WO2011055785A1 - Method and apparatus for cutting cable insulating film using laser beam - Google Patents

Method and apparatus for cutting cable insulating film using laser beam Download PDF

Info

Publication number
WO2011055785A1
WO2011055785A1 PCT/JP2010/069699 JP2010069699W WO2011055785A1 WO 2011055785 A1 WO2011055785 A1 WO 2011055785A1 JP 2010069699 W JP2010069699 W JP 2010069699W WO 2011055785 A1 WO2011055785 A1 WO 2011055785A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric wire
drive shaft
eccentric
laser beam
laser light
Prior art date
Application number
PCT/JP2010/069699
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 五十嵐
Original Assignee
日本オートマチックマシン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オートマチックマシン株式会社 filed Critical 日本オートマチックマシン株式会社
Priority to JP2011506514A priority Critical patent/JP5203506B2/en
Priority to CN201080002579.5A priority patent/CN102187538B/en
Publication of WO2011055785A1 publication Critical patent/WO2011055785A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1275Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat
    • H02G1/128Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat using radiant energy, e.g. a laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles

Definitions

  • the present invention relates to a method and an apparatus for cutting an insulating coating on a wire with a laser beam, and more specifically, the insulating coating on an electric wire having a radius dimension exceeding the effective range in which the insulating coating can be cut by the thermal energy of the laser beam. It relates to cutting technology.
  • the base 2 is supported by the base portion 1 and the base portion 1 is supported.
  • a laser beam generating means 4 is supported below the base portion 1 by a cylindrical support member 3 penetrating the tube.
  • the base 2 is provided with a splitter 5 and a plurality of mirrors 6, 7, and 8. After the laser light L supplied from the laser light generating means 4 is divided into two by the splitter 5, a pair of upper and lower condensing lenses 9 is provided. , 10 respectively.
  • the support means 11 that integrally supports the pair of upper and lower condenser lenses 9 and 10 is supported by a pair of upper and lower linear guides 12 and 13 provided on the base 3 so as to be reciprocally movable in the direction of arrow A.
  • the drive motor 14 fixed to the back side of the base 2 is configured to rotationally drive a drive shaft 16 having an eccentric shaft 15. And the eccentric shaft 15 is engaged with the slider of the linear guide 17 fixed to the back surface of the support means 11 so that relative rotation is possible.
  • the support means 11 reciprocates in the direction indicated by the arrow A, so that the laser light L emitted from the pair of upper and lower condenser lenses 9 and 10 toward the electric wire W is reflected by the electric wire W. Can be repeatedly reciprocated in the direction across the wire, thereby cutting the insulation coating of the wire W.
  • the laser light L emitted from the condenser lenses 9 and 10 toward the electric wire W converges on the focal point F of the condenser lenses 9 and 10 as schematically shown in FIG.
  • the effective range in which the coating can be cut by the thermal energy of the laser beam L is limited to a predetermined range in which the focal point F is sandwiched in the irradiation direction.
  • the pair of condensing lenses 9 and 10 facing each other are arranged in the transverse direction of the electric wire W (arrow A).
  • the insulation coating can be cut over the entire circumference of the electric wire W.
  • the wavelength of the carbon dioxide laser is about 10640 nanometers, whereas the wavelength of the green laser light is much shorter, about 532 nanometers. It will become narrower.
  • the insulation coating of a large-diameter wire for example, a large-diameter shielded wire, is cut with a carbon dioxide green laser beam. Is extremely difficult.
  • an object of the present invention is to eliminate the above-mentioned problems of the prior art, and to cut the insulating coating of the electric wire that can reliably cut the insulating coating of the electric wire whose radius is larger than the effective range of the laser beam by the laser beam. It is to provide a method and apparatus.
  • the device described in Patent Document 3 is a device manufactured at the request of the applicant of the present application, and is exactly the same as the device described in Patent Document 2 related to the prior application of the present applicant. It has a structure.
  • the “laser coating removal apparatus” described in Patent Document 3 is as described in the paragraphs [0003] to [0009] with reference to [FIG. 26] to [FIG. 29] in this specification. It has a structure.
  • the apparatus described in Patent Document 3 moves the beam spots of the first laser light L1 and the second laser light L2 in the left-right direction (arrow direction) with respect to the coated wire 3.
  • the beam spots (focal points) of the laser beams L1 and L2 are “moved in the circumferential direction on the outer peripheral surface of the insulating coating 5”. It is impossible. Thus, it is considered that the above description in the “international search agency opinion” is a mistake based on misunderstanding of the structure of the device described in Patent Document 3.
  • the means described in claim 1 for solving the above problem is as follows.
  • a method of cutting the insulation coating of a wire with a laser beam Supporting the condensing lens that irradiates laser light from above and below toward the insulation coating of the electric wires extending in the front-rear direction by the support means,
  • the support means is supported so as to reciprocate vertically and horizontally with respect to the base of the cutting device, While supplying the laser light generated by the laser light generating means to the condenser lens,
  • the support means is driven by the drive means provided on the base to move the support means in the vertical direction and the horizontal direction with respect to the base,
  • the operation of the driving means is controlled so that the focal point of the laser light applied to the insulating coating from the condenser lens is displaced in the vertical and horizontal directions and moves in the circumferential direction along the outer peripheral surface of the insulating coating. , It is characterized by that.
  • the conventional method of cutting the insulation coating of the electric wire with the laser beam is to simply reciprocate the laser beam irradiated in the vertical direction toward the electric wire extending in the front-rear direction in the electric wire transverse direction (left-right direction).
  • the method of cutting the insulation coating of the electric wire of the present invention with a laser beam is not only the vertical direction but also the laser beam irradiated in the vertical direction toward the electric wire extending in the front-rear direction.
  • the focal point of the laser beam is moved in the circumferential direction along the outer peripheral surface of the electric wire, in other words, the focal point of the laser beam is moved so as to draw an arc.
  • the insulation of the electric wire can always be positioned inside the effective range of the laser light that can be cut by the thermal energy. Therefore, the insulation of the electric wire having a radius dimension larger than the effective range of the laser light can be achieved.
  • the thermal energy of the laser beam can be concentrated on the coating so that the coating can be cut reliably.
  • the object to be cut by the laser beam includes not only the insulation coating of the electric wire but also the shield braid of the shielded electric wire and the central conductor.
  • the focal point of the laser beam not only moves in the circumferential direction on the outer peripheral surface of the insulating coating as described in claim 2, but also has a predetermined focus on the outer peripheral surface of the insulating coating as described in claim 3. It can be moved with a gap, or it can be moved inside the outer peripheral surface of the insulating coating, or it can be moved on the outer peripheral surface of the insulating coating at first but gradually moved inside the outer peripheral surface. That is, when the shape of the outer peripheral surface of the insulating coating is a perfect circle, the insulating coating can be cut most efficiently by moving the focal point of the laser beam so as to stroke the outer peripheral surface of the insulating coating.
  • the insulation coating may be deformed and become elliptical, so the focus of the laser beam is away from the outer peripheral surface of the insulating coating or inside the outer peripheral surface. By moving it so that it bites in, the insulating coating can be cut reliably.
  • the focal point of the laser beam is in the circumferential direction along the outer peripheral surface at both end portions in the left-right direction of the outer peripheral surface.
  • the displacement that moves forward and the displacement that moves backward in the circumferential direction can be repeated.
  • the laser beam is repeatedly applied to the left and right end portions of the outer peripheral surface of the insulation coating, in other words, the portion where the insulation coating is thickest and difficult to cut with laser light when viewed from the direction of laser light irradiation. Therefore, the insulating coating on these portions can be surely cut with a laser beam.
  • the focal point of the laser beam is not only moved so as to draw an arc along the outer peripheral surface of the insulation coating, but also moved along the outer peripheral surface of the insulation coating so as to draw a spiral around the axis of the electric wire, or a cross section.
  • an electric wire having a triangular shape, a quadrangular shape, a hexagonal shape, etc. it can be moved in accordance with the shape of the insulating coating.
  • the laser beam is irradiated from one condenser lens provided above the electric wire extending in the front-rear direction so that the focal point moves in the circumferential direction along the outer peripheral surface of the upper half of the insulating coating. Can be cut around its entire circumference by rotating the wire around its axis.
  • the insulating coating of the electric wire can be cut over the entire circumferential direction by irradiating laser light from a pair of upper and lower condenser lenses provided above and below the electric wire extending in the front-rear direction.
  • the upper and lower pair of condensing lenses are integrally supported by one support means, and the support means is driven to move in the up and down direction and the left and right direction, thereby irradiating from the upper and lower pair of condensing lenses respectively. It is preferable to move the pair of laser beams in the vertical direction and the horizontal direction while interlocking.
  • drive means for moving the focal point of the laser beam in the vertical direction and the front-rear direction for example, a pair of linear motors or a pair of ball screws provided on the base of the apparatus are used to move the support means in the vertical direction and the horizontal direction, respectively. It can be driven individually.
  • the support means is moved in conjunction with the vertical direction and the front-rear direction.
  • the focal point of the laser beam can be moved in the circumferential direction along the outer peripheral surface of the electric wire.
  • the means described in claim 5 for solving the above problem is A device that cuts the insulation of a wire with a laser beam, A pair of upper and lower condensing lenses disposed opposite to each other in the vertical direction across the electric wire, respectively irradiating laser light from the vertical direction toward the insulation coating of the electric wire extending in the front-rear direction, Laser light guiding means for guiding the laser light generated by the laser light generating means to the pair of upper and lower condenser lenses, A support means for integrally supporting the pair of upper and lower condenser lenses provided to be movable in a vertical direction and a horizontal direction with respect to a base of the device; Driving means supported by the base for driving the support means in the vertical and horizontal directions; The pair of upper and lower condenser lenses are arranged so that their focal points coincide with each other, The driving means is configured such that the focal points of the pair of upper and lower laser beams irradiated from the pair of upper and lower condensing lenses toward the insulation coating of the electric wire are displaced in the vertical direction
  • the apparatus of the present invention cuts the insulating coating of the electric wire by laser light irradiated from the upper and lower pair of condensing lenses, it can efficiently cut the insulating coating of the electric wire. it can.
  • the pair of upper and lower condensing lenses are integrally supported by the support means and arranged so that their focal points coincide with each other. Thereby, it is possible to easily execute the control for driving and displacing the support means so that the mutually coincident focal points of the upper and lower pair of condensing lenses move in the circumferential direction along the outer peripheral surface of the insulating coating of the electric wire. Can do.
  • the apparatus of this invention described in Claim 6,7,8 implement achieves the method of this invention described in Claim 2,3,4 respectively, all are supporting means to an up-down direction and right and left.
  • This can be achieved by controlling the operation of the driving means that drive in the direction.
  • the support means is moved in conjunction with the vertical direction and the front-rear direction, thereby focusing the laser beam.
  • Advancing and reversing the focal point of the laser beam in the circumferential direction can be achieved by switching between forward rotation and reverse rotation of a drive motor that rotationally drives the eccentric shaft.
  • it can be achieved by controlling a pair of linear motors or a pair of ball screws provided on the base of the apparatus in conjunction with the vertical direction and the horizontal direction, or individually controlling in the vertical direction and the horizontal direction. .
  • the upper condensing device of the electric wire insulating coating cutting apparatus when the laser beam is applied to the upper half of the insulating coating from the upper condensing lens, the upper condensing device of the electric wire insulating coating cutting apparatus according to the fifth aspect is provided.
  • the pair of upper and lower light concentrators that supply laser light to the lens and supply laser light to the lower condenser lens when irradiating the lower half of the insulating coating with laser light from the lower condenser lens
  • Laser light supply path switching means for switching the laser light supply path to the lens in conjunction with the operation of the driving means is added.
  • the laser light generation means is generated by the laser light supply path switching means.
  • the laser beam generated by the laser beam generating means is supplied to the upper condenser lens. All are supplied to the lower condenser lens.
  • the means described in claim 10 is the electric wire insulation coating cutting apparatus according to claim 5, wherein the driving means includes: A drive shaft that rotates about a rotation axis extending in the front-rear direction; An eccentric shaft that is eccentric with respect to the rotation axis by a predetermined eccentric amount and revolves around the rotation axis while engaging with the support means in a relatively rotatable manner, The amount of eccentricity is determined based on an outer diameter of the insulating coating.
  • the eccentric shaft revolves around the rotation axis of the drive shaft.
  • the support means engaged with the eccentric shaft in a relatively rotatable manner also revolves around the rotation axis of the drive shaft. Therefore, when the eccentric amount of the eccentric shaft is set to a value that is half of the outer diameter dimension of the insulation coating of the electric wire, the coincident focal points of the pair of upper and lower condenser lenses move in the circumferential direction on the outer peripheral surface of the insulation coating. Will do.
  • what is necessary is just to change the eccentric amount of an eccentric shaft according to the outer diameter dimension, when cutting the insulation coating of the other electric wire from which an outer diameter dimension differs.
  • the eccentric amount of the eccentric shaft is set to a value obtained by adding a margin value (for example, 1 millimeter) to a value that is half of the outer diameter dimension of the insulation coating of the electric wire, the focal points of the pair of upper and lower condensing lenses that coincide with each other. Will move in the circumferential direction turning around the periphery of the insulating coating with an interval equal to the margin value. Thereby, even when the insulation coating of the electric wire to be processed is crushed and deformed into an elliptical shape, the insulation coating can be reliably cut.
  • a margin value for example, 1 millimeter
  • the laser light supply path switching means when the laser light supply path switching means is operated to switch the laser light supply path to the pair of upper and lower condensing lenses, it takes some time for the switching. A slight period occurs when no laser beam is supplied. At this time, when the focal points of the pair of upper and lower condenser lenses are moved in the circumferential direction on the outer peripheral surface of the insulating coating, the laser beam is not irradiated on both sides in the electric wire transverse direction (left-right direction) of the insulating coating. There is a possibility that a part that is not cut off may occur.
  • the laser light supply path switching means can be operated aiming at a period in which the focal point is separated from the outer peripheral surface of the insulating coating in the electric wire transverse direction (left-right direction). Thereby, it can prevent reliably that the part which is not cut
  • the focal points of the pair of upper and lower condensing lenses that coincide with each other can be obtained.
  • it can be initially disposed on the outer peripheral surface of the insulating coating and can enter the inside of the insulating coating as the cutting of the insulating coating proceeds.
  • the insulating coating having a thickness larger than the effective range in which the insulating coating can be cut by the thermal energy of the laser beam can be reliably cut by the laser beam.
  • a thin insulating coating within the effective cutting range can be reliably cut.
  • FIG. 2 is an overall right side view of the apparatus shown in FIG. 1.
  • FIG. 2 is a sectional view taken along a broken line AA in FIG.
  • operation of the apparatus shown in FIG. The whole front view which shows the action
  • operation of the apparatus shown in FIG. The whole front view which shows the action
  • operation of the apparatus shown in FIG. The figure which shows the action
  • operation principle of this invention typically.
  • operation principle of this invention typically.
  • operation principle of this invention typically.
  • operation of the eccentric shaft drive mechanism shown in FIG. The figure explaining the action
  • operation of the eccentric shaft drive mechanism shown in FIG. The figure which shows the eccentric shaft drive mechanism of the cutting device of the modification of 3rd Embodiment.
  • operation of the eccentric shaft drive mechanism shown in FIG. The figure explaining the action
  • disconnect the insulation coating of the electric wire of this invention with a laser beam is described in detail.
  • the direction in which the electric wire extends is referred to as the front-rear direction
  • the vertical direction is referred to as the up-down direction
  • the direction perpendicular to both the front-rear direction and the up-down direction is referred to as the left-right direction.
  • the base 22 is supported by the base portion 21 of the apparatus, and the laser beam generating means 24 is supported below the cylindrical support member 23 that penetrates the base portion 21.
  • the base 22 is provided with mirrors 32 and 33 for guiding laser light to the upper condenser lens 31 and mirrors 35 and 36 for guiding laser light to the lower condenser lens 34.
  • Filters 37 and 38 are provided on the side of the electric wire W with respect to the upper condenser lens 31 and the lower condenser lens 34, respectively.
  • laser light supply path switching means 40 is provided in the vicinity of the cylindrical support member 22 in the base 22.
  • the switching means 40 is a retracted position where the mirror 35 does not block the laser light passing through the inside of the cylindrical support member 22 from the laser light generating means 24 and moving upward in the vertical direction, and the mirror 35 is reflected to the mirror 36.
  • the mirror 35 is moved forward and backward from the position.
  • the support member 41 that supports the mirror 35 is guided so as to reciprocate by a linear guide 42 that extends obliquely upward to the right.
  • a slider 44 is attached to an elongated connecting member 43 connected to the support member 41 and extending obliquely downward to the right through a linear guide.
  • the drive motor 45 fixed to the back side of the base 22 rotates the drive shaft 46 about a rotation axis extending in the front-rear direction.
  • the eccentric shaft 47 that is eccentric with respect to the rotational axis of the drive shaft 46 is engaged with the slider 44 via a bearing 48 (see FIG. 3) so as to be relatively rotatable.
  • the mirror 35 is in the retracted position when the eccentric shaft 47 is located on the diagonally lower left side.
  • the laser beam that passes through and moves upward in the vertical direction can be supplied to the upper condenser lens 31 via the mirrors 32 and 33.
  • the mirror 35 is in the advanced position, so the laser beam generating means 24 to the cylindrical support member 22.
  • the laser beam passing through the interior of the lens and traveling upward in the vertical direction can be supplied to the lower condenser lens 34 via the mirrors 35 and 36.
  • the mirror 35 has a predetermined width, and its flat reflecting surface extends obliquely upward to the right at an angle of 45 degrees, and further extends linearly by a linear guide 42 extending at an angle of 45 degrees to the upper right.
  • the laser beam can be guided toward the mirror 36 even at a position where the advance position shown in FIGS. 6 to 8 is not completely reached.
  • a substantially inverted U-shaped support means 50 that supports the pair of upper and lower condenser lenses 31 and 34 integrally is supported on the base 22 by a pair of upper and lower linear guides 51 and 52, and the base 22 Can move in parallel without tilting in the vertical and horizontal directions.
  • the drive motor 53 fixed to the back side of the base 33 rotates the drive shaft 54 around a rotation axis extending in the front-rear direction.
  • An eccentric shaft 55 that is eccentric with a predetermined eccentric amount D with respect to the rotation axis C of the drive shaft 54 is provided with a bearing 57 (see FIG. 2) on an engaging portion 56 that protrudes on the back side of the support means 50. (See FIG. 4), and are engaged so as to be relatively rotatable.
  • the value of the eccentric amount D of the eccentric shaft 55 is set to a value equal to, for example, the radial dimension on the basis of the radial dimension of the insulation coating of the electric wire W.
  • the upper condenser lens 31 is connected to the electric wire W from the upper condenser lens 31 when the eccentric shaft 55 is at a position on the left side in the horizontal direction with respect to the rotation axis C of the drive shaft 54 as shown in FIG.
  • the focus F1 of the laser light L1 irradiated on the support means 50 is positioned so as to come to a position W1 on the left side in the horizontal direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W.
  • the focal point F1 comes to a position W3 on the right side in the horizontal direction with respect to the center W0 of the electric wire W in the outer peripheral surface of the electric wire W.
  • the lower condenser lens 34 is arranged so that when the eccentric shaft 55 is at a position on the right side in the horizontal direction with respect to the rotation axis C of the drive shaft 54, the lower condenser lens 34
  • the focal point F2 of the laser beam L2 applied to the electric wire W is positioned on the support means 50 so as to come to a position W3 on the right side in the horizontal direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W.
  • the pair of upper and lower condenser lenses 31 and 34 are fixed on the support means 50 so that their focal points F1 and F2 coincide.
  • the support means 50 shown in FIGS. 5 and 6 are in the same position.
  • the focal point F1 of the upper condenser lens 31 and the focal point F2 of the lower condenser lens 34 are both positioned at a position W3 on the right side in the horizontal direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W.
  • the drive shaft 54 having the eccentric shaft 55 having the eccentric amount D equal to the radial dimension of the electric wire W is selected and attached to the drive motor 53.
  • the eccentric shaft 55 is at a position on the left side in the horizontal direction with respect to the rotation axis C of the drive shaft 54, the laser light L ⁇ b> 1 irradiated to the electric wire W from the upper condenser lens 31.
  • the electric wire W is positioned with respect to the support means 50 so that the focal point F1 is positioned at the position W1 on the left side in the horizontal direction with respect to the center W0 of the electric wire W in the outer peripheral surface of the electric wire W.
  • the drive shaft 54 is rotated in the clockwise direction in the drawing, and the eccentric shaft 55 is revolved around the rotation axis C of the drive shaft 54 in the order of C1, C2, and C3. .
  • the drive motor 45 of the laser beam supply path switching means 40 is operated to move the mirror 35 to the retracted position.
  • all of the laser light L generated by the laser light generation means 24 is supplied to the upper condenser lens 31. Therefore, as shown in FIGS. 1, 4, and 5, the laser light L ⁇ b> 1 irradiated from the upper condenser lens 31 toward the electric wire W cuts the upper half of the insulating coating of the electric wire W.
  • the drive shaft 54 is rotated in the clockwise direction in the drawing, and the eccentric shaft 55 is revolved around the rotation axis C of the drive shaft 54 in the order of C3, C4, and C1. .
  • the laser beam L2 irradiated toward the electric wire W from the lower condenser lens 34 cuts the lower half of the insulating coating of the electric wire W.
  • the insulating coating of the electric wire W can be reliably cut over the entire circumference by the laser beams L1 and L2 irradiated from the condenser lenses 31 and 34.
  • the method and apparatus for cutting the insulation coating of the electric wire of this embodiment with a laser beam is applied to the electric wire W extending in the front-rear direction (direction perpendicular to the paper surface shown in the figure), as schematically shown in FIG.
  • the laser beam focal point F moves in the circumferential direction along the outer peripheral surface of the electric wire by reciprocally displacing the laser beam irradiated in the vertical direction toward the vertical direction as well as the electric wire transverse direction (left and right direction).
  • the focal point of the laser beam is moved in order from (1) to (5) so as to draw an arc.
  • the insulating coating of the electric wire W can always be located inside the effective range in which the insulating coating can be cut by the thermal energy of the laser beam L, the radius dimension is larger than the effective range of the laser beam L.
  • the thermal energy of the laser beam L can be concentrated and reliably cut into the insulation coating of the electric wire W, in other words, the insulation coating thicker than the effective range of the laser beam L.
  • the method and apparatus for cutting the electric wire insulation coating of the first embodiment with a laser beam are shown in FIG. 10 and FIG. Since the pair of upper and lower laser beams L1 and L2 are irradiated from 34, the insulating coating can be reliably cut without rotating the electric wire W.
  • the pair of upper and lower condenser lenses 31 and 34 are integrally supported by the support means 50, and the support means 50 is driven by the eccentric shaft 55 that revolves around the rotation axis C extending in the front-rear direction of the drive shaft 54. Since the focal points F of the pair of upper and lower condenser lenses 31 and 34 coincide with each other in the circumferential direction along the outer peripheral surface of the insulating coating of the electric wire W, the pair of upper and lower pairs are vertically moved. The condensing lenses 31 and 34 can be reliably driven.
  • the focal points F of the pair of upper and lower condenser lenses 31 and 34 that coincide with each other can be moved in the circumferential direction along the outer peripheral surface of the insulating coating of the electric wire W.
  • the cutting apparatus 100 moves the upper condenser lens 31 to (1) to (5) while moving the laser beam to the upper half of the insulation coating of the electric wire W.
  • the laser light supply path switching means 40 supplies all of the laser light generated by the laser light generation means 24 to the upper condenser lens 31.
  • the lower light collecting lens 34 is moved from (6) to (10) and the lower half of the insulation coating of the electric wire W is irradiated with the laser light L2, the laser light is emitted.
  • the supply path switching means 40 supplies all of the laser light generated by the laser light generation means 24 to the lower condenser lens 34.
  • the laser beam generated by the laser beam generating means 24 is used by 100 percent. Since the insulating coating can be cut, the laser light generating means can be replaced with one having about half of its capability, leading to a significant cost reduction.
  • the laser light supply path switching means 40 when the laser light supply path switching means 40 is operated to switch the laser light supply paths to the pair of upper and lower condenser lenses 31, 34, it takes some time for the switching, and the pair of upper and lower condenser lenses. A slight period in which the laser beams L1 and L2 are not irradiated from 31 and 34 toward the insulating coating of the electric wire W occurs.
  • the focal points F1 and F2 of the pair of upper and lower condenser lenses 31 and 34 have a predetermined distance from the outer peripheral surface of the insulating coating.
  • the focal points F1 and F2 of the pair of upper and lower condenser lenses 31 and 34 are separated from the outer peripheral surface of the insulation coating of the electric wire W in the electric wire transverse direction (left and right direction).
  • the laser light supply path switching means 40 can be switched for the period of time.
  • the switching of the switching means 40 is completed.
  • the laser beam supply path switching unit 40 Allow the switch to complete.
  • the focal point F1 of the laser beam L1 moves from the point P2 on the circular orbit W1 to the point P3, that is, while the laser beam L1 crosses the electric wire W from the left to the right side, and the focal point F2 of the laser beam L2 is a circle.
  • the laser beams L1 and L2 are reliably irradiated from the upper and lower condenser lenses 31 and 34. Therefore, the side part of the left-right direction among the insulation coating of the electric wire W can be cut
  • the focal points F1 and F2 of the laser beams L1 and L2 in the above-described embodiment only move in the clockwise direction along the outer peripheral surface of the insulating coating, and do not move in the counterclockwise direction.
  • the portions of the left and right end portions W1 and W3 of the outer peripheral surface are laser light L1.
  • L2 end points W1, W3 in the left-right direction of the electric wire W by alternately repeating clockwise movement and counterclockwise movement (forward and backward in the circumferential direction) when the focal points F1, F2 pass through.
  • This insulation coating can be more reliably cut by the laser beams L1 and L2.
  • FIG. 13 decomposes the horizontal and vertical displacements of the focal points F1 and F2 when the focal points F1 and F2 of the laser beams L1 and L2 are displaced in conjunction with the horizontal and vertical directions. It is shown.
  • the focal point F1 of the laser beam L1 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h1 and simultaneously reciprocates in the vertical direction as indicated by v1.
  • the focal point F1 moves from the left end W1 of the electric wire W through the upper end W2 to the right end W3, it moves continuously in the clockwise direction as indicated by h2 / v2.
  • the focal point F1 reaches the right end W3 of the electric wire W, it reciprocates in the left-right direction as indicated by h3, and at the same time, reciprocates in the vertical direction as indicated by v3.
  • the focal point F2 of the laser beam L2 reciprocates in the left-right direction as indicated by h3 at the right end W3 of the electric wire W, and simultaneously reciprocates in the vertical direction as indicated by v3.
  • the focal point F2 moves from the right end W3 of the electric wire W through the lower end W4 to the left end W1, the focus F2 continues in the clockwise direction as indicated by h4 / v4. It moves and does not displace counterclockwise.
  • the focal point F2 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h5, and at the same time, reciprocates in the vertical direction as indicated by v5.
  • the focal points F1 and F2 of the laser beams L1 and L2 repeatedly apply thermal energy to the insulating coating at the left end W1 and the right end W3 of the electric wire W. Can be cut even more reliably.
  • the repetition of such a clockwise / counterclockwise displacement of the focal points F1 and F2 is performed by controlling the operation of the drive motor 45 of the cutting device 100 described above to repeatedly rotate in the forward / reverse direction. Can be achieved.
  • the magnitude of the displacement of the focal points F1 and F2 in the clockwise / counterclockwise direction is such that the drive shaft of the drive motor 45 is in accordance with the thickness of the insulation coating of the wire W and the effective range of the laser beams L1 and L2. It can be changed by adjusting the angular range of repeated rotation in the rolling direction / reversing direction.
  • the focal point F2 of the laser beam L2 is reciprocated in the left-right direction as indicated by h3 at the right end W3 of the electric wire W, but is not displaced in the vertical direction as indicated by v3.
  • the focal point F2 moves from the right end W3 of the electric wire W through the lower end W4 to the left end W1, the focus F2 continues in the clockwise direction as indicated by h4 / v4. It moves and does not displace counterclockwise.
  • the focal point F2 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h5, but does not move in the vertical direction as indicated by v5.
  • the focal points F1 and F2 of the laser beam L1 repeatedly apply thermal energy to the insulating coating at the left end W1 and the right end W3 of the electric wire W.
  • the insulating coating can be cut more reliably.
  • the clockwise and counterclockwise displacements of the focal points F1 and F2 of the laser light L1 are achieved by driving the base 23 using a linear motor or a ball screw, unlike the cutting device 100 described above. can do.
  • the focal points F1 and F2 of the laser beams L1 and L2 are repeatedly displaced in the vertical direction and the horizontal direction at the left end W1 and the right end W3 of the electric wire W. This is particularly useful when the focal points F1 and F2 of the laser beams L1 and L2 are displaced in the circumferential direction on a circular orbit W1 having a predetermined interval with respect to the outer peripheral surface of the insulation coating of the electric wire W. More specifically, as shown in FIG. 12 (a), when the focal point F1 of the laser beam L1 reaches the left and right ends P1 and P4 on the circular orbit W1, the focal point F1 is the outer periphery of the electric wire W. It should be at a predetermined distance from the surface.
  • the focal point F1 of the laser light L1 is unexpectedly separated from the outer peripheral surface of the electric wire W, and there is a possibility that the insulating coating cannot be reliably cut.
  • the focal point F1 of the laser beam L1 is repeatedly displaced in the up / down direction and the left / right direction, the focal point F1 of the laser beam L1 can be reliably irradiated to the insulating coating located at a distance.
  • the focal points F1 and F2 of the laser beams L1 and L2 are displaced in the circumferential direction on the circular orbit W1 having a predetermined interval with respect to the outer peripheral surface of the insulating coating of the electric wire W, the insulating coating of the electric wire W Can be cut reliably.
  • each embodiment of a cutting apparatus provided with an eccentricity variable mechanism that changes the eccentricity of the eccentric shaft during rotation of the drive shaft will be described. That is, by changing the amount of eccentricity of the eccentric shaft using the eccentricity variable mechanism, it is possible to cut even when the thickness of the wire jacket is thicker than the effective range of the laser beam (see FIG. 29).
  • the cutting device 200 of the second embodiment shown in FIGS. 15 to 17 includes a drive motor 53, a drive shaft 54, and an eccentric shaft 55 (see FIG. 2) in the cutting device 100 of the first embodiment described above.
  • the portion is replaced with a variable eccentricity mechanism 60.
  • the drive motor 61 shown in FIG. 15 corresponds to the drive motor 53
  • the eccentric shaft 65 corresponds to the eccentric shaft 55.
  • a holding member 63 is fitted on the drive shaft 62 of the drive motor 61 so as to rotate integrally.
  • the holding member 63 is a thick bottomed cylindrical member, and a long groove 63a extending in the radial direction with respect to the rotation axis C is recessed at the tip.
  • a pair of concave grooves 63b and 63c extending in the front-rear direction (left-right direction in the drawing sheet) along the rotation axis C while being opposed to the diameter direction are provided in the outer peripheral surface of the holding member 63.
  • a prismatic slide member 64 is fitted in the long groove 63a at the tip of the holding member so as to be slidable in the radial direction, and rotates integrally with the drive shaft 62.
  • an eccentric shaft 65 is erected at the end of the slide member 64. Thereby, the eccentric shaft 65 can be displaced in the radial direction while revolving around the rotation axis C as the drive shaft 62 rotates.
  • a thin-walled cylindrical member 66 with a bottom is attached to the holding member 63 so as to be relatively rotatable in the circumferential direction.
  • first cam grooves 66b and 66c extending spirally around the rotation axis C are respectively cut.
  • a second cam groove 66e extending in a curved manner is formed in the bottom surface portion 66d of the cylindrical member 66 to receive the eccentric shaft 65.
  • the cylindrical member 66 engages with a pin (not shown) projecting from the outer peripheral surface of the holding member 63 and can rotate relative to the holding member 63 in the circumferential direction, but in the axial direction. The relative change is impossible.
  • the engaging pins 72 a and 72 b enter the first cam grooves 66 b and 66 c, respectively, and the tips thereof enter the concave grooves 63 b and 63 c of the holding member 63.
  • the annular member 71 rotates integrally with the holding member 63 and the cylindrical member 66 in accordance with the operation of the drive motor 61.
  • a second annular member 74 is externally fitted to a pair of front and rear axial bearings 73 a and 73 b that are coaxially disposed on the outer periphery of the annular member 72.
  • the support member 75 provided at one end in the diameter direction of the second annular member 74 is guided in parallel with the rotational axis C by the linear guide 76.
  • a ball screw 78 is screwed into a support member 77 provided at the other end in the diameter direction of the second annular member 74. Accordingly, when the ball screw 78 is rotationally driven in both forward and reverse directions by the drive motor 79, the second annular member 74, and thus the first annular member 71, is displaced in the front-rear direction along the rotation axis C.
  • the drive motor 79 is operated while the drive shaft 62 is rotating, so that the relative rotation position of the cylindrical member 66 with respect to the holding member 63, and therefore the rotation.
  • the amount of eccentricity of the eccentric shaft 65 with respect to the axis C can be changed.
  • the focal points F1 and F2 of the pair of upper and lower condensing lenses 31 and 34 that are coincident with each other are initially disposed on the surface of the insulating coating, for example, and the inside of the insulating coating progresses as the cutting of the insulating coating proceeds. Can get in. Therefore, it is possible to reliably cut the insulating coating having a thickness larger than the effective range in which the insulating coating can be cut by the thermal energy of the laser beams L1 and L2 by the laser beams L1 and L2.
  • the cutting apparatus 300 according to the third embodiment is obtained by changing the eccentricity variable mechanism 60 in the cutting apparatus 200 according to the second embodiment described above, but the same parts are denoted by the same reference numerals and are duplicated. Description is omitted.
  • an internal gear 82 is formed in the vicinity of the tip of the inner peripheral surface of the cylindrical member 81. Further, a spur gear 84 is pivotally supported by a rotation shaft 83 extending in parallel to the tip end of the holding member 63 while being eccentric with respect to the rotation axis C, and meshed with the internal gear 82. An eccentric shaft 85 is erected near the outer periphery of the spur gear 84.
  • the drive motor 79 is operated while the drive shaft 62 is rotating, whereby the relative rotation position of the cylindrical member 81 with respect to the holding member 63, and therefore the rotation.
  • the amount of eccentricity of the eccentric shaft 85 with respect to the axis C can be changed.
  • the pulley 88 is rotationally driven by the drive shaft 87 of the second drive motor 86 provided in parallel with the drive motor 61.
  • a timing belt 89 is wound between the pulley 88 and the tubular member 81, and the tubular member 81 can be driven to rotate by the second drive motor 86.
  • the drive motor 61 and the second drive motor 86 are interlocked to synchronize the rotation of the holding member 63 and the cylindrical member 81, the spur gear 84 does not rotate around the rotation shaft 83 and rotates. Therefore, the eccentric shaft 85 can be revolved around the rotation axis C while the eccentric amount of the eccentric shaft 85 is fixed.
  • the spur gear 84 revolves around the rotation axis C while rotating around the rotation shaft 83, and therefore the eccentric shaft 85.
  • the amount of eccentricity can be changed.
  • the eccentric amount of the eccentric shaft 85 can be fixed to a desired value by synchronizing the rotation of the holding member 63 and the cylindrical member 81 again. .
  • the eccentric amount of the eccentric shaft 85 changes continuously. Then, the focal points F1 and F2 of the laser beams L1 and L2 applied to the insulating coating from the pair of upper and lower condenser lenses 31 and 34 move into the insulating coating from the outside of the insulating coating, and are insulated from the inside of the insulating coating. It moves in the circumferential direction along the surface of the insulating coating while alternately repeating the movement coming out of the coating. Thereby, even when the insulation coating of the electric wire W is deformed or when the positioning of the electric wire W is displaced, the insulating coating can be reliably cut by the laser beams L1 and L2.
  • the eccentric amount of the eccentric shaft 85 is fixed.
  • the eccentric shaft 85 can be revolved around the rotation axis C.
  • the second drive motor 86 is operated to rotationally drive the cylindrical member 81, or the rotation of the cylindrical member 81 is braked to hold the cylindrical member 81 against the frictional force of the friction element.
  • the amount of eccentricity of the eccentric shaft 85 can also be changed by forcibly making a relative rotation.
  • the cutting device 400 according to the fourth embodiment is obtained by changing the eccentric amount variable mechanism 60 in the cutting device 200 according to the first embodiment described above, and the same parts are denoted by the same reference numerals and duplicated description. Is omitted.
  • a second cam 92 is formed in the vicinity of the tip of the inner peripheral surface of the cylindrical member 91.
  • the second cam 92 is formed as a cylindrical inner peripheral surface having an axis extending in parallel to the rotation axis C while being eccentric by a predetermined amount.
  • a concave groove 63 d extending in the radial direction (in a direction perpendicular to the paper surface shown in the drawing) with respect to the rotation axis C is provided in the distal end surface of the holding member 63.
  • a prismatic protrusion 93a connected to the disk-shaped intermediate member 93 is slidably fitted in the concave groove 63d.
  • a concave groove 93b extending in a direction orthogonal to the direction in which the protrusion 93a extends is formed in the intermediate member 93 on the side opposite to the protrusion 93a.
  • a slide member 94 is slidably fitted in the concave groove 93b.
  • An eccentric shaft 95 is provided upright at the end of the slide member 94.
  • the intermediate member 93 acts as an Oldham coupling interposed between the holding member 63 and the slide member 94, and extends in the radial direction with respect to the rotation axis C while being orthogonal to each other. Then, the slide member 94 can be displaced relative to the holding member 63 in two directions, a direction perpendicular to the paper surface shown in FIG. 21 and a vertical direction on the paper surface shown in the drawing.
  • the cylindrical member 91 is further rotated 90 degrees counterclockwise as indicated by the arrow A with respect to the holding member 63. Accordingly, the second cam 92 formed on the cylindrical member 91 further displaces the slide member 94 in the two directions described above, and the eccentric amount of the eccentric shaft 95 becomes D3 ( ⁇ D2).
  • the drive motor 79 is operated while the drive shaft 62 is rotating, so that the relative rotation position of the cylindrical member 91 with respect to the holding member 63, and therefore the rotation.
  • the amount of eccentricity of the eccentric shaft 95 with respect to the axis C can be changed.
  • the second cam 92 which is a cylindrical member is externally fitted to the slide member 94, the slide member 94 does not have radial play. Thereby, the upper and lower pair of condensing lenses 31 and 34 in the cutting device 400 can be positioned more accurately.
  • the cutting device 500 of the fifth embodiment does not displace the eccentric shaft while actively controlling the eccentric shaft to a predetermined eccentric amount.
  • the eccentric shaft is passively decentered within the range of the amount of eccentricity.
  • a planetary gear unit 510 is connected to the drive shaft 62 of the drive motor 61.
  • the planetary gear unit 510 is supported by a base portion of the cutting device 500 by a support member 511, and is also supported by a sun gear 512 that is rotationally driven by a drive shaft 62, an annular gear 513 that is fixed to the unit housing, and a carrier (not shown).
  • Planetary gears 514 are provided.
  • An eccentric shaft 515 is erected on the outer peripheral portion of the planetary gear 514.
  • the drive gear 61 when the drive gear 61 is operated and the sun gear 512 is rotated with the annular gear 513 fixed, the planetary gear 514 rotates while revolving around the rotation axis C, so that the eccentric shaft 515 is moved to the arrow A. As indicated by, the rotation around the rotation axis C is performed while being displaced radially inside the predetermined range D. Then, the focal points F1 and F2 of the laser beams L1 and L2 applied to the insulating coating from the pair of upper and lower condenser lenses 31 and 34 move into the insulating coating from the outside of the insulating coating, and are insulated from the inside of the insulating coating.
  • the eccentric amount variable mechanism 551 in the cutting device 550 of the modification shown in FIG. 25 includes a sun gear 553 that is rotationally driven by a drive motor 552, a planetary gear 554 that is supported so as to be relatively rotatable with respect to the sun gear 553, and An annular gear 555 is provided.
  • An eccentric shaft 556 is erected on the outer peripheral portion of the planetary gear 554.
  • a timing belt 559 is wound between a pulley 558 and an annular gear 555 that are rotationally driven by a second drive motor 557 arranged in parallel with the drive motor 552, and the annular gear 555 is wound by the second drive motor 557. It can be rotated.
  • the drive motor 552 and the second drive motor 557 are interlocked to synchronize the rotation of the sun gear 553 and the annular gear 555
  • the planetary gear 554 rotates relative to the sun gear 553 and the annular gear 555. Since it revolves around the rotation axis C, the eccentric amount of the eccentric shaft 556 can be fixed and revolved around the rotation axis C.
  • the planetary gear 554 revolves around the rotation axis C while rotating relative to the sun gear 553 and the annular gear 555.
  • the amount of eccentricity of the eccentric shaft 556 can be changed.
  • the eccentric amount of the eccentric shaft 85 can be fixed to a desired value by synchronizing the rotation of the sun gear 553 and the annular gear 555 when the eccentric amount of the eccentric shaft 556 reaches a desired value.
  • the amount of eccentricity of the eccentric shaft 556 changes continuously. Then, the focal points F1 and F2 of the laser beams L1 and L2 applied to the insulating coating from the pair of upper and lower condenser lenses 31 and 34 move into the insulating coating from the outside of the insulating coating, and are insulated from the inside of the insulating coating. It circulates along the surface of the insulating coating while alternately repeating the movements coming out of the coating. Thereby, even when the insulation coating of the electric wire W is deformed or when the positioning of the electric wire W is displaced, the insulating coating can be reliably cut by the laser beams L1 and L2.
  • the drive motor 53, the drive shaft 54, and the eccentric shaft 55 are used as drive means for driving the support means 50 to move in the vertical direction and the horizontal direction.
  • a first linear motor or ball screw for moving the support means 50 in the vertical direction and a second linear motor or ball screw for moving the support means 50 in the left-right direction are used in combination. It can also be a structure.
  • the drive motor 45 is used as a drive source for the laser light supply path switching means 40.
  • the laser light supply path switching unit 40 can be driven by the drive motor 53 that drives the support unit 50.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed is a method and an apparatus for cutting a cable insulating film using a laser beam, wherein laser beams (L1, L2) applied in the vertical direction toward a cable (W) extending in the front-rear direction are moved by displacing the beams not only in the cable traversing direction (horizontal direction) but also in the vertical direction such that the focal point (F) of the laser beams (L1, L2) moves in the circumferential direction along the outer circumferential surface of the cable (W). Thus, since the insulating film of the cable (W) can be always positioned within the effective range for being cut by means of thermal energy, said effective range being in the laser beams (L1, L2), the insulating film of the cable (W) having a radius larger than the effective range of the laser beams (L1, L2) can be reliably cut.

Description

電線の絶縁被覆をレーザー光で切断する方法および装置Method and apparatus for cutting an insulation coating of a wire with a laser beam
 本発明は、電線の絶縁被覆をレーザー光で切断する方法および装置に関し、より詳しくは、レーザー光の熱エネルギーによって絶縁被覆を切断可能な有効範囲を上回る半径寸法の電線の絶縁被覆をレーザー光によって切断する技術に関する。 The present invention relates to a method and an apparatus for cutting an insulating coating on a wire with a laser beam, and more specifically, the insulating coating on an electric wire having a radius dimension exceeding the effective range in which the insulating coating can be cut by the thermal energy of the laser beam. It relates to cutting technology.
 従来、電線端末部の絶縁被覆を除去(ストリップ)して芯線を露出させるために、互いに対向する一対のストリップブレードで絶縁被覆に切り込みを入れる装置(例えば、下記特許文献1を参照)が用いられてきたが、電線の細線化に伴う絶縁被覆の薄肉化等に伴い、レーザー光を用いて絶縁被覆を切断する装置(例えば、下記の特許文献2,3を参照)が用いられるようになってきている。 2. Description of the Related Art Conventionally, in order to remove (strip) an insulation coating from an electric wire terminal portion and expose a core wire, a device that cuts the insulation coating with a pair of opposed strip blades (see, for example, Patent Document 1 below) has been used. However, along with the thinning of the insulation coating accompanying thinning of the electric wire, an apparatus for cutting the insulation coating using a laser beam (for example, see Patent Documents 2 and 3 below) has come to be used. ing.
 ここで、下記の特許文献2,3に記載されている同一構造の装置について図26を参照しつつ概説すると、この装置は、その基礎部分1によって基台2が支持されるとともに、基礎部分1を貫通する円筒支持部材3によって基礎部分1の下方にレーザー光発生手段4が支持されている。
 また、基台2にはスプリッタ5と複数のミラー6,7,8が設けられ、レーザー光発生手段4から供給されたレーザー光Lをスプリッタ5において2分割した後、上下一対の集光レンズ9,10にそれぞれ案内するようになっている。
Here, when an apparatus having the same structure described in the following Patent Documents 2 and 3 is outlined with reference to FIG. 26, the base 2 is supported by the base portion 1 and the base portion 1 is supported. A laser beam generating means 4 is supported below the base portion 1 by a cylindrical support member 3 penetrating the tube.
In addition, the base 2 is provided with a splitter 5 and a plurality of mirrors 6, 7, and 8. After the laser light L supplied from the laser light generating means 4 is divided into two by the splitter 5, a pair of upper and lower condensing lenses 9 is provided. , 10 respectively.
 一方、上下一対の集光レンズ9,10を一体に支持している支持手段11は、基台3に設けられた上下一対のリニアガイド12,13によって矢印A方向に往復動自在に支持されている。
 また、基台2の背面側に固定された駆動モータ14は、偏心軸15を有した駆動軸16を回転駆動するようになっている。
 そして、支持手段11の裏面に固定されているリニアガイド17のスライダには、偏心軸15が相対回転自在に係合している。
 これにより、駆動モータ14を回転させると支持手段11が矢印Aで示した方向に往復動するので、上下一対の集光レンズ9,10から電線Wに向かって照射されたレーザー光Lが電線Wを横断する方向に反復的に往復動し、それによって電線Wの絶縁被覆を切断することができる。
On the other hand, the support means 11 that integrally supports the pair of upper and lower condenser lenses 9 and 10 is supported by a pair of upper and lower linear guides 12 and 13 provided on the base 3 so as to be reciprocally movable in the direction of arrow A. Yes.
The drive motor 14 fixed to the back side of the base 2 is configured to rotationally drive a drive shaft 16 having an eccentric shaft 15.
And the eccentric shaft 15 is engaged with the slider of the linear guide 17 fixed to the back surface of the support means 11 so that relative rotation is possible.
As a result, when the drive motor 14 is rotated, the support means 11 reciprocates in the direction indicated by the arrow A, so that the laser light L emitted from the pair of upper and lower condenser lenses 9 and 10 toward the electric wire W is reflected by the electric wire W. Can be repeatedly reciprocated in the direction across the wire, thereby cutting the insulation coating of the wire W.
特開2001-112137号公報JP 2001-112137 A 特開2007-151345号公報JP 2007-151345 A 特開2007-1432805号公報Japanese Patent Laid-Open No. 2007-1432805
 ところで、集光レンズ9,10から電線Wに向かって照射されるレーザー光Lは、図27に模式的に示したように集光レンズ9,10の焦点Fに収束するが、電線Wの絶縁被覆をレーザー光Lの熱エネルギーによって切断可能な有効範囲は、焦点Fを照射方向に挟んだ所定の範囲に限られる。 By the way, the laser light L emitted from the condenser lenses 9 and 10 toward the electric wire W converges on the focal point F of the condenser lenses 9 and 10 as schematically shown in FIG. The effective range in which the coating can be cut by the thermal energy of the laser beam L is limited to a predetermined range in which the focal point F is sandwiched in the irradiation direction.
 これにより、図28に示したように、レーザー光Lの有効範囲よりもその半径寸法が小さい電線Wの場合は、互いに対向する一対の集光レンズ9,10を電線Wの横断方向(矢印A方向)に移動させることにより、電線Wの全周にわたってその絶縁被覆を切断することができる。 Thus, as shown in FIG. 28, in the case of the electric wire W whose radius dimension is smaller than the effective range of the laser light L, the pair of condensing lenses 9 and 10 facing each other are arranged in the transverse direction of the electric wire W (arrow A). The insulation coating can be cut over the entire circumference of the electric wire W.
 しかしながら、図29に示したように、レーザー光Lの有効範囲よりもその半径寸法が大きい電線Wの場合は、互いに対向する集光レンズ9,10から電線Wに向かって照射されたレーザー光Lによって電線Wのうち集光レンズ9,10の側の部分S1,S2の絶縁被覆は切断できるものの、電線Wの側部S3,S4の部分の絶縁被覆を切断することができない。
 したがって、一対の集光レンズ9,10を電線Wの横断方向(矢印A方向)に移動させても、電線Wの全周にわたってその絶縁被覆を切断することはできない。
However, as shown in FIG. 29, in the case of the electric wire W whose radius dimension is larger than the effective range of the laser light L, the laser light L irradiated toward the electric wire W from the condensing lenses 9 and 10 facing each other. Thus, although the insulation coating of the portions S1, S2 on the condenser lens 9, 10 side of the electric wire W can be cut, the insulation coating of the side portions S3, S4 of the electric wire W cannot be cut.
Therefore, even if the pair of condensing lenses 9 and 10 are moved in the transverse direction (direction of arrow A) of the electric wire W, the insulating coating cannot be cut over the entire circumference of the electric wire W.
 一方、近年、自動車に車載カメラが搭載される等の事情により、車載されるワイヤハーネスにも高速通信のニーズが高まっており、大径のシールド電線が用いられるようになっている。
 このとき、シールド電線の中心導線を露出させるためには、まず最初に外皮に炭酸ガスレーザー光(COレーザー光)を照射してこれを切断し除去した後、露出した銅製シールド編組にグリーンレーザー光(YVOレーザー光)を照射してこれを切断し除去し、次いで中心導線の周囲の絶縁体に炭酸ガスレーザー光を照射してこれを切断し除去することになる。
On the other hand, in recent years, due to circumstances such as mounting an in-vehicle camera in an automobile, the need for high-speed communication has been increasing for an in-vehicle wire harness, and a large-diameter shielded electric wire has been used.
At this time, in order to expose the central conductor of the shielded wire, first, the outer skin is irradiated with carbon dioxide laser light (CO 2 laser light), cut and removed, and then the exposed copper shield braid is covered with a green laser. This is cut and removed by irradiating light (YVO 4 laser light), and then the insulator around the central conductor is irradiated with carbon dioxide laser light to cut and remove it.
 ところが、炭酸ガスレーザーの波長は、約10640ナノメートルであるのに対し、グリーンレーザー光の波長が約532ナノメートルと大幅に短いため、グリーンレーザー光による電線の絶縁被覆切断可能な有効範囲が大幅に狭くなってしまう。
 これにより、電線を横断する方向にレーザー光を往復動させて絶縁被覆を切断する従来の装置では、大径の電線、例えば大径のシールド電線の絶縁被覆を炭酸ガスグリーンレーザー光で切断することは極めて困難である。
However, the wavelength of the carbon dioxide laser is about 10640 nanometers, whereas the wavelength of the green laser light is much shorter, about 532 nanometers. It will become narrower.
Thus, in a conventional apparatus that cuts the insulation coating by reciprocating the laser beam in the direction crossing the electric wire, the insulation coating of a large-diameter wire, for example, a large-diameter shielded wire, is cut with a carbon dioxide green laser beam. Is extremely difficult.
 そこで本発明の目的は、上述した従来技術が有する問題点を解消し、レーザー光の有効範囲よりもその半径寸法が大きい電線の絶縁被覆をレーザー光によって確実に切断可能な電線の絶縁被覆の切断方法および装置を提供することにある。 Accordingly, an object of the present invention is to eliminate the above-mentioned problems of the prior art, and to cut the insulating coating of the electric wire that can reliably cut the insulating coating of the electric wire whose radius is larger than the effective range of the laser beam by the laser beam. It is to provide a method and apparatus.
 ところで、本願に関連する国際特許出願であるPCT/JP2010/050067の「国際調査報告」には、上記特許文献3(特開2007-143280号公報)がカテゴリーXの文献としてリストアップされ、かつその「国際調査機関の見解書」には、「焦点が絶縁被覆5の外周面上において周方向に移動するように、レンズホルダ駆動機構16を制御する」ことがこの文献に記載されているから、当該国際特許出願の請求項1~2,4~5に係る発明については、新規性、進歩性を有しない、と記載されている。 By the way, in the “International Search Report” of PCT / JP2010 / 050067, which is an international patent application related to the present application, the above Patent Document 3 (Japanese Patent Laid-Open No. 2007-143280) is listed as a Category X document, and In this document, “the opinion of the international search organization” describes that “the lens holder driving mechanism 16 is controlled so that the focal point moves in the circumferential direction on the outer peripheral surface of the insulating coating 5”. The inventions according to claims 1 to 2 and 4 to 5 of the international patent application are described as having no novelty or inventive step.
 しかしながら、上記特許文献3に記載されている装置は、本願の出願人の依頼により製造された装置であり、本願出願人の先願に係る上記特許文献2に記載されている装置と全く同一の構造を有している。
 これにより、上記特許文献3に記載されている「レーザー被覆除去装置」は、この明細書において[図26]~[図29]を参照しつつ[0003]~[0009]段落において説明したとおりの構造を有するものである。
However, the device described in Patent Document 3 is a device manufactured at the request of the applicant of the present application, and is exactly the same as the device described in Patent Document 2 related to the prior application of the present applicant. It has a structure.
As a result, the “laser coating removal apparatus” described in Patent Document 3 is as described in the paragraphs [0003] to [0009] with reference to [FIG. 26] to [FIG. 29] in this specification. It has a structure.
 すなわち、上記特許文献3に記載されている装置は、その第1レーザー光L1と第2レーザー光L2のビームスポットを、被覆線材3に対して左右方向(矢印方向)に移動させるものではあるが、上下方向(矢印方向に対して垂直な方向)に移動させるものではなく、したがってレーザー光L1,L2のビームスポット(焦点)が「絶縁被覆5の外周面上において周方向に移動する」ことなどあり得ないのである。
 これにより、「国際調査機関の見解書」における上記した記載は、上記特許文献3に記載されている装置の構造を誤解したことに基づく間違いではないかと思われる。
That is, the apparatus described in Patent Document 3 moves the beam spots of the first laser light L1 and the second laser light L2 in the left-right direction (arrow direction) with respect to the coated wire 3. The beam spots (focal points) of the laser beams L1 and L2 are “moved in the circumferential direction on the outer peripheral surface of the insulating coating 5”. It is impossible.
Thus, it is considered that the above description in the “international search agency opinion” is a mistake based on misunderstanding of the structure of the device described in Patent Document 3.
 上記の課題を解決するための請求項1に記載した手段は、
 電線の絶縁被覆をレーザー光で切断する方法であって、
 前後方向に延びる電線の絶縁被覆に向けて上下方向からレーザー光を照射する集光レンズを支持手段によって支持し、
 前記支持手段を切断装置の基台に対し上下方向および左右方向に往復動自在に支持し、
 レーザー光発生手段が発生させたレーザー光を前記集光レンズに供給しつつ、
 前記基台に設けた駆動手段によって前記支持手段を駆動して前記支持手段を前記基台に対して上下方向および左右方向に移動させ、
 前記集光レンズから前記絶縁被覆に照射されたレーザー光の焦点が上下方向および左右方向に変位して前記絶縁被覆の外周面に沿って周方向に移動するように前記駆動手段の作動を制御する、
ことを特徴とする。
The means described in claim 1 for solving the above problem is as follows.
A method of cutting the insulation coating of a wire with a laser beam,
Supporting the condensing lens that irradiates laser light from above and below toward the insulation coating of the electric wires extending in the front-rear direction by the support means,
The support means is supported so as to reciprocate vertically and horizontally with respect to the base of the cutting device,
While supplying the laser light generated by the laser light generating means to the condenser lens,
The support means is driven by the drive means provided on the base to move the support means in the vertical direction and the horizontal direction with respect to the base,
The operation of the driving means is controlled so that the focal point of the laser light applied to the insulating coating from the condenser lens is displaced in the vertical and horizontal directions and moves in the circumferential direction along the outer peripheral surface of the insulating coating. ,
It is characterized by that.
 すなわち、電線の絶縁被覆をレーザー光で切断する従来の方法は、前後方向に延びる電線に向かって上下方向に照射したレーザー光を、単に電線横断方向(左右方向)に往復動させるだけのものであった(上記特許文献2,3を参照)。
 これに対して、本発明の電線の絶縁被覆をレーザー光で切断する方法は、前後方向に延びる電線に向かって上下方向に照射したレーザー光を、電線横断方向(左右方向)ばかりでなく上下方向にも変位させることにより、このレーザー光の焦点が電線の外周面に沿って周方向に移動するように、言い換えるとレーザー光の焦点が円弧を描くように移動するようにしたものである。
 これにより、レーザー光のうちその熱エネルギーによって絶縁被覆を切断可能な有効範囲の内側に電線の絶縁被覆を常に位置させることができるから、レーザー光の有効範囲より大きな半径寸法を有した電線の絶縁被覆にレーザー光の熱エネルギーを集中させて確実に切断することができる。
 なお、レーザー光による切断の対象には、電線の絶縁被覆ばかりでなく、シールド電線のシールド編組や中心導体も含まれることは言うまでもない。
That is, the conventional method of cutting the insulation coating of the electric wire with the laser beam is to simply reciprocate the laser beam irradiated in the vertical direction toward the electric wire extending in the front-rear direction in the electric wire transverse direction (left-right direction). (See Patent Documents 2 and 3 above).
On the other hand, the method of cutting the insulation coating of the electric wire of the present invention with a laser beam is not only the vertical direction but also the laser beam irradiated in the vertical direction toward the electric wire extending in the front-rear direction. Further, the focal point of the laser beam is moved in the circumferential direction along the outer peripheral surface of the electric wire, in other words, the focal point of the laser beam is moved so as to draw an arc.
As a result, the insulation of the electric wire can always be positioned inside the effective range of the laser light that can be cut by the thermal energy. Therefore, the insulation of the electric wire having a radius dimension larger than the effective range of the laser light can be achieved. The thermal energy of the laser beam can be concentrated on the coating so that the coating can be cut reliably.
Needless to say, the object to be cut by the laser beam includes not only the insulation coating of the electric wire but also the shield braid of the shielded electric wire and the central conductor.
 なお、レーザー光の焦点は、請求項2に記載したように絶縁被覆の外周面上を周方向に移動させるだけではなく、請求項3に記載したように絶縁被覆の外周面に対して所定の隙間を開けて移動させ、あるいは絶縁被覆の外周面よりも内側に入り込ませ、あるいは最初は絶縁被覆の外周面上を移動させるが次第に外周面の内側に入り込むように移動させることができる。
 すなわち、絶縁被覆の外周面の形状が真円であるときには、絶縁被覆の外周面をなでるようにレーザー光の焦点を移動させることにより、最も効率よく絶縁被覆を切断することができる。
 ところが、電線が巻き取られていた場合には、絶縁被覆が変形して楕円形となっていることがあるため、レーザー光の焦点を絶縁被覆の外周面から離して、あるいは外周面の内部に食い込むように移動させることにより、絶縁被覆を確実に切断することができる。
The focal point of the laser beam not only moves in the circumferential direction on the outer peripheral surface of the insulating coating as described in claim 2, but also has a predetermined focus on the outer peripheral surface of the insulating coating as described in claim 3. It can be moved with a gap, or it can be moved inside the outer peripheral surface of the insulating coating, or it can be moved on the outer peripheral surface of the insulating coating at first but gradually moved inside the outer peripheral surface.
That is, when the shape of the outer peripheral surface of the insulating coating is a perfect circle, the insulating coating can be cut most efficiently by moving the focal point of the laser beam so as to stroke the outer peripheral surface of the insulating coating.
However, when the wire is wound up, the insulation coating may be deformed and become elliptical, so the focus of the laser beam is away from the outer peripheral surface of the insulating coating or inside the outer peripheral surface. By moving it so that it bites in, the insulating coating can be cut reliably.
 また、レーザー光の焦点は、請求項4に記載したように、絶縁被覆を横断方向の断面で見たときに、その外周面のうち左右方向の両端部分において、外周面に沿って周方向に前進する変位と周方向に後退する変位とが反復するように移動させることができる。
 これにより、絶縁被覆の外周面のうち左右方向の両端部分、言い換えるとレーザー光を照射する方向から見たときに絶縁被覆が最も厚くなってレーザー光で切断しにくい部分に対し、レーザー光を反復させて照射できることになるから、これらの部分の絶縁被覆をレーザー光によって確実に切断することができる。
Further, as described in claim 4, when the insulating coating is viewed in a cross section in the transverse direction, the focal point of the laser beam is in the circumferential direction along the outer peripheral surface at both end portions in the left-right direction of the outer peripheral surface. The displacement that moves forward and the displacement that moves backward in the circumferential direction can be repeated.
As a result, the laser beam is repeatedly applied to the left and right end portions of the outer peripheral surface of the insulation coating, in other words, the portion where the insulation coating is thickest and difficult to cut with laser light when viewed from the direction of laser light irradiation. Therefore, the insulating coating on these portions can be surely cut with a laser beam.
 さらに、レーザー光の焦点は、絶縁被覆の外周面に沿って円弧を描くように移動させるだけではなく、絶縁被覆の外周面に沿いつつ電線の軸線周りに螺旋を描くように移動させ、あるいは断面形状が三角形、四角形、六角形等の電線の場合は、その絶縁被覆の形状に合わせて移動させることもできる。 Furthermore, the focal point of the laser beam is not only moved so as to draw an arc along the outer peripheral surface of the insulation coating, but also moved along the outer peripheral surface of the insulation coating so as to draw a spiral around the axis of the electric wire, or a cross section. In the case of an electric wire having a triangular shape, a quadrangular shape, a hexagonal shape, etc., it can be moved in accordance with the shape of the insulating coating.
 さらに、前後方向に延びる電線の上方に設けた1つの集光レンズからレーザー光を照射して、その焦点が絶縁被覆の上側半分の外周面上に沿って周方向に移動するようにしつつ、電線をその軸線の周りに回転させることにより、電線の絶縁被覆をその周方向の全体にわたって切断することもできる。 Further, the laser beam is irradiated from one condenser lens provided above the electric wire extending in the front-rear direction so that the focal point moves in the circumferential direction along the outer peripheral surface of the upper half of the insulating coating. Can be cut around its entire circumference by rotating the wire around its axis.
 あるいは、前後方向に延びる電線の上方および下方に設けた上下一対の集光レンズからそれぞれレーザー光を照射することにより、電線の絶縁被覆をその周方向の全体にわたって切断することができる。
 このとき、上下一対の集光レンズを1つの支持手段によって一体に支持するとともに、支持手段を駆動して上下方向および左右方向に移動させることにより、上下一対の集光レンズからそれぞれ照射される上下一対のレーザー光を連動させながら上下方向および左右方向に移動させることが好ましい。
Alternatively, the insulating coating of the electric wire can be cut over the entire circumferential direction by irradiating laser light from a pair of upper and lower condenser lenses provided above and below the electric wire extending in the front-rear direction.
At this time, the upper and lower pair of condensing lenses are integrally supported by one support means, and the support means is driven to move in the up and down direction and the left and right direction, thereby irradiating from the upper and lower pair of condensing lenses respectively. It is preferable to move the pair of laser beams in the vertical direction and the horizontal direction while interlocking.
 また、レーザー光の焦点を上下方向および前後方向に移動させるための駆動手段として、例えば装置の基台に設けた一対のリニアモータあるいは一対のボールねじにより、支持手段をそれぞれ上下方向および左右方向に個別に駆動することができる。
 あるいは次述する切断装置のように、処理対象の電線の半径寸法と同一の偏心量を有した偏心軸を回転駆動することにより、支持手段を上下方向および前後方向に連動させて移動させ、それによってレーザー光の焦点を電線の外周面に沿わせて周方向に移動させることもできる。
Further, as drive means for moving the focal point of the laser beam in the vertical direction and the front-rear direction, for example, a pair of linear motors or a pair of ball screws provided on the base of the apparatus are used to move the support means in the vertical direction and the horizontal direction, respectively. It can be driven individually.
Alternatively, as in the cutting device described below, by rotating the eccentric shaft having the same eccentric amount as the radial dimension of the electric wire to be processed, the support means is moved in conjunction with the vertical direction and the front-rear direction. Thus, the focal point of the laser beam can be moved in the circumferential direction along the outer peripheral surface of the electric wire.
 また、上記の課題を解決するための請求項5に記載した手段は、
 電線の絶縁被覆をレーザー光で切断する装置であって、
 前後方向に延びる電線の絶縁被覆に向けて上下方向からレーザー光をそれぞれ照射する、前記電線を挟んで上下方向に対向して配置された上下一対の集光レンズと、
 レーザー光発生手段が発生させたレーザー光を前記上下一対の集光レンズにそれぞれ案内するレーザー光案内手段と、
 前記装置の基台に対して上下方向および左右方向に移動自在に設けられた、前記上下一対の集光レンズを一体に支持する支持手段と、
 前記支持手段を上下方向および左右方向に駆動する、前記基台に支持された駆動手段と、を備え、
 前記上下一対の集光レンズは、それらの焦点が一致するように配置されており、
 前記駆動手段は、前記上下一対の集光レンズから前記電線の絶縁被覆に向けてそれぞれ照射された上下一対のレーザー光の焦点が上下方向および左右方向に変位して前記電線の絶縁被覆の外周面に沿って周方向に移動するように、前記支持手段を左右方向および上下方向に移動させるべく構成されていることを特徴とする。
The means described in claim 5 for solving the above problem is
A device that cuts the insulation of a wire with a laser beam,
A pair of upper and lower condensing lenses disposed opposite to each other in the vertical direction across the electric wire, respectively irradiating laser light from the vertical direction toward the insulation coating of the electric wire extending in the front-rear direction,
Laser light guiding means for guiding the laser light generated by the laser light generating means to the pair of upper and lower condenser lenses,
A support means for integrally supporting the pair of upper and lower condenser lenses provided to be movable in a vertical direction and a horizontal direction with respect to a base of the device;
Driving means supported by the base for driving the support means in the vertical and horizontal directions;
The pair of upper and lower condenser lenses are arranged so that their focal points coincide with each other,
The driving means is configured such that the focal points of the pair of upper and lower laser beams irradiated from the pair of upper and lower condensing lenses toward the insulation coating of the electric wire are displaced in the vertical direction and the horizontal direction, and the outer peripheral surface of the insulation coating of the electric wire The support means is configured to move in the left-right direction and the up-down direction so as to move in the circumferential direction.
 すなわち、請求項5に記載した本発明の装置は、上下一対の集光レンズからそれぞれ照射するレーザー光によって電線の絶縁被覆を切断するものであるから、電線の絶縁被覆を効率よく切断することができる。
 このとき、上下一対の集光レンズは、支持手段によって一体に支持されるとともに、それらの焦点が一致するように配置されている。
 これにより、上下一対の集光レンズの互いに一致している焦点が電線の絶縁被覆の外周面に沿って周方向に移動するように、支持手段を駆動して変位させる制御を容易に実行することができる。
That is, since the apparatus of the present invention according to claim 5 cuts the insulating coating of the electric wire by laser light irradiated from the upper and lower pair of condensing lenses, it can efficiently cut the insulating coating of the electric wire. it can.
At this time, the pair of upper and lower condensing lenses are integrally supported by the support means and arranged so that their focal points coincide with each other.
Thereby, it is possible to easily execute the control for driving and displacing the support means so that the mutually coincident focal points of the upper and lower pair of condensing lenses move in the circumferential direction along the outer peripheral surface of the insulating coating of the electric wire. Can do.
 また、請求項6,7,8に記載した本発明の装置は、請求項2,3,4に記載した本発明の方法をそれぞれ実現するものであるが、いずれも支持手段を上下方向および左右方向に駆動する駆動手段の作動を制御することによって達成することができる。
 具体的には、処理対象の電線の半径寸法と同一の偏心量を有した偏心軸を回転駆動することにより、支持手段を上下方向および前後方向に連動させて移動させ、それによってレーザー光の焦点を電線の外周面に沿わせて周方向に移動させることができる。
 レーザー光の焦点の周方向の前進および後進は、偏心軸を回転駆動する駆動モータの正転および逆転を切り換えることによって達成することができる。
 あるいは、装置の基台に設けた一対のリニアモータあるいは一対のボールねじを、上下方向および左右方向に連動させて制御し、あるいは上下方向および左右方向に個別に制御することによって達成することができる。
Moreover, although the apparatus of this invention described in Claim 6,7,8 implement | achieves the method of this invention described in Claim 2,3,4 respectively, all are supporting means to an up-down direction and right and left. This can be achieved by controlling the operation of the driving means that drive in the direction.
Specifically, by rotating the eccentric shaft having the same eccentricity as the radial dimension of the electric wire to be processed, the support means is moved in conjunction with the vertical direction and the front-rear direction, thereby focusing the laser beam. Can be moved in the circumferential direction along the outer peripheral surface of the electric wire.
Advancing and reversing the focal point of the laser beam in the circumferential direction can be achieved by switching between forward rotation and reverse rotation of a drive motor that rotationally drives the eccentric shaft.
Alternatively, it can be achieved by controlling a pair of linear motors or a pair of ball screws provided on the base of the apparatus in conjunction with the vertical direction and the horizontal direction, or individually controlling in the vertical direction and the horizontal direction. .
 また、請求項9に記載した手段は、請求項5に記載した電線の絶縁被覆切断装置に対し、上側の集光レンズから前記絶縁被覆の上側半分にレーザー光を照射するときには前記上側の集光レンズにレーザー光を供給するとともに、下側の集光レンズから前記絶縁被覆の下側半分にレーザー光を照射するときには前記下側の集光レンズにレーザー光を供給する、前記上下一対の集光レンズに対するレーザー光供給経路を前記駆動手段の作動に連動して切り換えるレーザー光供給経路切換手段を追加したものである。 According to a ninth aspect of the present invention, when the laser beam is applied to the upper half of the insulating coating from the upper condensing lens, the upper condensing device of the electric wire insulating coating cutting apparatus according to the fifth aspect is provided. The pair of upper and lower light concentrators that supply laser light to the lens and supply laser light to the lower condenser lens when irradiating the lower half of the insulating coating with laser light from the lower condenser lens Laser light supply path switching means for switching the laser light supply path to the lens in conjunction with the operation of the driving means is added.
 すなわち、請求項9に記載した電線の絶縁被覆切断装置は、上側の集光レンズから電線の絶縁被覆の上側半分にレーザー光を照射するときにはレーザー光供給経路切換手段により、レーザー光発生手段が発生させたレーザー光の全てを上側の集光レンズに供給するとともに、下側の集光レンズから電線の絶縁被覆の下側半分にレーザー光を照射するときにはレーザー光発生手段が発生させたレーザー光の全てを下側の集光レンズに供給するものである。
 これにより、スプリッタを用いてレーザー光を2分割して上下の集光レンズにそれぞれ50パーセントずつレーザー光を供給する場合とは異なり、レーザー光発生手段が発生させたレーザー光を100パーセント用いて絶縁被覆を切断することができるから、レーザー光発生手段の能力を半分程度のものに置き換えることが可能となり、大きなコストダウンにつながる。
That is, in the wire insulation coating cutting apparatus according to claim 9, when the laser light is irradiated from the upper condenser lens to the upper half of the wire insulation coating, the laser light generation means is generated by the laser light supply path switching means. When the laser beam is irradiated from the lower condenser lens to the lower half of the insulating coating of the electric wire, the laser beam generated by the laser beam generating means is supplied to the upper condenser lens. All are supplied to the lower condenser lens.
Thus, unlike the case where the laser beam is divided into two by using a splitter and the laser beam is supplied to the upper and lower condenser lenses by 50%, insulation is performed using 100% of the laser beam generated by the laser beam generating means. Since the coating can be cut, it is possible to replace the ability of the laser light generating means with about half of the capability, leading to a large cost reduction.
 また、請求項10に記載した手段は、請求項5に記載した電線の絶縁被覆切断装置において、前記駆動手段が、
 前後方向に延びる回転軸線の回りに回転する駆動軸と、
 前記回転軸線に対し所定の偏心量だけ偏心して前記回転軸線の回りで公転しつつ前記支持手段と相対回転自在に係合する偏心軸と、を有し、
 前記偏心量が前記絶縁被覆の外径寸法に基づいて決定されていることを特徴とする。
Further, the means described in claim 10 is the electric wire insulation coating cutting apparatus according to claim 5, wherein the driving means includes:
A drive shaft that rotates about a rotation axis extending in the front-rear direction;
An eccentric shaft that is eccentric with respect to the rotation axis by a predetermined eccentric amount and revolves around the rotation axis while engaging with the support means in a relatively rotatable manner,
The amount of eccentricity is determined based on an outer diameter of the insulating coating.
 すなわち、請求項10に記載した電線の絶縁被覆切断装置においては、例えば装置の基台に固定した駆動モータによって駆動軸を回転させると、偏心軸が、駆動軸の回転軸線の周りで公転する。
 これにより、偏心軸と相対回転自在に係合している支持手段もまた、駆動軸の回転軸線の周りを公転することになる。
 したがって、偏心軸の偏心量を電線の絶縁被覆の外径寸法の半分の値に設定すると、上下一対の集光レンズの互いに一致している焦点は、絶縁被覆の外周面上で周方向に移動することになる。
 なお、外径寸法が異なる他の電線の絶縁被覆を切断する場合は、その外径寸法に合わせて偏心軸の偏心量を変更すれば良い。
That is, in the electric wire insulation coating cutting apparatus according to the tenth aspect, for example, when the drive shaft is rotated by a drive motor fixed to the base of the apparatus, the eccentric shaft revolves around the rotation axis of the drive shaft.
Thereby, the support means engaged with the eccentric shaft in a relatively rotatable manner also revolves around the rotation axis of the drive shaft.
Therefore, when the eccentric amount of the eccentric shaft is set to a value that is half of the outer diameter dimension of the insulation coating of the electric wire, the coincident focal points of the pair of upper and lower condenser lenses move in the circumferential direction on the outer peripheral surface of the insulation coating. Will do.
In addition, what is necessary is just to change the eccentric amount of an eccentric shaft according to the outer diameter dimension, when cutting the insulation coating of the other electric wire from which an outer diameter dimension differs.
 さらに、偏心軸の偏心量を、電線の絶縁被覆の外径寸法の半分の値に余裕値(例えば1ミリメートル)を加算した値に設定すると、上下一対の集光レンズの互いに一致している焦点は、絶縁被覆の外周面に対して余裕値に等しい間隔を開けてその周囲を旋回する周方向に移動することになる。
 これにより、処理する電線の絶縁被覆がつぶれて楕円状に変形している場合も、その絶縁被覆を確実に切断することができる。
Further, when the eccentric amount of the eccentric shaft is set to a value obtained by adding a margin value (for example, 1 millimeter) to a value that is half of the outer diameter dimension of the insulation coating of the electric wire, the focal points of the pair of upper and lower condensing lenses that coincide with each other. Will move in the circumferential direction turning around the periphery of the insulating coating with an interval equal to the margin value.
Thereby, even when the insulation coating of the electric wire to be processed is crushed and deformed into an elliptical shape, the insulation coating can be reliably cut.
 ところで、レーザー光供給経路切換手段を作動させて、上下一対の集光レンズに対するレーザー光の供給経路を切り換えるときには、その切り換えに若干の時間が必要であり、上下一対の集光レンズから絶縁被覆に向かってレーザー光が供給されないわずかな期間が生じる。
 このとき、上下一対の集光レンズの焦点が絶縁被覆の外周面上で周方向に移動している場合には、絶縁被覆の電線横断方向(左右方向)の両側部に、レーザー光が照射されないことによって切断されない部分が生じるおそれがある。
 これに対して、上下一対の集光レンズの焦点が、絶縁被覆の外周面に対して所定の間隔を開けてその周囲を周方向に移動している場合には、上下一対の集光レンズの焦点が絶縁被覆の外周面からその電線横断方向(左右方向)に離間している期間を狙って、レーザー光供給経路切換手段を作動させることができる。
 これにより、絶縁被覆の電線横断方向(左右方向)の両側部に、レーザー光が照射されないことによって切断されない部分が生じることを確実に防止することができる。
By the way, when the laser light supply path switching means is operated to switch the laser light supply path to the pair of upper and lower condensing lenses, it takes some time for the switching. A slight period occurs when no laser beam is supplied.
At this time, when the focal points of the pair of upper and lower condenser lenses are moved in the circumferential direction on the outer peripheral surface of the insulating coating, the laser beam is not irradiated on both sides in the electric wire transverse direction (left-right direction) of the insulating coating. There is a possibility that a part that is not cut off may occur.
On the other hand, when the focal points of the pair of upper and lower condenser lenses are moved in the circumferential direction with a predetermined interval with respect to the outer peripheral surface of the insulating coating, The laser light supply path switching means can be operated aiming at a period in which the focal point is separated from the outer peripheral surface of the insulating coating in the electric wire transverse direction (left-right direction).
Thereby, it can prevent reliably that the part which is not cut | disconnected by not irradiating a laser beam in the both sides of the electric wire crossing direction (left-right direction) of insulation coating arises.
 加えて、請求項11~18に記載したように、駆動軸を回転させながら偏心軸の偏心量を変更できるように構成することにより、上下一対の集光レンズの互いに一致している焦点を、例えば最初は絶縁被覆の外周面上に配置するとともに、絶縁被覆の切断が進むに連れて絶縁被覆の内部に入り込ませることができる。
 これにより、レーザー光の熱エネルギーによって絶縁被覆を切断可能な有効範囲よりも肉厚の厚い絶縁被覆についても、レーザー光によって確実に切断することができる。
 なお、切断有効範囲内にある肉厚の薄い絶縁被覆についても確実に切断できることは言うまでもない。
In addition, as described in claims 11 to 18, by configuring the eccentric amount of the eccentric shaft while rotating the drive shaft, the focal points of the pair of upper and lower condensing lenses that coincide with each other can be obtained. For example, it can be initially disposed on the outer peripheral surface of the insulating coating and can enter the inside of the insulating coating as the cutting of the insulating coating proceeds.
Thereby, the insulating coating having a thickness larger than the effective range in which the insulating coating can be cut by the thermal energy of the laser beam can be reliably cut by the laser beam.
Needless to say, a thin insulating coating within the effective cutting range can be reliably cut.
 本発明によると、レーザー光の有効範囲よりもその半径寸法が大きい電線の絶縁被覆をレーザー光によって確実に切断可能な電線の絶縁被覆の切断方法および装置を提供することができる。 According to the present invention, it is possible to provide a method and an apparatus for cutting an electric wire insulation coating that can reliably cut an electric wire insulation coating having a radius dimension larger than the effective range of the laser light with a laser beam.
本発明の電線の絶縁被覆切断装置の一実施形態を模式的に示す全体正面図。The whole front view which shows typically one Embodiment of the insulation coating cutting device of the electric wire of this invention. 図1に示した装置の全体右側面図。FIG. 2 is an overall right side view of the apparatus shown in FIG. 1. 図1中の破断線A-Aに沿った断面図。FIG. 2 is a sectional view taken along a broken line AA in FIG. 図1に示した装置の作動を示す全体正面図。The whole front view which shows the action | operation of the apparatus shown in FIG. 図1に示した装置の作動を示す全体正面図。The whole front view which shows the action | operation of the apparatus shown in FIG. 図1に示した装置の作動を示す全体正面図。The whole front view which shows the action | operation of the apparatus shown in FIG. 図1に示した装置の作動を示す全体正面図。The whole front view which shows the action | operation of the apparatus shown in FIG. 図1に示した装置の作動を示す全体正面図。The whole front view which shows the action | operation of the apparatus shown in FIG. 本発明の作動原理を模式的に示す図。The figure which shows the action | operation principle of this invention typically. 本発明の作動原理を模式的に示す図。The figure which shows the action | operation principle of this invention typically. 本発明の作動原理を模式的に示す図。The figure which shows the action | operation principle of this invention typically. 本発明の作動原理を模式的に示す図。The figure which shows the action | operation principle of this invention typically. 本発明の作動原理を模式的に示す図。The figure which shows the action | operation principle of this invention typically. 本発明の作動原理を模式的に示す図。The figure which shows the action | operation principle of this invention typically. 第2実施形態の切断装置の偏心軸駆動機構を示す図。The figure which shows the eccentric shaft drive mechanism of the cutting device of 2nd Embodiment. 図15に示した偏心軸駆動機構の作動を説明する図。The figure explaining the action | operation of the eccentric shaft drive mechanism shown in FIG. 図15に示した偏心軸駆動機構の作動を説明する図。The figure explaining the action | operation of the eccentric shaft drive mechanism shown in FIG. 第3実施形態の切断装置の偏心軸駆動機構を示す図。The figure which shows the eccentric shaft drive mechanism of the cutting device of 3rd Embodiment. 図18に示した偏心軸駆動機構の作動を示す図。The figure which shows the action | operation of the eccentric shaft drive mechanism shown in FIG. 第3実施形態の変形例の切断装置の偏心軸駆動機構を示す図。The figure which shows the eccentric shaft drive mechanism of the cutting device of the modification of 3rd Embodiment. 第4実施形態の切断装置の偏心軸駆動機構を示す図。The figure which shows the eccentric shaft drive mechanism of the cutting device of 4th Embodiment. 図21に示した偏心軸駆動機構の作動を説明する図。The figure explaining the action | operation of the eccentric shaft drive mechanism shown in FIG. 図21に示した偏心軸駆動機構の作動を説明する図。The figure explaining the action | operation of the eccentric shaft drive mechanism shown in FIG. 第5実施形態の切断装置の偏心軸駆動機構を示す図。The figure which shows the eccentric shaft drive mechanism of the cutting device of 5th Embodiment. 第5実施形態の変形例の切断装置の偏心軸駆動機構を示す図。The figure which shows the eccentric shaft drive mechanism of the cutting device of the modification of 5th Embodiment. 従来装置を示す全体正面図。The whole front view which shows a conventional apparatus. レーザー光による絶縁被覆の切断を説明する図。The figure explaining the cutting | disconnection of the insulation coating by a laser beam. レーザー光による絶縁被覆の切断を説明する図。The figure explaining the cutting | disconnection of the insulation coating by a laser beam. レーザー光による絶縁被覆の切断を説明する図。The figure explaining the cutting | disconnection of the insulation coating by a laser beam.
 以下、図1乃至図25を参照し、本発明の電線の絶縁被覆をレーザー光で切断する方法および装置の各実施形態について詳細に説明する。
 なお、以下の説明においては、電線が延びる方向を前後方向、鉛直方向を上下方向、前後方向および上下方向の両方に垂直な方向を左右方向と言う。
Hereinafter, with reference to FIG. 1 thru | or FIG. 25, each embodiment of the method and apparatus which cut | disconnect the insulation coating of the electric wire of this invention with a laser beam is described in detail.
In the following description, the direction in which the electric wire extends is referred to as the front-rear direction, the vertical direction is referred to as the up-down direction, and the direction perpendicular to both the front-rear direction and the up-down direction is referred to as the left-right direction.
 第1実施形態
 まず最初に図1を参照し、第1実施形態の切断装置の全体構造について説明する。
First Embodiment First, an overall structure of a cutting device according to a first embodiment will be described with reference to FIG.
 本第1実施形態の切断装置100においては、装置の基礎部分21に基台22が支持されるとともに、基礎部分21を貫通する円筒支持部材23によってその下方にレーザー光発生手段24が支持されている。
 また、基台22には、上側の集光レンズ31にレーザー光を案内するためのミラー32,33と、下側の集光レンズ34にレーザー光を案内するためのミラー35,36が設けられている。
 なお、上側の集光レンズ31および下側の集光レンズ34に対して電線Wの側にそれぞれ設けられているものはフィルタ37,38である。
In the cutting apparatus 100 of the first embodiment, the base 22 is supported by the base portion 21 of the apparatus, and the laser beam generating means 24 is supported below the cylindrical support member 23 that penetrates the base portion 21. Yes.
The base 22 is provided with mirrors 32 and 33 for guiding laser light to the upper condenser lens 31 and mirrors 35 and 36 for guiding laser light to the lower condenser lens 34. ing.
Filters 37 and 38 are provided on the side of the electric wire W with respect to the upper condenser lens 31 and the lower condenser lens 34, respectively.
 さらに、基台22のうち円筒支持部材22の近傍には、レーザー光供給経路切換手段40が設けられている。
 この切換手段40は、レーザー光発生手段24から円筒支持部材22の内部を通過して鉛直方向上方に向かうレーザー光を、ミラー35が遮らない後退位置と、ミラー35がミラー36へと反射させる進出位置との間でミラー35を進退させる構造となっている。
 具体的には、ミラー35を支持している支持部材41は、右斜め上方に延びるリニアガイド42によって往復動自在に案内されている。
 また、支持部材41に連結されて右斜め下方に延びる細長い連結部材43には、リニアガイドを介してスライダ44が取り付けられている。
 さらに、基台22の背面側に固定されている駆動モータ45は、前後方向に延びる回転軸線の回りに駆動軸46を回転させる。
 そして、駆動軸46の回転軸線に対して偏心している偏心軸47は、軸受48(図3を参照)を介してスライダ44に相対回転自在に係合している。
Further, laser light supply path switching means 40 is provided in the vicinity of the cylindrical support member 22 in the base 22.
The switching means 40 is a retracted position where the mirror 35 does not block the laser light passing through the inside of the cylindrical support member 22 from the laser light generating means 24 and moving upward in the vertical direction, and the mirror 35 is reflected to the mirror 36. The mirror 35 is moved forward and backward from the position.
Specifically, the support member 41 that supports the mirror 35 is guided so as to reciprocate by a linear guide 42 that extends obliquely upward to the right.
In addition, a slider 44 is attached to an elongated connecting member 43 connected to the support member 41 and extending obliquely downward to the right through a linear guide.
Further, the drive motor 45 fixed to the back side of the base 22 rotates the drive shaft 46 about a rotation axis extending in the front-rear direction.
The eccentric shaft 47 that is eccentric with respect to the rotational axis of the drive shaft 46 is engaged with the slider 44 via a bearing 48 (see FIG. 3) so as to be relatively rotatable.
 これにより、図1、図4、図5に示したように、偏心軸47が左斜め下方の側にあるときにはミラー35が後退位置にあるため、レーザー光発生手段24から円筒支持部材22の内部を通過して鉛直方向上方に向かうレーザー光をミラー32,33を介して上側の集光レンズ31に供給することができる。
 これに対して、図6、図7、図8に示したように、偏心軸47が右斜め上方の側にあるときにはミラー35が進出位置にあるため、レーザー光発生手段24から円筒支持部材22の内部を通過して鉛直方向上方に向かうレーザー光はミラー35,36を介して下側の集光レンズ34に供給することができる。
As a result, as shown in FIGS. 1, 4 and 5, the mirror 35 is in the retracted position when the eccentric shaft 47 is located on the diagonally lower left side. The laser beam that passes through and moves upward in the vertical direction can be supplied to the upper condenser lens 31 via the mirrors 32 and 33.
On the other hand, as shown in FIGS. 6, 7, and 8, when the eccentric shaft 47 is on the diagonally upper right side, the mirror 35 is in the advanced position, so the laser beam generating means 24 to the cylindrical support member 22. The laser beam passing through the interior of the lens and traveling upward in the vertical direction can be supplied to the lower condenser lens 34 via the mirrors 35 and 36.
 なお、ミラー35は所定の幅を有しているとともに、かつその平坦な反射面が右斜め上方に45度の角度で延びており、さらに右斜め上方に45度の角度で延びるリニアガイド42によって案内されていることにより、図6~図8に示した進出位置に完全に到達しない途中の位置においても、ミラー36に向かってレーザー光を案内することができる。 The mirror 35 has a predetermined width, and its flat reflecting surface extends obliquely upward to the right at an angle of 45 degrees, and further extends linearly by a linear guide 42 extending at an angle of 45 degrees to the upper right. By being guided, the laser beam can be guided toward the mirror 36 even at a position where the advance position shown in FIGS. 6 to 8 is not completely reached.
 さらに、上下一対の集光レンズ31,34を一体に支持している正面視で略逆コ字形の支持手段50は、上下一対のリニアガイド51,52によって基台22に支持され、基台22に対して上下方向および左右方向に傾くことなく平行に移動することができる。
 また、基台33の背面側に固定されている駆動モータ53は、前後方向に延びる回転軸線の回りに駆動軸54を回転させる。
 そして、この駆動軸54の回転軸線Cに対して所定の偏心量Dで偏心している偏心軸55は、支持手段50の背面側に突設されている係合部56に軸受57(図2を参照)を介して相対回転自在に係合している。
 なお、偏心軸55の偏心量Dの値は、電線Wの絶縁被覆の半径寸法を基準に、例えば半径寸法と等しい値に設定されている。
Further, a substantially inverted U-shaped support means 50 that supports the pair of upper and lower condenser lenses 31 and 34 integrally is supported on the base 22 by a pair of upper and lower linear guides 51 and 52, and the base 22 Can move in parallel without tilting in the vertical and horizontal directions.
Further, the drive motor 53 fixed to the back side of the base 33 rotates the drive shaft 54 around a rotation axis extending in the front-rear direction.
An eccentric shaft 55 that is eccentric with a predetermined eccentric amount D with respect to the rotation axis C of the drive shaft 54 is provided with a bearing 57 (see FIG. 2) on an engaging portion 56 that protrudes on the back side of the support means 50. (See FIG. 4), and are engaged so as to be relatively rotatable.
Note that the value of the eccentric amount D of the eccentric shaft 55 is set to a value equal to, for example, the radial dimension on the basis of the radial dimension of the insulation coating of the electric wire W.
 これにより、駆動モータ53を作動させて駆動軸54をその回転軸線の回りに回転させると、図1および図4~図8に示したように、偏心軸55は駆動軸54の回転軸線Cの周りで半径Dの公転軌道上で公転する。
 これに伴い、支持手段50もまた、駆動軸54の回転軸線Cの周りで半径Dの公転軌道上で公転する。
As a result, when the drive motor 53 is operated to rotate the drive shaft 54 about its rotational axis, the eccentric shaft 55 is rotated from the rotational axis C of the drive shaft 54 as shown in FIGS. 1 and 4 to 8. Revolves on a revolving orbit of radius D around.
Along with this, the support means 50 also revolves on a revolution track having a radius D around the rotation axis C of the drive shaft 54.
 一方、上側の集光レンズ31は、図1に示したように偏心軸55が駆動軸54の回転軸線Cに対して水平方向左側の位置にあるときに、上側の集光レンズ31から電線Wに照射されるレーザー光L1の焦点F1が、電線Wの外周面のうち電線Wの中心W0に対して水平方向左側の位置W1に来るように支持手段50上に位置決めされている。 On the other hand, the upper condenser lens 31 is connected to the electric wire W from the upper condenser lens 31 when the eccentric shaft 55 is at a position on the left side in the horizontal direction with respect to the rotation axis C of the drive shaft 54 as shown in FIG. The focus F1 of the laser light L1 irradiated on the support means 50 is positioned so as to come to a position W1 on the left side in the horizontal direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W.
 これにより、図4に示したように偏心軸55が駆動軸54の回転軸線Cに対して鉛直方向上側の位置にあるときに、上側の集光レンズ31から電線Wに照射されるレーザー光L1の焦点F1は、電線Wの外周面のうち電線Wの中心W0に対して鉛直方向上側の位置W2に来る。 As a result, as shown in FIG. 4, when the eccentric shaft 55 is at a position on the upper side in the vertical direction with respect to the rotation axis C of the drive shaft 54, the laser light L <b> 1 irradiated to the electric wire W from the upper condenser lens 31. The focal point F <b> 1 comes to the position W <b> 2 on the upper side in the vertical direction with respect to the center W <b> 0 of the electric wire W in the outer peripheral surface of the electric wire W.
 そして、図5に示したように偏心軸55が駆動軸54の回転軸線Cに対して水平方向右側の位置にあるときに、上側の集光レンズ31から電線Wに照射されるレーザー光L1の焦点F1は、電線Wの外周面のうち電線Wの中心W0に対して水平方向右側の位置W3に来る。 As shown in FIG. 5, when the eccentric shaft 55 is in a position on the right side in the horizontal direction with respect to the rotation axis C of the drive shaft 54, the laser light L <b> 1 irradiated to the electric wire W from the upper condenser lens 31. The focal point F1 comes to a position W3 on the right side in the horizontal direction with respect to the center W0 of the electric wire W in the outer peripheral surface of the electric wire W.
 他方、下側の集光レンズ34は、図6に示したように偏心軸55が駆動軸54の回転軸線Cに対して水平方向右側の位置にあるときに、下側の集光レンズ34から電線Wに照射されるレーザー光L2の焦点F2が、電線Wの外周面のうち電線Wの中心W0に対して水平方向右側の位置W3に来るように支持手段50上に位置決めされている。 On the other hand, as shown in FIG. 6, the lower condenser lens 34 is arranged so that when the eccentric shaft 55 is at a position on the right side in the horizontal direction with respect to the rotation axis C of the drive shaft 54, the lower condenser lens 34 The focal point F2 of the laser beam L2 applied to the electric wire W is positioned on the support means 50 so as to come to a position W3 on the right side in the horizontal direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W.
 これにより、図7に示したように偏心軸55が駆動軸54の回転軸線Cに対して鉛直方向下側の位置にあるときに、下側の集光レンズ34から電線Wに照射されるレーザー光L2の焦点F2は、電線Wの外周面のうち電線Wの中心W0に対して鉛直方向下側の位置W4に来る。 Thus, as shown in FIG. 7, when the eccentric shaft 55 is in a position vertically below the rotation axis C of the drive shaft 54, the laser irradiated to the electric wire W from the lower condenser lens 34. The focal point F2 of the light L2 comes to a position W4 on the lower side in the vertical direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W.
 そして、図8に示したように偏心軸55が駆動軸54の回転軸線Cに対して水平方向左側の位置にあるときに、下側の集光レンズ34から電線Wに照射されるレーザー光L2の焦点F2は、電線Wの外周面のうち電線Wの中心W0に対して水平方向左側の位置W1に来る。 Then, as shown in FIG. 8, when the eccentric shaft 55 is at a position on the left side in the horizontal direction with respect to the rotation axis C of the drive shaft 54, the laser light L <b> 2 irradiated to the electric wire W from the lower condenser lens 34. The focal point F <b> 2 comes to a position W <b> 1 on the left side in the horizontal direction with respect to the center W <b> 0 of the electric wire W on the outer peripheral surface of the electric wire W.
 さらに、上下一対の集光レンズ31,34は、それらの焦点F1,F2が一致するように支持手段50上に固定されている。
 具体的に説明すると、図5および図6に示した支持手段50は同一位置にある。
 このとき、上側の集光レンズ31の焦点F1および下側の集光レンズ34の焦点F2は共に電線Wの外周面のうち電線Wの中心W0に対して水平方向右側の位置W3に来るように支持手段50上に位置決めされている。
Furthermore, the pair of upper and lower condenser lenses 31 and 34 are fixed on the support means 50 so that their focal points F1 and F2 coincide.
Specifically, the support means 50 shown in FIGS. 5 and 6 are in the same position.
At this time, the focal point F1 of the upper condenser lens 31 and the focal point F2 of the lower condenser lens 34 are both positioned at a position W3 on the right side in the horizontal direction with respect to the center W0 of the electric wire W on the outer peripheral surface of the electric wire W. Positioned on the support means 50.
 次に、本実施形態の切断装置100の作動について説明する。 Next, the operation of the cutting device 100 of this embodiment will be described.
 電線Wの絶縁被覆を切断する際には、まず最初に、例えば電線Wの半径寸法に等しい偏心量Dの偏心軸55を有した駆動軸54を選択して駆動モータ53に装着する。
 次いで、図1に示したように、偏心軸55が駆動軸54の回転軸線Cに対して水平方向左側の位置にあるときに、上側の集光レンズ31から電線Wに照射されるレーザー光L1の焦点F1が、電線Wの外周面のうち電線Wの中心W0に対して水平方向左側の位置W1に来るように、支持手段50に対して電線Wを位置決めする。
When cutting the insulation coating of the electric wire W, first, for example, the drive shaft 54 having the eccentric shaft 55 having the eccentric amount D equal to the radial dimension of the electric wire W is selected and attached to the drive motor 53.
Next, as shown in FIG. 1, when the eccentric shaft 55 is at a position on the left side in the horizontal direction with respect to the rotation axis C of the drive shaft 54, the laser light L <b> 1 irradiated to the electric wire W from the upper condenser lens 31. The electric wire W is positioned with respect to the support means 50 so that the focal point F1 is positioned at the position W1 on the left side in the horizontal direction with respect to the center W0 of the electric wire W in the outer peripheral surface of the electric wire W.
 次いで、図1、図4、図5に示したように、駆動軸54を図示時計方向に回転させて偏心軸55を駆動軸54の回転軸線Cの周りでC1,C2,C3の順に公転させる。
 このとき、駆動軸54の回転に先立ち、レーザー光供給経路切換手段40の駆動モータ45を作動させ、ミラー35を後退位置に移動させておく。
 これにより、レーザー光発生手段24が発生させたレーザー光Lは、その全てが上側の集光レンズ31に供給される。
 したがって、図1、図4、図5に示したように、上側の集光レンズ31から電線Wに向かって照射されたレーザー光L1は、電線Wの絶縁被覆のうち上側半分を切断する。
Next, as shown in FIGS. 1, 4, and 5, the drive shaft 54 is rotated in the clockwise direction in the drawing, and the eccentric shaft 55 is revolved around the rotation axis C of the drive shaft 54 in the order of C1, C2, and C3. .
At this time, prior to the rotation of the drive shaft 54, the drive motor 45 of the laser beam supply path switching means 40 is operated to move the mirror 35 to the retracted position.
As a result, all of the laser light L generated by the laser light generation means 24 is supplied to the upper condenser lens 31.
Therefore, as shown in FIGS. 1, 4, and 5, the laser light L <b> 1 irradiated from the upper condenser lens 31 toward the electric wire W cuts the upper half of the insulating coating of the electric wire W.
 その後、図6に示したように偏心軸55が公転軌道上のC3の位置に到達したときに、レーザー光供給経路切換手段40の駆動モータ45を作動させ、ミラー35を進出位置に移動させる。
 これにより、レーザー光発生手段24が発生させたレーザー光Lは、その全てが下側の集光レンズ34に供給される。
After that, as shown in FIG. 6, when the eccentric shaft 55 reaches the position C3 on the revolution track, the drive motor 45 of the laser light supply path switching means 40 is operated to move the mirror 35 to the advanced position.
As a result, all of the laser light L generated by the laser light generation means 24 is supplied to the lower condenser lens 34.
 次いで、図6、図7、図8に示したように、駆動軸54を図示時計方向に回転させて偏心軸55を駆動軸54の回転軸線Cの周りでC3,C4,C1の順に公転させる。
 これにより、下側の集光レンズ34から電線Wに向かって照射されたレーザー光L2は、電線Wの絶縁被覆のうち下側半分を切断する。
Next, as shown in FIGS. 6, 7, and 8, the drive shaft 54 is rotated in the clockwise direction in the drawing, and the eccentric shaft 55 is revolved around the rotation axis C of the drive shaft 54 in the order of C3, C4, and C1. .
Thereby, the laser beam L2 irradiated toward the electric wire W from the lower condenser lens 34 cuts the lower half of the insulating coating of the electric wire W.
 そして、駆動軸54を図示時計方向に回転させて、偏心軸55を駆動軸54の回転軸線Cの周りでC1,C2,C3,C4の順に公転させる動作を数回繰り返すことにより、上下一対の集光レンズ31,34から照射するレーザー光L1,L2によって、電線Wの絶縁被覆をその全周にわたって確実に切断することができる。 Then, by rotating the drive shaft 54 in the clockwise direction in the drawing and revolving the eccentric shaft 55 around the rotation axis C of the drive shaft 54 in the order of C1, C2, C3, C4 several times, The insulating coating of the electric wire W can be reliably cut over the entire circumference by the laser beams L1 and L2 irradiated from the condenser lenses 31 and 34.
 すなわち、本実施形態の電線の絶縁被覆をレーザー光で切断する方法および装置は、図9に模式的に示したように、前後方向(図示する紙面に対して垂直な方向)に延びる電線Wに向かって上下方向に照射するレーザー光を、電線横断方向(左右方向)ばかりでなく上下方向にも往復変位させることにより、このレーザー光の焦点Fが電線の外周面に沿って周方向に移動するように、言い換えるとレーザー光の焦点が円弧を描くように(1)~(5)へと順番に移動するようにしたものである。 That is, the method and apparatus for cutting the insulation coating of the electric wire of this embodiment with a laser beam is applied to the electric wire W extending in the front-rear direction (direction perpendicular to the paper surface shown in the figure), as schematically shown in FIG. The laser beam focal point F moves in the circumferential direction along the outer peripheral surface of the electric wire by reciprocally displacing the laser beam irradiated in the vertical direction toward the vertical direction as well as the electric wire transverse direction (left and right direction). In other words, in other words, the focal point of the laser beam is moved in order from (1) to (5) so as to draw an arc.
 これにより、レーザー光Lのうちその熱エネルギーによって絶縁被覆を切断可能な有効範囲の内側に電線Wの絶縁被覆を常に位置させることができるから、レーザー光Lの有効範囲より大きな半径寸法を有した電線Wの絶縁被覆、言い換えるとレーザー光Lの有効範囲よりも厚肉な絶縁被覆にレーザー光Lの熱エネルギーを集中させて確実に切断することができる。 Thereby, since the insulating coating of the electric wire W can always be located inside the effective range in which the insulating coating can be cut by the thermal energy of the laser beam L, the radius dimension is larger than the effective range of the laser beam L. The thermal energy of the laser beam L can be concentrated and reliably cut into the insulation coating of the electric wire W, in other words, the insulation coating thicker than the effective range of the laser beam L.
 さらに、本第1実施形態の電線の絶縁被覆をレーザー光で切断する方法および装置は、図10および図11に示したように、電線Wの絶縁被覆に向かって上下一対の集光レンズ31,34から上下一対のレーザー光L1,L2を照射するものであるから、電線Wを回転させることなく、絶縁被覆を確実に切断することができる。 Furthermore, the method and apparatus for cutting the electric wire insulation coating of the first embodiment with a laser beam are shown in FIG. 10 and FIG. Since the pair of upper and lower laser beams L1 and L2 are irradiated from 34, the insulating coating can be reliably cut without rotating the electric wire W.
 また、上下一対の集光レンズ31,34を支持手段50によって一体に支持するとともに、駆動軸54の前後方向に延びる回転軸線Cの周りに公転する偏心軸55によって支持手段50を駆動して上下方向および左右方向に移動させる構造であるから、上下一対の集光レンズ31,34の互いに一致する焦点Fが電線Wの絶縁被覆の外周面に沿って周方向に移動するように、上下一対の集光レンズ31,34を確実に駆動することができる。 In addition, the pair of upper and lower condenser lenses 31 and 34 are integrally supported by the support means 50, and the support means 50 is driven by the eccentric shaft 55 that revolves around the rotation axis C extending in the front-rear direction of the drive shaft 54. Since the focal points F of the pair of upper and lower condenser lenses 31 and 34 coincide with each other in the circumferential direction along the outer peripheral surface of the insulating coating of the electric wire W, the pair of upper and lower pairs are vertically moved. The condensing lenses 31 and 34 can be reliably driven.
 また、加工する電線を交換するなど、処理する電線Wの外径寸法を変更する場合は、例えばその交換する電線Wの半径寸法に等しい偏心量Dの偏心軸55を有した駆動軸54に交換することより、上下一対の集光レンズ31,34の互いに一致する焦点Fがその電線Wの絶縁被覆の外周面に沿って周方向に移動させることができる。 Further, when changing the outer diameter dimension of the electric wire W to be processed, such as exchanging the electric wire to be processed, for example, it is replaced with a drive shaft 54 having an eccentric shaft 55 having an eccentric amount D equal to the radial dimension of the electric wire W to be exchanged. By doing so, the focal points F of the pair of upper and lower condenser lenses 31 and 34 that coincide with each other can be moved in the circumferential direction along the outer peripheral surface of the insulating coating of the electric wire W.
 このとき、本実施形態の切断装置100は、図10に示したように、上側の集光レンズ31を(1)~(5)へと移動させながら電線Wの絶縁被覆の上側半分にレーザー光L1を照射するときには、レーザー光供給経路切換手段40によって、レーザー光発生手段24が発生させたレーザー光の全てを上側の集光レンズ31に供給する。
 また、図11に示したように、下側の集光レンズ34を(6)~(10)へと移動させながら電線Wの絶縁被覆の下側半分にレーザー光L2を照射するときには、レーザー光供給経路切換手段40によって、レーザー光発生手段24が発生させたレーザー光の全てを下側の集光レンズ34に供給する。
 これにより、スプリッタを用いてレーザー光を2分割して上下の集光レンズにそれぞれ50パーセントずつレーザー光を供給する場合とは異なり、レーザー光発生手段24が発生させたレーザー光を100パーセント用いて絶縁被覆を切断することができるから、レーザー光発生手段をその能力が半分程度のものに置き換えることが可能となり、大きなコストダウンにつながる。
At this time, as shown in FIG. 10, the cutting apparatus 100 according to the present embodiment moves the upper condenser lens 31 to (1) to (5) while moving the laser beam to the upper half of the insulation coating of the electric wire W. When irradiating L1, the laser light supply path switching means 40 supplies all of the laser light generated by the laser light generation means 24 to the upper condenser lens 31.
As shown in FIG. 11, when the lower light collecting lens 34 is moved from (6) to (10) and the lower half of the insulation coating of the electric wire W is irradiated with the laser light L2, the laser light is emitted. The supply path switching means 40 supplies all of the laser light generated by the laser light generation means 24 to the lower condenser lens 34.
Thus, unlike the case where the laser beam is divided into two by using a splitter and the laser beam is supplied to the upper and lower condenser lenses by 50 percent respectively, the laser beam generated by the laser beam generating means 24 is used by 100 percent. Since the insulating coating can be cut, the laser light generating means can be replaced with one having about half of its capability, leading to a significant cost reduction.
 ところで、レーザー光供給経路切換手段40を作動させて、上下一対の集光レンズ31,34に対するレーザー光の供給経路を切り換えるときには、その切り換えに若干の時間が必要であり、上下一対の集光レンズ31,34から電線Wの絶縁被覆に向かってレーザー光L1,L2が照射されないわずかな期間が生じる。
 このとき、上下一対の集光レンズ31,34の焦点F1,F2が電線Wの絶縁被覆の外周面上で周方向に移動する場合には、絶縁被覆の電線横断方向(左右方向)の両側部に、レーザー光L1,L2が供給されないことによって切断されない部分が生じるおそれがある。
By the way, when the laser light supply path switching means 40 is operated to switch the laser light supply paths to the pair of upper and lower condenser lenses 31, 34, it takes some time for the switching, and the pair of upper and lower condenser lenses. A slight period in which the laser beams L1 and L2 are not irradiated from 31 and 34 toward the insulating coating of the electric wire W occurs.
At this time, when the focal points F1 and F2 of the pair of upper and lower condenser lenses 31 and 34 move in the circumferential direction on the outer peripheral surface of the insulation coating of the electric wire W, both side portions of the insulation coating in the transverse direction (left and right direction) In addition, there is a possibility that a portion that is not cut off is generated due to the laser beams L1 and L2 not being supplied.
 これに対して、図12に示したように、上下一対の集光レンズ31,34(図10、図11を参照)の焦点F1,F2が、絶縁被覆の外周面に対して所定の間隔を開けた円軌道W1上で周方向に移動させることにより、上下一対の集光レンズ31,34の焦点F1,F2が電線Wの絶縁被覆の外周面からその電線横断方向(左右方向)に離間している期間を狙って、レーザー光供給経路切換手段40を切り換えることができる。 On the other hand, as shown in FIG. 12, the focal points F1 and F2 of the pair of upper and lower condenser lenses 31 and 34 (see FIGS. 10 and 11) have a predetermined distance from the outer peripheral surface of the insulating coating. By moving in the circumferential direction on the opened circular orbit W1, the focal points F1 and F2 of the pair of upper and lower condenser lenses 31 and 34 are separated from the outer peripheral surface of the insulation coating of the electric wire W in the electric wire transverse direction (left and right direction). The laser light supply path switching means 40 can be switched for the period of time.
 具体的に説明すると、図12(a)において、レーザー光L1,L2の焦点F1,F2が円軌道W1上の点P6を通過して点P1から点P2に到達する前に、レーザー光供給経路切換手段40の切り換えが完了するようにする。
 同様に、図12(b)において、レーザー光L1,L2の焦点F1,F2が円軌道W1の点P3を通過して点P4から点P5に到達する前に、レーザー光供給経路切換手段40の切り換えが完了するようにする。
 これにより、レーザー光L1の焦点F1が円軌道W1上の点P2から点P3に移動する間、すなわちレーザー光L1が電線Wを左から右側に横断する間、およびレーザー光L2の焦点F2が円軌道W1上の点P5から点P6に移動する間、すなわちレーザー光L2が電線Wを右から左に横断する間に、上下の集光レンズ31,34からレーザー光L1,L2を確実に照射することができるから、電線Wの絶縁被覆のうち左右方向の側部を確実に切断することができる。
More specifically, in FIG. 12A, the laser beam supply path before the focal points F1 and F2 of the laser beams L1 and L2 pass through the point P6 on the circular orbit W1 and reach the point P2 from the point P1. The switching of the switching means 40 is completed.
Similarly, in FIG. 12B, before the focal points F1 and F2 of the laser beams L1 and L2 pass through the point P3 of the circular orbit W1 and reach the point P5 from the point P4, the laser beam supply path switching unit 40 Allow the switch to complete.
Thereby, while the focal point F1 of the laser beam L1 moves from the point P2 on the circular orbit W1 to the point P3, that is, while the laser beam L1 crosses the electric wire W from the left to the right side, and the focal point F2 of the laser beam L2 is a circle. While moving from the point P5 on the trajectory W1 to the point P6, that is, while the laser beam L2 crosses the electric wire W from the right to the left, the laser beams L1 and L2 are reliably irradiated from the upper and lower condenser lenses 31 and 34. Therefore, the side part of the left-right direction among the insulation coating of the electric wire W can be cut | disconnected reliably.
 次に、図13および図14を参照し、本発明の電線の絶縁被覆をレーザー光で切断する方法および装置の変形例について説明する。 Next, with reference to FIG. 13 and FIG. 14, a modification of the method and apparatus for cutting the insulation coating of the electric wire of the present invention with a laser beam will be described.
 上述した実施形態におけるレーザー光L1,L2の焦点F1,F2は、絶縁被覆の外周面に沿って時計方向に移動するだけであり、反時計方向に移動することはなかった。
 これに対し、図13および図14に示した変形例においては、電線Wをその横断方向の断面で見たときに、その外周面のうち左右方向の端部W1,W3の部分をレーザー光L1,L2の焦点F1,F2が通過するときに、時計方向の移動と反時計方向の移動(周方向における前進と後退)を交互に繰り返すことにより、電線Wのうち左右方向の端部W1,W3の絶縁被覆をレーザー光L1,L2によってより一層確実に切断できるようになっている。
The focal points F1 and F2 of the laser beams L1 and L2 in the above-described embodiment only move in the clockwise direction along the outer peripheral surface of the insulating coating, and do not move in the counterclockwise direction.
On the other hand, in the modification example shown in FIGS. 13 and 14, when the electric wire W is viewed in the cross section in the transverse direction, the portions of the left and right end portions W1 and W3 of the outer peripheral surface are laser light L1. , L2 end points W1, W3 in the left-right direction of the electric wire W by alternately repeating clockwise movement and counterclockwise movement (forward and backward in the circumferential direction) when the focal points F1, F2 pass through. This insulation coating can be more reliably cut by the laser beams L1 and L2.
 具体的に説明すると、図13は、レーザー光L1,L2の焦点F1,F2が左右方向および上下方向に連動して変位する場合における、各焦点F1,F2の左右方向および上下方向の変位を分解して示したものである。
 レーザー光L1の焦点F1は、電線Wの左側の端部W1に差し掛かると、h1で示したように左右方向に往復変位すると同時に、v1で示したように上下方向に往復変位する。
 次いで、焦点F1は、電線Wの左側の端部W1から上側の端部W2を通過して右側の端部W3に移動するときは、h2/v2で示したように時計方向に連続して移動し、反時計方向に変位することはない。
 さらに、焦点F1は、電線Wの右側の端部W3に到達すると、h3で示したように左右方向に往復変位すると同時に、v3で示したように上下方向にも往復変位する。
More specifically, FIG. 13 decomposes the horizontal and vertical displacements of the focal points F1 and F2 when the focal points F1 and F2 of the laser beams L1 and L2 are displaced in conjunction with the horizontal and vertical directions. It is shown.
When the focal point F1 of the laser beam L1 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h1 and simultaneously reciprocates in the vertical direction as indicated by v1.
Next, when the focal point F1 moves from the left end W1 of the electric wire W through the upper end W2 to the right end W3, it moves continuously in the clockwise direction as indicated by h2 / v2. However, there is no displacement in the counterclockwise direction.
Further, when the focal point F1 reaches the right end W3 of the electric wire W, it reciprocates in the left-right direction as indicated by h3, and at the same time, reciprocates in the vertical direction as indicated by v3.
 全く同様に、レーザー光L2の焦点F2は、電線Wの右側の端部W3において、h3で示したように左右方向に往復変位すると同時に、v3で示したように上下方向に往復変位する。
 次いで、焦点F2は、電線Wの右側の端部W3から下側の端部W4を通過して左側の端部W1に移動するときは、h4/v4で示したように時計方向に連続して移動し、反時計方向に変位することはない。
 さらに、焦点F2は、電線Wの左側の端部W1に到達すると、h5で示したように左右方向に往復変位すると同時に、v5で示したように上下方向にも往復変位する。
Exactly the same, the focal point F2 of the laser beam L2 reciprocates in the left-right direction as indicated by h3 at the right end W3 of the electric wire W, and simultaneously reciprocates in the vertical direction as indicated by v3.
Next, when the focal point F2 moves from the right end W3 of the electric wire W through the lower end W4 to the left end W1, the focus F2 continues in the clockwise direction as indicated by h4 / v4. It moves and does not displace counterclockwise.
Further, when the focal point F2 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h5, and at the same time, reciprocates in the vertical direction as indicated by v5.
 これにより、電線Wのうち左側の端部W1および右側の端部W3の絶縁被覆に対し、レーザー光L1,L2の焦点F1,F2が反復して熱エネルギーを負荷するから、この部分の絶縁被覆をより一層確実に切断することができる。
 なお、焦点F1,F2のこのような時計方向/反時計方向の変位の反復は、上述した切断装置100の駆動モータ45の作動を制御して正転方向/逆転方向に反復回動させることによって達成することができる。
 また、焦点F1,F2の時計方向/反時計方向に反復する変位の大きさは、電線Wの絶縁被覆の厚みやレーザー光L1,L2の有効範囲に合わせて、駆動モータ45の駆動軸が正転方向/逆転方向に反復回動する角度範囲を調整することによって変更することができる。
As a result, the focal points F1 and F2 of the laser beams L1 and L2 repeatedly apply thermal energy to the insulating coating at the left end W1 and the right end W3 of the electric wire W. Can be cut even more reliably.
In addition, the repetition of such a clockwise / counterclockwise displacement of the focal points F1 and F2 is performed by controlling the operation of the drive motor 45 of the cutting device 100 described above to repeatedly rotate in the forward / reverse direction. Can be achieved.
Further, the magnitude of the displacement of the focal points F1 and F2 in the clockwise / counterclockwise direction is such that the drive shaft of the drive motor 45 is in accordance with the thickness of the insulation coating of the wire W and the effective range of the laser beams L1 and L2. It can be changed by adjusting the angular range of repeated rotation in the rolling direction / reversing direction.
 これに対し、図14に示した変形例は、レーザー光L1,L2の焦点F1,F2が左右方向および上下方向に個別に変位する場合における、各焦点F1,F2の左右方向および上下方向の変位を分解して示したものである。
 具体的に説明すると、レーザー光L1の焦点F1は、電線Wの左側の端部W1に差し掛かると、h1で示したように左右方向に往復変位するものの、v1で示したように上下方向には変位しない。
 次いで、焦点F1は、電線Wの左側の端部W1から上側の端部W2を通過して右側の端部W3に移動するときは、h2/v2で示したように時計方向に連続して移動し、反時計方向に変位することはない。
 さらに、焦点F1は、電線Wの右側の端部W3に到達すると、h3で示したように左右方向に往復変位するものの、v3で示したように上下方向には変位しない。
On the other hand, in the modification shown in FIG. 14, when the focal points F1 and F2 of the laser beams L1 and L2 are individually displaced in the left and right directions and the vertical direction, the horizontal and vertical displacements of the focal points F1 and F2 are obtained. Is a disassembled view.
Specifically, when the focal point F1 of the laser beam L1 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h1, but in the vertical direction as indicated by v1. Is not displaced.
Next, when the focal point F1 moves from the left end W1 of the electric wire W through the upper end W2 to the right end W3, it moves continuously in the clockwise direction as indicated by h2 / v2. However, there is no displacement in the counterclockwise direction.
Further, when the focal point F1 reaches the right end W3 of the electric wire W, it reciprocates in the left-right direction as indicated by h3, but does not displace in the vertical direction as indicated by v3.
 全く同様に、レーザー光L2の焦点F2は、電線Wの右側の端部W3において、h3で示したように左右方向に往復変位するものの、v3で示したように上下方向には変位しない。
 次いで、焦点F2は、電線Wの右側の端部W3から下側の端部W4を通過して左側の端部W1に移動するときは、h4/v4で示したように時計方向に連続して移動し、反時計方向に変位することはない。
 さらに、焦点F2は、電線Wの左側の端部W1に到達すると、h5で示したように左右方向に往復変位するものの、v5で示したように上下方向には変位しない。
Exactly the same, the focal point F2 of the laser beam L2 is reciprocated in the left-right direction as indicated by h3 at the right end W3 of the electric wire W, but is not displaced in the vertical direction as indicated by v3.
Next, when the focal point F2 moves from the right end W3 of the electric wire W through the lower end W4 to the left end W1, the focus F2 continues in the clockwise direction as indicated by h4 / v4. It moves and does not displace counterclockwise.
Further, when the focal point F2 reaches the left end W1 of the electric wire W, it reciprocates in the left-right direction as indicated by h5, but does not move in the vertical direction as indicated by v5.
 これにより、この変形例においても、レーザー光L1の焦点F1,F2は、電線Wの左側の端部W1および右側の端部W3における絶縁被覆に対し繰り返して熱エネルギーを負荷するから、この部分の絶縁被覆をより一層確実に切断することができる。
 なお、レーザー光L1の焦点F1,F2のこのような時計方向および反時計方向の変位は、上述した切断装置100とは異なり、リニアモータあるいはボールねじを用いて基台23を駆動することによって達成することができる。
Thereby, also in this modification, the focal points F1 and F2 of the laser beam L1 repeatedly apply thermal energy to the insulating coating at the left end W1 and the right end W3 of the electric wire W. The insulating coating can be cut more reliably.
The clockwise and counterclockwise displacements of the focal points F1 and F2 of the laser light L1 are achieved by driving the base 23 using a linear motor or a ball screw, unlike the cutting device 100 described above. can do.
 電線Wの左側の端部W1および右側の端部W3においてレーザー光L1,L2の焦点F1,F2を上下方向/左右方向に反復させて変位させることは、図12を参照して説明したように、レーザー光L1,L2の焦点F1,F2を電線Wの絶縁被覆の外周面に対して所定の間隔を開けた円軌道W1上で周方向に変位させる場合に、特に有用である。
 具体的に説明すると、図12(a)に示したように、レーザー光L1の焦点F1が円軌道W1上における左右方向の両端部P1,P4に達したときに、焦点F1は電線Wの外周面から所定の間隔だけ離れた位置にあるはずである。
 ところが、電線Wの絶縁被覆が変形して楕円状になっていると、レーザー光L1の焦点F1は電線Wの外周面から予想外に離れ、絶縁被覆を確実に切断できなくなるおそれがある。
 このとき、レーザー光L1の焦点F1を上下方向/左右方向に反復させて変位させれば、離れて位置している絶縁被覆にレーザー光L1の焦点F1を確実に照射することができる。
 したがって、レーザー光L1,L2の焦点F1,F2を、電線Wの絶縁被覆の外周面に対して所定の間隔を開けた円軌道W1上で周方向に変位させる場合においても、電線Wの絶縁被覆を確実に切断できることになる。
As described with reference to FIG. 12, the focal points F1 and F2 of the laser beams L1 and L2 are repeatedly displaced in the vertical direction and the horizontal direction at the left end W1 and the right end W3 of the electric wire W. This is particularly useful when the focal points F1 and F2 of the laser beams L1 and L2 are displaced in the circumferential direction on a circular orbit W1 having a predetermined interval with respect to the outer peripheral surface of the insulation coating of the electric wire W.
More specifically, as shown in FIG. 12 (a), when the focal point F1 of the laser beam L1 reaches the left and right ends P1 and P4 on the circular orbit W1, the focal point F1 is the outer periphery of the electric wire W. It should be at a predetermined distance from the surface.
However, if the insulating coating of the electric wire W is deformed and becomes elliptical, the focal point F1 of the laser light L1 is unexpectedly separated from the outer peripheral surface of the electric wire W, and there is a possibility that the insulating coating cannot be reliably cut.
At this time, if the focal point F1 of the laser beam L1 is repeatedly displaced in the up / down direction and the left / right direction, the focal point F1 of the laser beam L1 can be reliably irradiated to the insulating coating located at a distance.
Therefore, even when the focal points F1 and F2 of the laser beams L1 and L2 are displaced in the circumferential direction on the circular orbit W1 having a predetermined interval with respect to the outer peripheral surface of the insulating coating of the electric wire W, the insulating coating of the electric wire W Can be cut reliably.
 次に図15~図25を参照し、駆動軸の回転中に偏心軸の偏心量を変更する偏心量可変機構を備えた切断装置の各実施形態について説明する。
 すなわち、偏心量可変機構を用いて偏心軸の偏心量を可変させることにより、電線外被の肉厚がレーザー光の有効範囲(図29参照)より厚い場合でも切断することが可能となる。
Next, with reference to FIGS. 15 to 25, each embodiment of a cutting apparatus provided with an eccentricity variable mechanism that changes the eccentricity of the eccentric shaft during rotation of the drive shaft will be described.
That is, by changing the amount of eccentricity of the eccentric shaft using the eccentricity variable mechanism, it is possible to cut even when the thickness of the wire jacket is thicker than the effective range of the laser beam (see FIG. 29).
 第2実施形態
 図15~図17に示した第2実施形態の切断装置200は、上述した第1実施形態の切断装置100における駆動モータ53,駆動軸54および偏心軸55(図2参照)の部分を偏心量可変機構60に置き換えたものである。
 具体的に説明すると、図15に示した駆動モータ61が駆動モータ53に対応し、かつ偏心軸65が偏心軸55に対応している。
Second Embodiment The cutting device 200 of the second embodiment shown in FIGS. 15 to 17 includes a drive motor 53, a drive shaft 54, and an eccentric shaft 55 (see FIG. 2) in the cutting device 100 of the first embodiment described above. The portion is replaced with a variable eccentricity mechanism 60.
More specifically, the drive motor 61 shown in FIG. 15 corresponds to the drive motor 53, and the eccentric shaft 65 corresponds to the eccentric shaft 55.
 駆動モータ61の駆動軸62には、保持部材63が外嵌されて一体に回転するようになっている。
 この保持部材63は、厚肉な有底円筒状の部材であって、その先端には回転軸線Cに対して半径方向に延びる長溝63aが凹設されている。
 また、この保持部材63の外周面には、直径方向に対向しつつ回転軸線Cに沿って前後方向(図示する紙面において左右方向)に延びる一対の凹溝63b,63cが凹設されている。
A holding member 63 is fitted on the drive shaft 62 of the drive motor 61 so as to rotate integrally.
The holding member 63 is a thick bottomed cylindrical member, and a long groove 63a extending in the radial direction with respect to the rotation axis C is recessed at the tip.
In addition, a pair of concave grooves 63b and 63c extending in the front-rear direction (left-right direction in the drawing sheet) along the rotation axis C while being opposed to the diameter direction are provided in the outer peripheral surface of the holding member 63.
 また、保持部材の先端の長溝63a内には、角柱状のスライド部材64が半径方向にスライド自在に嵌装されて、駆動軸62と一体に回転するようになっている。
 さらに、このスライド部材64の端部には偏心軸65が立設されている。
 これにより、この偏心軸65は、駆動軸62の回転に伴って回転軸線Cの回りに公転しつつ、半径方向に変位することができる。
In addition, a prismatic slide member 64 is fitted in the long groove 63a at the tip of the holding member so as to be slidable in the radial direction, and rotates integrally with the drive shaft 62.
Further, an eccentric shaft 65 is erected at the end of the slide member 64.
Thereby, the eccentric shaft 65 can be displaced in the radial direction while revolving around the rotation axis C as the drive shaft 62 rotates.
 また、保持部材63には、薄肉な有底円筒状の筒状部材66が、周方向に相対回動可能に外嵌されている。
 この筒状部材66の側面66aには、回転軸線Cの回りに螺旋状に延びる第1のカム溝66b,66cがそれぞれ削設されている。
 さらに、この筒状部材66の底面部分66dには、湾曲して延びる第2のカム溝66eが貫設されて偏心軸65を受け入れている。
 なお、この筒状部材66は、保持部材63の外周面に突設されている図示されないピンと係合し、保持部材63に対して周方向には相対回動可能であるが、軸線方向には相対変不能となっている。
Further, a thin-walled cylindrical member 66 with a bottom is attached to the holding member 63 so as to be relatively rotatable in the circumferential direction.
On the side surface 66a of the cylindrical member 66, first cam grooves 66b and 66c extending spirally around the rotation axis C are respectively cut.
Further, a second cam groove 66e extending in a curved manner is formed in the bottom surface portion 66d of the cylindrical member 66 to receive the eccentric shaft 65.
The cylindrical member 66 engages with a pin (not shown) projecting from the outer peripheral surface of the holding member 63 and can rotate relative to the holding member 63 in the circumferential direction, but in the axial direction. The relative change is impossible.
 さらに、保持部材63の周囲に同軸に配設されている大径な環状部材71の内周面には、直径方向に対向する一対の係合ピン72a,72bが突設されている。
 そして、これらの係合ピン72a,72bは、それぞれ第1のカム溝66b,66cに入り込むとともに、その先端は保持部材63の凹溝63b,63cに入り込んでいる。
 これにより、この環状部材71は、駆動モータ61の作動に伴って保持部材63および筒状部材66と一体に回転する。
Further, a pair of engaging pins 72 a and 72 b that are opposed to each other in the diametrical direction protrude from the inner peripheral surface of the large-diameter annular member 71 that is coaxially disposed around the holding member 63.
The engaging pins 72 a and 72 b enter the first cam grooves 66 b and 66 c, respectively, and the tips thereof enter the concave grooves 63 b and 63 c of the holding member 63.
As a result, the annular member 71 rotates integrally with the holding member 63 and the cylindrical member 66 in accordance with the operation of the drive motor 61.
 また、環状部材72の外周に同軸に配設されている前後一対のアキシャル軸受73a,73bには第2の環状部材74が外嵌している。
 そして、この第2の環状部材74の直径方向の一端に設けられている支持部材75は、リニアガイド76によって回転軸線Cと平行に案内されている。
 また、第2の環状部材74の直径方向の他端に設けられている支持部材77にはボールねじ78が螺合している。
 これにより、駆動モータ79によってボールねじ78を正逆両方向に回転駆動すると、第2の環状部材74、したがって第1の環状部材71が回転軸線Cに沿って前後方向に変位する。
A second annular member 74 is externally fitted to a pair of front and rear axial bearings 73 a and 73 b that are coaxially disposed on the outer periphery of the annular member 72.
The support member 75 provided at one end in the diameter direction of the second annular member 74 is guided in parallel with the rotational axis C by the linear guide 76.
A ball screw 78 is screwed into a support member 77 provided at the other end in the diameter direction of the second annular member 74.
Accordingly, when the ball screw 78 is rotationally driven in both forward and reverse directions by the drive motor 79, the second annular member 74, and thus the first annular member 71, is displaced in the front-rear direction along the rotation axis C.
 図15に示したように、第1の環状部材71が前後方向の中立位置にあると、筒状部材66の保持部材63に対する相対回動の位置もまた中立位置にある。
 これにより、第2のカム溝66eは、偏心軸65をその半径方向変位の中立位置に保持しており、偏心軸65の偏心量はD1となる。
As shown in FIG. 15, when the first annular member 71 is in the neutral position in the front-rear direction, the position of the relative rotation of the tubular member 66 relative to the holding member 63 is also in the neutral position.
As a result, the second cam groove 66e holds the eccentric shaft 65 at the neutral position of the radial displacement, and the eccentric amount of the eccentric shaft 65 is D1.
 このとき、図16に示したように、第1の環状部材71を偏心軸65の側へと前方に移動させると、筒状部材66の第1のカム溝66b,66cに係合ピン72a,72bがそれぞれ噛み合っていることにより、筒状部材66は矢印Aで示したように、保持部材63に対して反時計方向に相対回動する。
 すると、第2のカム溝66eは、偏心軸65をその半径方向内側に変位させて保持するので、偏心軸65の偏心量はD2(<D1)となる。
At this time, as shown in FIG. 16, when the first annular member 71 is moved forward to the eccentric shaft 65 side, the engagement pins 72a and 66c are inserted into the first cam grooves 66b and 66c of the tubular member 66, respectively. As a result of the meshing of 72b, the cylindrical member 66 rotates relative to the holding member 63 in the counterclockwise direction as indicated by an arrow A.
Then, since the second cam groove 66e displaces and holds the eccentric shaft 65 inward in the radial direction, the eccentric amount of the eccentric shaft 65 becomes D2 (<D1).
 これに対して、図17に示したように、第1の環状部材71を駆動モータ79の側へと後方に移動させると、筒状部材66の第1のカム溝66b,66cに係合ピン72a,72bがそれぞれ噛み合っていることにより、筒状部材66は矢印Bで示したように、保持部材63に対して時計方向に相対回動する。
 すると、第2のカム溝66eは、偏心軸65をその半径方向外側に変位させて保持するので、偏心軸65の偏心量はD3(>D1)となる。
On the other hand, as shown in FIG. 17, when the first annular member 71 is moved rearward toward the drive motor 79, the engagement pins are engaged with the first cam grooves 66b and 66c of the tubular member 66. As a result of the meshing of 72 a and 72 b, the cylindrical member 66 rotates relative to the holding member 63 in the clockwise direction as indicated by an arrow B.
Then, since the second cam groove 66e displaces and holds the eccentric shaft 65 radially outward, the eccentric amount of the eccentric shaft 65 is D3 (> D1).
 すなわち、本第1実施形態の切断装置200においては、駆動軸62が回転している間に駆動モータ79を作動させることにより、筒状部材66の保持部材63に対する相対回動の位置、したがって回転軸線Cに対する偏心軸65の偏心量を変化させることができる。 That is, in the cutting device 200 of the first embodiment, the drive motor 79 is operated while the drive shaft 62 is rotating, so that the relative rotation position of the cylindrical member 66 with respect to the holding member 63, and therefore the rotation. The amount of eccentricity of the eccentric shaft 65 with respect to the axis C can be changed.
 これにより、上下一対の集光レンズ31,34の互いに一致している焦点F1,F2を、例えば最初は絶縁被覆の表面上に配置するとともに、絶縁被覆の切断が進むに連れて絶縁被覆の内部に入り込ませることができる。
 したがって、レーザー光L1,L2の熱エネルギーによって絶縁被覆を切断可能な有効範囲よりも肉厚の厚い絶縁被覆についても、レーザー光L1,L2によって確実に切断することが可能となる。
As a result, the focal points F1 and F2 of the pair of upper and lower condensing lenses 31 and 34 that are coincident with each other are initially disposed on the surface of the insulating coating, for example, and the inside of the insulating coating progresses as the cutting of the insulating coating proceeds. Can get in.
Therefore, it is possible to reliably cut the insulating coating having a thickness larger than the effective range in which the insulating coating can be cut by the thermal energy of the laser beams L1 and L2 by the laser beams L1 and L2.
 第3実施形態
 次に図18および図19を参照し、第2実施形態の切断装置について説明する。
Third Embodiment Next, a cutting device according to a second embodiment will be described with reference to FIGS. 18 and 19.
 本第3実施形態の切断装置300は、上述した第2実施形態の切断装置200における偏心量可変機構60を変更したものであるが、同一の部分には同一の参照符号を付して重複した説明を省略する。 The cutting apparatus 300 according to the third embodiment is obtained by changing the eccentricity variable mechanism 60 in the cutting apparatus 200 according to the second embodiment described above, but the same parts are denoted by the same reference numerals and are duplicated. Description is omitted.
 本第3実施形態の切断装置300における偏心量可変機構80においては、筒状部材81の内周面のうち先端近傍に内歯歯車82が形成されている。
 また、保持部材63の先端には、回転軸線Cに対して偏心しつつ平行に延びる回動軸83によって平歯車84が回動自在に軸支されつつ内歯歯車82と噛み合っている。
 そして、この平歯車84の外周近傍に偏心軸85が立設されている。
In the eccentricity variable mechanism 80 in the cutting device 300 of the third embodiment, an internal gear 82 is formed in the vicinity of the tip of the inner peripheral surface of the cylindrical member 81.
Further, a spur gear 84 is pivotally supported by a rotation shaft 83 extending in parallel to the tip end of the holding member 63 while being eccentric with respect to the rotation axis C, and meshed with the internal gear 82.
An eccentric shaft 85 is erected near the outer periphery of the spur gear 84.
 このとき、図18に示したように、第1の環状部材71が最も後退した基準位置にあるときは、筒状部材81の保持部材63に対する相対回動の位置もまた基準位置にある。
 これに伴い、筒状部材81の内歯歯車82と噛み合っている平歯車84もまた基準位置にあるから、偏心軸85の偏心量はD1となる。
At this time, as shown in FIG. 18, when the first annular member 71 is at the most retracted reference position, the relative rotation position of the tubular member 81 with respect to the holding member 63 is also at the reference position.
Accordingly, since the spur gear 84 meshing with the internal gear 82 of the cylindrical member 81 is also at the reference position, the eccentric amount of the eccentric shaft 85 is D1.
 これに対して、図19に示したように、第1の環状部材71を最も前方に移動させると、筒状部材81の第1のカム溝66b,66cに係合ピン72a,72bがそれぞれ噛み合っていることにより、筒状部材81は矢印Aで示したように、保持部材63に対して反時計方向に相対回動する。
 すると、筒状部材81の内歯歯車82と噛み合っている平歯車84もまた回動軸83の回りで反時計方向に回動するから、偏心軸85の偏心量はD2(<D1)となる。
On the other hand, as shown in FIG. 19, when the first annular member 71 is moved most forward, the engaging pins 72a and 72b mesh with the first cam grooves 66b and 66c of the tubular member 81, respectively. As a result, the cylindrical member 81 rotates relative to the holding member 63 in the counterclockwise direction as indicated by an arrow A.
Then, since the spur gear 84 meshed with the internal gear 82 of the cylindrical member 81 also rotates counterclockwise around the rotation shaft 83, the eccentric amount of the eccentric shaft 85 becomes D2 (<D1). .
 すなわち、本第3実施形態の切断装置300においては、駆動軸62が回転している間に駆動モータ79を作動させることにより、筒状部材81の保持部材63に対する相対回動の位置、したがって回転軸線Cに対する偏心軸85の偏心量を変化させることができる。 That is, in the cutting device 300 of the third embodiment, the drive motor 79 is operated while the drive shaft 62 is rotating, whereby the relative rotation position of the cylindrical member 81 with respect to the holding member 63, and therefore the rotation. The amount of eccentricity of the eccentric shaft 85 with respect to the axis C can be changed.
 第1変形例
 次に図20を参照し、第3実施形態の切断装置300の変形例について説明する。
First Modification Next, a modification of the cutting device 300 according to the third embodiment will be described with reference to FIG.
 この変形例の切断装置350においては、駆動モータ61に並設された第2の駆動モータ86の駆動軸87によってプーリ88を回転駆動する。
 そして、このプーリ88と筒状部材81との間にタイミングベルト89が巻き回されており、第2の駆動モータ86によって筒状部材81を回転駆動できるようになっている。
In the cutting device 350 of this modification, the pulley 88 is rotationally driven by the drive shaft 87 of the second drive motor 86 provided in parallel with the drive motor 61.
A timing belt 89 is wound between the pulley 88 and the tubular member 81, and the tubular member 81 can be driven to rotate by the second drive motor 86.
 このとき、駆動モータ61と第2の駆動モータ86を連動させて保持部材63と筒状部材81の回転を同期させると、平歯車84は回動軸83の回りに自転することなく回転軸線Cの回りで公転するから、偏心軸85の偏心量を固定しつつ偏心軸85を回転軸線Cの回りに公転させることができる。 At this time, if the drive motor 61 and the second drive motor 86 are interlocked to synchronize the rotation of the holding member 63 and the cylindrical member 81, the spur gear 84 does not rotate around the rotation shaft 83 and rotates. Therefore, the eccentric shaft 85 can be revolved around the rotation axis C while the eccentric amount of the eccentric shaft 85 is fixed.
 これに対して、保持部材63と筒状部材81の回転数をわずかに異ならせると、平歯車84は回動軸83の回りに自転しつつ回転軸線Cの回りを公転するから、偏心軸85の偏心量を変化させることができる。
 そして、偏心軸85の偏心量が所望の値となったときに保持部材63と筒状部材81の回転を再び同期させることにより、偏心軸85の偏心量を所望の値に固定することができる。
On the other hand, if the rotational speeds of the holding member 63 and the cylindrical member 81 are slightly different, the spur gear 84 revolves around the rotation axis C while rotating around the rotation shaft 83, and therefore the eccentric shaft 85. The amount of eccentricity can be changed.
Then, when the eccentric amount of the eccentric shaft 85 reaches a desired value, the eccentric amount of the eccentric shaft 85 can be fixed to a desired value by synchronizing the rotation of the holding member 63 and the cylindrical member 81 again. .
 なお、保持部材63と筒状部材81の回転数がわずかに異なった状態で運転を続けると、偏心軸85の偏心量が絶え間なく変化する。
 すると、上下一対の集光レンズ31,34から絶縁被覆に照射されるレーザー光L1,L2の焦点F1,F2は、絶縁被覆の外側から絶縁被覆の内部に入り込む動きと、絶縁被覆の内部から絶縁被覆の外側に出て来る動きとを交互に繰り返しつつ、絶縁被覆の表面に沿って周方向に移動する。
 これにより、電線Wの絶縁被覆に変形が生じている場合や、電線Wの位置決めにズレが生じている場合にも、レーザー光L1,L2によって絶縁被覆を確実に切断することができる。
If the operation is continued with the holding member 63 and the cylindrical member 81 having slightly different rotational speeds, the eccentric amount of the eccentric shaft 85 changes continuously.
Then, the focal points F1 and F2 of the laser beams L1 and L2 applied to the insulating coating from the pair of upper and lower condenser lenses 31 and 34 move into the insulating coating from the outside of the insulating coating, and are insulated from the inside of the insulating coating. It moves in the circumferential direction along the surface of the insulating coating while alternately repeating the movement coming out of the coating.
Thereby, even when the insulation coating of the electric wire W is deformed or when the positioning of the electric wire W is displaced, the insulating coating can be reliably cut by the laser beams L1 and L2.
 なお、保持部材63と筒状部材81の間に摩擦要素を介装して、保持部材63と筒状部材81が一体に回転するようにすれば、偏心軸85の偏心量を固定しつつ、偏心軸85を回転軸線Cの回りで公転させることができる。
 そして、第2の駆動モータ86を作動させて筒状部材81を回転駆動し、あるいは筒状部材81の回転を制動して、摩擦要素の摩擦力に抗して筒状部材81を保持部材63に対して強制的に相対回転させることにより、偏心軸85の偏心量を変更することもできる。
In addition, if a friction element is interposed between the holding member 63 and the cylindrical member 81 so that the holding member 63 and the cylindrical member 81 rotate integrally, the eccentric amount of the eccentric shaft 85 is fixed. The eccentric shaft 85 can be revolved around the rotation axis C.
Then, the second drive motor 86 is operated to rotationally drive the cylindrical member 81, or the rotation of the cylindrical member 81 is braked to hold the cylindrical member 81 against the frictional force of the friction element. The amount of eccentricity of the eccentric shaft 85 can also be changed by forcibly making a relative rotation.
 第4実施形態
 次に図21~図23を参照し、第4実施形態の切断装置について説明する。
Fourth Embodiment Next, a cutting device according to a fourth embodiment will be described with reference to FIGS.
 本第4実施形態の切断装置400は、上述した第1実施形態の切断装置200における偏心量可変機構60を変更したものであり、同一の部分には同一の参照符号を付して重複した説明を省略する。 The cutting device 400 according to the fourth embodiment is obtained by changing the eccentric amount variable mechanism 60 in the cutting device 200 according to the first embodiment described above, and the same parts are denoted by the same reference numerals and duplicated description. Is omitted.
 本第4実施形態の切断装置400における偏心量可変機構90においては、筒状部材91の内周面のうち先端の近傍部分に第2のカム92が形成されている。
 この第2のカム92は、回転軸線Cに対し所定量だけ偏心しつつ平行に延びる軸線を有した円筒内周面として形成されている。
In the eccentricity variable mechanism 90 in the cutting device 400 of the fourth embodiment, a second cam 92 is formed in the vicinity of the tip of the inner peripheral surface of the cylindrical member 91.
The second cam 92 is formed as a cylindrical inner peripheral surface having an axis extending in parallel to the rotation axis C while being eccentric by a predetermined amount.
 一方、保持部材63の先端面には回転軸線Cに対して半径方向(図示する紙面に対して垂直な方向に)延びる凹溝63dが凹設されている。そして、この凹溝63dには円盤状の中間部材93に連設された角柱状の突部93aがスライド自在に内嵌している。
 さらに、中間部材93のうち突部93aとは反対の側には、突部93aが延びる方向に対して直交する方向に延びる凹溝93bが凹設されている。そして、この凹溝93bにはスライド部材94がスライド自在に内嵌している。
 なお、スライド部材94の端部には偏心軸95が立設されている。
On the other hand, a concave groove 63 d extending in the radial direction (in a direction perpendicular to the paper surface shown in the drawing) with respect to the rotation axis C is provided in the distal end surface of the holding member 63. In addition, a prismatic protrusion 93a connected to the disk-shaped intermediate member 93 is slidably fitted in the concave groove 63d.
Furthermore, a concave groove 93b extending in a direction orthogonal to the direction in which the protrusion 93a extends is formed in the intermediate member 93 on the side opposite to the protrusion 93a. A slide member 94 is slidably fitted in the concave groove 93b.
An eccentric shaft 95 is provided upright at the end of the slide member 94.
 これにより、中間部材93は、保持部材63とスライド部材94の間に介装されたオルダム継手として作用し、回転軸線Cに対して半径方向に延びつつ互いに直交する2つの方向、具体的に説明すると、図21において図示する紙面に対して垂直な方向および図示する紙面において上下の方向の2つの方向において、スライド部材94が保持部材63に対して相対変位できるようにしている。 As a result, the intermediate member 93 acts as an Oldham coupling interposed between the holding member 63 and the slide member 94, and extends in the radial direction with respect to the rotation axis C while being orthogonal to each other. Then, the slide member 94 can be displaced relative to the holding member 63 in two directions, a direction perpendicular to the paper surface shown in FIG. 21 and a vertical direction on the paper surface shown in the drawing.
 このとき、図21に示したように、第1の環状部材71が最も後退した基準位置にあるときは、筒状部材91の保持部材63に対する相対回動もまた基準位置にある。
 これに伴い、筒状部材91の第2のカム92と嵌合しているスライド部材94の位置もまた基準位置にあるから、偏心軸95の偏心量はD1となる。
At this time, as shown in FIG. 21, when the first annular member 71 is at the most retracted reference position, the relative rotation of the tubular member 91 with respect to the holding member 63 is also at the reference position.
Along with this, the position of the slide member 94 fitted to the second cam 92 of the cylindrical member 91 is also at the reference position, so the eccentric amount of the eccentric shaft 95 is D1.
 これに対して、図22に示したように、第1の環状部材71を中間位置へと前方に移動させると、筒状部材91は保持部材63に対して矢印Aで示したように反時計方向に90度回動する。
 これにより、筒状部材91に形成されている第2のカム92は、スライド部材94を上記した2つの方向に変位させるから、偏心軸95の偏心量はD2(<D1)となる。
On the other hand, as shown in FIG. 22, when the first annular member 71 is moved forward to the intermediate position, the cylindrical member 91 is counterclockwise as shown by the arrow A with respect to the holding member 63. Turn 90 degrees in the direction.
As a result, the second cam 92 formed on the cylindrical member 91 displaces the slide member 94 in the two directions described above, so the eccentric amount of the eccentric shaft 95 is D2 (<D1).
 さらに、図23に示したように第1の環状部材71を最も前方に移動させると、筒状部材91は保持部材63に対し矢印Aで示したように反時計方向にさらに90度回動する。
 これにより、筒状部材91に形成されている第2のカム92は、スライド部材94を上記した2つの方向にさらに変位させ、偏心軸95の偏心量はD3(<D2)となる。
Further, when the first annular member 71 is moved most forward as shown in FIG. 23, the cylindrical member 91 is further rotated 90 degrees counterclockwise as indicated by the arrow A with respect to the holding member 63. .
Accordingly, the second cam 92 formed on the cylindrical member 91 further displaces the slide member 94 in the two directions described above, and the eccentric amount of the eccentric shaft 95 becomes D3 (<D2).
 すなわち、本第4実施形態の切断装置400においては、駆動軸62が回転している間に駆動モータ79を作動させることにより、筒状部材91の保持部材63に対する相対回動の位置、したがって回転軸線Cに対する偏心軸95の偏心量を変化させることができる。
 また、スライド部材94に筒状部材の第2のカム92が外嵌していることにより、スライド部材94には半径方向のガタが生じることがない。
 これにより、この切断装置400における上下一対の集光レンズ31,34をより一層正確に位置決めすることができる。
That is, in the cutting device 400 of the fourth embodiment, the drive motor 79 is operated while the drive shaft 62 is rotating, so that the relative rotation position of the cylindrical member 91 with respect to the holding member 63, and therefore the rotation. The amount of eccentricity of the eccentric shaft 95 with respect to the axis C can be changed.
Further, since the second cam 92 which is a cylindrical member is externally fitted to the slide member 94, the slide member 94 does not have radial play.
Thereby, the upper and lower pair of condensing lenses 31 and 34 in the cutting device 400 can be positioned more accurately.
 第5実施形態
 次に図24を参照し、第5実施形態の切断装置について説明する。
Fifth Embodiment Next, a cutting device according to a fifth embodiment will be described with reference to FIG.
 本第5実施形態の切断装置500は、上述した第1~第4実施形態の切断装置とは異なり、偏心軸を所定の偏心量へと能動的に制御しつつ変位させるものではなく、所定の偏心量の範囲内で偏心軸を受動的に偏心させる構造となっている。 Unlike the cutting devices of the first to fourth embodiments described above, the cutting device 500 of the fifth embodiment does not displace the eccentric shaft while actively controlling the eccentric shaft to a predetermined eccentric amount. The eccentric shaft is passively decentered within the range of the amount of eccentricity.
 具体的に説明すると、駆動モータ61の駆動軸62には遊星歯車ユニット510が接続されている。
 この遊星歯車ユニット510は、支持部材511によって切断装置500の基礎部分に支持されるとともに、駆動軸62によって回転駆動される太陽歯車512、ユニットハウジングに固定された環状歯車513、図示されないキャリヤに支持された遊星歯車514を有している。
 そして、遊星歯車514の外周部分に偏心軸515が立設されている。
More specifically, a planetary gear unit 510 is connected to the drive shaft 62 of the drive motor 61.
The planetary gear unit 510 is supported by a base portion of the cutting device 500 by a support member 511, and is also supported by a sun gear 512 that is rotationally driven by a drive shaft 62, an annular gear 513 that is fixed to the unit housing, and a carrier (not shown). Planetary gears 514 are provided.
An eccentric shaft 515 is erected on the outer peripheral portion of the planetary gear 514.
 これにより、環状歯車513を固定した状態で、駆動モータ61を作動させて太陽歯車512を回転させると、遊星歯車514は回転軸線Cの回りで公転しつつ自転するから、偏心軸515は矢印Aで示したように、所定の範囲Dの内側で半径方向に変位しつつ回転軸線Cの周りを周回する。
 すると、上下一対の集光レンズ31,34から絶縁被覆に照射されるレーザー光L1,L2の焦点F1,F2は、絶縁被覆の外側から絶縁被覆の内部に入り込む動きと、絶縁被覆の内部から絶縁被覆の外側に出て来る動きとを交互に繰り返しつつ、絶縁被覆の表面に沿って周回する。
 これにより、電線Wの絶縁被覆に変形が生じている場合や、電線Wの位置決めにズレが生じている場合にも、レーザー光L1,L2によって絶縁被覆を確実に切断することができる。
Accordingly, when the drive gear 61 is operated and the sun gear 512 is rotated with the annular gear 513 fixed, the planetary gear 514 rotates while revolving around the rotation axis C, so that the eccentric shaft 515 is moved to the arrow A. As indicated by, the rotation around the rotation axis C is performed while being displaced radially inside the predetermined range D.
Then, the focal points F1 and F2 of the laser beams L1 and L2 applied to the insulating coating from the pair of upper and lower condenser lenses 31 and 34 move into the insulating coating from the outside of the insulating coating, and are insulated from the inside of the insulating coating. It circulates along the surface of the insulating coating while alternately repeating the movements coming out of the coating.
Thereby, even when the insulation coating of the electric wire W is deformed or when the positioning of the electric wire W is displaced, the insulating coating can be reliably cut by the laser beams L1 and L2.
 第2変形例
 次に図25を参照し、第5実施形態の切断装置500の変形例について説明する。
Second Modified Example Next, with reference to FIG. 25, a modified example of the cutting device 500 of the fifth embodiment will be described.
 図25に示した変形例の切断装置550における偏心量可変機構551は、駆動モータ552によって回転駆動される太陽歯車553と、この太陽歯車553に対して相対回転可能に支持された遊星歯車554および環状歯車555を有している。そして、遊星歯車554の外周部分に偏心軸556が立設されている。
 さらに、駆動モータ552に並設された第2の駆動モータ557によって回転駆動されるプーリ558と環状歯車555の間にはタイミングベルト559が巻き掛けられ、第2の駆動モータ557によって環状歯車555を回転駆動できるようになっている。
The eccentric amount variable mechanism 551 in the cutting device 550 of the modification shown in FIG. 25 includes a sun gear 553 that is rotationally driven by a drive motor 552, a planetary gear 554 that is supported so as to be relatively rotatable with respect to the sun gear 553, and An annular gear 555 is provided. An eccentric shaft 556 is erected on the outer peripheral portion of the planetary gear 554.
Further, a timing belt 559 is wound between a pulley 558 and an annular gear 555 that are rotationally driven by a second drive motor 557 arranged in parallel with the drive motor 552, and the annular gear 555 is wound by the second drive motor 557. It can be rotated.
 このとき、駆動モータ552と第2の駆動モータ557を連動させて、太陽歯車553と環状歯車555の回転を同期させると、遊星歯車554は太陽歯車553および環状歯車555に対して相対回転することなく回転軸線Cの回りで公転するから、偏心軸556の偏心量を固定しつつ回転軸線Cの回りに公転させることができる。 At this time, when the drive motor 552 and the second drive motor 557 are interlocked to synchronize the rotation of the sun gear 553 and the annular gear 555, the planetary gear 554 rotates relative to the sun gear 553 and the annular gear 555. Since it revolves around the rotation axis C, the eccentric amount of the eccentric shaft 556 can be fixed and revolved around the rotation axis C.
 これに対して、太陽歯車553と環状歯車555の回転数をわずかに異ならせると、遊星歯車554は太陽歯車553および環状歯車555に対して相対回転しつつ回転軸線Cの回りで公転するから、偏心軸556の偏心量を変化させることができる。
 そして、偏心軸556の偏心量が所望の値となったときに太陽歯車553と環状歯車555の回転を同期させることにより、偏心軸85の偏心量を所望の値に固定することができる。
In contrast, if the rotational speeds of the sun gear 553 and the annular gear 555 are slightly different, the planetary gear 554 revolves around the rotation axis C while rotating relative to the sun gear 553 and the annular gear 555. The amount of eccentricity of the eccentric shaft 556 can be changed.
The eccentric amount of the eccentric shaft 85 can be fixed to a desired value by synchronizing the rotation of the sun gear 553 and the annular gear 555 when the eccentric amount of the eccentric shaft 556 reaches a desired value.
 なお、太陽歯車553と環状歯車555の回転数がわずかに異なった状態で運転を続けると、偏心軸556の偏心量は絶え間なく変化する。
 すると、上下一対の集光レンズ31,34から絶縁被覆に照射されるレーザー光L1,L2の焦点F1,F2は、絶縁被覆の外側から絶縁被覆の内部に入り込む動きと、絶縁被覆の内部から絶縁被覆の外側に出て来る動きとを交互に繰り返しつつ、絶縁被覆の表面に沿って周回する。
 これにより、電線Wの絶縁被覆に変形が生じている場合や、電線Wの位置決めにズレが生じている場合にも、レーザー光L1,L2によって絶縁被覆を確実に切断することができる。
If the operation is continued with the sun gear 553 and the annular gear 555 having slightly different rotational speeds, the amount of eccentricity of the eccentric shaft 556 changes continuously.
Then, the focal points F1 and F2 of the laser beams L1 and L2 applied to the insulating coating from the pair of upper and lower condenser lenses 31 and 34 move into the insulating coating from the outside of the insulating coating, and are insulated from the inside of the insulating coating. It circulates along the surface of the insulating coating while alternately repeating the movements coming out of the coating.
Thereby, even when the insulation coating of the electric wire W is deformed or when the positioning of the electric wire W is displaced, the insulating coating can be reliably cut by the laser beams L1 and L2.
 以上、本発明の電線の絶縁被覆をレーザー光で切断する方法および装置の各実施形態および変形例について詳しく説明したが、本発明は上述した実施形態や変形例によって限定されるものではなく、種々の変更が可能であることは言うまでもない。
 例えば、上述した第1実施形態においては、支持手段50を駆動して上下方向および左右方向に移動させるための駆動手段として駆動モータ53、駆動軸54および偏心軸55を用いている。
 これに対して、支持手段50を上下方向に移動させるための第1のリニアモータあるいはボールねじと、支持手段50を左右方向に移動させるための第2のリニアモータあるいはボールねじとを組み合わせて用いる構造とすることもできる。
As mentioned above, although each embodiment and modification of the method and apparatus which cut | disconnect the insulation coating of the electric wire of this invention with a laser beam were demonstrated in detail, this invention is not limited by embodiment mentioned above and a modification, and variously Needless to say, it is possible to make changes.
For example, in the first embodiment described above, the drive motor 53, the drive shaft 54, and the eccentric shaft 55 are used as drive means for driving the support means 50 to move in the vertical direction and the horizontal direction.
On the other hand, a first linear motor or ball screw for moving the support means 50 in the vertical direction and a second linear motor or ball screw for moving the support means 50 in the left-right direction are used in combination. It can also be a structure.
 また、上述した第1実施形態においては、レーザー光供給経路切換手段40の駆動源として駆動モータ45を用いている。
 これに対して、プーリおよびタイミングベルトを用いることにより、支持手段50を駆動する駆動モータ53によってレーザー光供給経路切換手段40を駆動することもできる。
In the first embodiment described above, the drive motor 45 is used as a drive source for the laser light supply path switching means 40.
On the other hand, by using a pulley and a timing belt, the laser light supply path switching unit 40 can be driven by the drive motor 53 that drives the support unit 50.
  1 従来装置の基礎部分
  2 基台
  3 円筒支持部材
  4 レーザー光発生手段
  5 スプリッタ
  6,7,8 ミラー
  9,10 従来装置の集光レンズ
 11 支持手段
 12,13 リニアガイド
 14 駆動モータ
 15 偏心軸
 16 駆動軸
 17 リニアガイド
 21 基礎部分
 22 円筒支持部材
 23 基台
 24 レーザー光発生手段
 31,34 集光レンズ
 32,33,35,36 ミラー
 37,38 フィルタ
 40 レーザー光供給経路切換手段
 41 支持部材
 42 リニアガイド
 43 連結部材
 44 スライダ
 45 駆動モータ
 46 駆動軸
 47 偏心軸
 48 軸受
 50 支持手段
 51,52 リニアガイド
 53 駆動モータ
 54 駆動軸
 55 偏心軸
 56 係合部
 57 軸受
100 第1実施形態の切断装置
200 第2実施形態の切断装置
300 第3実施形態の切断装置
350 第1変形例の切断装置
400 第4実施形態の切断装置
500 第5実施形態の切断装置
550 第2変形例の切断装置
DESCRIPTION OF SYMBOLS 1 Basic part of conventional apparatus 2 Base 3 Cylindrical support member 4 Laser beam generating means 5 Splitter 6, 7, 8 Mirror 9,10 Condensing lens of conventional apparatus 11 Support means 12, 13 Linear guide 14 Drive motor 15 Eccentric shaft 16 Drive shaft 17 Linear guide 21 Basic portion 22 Cylindrical support member 23 Base 24 Laser light generating means 31, 34 Condensing lenses 32, 33, 35, 36 Mirror 37, 38 Filter 40 Laser light supply path switching means 41 Support member 42 Linear Guide 43 Connecting member 44 Slider 45 Drive motor 46 Drive shaft 47 Eccentric shaft 48 Bearing 50 Support means 51, 52 Linear guide 53 Drive motor 54 Drive shaft 55 Eccentric shaft 56 Engaging portion 57 Bearing 100 Cutting device 200 of the first embodiment Cutting device 300 of 2 embodiment Cutting of 3rd embodiment Device 350 the cutting device of the cutting device 400 the fourth embodiment of the first variant 500 the fifth embodiment of the cutting device 550 the cutting device of the second modification

Claims (18)

  1.  電線の絶縁被覆をレーザー光で切断する方法であって、
     前後方向に延びる電線の絶縁被覆に向けて上下方向からレーザー光を照射する集光レンズを支持手段に設け、
     前記支持手段を切断装置の基台に対し上下方向および左右方向に往復動自在に支持し、
     レーザー光発生手段が発生させたレーザー光を前記集光レンズに供給しつつ、
     前記基台に設けた駆動手段によって前記支持手段を駆動して前記支持手段を前記基台に対して上下方向および左右方向に移動させ、
     前記集光レンズから前記絶縁被覆に照射されたレーザー光の焦点が上下方向および左右方向に変位して前記絶縁被覆の外周面に沿って周方向に移動するように前記駆動手段の作動を制御する、
    ことを特徴とする電線の絶縁被覆をレーザー光で切断する方法。
    A method of cutting the insulation coating of a wire with a laser beam,
    A support lens is provided with a condenser lens that irradiates laser light from above and below toward the insulation coating of the electric wires extending in the front-rear direction,
    The support means is supported so as to reciprocate vertically and horizontally with respect to the base of the cutting device,
    While supplying the laser light generated by the laser light generating means to the condenser lens,
    The support means is driven by the drive means provided on the base to move the support means in the vertical direction and the horizontal direction with respect to the base,
    The operation of the driving means is controlled so that the focal point of the laser light applied to the insulating coating from the condenser lens is displaced in the vertical and horizontal directions and moves in the circumferential direction along the outer peripheral surface of the insulating coating. ,
    A method of cutting an insulating coating of an electric wire with a laser beam.
  2.  前記焦点が、前記絶縁被覆の外周面上において周方向に移動するように、前記駆動手段の作動を制御することを特徴とする請求項1に記載した電線の絶縁被覆をレーザー光で切断する方法。 2. The method of cutting an insulating coating of an electric wire according to claim 1, wherein the operation of the driving means is controlled so that the focal point moves in a circumferential direction on an outer peripheral surface of the insulating coating. .
  3.  前記焦点が、前記絶縁被覆の外周面に対して所定の間隔を開けてかつ外周面に沿って周方向に移動するように、前記駆動手段の作動を制御することを特徴とする請求項1に記載した電線の絶縁被覆をレーザー光で切断する方法。 The operation of the driving means is controlled so that the focal point moves in a circumferential direction along the outer peripheral surface with a predetermined interval from the outer peripheral surface of the insulating coating. A method of cutting the insulating coating of the described wire with a laser beam.
  4.  前記焦点が、前記絶縁被覆を横断方向の断面で見たときに、その外周面のうち左右方向の両端部分において、外周面に沿って周方向に前進する変位と周方向に後退する変位とが反復するように、前記駆動手段の作動を制御することを特徴とする請求項1乃至3のいずれか一項に記載した電線の絶縁被覆をレーザー光で切断する方法。 When the focal point is a cross section in the transverse direction of the insulating coating, a displacement that advances in the circumferential direction along the outer circumferential surface and a displacement that moves back in the circumferential direction are present at both end portions in the left-right direction of the outer circumferential surface. 4. The method of cutting an insulating coating of an electric wire according to any one of claims 1 to 3, wherein the operation of the driving means is controlled to repeat.
  5.  電線の絶縁被覆をレーザー光で切断する装置であって、
     前後方向に延びる電線の絶縁被覆に向けて上下方向からレーザー光をそれぞれ照射する、前記電線を挟んで上下方向に対向して配置された上下一対の集光レンズと、
     レーザー光発生手段が発生させたレーザー光を前記上下一対の集光レンズにそれぞれ案内するレーザー光案内手段と、
     前記装置の基台に対して上下方向および左右方向に移動自在に設けられた、前記上下一対の集光レンズを一体に支持する支持手段と、
     前記支持手段を上下方向および左右方向に駆動する、前記基台に支持された駆動手段と、を備え、
     前記上下一対の集光レンズは、それらの焦点が一致するように配置されており、
     前記駆動手段は、前記上下一対の集光レンズから前記電線の絶縁被覆に向けてそれぞれ照射された上下一対のレーザー光の焦点が上下方向および左右方向に変位して前記電線の絶縁被覆の外周面に沿って周方向に移動するように、前記支持手段を左右方向および上下方向に移動させるべく構成されていることを特徴とする電線の絶縁被覆をレーザー光で切断する装置。
    A device that cuts the insulation of a wire with a laser beam,
    A pair of upper and lower condensing lenses disposed opposite to each other in the vertical direction across the electric wire, respectively irradiating laser light from the vertical direction toward the insulation coating of the electric wire extending in the front-rear direction,
    Laser light guiding means for guiding the laser light generated by the laser light generating means to the pair of upper and lower condenser lenses,
    A support means for integrally supporting the pair of upper and lower condenser lenses provided to be movable in a vertical direction and a horizontal direction with respect to a base of the device;
    Driving means supported by the base for driving the support means in the vertical and horizontal directions;
    The pair of upper and lower condenser lenses are arranged so that their focal points coincide with each other,
    The driving means is configured such that the focal points of the pair of upper and lower laser beams irradiated from the pair of upper and lower condensing lenses toward the insulation coating of the electric wire are displaced in the vertical direction and the horizontal direction, and the outer peripheral surface of the insulation coating of the electric wire An apparatus for cutting an insulating coating of an electric wire with a laser beam, wherein the support means is configured to move in the left-right direction and the up-down direction so as to move in the circumferential direction along the line.
  6.  前記駆動手段は、前記焦点が前記電線の絶縁被覆の外周面上において周方向に移動するように、前記支持手段を左右方向および上下方向に移動させるべく構成されていることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。 The said drive means is comprised so that the said support means may be moved to the left-right direction and an up-down direction so that the said focus may move to the circumferential direction on the outer peripheral surface of the insulation coating of the said electric wire. The apparatus which cut | disconnects the insulation coating of the electric wire described in 5 with the laser beam.
  7.  前記駆動手段は、前記焦点が前記電線の絶縁被覆の外周面に対して所定の間隔を開けてかつ外周面に沿って周方向に移動するように、前記支持手段を左右方向および上下方向に移動させるべく構成されていることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。 The drive means moves the support means in the left-right direction and the up-down direction so that the focal point moves in a circumferential direction along the outer peripheral surface with a predetermined interval from the outer peripheral surface of the insulating coating of the electric wire 6. An apparatus for cutting an insulating coating of an electric wire according to claim 5 with a laser beam.
  8.  前記駆動手段は、前記焦点が、前記絶縁被覆を横断方向の断面で見たときに、その外周面のうち左右方向の両端部分において、外周面に沿って周方向に前進する変位と周方向に後退する変位とを反復するように、前記支持手段を左右方向および上下方向に移動させるべく構成されていることを特徴とする請求項6または7に記載した電線の絶縁被覆をレーザー光で切断する装置。 The driving means has a displacement that advances in the circumferential direction along the outer circumferential surface and the circumferential direction at both ends of the outer circumferential surface when the focal point is viewed in a cross section in the transverse direction. 8. The electric wire insulation coating according to claim 6 or 7, wherein the support means is moved in the left-right direction and the up-down direction so as to repeat the backward displacement. apparatus.
  9.  上側の前記集光レンズから前記絶縁被覆の上側半分にレーザー光を照射するときには前記上側の集光レンズにレーザー光を供給するとともに、下側の前記集光レンズから前記絶縁被覆の下側半分にレーザー光を照射するときには前記下側の集光レンズにレーザー光を供給する、前記上下一対の集光レンズに対するレーザー光供給経路を前記駆動手段の作動に連動して切り換えるレーザー光供給経路切換手段をさらに備えることを特徴とする請求項5乃至8いずれかに記載した電線の絶縁被覆をレーザー光で切断する装置。 When irradiating laser light from the upper condenser lens to the upper half of the insulating coating, the laser light is supplied to the upper condenser lens and from the lower condenser lens to the lower half of the insulating coating. Laser light supply path switching means for supplying laser light to the lower condenser lens when irradiating laser light, and switching the laser light supply path for the pair of upper and lower condenser lenses in conjunction with the operation of the driving means. The apparatus for cutting the insulating coating of the electric wire according to any one of claims 5 to 8 with a laser beam.
  10.  前記駆動手段は、
     前後方向に延びる回転軸線の回りに回転する駆動軸と、
     前記回転軸線に対し所定の偏心量だけ偏心して前記回転軸線の回りを公転しつつ、前記支持手段と係合する偏心軸と、を有し、
     前記偏心量が前記絶縁被覆の外径寸法に基づいて決定されていることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。
    The driving means includes
    A drive shaft that rotates about a rotation axis extending in the front-rear direction;
    An eccentric shaft that is eccentric with respect to the rotation axis by a predetermined amount and revolves around the rotation axis while engaging with the support means;
    6. The apparatus for cutting an electric wire insulation coating with a laser beam according to claim 5, wherein the amount of eccentricity is determined based on an outer diameter of the insulation coating.
  11.  前記駆動軸が回転している間に前記偏心軸の偏心量を変化させる第1の偏心量可変機構をさらに備え、
     前記第1の偏心量可変機構は、
     前記偏心軸を前記回転軸線の半径方向に変位自在に支持しつつ前記駆動軸と一体に回転する偏心軸支持手段と、
     前記駆動軸に対して同軸にかつ相対回動自在に外嵌されつつ前記駆動軸と一体に回転可能な筒状部材と、
     前記筒状部材の側面に設けられている第1のカムに係合しつつ前記回転軸線に沿って前後方向に往復動することにより、前記筒状部材を前記駆動軸に対して相対回動させる係合部材と、
     前記係合部材を前後方向に往復動させる係合部材駆動手段と、を有し、
     前記筒状部材は、前記駆動軸に対して相対回動したときに前記偏心軸を半径方向に変位させるべく前記偏心軸支持手段あるいは前記偏心軸と係合する第2のカムを具備していることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。
    A first eccentric amount variable mechanism for changing an eccentric amount of the eccentric shaft while the drive shaft is rotating;
    The first eccentricity variable mechanism is:
    An eccentric shaft support means for rotating integrally with the drive shaft while supporting the eccentric shaft so as to be displaceable in the radial direction of the rotation axis;
    A cylindrical member that can be rotated integrally with the drive shaft while being fitted on the drive shaft coaxially and relatively rotatably;
    By reciprocating back and forth along the rotation axis while engaging with a first cam provided on a side surface of the cylindrical member, the cylindrical member is rotated relative to the drive shaft. An engaging member;
    Engagement member driving means for reciprocating the engagement member in the front-rear direction,
    The cylindrical member includes a second cam that engages with the eccentric shaft support means or the eccentric shaft so as to radially displace the eccentric shaft when rotated relative to the drive shaft. The apparatus which cut | disconnects the insulation coating of the electric wire described in Claim 5 with a laser beam.
  12.  前記筒状部材は、前記偏心軸側の端部を閉鎖する底面部分を有しており、
     前記第2のカムは、前記偏心軸を挿通可能に前記底面部分に湾曲して貫設されたカム溝であり、
     前記カム溝は、前記筒状部材が前記駆動軸に対して相対回動したときに前記偏心軸を半径方向に押動するように構成されていることを特徴とする請求項11に記載した電線の絶縁被覆をレーザー光で切断する装置。
    The cylindrical member has a bottom surface portion that closes the end portion on the eccentric shaft side,
    The second cam is a cam groove that is curved and penetrates the bottom portion so that the eccentric shaft can be inserted therethrough,
    12. The electric wire according to claim 11, wherein the cam groove is configured to push the eccentric shaft in a radial direction when the cylindrical member rotates relative to the drive shaft. A device that cuts the insulation coating of a laser beam.
  13.  前記偏心軸支持手段は、前記駆動軸の端部に半径方向にスライド自在に係合するスライド部材であり、
     前記第2のカムは、前記回転軸線に対し偏心させて前記筒状部材の内壁面に連設された内側円筒面であり、
     かつ前記内側円筒面は、前記スライド部材の半径方向の両端部に外嵌するように構成されていることを特徴とする請求項11に記載した電線の絶縁被覆をレーザー光で切断する装置。
    The eccentric shaft support means is a slide member that is slidably engaged with an end portion of the drive shaft in a radial direction,
    The second cam is an inner cylindrical surface that is eccentric with respect to the rotation axis and is continuously provided on the inner wall surface of the cylindrical member.
    The apparatus for cutting an insulation coating of an electric wire according to claim 11 with a laser beam, wherein the inner cylindrical surface is configured to be fitted around both ends of the slide member in the radial direction.
  14.  前記スライド部材は、前記駆動軸の端面にオルダム継手を介して半径方向にスライド自在に支持されていることを特徴とする請求項13に記載した電線の絶縁被覆をレーザー光で切断する装置。 14. The apparatus for cutting an electric wire insulation coating with a laser beam according to claim 13, wherein the slide member is supported by an end face of the drive shaft so as to be slidable in the radial direction via an Oldham joint.
  15.  前記駆動軸が回転している間に前記偏心軸の偏心量を変化させる第2の偏心量可変機構をさらに備え、
     前記第2の偏心量可変機構は、
     前記回転軸線に対し偏心しつつ平行に延びる回動軸の回りで回動自在に前記駆動軸の先端に軸支されてその外周近傍に前記偏心軸が立設されている平歯車と、
     前記駆動軸に対して同軸にかつ相対回動自在に外嵌されつつ前記駆動軸と一体に回転可能な筒状部材と、
     前記筒状部材の側面に設けられている第1のカムに係合しつつ前記回転軸線に沿って前後方向に往復動することにより、前記筒状部材を前記駆動軸に対して相対回動させる係合部材と、
     前記係合部材を前後方向に往復動させる係合部材駆動手段と、を有し、
     前記筒状部材は、前記平歯車と噛み合いつつ前記駆動軸に対して相対回動したときに前記平歯車を回動させる内歯歯車を具備していることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。
    A second eccentric amount variable mechanism for changing an eccentric amount of the eccentric shaft while the drive shaft is rotating;
    The second eccentricity variable mechanism is:
    A spur gear that is pivotally supported at the front end of the drive shaft so as to be rotatable around a rotation shaft that extends in parallel while being eccentric with respect to the rotation axis, and the eccentric shaft is erected in the vicinity of the outer periphery thereof;
    A cylindrical member that can be rotated integrally with the drive shaft while being fitted on the drive shaft coaxially and relatively rotatably;
    By reciprocating back and forth along the rotation axis while engaging with a first cam provided on a side surface of the cylindrical member, the cylindrical member is rotated relative to the drive shaft. An engaging member;
    Engagement member driving means for reciprocating the engagement member in the front-rear direction,
    The said cylindrical member is equipped with the internal gear which rotates the spur gear, when it rotates relatively with respect to the said drive shaft, meshing | engaging with the spur gear. A device that cuts the insulation coating of electric wires with laser light.
  16.  前記駆動軸が回転している間に前記偏心軸の偏心量を変化させる第3の偏心量可変機構をさらに備え、
     前記第3の偏心量可変機構は、
     前記回転軸線に対し偏心しつつ平行に延びる回動軸の回りで回動自在に前記駆動軸の先端に軸支されるとともに、その外周近傍に前記偏心軸が立設されている平歯車と、
     前記駆動軸に対して同軸にかつ相対回転可能に外嵌された筒状部材と、
     前記駆動軸を回転駆動する第1の駆動モータと、
     前記第1の駆動モータの回転数に連動して前記筒状部材を回転駆動する第2の駆動モータと、を有しており、
     前記第1および第2の駆動モータの作動を制御して前記平歯車を前記駆動軸に対して相対的に回動させることにより、前記偏心軸の偏心量を制御するように構成されていることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。
    A third eccentric amount variable mechanism for changing an eccentric amount of the eccentric shaft while the drive shaft is rotating;
    The third eccentricity variable mechanism is:
    A spur gear that is pivotally supported at the tip of the drive shaft so as to be rotatable around a rotation shaft that extends in parallel while being eccentric with respect to the rotation axis, and the eccentric shaft is erected in the vicinity of the outer periphery thereof;
    A cylindrical member that is coaxial with the drive shaft and is fitted so as to be relatively rotatable;
    A first drive motor that rotationally drives the drive shaft;
    A second drive motor that rotationally drives the cylindrical member in conjunction with the rotational speed of the first drive motor,
    The eccentric amount of the eccentric shaft is controlled by rotating the spur gear relative to the drive shaft by controlling the operations of the first and second drive motors. The apparatus which cut | disconnects the insulation coating of the electric wire of Claim 5 characterized by these with a laser beam.
  17.  前記駆動軸が回転している間に前記偏心軸の偏心量を変化させる第4の偏心量可変機構をさらに備え、
     前記第4の偏心量可変機構は、
     前記駆動軸と一体に回転する太陽歯車と、前記装置の基台に固定された内歯環状歯車と、前記太陽歯車および前記内歯環状歯車と噛み合いつつ前記太陽歯車の回りを公転する遊星歯車とを具備した遊星歯車機構を有しており、
     前記偏心軸は、前記遊星歯車の外周近傍に立設されていることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。
    A fourth eccentricity variable mechanism for changing the eccentric amount of the eccentric shaft while the drive shaft is rotating;
    The fourth eccentricity variable mechanism is:
    A sun gear that rotates integrally with the drive shaft, an internal annular gear fixed to the base of the device, and a planetary gear that revolves around the sun gear while meshing with the sun gear and the internal annular gear. Having a planetary gear mechanism with
    6. The apparatus according to claim 5, wherein the eccentric shaft is erected near the outer periphery of the planetary gear.
  18.  前記駆動軸が回転している間に前記偏心軸の偏心量を変化させる第5の偏心量可変機構をさらに備え、
     前記第4の偏心量可変機構は、
     前記駆動軸と一体に回転する太陽歯車、前記装置の基台に回転自在に支持された内歯環状歯車、前記太陽歯車および前記内歯環状歯車と噛み合いつつ前記太陽歯車の回りを公転する遊星歯車を具備した遊星歯車機構と、
     前記駆動軸を回転駆動する第1の駆動モータの回転数に連動して前記内歯環状歯車を回転駆動する第2の駆動モータと、を有しており、
     前記偏心軸は、前記遊星歯車の外周近傍に立設されていることを特徴とする請求項5に記載した電線の絶縁被覆をレーザー光で切断する装置。
    A fifth eccentric amount variable mechanism for changing an eccentric amount of the eccentric shaft while the drive shaft is rotating;
    The fourth eccentricity variable mechanism is:
    A sun gear that rotates integrally with the drive shaft, an internal gear that is rotatably supported on a base of the device, a planetary gear that revolves around the sun gear while meshing with the sun gear and the internal gear A planetary gear mechanism comprising:
    A second drive motor that rotationally drives the internal gear in conjunction with the rotational speed of a first drive motor that rotationally drives the drive shaft,
    6. The apparatus according to claim 5, wherein the eccentric shaft is erected near the outer periphery of the planetary gear.
PCT/JP2010/069699 2009-11-05 2010-11-05 Method and apparatus for cutting cable insulating film using laser beam WO2011055785A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011506514A JP5203506B2 (en) 2009-11-05 2010-11-05 Method and apparatus for cutting an insulation coating of a wire with a laser beam
CN201080002579.5A CN102187538B (en) 2009-11-05 2010-11-05 Method and apparatus for cutting cable insulating film using laser beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-254265 2009-11-05
JP2009254265 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011055785A1 true WO2011055785A1 (en) 2011-05-12

Family

ID=43970021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069699 WO2011055785A1 (en) 2009-11-05 2010-11-05 Method and apparatus for cutting cable insulating film using laser beam

Country Status (3)

Country Link
JP (1) JP5203506B2 (en)
CN (1) CN102187538B (en)
WO (1) WO2011055785A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524642A (en) * 2012-06-29 2015-08-24 ラゼレック Electric cable peeling apparatus using purple or blue laser diode
DE102020102810A1 (en) 2020-02-04 2021-08-05 Tesona Gmbh & Co. Kg Process for processing a sheathed thermocouple cable with a beam cutter
KR20230049393A (en) * 2021-10-06 2023-04-13 한국광기술원 Apparatus for Cutting Low Capacitance Cable Sheath

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551686A (en) * 2016-01-04 2016-05-04 上海安费诺永亿通讯电子有限公司 Device and method for peeling cable wires by using laser
KR102137095B1 (en) * 2020-02-03 2020-07-23 (주)레아테크 Tunnel Layer Separation and Stripping Device for ICT Convergence-type HMD Virtual Reality Cost-effective Communication Networking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197206A (en) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp Removing device of cable sheath
JP2001210149A (en) * 2000-01-27 2001-08-03 Matsushita Electric Works Ltd Insulated wire and method and device for removing insulation thereof
JP2007143280A (en) * 2005-11-17 2007-06-07 Okinaya:Kk Laser coating remover
JP2007151345A (en) * 2005-11-29 2007-06-14 Japan Automat Mach Co Ltd Insulating film cutting device of electric wire, and electric wire treating method using it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037287A (en) * 1983-08-09 1985-02-26 Mitsubishi Electric Corp Beam moving type laser working device
JP2007290013A (en) * 2006-04-26 2007-11-08 Phoeton Corp Cutting method for shielded conductor layer, and laser beam machining apparatus
CN201319469Y (en) * 2008-11-20 2009-09-30 武汉凌云光电科技有限责任公司 Light-splitting type double-head wire stripping machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197206A (en) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp Removing device of cable sheath
JP2001210149A (en) * 2000-01-27 2001-08-03 Matsushita Electric Works Ltd Insulated wire and method and device for removing insulation thereof
JP2007143280A (en) * 2005-11-17 2007-06-07 Okinaya:Kk Laser coating remover
JP2007151345A (en) * 2005-11-29 2007-06-14 Japan Automat Mach Co Ltd Insulating film cutting device of electric wire, and electric wire treating method using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524642A (en) * 2012-06-29 2015-08-24 ラゼレック Electric cable peeling apparatus using purple or blue laser diode
US9876338B2 (en) 2012-06-29 2018-01-23 Laselec Device for stripping electric cables using violet or blue laser diodes
DE102020102810A1 (en) 2020-02-04 2021-08-05 Tesona Gmbh & Co. Kg Process for processing a sheathed thermocouple cable with a beam cutter
DE102020102810B4 (en) 2020-02-04 2022-03-31 Tesona Gmbh & Co. Kg Process for processing a sheathed thermocouple cable with a beam cutter
KR20230049393A (en) * 2021-10-06 2023-04-13 한국광기술원 Apparatus for Cutting Low Capacitance Cable Sheath
KR102635586B1 (en) * 2021-10-06 2024-02-08 한국광기술원 Apparatus for Cutting Low Capacitance Cable Sheath

Also Published As

Publication number Publication date
JPWO2011055785A1 (en) 2013-03-28
CN102187538A (en) 2011-09-14
JP5203506B2 (en) 2013-06-05
CN102187538B (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5203506B2 (en) Method and apparatus for cutting an insulation coating of a wire with a laser beam
US8497448B2 (en) Apparatus and method for working a surface of a workpiece by means of laser radiation
US7232974B2 (en) All position automatic welding head and method for operating the same
EP1151812B1 (en) Spinning device
JP2007151345A (en) Insulating film cutting device of electric wire, and electric wire treating method using it
CN108243626B (en) Needle tube advancing and retreating assembly and winding machine
CN108115289A (en) A kind of laser processing device and laser processing
JP4848297B2 (en) Peripheral periodic structure processing method and outer peripheral periodic structure processing apparatus
JPH09189844A (en) Lens barrel
KR20160052895A (en) Welding method and jig device of eletron beam welder for various circular path welding
JP2001047162A (en) Spinning device
JP2012130935A (en) Laser-welding apparatus
JP5430289B2 (en) Cutting device
CN105033452A (en) Rotary type galvanometer scanning device and application method thereof
JP5066660B2 (en) Periodic structure machining control method and periodic structure machining control apparatus
EP2361716A1 (en) Piercing device for making ventilation holes in cigarettes or similar tobacco products
WO2018055281A1 (en) Device and method for guiding a laser beam with a view to rotational and linear displacement, in order to vary the eccentricity of the laser beam
JP2001105041A (en) Spinning device
JP4848296B2 (en) Cylindrical inner peripheral surface periodic structure processing method and cylindrical inner peripheral surface periodic structure processing apparatus
JP3205032U (en) Rust removal device in pipe
JP2008289545A (en) Endoscope
JP2020006406A (en) Welding torch moving mechanism and welder having the same
JP5087739B2 (en) Cylinder block periodic structure processing method and cylinder block periodic structure processing apparatus
JP5433434B2 (en) Pipe cutting device and pipe cutting method
JP3479876B2 (en) Laser emission optical system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002579.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011506514

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828344

Country of ref document: EP

Kind code of ref document: A1