WO2007125677A1 - Shield conductor layer cutting method and laser treatment device - Google Patents

Shield conductor layer cutting method and laser treatment device Download PDF

Info

Publication number
WO2007125677A1
WO2007125677A1 PCT/JP2007/053482 JP2007053482W WO2007125677A1 WO 2007125677 A1 WO2007125677 A1 WO 2007125677A1 JP 2007053482 W JP2007053482 W JP 2007053482W WO 2007125677 A1 WO2007125677 A1 WO 2007125677A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
shield conductor
shield
laser
mirror
Prior art date
Application number
PCT/JP2007/053482
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Miyakoshi
Tadashi Kurata
Original Assignee
Phoeton Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoeton Corp. filed Critical Phoeton Corp.
Publication of WO2007125677A1 publication Critical patent/WO2007125677A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0619Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1275Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat
    • H02G1/128Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat using radiant energy, e.g. a laser beam

Definitions

  • the present invention relates to a shield conductor layer cutting method and a laser heating device that do not leave uncut shield wires on the side surfaces of a shield conductor layer and that can sufficiently ensure insulation between an inner conductor and a shield conductor layer. .
  • RU very thin electric wires (sometimes called cables) are used in which an inner insulator, an outer conductor, and a jacket are sequentially formed on the outer circumference of the inner conductor in a coaxial manner.
  • similar wires are used as shield wires to prevent unwanted noise from entering other control devices such as medical ultrasonic probes.
  • the coaxial cable or shielded cable including the shielded cable will be referred to as a shielded cable.
  • a plurality of shielded cables are used by bundling them, and the ends thereof are made flat and connected to an electrical connector.
  • the electrical connector it is necessary to form a terminal for electrically connecting the inner conductor and the outer conductor to the shielded cable.
  • the outer diameter of the cable is as fine as lmm or less and the thickness of the internal insulator is about several tens / zm, it is easy to form a connection terminal without impairing the cable arrangement pitch and electrical performance. is not. For this reason, various proposals have been made so far on the formation of this type of shielded cable end.
  • FIG. 10 is a cross-sectional view showing a structural example of a conventional shielded cable.
  • the inner conductor (center conductor) 2 is formed by twisting a copper alloy wire with tinned outer diameter of about 0.025 mm, for example, and its outer surface is made of an insulating material made of fluorine resin with a thickness of 0.04mn! ⁇ 0.055mm is covered to make an internal insulator (internal dielectric) 3.
  • the outer conductor (shield conductor layer) 4 arranged on the outer peripheral surface of the inner insulator 3 is formed by, for example, winding shield wires 4a such as a plurality of copper alloy wires having an outer diameter of about 0.03 mm on the side, About 0.004 thick on its outer surface
  • Two pieces of polyester tape having a thickness of about mm are overlapped and fused together to form a jacket (jacket) 5 so that a shielded cable 1 having an outer diameter of about 0.3 mm or less can be obtained.
  • a copper vapor-deposited tape (not shown) may be wrapped around the outer surface of the shield conductor layer 4 with the copper vapor-deposited surface inside, and the shield conductor layer 4 has two layers with the shield wire in the opposite direction.
  • it may be a braided structure (for example, see Patent Document 1).
  • FIG. 11 is a diagram for explaining a method of cutting the shield layer 4 of the shielded cable shown in FIG. 10 with a laser beam and problems caused by the method.
  • the shield conductor layer 4 and the inner conductor 2 are schematically shown.
  • the actual structure is the same as the shield conductor layer 4 and the inner conductor 2 shown in FIG. .
  • the shielded cable 1 with the jacket 5 peeled off as shown in FIG. 10 is fixed and held by a holding mechanism (not shown), and laser light is directed to the shield conductor layer 4 from above the shielded cable as indicated by an arrow. Irradiate while scanning.
  • the downward force of the shield cable 1 is also applied to the shield conductor layer 4 while scanning the laser beam as indicated by the arrow. In this way, the shield conductor layer 4 is cut by irradiating the entire shield conductor layer 4 with laser light.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-251522 (0002, paragraph 0016, 01)
  • the laser beam is applied to the shield conductor layer 4 from the upper and lower directions. Both the light and the laser beam from below are blocked by the adjacent shield line 4a, and the laser beam irradiation becomes insufficient. As a result, the shield wire 4a may remain without being cut at the side surface 6 of the shield conductor layer.
  • the shield positioned in front of the laser beam irradiation direction is used.
  • the laser light penetrates the conductor layer 4 and the laser light reaches the internal insulator 3, and as a result, a portion 7 in which the internal insulator is damaged as shown in FIG. 11 is generated.
  • this portion 7 since the electrical insulation of the internal insulator 3 is lowered, it may be impossible to sufficiently secure the insulation between the internal conductor 2 and the shield conductor layer 4.
  • the shield conductor layer side surface 6 is not cut and the shield wire 4a remains or the internal insulator is damaged. It is thought that there is a cause in irradiation from two directions.
  • the present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to prevent the shield wire from being left on the side surface of the shield conductor layer and the inner conductor and the shield conductor layer. It is an object of the present invention to provide a method for cutting a shield conductor layer and a laser processing apparatus capable of sufficiently ensuring the insulation.
  • a method of cutting a shield conductor layer according to the present invention includes a central conductor, an internal insulator disposed so as to cover the central conductor, and the internal insulator. Prepare a shielded cable with a shield conductor layer arranged so that
  • the shield conductor layer is cut by irradiating the shield conductor layer with laser light from at least three directions which are substantially perpendicular to the longitudinal direction of the shield cable.
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • the laser beam is irradiated to the shield conductor layer from at least three directions, the laser beam is applied to the shield conductor layer from the upper and lower two directions as in the prior art.
  • the shield conductor layer can be prevented from remaining on the side of the shield conductor layer.
  • the shield conductor layer can be prevented from remaining, and the entire shield conductor layer can be completely and stably maintained. Can be cut.
  • by irradiating the laser light from at least three directions even if the laser light is irradiated under the condition that all the shield conductor layers are completely cut, a part of the internal insulator is damaged. This can be suppressed. Therefore, it is possible to prevent the electrical insulation of the internal insulator from being deteriorated, and to sufficiently ensure the insulation between the internal conductor and the shield conductor layer.
  • the angle formed by the two optical axes is 150 ° or less.
  • the shield conductor layer is irradiated with laser light from four directions, and the optical axes of the laser beams that are not adjacent to each other are substantially straight. It is preferable to be arranged to form.
  • the method for cutting a shield conductor layer when preparing the shield cable, a plurality of shield cables arranged in series are prepared, and the shield conductor layer is irradiated with laser light. At this time, it is preferable that the laser light or the shielded cable be slid to scan the laser light.
  • a laser processing apparatus includes a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • a first reflecting mirror that reflects the laser beam irradiated by the laser irradiation mechanism in a first direction or a second direction;
  • a second reflecting mirror for reflecting the laser beam reflected in the first direction by the first reflecting mirror in a third direction
  • a third reflection mirror that reflects the laser light reflected in the third direction by the second reflection mirror in a fourth direction and irradiates the shield conductor layer
  • a mirror slide mechanism that slides so as to remove the third reflecting mirror from the optical axis of the laser beam reflected in the third direction; The laser light reflected in the third direction by the second reflecting mirror in a state where the third reflecting mirror is removed from the optical axis of the laser light reflected in the third direction.
  • a fourth reflecting mirror that reflects in the direction of 5 and irradiates the shield conductor layer; and a laser beam that reflects in the second direction by the first reflecting mirror reflects in the sixth direction.
  • a sixth reflecting mirror that reflects the laser light reflected in the sixth direction by the fifth reflecting mirror in a seventh direction and irradiates the shield conductor layer
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • a laser processing apparatus includes a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device that holds a cable and cuts the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • a first reflecting mirror that reflects the laser beam irradiated by the laser irradiation mechanism in a first direction or a second direction;
  • a second reflecting mirror for reflecting the laser beam reflected in the first direction by the first reflecting mirror in a third direction
  • a third reflecting mirror for reflecting the laser light reflected in the third direction by the second reflecting mirror in the fourth direction or the fifth direction and irradiating the shield conductor layer;
  • a first mirror slide unit for reflecting the laser light reflected in the third direction by the second reflecting mirror in the fourth direction or the fifth direction and irradiating the shield conductor layer;
  • the laser beam reflected in the second direction by the first reflecting mirror is A fourth reflecting mirror that reflects in the direction of
  • a fifth reflecting mirror that reflects the laser light reflected in the sixth direction by the fourth reflecting mirror in a seventh direction and irradiates the shield conductor layer
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • each of the fourth direction, the fifth direction, and the seventh direction may be respectively rotated on an optical axis of the laser beam irradiated with force. It is also possible to further include a rotating lens arranged to rotate.
  • a second mirror slide unit is arranged instead of the fifth reflecting mirror
  • the second mirror slide unit irradiates the shield conductor layer by reflecting the laser beam reflected in the sixth direction by the fourth reflecting mirror in a seventh direction or an eighth direction.
  • a fifth reflecting mirror that
  • the second mirror slide unit may include a second slide mechanism that slides the fifth reflection mirror and a second rotation mechanism that rotates the fifth reflection mirror. is there.
  • a laser processing apparatus comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • a first half mirror that reflects a part of the laser light irradiated by the laser irradiation mechanism in a first direction and transmits a part of the laser light
  • a first reflecting mirror that reflects the laser light reflected in the first direction by the first half mirror in a second direction
  • a part of the laser beam reflected in the second direction by the first reflecting mirror A second half mirror that reflects in a third direction and irradiates the shield conductor layer and transmits a part of the laser beam;
  • a second reflecting mirror that reflects the laser light transmitted by the second half mirror in a fourth direction and irradiates the shield conductor layer
  • a third reflecting mirror that reflects the laser light transmitted by the first half mirror in a fifth direction and irradiates the shield conductor layer
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • a part of the laser light that is disposed between the first half mirror and the third reflection mirror and transmitted by the first half mirror is also possible to further include a third half mirror that reflects the light in the sixth direction to irradiate the shield conductor layer and transmits a part of the laser light.
  • a laser processing apparatus comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • a rotary reflection mirror that reflects the laser light emitted by the laser irradiation mechanism in first to third directions
  • a first reflection mirror that reflects the laser light reflected in the first direction by the rotary reflection mirror in a fourth direction and irradiates the shield conductor layer
  • a second reflecting mirror that reflects the laser light reflected in the second direction by the rotary reflecting mirror in a fifth direction and irradiates the shield conductor layer
  • a third reflection mirror that reflects the laser light reflected in the third direction by the rotary reflection mirror in a sixth direction and irradiates the shield conductor layer
  • the rotating reflection mirror has a rotating mechanism for rotating the rotating reflecting mirror, and adjusts the direction of the rotating reflecting mirror by the rotating mechanism;
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • a laser processing apparatus includes a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • a first laser irradiation mechanism that irradiates the shield conductor layer with a first laser beam; a second laser irradiation mechanism that irradiates the shield conductor layer with a second laser beam; and a shield that applies a third laser beam to the shield conductor layer.
  • the angle formed by two adjacent optical axes of the laser light irradiated to the shield conductor layer is 180.
  • a laser processing apparatus comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • a first laser irradiation mechanism for irradiating the first laser beam in the first direction
  • a first reflecting mirror that reflects the first laser beam irradiated by the first laser irradiation mechanism in a second direction
  • a slide mechanism that slides the first reflection mirror along the first direction; and the first laser light reflected by the first reflection mirror in the second direction.
  • a first parabolic mirror that reflects in a third direction or a fourth direction and irradiates the shield conductor layer
  • the second laser beam is parallel to the first direction and rotated in the fifth direction by approximately 180 °.
  • a second reflecting mirror for reflecting the second laser light irradiated by the second laser irradiation mechanism in a sixth direction
  • a third reflection mirror that reflects the second laser light reflected in the sixth direction by the second reflection mirror in a seventh direction and irradiates the shield conductor layer
  • the first parabolic mirror reflects the first laser beam in the third direction or the fourth direction by sliding the first reflecting mirror by the sliding mechanism.
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • a second parabolic mirror is provided instead of the third reflecting mirror, and the second reflecting mirror is slid along the fifth direction.
  • the second parabolic mirror has a sliding mechanism, and the second laser beam is moved in the seventh direction or the eighth direction by sliding the second reflecting mirror by the sliding mechanism. It can also be reflected.
  • a laser processing apparatus comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator.
  • a laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
  • the angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
  • the shield without being cut on the side surface of the shield conductor layer. It is possible to provide a shield conductor layer cutting method and a laser processing apparatus in which no wire remains and sufficient insulation between the inner conductor and the shield conductor layer can be secured.
  • FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the shielded cable after the entire shield conductor layer has been completely melted and cut and the shield conductor layer is peeled off.
  • FIG. 3 is a diagram for explaining a method of simultaneously cutting a shield conductor layer of each of a plurality of shielded cables arranged as a modification of the first embodiment.
  • FIG. 4 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic diagram showing a configuration of a laser processing apparatus according to a seventh embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a structural example of a conventional shielded cable.
  • FIG. 11 is a diagram for explaining a method of cutting the shield layer 4 of the shielded cable shown in FIG. 10 with a laser beam and problems caused by the method.
  • FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention.
  • This laser cable apparatus cuts the shield conductor layer 4 by irradiating the shield conductor layer 4 in the shield cable 1 shown in FIGS. It is a device to do.
  • the shielded cable 1 is an ultra-fine coaxial wire such as AWG (American Wire Gauge) 30 or more, and the shield conductor layer 4 is composed of a plurality of shield wires 4a as shown in FIG.
  • the material is AWG42, for example, a tin-plated copper alloy wire with an outer diameter of about 0.03mm.
  • the shield wire that can be covered by the laser calorie apparatus according to the present embodiment is a silver-plated copper alloy wire, aluminum foil, etc. in addition to a tin-plated copper alloy wire.
  • the laser processing apparatus of FIG. 1 includes a laser irradiation mechanism 11 that irradiates a laser beam 12, first to seventh reflecting mirrors 13 to 19, first to fourth lenses 20 to 23, and a mirror slide. And a mechanism (not shown).
  • the shielded cable 1 is held by a holding mechanism (not shown) in the laser processing apparatus.
  • the shield cable 1 is provided with a cable slide mechanism (not shown) that slides when the laser beam is irradiated.
  • the laser beam 12 emitted from the laser irradiation mechanism 11 is reflected in the first direction 31 by the first reflecting mirror 13 and about 90 ° with respect to the first direction 31 by the second reflecting mirror 14. Is reflected in the second direction 32 bent by the second angle, and reflected in the third direction 33 by the third reflecting mirror 15, and the reflected laser light 12 passes through the first lens 20 and the shield lens 1
  • the shield conductor layer 4 is irradiated. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the second direction 32.
  • the third reflection mirror 15 can be slid by a mirror slide mechanism (not shown) to a position off the optical axis of the laser light reflected by the second reflection mirror 14! /,
  • the laser light 12 irradiated from the laser irradiation mechanism 11 is moved in the first direction 31 by the first reflecting mirror 13.
  • Reflected and reflected by the second reflecting mirror 14 in the second direction 32 bent by about 90 ° with respect to the first direction 31 and reflected by the fourth reflecting mirror 16 in the fourth direction 34.
  • the reflected laser beam 12 is irradiated to the shield conductor layer 4 of the shielded cable 1 through the second lens 21. At this time, scan the shield conductor layer.
  • the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the second direction 32.
  • the first reflecting mirror 13 reflects the laser beam 12 irradiated by the laser irradiation mechanism 11 in a fifth direction 35 rotated by 180 ° with respect to the first direction 31.
  • a drive mechanism (not shown) that can change the direction of the reflecting mirror 13 is attached.
  • the sixth reflecting mirror 18 can be slid by a mirror slide mechanism (not shown) to a position where the optical axis force of the laser beam reflected by the seventh reflecting mirror 19 is also removed.
  • the light 12 is reflected by the first reflecting mirror 13 in the fifth direction 35, and reflected by the seventh reflecting mirror 19 in the sixth direction 36 bent by about 90 ° with respect to the fifth direction 35. Then, the light is reflected in the eighth direction 38 by the fifth reflecting mirror 17, and the reflected laser light 12 is irradiated to the shield conductor layer 4 of the shielded cable 1 through the third lens 22. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the sixth direction 36.
  • the reflected laser beam 12 is reflected by 37, and the shielded conductor layer 4 of the shielded cable 1 is irradiated through the fourth lens 23. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid in the direction parallel to the sixth direction 36 by the cable slide mechanism.
  • the laser processing apparatus also includes a control unit (not shown).
  • the control unit changes the direction of the first reflection mirror 13, the third reflection mirror 15, and the sixth reflection mirror 18.
  • the mirror slide mechanism that slides each of them and the laser irradiation mechanism 11 are controlled.
  • the jacket 5 of the shielded cable 1 shown in FIG. 10 is peeled off for a predetermined length to expose the shield conductor layer.
  • the shielded cable 1 in this state is fixed and held by the holding mechanism of the laser carriage device shown in FIG.
  • the laser beam 12 is irradiated from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first to third reflecting mirrors 13 to 15, and the reflected laser beam 12 is reflected to the first lens.
  • the light passes through 20 and is irradiated from the third direction 33 to the shield conductor layer 4 of the shielded cable 1.
  • the shield conductor layer 1 is slid by the cable slide mechanism to scan the shield conductor layer.
  • the third reflection mirror 15 is slid by the mirror slide mechanism to a position deviated from the optical axis force of the laser light reflected by the second reflection mirror 14.
  • the laser irradiation mechanism 11 also irradiates the laser beam 12, and this laser beam 12 is reflected by the first, second and fourth reflecting mirrors 13, 14 and 16, and the reflected laser beam 12 is reflected by the second laser beam 12.
  • the shield conductor layer is irradiated from the fourth direction 34 through the lens 21. At this time, the shield conductor layer 1 is slid by the cable slide mechanism to irradiate the shield conductor layer.
  • the direction of the first reflecting mirror 13 is changed by the drive mechanism, and the laser irradiation mechanism 11 also irradiates the laser beam 12, which is reflected by the first, seventh and fifth reflecting mirrors 13, 19. , 17, and the reflected laser light 12 is irradiated to the shield conductor layer 4 from the seventh direction 37 through the third lens 22.
  • the shield conductor layer is slid by the cable slide mechanism to scan the shield conductor layer.
  • the sixth reflection mirror 18 is slid by the mirror slide mechanism on the optical axis of the laser beam reflected by the seventh reflection mirror 19.
  • the laser beam 12 is irradiated from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first, seventh, and sixth reflecting mirrors 13, respectively, and the reflected laser beam 12 is reflected by the fourth laser beam 12.
  • the shield conductor layer is irradiated through the lens 23 from the eighth direction 38. At this time, connect the shielded cable 1 to the cable The shield conductor layer is scanned and irradiated by sliding with an id mechanism.
  • the shielded cable 1 after the entire shield conductor layer is completely melted and cut and the shield conductor layer is peeled off has the internal insulator exposed as shown in FIG.
  • the center conductor 2 is exposed at the distal end of the shielded cable 1 after cutting, and the inner insulator 3 covering the center conductor 2 is also exposed, and the shield covering the inner insulator 3 is exposed.
  • the conductor layer is cut at the laser irradiation position. There is a shield conductor layer between the jacket 5 and the inner insulator 3.
  • the shield conductor layer 4 is irradiated with the laser light from the four directions. Therefore, the shield conductor layer 4 is irradiated with the laser light from the upper and lower directions as in the prior art. In comparison with this, it is possible to suppress the laser beam from being shielded by the adjacent shield line and insufficiently irradiating the laser beam. As a result, it is possible to prevent the shield wire from remaining without being cut even on the side surface of the shield conductor layer, and to completely and stably melt and cut the shield conductor layer.
  • the irradiation condition of the high-power laser beam is the same as the conventional technology. There is no need to For this reason, it is possible to suppress the occurrence of a scratched portion in the internal insulator where the laser light does not penetrate through the shield conductor layer and reach the internal insulator 3. Therefore, it is possible to prevent the electrical insulation property of the inner insulator 3 from being lowered, and to sufficiently secure insulation between the inner conductor 2 and the shield conductor layer 4.
  • the irradiation direction in which the shield conductor layer is irradiated with the laser light is such that the optical axes of the laser beams that are not adjacent to each other form a straight line as shown in FIG. .
  • the entire shield conductor layer can be reliably melted and cut with a laser beam having a lower output.
  • the shield conductor layer is irradiated with laser light from four directions.
  • the present invention is not limited to this, and the shield conductor layer may be irradiated with laser light from three directions.
  • the shield conductor layer may be irradiated with laser light from five or more directions.
  • the angle formed by two adjacent optical axes of the laser light irradiated to the shield conductor layer may be less than 180 °, but it is more preferable that the angle is less than 150 °. Is obtained.
  • the force using an irradiation method (scan irradiation) for scanning the shield conductor layer with laser light is not limited to this, and the following modifications are made. It is also possible to do.
  • the shield conductor layer can be cut even if the diameter of the laser beam is larger than the width of the shield conductor layer and the scan conductor is not irradiated, it is possible to irradiate the shield conductor layer without scanning.
  • scan irradiation even when scan irradiation is not performed, it is possible to perform laser irradiation from one direction multiple times by using a laser output that can be cut by multiple times of laser irradiation of the shield wire, which is a metal thin wire force that constitutes the shield conductor layer.
  • a shield wire made of a thin metal wire that constitutes the shield conductor layer cannot be cut by a single scanning irradiation, but a laser output that can be cut by a plurality of scanning irradiations, and from one direction. It is also possible to perform multiple laser irradiations.
  • adjusting the laser output that can be cut by multiple laser irradiations or multiple scan irradiations is more effective than adjusting the laser output that can be cut by 1 laser irradiation or 1 scan irradiation. Easy. As a result, damage to the internal insulator can be reduced.
  • the shield conductor layer is scanned and irradiated with laser light by sliding the shield cable with the cable slide mechanism.
  • the laser light is slid with the shield cable fixed. It is also possible to scan and irradiate the shield conductor layer with laser light.
  • the force that irradiates the shield conductor layer with the laser beam as well as the four-direction force can also irradiate the shield conductor layer with the laser beam.
  • a reflection mirror with a mirror slide mechanism similar to the third reflection mirror 15 is arranged between the third reflection mirror 15 and the fourth reflection mirror 16 in the laser carriage device of FIG.
  • the laser beam reflected by the reflecting mirror passes through the lens and is shielded. It can be realized by irradiating one shield conductor layer or by arranging a plurality of such reflecting mirrors and lenses.
  • a reflection mirror with a mirror slide mechanism similar to that of the sixth reflection mirror 18 is arranged between the sixth reflection mirror 18 and the fifth reflection mirror 17, and this
  • a lens between the reflection mirror and the shield cable 1 the laser light reflected by the reflection mirror can be irradiated to the shield conductor layer of the shield cable through the lens, or such a reflection mirror can be used. Further, this can be realized by arranging a plurality of lenses.
  • a force is described for cutting a shield conductor layer of one shielded cable.
  • a plurality of shielded cables is not limited to this. It is also possible to cut each shield conductor layer at the same time. A method in this case will be described below.
  • FIG. 3 is a diagram for explaining a method for simultaneously cutting a plurality of shield conductor layers of a plurality of shielded cables, which is a modification of the first embodiment.
  • the laser processing apparatus is the same as Embodiment 1 except that a plurality of shielded cables 1 are arranged in a horizontal row and held by a holding mechanism, description thereof is omitted.
  • the shield cable may be slid in the direction of the arrow 24 by the cable slide mechanism, or the optical system is fixed with the shield cable fixed. May be slid in the direction of arrow 25, or the optical system or shielded cable may be slid back and forth multiple times.
  • FIG. 4 is a schematic diagram showing the configuration of the laser processing apparatus according to Embodiment 2 of the present invention, and the same reference numerals are given to the same parts as those in FIG.
  • the shielded cable holding mechanism and the cable slide mechanism are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the laser beam 12 reflected in the second direction 32 by the second reflecting mirror 14 is reflected in the third direction 33 by the reflecting mirror 26a in the mirror slide unit 26, and is reflected.
  • the laser beam 12 is irradiated to the shield conductor layer 4 of the shield cable 1 through the first rotating lens 27a.
  • the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the second direction 32.
  • the mirror slide unit 26 includes a reflection mirror 26a, a slide mechanism (not shown) for sliding the reflection mirror 26a, and a rotation mechanism (not shown) for adjusting the direction of the reflection mirror 26a. ing.
  • the first rotating lens 27a is attached with a rotating mechanism (not shown) that rotates around the shielded cable 1 as indicated by an arrow.
  • the laser beam 12 reflected in the sixth direction 36 by the seventh reflecting mirror 19 is reflected in the seventh direction 37 by the reflecting mirror 28a in the mirror slide unit 28, and this reflected laser beam 12 Is irradiated to the shield conductor layer 4 of the shield cable 1 through the second rotating lens 27b.
  • the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the sixth direction 36.
  • the mirror slide unit 28 includes a reflection mirror 28a, a slide mechanism (not shown) for sliding the reflection mirror 28a, and a rotation mechanism (not shown) for adjusting the direction of the reflection mirror 28a.
  • the second rotating lens 27b is attached with a rotating mechanism (not shown) that rotates around the shielded cable 1 as indicated by an arrow.
  • the shield cable 1 with the jacket 5 peeled off for a predetermined length to expose the shield conductor layer is fixed and held by the holding mechanism of the laser processing apparatus shown in FIG.
  • laser light 12 is emitted from the laser irradiation mechanism 11, and this laser light 12 is reflected by the first and second reflection mirrors 13 and 14 and the reflection mirror 26a in the mirror slide unit, and is reflected.
  • the laser beam 12 passes through the first rotating lens 27a and is applied to the shield conductor layer 4 of the shield cable 1 from the third direction 33.
  • the reflecting mirror 26a and the first rotating lens 27a are aligned so that the laser light is reflected in the third direction 33 and irradiated to the shield conductor layer.
  • the reflecting mirror 26a is slid in the mirror slide unit 26, and the first rotating lens 27a is rotated.
  • the reflecting mirror 26a and the first rotating lens 27a are aligned so that the laser light is reflected in the fourth direction 34 and applied to the shield conductor layer.
  • the laser beam 12 is irradiated from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first and second reflecting mirrors 13, 14, and the reflecting mirror 26a, respectively, and the reflected laser beam 12 is reflected by the first laser beam 12.
  • the shield conductor layer is irradiated from the fourth direction 34 through the rotating lens 27a.
  • the direction of the first reflection mirror 13 is changed by the driving mechanism, and the laser irradiation mechanism 11 also irradiates the laser beam 12, and the laser beam 12 is applied to the first and seventh reflection mirrors 13 and 19 and the mirror 1.
  • the reflected laser beam 12 is reflected by each of the reflecting mirrors 28a in the slide unit 28, and the reflected laser light 12 is irradiated to the shield conductor layer 4 of the shield cable 1 from the seventh direction 37 through the second rotating lens 27b.
  • the reflecting mirror 28a and the second rotating lens 27b are positioned so that the laser light is reflected in the seventh direction 37 and irradiated to the shield conductor layer.
  • the reflecting mirror 28a is slid in the mirror slide unit 28, and the second rotating lens 27b is rotated.
  • the reflecting mirror 28a and the second rotating lens 27b are aligned so that the laser light is reflected in the eighth direction 38 and irradiated to the shield conductor layer.
  • the laser beam 12 is emitted from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first and seventh reflecting mirrors 13, 19, and the reflecting mirror 28a, and the reflected laser beam 12 is reflected by the second laser beam 12.
  • the shield conductor layer is irradiated from the eighth direction 38 through the rotating lens 27b.
  • FIG. 5 is a schematic diagram showing the configuration of the laser machining apparatus according to Embodiment 3 of the present invention, and the same reference numerals are given to the same parts as those in FIG.
  • the laser beam 12 irradiated from the laser irradiation mechanism 11 is reflected in the first direction 31 by the first half mirror 43, reflected in the second direction 32 by the second reflection mirror 14, and the second The half mirror 45 reflects the laser beam 12 in the third direction 33, and the reflected laser light 12 passes through the first lens 20 and is applied to the shield conductor layer 4 of the shield cable 1.
  • the transmitted laser beam 12 is reflected by the fourth reflecting mirror 16 in the fourth direction 34, and the reflected laser beam 12 passes through the second lens 21 and the shield conductor layer 4 of the shielded cable 1. Is irradiated.
  • the transmitted laser beam 12 is reflected in the seventh direction 37 by the third half mirror 48, and the reflected laser beam 12 passes through the fourth lens 23 to be a shield conductor layer of the shield cable 1. 4 is irradiated.
  • the transmitted laser beam 12 is reflected in the eighth direction 38 by the fifth reflecting mirror 17, and the reflected laser beam 12 passes through the third lens 22 and the shield conductor layer 4 of the shielded cable 1. Is irradiated.
  • FIG. 6 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention, and the same parts as those in FIG.
  • the laser irradiation mechanism 11 Since the laser irradiation mechanism 11, the first to fourth lenses 20 to 23, the shield cable holding mechanism, and the cable slide mechanism are the same as those in the first embodiment, the description thereof is omitted.
  • the laser processing apparatus of FIG. 6 has a rotary reflection mirror 51 provided with a rotary drive mechanism (not shown).
  • the rotary reflection mirror 51 is a first to a first reflection mirror that is rotated by a rotary drive mechanism. 4 can be changed, and by adjusting the rotary reflection mirror 51 in the first to fourth directions, the laser beam can be reflected in the first to fourth directions 61 to 64. It has become so.
  • the laser beam 12 irradiated from the laser irradiation mechanism 11 is reflected in the first direction 61 by the rotary reflection mirror 51 adjusted in the first direction, and in the fifth direction 65 by the first reflection mirror 52.
  • the reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the first lens 20.
  • the laser beam 12 irradiated from the laser irradiation mechanism 11 is reflected in the second direction 62 by the rotary reflection mirror 51 adjusted in the second direction, and in the sixth direction 66 by the second reflection mirror 53.
  • the reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the second lens 21.
  • the laser beam 12 emitted from the laser irradiation mechanism 11 is reflected in the third direction 63 by the rotary reflection mirror 51 adjusted in the third direction, and in the seventh direction 67 by the third reflection mirror 54.
  • the reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the third lens 22.
  • the laser beam 12 emitted from the laser irradiation mechanism 11 is reflected in the fourth direction 64 by the rotary reflection mirror 51 adjusted in the fourth direction, and in the eighth direction 68 by the fourth reflection mirror 55.
  • the reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the fourth lens 23.
  • FIG. 7 is a schematic diagram showing the configuration of the laser processing apparatus according to the fifth embodiment of the present invention. The same parts as those in FIG.
  • This laser carriage apparatus has first to fourth laser irradiation mechanisms 71 to 74.
  • the first to fourth laser irradiation mechanisms 71 irradiate the respective laser beams through the first to fourth lenses 20 to 23 irradiate the shield conductor layer 4 of the shield cable 1.
  • FIG. 8 is a schematic diagram showing the configuration of the laser processing apparatus according to Embodiment 6 of the present invention, and the same reference numerals are given to the same portions as those in FIG.
  • This laser processing apparatus includes first and second laser irradiation mechanisms 81 and 82, a first reflection mirror 83, a second reflection mirror 84, a first parabolic mirror 85, And a second parabolic mirror 86.
  • Each of the first reflection mirror 83 and the second reflection mirror 84 can be freely slid on the optical axis of the laser beam by a slide mechanism.
  • the first parabolic mirror 85 and the second parabolic mirror 86 are respectively shielded cables even if the first reflecting mirror 83 and the second reflecting mirror 84 are slid by the slide mechanism and changed in position.
  • the shield conductor layer 1 is configured to be irradiated with laser light.
  • Laser light is emitted from the first laser irradiation mechanism 81, the laser light is reflected by the first reflecting mirror 83 and the first parabolic mirror 85, and the reflected laser light is shielded cable. 1 shielded conductor layer 4 is irradiated.
  • the first laser irradiation mechanism 81 irradiates laser light, and this laser light is emitted from the first reflection mirror 83 and the first paraboloid. Reflected by the surface mirror 85, the reflected laser light is applied to the shield conductor layer 4 of the shielded cable 1.
  • laser light is emitted from the second laser irradiation mechanism 82, and this laser light is Reflected by the reflecting mirror 84 and the second parabolic mirror 86, the reflected laser light is applied to the shield conductor layer 4 of the shielded cable 1.
  • the second laser irradiation mechanism 82 irradiates laser light, and this laser light is emitted from the second reflection mirror 84 and the second paraboloid. Reflected by the surface mirror 86, the reflected laser light is applied to the shield conductor layer 4 of the shielded cable 1.
  • the second parabolic mirror 86 is used.
  • a third reflecting mirror may be used instead of the second parabolic mirror 86. . In this case, it becomes possible to irradiate the shield conductor layer with laser light from three directions that are substantially perpendicular to the longitudinal direction of the shield cable.
  • FIG. 9 is a schematic diagram showing the configuration of the laser processing apparatus according to the seventh embodiment of the present invention, and the same parts as those in FIG.
  • This laser processing apparatus includes a lens 91, a motor 93 that rotates the shield cable 1, and a belt 92 that transmits the rotational driving force of the motor 93 to the shield cable 1.
  • the laser light emitted from the laser irradiation mechanism 11 is applied to the shield conductor layer 4 of the shield cable 1 through the lens 91. At this time, by rotating the shield cable 1 by the motor 93 and the belt 92, the laser beam is applied to the shield conductor layer in at least three directions.

Abstract

Provided are a shield conductor cutting method and a laser treatment device capable of sufficiently assuring insulation between an internal conductor and a shield conductor layer without leaving a shield line not cut on the shield conductor layer side. The shield conductor layer cutting method includes: a step of preparing a shield cable (1) having a center conductor, an internal insulator arranged to cover the center core, and a shield conductor arranged to cover the internal insulator; and a step of applying a laser beam (12) to the shield conductor layer from at least three directions substantially vertical to the longitudinal direction of the shield cable (1). The angle defined by the two adjacent optical axes of the laser beam applied to the shield conductor layer is less than 180 degrees.

Description

明 細 書  Specification
シールド導体層の切断方法及びレーザ加工装置  Shield conductor layer cutting method and laser processing apparatus
技術分野  Technical field
[0001] 本発明は、シールド導体層側面に切断されないシールド線が残ることがなぐ且つ 内部導体とシールド導体層との絶縁性を十分に確保できるシールド導体層の切断方 法及びレーザ加ェ装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a shield conductor layer cutting method and a laser heating device that do not leave uncut shield wires on the side surfaces of a shield conductor layer and that can sufficiently ensure insulation between an inner conductor and a shield conductor layer. .
背景技術  Background art
[0002] 近年、ノートパソコン、携帯電話、小型ビデオカメラ等の普及で、これら情報通信機 器の小型 ·軽量化の他に高速 ·
Figure imgf000003_0001
、る。これに対応するために、 内部導体の外周に内部絶縁体、外部導体、外被を同軸状に順次形成した極めて細 い電線 (ケーブルという場合もある)が使用されている。また、その他の制御機器、例 えば、医療用超音波探触子等で不要なノイズが混入するのを防止するのに、同様な 電線がシールド電線として使用されている。以下、上記の同軸状の電線を或いはシ 一ルド電線を含めて、シールドケーブルとする。
[0002] In recent years, with the spread of notebook computers, mobile phones, small video cameras, etc., these information and communication devices have become smaller, lighter, and faster.
Figure imgf000003_0001
RU To cope with this, very thin electric wires (sometimes called cables) are used in which an inner insulator, an outer conductor, and a jacket are sequentially formed on the outer circumference of the inner conductor in a coaxial manner. In addition, similar wires are used as shield wires to prevent unwanted noise from entering other control devices such as medical ultrasonic probes. Hereinafter, the coaxial cable or shielded cable including the shielded cable will be referred to as a shielded cable.
[0003] 通常、シールドケーブルは複数本を束ねて使用され、その端部はフラット状にされ て電気コネクタに接続される。電気コネクタとの接続に際しては、シールドケーブルに 内部導体及び外部導体を電気接続するための端末形成が必要となる。しかし、ケー ブル外径が lmm以下のような極細で、内部絶縁体の厚さが数十/ z m程度となると、 ケーブルの配列ピッチ、電気的性能を損なうことなく接続端末を形成するのは容易で はない。このため、この種のシールドケーブルの端末形成について、今までに種々の 提案がされている。  [0003] Normally, a plurality of shielded cables are used by bundling them, and the ends thereof are made flat and connected to an electrical connector. When connecting to the electrical connector, it is necessary to form a terminal for electrically connecting the inner conductor and the outer conductor to the shielded cable. However, if the outer diameter of the cable is as fine as lmm or less and the thickness of the internal insulator is about several tens / zm, it is easy to form a connection terminal without impairing the cable arrangement pitch and electrical performance. is not. For this reason, various proposals have been made so far on the formation of this type of shielded cable end.
[0004] 図 10は、従来のシールドケーブルの構造例を示す断面図である。  FIG. 10 is a cross-sectional view showing a structural example of a conventional shielded cable.
内部導体(中心導体) 2は、例えば、外径約 0.025mmの錫めつきされた銅合金線 力^本撚つて形成され、その外面をフッ素榭脂からなる絶縁材で厚さ 0.04mn!〜 0.0 55mm程度に被覆して内部絶縁体(内部誘電体) 3としている。内部絶縁体 3の外周 面に配する外部導体 (シールド導体層) 4は、例えば、外径約 0.03mmの複数本の銅 合金線のようなシールド線 4aを横卷で卷きつけて形成し、その外面に厚さ約 0.004 mm程度のポリエステルテープを 2枚重ね巻きして互いに融着して外被 (ジャケット) 5 とし、外径が約 0.3mm以下のシールドケーブル 1が得られるように形成される。なお、 シールド導体層 4の外面に銅蒸着テープ(図示せず)を銅蒸着面を内側にして巻き つけてもよぐまた、シールド導体層 4は、シールド線の卷方向を反対にして 2層に卷 付けた構造であってもよぐこの他、編組構造であってもよい (例えば特許文献 1参照The inner conductor (center conductor) 2 is formed by twisting a copper alloy wire with tinned outer diameter of about 0.025 mm, for example, and its outer surface is made of an insulating material made of fluorine resin with a thickness of 0.04mn! ~ 0.055mm is covered to make an internal insulator (internal dielectric) 3. The outer conductor (shield conductor layer) 4 arranged on the outer peripheral surface of the inner insulator 3 is formed by, for example, winding shield wires 4a such as a plurality of copper alloy wires having an outer diameter of about 0.03 mm on the side, About 0.004 thick on its outer surface Two pieces of polyester tape having a thickness of about mm are overlapped and fused together to form a jacket (jacket) 5 so that a shielded cable 1 having an outer diameter of about 0.3 mm or less can be obtained. A copper vapor-deposited tape (not shown) may be wrapped around the outer surface of the shield conductor layer 4 with the copper vapor-deposited surface inside, and the shield conductor layer 4 has two layers with the shield wire in the opposite direction. In addition to this, it may be a braided structure (for example, see Patent Document 1).
) o ) o
[0005] 次に、従来のシールドケーブルにおけるシールド導体層の切断方法について説明 する。  [0005] Next, a method for cutting the shield conductor layer in the conventional shielded cable will be described.
図 11は、図 10に示すシールドケーブルのシールド層 4をレーザ光によって切断す る方法及びその方法による問題点を説明する図である。図 11では、シールド導体層 4及び内部導体 2を模式的に示して 、るが、図 11にお 、ても実際は図 10に示すシー ルド導体層 4及び内部導体 2と同じ構造になっている。  FIG. 11 is a diagram for explaining a method of cutting the shield layer 4 of the shielded cable shown in FIG. 10 with a laser beam and problems caused by the method. In FIG. 11, the shield conductor layer 4 and the inner conductor 2 are schematically shown. However, in FIG. 11, the actual structure is the same as the shield conductor layer 4 and the inner conductor 2 shown in FIG. .
[0006] まず、図 10に示すジャケット 5を剥離した状態のシールドケーブル 1を図示せぬ保 持機構により固定して保持し、シールドケーブルの上方からシールド導体層 4にレー ザ光を矢印のようにスキャンしながら照射する。次いで、前記シールドケーブル 1の下 方力もシールド導体層 4にレーザ光を矢印のようにスキャンしながら照射する。このよ うにシールド導体層 4の全体にレーザ光を照射することによりシールド導体層 4を切 断する。 [0006] First, the shielded cable 1 with the jacket 5 peeled off as shown in FIG. 10 is fixed and held by a holding mechanism (not shown), and laser light is directed to the shield conductor layer 4 from above the shielded cable as indicated by an arrow. Irradiate while scanning. Next, the downward force of the shield cable 1 is also applied to the shield conductor layer 4 while scanning the laser beam as indicated by the arrow. In this way, the shield conductor layer 4 is cut by irradiating the entire shield conductor layer 4 with laser light.
[0007] 特許文献 1 :特開 2005— 251522号公報(0002, 0016段落、 01)  Patent Document 1: Japanese Patent Application Laid-Open No. 2005-251522 (0002, paragraph 0016, 01)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上述したシールド導体層をレーザ光によって切断する方法では、レーザ光を上方と 下方の 2方向からシールド導体層 4に照射するため、シールド導体層側面 6にお ヽて は上方力 のレーザ光も下方からのレーザ光も隣り合うシールド線 4aによって遮られ 、レーザ光の照射が不十分になる。その結果、シールド導体層側面 6において切断 されな 、シールド線 4aが残ることがある。  [0008] In the above-described method of cutting the shield conductor layer with the laser beam, the laser beam is applied to the shield conductor layer 4 from the upper and lower directions. Both the light and the laser beam from below are blocked by the adjacent shield line 4a, and the laser beam irradiation becomes insufficient. As a result, the shield wire 4a may remain without being cut at the side surface 6 of the shield conductor layer.
[0009] 一方、シールド導体層側面 6においてもシールド線 4aが完全に切断されるような高 出力条件でレーザ光を照射すると、レーザ光の照射方向の正面に位置するシールド 導体層 4をレーザ光が貫通し、そのレーザ光が内部絶縁体 3まで達してしまい、その 結果、図 11に示すように内部絶縁体に傷が入る部分 7が生じてしまう。この部分 7で は、内部絶縁体 3の電気的絶縁性が低下するため、内部導体 2とシールド導体層 4と の絶縁を十分に確保することができな 、ことがある。 On the other hand, when the laser beam is irradiated on the side surface 6 of the shield conductor layer under a high output condition such that the shield wire 4a is completely cut, the shield positioned in front of the laser beam irradiation direction is used. The laser light penetrates the conductor layer 4 and the laser light reaches the internal insulator 3, and as a result, a portion 7 in which the internal insulator is damaged as shown in FIG. 11 is generated. In this portion 7, since the electrical insulation of the internal insulator 3 is lowered, it may be impossible to sufficiently secure the insulation between the internal conductor 2 and the shield conductor layer 4.
[0010] また、上記従来の切断方法において、スキャン回数を多くするとスキャン速度によら ずシールド導体層を溶融切断しやすぐスキャン回数が少な 、場合にはシールド線 の切り残しが多くなる傾向がある。また、スキャン回数を多くした場合の内部誘電体の ダメージは、スキャン速度が速いほど軽減される傾向がある。  [0010] Further, in the above-described conventional cutting method, when the number of scans is increased, the shield conductor layer is melted and cut regardless of the scan speed, or the number of scans is decreased immediately. . In addition, damage to the internal dielectric when the number of scans is increased tends to be reduced as the scan speed increases.
[0011] 上述したように、シールド導体層側面 6にお 、て切断されな 、シールド線 4aが残つ たり、内部絶縁体に傷が入る部分 7が生じるのは、レーザ光を上方と下方の 2方向か ら照射することに原因があると考えられる。  [0011] As described above, the shield conductor layer side surface 6 is not cut and the shield wire 4a remains or the internal insulator is damaged. It is thought that there is a cause in irradiation from two directions.
[0012] 本発明は上記のような事情を考慮してなされたものであり、その目的は、シールド導 体層側面に切断されな 、シールド線が残ることがなぐ且つ内部導体とシールド導体 層との絶縁性を十分に確保できるシールド導体層の切断方法及びレーザ加工装置 を提供することにある。  [0012] The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to prevent the shield wire from being left on the side surface of the shield conductor layer and the inner conductor and the shield conductor layer. It is an object of the present invention to provide a method for cutting a shield conductor layer and a laser processing apparatus capable of sufficiently ensuring the insulation.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決するため、本発明に係るシールド導体層の切断方法は、中心導体 と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁体を被覆す るように配置されたシールド導体層とを備えたシールドケーブルを準備し、 [0013] In order to solve the above problems, a method of cutting a shield conductor layer according to the present invention includes a central conductor, an internal insulator disposed so as to cover the central conductor, and the internal insulator. Prepare a shielded cable with a shield conductor layer arranged so that
前記シールドケーブルの長手方向に対して略垂直方向である少なくとも 3方向から 前記シールド導体層にレーザ光を照射することによって前記シールド導体層を切断 するものであり、  The shield conductor layer is cut by irradiating the shield conductor layer with laser light from at least three directions which are substantially perpendicular to the longitudinal direction of the shield cable.
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
[0014] 上記シールド導体層の切断方法によれば、シールド導体層に少なくとも 3方向から レーザ光を照射しているため、従来技術のようにレーザ光を上方と下方の 2方向から シールド導体層に照射するのに比べ、シールド導体層側面にぉ 、ても切断されな ヽ シールド導体層が残ることを防止でき、シールド導体層全体を完全に且つ安定して 切断することができる。これと共に、少なくとも 3方向からレーザ光を照射することによ り、全てのシールド導体層が完全に切断されるような条件でレーザ光を照射しても、 内部絶縁体に傷が入る部分が生じることを抑制できる。従って、内部絶縁体の電気 的絶縁性が低下することを防止でき、内部導体とシールド導体層との絶縁性を十分 に確保することができる。 [0014] According to the method for cutting the shield conductor layer, since the laser beam is irradiated to the shield conductor layer from at least three directions, the laser beam is applied to the shield conductor layer from the upper and lower two directions as in the prior art. Compared to irradiation, the shield conductor layer can be prevented from remaining on the side of the shield conductor layer. ヽ The shield conductor layer can be prevented from remaining, and the entire shield conductor layer can be completely and stably maintained. Can be cut. At the same time, by irradiating the laser light from at least three directions, even if the laser light is irradiated under the condition that all the shield conductor layers are completely cut, a part of the internal insulator is damaged. This can be suppressed. Therefore, it is possible to prevent the electrical insulation of the internal insulator from being deteriorated, and to sufficiently ensure the insulation between the internal conductor and the shield conductor layer.
[0015] また、本発明に係るシールド導体層の切断方法にぉ 、て、前記 2本の光軸が作る 角度が 150° 以下であることが好ましい。  [0015] Further, in the method for cutting the shield conductor layer according to the present invention, it is preferable that the angle formed by the two optical axes is 150 ° or less.
[0016] また、本発明に係るシールド導体層の切断方法にぉ 、て、前記シールド導体層に 4方向からレーザ光を照射するものであって、隣り合わないレーザ光の光軸どうしは 略一直線を成すように配置されることが好ま 、。  [0016] Further, according to the method for cutting the shield conductor layer according to the present invention, the shield conductor layer is irradiated with laser light from four directions, and the optical axes of the laser beams that are not adjacent to each other are substantially straight. It is preferable to be arranged to form.
[0017] また、本発明に係るシールド導体層の切断方法にぉ 、て、前記シールドケーブル を準備する際、複数本並べたシールドケーブルを準備し、前記シールド導体層にレ 一ザ光を照射する際、前記レーザ光又は前記シールドケーブルをスライドさせること により前記レーザ光をスキャン照射することが好ましい。  [0017] Further, according to the method for cutting a shield conductor layer according to the present invention, when preparing the shield cable, a plurality of shield cables arranged in series are prepared, and the shield conductor layer is irradiated with laser light. At this time, it is preferable that the laser light or the shielded cable be slid to scan the laser light.
[0018] 本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、  [0018] A laser processing apparatus according to the present invention includes a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光を第 1の方向又は第 2の方向に 反射させる第 1の反射ミラーと、  A first reflecting mirror that reflects the laser beam irradiated by the laser irradiation mechanism in a first direction or a second direction;
前記第 1の反射ミラーによって前記第 1の方向に反射された前記レーザ光を、第 3 の方向に反射させる第 2の反射ミラーと、  A second reflecting mirror for reflecting the laser beam reflected in the first direction by the first reflecting mirror in a third direction;
前記第 2の反射ミラーによって前記第 3の方向に反射された前記レーザ光を、第 4 の方向に反射させて前記シールド導体層に照射する第 3の反射ミラーと、  A third reflection mirror that reflects the laser light reflected in the third direction by the second reflection mirror in a fourth direction and irradiates the shield conductor layer;
前記第 3の方向に反射された前記レーザ光の光軸から前記第 3の反射ミラーを外 すようにスライドさせるミラースライド機構と、 前記第 3の方向に反射された前記レーザ光の光軸から前記第 3の反射ミラーを外し た状態で、前記第 2の反射ミラーによって前記第 3の方向に反射された前記レーザ光 を、第 5の方向に反射させて前記シールド導体層に照射する第 4の反射ミラーと、 前記第 1の反射ミラーによって前記第 2の方向に反射された前記レーザ光を、第 6 の方向に反射させる第 5の反射ミラーと、 A mirror slide mechanism that slides so as to remove the third reflecting mirror from the optical axis of the laser beam reflected in the third direction; The laser light reflected in the third direction by the second reflecting mirror in a state where the third reflecting mirror is removed from the optical axis of the laser light reflected in the third direction. A fourth reflecting mirror that reflects in the direction of 5 and irradiates the shield conductor layer; and a laser beam that reflects in the second direction by the first reflecting mirror reflects in the sixth direction. With 5 reflection mirrors,
前記第 5の反射ミラーによって前記第 6の方向に反射された前記レーザ光を、第 7 の方向に反射させて前記シールド導体層に照射する第 6の反射ミラーと、 を具備し、  A sixth reflecting mirror that reflects the laser light reflected in the sixth direction by the fifth reflecting mirror in a seventh direction and irradiates the shield conductor layer; and
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、  A laser processing apparatus according to the present invention includes a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device that holds a cable and cuts the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光を第 1の方向又は第 2の方向に 反射させる第 1の反射ミラーと、  A first reflecting mirror that reflects the laser beam irradiated by the laser irradiation mechanism in a first direction or a second direction;
前記第 1の反射ミラーによって前記第 1の方向に反射された前記レーザ光を、第 3 の方向に反射させる第 2の反射ミラーと、  A second reflecting mirror for reflecting the laser beam reflected in the first direction by the first reflecting mirror in a third direction;
前記第 2の反射ミラーによって前記第 3の方向に反射された前記レーザ光を、第 4 の方向又は第 5の方向に反射させて前記シールド導体層に照射する第 3の反射ミラ 一を備えた第 1のミラースライドユニットと、  A third reflecting mirror for reflecting the laser light reflected in the third direction by the second reflecting mirror in the fourth direction or the fifth direction and irradiating the shield conductor layer; A first mirror slide unit;
前記第 1のミラースライドユニットに設けられた前記第 3の反射ミラーをスライドさせる 第 1のスライド機構と、  A first slide mechanism for sliding the third reflecting mirror provided in the first mirror slide unit;
前記第 1のミラースライドユニットに設けられた前記第 3の反射ミラーを回転させる第 1の回転機構と、  A first rotating mechanism for rotating the third reflecting mirror provided in the first mirror slide unit;
前記第 1の反射ミラーによって前記第 2の方向に反射された前記レーザ光を、第 6 の方向に反射させる第 4の反射ミラーと、 The laser beam reflected in the second direction by the first reflecting mirror is A fourth reflecting mirror that reflects in the direction of
前記第 4の反射ミラーによって前記第 6の方向に反射された前記レーザ光を、第 7 の方向に反射させて前記シールド導体層に照射する第 5の反射ミラーと、 を具備し、  A fifth reflecting mirror that reflects the laser light reflected in the sixth direction by the fourth reflecting mirror in a seventh direction and irradiates the shield conductor layer; and
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
[0020] また、本発明に係るレーザ加工装置において、前記第 4の方向、前記第 5の方向及 び前記第 7の方向それぞれ力 照射される前記レーザ光の光軸上に、それぞれ回転 機構によって回転させて配置される回転レンズをさらに具備することも可能である。 [0020] Further, in the laser processing apparatus according to the present invention, each of the fourth direction, the fifth direction, and the seventh direction may be respectively rotated on an optical axis of the laser beam irradiated with force. It is also possible to further include a rotating lens arranged to rotate.
[0021] また、本発明に係るレーザ加工装置において、前記第 5の反射ミラーに代えて第 2 のミラースライドユニットが配置されており、 [0021] Further, in the laser processing apparatus according to the present invention, a second mirror slide unit is arranged instead of the fifth reflecting mirror,
前記第 2のミラースライドユニットは、前記第 4の反射ミラーによって前記第 6の方向 に反射された前記レーザ光を、第 7の方向又は第 8の方向に反射させて前記シール ド導体層に照射する第 5の反射ミラーを備えており、  The second mirror slide unit irradiates the shield conductor layer by reflecting the laser beam reflected in the sixth direction by the fourth reflecting mirror in a seventh direction or an eighth direction. A fifth reflecting mirror that
前記第 2のミラースライドユニットは、前記第 5の反射ミラーをスライドさせる第 2のス ライド機構と、前記第 5の反射ミラーを回転させる第 2の回転機構とを有していることも 可能である。  The second mirror slide unit may include a second slide mechanism that slides the fifth reflection mirror and a second rotation mechanism that rotates the fifth reflection mirror. is there.
[0022] 本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、  [0022] A laser processing apparatus according to the present invention comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光の一部を第 1の方向に反射させ ると共に前記レーザ光の一部を透過させる第 1のハーフミラーと、  A first half mirror that reflects a part of the laser light irradiated by the laser irradiation mechanism in a first direction and transmits a part of the laser light;
前記第 1のハーフミラーによって前記第 1の方向に反射された前記レーザ光を、第 2の方向に反射させる第 1の反射ミラーと、  A first reflecting mirror that reflects the laser light reflected in the first direction by the first half mirror in a second direction;
前記第 1の反射ミラーによって前記第 2の方向に反射された前記レーザ光の一部を 第 3の方向に反射させて前記シールド導体層に照射すると共に前記レーザ光の一部 を透過させる第 2のハーフミラーと、 A part of the laser beam reflected in the second direction by the first reflecting mirror; A second half mirror that reflects in a third direction and irradiates the shield conductor layer and transmits a part of the laser beam;
前記第 2のハーフミラーによって透過された前記レーザ光を、第 4の方向に反射さ せて前記シールド導体層に照射する第 2の反射ミラーと、  A second reflecting mirror that reflects the laser light transmitted by the second half mirror in a fourth direction and irradiates the shield conductor layer;
前記第 1のハーフミラーによって透過された前記レーザ光を、第 5の方向に反射さ せて前記シールド導体層に照射する第 3の反射ミラーと、  A third reflecting mirror that reflects the laser light transmitted by the first half mirror in a fifth direction and irradiates the shield conductor layer;
を具備し、  Comprising
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
[0023] また、本発明に係るレーザ加工装置において、前記第 1のハーフミラーと前記第 3 の反射ミラーの間に配置され、前記第 1のハーフミラーによって透過された前記レー ザ光の一部を第 6の方向に反射させて前記シールド導体層に照射すると共に前記レ 一ザ光の一部を透過させる第 3のハーフミラーをさらに具備することも可能である。  [0023] Further, in the laser processing apparatus according to the present invention, a part of the laser light that is disposed between the first half mirror and the third reflection mirror and transmitted by the first half mirror. It is also possible to further include a third half mirror that reflects the light in the sixth direction to irradiate the shield conductor layer and transmits a part of the laser light.
[0024] 本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、  [0024] A laser processing apparatus according to the present invention comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光を第 1乃至第 3の方向に反射さ せる回転反射ミラーと、  A rotary reflection mirror that reflects the laser light emitted by the laser irradiation mechanism in first to third directions;
前記回転反射ミラーによって前記第 1の方向に反射された前記レーザ光を、第 4の 方向に反射させて前記シールド導体層に照射する第 1の反射ミラーと、  A first reflection mirror that reflects the laser light reflected in the first direction by the rotary reflection mirror in a fourth direction and irradiates the shield conductor layer;
前記回転反射ミラーによって前記第 2の方向に反射された前記レーザ光を、第 5の 方向に反射させて前記シールド導体層に照射する第 2の反射ミラーと、  A second reflecting mirror that reflects the laser light reflected in the second direction by the rotary reflecting mirror in a fifth direction and irradiates the shield conductor layer;
前記回転反射ミラーによって前記第 3の方向に反射された前記レーザ光を、第 6の 方向に反射させて前記シールド導体層に照射する第 3の反射ミラーと、  A third reflection mirror that reflects the laser light reflected in the third direction by the rotary reflection mirror in a sixth direction and irradiates the shield conductor layer;
を具備し、 前記回転反射ミラーは、該回転反射ミラーを回転させる回転機構を有し、該回転機 構によって前記回転反射ミラーの向きを調整するものであり、 Comprising The rotating reflection mirror has a rotating mechanism for rotating the rotating reflecting mirror, and adjusts the direction of the rotating reflecting mirror by the rotating mechanism;
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
[0025] 本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、 [0025] A laser processing apparatus according to the present invention includes a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
第 1のレーザ光を前記シールド導体層に照射する第 1のレーザ照射機構と、 第 2のレーザ光を前記シールド導体層に照射する第 2のレーザ照射機構と、 第 3のレーザ光を前記シールド導体層に照射する第 3のレーザ照射機構と、 を具備し、  A first laser irradiation mechanism that irradiates the shield conductor layer with a first laser beam; a second laser irradiation mechanism that irradiates the shield conductor layer with a second laser beam; and a shield that applies a third laser beam to the shield conductor layer. A third laser irradiation mechanism for irradiating the conductor layer, and
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 The angle formed by two adjacent optical axes of the laser light irradiated to the shield conductor layer is 180.
° 未満であることを特徴とする。 It is less than °.
[0026] 本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、 [0026] A laser processing apparatus according to the present invention comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
第 1のレーザ光を第 1の方向に照射する第 1のレーザ照射機構と、  A first laser irradiation mechanism for irradiating the first laser beam in the first direction;
前記第 1のレーザ照射機構によって照射された第 1のレーザ光を第 2の方向に反射 させる第 1の反射ミラーと、  A first reflecting mirror that reflects the first laser beam irradiated by the first laser irradiation mechanism in a second direction;
前記第 1の反射ミラーを、前記第 1の方向に沿ってスライドさせるスライド機構と、 前記第 1の反射ミラーによって前記第 2の方向に反射された前記第 1のレーザ光を A slide mechanism that slides the first reflection mirror along the first direction; and the first laser light reflected by the first reflection mirror in the second direction.
、第 3の方向又は第 4の方向に反射させて前記シールド導体層に照射する第 1の放 物面鏡と、 A first parabolic mirror that reflects in a third direction or a fourth direction and irradiates the shield conductor layer;
第 2のレーザ光を、前記第 1の方向と平行で且つ略 180° 回転させた第 5の方向に 照射する第 2のレーザ照射機構と、 The second laser beam is parallel to the first direction and rotated in the fifth direction by approximately 180 °. A second laser irradiation mechanism for irradiating;
前記第 2のレーザ照射機構によって照射された第 2のレーザ光を第 6の方向に反射 させる第 2の反射ミラーと、  A second reflecting mirror for reflecting the second laser light irradiated by the second laser irradiation mechanism in a sixth direction;
前記第 2の反射ミラーによって前記第 6の方向に反射された前記第 2のレーザ光を 、第 7の方向に反射させて前記シールド導体層に照射する第 3の反射ミラーと、 を具備し、  A third reflection mirror that reflects the second laser light reflected in the sixth direction by the second reflection mirror in a seventh direction and irradiates the shield conductor layer; and
前記第 1の放物面鏡は、前記スライド機構によって前記第 1の反射ミラーをスライド させることにより、前記第 1のレーザ光を前記第 3の方向又は前記第 4の方向に反射 させるものであり、  The first parabolic mirror reflects the first laser beam in the third direction or the fourth direction by sliding the first reflecting mirror by the sliding mechanism. ,
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
また、本発明に係るレーザ加工装置において、前記第 3の反射ミラーに代えて第 2 の放物面鏡を具備し、前記第 2の反射ミラーを、前記第 5の方向に沿ってスライドさせ るスライド機構を有し、前記第 2の放物面鏡は、前記スライド機構によって前記第 2の 反射ミラーをスライドさせることにより、前記第 2のレーザ光を前記第 7の方向又は第 8 の方向に反射させるものであることも可能である。  In the laser processing apparatus according to the present invention, a second parabolic mirror is provided instead of the third reflecting mirror, and the second reflecting mirror is slid along the fifth direction. The second parabolic mirror has a sliding mechanism, and the second laser beam is moved in the seventh direction or the eighth direction by sliding the second reflecting mirror by the sliding mechanism. It can also be reflected.
[0027] 本発明に係るレーザ加工装置は、中心導体と、該中心導体を被覆するように配置さ れた内部絶縁体と、該内部絶縁体を被覆するように配置されたシールド導体層とを 備えたシールドケーブルを保持し、前記シールドケーブルの長手方向に対して略垂 直方向から前記シールド導体層にレーザ光を照射することによって前記シールド導 体層を切断するレーザカ卩ェ装置であって、 [0027] A laser processing apparatus according to the present invention comprises a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator. A laser carriage device for holding the shielded cable and cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to the longitudinal direction of the shield cable;
レーザ光を前記シールド導体層に照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating the shield conductor layer with laser light;
前記シールドケーブルを回転させる回転機構と、  A rotating mechanism for rotating the shielded cable;
を具備し、  Comprising
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とする。  The angle formed by two adjacent optical axes of the laser light applied to the shield conductor layer is less than 180 °.
発明の効果  The invention's effect
[0028] 以上説明したように本発明によれば、シールド導体層側面に切断されな 、シールド 線が残ることがなぐ且つ内部導体とシールド導体層との絶縁性を十分に確保できる シールド導体層の切断方法及びレーザ加工装置を提供することができる。 [0028] As described above, according to the present invention, the shield without being cut on the side surface of the shield conductor layer. It is possible to provide a shield conductor layer cutting method and a laser processing apparatus in which no wire remains and sufficient insulation between the inner conductor and the shield conductor layer can be secured.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本発明の実施の形態 1によるレーザ加工装置の構成を示す模式図である。  FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention.
[図 2]シールド導体層全体が完全に溶融切断され、シールド導体層が剥ぎ取られた 後のシールドケーブルを示す図である。  FIG. 2 is a diagram showing the shielded cable after the entire shield conductor layer has been completely melted and cut and the shield conductor layer is peeled off.
[図 3]実施の形態 1の変形例であって複数並べたシールドケーブルそれぞれのシー ルド導体層を同時に切断する方法を説明する図である。  FIG. 3 is a diagram for explaining a method of simultaneously cutting a shield conductor layer of each of a plurality of shielded cables arranged as a modification of the first embodiment.
[図 4]本発明の実施の形態 2によるレーザ加工装置の構成を示す模式図である。  FIG. 4 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 2 of the present invention.
[図 5]本発明の実施の形態 3によるレーザ加工装置の構成を示す模式図である。  FIG. 5 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 3 of the present invention.
[図 6]本発明の実施の形態 4によるレーザ加工装置の構成を示す模式図である。  FIG. 6 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention.
[図 7]本発明の実施の形態 5によるレーザ加工装置の構成を示す模式図である。  FIG. 7 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 5 of the present invention.
[図 8]本発明の実施の形態 6によるレーザ加工装置の構成を示す模式図である。  FIG. 8 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 6 of the present invention.
[図 9]本発明の実施の形態 7によるレーザ加工装置の構成を示す模式図である。  FIG. 9 is a schematic diagram showing a configuration of a laser processing apparatus according to a seventh embodiment of the present invention.
[図 10]従来のシールドケーブルの構造例を示す断面図である。  FIG. 10 is a cross-sectional view showing a structural example of a conventional shielded cable.
[図 11]図 10に示すシールドケーブルのシールド層 4をレーザ光によって切断する方 法及びその方法による問題点を説明する図である。  FIG. 11 is a diagram for explaining a method of cutting the shield layer 4 of the shielded cable shown in FIG. 10 with a laser beam and problems caused by the method.
符号の説明  Explanation of symbols
[0030] 1 シーノレドケープノレ [0030] 1 Sino Red Cape Nore
2 内部導体(中心導体)  2 Inner conductor (center conductor)
3 内部絶縁体(内部誘電体)  3 Internal insulator (internal dielectric)
4 外部導体 (シールド導体層)  4 External conductor (shield conductor layer)
4a シーノレド線  4a Sino Red Line
5 外被 (ジャケット)  5 Jacket (jacket)
6 シールド導体層側面  6 Side of shield conductor layer
7 内部絶縁体に傷が入る部分  7 Parts where internal insulation is damaged
11 レーザ照射機構 13〜19 第 1〜第 7の反射ミラー 11 Laser irradiation mechanism 13-19 First to seventh reflection mirrors
20〜23 第 1〜第 4のレンズ  20-23 First to fourth lenses
24, 25 矢印  24, 25 arrows
26, 28 ミラースライドユニット  26, 28 Mirror slide unit
26a, 28a 反射ミラー  26a, 28a Reflective mirror
27a 第 1の回転レンズ  27a First rotating lens
27b 第 2の回転レンズ  27b Second rotating lens
31' -38 第 1〜第 8の方向  31 '-38 1st to 8th directions
43, 45, 48 第 1〜第 3のノヽーフミラー  43, 45, 48 1st to 3rd noise mirror
51 回転反射ミラー  51 Rotating reflection mirror
52' -55 第 1〜第 4の反射ミラー  52 '-55 1st to 4th reflection mirror
61' -68 第 1〜第 8の方向  61 '-68 1st to 8th directions
71' -74 第 1〜第 4のレーザ照射機構  71 '-74 1st to 4th laser irradiation mechanism
81 第 1のレーザ照射機構  81 First laser irradiation mechanism
82 第 2のレーザ照射機構  82 Second laser irradiation mechanism
83 第 1の反射ミラー  83 First reflection mirror
84 第 2の反射ミラー  84 Second reflection mirror
85 第 1の放物面鏡  85 First parabolic mirror
86 第 2の放物面鏡  86 Second parabolic mirror
91 レンズ  91 lenses
92 ベノレト  92 Benoleto
93 モータ  93 Motor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面を参照して本発明の実施の形態について説明する。  Embodiments of the present invention will be described below with reference to the drawings.
(実施の形態 1)  (Embodiment 1)
図 1は、本発明の実施の形態 1によるレーザ加工装置の構成を示す模式図である。 このレーザカ卩ェ装置は、例えば図 10及び図 11に示すシールドケーブル 1における シールド導体層 4に 4方向力 レーザ光を照射することによりシールド導体層 4を切断 する装置である。前記シールドケーブル 1は例えば AWG(American Wire Gauge)30 以上のような極細同軸線であり、前記シールド導体層 4は図 10に示すように複数のシ 一ルド線 4aによって構成され、シールド線 4aの材質は AWG42番線の場合で例え ば外径約 0. 03mmの錫メツキ銅合金線である。尚、本実施の形態によるレーザカロェ 装置でカ卩ェ可能なシールド線は、錫メツキ銅合金線の他に、銀メツキ銅合金線、アル ミ箔などである。 FIG. 1 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention. This laser cable apparatus cuts the shield conductor layer 4 by irradiating the shield conductor layer 4 in the shield cable 1 shown in FIGS. It is a device to do. The shielded cable 1 is an ultra-fine coaxial wire such as AWG (American Wire Gauge) 30 or more, and the shield conductor layer 4 is composed of a plurality of shield wires 4a as shown in FIG. The material is AWG42, for example, a tin-plated copper alloy wire with an outer diameter of about 0.03mm. The shield wire that can be covered by the laser calorie apparatus according to the present embodiment is a silver-plated copper alloy wire, aluminum foil, etc. in addition to a tin-plated copper alloy wire.
[0032] 図 1のレーザ加工装置は、レーザ光 12を照射するレーザ照射機構 11と、第 1〜第 7の反射ミラー 13〜19と、第 1〜第 4のレンズ 20〜23と、ミラースライド機構(図示せ ず)とを有している。レーザ照射機構 11から照射されるレーザ光は例えば YAG基本 波パルスレーザ(波長え = 1064nm)である。また、シールドケーブル 1は、レーザ処 理装置において図示せぬ保持機構によって保持されている。また、シールドケープ ル 1はレーザ光照射時にスライドさせるケーブルスライド機構(図示せず)が設けられ ている。  The laser processing apparatus of FIG. 1 includes a laser irradiation mechanism 11 that irradiates a laser beam 12, first to seventh reflecting mirrors 13 to 19, first to fourth lenses 20 to 23, and a mirror slide. And a mechanism (not shown). The laser light emitted from the laser irradiation mechanism 11 is, for example, a YAG fundamental wave pulse laser (wavelength = 1064 nm). The shielded cable 1 is held by a holding mechanism (not shown) in the laser processing apparatus. The shield cable 1 is provided with a cable slide mechanism (not shown) that slides when the laser beam is irradiated.
[0033] レーザ照射機構 11から照射されたレーザ光 12は、第 1の反射ミラー 13によって第 1の方向 31に反射され、第 2の反射ミラー 14によって第 1の方向 31に対して 90° 程 度曲げられた第 2の方向 32に反射され、第 3の反射ミラー 15によって第 3の方向 33 に反射され、この反射されたレーザ光 12が第 1のレンズ 20を通ってシールドケープ ル 1のシールド導体層 4に照射される。この際、シールド導体層をスキャン照射するた めに、前記第 2の方向 32と平行な方向にシールドケーブル 1を前記ケーブルスライド 機構によってスライドさせる。  The laser beam 12 emitted from the laser irradiation mechanism 11 is reflected in the first direction 31 by the first reflecting mirror 13 and about 90 ° with respect to the first direction 31 by the second reflecting mirror 14. Is reflected in the second direction 32 bent by the second angle, and reflected in the third direction 33 by the third reflecting mirror 15, and the reflected laser light 12 passes through the first lens 20 and the shield lens 1 The shield conductor layer 4 is irradiated. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the second direction 32.
[0034] 第 3の反射ミラー 15は、第 2の反射ミラー 14によって反射されたレーザ光の光軸か ら外れた位置にミラースライド機構(図示せず)によってスライドできるようになって!/、る 。このミラースライド機構によって第 3の反射ミラー 15をスライドさせて前記光軸力も外 した状態で、レーザ照射機構 11から照射されたレーザ光 12は、第 1の反射ミラー 13 によって第 1の方向 31に反射され、第 2の反射ミラー 14によって第 1の方向 31に対し て 90° 程度曲げられた第 2の方向 32に反射され、第 4の反射ミラー 16によって第 4 の方向 34に反射され、この反射されたレーザ光 12が第 2のレンズ 21を通ってシール ドケーブル 1のシールド導体層 4に照射される。この際、シールド導体層をスキャン照 射するために、前記第 2の方向 32と平行な方向にシールドケーブル 1を前記ケープ ルスライド機構によってスライドさせる。 [0034] The third reflection mirror 15 can be slid by a mirror slide mechanism (not shown) to a position off the optical axis of the laser light reflected by the second reflection mirror 14! /, The In a state where the third reflecting mirror 15 is slid by the mirror sliding mechanism and the optical axis force is also removed, the laser light 12 irradiated from the laser irradiation mechanism 11 is moved in the first direction 31 by the first reflecting mirror 13. Reflected and reflected by the second reflecting mirror 14 in the second direction 32 bent by about 90 ° with respect to the first direction 31 and reflected by the fourth reflecting mirror 16 in the fourth direction 34. The reflected laser beam 12 is irradiated to the shield conductor layer 4 of the shielded cable 1 through the second lens 21. At this time, scan the shield conductor layer. In order to shoot, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the second direction 32.
[0035] 第 1の反射ミラー 13には、レーザ照射機構 11によって照射されたレーザ光 12を第 1の方向 31に対して 180° 回転させた第 5の方向 35に反射させるように、前記第 1の 反射ミラー 13の向きを変えることができる駆動機構(図示せず)が取り付けられている 。また、第 6の反射ミラー 18は、第 7の反射ミラー 19によって反射されたレーザ光の光 軸力も外れた位置にミラースライド機構(図示せず)によってスライドできるようになつ ている。前記駆動機構によって第 1の反射ミラー 13の向きを変え且つ前記ミラースラ イド機構によって第 6の反射ミラー 18をスライドさせて前記光軸力 外した状態で、レ 一ザ照射機構 11から照射されたレーザ光 12は、第 1の反射ミラー 13によって第 5の 方向 35に反射され、第 7の反射ミラー 19によって第 5の方向 35に対して 90° 程度曲 げられた第 6の方向 36に反射され、第 5の反射ミラー 17によって第 8の方向 38に反 射され、この反射されたレーザ光 12が第 3のレンズ 22を通ってシールドケーブル 1の シールド導体層 4に照射される。この際、シールド導体層をスキャン照射するために、 前記第 6の方向 36と平行な方向にシールドケーブル 1を前記ケーブルスライド機構 によってスライドさせる。 The first reflecting mirror 13 reflects the laser beam 12 irradiated by the laser irradiation mechanism 11 in a fifth direction 35 rotated by 180 ° with respect to the first direction 31. A drive mechanism (not shown) that can change the direction of the reflecting mirror 13 is attached. The sixth reflecting mirror 18 can be slid by a mirror slide mechanism (not shown) to a position where the optical axis force of the laser beam reflected by the seventh reflecting mirror 19 is also removed. The laser irradiated from the laser irradiation mechanism 11 while changing the direction of the first reflection mirror 13 by the drive mechanism and sliding the sixth reflection mirror 18 by the mirror slide mechanism to remove the optical axis force. The light 12 is reflected by the first reflecting mirror 13 in the fifth direction 35, and reflected by the seventh reflecting mirror 19 in the sixth direction 36 bent by about 90 ° with respect to the fifth direction 35. Then, the light is reflected in the eighth direction 38 by the fifth reflecting mirror 17, and the reflected laser light 12 is irradiated to the shield conductor layer 4 of the shielded cable 1 through the third lens 22. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the sixth direction 36.
[0036] 前記ミラースライド機構によって第 6の反射ミラー 18をスライドさせて前記光軸上に 戻した状態で、レーザ照射機構 11から照射されたレーザ光 12は、第 1の反射ミラー 1 3によって第 5の方向 35に反射され、第 7の反射ミラー 19によって第 5の方向 35に対 して 90° 程度曲げられた第 6の方向 36に反射され、第 6の反射ミラー 18によって第 7の方向 37に反射され、この反射されたレーザ光 12が第 4のレンズ 23を通ってシー ルドケーブル 1のシールド導体層 4に照射される。この際、シールド導体層をスキャン 照射するために、前記第 6の方向 36と平行な方向にシールドケーブル 1を前記ケー ブルスライド機構によってスライドさせる。  The laser beam 12 emitted from the laser irradiation mechanism 11 in a state where the sixth reflection mirror 18 is slid by the mirror slide mechanism and returned to the optical axis, is transmitted by the first reflection mirror 13. 5 reflected in the direction 35, reflected by the seventh reflecting mirror 19 in the sixth direction 36 bent by about 90 ° with respect to the fifth direction 35, and reflected by the sixth reflecting mirror 18 in the seventh direction. The reflected laser beam 12 is reflected by 37, and the shielded conductor layer 4 of the shielded cable 1 is irradiated through the fourth lens 23. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid in the direction parallel to the sixth direction 36 by the cable slide mechanism.
[0037] また、レーザ加工装置は図示せぬ制御部を備えており、この制御部は、第 1の反射 ミラー 13の向きを変える駆動機構、第 3の反射ミラー 15及び第 6の反射ミラー 18それ ぞれをスライドさせるミラースライド機構、レーザ照射機構 11それぞれの動作などを制 御するようになっている。 [0038] 次に、図 1のレーザ加工装置を用いてシールドケーブル 1におけるシールド導体層 を切断する方法について説明する。 [0037] The laser processing apparatus also includes a control unit (not shown). The control unit changes the direction of the first reflection mirror 13, the third reflection mirror 15, and the sixth reflection mirror 18. The mirror slide mechanism that slides each of them and the laser irradiation mechanism 11 are controlled. Next, a method for cutting the shield conductor layer in the shielded cable 1 using the laser processing apparatus of FIG. 1 will be described.
まず、図 10に示すシールドケーブル 1のジャケット 5を所定長剥ぎ取ってシールド導 体層を露出させる。この状態のシールドケーブル 1を図 1に示すレーザカ卩ェ装置の保 持機構により固定して保持する。  First, the jacket 5 of the shielded cable 1 shown in FIG. 10 is peeled off for a predetermined length to expose the shield conductor layer. The shielded cable 1 in this state is fixed and held by the holding mechanism of the laser carriage device shown in FIG.
[0039] 次いで、レーザ照射機構 11からレーザ光 12を照射し、このレーザ光 12が第 1〜第 3の反射ミラー 13〜 15それぞれによって反射され、この反射されたレーザ光 12が第 1のレンズ 20を通って第 3の方向 33からシールドケーブル 1のシールド導体層 4に照 射される。この際、シールドケーブル 1をケーブルスライド機構によってスライドさせる ことによりシールド導体層がスキャン照射される。  [0039] Next, the laser beam 12 is irradiated from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first to third reflecting mirrors 13 to 15, and the reflected laser beam 12 is reflected to the first lens. The light passes through 20 and is irradiated from the third direction 33 to the shield conductor layer 4 of the shielded cable 1. At this time, the shield conductor layer 1 is slid by the cable slide mechanism to scan the shield conductor layer.
[0040] 次いで、第 3の反射ミラー 15を、第 2の反射ミラー 14によって反射されたレーザ光 の光軸力 外れた位置にミラースライド機構によってスライドさせる。次いで、レーザ 照射機構 11力もレーザ光 12を照射し、このレーザ光 12が第 1、第 2及び第 4の反射 ミラー 13, 14, 16それぞれによって反射され、この反射されたレーザ光 12が第 2のレ ンズ 21を通って第 4の方向 34からシールド導体層に照射される。この際、シールドケ 一ブル 1をケーブルスライド機構によってスライドさせることによりシールド導体層がス キャン照射される。  Next, the third reflection mirror 15 is slid by the mirror slide mechanism to a position deviated from the optical axis force of the laser light reflected by the second reflection mirror 14. Next, the laser irradiation mechanism 11 also irradiates the laser beam 12, and this laser beam 12 is reflected by the first, second and fourth reflecting mirrors 13, 14 and 16, and the reflected laser beam 12 is reflected by the second laser beam 12. The shield conductor layer is irradiated from the fourth direction 34 through the lens 21. At this time, the shield conductor layer 1 is slid by the cable slide mechanism to irradiate the shield conductor layer.
[0041] 次いで、駆動機構によって第 1の反射ミラー 13の向きを変え、レーザ照射機構 11 力もレーザ光 12を照射し、このレーザ光 12が第 1、第 7及び第 5の反射ミラー 13, 19 , 17それぞれによって反射され、この反射されたレーザ光 12が第 3のレンズ 22を通 つて第 7の方向 37からシールド導体層 4に照射される。この際、シールドケーブル 1を ケーブルスライド機構によってスライドさせることによりシールド導体層がスキャン照射 される。  Next, the direction of the first reflecting mirror 13 is changed by the drive mechanism, and the laser irradiation mechanism 11 also irradiates the laser beam 12, which is reflected by the first, seventh and fifth reflecting mirrors 13, 19. , 17, and the reflected laser light 12 is irradiated to the shield conductor layer 4 from the seventh direction 37 through the third lens 22. At this time, the shield conductor layer is slid by the cable slide mechanism to scan the shield conductor layer.
[0042] 次いで、第 6の反射ミラー 18を、第 7の反射ミラー 19によって反射されたレーザ光 の光軸上にミラースライド機構によってスライドさせる。次いで、レーザ照射機構 11か らレーザ光 12を照射し、このレーザ光 12が第 1、第 7及び第 6の反射ミラー 13それぞ れによって反射され、この反射されたレーザ光 12が第 4のレンズ 23を通って第 8の方 向 38からシールド導体層に照射される。この際、シールドケーブル 1をケーブルスラ イド機構によってスライドさせることによりシールド導体層がスキャン照射される。 Next, the sixth reflection mirror 18 is slid by the mirror slide mechanism on the optical axis of the laser beam reflected by the seventh reflection mirror 19. Next, the laser beam 12 is irradiated from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first, seventh, and sixth reflecting mirrors 13, respectively, and the reflected laser beam 12 is reflected by the fourth laser beam 12. The shield conductor layer is irradiated through the lens 23 from the eighth direction 38. At this time, connect the shielded cable 1 to the cable The shield conductor layer is scanned and irradiated by sliding with an id mechanism.
[0043] このようにしてシールド導体層全体が完全に溶融切断され、シールド導体層が剥ぎ 取られた後のシールドケーブル 1は図 2に示すように内部絶縁体が露出されたものと なる。図 2に示すように、切断後のシールドケーブル 1の先端側は、中心導体 2が露 出され、その中心導体 2を被覆する内部絶縁体 3も露出され、内部絶縁体 3を被覆す るシールド導体層がレーザ照射位置で切断された状態となって 、る。ジャケット 5と内 部絶縁体 3との間にはシールド導体層が存在して 、る。  [0043] In this way, the shielded cable 1 after the entire shield conductor layer is completely melted and cut and the shield conductor layer is peeled off has the internal insulator exposed as shown in FIG. As shown in Fig. 2, the center conductor 2 is exposed at the distal end of the shielded cable 1 after cutting, and the inner insulator 3 covering the center conductor 2 is also exposed, and the shield covering the inner insulator 3 is exposed. The conductor layer is cut at the laser irradiation position. There is a shield conductor layer between the jacket 5 and the inner insulator 3.
[0044] 上記実施の形態 1によれば、シールド導体層に 4方向からレーザ光を照射して 、る ため、従来技術のようにレーザ光を上方と下方の 2方向からシールド導体層 4に照射 するのに比べ、レーザ光が隣り合うシールド線によって遮られてレーザ光の照射が不 十分になることを抑制することができる。その結果、シールド導体層側面においても 切断されな 、シールド線が残ることを防止でき、シールド導体層全体を完全に且つ 安定して溶融切断することができる。これと共に、 4方向からレーザ光を照射すること により、全てのシールド線が完全に切断されるような条件でレーザ光を照射しても、従 来技術のように高出力なレーザ光の照射条件にする必要がない。このため、シール ド導体層をレーザ光が貫通して内部絶縁体 3まで達することがなぐ内部絶縁体に傷 が入る部分が生じることを抑制できる。従って、内部絶縁体 3の電気的絶縁性が低下 することを防止でき、内部導体 2とシールド導体層 4との絶縁を十分に確保することが できる。  [0044] According to the first embodiment, the shield conductor layer 4 is irradiated with the laser light from the four directions. Therefore, the shield conductor layer 4 is irradiated with the laser light from the upper and lower directions as in the prior art. In comparison with this, it is possible to suppress the laser beam from being shielded by the adjacent shield line and insufficiently irradiating the laser beam. As a result, it is possible to prevent the shield wire from remaining without being cut even on the side surface of the shield conductor layer, and to completely and stably melt and cut the shield conductor layer. At the same time, by irradiating the laser beam from four directions, even if the laser beam is irradiated under the condition that all the shield wires are completely cut, the irradiation condition of the high-power laser beam is the same as the conventional technology. There is no need to For this reason, it is possible to suppress the occurrence of a scratched portion in the internal insulator where the laser light does not penetrate through the shield conductor layer and reach the internal insulator 3. Therefore, it is possible to prevent the electrical insulation property of the inner insulator 3 from being lowered, and to sufficiently secure insulation between the inner conductor 2 and the shield conductor layer 4.
[0045] また、本実施の形態では、シールド導体層にレーザ光を照射する照射方向は、図 1 に示すように隣り合わないレーザ光の光軸どうしは一直線を成すような方向となって いる。このような方向とすることにより、シールド導体層全体をより低出力のレーザ光 によって確実に溶融切断することができる。  In the present embodiment, the irradiation direction in which the shield conductor layer is irradiated with the laser light is such that the optical axes of the laser beams that are not adjacent to each other form a straight line as shown in FIG. . By adopting such a direction, the entire shield conductor layer can be reliably melted and cut with a laser beam having a lower output.
[0046] 尚、本実施の形態では、シールド導体層に 4方向からレーザ光を照射して 、るが、 これに限定されるものではなぐシールド導体層に 3方向からレーザ光を照射しても 良いし、シールド導体層に 5方向以上からレーザ光を照射しても良い。この場合、シ 一ルド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度は 180° 未満 であれば良いが、 150° 未満であることがより好ましぐより顕著な効果が得られる。 [0047] また、本実施の形態では、レーザ光をシールド導体層に対してスキャンする照射方 法 (スキャン照射)を用いている力 これに限定されるものではなぐ次のように変更し て実施することも可能である。例えば、レーザ光の径がシールド導体層の幅より大きく スキャン照射しなくてもシールド導体層を切断できる場合はスキャンせずにレーザ光 をシールド導体層に照射することも可能である。また、スキャン照射しない場合であつ て、シールド導体層を構成する金属細線力 なるシールド線を複数回のレーザ照射 で切断できるレーザ出力とし、一方向からのレーザ照射を複数回行うことも可能であ る。また、スキャン照射する場合であって、シールド導体層を構成する金属細線から なるシールド線を 1回のスキャン照射では切断できな 、が、複数回のスキャン照射で 切断できるレーザ出力とし、一方向からのレーザ照射を複数回のスキャン照射で行う ことも可能である。 In this embodiment, the shield conductor layer is irradiated with laser light from four directions. However, the present invention is not limited to this, and the shield conductor layer may be irradiated with laser light from three directions. The shield conductor layer may be irradiated with laser light from five or more directions. In this case, the angle formed by two adjacent optical axes of the laser light irradiated to the shield conductor layer may be less than 180 °, but it is more preferable that the angle is less than 150 °. Is obtained. [0047] In the present embodiment, the force using an irradiation method (scan irradiation) for scanning the shield conductor layer with laser light is not limited to this, and the following modifications are made. It is also possible to do. For example, when the shield conductor layer can be cut even if the diameter of the laser beam is larger than the width of the shield conductor layer and the scan conductor is not irradiated, it is possible to irradiate the shield conductor layer without scanning. In addition, even when scan irradiation is not performed, it is possible to perform laser irradiation from one direction multiple times by using a laser output that can be cut by multiple times of laser irradiation of the shield wire, which is a metal thin wire force that constitutes the shield conductor layer. The Also, in the case of scanning irradiation, a shield wire made of a thin metal wire that constitutes the shield conductor layer cannot be cut by a single scanning irradiation, but a laser output that can be cut by a plurality of scanning irradiations, and from one direction. It is also possible to perform multiple laser irradiations.
上記のようにシールド線を複数回のレーザ照射又は複数回のスキャン照射で切断 できるレーザ出力とした場合は、 1回のレーザ照射又は 1回のスキャン照射で切断で きるレーザ出力とした場合に比べて内部絶縁体に与えるダメージをより少なくできるレ 一ザ出力を選択しやすくなる。換言すれば、複数回のレーザ照射又は複数回のスキ ヤン照射で切断できるレーザ出力を調整する方が、 1回のレーザ照射又は 1回のスキ ヤン照射で切断できるレーザ出力を調整するより調整が容易である。従って、結果的 に内部絶縁体に与えるダメージを少なくすることができる。  The laser output that can be cut by multiple times of laser irradiation or multiple times of scan irradiation as described above, compared with the case of laser output that can be cut by one time of laser irradiation or single scan irradiation. This makes it easier to select a laser output that can reduce damage to the internal insulator. In other words, adjusting the laser output that can be cut by multiple laser irradiations or multiple scan irradiations is more effective than adjusting the laser output that can be cut by 1 laser irradiation or 1 scan irradiation. Easy. As a result, damage to the internal insulator can be reduced.
[0048] また、本実施の形態では、ケーブルスライド機構によってシールドケーブルをスライ ドさせることによりシールド導体層にレーザ光をスキャン照射して ヽるが、シールドケ 一ブルを固定した状態でレーザ光をスライドさせることによりシールド導体層にレーザ 光をスキャン照射することも可能である。  [0048] In this embodiment, the shield conductor layer is scanned and irradiated with laser light by sliding the shield cable with the cable slide mechanism. However, the laser light is slid with the shield cable fixed. It is also possible to scan and irradiate the shield conductor layer with laser light.
[0049] また、本実施の形態では、図 1に示すように 4方向力もシールド導体層にレーザ光 を照射している力 5方向以上の方向力 シールド導体層にレーザ光を照射すること も可能である。この場合は、図 1のレーザカ卩ェ装置において、第 3の反射ミラー 15と 第 4の反射ミラー 16の間に第 3の反射ミラー 15と同様のミラースライド機構付きの反 射ミラーを配置し、この反射ミラーとシールドケーブル 1との間にレンズを配置すること により前記反射ミラーによって反射させたレーザ光を、前記レンズを通してシールドケ 一ブルのシールド導体層に照射できるようにしたり、またこのような反射ミラー及びレ ンズをさらに複数配置することにより実現できる。また、図 1のレーザカ卩ェ装置におい て、第 6の反射ミラー 18と第 5の反射ミラー 17の間に第 6の反射ミラー 18と同様のミラ 一スライド機構付きの反射ミラーを配置し、この反射ミラーとシールドケーブル 1との間 にレンズを配置することにより前記反射ミラーによって反射させたレーザ光を、前記レ ンズを通してシールドケーブルのシールド導体層に照射できるようにしたり、またこの ような反射ミラー及びレンズをさらに複数配置することにより実現できる。 [0049] In the present embodiment, as shown in Fig. 1, the force that irradiates the shield conductor layer with the laser beam as well as the four-direction force can also irradiate the shield conductor layer with the laser beam. It is. In this case, a reflection mirror with a mirror slide mechanism similar to the third reflection mirror 15 is arranged between the third reflection mirror 15 and the fourth reflection mirror 16 in the laser carriage device of FIG. By arranging a lens between the reflecting mirror and the shielded cable 1, the laser beam reflected by the reflecting mirror passes through the lens and is shielded. It can be realized by irradiating one shield conductor layer or by arranging a plurality of such reflecting mirrors and lenses. In the laser carriage apparatus of FIG. 1, a reflection mirror with a mirror slide mechanism similar to that of the sixth reflection mirror 18 is arranged between the sixth reflection mirror 18 and the fifth reflection mirror 17, and this By arranging a lens between the reflection mirror and the shield cable 1, the laser light reflected by the reflection mirror can be irradiated to the shield conductor layer of the shield cable through the lens, or such a reflection mirror can be used. Further, this can be realized by arranging a plurality of lenses.
[0050] また、本実施の形態では、図 1に示すように一本のシールドケーブルのシールド導 体層を切断する場合について説明している力 これに限定されるものではなぐ複数 本のシールドケーブルそれぞれのシールド導体層を同時に切断することも可能であ る。この場合の方法を以下に説明する。 [0050] Further, in the present embodiment, as illustrated in FIG. 1, a force is described for cutting a shield conductor layer of one shielded cable. A plurality of shielded cables is not limited to this. It is also possible to cut each shield conductor layer at the same time. A method in this case will be described below.
[0051] 図 3は、実施の形態 1の変形例であって複数並べたシールドケーブルそれぞれの シールド導体層を同時に切断する方法を説明する図である。 [0051] FIG. 3 is a diagram for explaining a method for simultaneously cutting a plurality of shield conductor layers of a plurality of shielded cables, which is a modification of the first embodiment.
レーザ加工装置において複数本のシールドケーブル 1を横一列に並べて保持機構 によって保持する点以外は、実施の形態 1と同様であるので説明を省略する。  Since the laser processing apparatus is the same as Embodiment 1 except that a plurality of shielded cables 1 are arranged in a horizontal row and held by a holding mechanism, description thereof is omitted.
[0052] また、シーノレドケープノレ 1にレーザ光をスキャン照射するために、ケーブルスライド 機構によってシールドケーブルを矢印 24の方向にスライドさせても良いし、またシー ルドケーブルを固定した状態で光学系を矢印 25の方向にスライドさせても良いし、ま た光学系又はシールドケーブルを複数回往復スライドさせても良い。 [0052] Further, in order to scan and irradiate the laser beam to the scene red cape 1, the shield cable may be slid in the direction of the arrow 24 by the cable slide mechanism, or the optical system is fixed with the shield cable fixed. May be slid in the direction of arrow 25, or the optical system or shielded cable may be slid back and forth multiple times.
[0053] 上記変形例においても実施の形態 1と同様の効果を得ることができる。 [0053] Effects similar to those of the first embodiment can also be obtained in the above modification.
[0054] (実施の形態 2) (Embodiment 2)
図 4は、本発明の実施の形態 2によるレーザ加工装置の構成を示す模式図であり、 図 1と同一部分には同一符号を付す。  FIG. 4 is a schematic diagram showing the configuration of the laser processing apparatus according to Embodiment 2 of the present invention, and the same reference numerals are given to the same parts as those in FIG.
レーザ照射機構 11、第 1の反射ミラー 13、第 2の反射ミラー 14、第 7の反射ミラー 1 Laser irradiation mechanism 11, first reflecting mirror 13, second reflecting mirror 14, seventh reflecting mirror 1
9、シールドケーブルの保持機構、及びケーブルスライド機構は実施の形態 1と同様 であるので説明を省略する。 9. The shielded cable holding mechanism and the cable slide mechanism are the same as those in the first embodiment, and thus the description thereof is omitted.
[0055] 第 2の反射ミラー 14によって第 2の方向 32に反射されたレーザ光 12は、ミラースラ イドユニット 26内の反射ミラー 26aによって第 3の方向 33に反射され、この反射され たレーザ光 12が第 1の回転レンズ 27aを通ってシールドケーブル 1のシールド導体 層 4に照射される。この際、シールド導体層をスキャン照射するために、前記第 2の方 向 32と平行な方向にシールドケーブル 1を前記ケーブルスライド機構によってスライ ドさせる。 [0055] The laser beam 12 reflected in the second direction 32 by the second reflecting mirror 14 is reflected in the third direction 33 by the reflecting mirror 26a in the mirror slide unit 26, and is reflected. The laser beam 12 is irradiated to the shield conductor layer 4 of the shield cable 1 through the first rotating lens 27a. At this time, in order to scan the shield conductor layer, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the second direction 32.
[0056] ミラースライドユニット 26は、反射ミラー 26aと、この反射ミラー 26aをスライドさせるス ライド機構 (図示せず)と、反射ミラー 26aの向きを調整する回転機構 (図示せず)とを 有している。また、第 1の回転レンズ 27aには、シールドケーブル 1の周囲を矢印のよ うに回転させる回転機構(図示せず)が取り付けられている。  [0056] The mirror slide unit 26 includes a reflection mirror 26a, a slide mechanism (not shown) for sliding the reflection mirror 26a, and a rotation mechanism (not shown) for adjusting the direction of the reflection mirror 26a. ing. The first rotating lens 27a is attached with a rotating mechanism (not shown) that rotates around the shielded cable 1 as indicated by an arrow.
[0057] 第 7の反射ミラー 19によって第 6の方向 36に反射されたレーザ光 12は、ミラースラ イドユニット 28内の反射ミラー 28aによって第 7の方向 37に反射され、この反射され たレーザ光 12が第 2の回転レンズ 27bを通ってシールドケーブル 1のシールド導体 層 4に照射される。この際、シールド導体層をスキャン照射するために、前記第 6の方 向 36と平行な方向にシールドケーブル 1を前記ケーブルスライド機構によってスライ ドさせる。  The laser beam 12 reflected in the sixth direction 36 by the seventh reflecting mirror 19 is reflected in the seventh direction 37 by the reflecting mirror 28a in the mirror slide unit 28, and this reflected laser beam 12 Is irradiated to the shield conductor layer 4 of the shield cable 1 through the second rotating lens 27b. At this time, in order to scan and irradiate the shield conductor layer, the shield cable 1 is slid by the cable slide mechanism in a direction parallel to the sixth direction 36.
ミラースライドユニット 28は、反射ミラー 28aと、この反射ミラー 28aをスライドさせるス ライド機構 (図示せず)と、反射ミラー 28aの向きを調整する回転機構 (図示せず)とを 有している。また、第 2の回転レンズ 27bには、シールドケーブル 1の周囲を矢印のよ うに回転させる回転機構(図示せず)が取り付けられている。  The mirror slide unit 28 includes a reflection mirror 28a, a slide mechanism (not shown) for sliding the reflection mirror 28a, and a rotation mechanism (not shown) for adjusting the direction of the reflection mirror 28a. The second rotating lens 27b is attached with a rotating mechanism (not shown) that rotates around the shielded cable 1 as indicated by an arrow.
[0058] 次に、図 4のレーザ加工装置を用いてシールドケーブル 1におけるシールド導体層 を切断する方法について説明する。  Next, a method for cutting the shield conductor layer in the shielded cable 1 using the laser processing apparatus of FIG. 4 will be described.
まず、ジャケット 5を所定長剥ぎ取ってシールド導体層を露出させた状態のシールド ケーブル 1を図 4に示すレーザ加工装置の保持機構により固定して保持する。  First, the shield cable 1 with the jacket 5 peeled off for a predetermined length to expose the shield conductor layer is fixed and held by the holding mechanism of the laser processing apparatus shown in FIG.
[0059] 次いで、レーザ照射機構 11からレーザ光 12を照射し、このレーザ光 12が第 1、第 2 の反射ミラー 13, 14及びミラースライドユニット内の反射ミラー 26aそれぞれによって 反射され、この反射されたレーザ光 12が第 1の回転レンズ 27aを通って第 3の方向 3 3からシールドケーブル 1のシールド導体層 4に照射される。この際、反射ミラー 26a 及び第 1の回転レンズ 27aは、第 3の方向 33にレーザ光が反射されシールド導体層 に照射されるように位置合わせされて ヽる。 [0060] 次いで、ミラースライドユニット 26において反射ミラー 26aをスライドさせ、第 1の回転 レンズ 27aを回転移動させる。これにより、反射ミラー 26a及び第 1の回転レンズ 27a が第 4の方向 34にレーザ光が反射されシールド導体層に照射されるように位置合わ せされる。そして、レーザ照射機構 11からレーザ光 12を照射し、このレーザ光 12が 第 1、第 2の反射ミラー 13, 14及び反射ミラー 26aそれぞれによって反射され、この 反射されたレーザ光 12が第 1の回転レンズ 27aを通って第 4の方向 34からシールド 導体層に照射される。 Next, laser light 12 is emitted from the laser irradiation mechanism 11, and this laser light 12 is reflected by the first and second reflection mirrors 13 and 14 and the reflection mirror 26a in the mirror slide unit, and is reflected. The laser beam 12 passes through the first rotating lens 27a and is applied to the shield conductor layer 4 of the shield cable 1 from the third direction 33. At this time, the reflecting mirror 26a and the first rotating lens 27a are aligned so that the laser light is reflected in the third direction 33 and irradiated to the shield conductor layer. Next, the reflecting mirror 26a is slid in the mirror slide unit 26, and the first rotating lens 27a is rotated. As a result, the reflecting mirror 26a and the first rotating lens 27a are aligned so that the laser light is reflected in the fourth direction 34 and applied to the shield conductor layer. Then, the laser beam 12 is irradiated from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first and second reflecting mirrors 13, 14, and the reflecting mirror 26a, respectively, and the reflected laser beam 12 is reflected by the first laser beam 12. The shield conductor layer is irradiated from the fourth direction 34 through the rotating lens 27a.
[0061] 次いで、駆動機構によって第 1の反射ミラー 13の向きを変え、レーザ照射機構 11 力もレーザ光 12を照射し、このレーザ光 12が第 1、第 7の反射ミラー 13, 19及びミラ 一スライドユニット 28内の反射ミラー 28aそれぞれによって反射され、この反射された レーザ光 12が第 2の回転レンズ 27bを通って第 7の方向 37からシールドケーブル 1 のシールド導体層 4に照射される。この際、反射ミラー 28a及び第 2の回転レンズ 27b は、第 7の方向 37にレーザ光が反射されシールド導体層に照射されるように位置合 わせされている。  Next, the direction of the first reflection mirror 13 is changed by the driving mechanism, and the laser irradiation mechanism 11 also irradiates the laser beam 12, and the laser beam 12 is applied to the first and seventh reflection mirrors 13 and 19 and the mirror 1. The reflected laser beam 12 is reflected by each of the reflecting mirrors 28a in the slide unit 28, and the reflected laser light 12 is irradiated to the shield conductor layer 4 of the shield cable 1 from the seventh direction 37 through the second rotating lens 27b. At this time, the reflecting mirror 28a and the second rotating lens 27b are positioned so that the laser light is reflected in the seventh direction 37 and irradiated to the shield conductor layer.
[0062] 次いで、ミラースライドユニット 28において反射ミラー 28aをスライドさせ、第 2の回転 レンズ 27bを回転移動させる。これにより、反射ミラー 28a及び第 2の回転レンズ 27b が第 8の方向 38にレーザ光が反射されシールド導体層に照射されるように位置合わ せされる。そして、レーザ照射機構 11からレーザ光 12を照射し、このレーザ光 12が 第 1、第 7の反射ミラー 13, 19及び反射ミラー 28aそれぞれによって反射され、この 反射されたレーザ光 12が第 2の回転レンズ 27bを通って第 8の方向 38からシールド 導体層に照射される。  Next, the reflecting mirror 28a is slid in the mirror slide unit 28, and the second rotating lens 27b is rotated. As a result, the reflecting mirror 28a and the second rotating lens 27b are aligned so that the laser light is reflected in the eighth direction 38 and irradiated to the shield conductor layer. Then, the laser beam 12 is emitted from the laser irradiation mechanism 11, the laser beam 12 is reflected by the first and seventh reflecting mirrors 13, 19, and the reflecting mirror 28a, and the reflected laser beam 12 is reflected by the second laser beam 12. The shield conductor layer is irradiated from the eighth direction 38 through the rotating lens 27b.
[0063] 上記実施の形態 2においても実施の形態 1と同様の効果を得ることができる。  [0063] In the second embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態においても実施の形態 1と同様の変形例を実施することが可能 である。  Also in the present embodiment, it is possible to implement a modification similar to that in the first embodiment.
[0064] (実施の形態 3) [Embodiment 3]
図 5は、本発明の実施の形態 3によるレーザ加工装置の構成を示す模式図であり、 図 1と同一部分には同一符号を付す。  FIG. 5 is a schematic diagram showing the configuration of the laser machining apparatus according to Embodiment 3 of the present invention, and the same reference numerals are given to the same parts as those in FIG.
レーザ照射機構 11、第 2の反射ミラー 14、第 4の反射ミラー 16、第 5の反射ミラー 1 7、第 1〜第 4のレンズ 20〜23、シールドケーブルの保持機構、及びケーブルスライ ド機構は実施の形態 1と同様であるので説明を省略する。 Laser irradiation mechanism 11, second reflecting mirror 14, fourth reflecting mirror 16, fifth reflecting mirror 1 Since the first to fourth lenses 20 to 23, the shield cable holding mechanism, and the cable slide mechanism are the same as those in the first embodiment, the description thereof is omitted.
[0065] レーザ照射機構 11から照射されたレーザ光 12は、第 1のハーフミラー 43によって 第 1の方向 31に反射され、第 2の反射ミラー 14によって第 2の方向 32に反射され、 第 2のハーフミラー 45によって第 3の方向 33に反射され、この反射されたレーザ光 1 2が第 1のレンズ 20を通ってシールドケーブル 1のシールド導体層 4に照射される。  The laser beam 12 irradiated from the laser irradiation mechanism 11 is reflected in the first direction 31 by the first half mirror 43, reflected in the second direction 32 by the second reflection mirror 14, and the second The half mirror 45 reflects the laser beam 12 in the third direction 33, and the reflected laser light 12 passes through the first lens 20 and is applied to the shield conductor layer 4 of the shield cable 1.
[0066] また、第 2のハーフミラー 45をレーザ光 12の一部が透過する。これにより、透過した レーザ光 12は、第 4の反射ミラー 16によって第 4の方向 34に反射され、この反射され たレーザ光 12が第 2のレンズ 21を通ってシールドケーブル 1のシールド導体層 4に 照射される。  Further, a part of the laser beam 12 is transmitted through the second half mirror 45. As a result, the transmitted laser beam 12 is reflected by the fourth reflecting mirror 16 in the fourth direction 34, and the reflected laser beam 12 passes through the second lens 21 and the shield conductor layer 4 of the shielded cable 1. Is irradiated.
[0067] また、第 1のハーフミラー 43をレーザ光 12の一部が透過する。これにより、透過した レーザ光 12は、第 3のハーフミラー 48によって第 7の方向 37に反射され、この反射さ れたレーザ光 12が第 4のレンズ 23を通ってシールドケーブル 1のシールド導体層 4 に照射される。  Further, a part of the laser beam 12 is transmitted through the first half mirror 43. As a result, the transmitted laser beam 12 is reflected in the seventh direction 37 by the third half mirror 48, and the reflected laser beam 12 passes through the fourth lens 23 to be a shield conductor layer of the shield cable 1. 4 is irradiated.
[0068] また、第 3のハーフミラー 48をレーザ光 12の一部が透過する。これにより、透過した レーザ光 12は、第 5の反射ミラー 17によって第 8の方向 38に反射され、この反射され たレーザ光 12が第 3のレンズ 22を通ってシールドケーブル 1のシールド導体層 4に 照射される。  In addition, a part of the laser light 12 is transmitted through the third half mirror 48. As a result, the transmitted laser beam 12 is reflected in the eighth direction 38 by the fifth reflecting mirror 17, and the reflected laser beam 12 passes through the third lens 22 and the shield conductor layer 4 of the shielded cable 1. Is irradiated.
[0069] 上記実施の形態 3においても実施の形態 1と同様の効果を得ることができる。  [0069] In the third embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態においても実施の形態 1と同様の変形例を実施することが可能 である。  Also in the present embodiment, it is possible to implement a modification similar to that in the first embodiment.
[0070] (実施の形態 4) [Embodiment 4]
図 6は、本発明の実施の形態 4によるレーザ加工装置の構成を示す模式図であり、 図 1と同一部分には同一符号を付す。  FIG. 6 is a schematic diagram showing a configuration of a laser processing apparatus according to Embodiment 4 of the present invention, and the same parts as those in FIG.
レーザ照射機構 11、第 1〜第 4のレンズ 20〜23、シールドケーブルの保持機構、 及びケーブルスライド機構は実施の形態 1と同様であるので説明を省略する。  Since the laser irradiation mechanism 11, the first to fourth lenses 20 to 23, the shield cable holding mechanism, and the cable slide mechanism are the same as those in the first embodiment, the description thereof is omitted.
[0071] 図 6のレーザ加工装置は、回転駆動機構(図示せず)を備えた回転反射ミラー 51を 有している。この回転反射ミラー 51は、回転駆動機構によって反射ミラーを第 1〜第 4の向きに変えることができるようになっており、第 1〜第 4の向きに回転反射ミラー 51 を調整することによって第 1〜第 4の方向 61〜64にレーザ光を反射させることができ るようになっている。 The laser processing apparatus of FIG. 6 has a rotary reflection mirror 51 provided with a rotary drive mechanism (not shown). The rotary reflection mirror 51 is a first to a first reflection mirror that is rotated by a rotary drive mechanism. 4 can be changed, and by adjusting the rotary reflection mirror 51 in the first to fourth directions, the laser beam can be reflected in the first to fourth directions 61 to 64. It has become so.
[0072] レーザ照射機構 11から照射されたレーザ光 12は、第 1の向きに調整した回転反射 ミラー 51によって第 1の方向 61に反射され、第 1の反射ミラー 52によって第 5の方向 65に反射され、この反射されたレーザ光 12が第 1のレンズ 20を通ってシールドケー ブル 1のシールド導体層 4に照射される。  The laser beam 12 irradiated from the laser irradiation mechanism 11 is reflected in the first direction 61 by the rotary reflection mirror 51 adjusted in the first direction, and in the fifth direction 65 by the first reflection mirror 52. The reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the first lens 20.
[0073] レーザ照射機構 11から照射されたレーザ光 12は、第 2の向きに調整した回転反射 ミラー 51によって第 2の方向 62に反射され、第 2の反射ミラー 53によって第 6の方向 66に反射され、この反射されたレーザ光 12が第 2のレンズ 21を通ってシールドケー ブル 1のシールド導体層 4に照射される。  The laser beam 12 irradiated from the laser irradiation mechanism 11 is reflected in the second direction 62 by the rotary reflection mirror 51 adjusted in the second direction, and in the sixth direction 66 by the second reflection mirror 53. The reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the second lens 21.
[0074] レーザ照射機構 11から照射されたレーザ光 12は、第 3の向きに調整した回転反射 ミラー 51によって第 3の方向 63に反射され、第 3の反射ミラー 54によって第 7の方向 67に反射され、この反射されたレーザ光 12が第 3のレンズ 22を通ってシールドケー ブル 1のシールド導体層 4に照射される。  The laser beam 12 emitted from the laser irradiation mechanism 11 is reflected in the third direction 63 by the rotary reflection mirror 51 adjusted in the third direction, and in the seventh direction 67 by the third reflection mirror 54. The reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the third lens 22.
[0075] レーザ照射機構 11から照射されたレーザ光 12は、第 4の向きに調整した回転反射 ミラー 51によって第 4の方向 64に反射され、第 4の反射ミラー 55によって第 8の方向 68に反射され、この反射されたレーザ光 12が第 4のレンズ 23を通ってシールドケー ブル 1のシールド導体層 4に照射される。  The laser beam 12 emitted from the laser irradiation mechanism 11 is reflected in the fourth direction 64 by the rotary reflection mirror 51 adjusted in the fourth direction, and in the eighth direction 68 by the fourth reflection mirror 55. The reflected laser light 12 is reflected and irradiated to the shield conductor layer 4 of the shield cable 1 through the fourth lens 23.
[0076] 上記実施の形態 4においても実施の形態 1と同様の効果を得ることができる。  [0076] In the fourth embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態においても実施の形態 1と同様の変形例を実施することが可能 である。  Also in the present embodiment, it is possible to implement a modification similar to that in the first embodiment.
[0077] (実施の形態 5)  [0077] (Embodiment 5)
図 7は、本発明の実施の形態 5によるレーザ加工装置の構成を示す模式図であり、 図 1と同一部分には同一符号を付す。  FIG. 7 is a schematic diagram showing the configuration of the laser processing apparatus according to the fifth embodiment of the present invention. The same parts as those in FIG.
第 1〜第 4のレンズ 20〜23、シールドケーブルの保持機構、及びケーブルスライド 機構は実施の形態 1と同様であるので説明を省略する。  Since the first to fourth lenses 20 to 23, the shielded cable holding mechanism, and the cable sliding mechanism are the same as those in the first embodiment, description thereof is omitted.
このレーザカ卩ェ装置は、第 1〜第 4のレーザ照射機構 71〜74を有している。 [0078] 第 1〜第 4のレーザ照射機構 71それぞれ力も照射されたレーザ光は、第 1〜第 4の レンズ 20〜23それぞれを通ってシールドケーブル 1のシールド導体層 4に照射され る。 This laser carriage apparatus has first to fourth laser irradiation mechanisms 71 to 74. The first to fourth laser irradiation mechanisms 71 irradiate the respective laser beams through the first to fourth lenses 20 to 23 irradiate the shield conductor layer 4 of the shield cable 1.
[0079] 上記実施の形態 5においても実施の形態 1と同様の効果を得ることができる。  [0079] In the fifth embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態においても実施の形態 1と同様の変形例を実施することが可能 である。  Also in the present embodiment, it is possible to implement a modification similar to that in the first embodiment.
[0080] (実施の形態 6)  [0080] (Embodiment 6)
図 8は、本発明の実施の形態 6によるレーザ加工装置の構成を示す模式図であり、 図 1と同一部分には同一符号を付す。  FIG. 8 is a schematic diagram showing the configuration of the laser processing apparatus according to Embodiment 6 of the present invention, and the same reference numerals are given to the same portions as those in FIG.
シールドケーブルの保持機構、及びケーブルスライド機構は実施の形態 1と同様で あるので説明を省略する。  Since the shielded cable holding mechanism and the cable sliding mechanism are the same as those in the first embodiment, description thereof is omitted.
[0081] このレーザ加工装置は、第 1及び第 2のレーザ照射機構 81, 82と、第 1の反射ミラ 一 83と、第 2の反射ミラー 84と、第 1の放物面鏡 85と、第 2の放物面鏡 86とを有して いる。第 1の反射ミラー 83及び第 2の反射ミラー 84それぞれは、スライド機構によって レーザ光の光軸上を自在にスライドできるようになって!/、る。第 1の放物面鏡 85及び 第 2の放物面鏡 86それぞれは、第 1の反射ミラー 83及び第 2の反射ミラー 84それぞ れをスライド機構によってスライドさせて位置を変えてもシールドケーブル 1のシール ド導体層 4にレーザ光が照射されるように構成されて 、る。  This laser processing apparatus includes first and second laser irradiation mechanisms 81 and 82, a first reflection mirror 83, a second reflection mirror 84, a first parabolic mirror 85, And a second parabolic mirror 86. Each of the first reflection mirror 83 and the second reflection mirror 84 can be freely slid on the optical axis of the laser beam by a slide mechanism. The first parabolic mirror 85 and the second parabolic mirror 86 are respectively shielded cables even if the first reflecting mirror 83 and the second reflecting mirror 84 are slid by the slide mechanism and changed in position. The shield conductor layer 1 is configured to be irradiated with laser light.
[0082] 次に、図 8のレーザ加工装置を用いてシールドケーブル 1におけるシールド導体層 を切断する方法について説明する。  Next, a method of cutting the shield conductor layer in the shielded cable 1 using the laser processing apparatus of FIG. 8 will be described.
[0083] 第 1のレーザ照射機構 81からレーザ光を照射し、このレーザ光が第 1の反射ミラー 83及び第 1の放物面鏡 85によって反射され、この反射されたレーザ光がシールドケ 一ブル 1のシールド導体層 4に照射される。  [0083] Laser light is emitted from the first laser irradiation mechanism 81, the laser light is reflected by the first reflecting mirror 83 and the first parabolic mirror 85, and the reflected laser light is shielded cable. 1 shielded conductor layer 4 is irradiated.
[0084] 次いで、第 1の反射ミラー 83をスライド機構によってスライドさせた後、第 1のレーザ 照射機構 81からレーザ光を照射し、このレーザ光が第 1の反射ミラー 83及び第 1の 放物面鏡 85によって反射され、この反射されたレーザ光がシールドケーブル 1のシ 一ルド導体層 4に照射される。  Next, after the first reflection mirror 83 is slid by the slide mechanism, the first laser irradiation mechanism 81 irradiates laser light, and this laser light is emitted from the first reflection mirror 83 and the first paraboloid. Reflected by the surface mirror 85, the reflected laser light is applied to the shield conductor layer 4 of the shielded cable 1.
[0085] 次 、で、第 2のレーザ照射機構 82からレーザ光を照射し、このレーザ光が第 2の反 射ミラー 84及び第 2の放物面鏡 86によって反射され、この反射されたレーザ光がシ 一ルドケーブル 1のシールド導体層 4に照射される。 Next, laser light is emitted from the second laser irradiation mechanism 82, and this laser light is Reflected by the reflecting mirror 84 and the second parabolic mirror 86, the reflected laser light is applied to the shield conductor layer 4 of the shielded cable 1.
[0086] 次いで、第 2の反射ミラー 84をスライド機構によってスライドさせた後、第 2のレーザ 照射機構 82からレーザ光を照射し、このレーザ光が第 2の反射ミラー 84及び第 2の 放物面鏡 86によって反射され、この反射されたレーザ光がシールドケーブル 1のシ 一ルド導体層 4に照射される。 [0086] Next, after the second reflection mirror 84 is slid by the slide mechanism, the second laser irradiation mechanism 82 irradiates laser light, and this laser light is emitted from the second reflection mirror 84 and the second paraboloid. Reflected by the surface mirror 86, the reflected laser light is applied to the shield conductor layer 4 of the shielded cable 1.
[0087] 上記実施の形態 6においても実施の形態 1と同様の効果を得ることができる。 [0087] In the sixth embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態においても実施の形態 1と同様の変形例を実施することが可能 である。  Also in the present embodiment, it is possible to implement a modification similar to that in the first embodiment.
[0088] 尚、上記実施の形態 6では、第 2の放物面鏡 86を用いているが、第 2の放物面鏡 8 6に代えて第 3の反射ミラーを用いることも可能である。この場合、シールドケーブル の長手方向に対して略垂直方向である 3方向からシールド導体層にレーザ光を照射 することが可能となる。  In the sixth embodiment, the second parabolic mirror 86 is used. However, a third reflecting mirror may be used instead of the second parabolic mirror 86. . In this case, it becomes possible to irradiate the shield conductor layer with laser light from three directions that are substantially perpendicular to the longitudinal direction of the shield cable.
[0089] (実施の形態 7) [0089] (Embodiment 7)
図 9は、本発明の実施の形態 7によるレーザ加工装置の構成を示す模式図であり、 図 1と同一部分には同一符号を付す。  FIG. 9 is a schematic diagram showing the configuration of the laser processing apparatus according to the seventh embodiment of the present invention, and the same parts as those in FIG.
レーザ照射機構 11は実施の形態 1と同様であるので説明を省略する。 このレーザ加工装置は、レンズ 91と、シールドケーブル 1を回転させるモータ 93と、 このモータ 93の回転駆動力をシールドケーブル 1に伝達するベルト 92とを有してい る。  Since the laser irradiation mechanism 11 is the same as that of the first embodiment, description thereof is omitted. This laser processing apparatus includes a lens 91, a motor 93 that rotates the shield cable 1, and a belt 92 that transmits the rotational driving force of the motor 93 to the shield cable 1.
[0090] レーザ照射機構 11から照射されたレーザ光は、レンズ 91を通ってシールドケープ ル 1のシールド導体層 4に照射される。この際、モータ 93及びベルト 92によってシー ルドケーブル 1を回転させることにより、レーザ光がシールド導体層に少なくとも 3方向 力 照射される。  The laser light emitted from the laser irradiation mechanism 11 is applied to the shield conductor layer 4 of the shield cable 1 through the lens 91. At this time, by rotating the shield cable 1 by the motor 93 and the belt 92, the laser beam is applied to the shield conductor layer in at least three directions.
[0091] 上記実施の形態 7においても実施の形態 1と同様の効果を得ることができる。  [0091] In the seventh embodiment, the same effect as in the first embodiment can be obtained.
[0092] 尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内 で種々変更して実施することが可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

Claims

請求の範囲  The scope of the claims
[1] 中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを準備し 前記シールドケーブルの長手方向に対して略垂直方向である少なくとも 3方向から 前記シールド導体層にレーザ光を照射することによって前記シールド導体層を切断 するものであり、  [1] A shield cable comprising a central conductor, an internal insulator disposed so as to cover the central conductor, and a shield conductor layer disposed so as to cover the internal insulator is prepared, and the shield cable The shield conductor layer is cut by irradiating the shield conductor layer with laser light from at least three directions that are substantially perpendicular to the longitudinal direction of
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするシールド導体層の切断方法。  A method of cutting a shield conductor layer, characterized in that an angle formed by two adjacent optical axes of laser light irradiated to the shield conductor layer is less than 180 °.
[2] 請求項 1において、前記 2本の光軸が作る角度が 150° 以下であることを特徴とす るシールド導体層の切断方法。  [2] The method of cutting a shield conductor layer according to claim 1, wherein an angle formed by the two optical axes is 150 ° or less.
[3] 請求項 1又は 2において、前記シールド導体層に 4方向からレーザ光を照射するも のであって、隣り合わないレーザ光の光軸どうしは略一直線を成すように配置される ことを特徴とするシールド導体層の切断方法。  [3] In Claim 1 or 2, wherein the shield conductor layer is irradiated with laser light from four directions, and the optical axes of laser light that are not adjacent to each other are arranged so as to be substantially in a straight line. A method for cutting the shield conductor layer.
[4] 請求項 1乃至 3の 、ずれか一項にお 、て、前記シールドケーブルを準備する際、複 数本並べたシールドケーブルを準備し、前記シールド導体層にレーザ光を照射する 際、前記レーザ光又は前記シールドケーブルをスライドさせることにより前記レーザ光 をスキャン照射することを特徴とするシールド導体層の切断方法。  [4] When preparing the shielded cable according to any one of claims 1 to 3, when preparing a plurality of shielded cables and irradiating the shield conductor layer with laser light, A method for cutting a shield conductor layer, wherein the laser beam or the shielded cable is slid to scan and irradiate the laser beam.
[5] 中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、  [5] A shield cable including a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is retained, and the shield A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a longitudinal direction of a cable,
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光を第 1の方向又は第 2の方向に 反射させる第 1の反射ミラーと、  A first reflecting mirror that reflects the laser beam irradiated by the laser irradiation mechanism in a first direction or a second direction;
前記第 1の反射ミラーによって前記第 1の方向に反射された前記レーザ光を、第 3 の方向に反射させる第 2の反射ミラーと、 前記第 2の反射ミラーによって前記第 3の方向に反射された前記レーザ光を、第 4 の方向に反射させて前記シールド導体層に照射する第 3の反射ミラーと、 A second reflecting mirror for reflecting the laser beam reflected in the first direction by the first reflecting mirror in a third direction; A third reflection mirror that reflects the laser light reflected in the third direction by the second reflection mirror in a fourth direction and irradiates the shield conductor layer;
前記第 3の方向に反射された前記レーザ光の光軸から前記第 3の反射ミラーを外 すようにスライドさせるミラースライド機構と、  A mirror slide mechanism that slides so as to remove the third reflecting mirror from the optical axis of the laser beam reflected in the third direction;
前記第 3の方向に反射された前記レーザ光の光軸から前記第 3の反射ミラーを外し た状態で、前記第 2の反射ミラーによって前記第 3の方向に反射された前記レーザ光 を、第 5の方向に反射させて前記シールド導体層に照射する第 4の反射ミラーと、 前記第 1の反射ミラーによって前記第 2の方向に反射された前記レーザ光を、第 6 の方向に反射させる第 5の反射ミラーと、  The laser light reflected in the third direction by the second reflecting mirror in a state where the third reflecting mirror is removed from the optical axis of the laser light reflected in the third direction. A fourth reflecting mirror that reflects in the direction of 5 and irradiates the shield conductor layer; and a laser beam that reflects in the second direction by the first reflecting mirror reflects in the sixth direction. With 5 reflection mirrors,
前記第 5の反射ミラーによって前記第 6の方向に反射された前記レーザ光を、第 7 の方向に反射させて前記シールド導体層に照射する第 6の反射ミラーと、 を具備し、  A sixth reflecting mirror that reflects the laser light reflected in the sixth direction by the fifth reflecting mirror in a seventh direction and irradiates the shield conductor layer; and
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするレーザ加工装置。  A laser processing apparatus, wherein an angle formed by two adjacent optical axes of laser light irradiated on the shield conductor layer is less than 180 °.
中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、  A shield cable comprising a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is held, and the length of the shield cable is maintained. A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a direction;
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光を第 1の方向又は第 2の方向に 反射させる第 1の反射ミラーと、  A first reflecting mirror that reflects the laser beam irradiated by the laser irradiation mechanism in a first direction or a second direction;
前記第 1の反射ミラーによって前記第 1の方向に反射された前記レーザ光を、第 3 の方向に反射させる第 2の反射ミラーと、  A second reflecting mirror for reflecting the laser beam reflected in the first direction by the first reflecting mirror in a third direction;
前記第 2の反射ミラーによって前記第 3の方向に反射された前記レーザ光を、第 4 の方向又は第 5の方向に反射させて前記シールド導体層に照射する第 3の反射ミラ 一を備えた第 1のミラースライドユニットと、  A third reflecting mirror for reflecting the laser light reflected in the third direction by the second reflecting mirror in the fourth direction or the fifth direction and irradiating the shield conductor layer; A first mirror slide unit;
前記第 1のミラースライドユニットに設けられた前記第 3の反射ミラーをスライドさせる 第 1のスライド機構と、 Slide the third reflecting mirror provided on the first mirror slide unit A first slide mechanism;
前記第 1のミラースライドユニットに設けられた前記第 3の反射ミラーを回転させる第 1の回転機構と、  A first rotating mechanism for rotating the third reflecting mirror provided in the first mirror slide unit;
前記第 1の反射ミラーによって前記第 2の方向に反射された前記レーザ光を、第 6 の方向に反射させる第 4の反射ミラーと、  A fourth reflecting mirror for reflecting the laser beam reflected in the second direction by the first reflecting mirror in a sixth direction;
前記第 4の反射ミラーによって前記第 6の方向に反射された前記レーザ光を、第 7 の方向に反射させて前記シールド導体層に照射する第 5の反射ミラーと、 を具備し、  A fifth reflecting mirror that reflects the laser light reflected in the sixth direction by the fourth reflecting mirror in a seventh direction and irradiates the shield conductor layer; and
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 The angle formed by two adjacent optical axes of the laser light irradiated to the shield conductor layer is 180.
° 未満であることを特徴とするレーザ加工装置。 Laser processing equipment characterized by being less than °.
[7] 請求項 6において、前記第 4の方向、前記第 5の方向及び前記第 7の方向それぞ れから照射される前記レーザ光の光軸上に、それぞれ回転機構によって回転させて 配置される回転レンズをさらに具備することを特徴とするレーザ加工装置。 [7] In Claim 6, on the optical axis of the laser beam irradiated from each of the fourth direction, the fifth direction, and the seventh direction, they are respectively rotated by a rotation mechanism. The laser processing apparatus further comprising a rotating lens.
[8] 請求項 6において、前記第 5の反射ミラーに代えて第 2のミラースライドユニットが配 置されており、 [8] In Claim 6, a second mirror slide unit is arranged instead of the fifth reflecting mirror,
前記第 2のミラースライドユニットは、前記第 4の反射ミラーによって前記第 6の方向 に反射された前記レーザ光を、第 7の方向又は第 8の方向に反射させて前記シール ド導体層に照射する第 5の反射ミラーを備えており、  The second mirror slide unit irradiates the shield conductor layer by reflecting the laser beam reflected in the sixth direction by the fourth reflecting mirror in a seventh direction or an eighth direction. A fifth reflecting mirror that
前記第 2のミラースライドユニットは、前記第 5の反射ミラーをスライドさせる第 2のス ライド機構と、前記第 5の反射ミラーを回転させる第 2の回転機構とを有していることを 特徴とするレーザカ卩ェ装置。  The second mirror slide unit includes a second slide mechanism that slides the fifth reflection mirror, and a second rotation mechanism that rotates the fifth reflection mirror. Laser carriage device.
[9] 中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、 [9] A shield cable comprising a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is retained, and the shield A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a longitudinal direction of a cable,
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光の一部を第 1の方向に反射させ ると共に前記レーザ光の一部を透過させる第 1のハーフミラーと、 A part of the laser light irradiated by the laser irradiation mechanism is reflected in the first direction. And a first half mirror that transmits a part of the laser beam,
前記第 1のハーフミラーによって前記第 1の方向に反射された前記レーザ光を、第 2の方向に反射させる第 1の反射ミラーと、  A first reflecting mirror that reflects the laser light reflected in the first direction by the first half mirror in a second direction;
前記第 1の反射ミラーによって前記第 2の方向に反射された前記レーザ光の一部を 第 3の方向に反射させて前記シールド導体層に照射すると共に前記レーザ光の一部 を透過させる第 2のハーフミラーと、  A part of the laser beam reflected in the second direction by the first reflecting mirror is reflected in a third direction to irradiate the shield conductor layer, and a second part that transmits a part of the laser beam. Half mirror and
前記第 2のハーフミラーによって透過された前記レーザ光を、第 4の方向に反射さ せて前記シールド導体層に照射する第 2の反射ミラーと、  A second reflecting mirror that reflects the laser light transmitted by the second half mirror in a fourth direction and irradiates the shield conductor layer;
前記第 1のハーフミラーによって透過された前記レーザ光を、第 5の方向に反射さ せて前記シールド導体層に照射する第 3の反射ミラーと、  A third reflecting mirror that reflects the laser light transmitted by the first half mirror in a fifth direction and irradiates the shield conductor layer;
を具備し、 Comprising
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするレーザ加工装置。  A laser processing apparatus, wherein an angle formed by two adjacent optical axes of laser light irradiated on the shield conductor layer is less than 180 °.
中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、  A shield cable comprising a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is held, and the length of the shield cable is maintained. A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a direction;
レーザ光を照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating laser light;
前記レーザ照射機構によって照射されたレーザ光を第 1乃至第 3の方向に反射さ せる回転反射ミラーと、  A rotary reflection mirror that reflects the laser light emitted by the laser irradiation mechanism in first to third directions;
前記回転反射ミラーによって前記第 1の方向に反射された前記レーザ光を、第 4の 方向に反射させて前記シールド導体層に照射する第 1の反射ミラーと、  A first reflection mirror that reflects the laser light reflected in the first direction by the rotary reflection mirror in a fourth direction and irradiates the shield conductor layer;
前記回転反射ミラーによって前記第 2の方向に反射された前記レーザ光を、第 5の 方向に反射させて前記シールド導体層に照射する第 2の反射ミラーと、  A second reflecting mirror that reflects the laser light reflected in the second direction by the rotary reflecting mirror in a fifth direction and irradiates the shield conductor layer;
前記回転反射ミラーによって前記第 3の方向に反射された前記レーザ光を、第 6の 方向に反射させて前記シールド導体層に照射する第 3の反射ミラーと、  A third reflection mirror that reflects the laser light reflected in the third direction by the rotary reflection mirror in a sixth direction and irradiates the shield conductor layer;
を具備し、 前記回転反射ミラーは、該回転反射ミラーを回転させる回転機構を有し、該回転機 構によって前記回転反射ミラーの向きを調整するものであり、 Comprising The rotating reflection mirror has a rotating mechanism for rotating the rotating reflecting mirror, and adjusts the direction of the rotating reflecting mirror by the rotating mechanism;
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするレーザ加工装置。  A laser processing apparatus, wherein an angle formed by two adjacent optical axes of laser light irradiated on the shield conductor layer is less than 180 °.
[11] 中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、 [11] A shield cable comprising a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is retained, and the shield A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a longitudinal direction of a cable,
第 1のレーザ光を前記シールド導体層に照射する第 1のレーザ照射機構と、 第 2のレーザ光を前記シールド導体層に照射する第 2のレーザ照射機構と、 第 3のレーザ光を前記シールド導体層に照射する第 3のレーザ照射機構と、 を具備し、  A first laser irradiation mechanism that irradiates the shield conductor layer with a first laser beam; a second laser irradiation mechanism that irradiates the shield conductor layer with a second laser beam; and a shield that applies a third laser beam to the shield conductor layer. A third laser irradiation mechanism for irradiating the conductor layer, and
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするレーザ加工装置。  A laser processing apparatus, wherein an angle formed by two adjacent optical axes of laser light irradiated on the shield conductor layer is less than 180 °.
[12] 中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、 [12] A shield cable comprising a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is retained, and the shield A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a longitudinal direction of a cable,
第 1のレーザ光を第 1の方向に照射する第 1のレーザ照射機構と、  A first laser irradiation mechanism for irradiating the first laser beam in the first direction;
前記第 1のレーザ照射機構によって照射された第 1のレーザ光を第 2の方向に反射 させる第 1の反射ミラーと、  A first reflecting mirror that reflects the first laser beam irradiated by the first laser irradiation mechanism in a second direction;
前記第 1の反射ミラーを、前記第 1の方向に沿ってスライドさせるスライド機構と、 前記第 1の反射ミラーによって前記第 2の方向に反射された前記第 1のレーザ光を A slide mechanism that slides the first reflection mirror along the first direction; and the first laser light reflected by the first reflection mirror in the second direction.
、第 3の方向又は第 4の方向に反射させて前記シールド導体層に照射する第 1の放 物面鏡と、 A first parabolic mirror that reflects in a third direction or a fourth direction and irradiates the shield conductor layer;
第 2のレーザ光を、前記第 1の方向と平行で且つ略 180° 回転させた第 5の方向に 照射する第 2のレーザ照射機構と、 The second laser beam is parallel to the first direction and rotated in the fifth direction by approximately 180 °. A second laser irradiation mechanism for irradiating;
前記第 2のレーザ照射機構によって照射された第 2のレーザ光を第 6の方向に反射 させる第 2の反射ミラーと、  A second reflecting mirror for reflecting the second laser light irradiated by the second laser irradiation mechanism in a sixth direction;
前記第 2の反射ミラーによって前記第 6の方向に反射された前記第 2のレーザ光を 、第 7の方向に反射させて前記シールド導体層に照射する第 3の反射ミラーと、 を具備し、  A third reflection mirror that reflects the second laser light reflected in the sixth direction by the second reflection mirror in a seventh direction and irradiates the shield conductor layer; and
前記第 1の放物面鏡は、前記スライド機構によって前記第 1の反射ミラーをスライド させることにより、前記第 1のレーザ光を前記第 3の方向又は前記第 4の方向に反射 させるものであり、  The first parabolic mirror reflects the first laser beam in the third direction or the fourth direction by sliding the first reflecting mirror by the sliding mechanism. ,
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするレーザ加工装置。  A laser processing apparatus, wherein an angle formed by two adjacent optical axes of laser light irradiated on the shield conductor layer is less than 180 °.
[13] 請求項 12において、前記第 3の反射ミラーに代えて第 2の放物面鏡を具備し、前記 第 2の反射ミラーを、前記第 5の方向に沿ってスライドさせるスライド機構を有し、前記 第 2の放物面鏡は、前記スライド機構によって前記第 2の反射ミラーをスライドさせるこ とにより、前記第 2のレーザ光を前記第 7の方向又は第 8の方向に反射させるもので あることを特徴とするレーザ加工装置。  [13] In Claim 12, a second parabolic mirror is provided instead of the third reflecting mirror, and a slide mechanism is provided that slides the second reflecting mirror along the fifth direction. The second parabolic mirror reflects the second laser beam in the seventh direction or the eighth direction by sliding the second reflecting mirror by the sliding mechanism. The laser processing apparatus characterized by being.
[14] 中心導体と、該中心導体を被覆するように配置された内部絶縁体と、該内部絶縁 体を被覆するように配置されたシールド導体層とを備えたシールドケーブルを保持し 、前記シールドケーブルの長手方向に対して略垂直方向から前記シールド導体層に レーザ光を照射することによって前記シールド導体層を切断するレーザ加工装置で あって、  [14] A shield cable comprising a center conductor, an inner insulator disposed so as to cover the center conductor, and a shield conductor layer disposed so as to cover the inner insulator is retained, and the shield A laser processing apparatus for cutting the shield conductor layer by irradiating the shield conductor layer with laser light from a direction substantially perpendicular to a longitudinal direction of a cable,
レーザ光を前記シールド導体層に照射するレーザ照射機構と、  A laser irradiation mechanism for irradiating the shield conductor layer with laser light;
前記シールドケーブルを回転させる回転機構と、  A rotating mechanism for rotating the shielded cable;
を具備し、  Comprising
前記シールド導体層に照射されるレーザ光の隣り合う 2本の光軸が作る角度が 180 ° 未満であることを特徴とするレーザ加工装置。  A laser processing apparatus, wherein an angle formed by two adjacent optical axes of laser light irradiated on the shield conductor layer is less than 180 °.
PCT/JP2007/053482 2006-04-26 2007-02-26 Shield conductor layer cutting method and laser treatment device WO2007125677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006122031A JP2007290013A (en) 2006-04-26 2006-04-26 Cutting method for shielded conductor layer, and laser beam machining apparatus
JP2006-122031 2006-04-26

Publications (1)

Publication Number Publication Date
WO2007125677A1 true WO2007125677A1 (en) 2007-11-08

Family

ID=38655215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053482 WO2007125677A1 (en) 2006-04-26 2007-02-26 Shield conductor layer cutting method and laser treatment device

Country Status (5)

Country Link
JP (1) JP2007290013A (en)
KR (1) KR101026428B1 (en)
CN (1) CN101378876A (en)
TW (1) TW200802415A (en)
WO (1) WO2007125677A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302295B2 (en) 2009-05-07 2012-11-06 Hitachi Cable, Ltd. Very thin coaxial cable end processing method
JP2014121726A (en) * 2012-12-21 2014-07-03 Laser Net Kk Resin coating removal system
JP2016115893A (en) * 2014-12-18 2016-06-23 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
WO2021122488A1 (en) * 2019-12-20 2021-06-24 Valeo Equipements Electriques Moteur Electrical conductor for a rotating electrical machine wound component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270186B2 (en) * 2008-02-20 2013-08-21 株式会社フクダコーポレーション Metal workpiece processing method
JP5061962B2 (en) * 2008-03-04 2012-10-31 住友電気工業株式会社 Laser processing method and laser processing apparatus
CN101599623B (en) * 2009-04-10 2011-05-18 东莞市开泰激光科技有限公司 Laser wire stripping device
JP5203506B2 (en) * 2009-11-05 2013-06-05 日本オートマチックマシン株式会社 Method and apparatus for cutting an insulation coating of a wire with a laser beam
CN102386547B (en) * 2011-09-06 2013-05-01 湖北星业光电科技有限公司 Laser paint stripping machine
KR101379411B1 (en) * 2011-11-01 2014-04-01 주식회사 이오테크닉스 Laser cutting apparatus and laser cutting method
TW201914717A (en) 2017-09-29 2019-04-16 美商科斯莫燈飾公司 Wire and stripping method thereof, and light device
CN113001033A (en) * 2019-12-18 2021-06-22 泰科电子(上海)有限公司 Laser cutting equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843420A (en) * 1981-09-08 1983-03-14 Matsushita Electric Ind Co Ltd External optical device for laser
JPH01295609A (en) * 1988-05-24 1989-11-29 Matsushita Electric Ind Co Ltd Insulating covering film removing method and device
JPH02155412A (en) * 1988-01-25 1990-06-14 Mitsubishi Electric Corp Method and apparatus for removing an insulated covered conductor coating
JPH03106579A (en) * 1989-09-20 1991-05-07 Fujitsu Ltd Laser numbering device by galvanomirror
JPH0819139A (en) * 1994-06-27 1996-01-19 Toshiba Corp Laser machining apparatus
JPH08191518A (en) * 1995-01-10 1996-07-23 Toshiba Seiki Kk Film removal apparatus of covered wire
JP2001062581A (en) * 1999-08-31 2001-03-13 Miyota Kk Laser welding machine having micromirror array
JP2005211908A (en) * 2004-01-27 2005-08-11 Phoeton Corp Wire stripper device
JP2005251522A (en) * 2004-03-03 2005-09-15 Sumitomo Electric Ind Ltd Shielded cable and its terminal forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799713A (en) * 1993-09-28 1995-04-11 Komatsu Ltd Film peeler for wire rod
JPH1195134A (en) * 1997-09-18 1999-04-09 Amada Eng Center Co Ltd Optical branching method for solid-state laser and apparatus therefor
KR20040046421A (en) * 2002-11-27 2004-06-05 주식회사 이오테크닉스 Apparatus and method for cutting brittle material using laser
JP4134809B2 (en) * 2003-05-16 2008-08-20 日立電線株式会社 Terminal processing method for ultra-fine coaxial cable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843420A (en) * 1981-09-08 1983-03-14 Matsushita Electric Ind Co Ltd External optical device for laser
JPH02155412A (en) * 1988-01-25 1990-06-14 Mitsubishi Electric Corp Method and apparatus for removing an insulated covered conductor coating
JPH01295609A (en) * 1988-05-24 1989-11-29 Matsushita Electric Ind Co Ltd Insulating covering film removing method and device
JPH03106579A (en) * 1989-09-20 1991-05-07 Fujitsu Ltd Laser numbering device by galvanomirror
JPH0819139A (en) * 1994-06-27 1996-01-19 Toshiba Corp Laser machining apparatus
JPH08191518A (en) * 1995-01-10 1996-07-23 Toshiba Seiki Kk Film removal apparatus of covered wire
JP2001062581A (en) * 1999-08-31 2001-03-13 Miyota Kk Laser welding machine having micromirror array
JP2005211908A (en) * 2004-01-27 2005-08-11 Phoeton Corp Wire stripper device
JP2005251522A (en) * 2004-03-03 2005-09-15 Sumitomo Electric Ind Ltd Shielded cable and its terminal forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302295B2 (en) 2009-05-07 2012-11-06 Hitachi Cable, Ltd. Very thin coaxial cable end processing method
JP2014121726A (en) * 2012-12-21 2014-07-03 Laser Net Kk Resin coating removal system
JP2016115893A (en) * 2014-12-18 2016-06-23 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
WO2021122488A1 (en) * 2019-12-20 2021-06-24 Valeo Equipements Electriques Moteur Electrical conductor for a rotating electrical machine wound component
CN114830472A (en) * 2019-12-20 2022-07-29 法雷奥电机设备公司 Electrical conductor for rotating electrical machine wound components

Also Published As

Publication number Publication date
KR20080091168A (en) 2008-10-09
CN101378876A (en) 2009-03-04
KR101026428B1 (en) 2011-04-07
TW200802415A (en) 2008-01-01
JP2007290013A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
WO2007125677A1 (en) Shield conductor layer cutting method and laser treatment device
US11756707B2 (en) Communication cable including a mosaic tape
US4761535A (en) Laser wire stripper
JP6947664B2 (en) Insulation film peeling method
JP2017037800A (en) Cable harness and manufacturing method of the same
JP2015018669A (en) Coaxial cable for high frequency signal transmission
JP5212251B2 (en) Terminal processing method and terminal processing structure for extra fine coaxial line
JP4619444B2 (en) Ultrafine coaxial cable and resin composition for laser light shielding
JP4352935B2 (en) Shielded cable and terminal forming method thereof
JP2009166128A (en) Laser beam machining apparatus
JP4702224B2 (en) Shielded cable and end processing method thereof
JP2004342494A (en) Ultra-fine wire coaxial cable and terminal processing method thereof
JP2008300110A (en) Terminal processing method for coaxial cable
JP2013037840A (en) Shield cable, multicore cable, method for forming terminal of shield cable, and method for forming terminal of multicore cable
JP7294011B2 (en) Cable for signal transmission
JP2013005525A (en) Terminal processing method and terminal treatment structure of ultrafine coaxial wire
KR102635586B1 (en) Apparatus for Cutting Low Capacitance Cable Sheath
JP3371797B2 (en) Processed wire and its manufacturing method
JP2004192815A (en) Ultra-fine coaxial cable and its process of manufacture
JP5488181B2 (en) Cable harness and manufacturing method thereof
JP4045843B2 (en) Terminal processing method for ultra-fine coaxial cable
JPH11144533A (en) Shielded wire
WO2024053744A1 (en) Film removal method and film removal device
JP2010129295A (en) Method for treating terminal of ultrafine coaxial wire
CN114713994A (en) Method and device for cutting and/or stripping layers of a cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087018529

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780004572.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714914

Country of ref document: EP

Kind code of ref document: A1