  • Licht kommt aus zwei einzelnen Lichtquellen 12a, 12b. Diese sind über einen Strahlteiler 24 an einem gemeinsamen optischen Pfad angeschlossen, in dem ein Kondensor 24 angeordnet ist. Ein weiterer Strahlteiler 25, der auf den Kondensor 24 folgt, spiegelt das Licht der Lichtquelle 12 auf die Eintrittspupille 26 des Objektivs 4. Außerdem ist an den Strahlteiler 25 über eine Tubuslinse 27 der Photoempfänger 5 in Form eines Detektorarrays 28 angeschlossen. Dieses wird beispielsweise durch eine Pixelkamera mit 800×600 Pixel gebildet.
  • An den Photoempfänger 5 ist die Auswerteschaltung 16 angeschlossen, die im vorliegenden Ausführungsbeispiel durch einen Digitalrechner 29 gebildet wird.
  • Eine Besonderheit des vorstehend beschriebenen Interferometers 1 besteht in der Ausbildung der Lichtquellen 12a, 12b. Diese sind vorzugsweise als kurzkohärente, mehr und weniger schmalbandige Lichtquellen ausgebildet, deren Spektren aus 4 hervorgehen. Die Lichtquellen 12a, 12b können beispielsweise durch Leuchtdioden gebildet sein. Wird die ausgesandte Intensität über der Wellenlänge des emittierten Lichts aufgetragen, weisen sie Spektren auf, die sich überlappen können. Ihre Schwerpunktwellenlängen λ1, λ2 unterscheiden sich um einen Betrag Δλ, der von weniger als 1 nm bis hin zu 200 nm reichen kann. Insbesondere kann die Wellenlängendifferenz Δλ kleiner sein als die Breite des Einzelspektrums.
  • Die Lichtquellen 12a, 12b können prinzipiell gleichzeitig leuchten, wobei dann der vorstehend erläuterte Algorithmus abgearbeitet wird. Es ist jedoch vorteilhaft, die Lichtquellen 12a, 12b zeitversetzt, vorzugsweise alternierend zu aktivieren, wie es in 5 als Diagramm der Beleuchtung B über der Zeit t veranschaulicht ist. Während die Lichtquelle 12a leuchtet, ist die Lichtquelle 12b dunkel und umgekehrt.
  • Auf dem Detektorarray 28 kommt es zur Interferenz von Objektwelle und Referenzwelle und zwar unabhängig davon, welche der Lichtquellen 12a, 12b leuchtet. Die interferometrische Messung erfolgt nun dadurch, dass das Objektiv 4 mittels der Positioniereinheit 22 entlang der optischen Achse 15 bewegt wird. Für verschiedene äquidistante Höhenpositionen des Objektivs 4 werden Interferenzbilder aufgezeichnet und von dem Digitalrechner 29 ausgewertet. Dabei wird im einfachsten Fall die Positioniereinheit 22 zur Bildaufnahme jeweils gestoppt, wobei zunächst ein Bild mit Beleuchtung durch die Lichtquelle 12a und dann ein Bild mit Beleuchtung durch die Lichtquelle 12b aufgenommen wird. Aus der Bildfolge, die durch die Verstellung des Objektivs 4 mittels der Positioniereinheit 22 erhalten wird, wird anhand der bekannten synthetischen Wellenlänge Λ ein erster Schätzwert für die Phasendifferenz Δφ bestimmt. Außerdem können die Phasenlagen der Interferenzsignale für die beiden Schwerpunktwellenlängen λ1, λ2 mit hoher Genauigkeit bestimmt werden. Aus der Phasenlage Δφ kann ein erster Schätzwert Δz für die Höhenlage ermittelt werden. Nach der Bestimmung des ersten Schätzwerts Δzsyn für die Höhendifferenz lässt sich ein verbesserter Schätzwert anhand der weiter oben angegebenen Minimalbedingung finden. Der gesuchte Schätzwert Δzhr wird dann, wie ebenfalls oben angegeben, berechnet.
  • Ist ΔL das Scanintervall, das zwischen einer Bildaufnahme mit der Schwerpunktwellenlänge λ1 und einer Bildaufnahme mit der Schwerpunktwellenlänge λ2 zurückgelegt wird, so ist von dem berechneten Phasenwert φ2e zunächst ein konstanter Offset Δφ2 = 4πΔL/λ2 zu subtrahieren, bevor die Phasendifferenz Δφ bestimmt wird.
  • Es ist auch möglich, die Lichtquellen 12a, 12b alternierend zu deaktivieren, wie es in 6 veranschaulicht ist. Dies hat insbesondere dann Bedeutung, wenn die Lichtquellen 12a, 12b eine gewisse Nachleuchtzeit haben und wenn diese mit hoher Taktfrequenz umgeschaltet werden. Die Bildaufnahme A erfolgt dann jeweils gemäß 6 zu Zeitpunkten, indem lediglich eine der beiden Lichtquellen 12a, 12b leuchtet. Dies kann durch geeignete synchronisiertes Auslesen des Detektorarrays 28 erfolgen.
  • Wie in 4 veranschaulicht, sind Lichtquellen 12a, 12b mit unterschiedlicher Bandbreite kombiniert. Damit lassen sich z. B. die Vorteile der Weißlichtinterferometrie mit den Vorteilen der Zweiwellenlängeninterferometrie verbinden. Beispielsweise kann für die Lichtquelle 12a eine relativ breitbandige, farbige oder auch weiße Lichtquelle mit der Schwerpunktwellenlänge λ1 und für die zweite Lichtquelle 12b eine schmalbandige Lichtquelle mit der Schwerpunktwellenlänge λ2 verwendet werden. Diese Anordnung ermöglicht es, zunächst die Höhenlage des Objekts mittels einer aus der Weißlichtinterferometrie bekannten Kohärenzpeak-Auswertung vergleichsweise grob einzugrenzen. Dazu wird der enge Z-Bereich genutzt, indem die Längenabweichung zwischen dem Messlichtweg 8 und dem Referenzlichtweg 9 geringer ist als die geringe Kohärenzlänge des weißen Lichts. Im zweiten Schritt wird die Phasenlage der synthetischen Wellenlänge relativ zur Position des Kohärenzpeaks genutzt, um die Höhenlage weiter einzugrenzen. In einem dritten Schritt wird die Höhenlage mit einer der beiden Schwerpunktwellenlängen oder anhand der beiden Schwerpunktwellenlängen genau bestimmt. Das dreischrittige Verfahren (erster Schritt: Eingrenzung des Lichtbereichs durch Kurzkohärenzpeak-Auswertung; zweiter Schritt: Bestimmung der Phasenlage der synthetischen Wellenlänge; dritter Schritt: Bestimmung des Z-Abstands anhand einer der Schwerpunktwellenlängen) ermöglicht die Erzielung eines Messbereichs der mehrere 100 μm groß ist und eine Auflösung von Bruchteilen eines Nanometers innerhalb dieses Messbereichs.
  • 3 veranschaulicht eine weiter abgewandelte Ausführungsform der Messeinrichtung unter Verwendung eines Mirau-Interferometers zur Erzeugung der Interferenzbilder. Es wird unter Zugrundelegung gleicher Bezugszeichen auf die vorstehende Beschreibung verwiesen. Der Strahlteiler 6 steht rechtwinklig zu der optischen Achse 15. Der Spiegel 11 befindet sich auf der optischen Achse 15. Ansonsten gilt die vorige Beschreibung in allen Varianten, auch hinsichtlich der Funktion entsprechend.
  • Ein interferometrisches Messverfahren zur Formerfassung basiert auf der interferometrischen Beobachtung einer Objektoberfläche unter Beleuchtung unterschiedlicher Bandbreite. Eine Relativbewegung zwischen dem Interferometer 1 und der Objektoberfläche 2 erzeugt an einem geeigneten Fotoempfänger, beispielsweise einem Kameraschaltkreis 5, ein Messsignal, aus dem zwei dicht beieinander liegende Signalfrequenzen f0 und f0 + Δf extrahiert werden. Die Phasendifferenz der beiden Signalanteile wird zur Bestimmung des Abstands bzw. der Abstandsänderung Δz herangezogen. Das Verfahren hat einen großen Eindeutigkeitsbereich und gestattet somit einen großen Tiefenmessbereich. Es lässt sich auch bei Werkstücken anwenden, deren Oberflächen Stufen aufweisen. An Körperkanten und -stufen wird die Messung nicht gestört. Es können auch stark geneigte Oberflächen untersucht werden, deren Neigung so groß ist, dass bei herkömmlichen, auf der Erzeugung und Auswertung von Interferenzlinien beruhenden Verfahren aufgrund einer zu hohen Interferenzliniendichte eine Messung nicht mehr möglich ist.

Claims (12)

  1. Messverfahren zur Erfassung der Abweichung Δz des Abstandes z wenigstens eines Oberflächenpunktes (3) von einem Objektiv (4), wobei bei dem Messverfahren das Licht zweier Lichtquellen, deren Schwerpunktwellenlängen sich um die Wellenlängendifferenz Δλ unterscheiden und die eine unterschiedliche Bandbreite aufweisen, in einen Messstrahl und in einen Referenzlichtstrahl aufgespalten und nach Reflektion an dem Oberflächenpunkt (3) wieder zusammengeführt und an einem Photoempfänger (5) zur Interferenz gebracht wird, wobei zur Durchführung der Messung die Länge des Messlichtwegs (8), den der Messstrahl durchläuft, verändert wird und wobei währenddessen der Photoempfänger (5) ein zeitvariantes Messsignal abgibt, das spektrale Anteile enthält, von denen wenigstens zwei durch eine Rechenschaltung (16) oder durch Zeitversatz extrahiert und zur Bestimmung der Abweichung Δz genutzt werden, indem aus einem Satz von Abtastwerten (sm+m0) des Messsignals für eine erste Signalfrequenz f0 und für eine zweite Signalfrequenz f0 + Δf die jeweils zugeordneten Phasenwinkel φ1e und φ2e bestimmt werden und daraus die Abweichung Δz errechnet wird, wobei zur Durchführung der Messung folgende Schritte erfolgen: – mittels einer Kohärenzpeak-Auswertung wird ein erster grober Schätzwert Δzsyn für Δz für die Höhenlage des Objekts ermittelt und – aus dem Schätzwert Δzsyn wird mit Hilfe des Phasenwinkels φ1e ein verbesserter Schätzwert bestimmt, indem gemäß der Bedingung
    Figure 00220001
    mit m ∊ {..., –1, 0, 1, 2, ...} ein geeignetes ganzzahliges Vielfaches m0 bestimmt wird, wonach der verbesserte Schätzwert Δzhr aus Δzhr = m0λ0/2 + φ1el0/4π bestimmt wird.
  2. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Frequenzdifferenz Δf so festgelegt ist, dass sie einer Wellenlängendifferenz Δλ der Lichtquelle(n) entspricht, die kleiner als 10 nm ist.
  3. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Frequenzdifferenz Δf so festgelegt ist, dass sie einer Wellenlängendifferenz Δλ der Lichtquelle(n) entspricht, die kleiner als 5 nm ist.
  4. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Frequenzdifferenz Δf so festgelegt ist, dass sie einer Wellenlängendifferenz Δλ der Lichtquelle(n) entspricht, die kleiner als 1 nm ist.
  5. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquellen farbige Leuchtdioden sind.
  6. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquellen zeitversetzt leuchten.
  7. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Photoempfänger (5) ausgelesen wird, wenn nur eine der Lichtquellen (12a, 12b) leuchtet.
  8. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass das von dem Photoempfänger abgegebene zeitvariante Signal einer digitalen Filterung unterworfen wird.
  9. Messverfahren nach Anspruch 8, dadurch gekennzeichnet, dass durch die Filterung zwei Signalfrequenzen unterschieden werden, die sich um die Frequenzdifferenz Δf unterscheiden.
  10. Messverfahren nach Anspruch 1, dadurch gekennzeichnet, dass das zeitvariante Signal zu diskreten Zeitpunkten abgetastet wird, um ein diskretes Messsignal sn zu erhalten, und dass die diskreten Messsignale sn mit einer diskret vorgegebenen Fensterfunktion wn sowie mit einem komplexen Schwingungsterm der Frequenz f bzw. f + Δf der komplexen Frequenz multipliziert und zu einer komplexwertigen Funktion S(f0) bzw. S(f + Δf) aufsummiert werden.
  11. Messverfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Phasenlage des Signalanteils mit der Frequenz f bestimmt wird gemäß:
    Figure 00240001
  12. Messverfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Phasenlage des Signalanteils mit der Frequenz f0 + Δf bestimmt wird gemäß:
    Figure 00240002
DE102004026193A 2004-05-28 2004-05-28 Messverfahren zur Formmessung Expired - Fee Related DE102004026193B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102004026193A DE102004026193B4 (de) 2004-05-28 2004-05-28 Messverfahren zur Formmessung
PCT/EP2005/005661 WO2005116578A2 (de) 2004-05-28 2005-05-25 Messverfahren zur formmessung
US11/579,090 US7599068B2 (en) 2004-05-28 2005-05-25 Shape measurement method
US12/572,935 US7808647B2 (en) 2004-05-28 2009-10-02 Shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004026193A DE102004026193B4 (de) 2004-05-28 2004-05-28 Messverfahren zur Formmessung

Publications (2)

Publication Number Publication Date
DE102004026193A1 DE102004026193A1 (de) 2005-12-22
DE102004026193B4 true DE102004026193B4 (de) 2012-03-29

Family

ID=35058120

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004026193A Expired - Fee Related DE102004026193B4 (de) 2004-05-28 2004-05-28 Messverfahren zur Formmessung

Country Status (3)

Country Link
US (2) US7599068B2 (de)
DE (1) DE102004026193B4 (de)
WO (1) WO2005116578A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018168C5 (de) * 2005-04-19 2013-11-07 Carl Mahr Holding Gmbh Weißlichtinterferometrische Mikroskopmesseinrichtung
DE102005061464C5 (de) * 2005-12-22 2013-08-29 Carl Mahr Holding Gmbh Verfahren und Vorrichtungen zur optischen Abstandsmessung
DE102006021557B3 (de) * 2006-05-08 2007-07-12 Carl Mahr Holding Gmbh Vorrichtung und Verfahren zur kombinierten interferometrischen und abbildungsbasierten Geometrieerfassung, insbesondere in der Mikrosystemtechnik
DE102007020860A1 (de) * 2007-05-02 2008-11-13 Carl Mahr Holding Gmbh XY- und Winkelmessung mittels kombinierter Weißlichtinterferometrie
CA2884632C (en) * 2007-08-31 2016-10-25 Abb Ltd. Web thickness measurement device
GB0724948D0 (en) * 2007-12-21 2008-01-30 Univ Liverpool John Moores Distance measurement
DE102009001086B4 (de) * 2009-02-23 2014-03-27 Sirona Dental Systems Gmbh Handgehaltene dentale Kamera und Verfahren zur optischen 3D-Vermessung
JP2014092488A (ja) * 2012-11-05 2014-05-19 Canon Inc 計測装置及び計測方法
US10458936B2 (en) * 2016-05-11 2019-10-29 Corning Incorporated Apparatus and method for the determination of the absolute coefficient of thermal expansion in ultralow expansion materials
US11293799B2 (en) * 2019-12-30 2022-04-05 Palo Alto Research Center Incorporated Chromatic confocal sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832489A (en) * 1986-03-19 1989-05-23 Wyko Corporation Two-wavelength phase-shifting interferometer and method
EP0506296A2 (de) * 1991-03-27 1992-09-30 Hughes Aircraft Company Optische Dicke-Profilierungseinrichtung
US6330065B1 (en) * 1997-10-02 2001-12-11 Zygo Corporation Gas insensitive interferometric apparatus and methods
DE10249409A1 (de) * 2001-10-25 2003-06-05 Canon Kk Interferometer und Positionsmessvorrichtung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767307A (en) * 1971-08-30 1973-10-23 Itek Corp Real time interferometer
US4417813A (en) * 1981-09-11 1983-11-29 General Dynamics Corporation/Convair Div. Non-scanned heterodyne imaging sensor
US5133601A (en) 1991-06-12 1992-07-28 Wyko Corporation Rough surface profiler and method
US5398113A (en) 1993-02-08 1995-03-14 Zygo Corporation Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
US5404221A (en) * 1993-02-24 1995-04-04 Zygo Corporation Extended-range two-color interferometer
DE19522262C2 (de) * 1995-06-20 1997-05-22 Zeiss Carl Jena Gmbh Heterodyn-Interferometer-Anordnung
US6480285B1 (en) * 1997-01-28 2002-11-12 Zetetic Institute Multiple layer confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
US6014214A (en) * 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
DE19808273A1 (de) * 1998-02-27 1999-09-09 Bosch Gmbh Robert Interferometrische Meßeinrichtung zum Erfassen der Form oder des Abstandes insbesondere rauher Oberflächen
US6137574A (en) * 1999-03-15 2000-10-24 Zygo Corporation Systems and methods for characterizing and correcting cyclic errors in distance measuring and dispersion interferometry
US6891624B2 (en) * 2001-03-13 2005-05-10 Zygo Corporation Cyclic error reduction in average interferometric position measurements
KR100393429B1 (ko) * 2001-04-09 2003-08-02 한국과학기술원 각기 다른 금속 물질의 단차 측정을 위한 두 파장 백색광간섭법과 간섭계
DE10150934A1 (de) * 2001-10-09 2003-04-10 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur tiefenaufgelösten Erfassung von Proben
US7139081B2 (en) 2002-09-09 2006-11-21 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7324214B2 (en) * 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
US7271918B2 (en) * 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
US7319782B2 (en) * 2003-06-18 2008-01-15 Hogan Josh N Real-time imaging and analysis system
US7426039B2 (en) * 2003-12-31 2008-09-16 Corning Incorporated Optically balanced instrument for high accuracy measurement of dimensional change
JP4409384B2 (ja) * 2004-08-03 2010-02-03 株式会社トプコン 光画像計測装置及び光画像計測方法
JP4597744B2 (ja) * 2004-11-08 2010-12-15 株式会社トプコン 光画像計測装置及び光画像計測方法
US20060227316A1 (en) * 2005-04-06 2006-10-12 Phillip Gatt Three-dimensional imaging device
US7193720B2 (en) * 2005-05-17 2007-03-20 Lockheed Martin Coherent Technologies, Inc. Optical vibration imager
US7382465B1 (en) * 2006-08-25 2008-06-03 Hrl Laboratories, Llc Optical vibrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832489A (en) * 1986-03-19 1989-05-23 Wyko Corporation Two-wavelength phase-shifting interferometer and method
EP0506296A2 (de) * 1991-03-27 1992-09-30 Hughes Aircraft Company Optische Dicke-Profilierungseinrichtung
US6330065B1 (en) * 1997-10-02 2001-12-11 Zygo Corporation Gas insensitive interferometric apparatus and methods
DE10249409A1 (de) * 2001-10-25 2003-06-05 Canon Kk Interferometer und Positionsmessvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. Creath: Step height measurement using two-wavelength phase-shifting interferometry, in: Applied Optics, Vol. 26, No. 14, 1987, S. 2810 - 2816 *

Also Published As

Publication number Publication date
WO2005116578A3 (de) 2006-05-11
US20100020329A1 (en) 2010-01-28
US7599068B2 (en) 2009-10-06
US20070165240A1 (en) 2007-07-19
DE102004026193A1 (de) 2005-12-22
US7808647B2 (en) 2010-10-05
WO2005116578A2 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
EP0126475B1 (de) Verfahren und Vorrichtung zum berührungsfreien Messen der Ist-Position und/oder des Profils rauher Oberflächen
WO2005116578A2 (de) Messverfahren zur formmessung
DE19814057B4 (de) Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
DE69922109T2 (de) Interferometrische Vorrichtung zum Sichtbarmachung von Optischen Reflexion- und/oder Transmissionscharakteristiken im inneren eines Objektes
DE102005061464C5 (de) Verfahren und Vorrichtungen zur optischen Abstandsmessung
DE102008029459B4 (de) Verfahren und Vorrichtung zur berührungslosen Abstandsmessung
DE10392881B4 (de) Frequenzabtast-Interferometer mit diffus-reflektierender Referenzoberfläche
EP2194356B1 (de) Optisches Messgerät
EP2920544A1 (de) Optische messverfahren und messvorrichtung mit einem messkopf zum erfassen einer oberflachentopographie mittels kalibrierung der orientierung des messkopfs
EP1476716A1 (de) Niederkoh renz-interferometrisches ger t zur lichtoptis chen abtastung eines objektes
EP2347215A1 (de) Verfahren und vorrichtung zur interferometrie
DE4108944A1 (de) Verfahren und einrichtung zur beruehrungslosen erfassung der oberflaechengestalt von diffus streuenden objekten
DE69631400T2 (de) System für das Messen von Dünnfilmen
DE10392828T5 (de) Interferometrieverfahren und -systeme mit gekoppelter Hohlraumgeometrie zur Verwendung mit einer erweiterten Quelle
WO2006042696A1 (de) Interferometrisches verfahren und anordnung
EP1311801B1 (de) Interferometrische, kurzkohärente formmessvorrichtung für mehrere flächen ( ventilsitz ) durch mehrere referenzebenen
DE102004052205A1 (de) Interferometrischer Multispektral-Sensor und interferometrisches Multispektral-Verfahren zur hochdynamischen Objekt-Tiefenabtastung oder Objekt-Profilerfassung
EP1870761A1 (de) Rastermikroskop zur optischen Vermessung eines Objekts
DE102010037207B3 (de) Rauheits-Messvorrichtung und -Messverfahren
DE102006007573B4 (de) Verfahren und Vorrichtung zur 3D-Geometrieerfassung von Objektoberflächen
DE10337896A1 (de) Interferometrische Messvorrichtung zum Erfassen von Geometriedaten von Oberflächen
DE102010022421B4 (de) Messeinrichtung und Messverfahren zur absoluten Abstandsmessung
DE10321886A1 (de) Robuster interferometrischer Sensor und Verfahren zur Objektabtastung
WO1995022040A1 (de) Verfahren und vorrichtung zum optischen untersuchen einer oberfläche
DE102008020584B3 (de) Interferometer und Verfahren zur Untersuchung einer Oberfläche eines Objektes mittels eines Interferometers

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120630

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee