JP4045843B2 - Terminal processing method for ultra-fine coaxial cable - Google Patents
Terminal processing method for ultra-fine coaxial cable Download PDFInfo
- Publication number
- JP4045843B2 JP4045843B2 JP2002114971A JP2002114971A JP4045843B2 JP 4045843 B2 JP4045843 B2 JP 4045843B2 JP 2002114971 A JP2002114971 A JP 2002114971A JP 2002114971 A JP2002114971 A JP 2002114971A JP 4045843 B2 JP4045843 B2 JP 4045843B2
- Authority
- JP
- Japan
- Prior art keywords
- jacket
- conductor
- micro
- processing method
- conductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
- Processing Of Terminals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ノート型パソコンの本体と液晶とを繋ぐ配線や医療用超音波診断装置の本体と探触子とを繋ぐケーブルに使用される極細同軸ケーブルの端末加工方法に関するものである。
【0002】
【従来の技術】
一般に、ノート型パソコンの本体と液晶とを繋ぐ配線や、医療用超音波診断装置の本体と探触子とを繋ぐケーブルとして、極細同軸ケーブルが使用されている。
【0003】
この極細同軸ケーブルは、中心導体の外周に、絶縁体、シールド導体、ジャケットが順次積層されて構成されており、上述した機器と接続する際には、中心導体とシールド導体を露出させる端末加工が施される。
【0004】
従来の極細同軸ケーブルの端末加工方法としては、図3に示すように、複数本の極細同軸ケーブルをフラットケーブル状に並べ31、ジャケットを剥離し32、シールド導体にグランドバーを接続し33、その後、グランドバーを起点に折り曲げ34、シールド導体を切断・除去する35方法が、特開平10−144145号公報にて開示されている。
【0005】
また、図4に示すように、複数本の極細同軸ケーブルをフラットケーブル状に並べ41、ジャケットを剥離し42、シールド導体にグランドバーを接続し43、その後、シールド導体の折曲角を30°以内に限定し、超音波等の振動をかけながらグランドバーを起点に折り曲げ44、シールド導体を切断・除去する45方法が、特開2001−69629号公報にて開示されている。
【0006】
また、図5に示すように、複数本の極細同軸ケーブルをフラットケーブル状に並べ51、ジャケットを剥離し52、シールド導体を一括はんだ付けし53、その中間部分にYAGレーザを照射し54、レーザ照射部を起点に折り曲げ55、シールド導体を切断・除去する56方法が、特開2000−245026号公報にて開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平10−144145号公報及び特開2001−69629号公報に記載された発明は、グランドバーを起点に折り曲げるなどの外力を極細同軸ケーブルに与えるため、中心導体にも外力がかかるという問題がある。中心導体に外力がかかると、時には断線するという不具合が生じるため、中心導体にかかる外力を極力低減する必要がある。
【0008】
また、特開2000−245026号公報に記載された発明は、一括はんだ部にYAGレーザを照射しているが、実際には、はんだが昇華するだけでシールド導体の切断には至らないことが確認されている。これはYAGレーザの波長(1064nm)の光をシールド導体(主成分:銅)が反射してしまうためである。そのため、この方法にあってもレーザ照射部を起点に外力を加えないとシールド導体を切断・除去はできない。
【0009】
そこで、本発明の目的は、中心導体に大きな外力をかけることなくシールド導体を切断・除去できる、信頼性の高い極細同軸ケーブルの端末加工方法を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、中心導体の外周に絶縁体層、銅を主成分とする金属からなる外部導体、ジャケットが順次積層された極細同軸ケーブルの端末の上記ジャケット及び外部導体を切断又は除去する端末加工方法において、複数本の極細同軸ケーブルをフラットケーブル状に並べ、それらの極細同軸ケーブルの端末のジャケットを剥離して上記外部導体を露出させ、該外部導体をはんだ付けにより一体化させた後、その外部導体の材質に対して反射率の低い、波長が600nm以下のレーザ光を上記外部導体の所望の切断位置に照射することにより該外部導体を切断又は除去する方法である。
【0011】
請求項2の発明は、中心導体の外周に絶縁体層、銅を主成分とする金属からなる外部導体、ジャケットが順次積層された極細同軸ケーブルの端末の上記ジャケット及び上記外部導体を切断又は除去する端末加工方法において、複数本の極細同軸ケーブルをフラットケーブル状に並べて保持し、上記外部導体の材質に対して反射率の低い、波長が600nm以下のレーザ光を上記外部導体の所望の切断位置に照射することにより該外部導体を切断又は除去する方法である。
【0012】
すなわち、本発明の要点は、シールド導体層を切断するために600nm以下の波長のレーザ光を適用した。
【0013】
上記請求項1の構成によれば、レーザ光が従来のYAGレーザ(波長:1064nm)に比べてシールド導体層に吸収される効率が高いため、シールド導体層を直接切り込むことが可能になる。また、レーザ照射によりシールド導体層を完全に切断できない場合においても、小さな外力で切断・除去することができる。
上記請求項2の構成によれば、端末のジャケットとシールド導体層が同時に切断・除去される。
【0014】
上記請求項1及び2の構成によれば、銅に対しては波長が600nm以下のレーザ光の吸収効率が高く、切断されやすくなる。
【0015】
【発明の実施の形態】
次に、本発明の好適一実施の形態を添付図面に基づいて詳述する。
【0016】
図1に本発明にかかる極細同軸ケーブルの端末加工方法を説明するための流れ図を示す。
【0017】
本実施の形態では、極細同軸ケーブルとして、中心導体の外周に絶縁体、シールド導体(外部導体)、ジャケットが順次積層されたものを用いる場合について説明する。
【0018】
図1に示すように、先ず、複数本の極細同軸ケーブル(コア)をフラットケーブル状に並べる11。そして、そのコアの端末部のジャケットを適宜な長さだけ剥離して、シールド導体を露出させる12。そして、各コアのシールド導体をはんだ浴に浸漬して一体化させる13。そして、シールド導体層の所望の切断位置に、このシールド導体の材質に対して反射率の低い波長のレーザ光を極細同軸ケーブルの幅方向に直線状に照射する14。最後に、レーザ光による切断位置から端末側のシールド導体を引き抜き、シールド導体の切断部分を除去する15。
【0019】
このシールド導体に照射するレーザ光としては、シールド導体の材質の主成分が銅の場合には、600nm以下の波長のレーザ光を適用すれば良く、例えばYAGレーザの第2高調波(波長:532nm)を用いる。
【0020】
すなわち、600nm以下の範囲のレーザ光は、YAGレーザ(波長:1064nm)に比べ、銅に吸収される効率が高いため、シールド導体を直接切り込むことが可能になる。また、エネルギー不足などでシールド導体を完全に切断できなかった場合においても、小さな外力で切断・除去することができる。
【0021】
次に、本発明の他の実施の形態について述べる。
【0022】
図2に他の実施の形態を説明するための流れ図を示す。
【0023】
図2に示すように、先ず、複数本の極細同軸ケーブル(コア)をフラットケーブル状に並べて保持する21。そして、コアの所望の切断位置に、内部のシールド導体の材質に対して反射率の低い波長のレーザ光を極細同軸ケーブルの幅方向に直線状に照射する22。最後に、レーザ光による切断位置から端末側のジャケットとシールド導体を引き抜き、ジャケットとシールド導体の切断部分を除去する23。
【0024】
このように構成しても、コアに照射するレーザ光としては、シールド導体の材質の主成分が銅の場合には、600nm以下の波長のレーザ光を適用すれば良く、例えばYAGレーザの第2高調波(波長:532nm)を用いる。
【0025】
これにより、ジャケット上から照射されたレーザ光は、ジャケットと共に内部の銅に効率良く吸収されるので、ジャケットとシールド導体とを同時に切断・除去することができる。
【0026】
次に、本発明と従来技術により以下に示す極細同軸ケーブルの端末を加工し、中心導体の様子を観察した。
【0027】
(実施例1)
16心の極細同軸ケーブルをフラットケーブル状に並べ、ジャケットの上からCO2 レーザを照射してレーザ照射位置から端末側のジャケットを剥離し、シールド導体を露出させ、はんだ浴に浸漬した後、YAGレーザの第2高調波(波長:532nm)を照射し、レーザ照射部を起点にケーブルを折り曲げることなく、シールド導体を切断・除去した。
【0028】
(実施例2)
16心の極細同軸ケーブルをフラットケーブル状に並べ、ジャケットの上からYAGレーザの第2高調波(波長:532nm)を照射し、レーザ照射部を起点にケーブルを折り曲げることなく、ジャケット、シールド導体を切断・除去した。
【0029】
(比較例)
16心の極細同軸ケーブルをフラットケーブル状に並べ、ジャケットの上からCO2 レーザを照射してレーザ照射位置から端末側のジャケットを剥離し、シールド導体を露出させ、はんだ浴に浸漬した後、YAGレーザ(波長:1064nm)を照射し、レーザ照射部を起点にケーブルを折り曲げることにより、シールド導体を切断・除去した。
【0030】
その結果、実施例1,2からは中心導体の断線は確認されなかったが、比較例からは中心導体の断線が確認された。
【0031】
尚、本実施の形態で使用したレーザ光は、YAGレーザの第2高調波を用いたが、これに限定されず、エキシマレーザ等の使用が考えられる。
【0032】
また、端末加工する極細同軸ケーブルのシールド導体の材質は、アルミなどの金属である場合には、その材質に応じて適宜反射率の低い波長のレーザ光を適用すれば良い。
【0033】
【発明の効果】
以上要するに本発明によれば、中心導体に大きな外力をかけることなく、外部導体を切断・除去でき、信頼性の高い極細同軸ケーブルの端末加工が可能になる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態を示す端末加工方法を説明するための流れ図である。
【図2】 本発明の他の実施の形態を示す端末加工方法を説明するための流れ図である。
【図3】 従来の端末加工方法を説明するための流れ図である。
【図4】 従来の端末加工方法を説明するための流れ図である。
【図5】 従来の端末加工方法を説明するための流れ図である。
【符号の説明】
11 コアのフラット化
12 ジャケットの剥離
13 シールド導体の一括はんだ付け
14 レーザ照射
15 外部導体の切断・除去[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a terminal processing method for a micro coaxial cable used for a wiring connecting a main body of a notebook computer and a liquid crystal or a cable connecting a main body of a medical ultrasonic diagnostic apparatus and a probe.
[0002]
[Prior art]
In general, a micro coaxial cable is used as a wiring connecting a main body of a notebook computer and a liquid crystal or a cable connecting a main body of a medical ultrasonic diagnostic apparatus and a probe.
[0003]
This micro coaxial cable is constructed by sequentially laminating an insulator, a shield conductor, and a jacket on the outer periphery of the center conductor, and when connecting to the above-described equipment, the end processing that exposes the center conductor and the shield conductor is performed. Applied.
[0004]
As shown in FIG. 3, a conventional method for processing an end of a fine coaxial cable includes arranging a plurality of fine coaxial cables 31 in a flat cable shape, peeling off a jacket 32, connecting a ground bar to a
[0005]
Further, as shown in FIG. 4, a plurality of micro coaxial cables are arranged in a flat cable shape 41, the jacket is peeled off 42, a ground bar is connected to the shield conductor 43, and then the bending angle of the shield conductor is 30 °. Japanese Patent Application Laid-Open No. 2001-69629 discloses a method of bending 44 with a ground bar as a starting point and cutting and removing a shield conductor while applying vibration such as ultrasonic waves.
[0006]
Further, as shown in FIG. 5, a plurality of micro coaxial cables are arranged in a flat cable shape 51, the jacket is peeled off 52, the shield conductor is collectively soldered 53, and a YAG laser is irradiated to the intermediate portion 54, the laser Japanese Laid-Open Patent Publication No. 2000-2445026 discloses a method of bending 55 from the irradiated portion and cutting and removing the shield conductor.
[0007]
[Problems to be solved by the invention]
However, the invention described in Japanese Patent Application Laid-Open Nos. 10-144145 and 2001-69629 gives an external force to the micro coaxial cable such as bending from the ground bar, so that the external force is also applied to the central conductor. There is. When an external force is applied to the center conductor, a problem of disconnection sometimes occurs, so it is necessary to reduce the external force applied to the center conductor as much as possible.
[0008]
In the invention described in Japanese Patent Laid-Open No. 2000-245026, the YAG laser is irradiated to the batch solder part, but it is confirmed that the shield conductor is not actually cut only by the sublimation of the solder. Has been. This is because the shield conductor (main component: copper) reflects light of the YAG laser wavelength (1064 nm). Therefore, even in this method, the shield conductor cannot be cut or removed unless an external force is applied starting from the laser irradiation portion.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable terminal processing method for an ultrafine coaxial cable that can cut and remove a shield conductor without applying a large external force to a center conductor.
[0010]
[Means for Solving the Problems]
The invention of
[0011]
A second aspect of the present invention, cutting the insulator layer on the outer periphery of the central conductor, an external conductor body copper made of metal mainly composed of, the jacket and the outer conductors of the jacket of the micro-coaxial cables, which are sequentially stacked terminal or in the terminal processing method for removing, retaining side by side a plurality of micro coaxial cable to a flat cable form, low reflectance with respect to the material of the outer conductors, the desired wavelength is the following laser beam 600nm in the outer conductor a method of cutting or removing the external conductors by irradiating the cutting position.
[0012]
That is, the gist of the present invention is that laser light having a wavelength of 600 nm or less is applied to cut the shield conductor layer.
[0013]
According to the configuration of the first aspect, since the laser beam is more efficiently absorbed by the shield conductor layer than the conventional YAG laser (wavelength: 1064 nm), the shield conductor layer can be cut directly. Even when the shield conductor layer cannot be completely cut by laser irradiation, it can be cut and removed with a small external force.
According to the configuration of the second aspect, the terminal jacket and the shield conductor layer are simultaneously cut and removed.
[0014]
According to the structure of the said
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
FIG. 1 is a flowchart for explaining a method of processing an end of a micro coaxial cable according to the present invention.
[0017]
In the present embodiment, a case will be described in which an ultrafine coaxial cable is used in which an insulator, a shield conductor (outer conductor), and a jacket are sequentially laminated on the outer periphery of a center conductor.
[0018]
As shown in FIG. 1, first, a plurality of micro coaxial cables (cores) are arranged in a flat cable shape 11. Then, the jacket at the end of the core is peeled off by an appropriate length to expose the shield conductor 12. Then, the shield conductor of each core is immersed in a solder bath and integrated 13. Then, a laser beam having a wavelength having a low reflectance with respect to the material of the shield conductor is irradiated linearly in the width direction of the micro coaxial cable 14 at a desired cutting position of the shield conductor layer. Finally, the shield conductor on the terminal side is pulled out from the cutting position by the laser beam, and the cut portion of the shield conductor is removed 15.
[0019]
As the laser light applied to the shield conductor, when the main component of the material of the shield conductor is copper, laser light having a wavelength of 600 nm or less may be applied. For example, the second harmonic of a YAG laser (wavelength: 532 nm). ) Is used.
[0020]
That is, since the laser light in the range of 600 nm or less is more efficiently absorbed by copper than the YAG laser (wavelength: 1064 nm), the shield conductor can be cut directly. Further, even when the shield conductor cannot be completely cut due to lack of energy or the like, it can be cut and removed with a small external force.
[0021]
Next, another embodiment of the present invention will be described.
[0022]
FIG. 2 is a flowchart for explaining another embodiment.
[0023]
As shown in FIG. 2, first, a plurality of micro coaxial cables (cores) are arranged and held in a flat cable shape 21. Then, a laser beam having a wavelength having a low reflectivity with respect to the material of the inner shield conductor is linearly irradiated 22 in the width direction of the micro coaxial cable at a desired cutting position of the core. Finally, the jacket and shield conductor on the terminal side are pulled out from the cutting position by the laser beam, and the cut portion of the jacket and shield conductor is removed 23.
[0024]
Even in such a configuration, when the main component of the material of the shield conductor is copper, a laser beam having a wavelength of 600 nm or less may be applied as the laser beam applied to the core. Harmonics (wavelength: 532 nm) are used.
[0025]
As a result, the laser light emitted from the jacket is efficiently absorbed by the internal copper together with the jacket, so that the jacket and the shield conductor can be cut and removed simultaneously.
[0026]
Next, the end of the micro coaxial cable shown below was processed by the present invention and the prior art, and the state of the center conductor was observed.
[0027]
Example 1
16 core micro coaxial cables are arranged in a flat cable shape, irradiated with CO 2 laser from the top of the jacket, the terminal-side jacket is peeled off from the laser irradiation position, the shield conductor is exposed, and immersed in a solder bath. The second harmonic of the laser (wavelength: 532 nm) was irradiated, and the shield conductor was cut and removed without bending the cable starting from the laser irradiation portion.
[0028]
(Example 2)
16 core micro coaxial cables are arranged in a flat cable shape, YAG laser second harmonic (wavelength: 532 nm) is irradiated from the top of the jacket, and the jacket and shield conductor are connected without bending the cable from the laser irradiation part. Cut and removed.
[0029]
(Comparative example)
16 core micro coaxial cables are arranged in a flat cable shape, irradiated with CO 2 laser from the top of the jacket, the terminal-side jacket is peeled off from the laser irradiation position, the shield conductor is exposed, and immersed in a solder bath. The shield conductor was cut and removed by irradiating a laser (wavelength: 1064 nm) and bending the cable starting from the laser irradiation portion.
[0030]
As a result, disconnection of the central conductor was not confirmed from Examples 1 and 2, but disconnection of the central conductor was confirmed from the comparative example.
[0031]
The laser beam used in this embodiment is the second harmonic of a YAG laser, but is not limited to this, and an excimer laser or the like can be used.
[0032]
Further, when the material of the shield conductor of the micro coaxial cable to be processed is a metal such as aluminum, a laser beam having a wavelength with a low reflectance may be appropriately applied depending on the material.
[0033]
【The invention's effect】
In short, according to the present invention , the outer conductor can be cut and removed without applying a large external force to the center conductor, and the end processing of the highly reliable coaxial cable can be performed.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a terminal processing method according to an embodiment of the present invention.
FIG. 2 is a flowchart for explaining a terminal processing method according to another embodiment of the present invention.
FIG. 3 is a flowchart for explaining a conventional terminal processing method.
FIG. 4 is a flowchart for explaining a conventional terminal processing method.
FIG. 5 is a flowchart for explaining a conventional terminal processing method.
[Explanation of symbols]
11 Flattening of core 12 Stripping of jacket 13 Batch soldering of shield conductor 14 Laser irradiation 15 Cutting and removal of external conductor
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002114971A JP4045843B2 (en) | 2002-04-17 | 2002-04-17 | Terminal processing method for ultra-fine coaxial cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002114971A JP4045843B2 (en) | 2002-04-17 | 2002-04-17 | Terminal processing method for ultra-fine coaxial cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003319523A JP2003319523A (en) | 2003-11-07 |
JP4045843B2 true JP4045843B2 (en) | 2008-02-13 |
Family
ID=29533629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002114971A Expired - Fee Related JP4045843B2 (en) | 2002-04-17 | 2002-04-17 | Terminal processing method for ultra-fine coaxial cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4045843B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010049106A (en) * | 2008-08-22 | 2010-03-04 | Suzuki Gakki Seisakusho:Kk | Reed processing method, harmonica, and keyboard harmonica |
-
2002
- 2002-04-17 JP JP2002114971A patent/JP4045843B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003319523A (en) | 2003-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3725722B2 (en) | Electric wire terminal processing method and electric wire processed product manufacturing method | |
US11303102B2 (en) | Removing a metal shield from electrical cable | |
KR101026428B1 (en) | Shield conductor layer cutting method and laser treatment device | |
JP2007280772A (en) | Multicore cable, multicore cable with connector, and manufacturing method thereof | |
TW200913422A (en) | Wire harness | |
TW200937775A (en) | Connection structure of coaxial cable harness | |
JP2017037800A (en) | Cable harness and manufacturing method of the same | |
JP3185208B2 (en) | Method of manufacturing a processed wire product, apparatus for manufacturing the same, and processed wire product | |
JPH10144145A (en) | Wire processed article and its manufacture | |
JP4045843B2 (en) | Terminal processing method for ultra-fine coaxial cable | |
JP4134809B2 (en) | Terminal processing method for ultra-fine coaxial cable | |
JP4281271B2 (en) | Electric wire terminal connection structure and connection method | |
JP4324136B2 (en) | Electric wire terminal processing method and electric wire processed product manufacturing method | |
JP4026439B2 (en) | Terminal connection method of micro coaxial cable assembly | |
JP2013005525A (en) | Terminal processing method and terminal treatment structure of ultrafine coaxial wire | |
KR100288813B1 (en) | Electric wire processed article and method of manufacturing the same | |
JP2002025357A (en) | Extr-fine coaxial cable, extr-fine coaxial flat cable, processed electric wire and manufacturing method of the same | |
US9543663B2 (en) | Terminal structure of coaxial cable, and connection structure of terminal of this coaxial cable | |
JP3885644B2 (en) | Super fine cable connection board and connection method | |
JP3840969B2 (en) | Multi-core cable terminal processing method and terminal-processed multi-core cable | |
JP2000277226A (en) | Manufacture of processed item for ultrathin coaxial flat cable | |
JPH11297133A (en) | Processed wire and its manufacture | |
JP2010129295A (en) | Method for treating terminal of ultrafine coaxial wire | |
JP4144855B2 (en) | Wire processed product and manufacturing method thereof | |
JP2003180012A (en) | Manufacturing method for terminal connection section of extra fine multiconductor cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070524 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131130 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |