WO2007123088A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2007123088A1
WO2007123088A1 PCT/JP2007/058288 JP2007058288W WO2007123088A1 WO 2007123088 A1 WO2007123088 A1 WO 2007123088A1 JP 2007058288 W JP2007058288 W JP 2007058288W WO 2007123088 A1 WO2007123088 A1 WO 2007123088A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compressor
casing
refrigerant
expander
Prior art date
Application number
PCT/JP2007/058288
Other languages
English (en)
French (fr)
Inventor
Katsumi Sakitani
Tetsuya Okamoto
Masakazu Okamoto
Eiji Kumakura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2007241901A priority Critical patent/AU2007241901B2/en
Priority to EP07741724.4A priority patent/EP2009368B1/en
Priority to US12/226,433 priority patent/US8122735B2/en
Priority to ES07741724T priority patent/ES2428438T3/es
Priority to CN2007800138024A priority patent/CN101427083B/zh
Publication of WO2007123088A1 publication Critical patent/WO2007123088A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to supply of lubricating oil to a compressor and an expander in a refrigeration apparatus.
  • Patent Document 1 discloses a refrigeration apparatus including a compressor that compresses a refrigerant and a power recovery expander that expands the refrigerant.
  • the expander is connected to the compressor by a single shaft, and the power obtained by the expander is used to drive the compressor.
  • an electric motor is connected to the compressor, and a generator is connected to the expander. In this refrigeration system, the compressor is driven by the electric motor to compress the refrigerant, while the generator is driven from the expander to generate power!
  • Patent Document 2 A fluid machine in which an expander and a compressor are connected by a single shaft is disclosed in Patent Document 2, for example.
  • a compression mechanism as a compressor, an expansion mechanism as an expander, and a shaft connecting both are accommodated in one casing.
  • an oil supply passage is formed inside the shaft, and lubricating oil accumulated in the bottom of the casing is supplied to the compression mechanism and the expansion mechanism through the oil supply passage.
  • Patent Document 3 discloses a so-called hermetic compressor.
  • This hermetic compressor is housed in a casing having a compression mechanism and a motor. Further, in this hermetic compressor, an oil supply passage is formed in the drive shaft of the compression mechanism, and lubricating oil accumulated at the bottom of the casing is supplied to the compression mechanism through the oil supply passage.
  • this type of hermetic compressor can be used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-241033
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-299632
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-002832 Disclosure of the invention
  • a compressor having a structure in which a compression mechanism is accommodated in a casing and lubricating oil stored in the casing is supplied to the compression mechanism is known. Further, it is conceivable for the expander to have a structure in which the expansion mechanism is accommodated in the casing and the lubricating oil stored in the casing is supplied to the expansion mechanism.
  • a compressor and an expander each having a casing are individually provided in the refrigerant circuit, and the compressor includes lubricating oil in the casing. It is conceivable that the compression mechanism is lubricated by using the oil, and the expansion mechanism is lubricated by using the lubricating oil in the casing in the expander. However, in the refrigeration apparatus having such a configuration, there is a risk that the lubricating oil is biased to one of the compressor and the expander, causing troubles such as seizure.
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a refrigeration apparatus in which a compressor and an expander each having individual casings are provided in a refrigerant circuit, and the reliability It is to ensure sex.
  • a first invention includes a refrigerant circuit (11) to which a compressor (20) and an expander (30) are connected, and performs a refrigeration cycle by circulating refrigerant in the refrigerant circuit (11). Intended for equipment.
  • the compressor (20) includes a compression mechanism (21) that sucks and compresses refrigerant, a compressor casing (24) that accommodates the compression mechanism (21), and the compressor casing (24 ) Is provided with an oil supply mechanism (22) for supplying lubricating oil from the oil reservoir (27) to the compression mechanism (21), and the expander (30) generates power by expanding the flowing refrigerant.
  • the compressor casing (24) and the expander casing (34) have one internal pressure that is high in the refrigeration cycle and the other internal pressure is in the refrigeration cycle. While the pressure is low, lubrication occurs between the oil sump (27) in the compressor casing (24) and the oil sump (37) in the expander casing (34).
  • the refrigerant circulates while repeating the processes of compression, condensation, expansion, and evaporation in order.
  • the oil supply mechanism (22) supplies oil to the oil reservoir (27) force compression mechanism (21) in the compressor casing (24) and supplies the lubricating oil to the compression mechanism (21). A portion of the lubricating oil thus discharged is discharged from the compressor (20) together with the refrigerant compressed by the compression mechanism (21).
  • the oil supply mechanism (32) supplies lubricating oil from the oil reservoir (37) in the expander casing (34) to the expansion mechanism (31), and then to the expansion mechanism (31).
  • Part of the supplied lubricating oil is sent out by the expander (30) together with the refrigerant expanded by the expansion mechanism (31).
  • the lubricating oil flowing out of the compressor (20) and the expander (30) circulates in the refrigerant circuit (11) together with the refrigerant, and returns to the expander (30) if the compressor (20) is present.
  • the oil sump (27) in the compressor casing (24) and the expander casing communicates with each other via the oil flow passage (42).
  • the oil flow passage (42) There is a pressure difference between the internal space of the compressor casing (24) and the internal space of the expander casing (34).
  • the lubricating oil flows through the oil flow passageway (42) from one of the oil reservoir (27) in the compressor casing (24) and the oil reservoir (37) in the expander casing (34) to the other. .
  • the flow state of the lubricating oil flowing through the oil flow passage (42) is adjusted by the adjusting means (50).
  • the adjusting means (50) includes an oil reservoir (27) in the compressor casing (24) or an oil in the expander casing (34).
  • the adjusting means (50) includes an oil level detector (51) and a control valve (52).
  • the amount of lubricant stored in the compressor casing (24) correlates with the oil level in the oil reservoir (27) in the compressor casing (24). Further, the amount of lubricating oil stored in the expander casing (34) correlates with the height of the oil level in the oil reservoir (37) in the expander casing (34). If information on the oil level in either the oil sump (27) in the compressor casing (24) or the oil sump (37) in the expander casing (34) is obtained, it is based on that information. Thus, it is possible to determine whether the compressor (20) and the expander (30) have excessive or insufficient lubricating oil.
  • the position of the oil level in either the oil sump (27) in the compressor casing (24) or the oil sump (37) in the expander casing (34) is determined by the oil level detector (51).
  • the flow rate of the lubricating oil in the oil flow passage (42) is controlled by controlling the opening of the control valve (52) according to the output signal of the oil level detector (51).
  • the compression mechanism (21) compresses the refrigerant directly drawn from the outside of the compressor casing (24) to compress the compressor casing (24). While being discharged into the refrigerant circuit (11), the refrigerant circuit (11) has a low-pressure side communication passage (80) that connects the pipe connected to the suction side of the compressor (20) and the internal space of the expander casing (34). Is provided.
  • the compression mechanism (21) includes the compressor case.
  • the refrigerant directly sucked from the outside of the sink (24) is compressed and discharged into the compressor casing (24), while the refrigerant circuit (11) has a low-pressure cooling toward the suction side of the compressor (20).
  • a low pressure side introduction passage (81) for introducing a part or all of the medium into the internal space of the expander casing (34), and a low pressure refrigerant is led out from the internal space of the expander casing (34) to compress the compression.
  • the compression mechanism (21) directly sucks the refrigerant flowing into the compressor (20).
  • the compression mechanism (21) compresses the sucked refrigerant and discharges it into the compressor casing (24). That is, the refrigerant compressed by the compression mechanism (21) is once discharged into the internal space of the compressor casing (24) and then sent out to the outside of the compressor casing (24).
  • the internal pressure of the compressor casing (24) becomes substantially equal to the pressure of the refrigerant discharged from the compression mechanism (21) (ie, the high pressure of the refrigeration cycle).
  • the internal space of the expander casing (34) communicates with piping connected to the suction side of the compressor (20) via the low-pressure side communication passage (80).
  • the low-pressure refrigerant directed toward the suction side of the compressor (20) flows into the internal space of the expander casing (34) through the low-pressure side introduction passage (81). Then, the air is sucked into the compressor (20) through the low pressure side outlet passage (82). Therefore, in these inventions, the internal pressure of the expander casing (34) is substantially equal to the pressure of the refrigerant sucked into the compressor (20) (that is, the low pressure of the refrigeration cycle).
  • the internal pressure of the compressor casing (24) is higher than the internal pressure of the expander casing (34). For this reason, in the oil flow passage (42), the lubricating oil also flows from the oil sump (27) in the compressor casing (24) toward the oil sump (37) in the expander casing (34).
  • a generator (33) driven by the expansion mechanism (31) is provided in the expander casing (34).
  • 34) is accommodated so as to partition the internal space of the expander casing (34), while in the internal space of the expander casing (34), the low pressure side introduction passage (81) is provided in one space partitioned by the generator (33).
  • the low pressure side outlet passage (82) is connected to the other space.
  • the generator (33) is accommodated in the internal space of the expander casing (34).
  • the power recovered from the refrigerant in the expansion mechanism (31) is used to drive the generator (33). That is, in the generator (33), the power recovered from the refrigerant is converted into electric power.
  • the low-pressure refrigerant that has flowed into the expander casing (34) through the low-pressure side introduction passageway (81) is, for example, a gap formed in the generator (33) itself, or the generator (33) and the expander casing (34). ), And then flows into the low pressure side outlet passage (82).
  • the lubricating oil flowing into the expander casing (34) together with the low-pressure refrigerant is separated from the refrigerant while passing through the generator (33), and flows to the oil reservoir (37) in the expander casing (34). Go.
  • the internal space of the expander casing (34) is partitioned vertically by the generator (33), while the internal space of the expander casing (34) In the space, the low pressure side introduction passage (81) is connected to the space below the generator (33), and the low pressure side lead-out passage (82) is connected to the space above the generator (33). It is a thing.
  • the low pressure refrigerant introduced into the low pressure side introduction passage (81) force expander casing (34) passes through the generator (33) with upward force.
  • the lubricating oil separated from the refrigerant when passing through the generator (33) flows down from top to bottom due to gravity.
  • a seventh invention is the oil separation according to the third or fourth invention, wherein the refrigerant circuit (11) is arranged on the outflow side of the expander (30) to separate the refrigerant and the lubricating oil. And an oil return passage (71) for supplying lubricating oil from the oil separator (70) into the compressor casing (24).
  • the lubricating oil flowing together with the refrigerant in the refrigerant circuit (11) is separated from the refrigerant in the oil separator (70) disposed downstream of the expander (30).
  • the lubricating oil separated from the refrigerant in the oil separator (70) is sent to the inside of the compressor casing (24) through the oil return passage (71).
  • Part of the lubricating oil in the compressor casing (24) is supplied into the expander casing (34) through the oil flow passage (42). That is, the lubricating oil that flows out of the expander (30) and compressor (20) and flows in the refrigerant circuit (11) is once sent back into the compressor casing (24), and is then returned to the compressor casing (24).
  • the eighth invention is the oil separation according to the third or fourth invention, wherein the refrigerant circuit (11) is arranged on the outflow side of the expander (30) to separate the refrigerant and the lubricating oil. And an oil return passage (72) for supplying lubricating oil from the oil separator (70) into the expander casing (34).
  • the lubricating oil flowing together with the refrigerant in the refrigerant circuit (11) is separated from the refrigerant in the oil separator (70) arranged downstream of the expander (30).
  • the lubricating oil separated from the refrigerant by the oil separator (70) passes through the oil return passage (72) and is sent into the expander casing (34).
  • both the lubricating oil stored in the compressor casing (24) and the lubricating oil separated in the refrigerant force by the oil separator (70) enter the oil reservoir (37) in the expander casing (34). Supplied.
  • the lubricating oil flowing in the oil flow passage (42) is cooled by exchanging heat with the low-pressure refrigerant sucked into the compressor (20).
  • An oil cooling heat exchanger (90) is provided.
  • the lubricating oil flowing through the oil flow passage (42) exchanges heat with the low-pressure refrigerant sucked into the compressor (20).
  • the internal space of the compressor casing (24) is filled with the high-temperature and high-pressure refrigerant discharged by the compression mechanism (21).
  • the lubricating oil stored in the compressor casing (24) has a relatively high temperature (for example, about 80 ° C).
  • the low-pressure refrigerant sucked into the compressor (20) becomes relatively low temperature (for example, about 5 ° C)! /.
  • the lubricating oil flowing into the oil flow passage (42) from the oil reservoir (27) in the compressor casing (24) is exchanged with the low-pressure refrigerant while passing through the oil cooling heat exchanger (90). It is cooled and then flows into the oil sump (37) in the expander casing (34).
  • the compression mechanism (21) compresses the refrigerant sucked from inside the compressor casing (24), and the compressor casing (24) While discharging directly to the outside, the refrigerant circuit (11) has a high-pressure side communication passage that connects the pipe connected to the discharge side of the compressor (20) and the internal space of the expander casing (34). (85), an oil separator (60) disposed on the discharge side of the compressor (20) for separating the refrigerant and the lubricating oil, and the oil separator (60) in the expander casing (34). Oil return to supply lubricant to A passage (62) is provided.
  • the compression mechanism (21) compresses the refrigerant sucked from inside the compressor casing (24) to reduce the compressor casing (24). While being discharged directly to the outside, the refrigerant circuit (11) is used to introduce a part or all of the high-pressure refrigerant discharged by the compressor (20) into the internal space of the expander casing (34).
  • the high pressure side introduction passage (86) and the internal space force of the expander casing (34) are provided with a high pressure side lead passage (87) for leading out the high pressure refrigerant.
  • the low-pressure refrigerant flowing toward the compressor (20) once flows into the internal space of the compressor casing (24) and then sucked into the compression mechanism (21). It is done.
  • the compression mechanism (21) compresses the sucked refrigerant and discharges it directly to the outside of the compressor casing (24).
  • the internal pressure of the compressor casing (24) becomes substantially equal to the pressure of the refrigerant sucked by the compression mechanism (21) (that is, the low pressure of the refrigeration cycle).
  • the internal space of the expander casing (34) communicates with piping connected to the discharge side of the compressor (20) via the high-pressure side communication passage (85).
  • the high-pressure refrigerant discharged from the compressor (20) flows into the internal space of the expander casing (34) through the high-pressure side introduction passage (86), and then the high-pressure refrigerant.
  • the expander casing (34) force also flows out through the side outlet passage (87). Therefore, in these inventions, the internal pressure of the expander casing (34) is substantially equal to the pressure of the refrigerant discharged from the compressor (20) (ie, the high pressure of the refrigeration cycle).
  • the internal pressure of the expander casing (34) is higher than the internal pressure of the compressor casing (24).
  • the oil (37) in the expander casing (34) is also directed toward the oil sump (27) in the compressor casing (24), and lubricating oil flows.
  • the lubricating oil flowing together with the refrigerant in the refrigerant circuit (11) is separated from the refrigerant in the oil separator (60) disposed downstream of the compressor (20).
  • the lubricating oil separated from the cooling medium by the oil separator (60) is sent to the inside of the expander casing (34) through the oil return passageway (62). Part of the lubricating oil in the expander casing (34) is supplied into the compressor casing (24) through the oil flow passageway (42).
  • a generator (33) driven by the expansion mechanism (31) is provided in the expander casing (34).
  • the high pressure side introduction passage (86) is provided in one of the internal spaces partitioned by the generator (33) and the other is provided in the expander casing (34).
  • the high pressure side outlet passages (87) are connected to each other.
  • the generator (33) is housed in the internal space of the expander casing (34).
  • the power recovered from the refrigerant in the expansion mechanism (31) is used to drive the generator (33). That is, in the generator (33), the power recovered from the refrigerant is converted into electric power.
  • the high-pressure refrigerant that has flowed into the expander casing (34) through the high-pressure side introduction passageway (86) is, for example, a gap formed in the generator (33) itself, or the generator (33) and the expander casing (34). ), And then flows into the high pressure outlet passage (87).
  • the lubricating oil flowing into the expander casing (34) together with the high-pressure refrigerant is separated from the refrigerant while passing through the generator (33), and flows to the oil reservoir (37) in the expander casing (34). Go.
  • the internal space of the expander casing (34) is partitioned vertically by the generator (33), while the expander casing (34) In the internal space, the high-pressure side introduction passage (86) is connected to the space below the generator (33), and the high-pressure side lead-out passage (87) is connected to the space above the generator (33). ! /
  • the high-pressure refrigerant whose pressure on the high-pressure side introduction passage (86) also flows into the expander casing (34) passes through the generator (33) upward.
  • the lubricating oil separated by the refrigerant force when passing through the generator (33) flows down due to gravity.
  • the refrigerant circuit (11) is arranged on the discharge side of the compressor (20) to separate the refrigerant and the lubricating oil. And an oil separator (60) force to be supplied, and an oil return passage (61) for supplying lubricating oil into the compressor casing (24).
  • the refrigerant circuit (11) includes An oil separator (60) disposed on the discharge side of the compressor (20) for separating the refrigerant and the lubricating oil, and the oil separator (60) force supplying the lubricating oil into the expander casing (34) And an oil return passageway (62).
  • the lubricating oil flowing together with the refrigerant in the refrigerant circuit (11) is separated from the refrigerant in the oil separator (60) disposed downstream of the compressor (20). That is, in the oil separator (60) of these inventions, the lubricating oil discharged together with the refrigerant in the compressor (20) is separated from the refrigerant.
  • the lubricating oil separated from the refrigerant by the oil separator (60) is sent to the inside of the compressor casing (24) through the oil return passageway (61).
  • the lubricating oil separated from the refrigerant by the oil separator (60) is sent to the inside of the expander casing (34) through the oil return passageway (62).
  • the refrigerant circuit (11) is arranged on the suction side of the compressor (20) to separate the refrigerant and the lubricating oil. And an oil return passage (77) for supplying lubricating oil from the oil separator (75) into the expander casing (34).
  • the lubricating oil flowing together with the refrigerant in the refrigerant circuit (11) is separated from the refrigerant in the oil separator (75) arranged upstream of the compressor (20).
  • the lubricating oil separated from the refrigerant by the oil separator (75) is sent into the expander casing (34) through the oil return passage (77).
  • the internal pressure of the compressor casing (24) and the internal pressure of the expander casing (34) are made different, and then the compressor casing (24) and the expander casing (34) are connected to the oil flow passageway (42 ). Then, by using the oil flow passageway (42), the lubricating oil is supplied from the compressor casing (24) and the expander casing (34) to the direction where the internal pressure is high and the internal pressure is low. Yes. For this reason, even if the lubricating oil is unevenly distributed in one of the compressor (20) and the expander (30) during the operation of the refrigeration system (10), the lubricating oil is supplied to the compressor (20) and the expander (30 ) Can be redistributed.
  • the position of the oil level in the oil sump (27) in the compressor casing (24) or the oil sump (37) in the expander casing (34) is determined by an oil level detector ( 51) Detect and beat!
  • an oil level detector ( 51) Detect and beat! As a result, the amount of lubricant stored in the compressor (20) and expander (30) can be accurately detected, and damage to the compressor (20) and expander (30) due to lack of lubricant can be further ensured. Can be avoided.
  • the expander casing (34) is connected to the refrigerant circuit (11) through a low-temperature side communication path and a pipe through which low-pressure refrigerant flows toward the compressor (20). .
  • the low-pressure refrigerant that is directed toward the suction side of the compressor (20) passes through the internal space of the expander casing (34).
  • a heat exchanger for heat absorption is installed downstream of the expander (30). Therefore, in order to secure the heat absorption amount of the refrigerant in this heat exchange, expansion is required. It is desirable to make the enthalpy of the refrigerant flowing out of the machine (30) as low as possible. On the other hand, the temperature of the low-pressure refrigerant directed to the compressor (20) is not so high.
  • the expander casing (34) since the expander casing (34) communicates with the piping through which the low-pressure refrigerant flows toward the compressor (20) in the refrigerant circuit (11), the expander casing (34) The temperature inside is not so high.
  • the temperature in the expander casing (34) since the low-temperature refrigerant having a relatively low temperature passes through the internal space of the expander casing (34), the temperature in the expander casing (34) is not so high. Therefore, according to these inventions, the amount of heat entering the refrigerant expanding by the expansion mechanism (31) can be suppressed, and the enthalpy of the refrigerant flowing out of the expander (30) can be suppressed low. As a result, the heat absorption amount of the refrigerant in the heat exchanger for heat absorption can be sufficiently maintained.
  • part or all of the low-pressure refrigerant that is directed toward the suction side of the compressor (20) is introduced into the internal space of the expander casing (34) and disposed therein.
  • the generator (33) is used to separate lubricating oil and low-pressure refrigerant. For this reason, it becomes easy to secure the amount of lubricating oil stored in the expander casing (34).
  • the low-pressure refrigerant and lubrication are performed in the expander casing (34). Since the oil is separated! /, The amount of lubricating oil sucked into the compression mechanism (21) together with the refrigerant can be reduced. Since the volume of fluid that can be sucked by the compression mechanism (21) in a single suction process is fixed! /, Therefore, if the amount of lubricating oil sucked into the compression mechanism (21) together with the refrigerant can be reduced, it will be compressed accordingly. The amount of refrigerant sucked into the mechanism (21) can be increased. Therefore, according to these inventions, the performance of the compressor (20) can be fully exhibited.
  • the low-pressure refrigerant that has flowed into the expander casing (34) passes through the generator (33) with upward force, and passes through the generator (33). At this time, the lubricant separated from the refrigerant flows down with upward force. That is, in this invention, in the internal space of the expander casing (34), the direction in which the low-pressure refrigerant flows is opposite to the direction in which the lubricating oil separated from the low-pressure refrigerant flows. Therefore, according to the present invention, the amount of the lubricating oil separated from the low-pressure refrigerant that flows again with the low-pressure refrigerant and flows into the low-pressure-side outlet passage (82) can be further reliably reduced.
  • the lubricating oil is collected by the oil separator (70) disposed downstream of the expander (30). Accordingly, it is possible to reduce the amount of lubricating oil flowing through the portion of the refrigerant circuit (11) from the oil separator (70) to the suction side of the compressor (20). A part of the refrigerant circuit (11) from the oil separator (70) to the compressor (20) is provided with a heat exchanger for heat absorption. For this reason, according to these inventions, it is possible to suppress the heat absorption of the refrigerant in the heat exchange for heat absorption from being inhibited by the lubricating oil, and the performance of this heat exchange can be fully exhibited. It becomes.
  • the lubricating oil in the compressor casing (24) is cooled by the oil cooling heat exchanger (90), and the oil sump (37) in the force expander casing (34) is cooled.
  • the oil cooling heat exchanger (90) in order to secure the heat absorption amount of the refrigerant in the heat exchanger for heat absorption, it is desirable that the enthalpy of the refrigerant flowing out of the expander (30) is as low as possible.
  • the lubricating oil in the compressor casing (24) is cooled and flows into the force expander casing (34), the amount of heat entering the refrigerant expanding by the expansion mechanism (31) can be suppressed. .
  • the enthalpy of the refrigerant that also flows out of the expander (30) force can be kept low, and the heat absorption amount of the refrigerant in the heat exchange for heat absorption can be sufficiently secured.
  • the lubricating oil is collected by the oil separator (60) disposed downstream of the compressor (20). For this reason, the amount of lubricating oil flowing through the part of the refrigerant circuit (11) up to the inflow side of the expander (30) can also be reduced.
  • a part of the refrigerant circuit (11) from the oil separator (60) to the expander (30) is provided with a heat exchanger for heat dissipation. Therefore, according to the present invention, it is possible to suppress the heat radiation of the refrigerant in the heat exchanger for heat radiation being inhibited by the lubricating oil, and it is possible to sufficiently exhibit the performance of this heat exchange.
  • the high-pressure refrigerant that has flowed into the expander casing (34) passes through the generator (33) with the lower force also directed upward, while passing through the generator (33).
  • the lubricating oil separated from the refrigerant flows down with upward force and downward force. That is, in this invention, in the internal space of the expander casing (34), the direction in which the high-pressure refrigerant flows is opposite to the direction in which the lubricating oil separated from the high-pressure refrigerant flows. Therefore, according to the present invention, the amount of the lubricating oil separated from the high-pressure refrigerant that flows again with the high-pressure refrigerant and flows into the high-pressure side outlet passage (87) can be further reliably reduced.
  • the lubricating oil is collected by the oil separator (75) arranged upstream of the compressor (20), and is therefore sucked into the compression mechanism (21) together with the refrigerant.
  • the amount of lubricating oil can be reduced. Therefore, according to this invention, as in the fifth and sixth inventions, the compressor (2 The performance of 0) can be fully exhibited.
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigerant circuit and the flow of refrigerant during cooling operation in Embodiment 1.
  • FIG. 2 is a refrigerant circuit diagram showing the configuration of the refrigerant circuit in Embodiment 1 and the flow of refrigerant during heating operation.
  • FIG. 3 is an enlarged view of a main part of the refrigerant circuit in the first embodiment.
  • FIG. 4 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 1 of Embodiment 1.
  • FIG. 5 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 2 of Embodiment 1.
  • FIG. 6 is a refrigerant circuit diagram showing the configuration of the refrigerant circuit in Modification 3 of Embodiment 1.
  • FIG. 7 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a fourth modification of the first embodiment.
  • FIG. 8 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 5 of Embodiment 1.
  • FIG. 9 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in the second embodiment.
  • FIG. 10 is an enlarged view of a main part of the refrigerant circuit in the second embodiment.
  • FIG. 11 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 1 of Embodiment 2.
  • FIG. 12 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 2 of Embodiment 2.
  • FIG. 13 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 3 of Embodiment 2.
  • FIG. 14 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 4 of Embodiment 2.
  • FIG. 15 is a refrigerant circuit diagram showing the configuration of the refrigerant circuit in Modification 5 of Embodiment 2. It is.
  • FIG. 16 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in the third embodiment.
  • FIG. 17 is an enlarged view of a main part of the refrigerant circuit in the third embodiment.
  • FIG. 18 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 1 of Embodiment 3.
  • FIG. 19 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 2 of Embodiment 3.
  • FIG. 20 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a third modification of the third embodiment.
  • FIG. 21 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 4 of Embodiment 3.
  • FIG. 22 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 5 of Embodiment 3.
  • FIG. 23 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in the fourth embodiment.
  • FIG. 24 is an enlarged view of a main part of the refrigerant circuit in the fourth embodiment.
  • FIG. 25 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in the fifth embodiment.
  • FIG. 26 is an enlarged view of a main part of the refrigerant circuit in the fifth embodiment.
  • FIG. 27 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 1 of Embodiment 5.
  • FIG. 28 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a second modification of the fifth embodiment.
  • FIG. 29 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 3 of Embodiment 5.
  • FIG. 30 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in the sixth embodiment.
  • FIG. 31 is an enlarged view of a main part of the refrigerant circuit in the sixth embodiment.
  • FIG. 32 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 1 of Embodiment 6.
  • FIG. 33 is a refrigerant circuit diagram showing the configuration of the refrigerant circuit in Modification 2 of Embodiment 6. It is.
  • FIG. 34 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in Modification 3 of Embodiment 6.
  • FIG. 35 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a first modification of the other embodiment.
  • FIG. 36 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a second modified example of the other embodiment.
  • FIG. 37 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a second modification of the other embodiment.
  • FIG. 38 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit in a third modification of the other embodiment.
  • FIG. 39 is an enlarged view of a main part of an expander in a fourth modified example of the other embodiment.
  • Air conditioner (refrigeration equipment)
  • Oil level sensor Oil level detector
  • Oil return pipe oil return passage
  • Oil return pipe oil return passage
  • Oil return pipe oil return passage
  • Oil return pipe oil return passage
  • Embodiment 1 of the present invention will be described.
  • the present embodiment is an air conditioner (10) configured by a refrigeration apparatus according to the present invention.
  • the air conditioner (10) of the present embodiment includes a refrigerant circuit (11).
  • the refrigerant circuit (11) includes a compressor (20), an expander (30), an outdoor heat exchanger (14), an indoor heat exchanger (15), and a first four-way selector valve (12).
  • the second four-way selector valve (13) is connected.
  • the refrigerant circuit (11) is filled with carbon dioxide (CO 2) as a refrigerant. Also pressure
  • the compressor (20) and the expander (30) are arranged at almost the same height! The configuration of the refrigerant circuit (11) will be described.
  • the compressor (20) has its discharge pipe (26) connected to the first port of the first four-way switching valve (12) and its suction pipe (25) connected to the second port of the first four-way switching valve (12). Connected to the port.
  • the expander (30) has an outflow pipe (36) connected to the first port of the second four-way switching valve (13), and an inflow pipe (35) connected to the second port of the second four-way switching valve (13). Connected to the port.
  • the outdoor heat exchanger (14) has one end connected to the third port of the first four-way selector valve (12) and the other end connected to the fourth port of the second four-way selector valve (13). .
  • the indoor heat exchanger (15) has one end connected to the third port of the second four-way selector valve (13) and the other end connected to the fourth port of the first four-way selector valve (12). Yes.
  • the refrigerant circuit (11) is provided with a low-pressure side communication pipe (80).
  • One end of the low pressure side communication pipe (80) is connected to a pipe connecting the suction pipe (25) of the compressor (20) and the second port of the first four-way switching valve (12).
  • the other end of the low-pressure side communication pipe (80) is connected to the expander (30).
  • This low-pressure side communication pipe (80) forms a low-pressure side communication path!
  • the outdoor heat exchange (14) is an air heat exchange for exchanging heat between the refrigerant and the outdoor air.
  • Indoor heat exchange (15) is air heat exchange for heat exchange between the refrigerant and room air.
  • the first four-way switching valve (12) and the second four-way switching valve (13) are in a state where the first port and the third port are in communication and the second port and the fourth port are in communication ( The state shown in FIG. 1) and the state where the first port and the fourth port communicate and the state where the second port and the third port communicate (state shown in FIG. 2) are configured.
  • the compressor (20) is a so-called high-pressure dome type hermetic compressor.
  • the compressor (20) includes a compressor casing (24) formed in a vertically long cylindrical shape.
  • a compressor mechanism (21), an electric motor (23), and a drive shaft (22) are accommodated in the compressor casing (24).
  • the compression mechanism (21) constitutes a so-called rotary positive displacement fluid machine.
  • the electric motor (23) is disposed above the compression mechanism (21).
  • the drive shaft (22) is disposed so as to extend in the vertical direction, and connects the compression mechanism (21) and the electric motor (23).
  • the compressor casing (24) is provided with a suction pipe (25) and a discharge pipe (26).
  • the suction pipe (25) passes through the vicinity of the lower end of the body of the compressor casing (24), and its end is directly connected to the compression mechanism (21).
  • the discharge pipe (26) is connected to the top of the compressor casing (24). It penetrates, and its starting end opens in the space above the electric motor (23) in the compressor casing (24).
  • the compression mechanism (21) compresses the refrigerant sucked by the suction pipe (25) and discharges it into the compressor casing (24).
  • Refrigerating machine oil as lubricating oil is stored at the bottom of the compressor casing (24).
  • an oil sump (27) is formed in the compressor casing (24).
  • the drive shaft (22) constitutes an oil supply mechanism for supplying refrigeration oil from the oil reservoir (27) to the compression mechanism (21).
  • an oil supply passage extending in the axial direction is formed inside the drive shaft (22).
  • the oil supply passage opens at the lower end of the drive shaft (22) and constitutes a so-called centrifugal pump.
  • the lower end of the drive shaft (22) is immersed in the oil sump (27).
  • the drive shaft (22) rotates, the refrigeration oil is sucked into the oil sump (27) force oil supply passage by the centrifugal pump action.
  • the refrigerating machine oil sucked into the oil supply passage is supplied to the compression mechanism (21) and used for lubrication of the compression mechanism (21).
  • the expander (30) includes an expander casing (34) formed in a vertically long cylindrical shape.
  • An expansion mechanism (31), a generator (33), and an output shaft (32) are accommodated in the expander casing (34).
  • the expansion mechanism (31) constitutes a so-called rotary positive displacement fluid machine.
  • a generator (33) is disposed below the expansion mechanism (31).
  • the output shaft (32) is disposed in a posture extending in the vertical direction, and connects the expansion mechanism (31) and the generator (33).
  • the expander casing (34) is provided with an inflow pipe (35) and an outflow pipe (36).
  • the inflow pipe (35) and the outflow pipe (36) pass through the vicinity of the upper end of the trunk of the expander casing (34).
  • the end of the inflow pipe (35) is directly connected to the expansion mechanism (31).
  • the starting end of the outflow pipe (36) is directly connected to the expansion mechanism (31).
  • the expansion mechanism (31) expands the refrigerant flowing in through the inflow pipe (35), and sends the expanded refrigerant to the outflow pipe (36). That is, the refrigerant passing through the expander (30) does not flow into the internal space of the expander casing (34) but passes only through the expansion mechanism (31).
  • Refrigerating machine oil as lubricating oil is stored at the bottom of the expander casing (34).
  • an oil sump (37) is formed in the expander casing (34).
  • the output shaft (32) is an oil supply mechanism that supplies refrigeration oil to an oil sump (37) force expansion mechanism (31). Is configured. Although not shown, an oil supply passage extending in the axial direction is formed inside the output shaft (32). The oil supply passage opens at the lower end of the output shaft (32) and constitutes a so-called centrifugal pump. The lower end of the output shaft (32) is immersed in the oil sump (37). When the output shaft (32) rotates, the refrigeration oil is sucked into the oil sump (37) force oil supply passage by the centrifugal pump action. The refrigerating machine oil sucked into the oil supply passage is supplied to the expansion mechanism (31) and used for lubrication of the expansion mechanism (31).
  • the low-pressure side communication pipe (80) is connected to the expander casing (34).
  • the end of the low-pressure side communication pipe (80) opens to a portion between the expansion mechanism (31) and the generator (33) in the internal space of the expander casing (34).
  • the internal space of the expander casing (34) communicates with the pipe connected to the suction pipe (25) of the compressor (20) via the low-pressure side communication pipe (80).
  • An oil circulation pipe (42) is provided between the compressor casing (24) and the expander casing (34).
  • the oil circulation pipe (42) constitutes an oil flow passage.
  • One end of the oil circulation pipe (42) is connected to the lower part of the side surface of the compressor casing (24).
  • One end of the oil circulation pipe (42) is opened to the internal space of the compressor casing (24) at a position higher than the lower end of the drive shaft (22) by a predetermined value.
  • the oil level of the oil sump (27) in the compressor casing (24) is located above one end of the oil circulation pipe (42).
  • the other end of the oil circulation pipe (42) is connected to the lower part of the side surface of the expander casing (34).
  • the other end of the oil circulation pipe (42) opens to the inner space of the expander casing (34) at a position that is a predetermined value higher than the lower end of the output shaft (32). Under normal operating conditions, the oil level of the oil reservoir (37) in the expander casing (34) is located above the other end of the oil circulation pipe (42).
  • the oil circulation pipe (42) is provided with an oil amount adjusting valve (52).
  • the oil amount adjustment valve (52) is an electromagnetic valve that opens and closes in response to an external force signal.
  • An oil level sensor (51) is accommodated in the expander casing (34).
  • the oil level sensor (51) detects the oil level of the oil reservoir (37) in the expander casing (34) and constitutes an oil level detector.
  • the refrigeration apparatus is provided with a controller (53).
  • the controller (53) constitutes a control means for controlling the oil amount adjusting valve (52) based on the output signal of the oil level sensor (51).
  • the adjusting means (50) for adjusting the flow state of the refrigeration oil in the oil flow pipe (42) includes the oil amount adjusting valve (52), the oil level sensor (51), and the controller (53 ) And It is made.
  • the oil amount adjustment valve (52) constitutes a control valve that is operated according to the output of the oil level sensor (51).
  • the operation of the air conditioner (10) will be described.
  • the operation of the air conditioner (10) during the cooling operation and the heating operation will be described, followed by the operation of adjusting the oil amount of the compressor (20) and the expander (30). I will explain.
  • the first four-way switching valve (12) and the second four-way switching valve (13) are set to the state shown in FIG. 1, and the refrigerant is circulated in the refrigerant circuit (11) to perform the vapor compression refrigeration cycle. .
  • the high pressure is set higher than the critical pressure of carbon dioxide, which is the refrigerant.
  • the compression mechanism (21) is rotationally driven by the electric motor (23). Compression mechanism
  • the compressor (21) compresses the refrigerant sucked from the suction pipe (25) and discharges it into the compressor casing (24).
  • the high-pressure refrigerant in the compressor casing (24) is discharged by the compressor (20) through the discharge pipe (26).
  • the refrigerant discharged from the compressor (20) is sent to the outdoor heat exchanger (14) to radiate heat to the outdoor air.
  • the high-pressure refrigerant that has radiated heat from the outdoor heat exchanger (14) flows into the expander (30).
  • the expander (30) the high-pressure refrigerant flowing into the expansion mechanism (31) through the inflow pipe (35) expands, and thereby the generator (33) is driven to rotate.
  • the electric power generated by the generator (33) is supplied to the electric motor (23) of the compressor (20).
  • the refrigerant expanded by the expansion mechanism (31) is sent out by the expander (30) through the outflow pipe (36).
  • Expander (30) Force The delivered refrigerant is sent to the indoor heat exchanger (15).
  • the indoor heat exchange (15) the refrigerant that has flowed in absorbs the indoor aerodynamic force and evaporates to cool the indoor air.
  • the low-pressure refrigerant discharged from the indoor heat exchanger (15) flows into the suction pipe (25) of the compressor (20).
  • the first four-way selector valve (12) and the second four-way selector valve (13) are set to the state shown in FIG. 2, and the refrigerant is circulated in the refrigerant circuit (11) to perform the vapor compression refrigeration cycle. .
  • the refrigeration cycle performed in the refrigerant circuit (11) is cooled at high pressure. It is set to a value that is higher than the critical pressure of carbon dioxide as a medium.
  • the compression mechanism (21) is rotationally driven by the electric motor (23). Compression mechanism
  • the compressor (21) compresses the refrigerant sucked from the suction pipe (25) and discharges it into the compressor casing (24).
  • the high-pressure refrigerant in the compressor casing (24) is also discharged from the compressor (20) through the discharge pipe (26).
  • Compressor (20) force The discharged refrigerant is sent to the indoor heat exchanger (15).
  • the indoor heat exchanger (15) the refrigerant that has flowed in dissipates heat to the room air, and the room air is heated.
  • the high-pressure refrigerant that dissipated heat in the indoor heat exchange (15) flows into the expander (30).
  • the expander (30) the high-pressure refrigerant that has flowed into the expansion mechanism (31) through the inflow pipe (35) expands, and thereby the generator (33) is driven to rotate.
  • the electric power generated by the generator (33) is supplied to the electric motor (23) of the compressor (20).
  • the refrigerant expanded by the expansion mechanism (31) is sent out by the expander (30) through the outflow pipe (36).
  • Expander (30) Force The delivered refrigerant is sent to the outdoor heat exchanger (14). In the outdoor heat exchanger (14), the refrigerant flowing in absorbs heat from the outdoor air and evaporates.
  • the low-pressure refrigerant discharged from the outdoor heat exchanger (14) flows into the suction pipe (25) of the compressor (20).
  • refrigerating machine oil supplied to the compression mechanism (21) is used for lubrication of the compression mechanism (21), but a part of it is discharged together with the compressed refrigerant into the internal space of the compressor casing (24).
  • Compressor mechanism (21) Force Refrigerating machine oil discharged with refrigerant forms in the gap formed between the rotor and stator of the motor (23) or between the stator and compressor casing (24). Part of it is separated from the refrigerant while passing through the gap.
  • the refrigerating machine oil separated from the refrigerant in the compressor casing (24) flows down into the oil sump (27).
  • the refrigeration oil that has not been separated from the refrigerant flows out of the compressor (20) through the discharge pipe (26) together with the refrigerant.
  • the refrigerating machine oil is supplied from the oil reservoir (37) in the expander casing (34) to the expansion mechanism (31).
  • the refrigerating machine oil supplied to the expansion mechanism (31) is used for lubrication of the expansion mechanism (31), and a part thereof is sent out from the expansion mechanism (31) together with the refrigerant after expansion.
  • Expansion mechanism (31) force The refrigerating machine oil sent out expands through the outflow pipe (36). It flows out of the machine (30).
  • compressor (20) and expander (30) force refrigeration oil flows out.
  • the refrigeration oil that has flowed out of the compressor (20) and the expander (30) circulates in the refrigerant circuit (11) together with the refrigerant, and returns to the compressor (20) and the expander (30) again.
  • the refrigeration oil flowing in the refrigerant circuit (11) is sucked into the compression mechanism (21) through the suction pipe (25) together with the refrigerant.
  • the refrigeration oil sucked into the compression mechanism (21) from the suction pipe (25) is discharged into the internal space of the compressor casing (24) together with the compressed refrigerant.
  • a part of the refrigerating machine oil discharged together with the compression mechanism (21) force refrigerant is separated from the refrigerant while flowing through the internal space of the compressor casing (24) and returns to the oil reservoir (27).
  • the refrigerating machine oil flowing in the refrigerant circuit (11) flows into the expansion mechanism (31) through the inflow pipe (35) together with the refrigerant.
  • the refrigerant expanded by the expansion mechanism (31) is directly sent out of the expander casing (34) through the outflow pipe (36).
  • the refrigerating machine oil that has flowed into the expansion mechanism (31) together with the refrigerant also sends the outflow pipe (36) force directly to the outside of the expander casing (34). That is, in the expander (30), although the refrigeration oil flowing in the refrigerant circuit (11) flows into the expansion mechanism (31), this refrigerant returns to the oil reservoir (37) in the expander casing (34).
  • the oil (37) force in the expander casing (34) is also supplied to the expansion mechanism (31) and the refrigerating machine oil is sent out together with the refrigerant to the expander (30). Therefore, during the operation of the expander (30), the amount of refrigerating machine oil stored in the expander casing (34) gradually decreases.
  • the controller (53) determines that the oil level in the oil sump (37) has fallen below a certain level based on the output signal from the oil level sensor (51), the controller (53) opens the oil level control valve (52).
  • the oil control valve (52) opens, the compressor casing (24)
  • the oil sump (27) inside and the oil sump (37) inside the expander casing (34) communicate with each other.
  • the compressor (20) the refrigerant compressed by the compression mechanism (21) is discharged into the internal space of the compressor casing (24). For this reason, the internal pressure of the compressor casing (24) becomes substantially equal to the pressure of the refrigerant discharged from the compression mechanism (21) (that is, the high pressure of the refrigeration cycle).
  • the expander (30) the low pressure side communication pipe (80) is connected to the expander casing (34), and the inner space of the expander casing (34) is connected to the suction pipe (25) of the compressor (20). ) Communicated with the pipe connected to. For this reason, the internal pressure of the expander casing (34) becomes substantially equal to the pressure of the refrigerant sucked into the compressor (20) (that is, the low pressure of the refrigeration cycle).
  • the internal pressure of the compressor casing (24) is higher than the internal pressure of the expander casing (34).
  • the oil amount adjustment valve (52) is opened, the oil sump (27) force in the compressor casing (24) is also directed toward the oil sump (37) in the expander casing (34) to distribute the oil.
  • Refrigeration oil flows through the pipe (42).
  • the controller (53) determines that the oil level of the oil sump (37) has risen to a certain level or more based on the output signal of the oil level sensor (51), the controller closes the oil amount adjustment valve (52). .
  • the internal pressure of the compressor casing (24) is set to be higher than the internal pressure of the expander casing (34), and the oil reservoir (27) force in the compressor casing (24) is set through the oil distribution pipe (42).
  • Refrigerating machine oil is supplied to the oil sump (37) in the expander casing (34). For this reason, even if refrigeration oil is unevenly distributed in the compressor (20) during the operation of the air conditioner (10), the refrigeration oil becomes excessive and the compressor (20) force is insufficient.
  • the refrigerating machine oil can be supplied to the expander (30) through the oil distribution pipe (42).
  • the compressor casing (24) and the expander casing (34) each have a sufficient amount of refrigerating machine oil, and the compression mechanism (21) and the expansion mechanism (31) can be lubricated. Can be performed reliably. Therefore, according to this embodiment, the compressor (20) and the expander (30) can be prevented from being damaged due to poor lubrication, and the reliability of the air conditioner (10) can be ensured.
  • the heat exchanger functioning as an evaporator is located downstream of the expander (30).
  • the heat exchanger functioning as an evaporator it is desirable to reduce the enthalpy of the refrigerant flowing out of the expander (30) as much as possible.
  • the refrigerant before being sucked into the compression mechanism (21) is lower in temperature than the refrigerant after being compressed by the compression mechanism (21).
  • the expander casing (34) is connected to the pipe through which the low-pressure refrigerant sucked into the compressor (20) flows via the low-pressure side communication pipe (80). Yes. Since this low-pressure refrigerant has a relatively low temperature, the temperature in the expander casing (34) does not become so high. For this reason, the amount of heat entering the refrigerant expanding by the expansion mechanism (31) can be suppressed, and the enthalpy of the refrigerant flowing out of the expander (30) can be suppressed low. Therefore, according to the present embodiment, it is possible to sufficiently secure the heat absorption amount of the refrigerant in the heat exchanger functioning as an evaporator.
  • an oil separator (60) and an oil return pipe (62) may be added to the refrigerant circuit (11).
  • the air conditioner (10) of this modification will be described with respect to differences from those shown in FIGS.
  • the oil separator (60) is disposed on the discharge side of the compressor (20).
  • the oil separator (60) is for separating the refrigerant discharged from the compressor (20) and the refrigerating machine oil.
  • the oil separator (60) includes a main body member (65) formed in a vertically long cylindrical sealed container shape.
  • the main body member (65) is provided with an inlet pipe (66) and an outlet pipe (67).
  • the inlet pipe (66) protrudes in the lateral direction of the main body member (65), and penetrates the upper portion of the side wall portion of the main body member (65).
  • the outlet pipe (67) protrudes upward from the main body member (65) and penetrates the top of the main body member (65).
  • the oil separator (60) has its inlet pipe (66) connected to the discharge pipe (26) of the compressor (20) and its outlet pipe (67) connected to the first port of the first four-way switching valve (12). It is connected to the.
  • the oil return pipe (62) connects the oil separator (60) and the expander (30) to form an oil return passage.
  • One end of the oil return pipe (62) is connected to the bottom of the main body member (65) in the oil separator (60).
  • the other end of the oil return pipe (62) is connected to the bottom of the expander casing (34).
  • a capillary tube (63) for reducing the pressure of the refrigerating machine oil is provided in the middle of the oil return pipe (62).
  • the internal space of the main body member (65) of the oil separator (60) communicates with the oil reservoir (37) in the expander casing (34) via the oil return pipe (62).
  • Compressor (20) Force Refrigerating machine oil discharged together with the refrigerant flows into the oil separator (60), is separated from the refrigerant, and accumulates at the bottom of the main body member (65).
  • the refrigerating machine oil accumulated in the main body member (65) flows into the oil return pipe (62), is depressurized by the capillary tube (63), and is supplied to the oil sump (37) in the force expander casing (34).
  • the refrigerating machine oil flowing out together with the refrigerant in the expander (30) flows through the refrigerant circuit (11) together with the refrigerant and is sucked into the compression mechanism (21) of the compressor (20).
  • the refrigerating machine oil sucked into the compression mechanism (21) is discharged into the internal space of the compressor casing (24) together with the compressed refrigerant, and a part of it is sent to the oil reservoir (27) in the compressor casing (24). It will flow down.
  • the refrigeration oil from which the compressor (20) force has also flowed out is supplied into the expander casing (34) through the oil separator (60) and the oil return pipe (62).
  • the refrigerating machine oil that has flowed out of the expander (30) flows into the compressor casing (24), and a part of the oil flows through the oil distribution pipe (42) to the oil reservoir (37) in the expander casing (34). ).
  • the oil separator (60) may be connected to the compressor casing (24) instead of the expander casing (34).
  • the air conditioner (10) of the present modification differences from the modification 1 will be described.
  • the main body member (65) of the oil separator (60) and the compressor casing (24) are connected by the oil return pipe (61). .
  • the oil return pipe (61) has one end connected to the bottom of the main body member (65) of the oil separator (60) and the other end connected to the bottom of the compressor casing (24).
  • the oil return pipe (61) constitutes an oil return passage for communicating the body member (65) of the oil separator (60) with the oil reservoir (27) in the compressor casing (24).
  • both the refrigeration oil that has flowed out of the compressor (20) and the refrigeration oil that has flowed out of the expander (30) force are compressed in the compressor casing ( Refrigerating machine oil is distributed to the oil sump (37) in the expander casing (34), and the oil sump (27) in the compressor casing (24) is also collected in the oil sump (27) in 24).
  • an oil separator (75) and an oil return pipe (62) may be added to the refrigerant circuit (11).
  • the air conditioner (10) of this modification will be described with respect to differences from those shown in FIGS.
  • the oil separator (75) is arranged on the suction side of the compressor (20).
  • the oil separator (75) itself is configured in the same manner as the oil separator (60) of the first modification.
  • this oil separator (75) comprises a body member (65), an inlet pipe (66) and an outlet pipe (67)! /
  • the oil separator (75) has an inlet pipe (66) connected to the second port of the first four-way selector valve (12) and an outlet pipe (67) connected to the suction pipe (25) of the compressor (20). Connected to!
  • the oil return pipe (77) connects the oil separator (75) and the expander casing (34) to form an oil return passage.
  • One end of the oil return pipe (77) is connected to the bottom of the main body member (65) of the oil separator (75).
  • the other end of the oil return pipe (77) is connected to the bottom of the expander casing (34).
  • the internal space of the main body member (65) of the oil separator (75) communicates with the oil reservoir (37) in the expander casing (34) via the oil return pipe (77).
  • the compressor oil discharged together with the compressor (20) force refrigerant flows through the refrigerant circuit (11) from the inlet pipe (35) of the expander (30). Flows into expansion mechanism (31).
  • the refrigerating machine oil that has flowed into the expansion mechanism (31) passes through the outflow pipe (36) together with the refrigerating machine oil supplied from the oil reservoir (37) in the expansion machine casing (34) to the expansion mechanism (31). It flows out from (30).
  • the refrigeration oil that has flowed out of the expansion mechanism (31) flows along with the refrigerant in the refrigerant circuit (11) and flows into the oil separator (75).
  • a part of the refrigeration oil that has flowed into the main body member (65) of the oil separator (75) is separated from the refrigerant and collected at the bottom of the main body member (65).
  • the refrigerating machine oil accumulated in the main body member (65) is supplied to the oil sump (37) in the expander casing (34) through the oil return pipe (77).
  • the refrigerant in the oil separator (75) flows into the compressor casing (24) through the suction pipe (25) of the compressor (20) together with the remaining refrigeration oil.
  • an oil separator (70) and an oil return pipe (72) may be added to the refrigerant circuit (11).
  • the air conditioner (10) of this modification will be described with respect to differences from those shown in FIGS.
  • the oil separator (70) is arranged on the outflow side of the expander (30).
  • the oil separator (70) itself is configured in the same manner as the oil separator (60) of the first modification.
  • the oil separator (70) includes a body member (65), an inlet pipe (66), and an outlet pipe (67)! /
  • the oil separator (70) has an inlet pipe (66) connected to the outflow pipe (36) of the expander (30), and an outlet pipe (67) connected to the first four-way switching valve (13). Connected to the port.
  • the oil return pipe (72) connects the oil separator (70) and the expander casing (34). One end of the oil return pipe (72) is connected to the bottom of the main body member (65) of the oil separator (70). The other end of the oil return pipe (72) is connected to the bottom of the expander casing (34).
  • the oil return pipe (72) constitutes an oil return passage for communicating the main body member (65) of the oil separator (70) with the oil reservoir (37) in the expander casing (34).
  • the compressor oil discharged together with the compressor (20) force refrigerant flows through the refrigerant circuit (11) from the inlet pipe (35) of the expander (30). Flows into expansion mechanism (31).
  • the refrigerating machine oil that has flowed into the expansion mechanism (31) passes through the outflow pipe (36) together with the refrigerating machine oil supplied from the oil reservoir (37) in the expansion machine casing (34) to the expansion mechanism (31).
  • (30) Power will flow out.
  • Expander (30) Force The refrigeration oil that has flowed out flows into the body member (65) of the oil separator (70) together with the refrigerant in the gas-liquid two-phase state after expansion. Inside the main body member (65), a mixture of liquid refrigerant and refrigerating machine oil is accumulated in the lower part, and gas refrigerant is accumulated in the upper part.
  • the refrigerant circuit (1 The specific gravity of the refrigeration oil used in 1) is greater than the specific gravity of the liquid refrigerant. For this reason, in the liquid reservoir in the main body member (65), the ratio of the refrigerating machine oil increases in the bottom layer, and the ratio of the liquid refrigerant increases in the upper layer.
  • the oil return pipe (72) is connected to the bottom of the main body member (65).
  • the refrigerating machine oil present in the bottom layer of the liquid reservoir in the main body member (65) is supplied to the oil reservoir (37) in the expander casing (34) through the oil return pipe (72).
  • the outlet pipe (67) of the oil separator (70) is in a state where its lower end is immersed in the liquid reservoir in the main body member (65).
  • the liquid refrigerant present in the upper layer of the liquid pool in the main body member (65) flows out of the main body member (65) through the outlet pipe (67), and is supplied to the indoor heat exchanger (15) during the cooling operation. If it is in heating operation, it is supplied to the outdoor heat exchanger (14).
  • the oil separator (70) may be connected to the suction side of the compressor (20) instead of the expander casing (34).
  • the air conditioner (10) of the present modification differences from the modification 4 will be described.
  • the main body member (65) of the oil separator (70) and the suction pipe (25) of the compressor (20) are connected to the oil return pipe (71 ).
  • One end of the oil return pipe (71) is connected to the bottom of the body member (65) of the oil separator (70), and the other end of the oil return pipe (71) is connected to the suction pipe (25) of the compressor (20). 1 Connect to the pipe connecting the second port of the four-way selector valve (12).
  • the oil return pipe (71) connects the oil separator (70) and the suction pipe (25) of the compressor (20) to form an oil return passage.
  • the refrigeration oil accumulated in the main body member (65) of the oil separator (70) flows into the suction side of the compressor (20) through the oil return pipe (71), and together with the refrigerant, the suction pipe (25 ) And is sucked into the compression mechanism (21).
  • the refrigerating machine oil sucked into the compression mechanism (21) is discharged into the internal space of the compressor casing (24) together with the compressed refrigerant, and a part of the oil is stored in the oil reservoir (27) in the compressor casing (24). ) Will flow down.
  • Embodiment 2 of the present invention will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the refrigerant circuit (11) of the first embodiment.
  • the air conditioner (10) of the present embodiment differences from the first embodiment will be described.
  • the refrigerant circuit (11) of the present embodiment includes a low-pressure side introduction pipe (81
  • the low pressure side introduction pipe (81) constitutes a low pressure side introduction passage!
  • the start of the low pressure side introduction pipe (81) is connected to a pipe connecting the suction pipe (25) of the compressor (20) and the second port of the first four-way switching valve (12).
  • the end of the low pressure side introduction pipe (81) is connected to the expander casing (34).
  • the end of the low-pressure side introduction pipe (81) opens to a portion of the internal space of the expander casing (34) that is lower than the generator (33).
  • the low pressure side outlet pipe (82) constitutes a low pressure side outlet passage.
  • the start of the low pressure side outlet pipe (82) is connected to the expander casing (34).
  • the starting end of the low pressure side outlet pipe (82) opens to a portion between the expansion mechanism (31) and the generator (33) in the internal space of the expander casing (34).
  • the other end of the low pressure side outlet pipe (82) is connected to the pipe connecting the suction pipe (25) of the compressor (20) and the second port of the first four-way switching valve (12) to the low pressure side inlet pipe (81 ) Is connected at a position closer to the compressor (20) than the connection point.
  • the operation during the cooling operation and the heating operation in the refrigerant circuit (11) of the present embodiment is performed in the above-described manner except for the refrigerant flow path sucked into the compressor (20) through the first four-way switching valve (12).
  • the operation is the same as that performed in the refrigerant circuit (11) of the first embodiment.
  • the low-pressure refrigerant that has passed through the first four-way switching valve (12) is partially a low-pressure side introduction pipe.
  • the low-pressure refrigerant that has flowed into the expander casing (34) is separated from the gap formed between the rotor and stator of the generator (33) and the stator. A gap formed between the expander casings (34) is passed from the bottom to the top. At that time, the refrigerating machine oil flowing into the expander casing (34) together with the low-pressure refrigerant is separated from the refrigerant. The refrigerating machine oil separated from the refrigerant in the expander casing (34) flows down to the oil sump (37).
  • the low-pressure refrigerant that has passed through the generator (33) flows into the low-pressure side outlet pipe (82), joins directly from the first four-way switching valve (12) to the compressor (20), and flows into the compressor (20). They are sucked into the compressor (20).
  • the same effect as in the first embodiment can be obtained.
  • the refrigerant since a part of the low-pressure refrigerant directed to the compressor (20) passes through the expander casing (34) and is sucked into the force compressor (20), the refrigerant is supplied to the compressor (20).
  • the amount of refrigeration oil that is inhaled can be reduced. Therefore, according to the present embodiment, the amount of refrigerant sucked into the compression mechanism (21) is ensured as in the case of the third modification of the first embodiment, so that the performance of the compressor (20) is sufficient. Can be demonstrated.
  • the expander casing (34) can be used as an accumulator.
  • the low-pressure refrigerant that has flowed into the expander casing (34) passes through the generator (33) with downward force directed upward, while the generator ( 33)
  • the refrigerating machine oil separated from the refrigerant flows down with upward force. That is, in the internal space of the expander casing (34), the direction in which the low-pressure refrigerant flows is opposite to the direction in which the refrigerating machine oil separated from the low-pressure refrigerant flows. Therefore, according to the present embodiment, the amount of the refrigerating machine oil separated from the low-pressure refrigerant that flows together with the low-pressure refrigerant and flows out to the low-pressure side outlet pipe (82) can be more reliably reduced.
  • a relatively low-temperature low-pressure refrigerant passes through the internal space of the expander casing (34). For this reason, the generator (33) accommodated in the expander casing (34) can be cooled by the low-pressure refrigerant, and the efficiency reduction of the generator (33) due to the temperature rise can be suppressed.
  • the low-pressure refrigerant that has flowed through the low-pressure side introduction pipe (81) passes through the generator (33). Therefore, according to this embodiment, the generator (33) can be reliably cooled by the low-pressure refrigerant.
  • an oil separator (60) is provided on the discharge side of the compressor (20), and the bottom of the main body member (65) of the oil separator (60) and the expander casing.
  • the bottom part of (34) may be connected by the oil return pipe (62), and a capillary tube (63) for reducing the pressure of the refrigerating machine oil may be provided in the oil return pipe (62).
  • an oil separator (60) is provided on the discharge side of the compressor (20), the bottom of the main body member (65) of the oil separator (60) and the compressor casing. You can connect the bottom of (24) with the oil return pipe (61)! /.
  • an oil separator (75) is provided on the suction side of the compressor (20), and the bottom of the body member (65) of the oil separator (75) and the expander casing. You can connect the bottom of (34) with oil return pipe (77)! /.
  • an oil separator (70) is provided on the outflow side of the expander (30), and the bottom of the main body member (65) of the oil separator (70) and the expander casing. You can connect the bottom of (34) with the oil return pipe (72)! /.
  • an oil separator (70) is provided on the outflow side of the expander (30), and the bottom of the main body member (65) of the oil separator (70) and the compressor ( You can connect the suction pipe (25) of 20) with the oil return pipe (71)! /.
  • Embodiment 3 of the present invention will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the refrigerant circuit (11) of the second embodiment.
  • the difference between the air conditioner (10) of the present embodiment and the second embodiment will be described.
  • the suction pipe (25) of the compressor (20) and the second port of the first four-way switching valve (12) The piping connecting the two is omitted.
  • the starting end of the low pressure side introduction pipe (81) is connected to the second port of the first four-way switching valve (12), and the end of the low pressure side outlet pipe (82) is the compressor.
  • the suction pipe (25) of (20) is the connection positions of the low pressure side introduction pipe (81) and the low pressure side lead pipe (82) in the expander casing (34) are the same as those in the second embodiment.
  • the effect obtained in the second embodiment can be obtained to a greater extent. That is, the amount of refrigerating machine oil sucked into the compressor (20) together with the refrigerant can be further reduced, and the performance of the compressor (20) can be sufficiently exhibited. Also, even when liquid refrigerant is included in the low-pressure refrigerant going to the compressor (20), almost all of the liquid refrigerant can be evaporated in the expander casing (34), and the compressor ( 20) can reduce the risk of breakage.
  • an oil separator (60) is provided on the discharge side of the compressor (20), and the bottom of the main body member (65) of the oil separator (60) and the expander casing.
  • the bottom part of (34) may be connected by the oil return pipe (62), and a capillary tube (63) for reducing the pressure of the refrigerating machine oil may be provided in the oil return pipe (62).
  • an oil separator (60) is provided on the discharge side of the compressor (20).
  • the bottom of the main body member (65) of the oil separator (60) and the bottom of the compressor casing (24) may be connected by the oil return pipe (61)! /.
  • an oil separator (75) is provided on the suction side of the compressor (20), and the bottom of the main body member (65) of the oil separator (75) and the expander casing. You can connect the bottom of (34) with oil return pipe (77)! /.
  • the difference between the refrigerant circuit (11) of the present modification and the refrigerant circuit (11) shown in FIG. 16 will be described.
  • the starting end of the low pressure side introduction pipe (81) is connected to the outlet pipe (67) of the oil separator (75).
  • the other differences are the same as the differences between the refrigerant circuit (11) of Modification 3 (see FIG. 6) of the first embodiment and the refrigerant circuit (11) shown in FIGS. Therefore, here, the description of Modification 3 of Embodiment 1 is used as the description of this modification.
  • an oil separator (70) is provided on the outflow side of the expander (30), and the bottom of the main body member (65) of the oil separator (70) and the expander casing. You can connect the bottom of (34) with the oil return pipe (72)! /.
  • an oil separator (70) is provided on the outflow side of the expander (30), and the bottom of the body member (65) of the oil separator (70) and the compressor ( You can connect the suction pipe (25) of 20) with the oil return pipe (71)! /.
  • the difference between the refrigerant circuit (11) of the present modification and the refrigerant circuit (11) shown in FIG. 16 is that the refrigerant circuit (11) of the fifth modification of Embodiment 1 (see FIG. 8) and FIG. 1, the same as the difference from the refrigerant circuit (11) shown in Fig. 2. Therefore, here, the description of Modification 5 of Embodiment 1 is used as the description of this modification.
  • Embodiment 4 of the present invention will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the compressor (20) in the first embodiment.
  • the difference between the air conditioner (10) of the present embodiment and the first embodiment will be described.
  • the compressor (20) of the present embodiment is a so-called low-pressure dome type hermetic compressor (20).
  • the suction pipe (25) passes through the vicinity of the upper end of the body of the compressor casing (24), and the terminal end of the motor (23 in the compressor casing (24)).
  • the discharge pipe (26) passes through the vicinity of the lower end of the body portion of the compressor casing (24), and the starting end thereof is directly connected to the compression mechanism (21).
  • the point that the compression mechanism (21) constitutes a rotary positive displacement fluid machine and the point that the drive shaft (22) constitutes an oil supply mechanism are the same as in the first embodiment.
  • the refrigerant circuit (11) of the present embodiment includes an oil separator (60) and an oil return pipe (62).
  • the refrigerant circuit (11) is provided with a high-pressure side communication pipe (85).
  • the oil separator (60) is disposed on the discharge side of the compressor (20).
  • the oil separator (60) itself is configured in the same manner as the oil separator (60) of the first modification of the first embodiment. That is, the oil separator (75) includes a main body member (65), an inlet pipe (66), and an outlet pipe (67).
  • the oil separator (75) has its inlet pipe (66) connected to the discharge pipe (26) of the compressor (20) and its outlet pipe (67) connected to the first port of the first four-way switching valve (12). It is connected to the.
  • the oil return pipe (62) connects the oil separator (60) and the expander (30) to form an oil return passage.
  • One end of the oil return pipe (62) is connected to the bottom of the main body member (65) in the oil separator (60).
  • the other end of the oil return pipe (62) is connected to the bottom of the expander casing (34).
  • the internal space of the main body member (65) of the oil separator (60) communicates with the oil reservoir (37) in the expander casing (34) through the oil return pipe (62).
  • the high pressure side communication pipe (85) constitutes a high pressure side communication path!
  • One end of the high-pressure side communication pipe (85) is connected to a pipe connecting the discharge pipe (26) of the compressor (20) and the first port of the first four-way switching valve (12).
  • the other end of the high pressure side communication pipe (85) is connected to the expander casing (34).
  • the end of the high-pressure side communication pipe (85) opens to a lower part of the generator (33) in the internal space of the expander casing (
  • the operation of the refrigerant circuit (11) of the present embodiment during the cooling operation and the heating operation is the same as that of the first embodiment except that the refrigerant discharged from the compressor (20) passes through the oil separator (60). This is the same as the operation performed in the refrigerant circuit (11).
  • the refrigerant discharged from the compressor (20) passes through the oil separator (60) and flows into the force first four-way switching valve (12) and during cooling operation If so, it is supplied to the outdoor heat exchanger (14), and if it is in the heating operation, it is supplied to the indoor heat exchanger (15).
  • the refrigeration oil accumulated in the main body member (65) is supplied to the oil sump (37) in the expander casing (34) through the oil return pipe.
  • the refrigerating machine oil that has flowed out together with the refrigerant in the expander (30) flows together with the refrigerant in the refrigerant circuit (11), passes through the suction pipe (25) of the compressor (20), and passes through the compressor casing (24 ) Flows into the interior space.
  • the refrigerating machine oil that flows into the compressor casing (24) together with the refrigerant is formed between the rotor and the stator of the electric motor (23) or between the stator and the compressor casing (24). Part of it is separated from the refrigerant while passing through the gap and flows down toward the oil sump (27).
  • the refrigeration oil that has not been separated from the refrigerant is sucked into the compressor structure (21) together with the refrigerant, and then discharged together with the compressor (20) force refrigerant.
  • the refrigeration oil that has flowed out of the compressor (20) is collected by the oil separator (60), and the refrigeration oil collected by the oil separator (60) is used as the expander. Supplied into the casing (34). Therefore, during the operation of the air conditioner (10), the amount of refrigeration oil stored in the expander casing (34) gradually increases, while the amount of refrigeration oil stored in the compressor casing (24) increases. It gradually decreases. [0169] When the amount of refrigerating machine oil stored in the expander casing (34) increases, the oil level in the oil reservoir (37) rises accordingly.
  • the controller determines that the oil level of the oil sump (37) has risen to a certain level or more based on the output signal of the oil level sensor (51), the controller opens the oil level control valve (52).
  • the oil amount adjustment valve (52) is opened, the oil sump (27) in the compressor casing (24) and the oil sump (37) in the expander casing (34) communicate with each other.
  • the refrigerant sucked into the compressor (20) passes through the internal space of the compressor casing (24), and the force is also sucked into the compression mechanism (21).
  • the internal pressure of the compressor casing (24) is substantially equal to the pressure of the refrigerant sucked into the compression mechanism (21) (that is, the low pressure of the refrigeration cycle).
  • the high pressure side communication pipe (85) is connected to the expander casing (34), and the internal space of the expander casing (34) is the discharge pipe (26) of the compressor (20). It communicates with the pipe connected to.
  • the internal pressure of the expander casing (34) becomes substantially equal to the pressure of the refrigerant discharged from the compressor (20) (that is, the high pressure of the refrigeration cycle).
  • the internal pressure of the expander casing (34) is higher than the internal pressure of the compressor casing (24).
  • the oil amount adjustment valve (52) is opened, the oil flow is directed from the oil reservoir (37) in the expander casing (34) to the oil reservoir (27) in the compressor casing (24).
  • Refrigeration oil flows through the pipe (42).
  • the controller (53) determines that the oil level of the oil sump (37) has dropped to a certain level or less based on the output signal of the oil level sensor (51), the controller (53) closes the oil amount adjustment valve (52). .
  • Embodiment 5 of the present invention will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the refrigerant circuit (11) of the fourth embodiment.
  • the difference between the air conditioner (10) of the present embodiment and the fourth embodiment will be described.
  • the refrigerant circuit (11) of the present embodiment is provided with a high pressure side introduction pipe (86) and a high pressure side outlet pipe (87).
  • the high-pressure side communication pipe (85), the oil separator (60), and the oil return pipe (62) of the fourth embodiment are omitted.
  • the high-pressure side introduction pipe (86) constitutes a high-pressure side introduction passage!
  • the start of the high-pressure side introduction pipe (86) is connected to a pipe connecting the discharge pipe (26) of the compressor (20) and the first port of the first four-way switching valve (12).
  • the end of the high-pressure side inlet pipe (86) is connected to the expander casing (34). ing.
  • the terminal end of the high-pressure side introduction pipe (86) opens to a portion of the internal space of the expander casing (34) below the generator (33).
  • the high pressure side outlet pipe (87) constitutes a high pressure side outlet passage.
  • the start of the low pressure side outlet pipe (82) is connected to the expander casing (34).
  • the starting end of the low pressure side outlet pipe (82) opens to a portion between the expansion mechanism (31) and the generator (33) in the internal space of the expander casing (34).
  • the other end of the low pressure side outlet pipe (82) is connected to the pipe connecting the discharge pipe (26) of the compressor (20) and the first port of the first four-way switching valve (12) to the high pressure side inlet pipe (86 )
  • the operations during the cooling operation and the heating operation in the refrigerant circuit (11) of the present embodiment are the same as those described above except for the refrigerant flow path discharged from the compressor (20) and directed to the first four-way switching valve (12). This is the same as the operation performed in the refrigerant circuit (11) of the fourth embodiment.
  • a part of the refrigerant discharged by the compressor (20) force flows into the first four-way switching valve (12) via the expander casing (34), and the rest is the first. 1 Directly flows into the four-way selector valve (12).
  • a part of the refrigerant discharged from the compressor (20) flows into the expander casing (34) through the high-pressure side introduction pipe (86).
  • the high-pressure refrigerant that has flowed into the expander casing (34) is formed between the rotor and the stator of the generator (33) and between the stator and the expander casing (34). Pass through gaps, etc., from bottom to top.
  • the refrigerating machine oil flowing into the expander casing (34) together with the high-pressure refrigerant is separated from the refrigerant.
  • the refrigerating machine oil separated from the refrigerant in the expander casing (34) flows down to the oil sump (37).
  • the high-pressure refrigerant that has passed through the generator (33) flows into the high-pressure side outlet pipe (87), joins the refrigerant that goes directly from the compressor (20) to the first four-way switching valve (12), and then switches to the first four-way. Flows into the valve (12).
  • the controller (53) of the present embodiment performs the same operation as that of the fourth embodiment. That is, when the controller (53) determines that the oil level position of the oil sump (37) has risen to a certain level or more based on the output signal of the oil level sensor (51), it opens the oil amount adjustment valve (52).
  • the oil sump (37) in the expander casing (34) also supplies the refrigeration oil to the oil sump (27) in the compressor casing (24).
  • the controller (53) determines that the oil level of the oil sump (37) has dropped to a certain level or less based on the output signal of the oil level sensor (51), the controller closes the oil amount adjustment valve (52). .
  • a part of the high-pressure refrigerant discharged from the compressor (20) is used as an expander casing.
  • Refrigerator oil and high-pressure refrigerant are separated using a generator (33) installed in the internal space of (34). For this reason, it becomes easy to secure the amount of refrigerating machine oil stored in the expander casing (34).
  • the high-pressure refrigerant that has flowed into the expander casing (34) passes through the generator (33) with downward force directed upward, while the generator ( When passing through (33), the refrigerating machine oil separated from the refrigerant flows down with upward force. That is, in the internal space of the expander casing (34), the direction in which the high-pressure refrigerant flows is opposite to the direction in which the refrigerating machine oil separated from the high-pressure refrigerant flows. Therefore, according to the present embodiment, among the refrigerating machine oil separated from the high-pressure refrigerant, the amount that flows again with the high-pressure refrigerant and flows out to the high-pressure side outlet pipe (87) can be more reliably reduced.
  • the oil separator (60) and the oil return pipe (62) may be provided in the refrigerant circuit (11).
  • the difference between the air conditioner (10) of this modification and that shown in FIG. 25 will be described.
  • the oil separator (60) is provided on the discharge side of the compressor (20) in the refrigerant circuit (11).
  • the oil separator (60) itself is configured in the same manner as the oil separator (60) of the fourth embodiment.
  • the oil separator (60) has a body member (65) and an inlet pipe (66). With outlet pipe (67)!
  • the oil separator (60) has its inlet pipe (66) connected to the discharge pipe (26) and its outlet pipe (67) connected to the first port of the first four-way selector valve (12). .
  • the oil return pipe (62) connects the oil separator (60) and the expander casing (34), and forms an oil return passage.
  • One end of the oil return pipe (62) is connected to the bottom of the main body member (65) of the oil separator (60).
  • the other end of the oil return pipe (62) is connected to the bottom of the expander casing (34).
  • the internal space of the main body member (65) of the oil separator (60) communicates with the oil reservoir (37) in the expander casing (34) via the oil return pipe (62).
  • the compressor (20) refrigerating machine oil discharged together with the refrigerant is an oil separator.
  • the refrigerant is separated from the high-pressure refrigerant at (60) and supplied to the oil reservoir (37) in the expander casing (34) through the oil return pipe (62).
  • the oil separator (60) may be connected to the compressor casing (24) instead of the expander casing (34).
  • the air conditioner (10) of the present modification differences from the modification 1 will be described.
  • the main body member (65) of the oil separator (60) and the compressor casing (24) are connected by the oil return pipe (61). .
  • the oil return pipe (61) has one end connected to the bottom of the main body member (65) of the oil separator (60) and the other end connected to the bottom of the compressor casing (24).
  • the return pipe (61) is provided with a capillary tube (63) for reducing the pressure of the refrigerating machine oil.
  • the oil return pipe (61) constitutes an oil return passage through which the main body member (65) of the oil separator (60) communicates with the oil reservoir (27) in the compressor casing (24).
  • the refrigerating machine oil discharged together with the compressor (20) force refrigerant is separated from the high-pressure refrigerant in the expander casing (34), while remaining.
  • Part of the oil is separated from the high-pressure refrigerant by the oil separator (60).
  • the refrigerating machine oil separated from the high-pressure refrigerant in the expander casing (34) flows into the oil reservoir (37) in the expander casing (34).
  • the refrigerating machine oil separated from the high-pressure refrigerant by the oil separator (60) is supplied to the oil reservoir (27) in the compressor casing (24) through the oil return pipe (61).
  • the oil separator (70) is arranged on the outflow side of the expander (30).
  • the oil separator (70) itself is configured similarly to the oil separator (60) of the fourth embodiment. That is, the oil separator (70) includes a main body member (65), an inlet pipe (66), and an outlet pipe (67).
  • the oil separator (70) has an inlet pipe (66) connected to the outflow pipe (36) of the expander (30), and an outlet pipe (67) connected to the first port of the second four-way switching valve (13). Connected to
  • the oil return pipe (71) has one end connected to the bottom of the main body member (65) of the oil separator (70) and the other end connected to the bottom of the compressor casing (24).
  • One end of the oil return pipe (71) is connected to the bottom of the main body member (65) of the oil separator (70), and the oil return pipe
  • This oil return pipe (71) constitutes an oil return passage for communicating the main body member (65) of the oil separator (70) with the oil reservoir (27) in the compressor casing (24).
  • the refrigerating machine oil that has flowed out of the expander (30) force is expanded in the main body member (65) of the oil separator (70) together with the expanded refrigerant in the gas-liquid two-phase state. Flow into. Inside the main body member (65), a mixture of liquid refrigerant and refrigerating machine oil is accumulated in the lower part, and gas refrigerant is accumulated in the upper part.
  • the specific gravity of the refrigeration oil used in the refrigerant circuit (11) is greater than the specific gravity of the liquid coolant. For this reason, in the liquid reservoir in the main body member (65), the ratio of the refrigerating machine oil increases in the bottom layer, and the ratio of the liquid refrigerant increases in the upper layer.
  • the oil return pipe (71) is connected to the bottom of the main body member (65).
  • the refrigerating machine oil present in the bottom layer of the liquid reservoir in the main body member (65) is supplied to the oil reservoir (27) in the compressor casing (24) through the oil return pipe (71).
  • the outlet pipe (67) of the oil separator (70) is in a state where its lower end is immersed in the liquid reservoir in the main body member (65).
  • the liquid refrigerant present in the upper layer of the liquid pool in the main body member (65) flows out of the main body member (65) through the outlet pipe (67), and is supplied to the indoor heat exchanger (15) during the cooling operation. If it is in heating operation, it is supplied to the outdoor heat exchanger (14).
  • Embodiment 6 of the Invention will be described.
  • the air conditioner (10) of the present embodiment is obtained by changing the configuration of the refrigerant circuit (11) of the fifth embodiment.
  • differences from the fifth embodiment will be described.
  • the refrigerant discharged by the compressor (20) is entirely passed through the high-pressure side introduction pipe (86) to the internal space of the expander casing (34). After flowing through the generator (33) from the bottom up, it flows into the first four-way switching valve (12) through the high-pressure outlet pipe (87).
  • the compressor (20) force All of the discharged high-pressure refrigerant is expanded by the expander casing.
  • the effects obtained in the fifth embodiment can be obtained to a greater extent. That is, in this embodiment, the amount of refrigerating machine oil separated from the high-pressure refrigerant in the expander casing (34) is larger than in the case of the fifth embodiment, so that it is stored in the expander casing (34). It becomes easier to secure the amount of refrigerating machine oil, and the risk of damage to the expander (30) due to the lack of refrigerating machine oil can be further reduced.
  • an oil separator (60) is provided on the discharge side of the compressor (20), and the bottom of the body member (65) of the oil separator (60) and the expander casing. You can connect the bottom of (34) with oil return pipe (62)! /.
  • an oil separator (60) is provided on the discharge side of the compressor (20), and the bottom of the main body member (65) of the oil separator (60) and the compressor casing are provided. You can connect the bottom of (24) with the oil return pipe (61)! /.
  • an oil separator (70) is provided on the outflow side of the expander (30), and the bottom of the main body member (65) of the oil separator (70) and the compressor casing. You can connect the bottom of (24) with the oil return pipe (71)! /.
  • a capillary tube (54) as an adjusting means may be provided in the middle of the oil circulation pipe (42). Note that the refrigerant circuit (11) shown in FIG. 35 is obtained by applying the present modification to the first embodiment.
  • the capillary tube (54) When the capillary tube (54) is provided in the oil circulation pipe (42), the refrigerating machine oil flowing through the oil circulation pipe (42) is decompressed when passing through the capillary tube (54). For this reason, the internal pressure of each other Even when different compressor casings (24) and expander casings (34) communicate with each other via the oil circulation pipe (42), the inner pressure of the compressor casing (24) and the expander casing (34) is low. Toward refrigeration oil will not be biased. In other words, the capillary tube (54) has an oil distribution pipe (42) so that the compressor oil (24) and the expander casing (34) have a lower internal pressure and the refrigeration oil is not biased toward it. Adjust the flow rate of refrigerating machine oil at!
  • the oil level sensor (51) may be provided in the compressor casing (24). Note that the refrigerant circuit (11) shown in FIG. 36 is obtained by applying the present modification to the third embodiment. A refrigerant circuit (11) shown in FIG. 37 is obtained by applying the present modification to the sixth embodiment.
  • the internal pressure of the compressor casing (24) is higher than the internal pressure of the expander casing (34).
  • the oil sump (27) in the compressor casing (24) is also applied to the oil sump (37) in the expander casing (34).
  • Refrigerating machine oil flows toward the top. Therefore, when the controller (53) determines that the oil level in the compressor casing (24) has risen to a certain level or more, the controller (53) opens the oil amount adjustment valve (52) and opens the oil in the compressor casing (24). If it is determined that the surface position has dropped to a certain level, the oil level control valve (52) is closed.
  • the refrigerant circuit (11) may be provided with an oil cooling heat exchanger (90).
  • the oil cooling heat exchanger (90) is, for example, a plate type heat exchanger or a double saddle type heat exchanger. It is composed. Specifically, a first flow path (91) and a second flow path (92) are formed in the oil cooling heat exchanger (90).
  • the first flow path (91) of the oil cooling heat exchanger (90) is provided in the middle of the oil circulation pipe (42).
  • the second flow path (92) of the oil cooling heat exchanger (90) is provided in the middle of the pipe connecting the suction pipe (25) of the compressor (20) and the first four-way switching valve (12). .
  • the refrigeration oil flowing in the oil circulation pipe (42) and the low-pressure refrigerant flowing from the first four-way switching valve (12) to the compressor (20) are transferred. Exchange heat.
  • the compressor (20) of Embodiments 1, 2, and 3 the high-temperature and high-pressure refrigerant compressed by the compression mechanism (21) is discharged into the internal space of the compressor casing (24). Therefore, the lubricating oil stored in the oil sump (27) in the compressor casing (24) is at a relatively high temperature (for example, about 80 ° C). On the other hand, the low-pressure refrigerant sucked into the compressor (20) becomes relatively low temperature (for example, about 5 ° C)! /. For this reason, the lubricating oil that has flowed from the oil reservoir (27) in the compressor casing (24) into the oil circulation pipe (42) exchanges heat with the low-pressure refrigerant while passing through the oil cooling heat exchanger (90). Then, it is cooled and then flows into the oil sump (37) in the expander casing (34).
  • an expander In order to secure the heat absorption amount of the refrigerant in the outdoor heat exchanger (14) and the indoor heat exchanger (15), which is the evaporator, an expander ( It is desirable to make the enthalpy of the refrigerant flowing out of (30) as low as possible.
  • the refrigeration oil in the compressor casing (24) is cooled by the oil cooling heat exchanger (90) and flows into the force expander casing (34).
  • the amount of heat entering the expanding refrigerant can be suppressed. Therefore, according to the present embodiment, the enthalpy of the refrigerant flowing out from the expander (30) can be kept low, and the heat absorption amount of the refrigerant in the evaporator can be sufficiently secured.
  • the expansion mechanism (31) in the expander casing (34) may be surrounded by a heat insulating material (38).
  • each of the compression mechanism (21) and the expansion mechanism (31) is constituted by a rotary fluid machine, but the fluid machine constituting the compression mechanism (21) and the expansion mechanism (31).
  • the format is not limited to this.
  • each of the compression mechanism (21) and the expansion mechanism (31) may be configured by a scroll type fluid machine.
  • the compression mechanism (21) and the expansion mechanism (31) may be configured by different types of fluid machines.
  • the force drive shaft (22) constituting the centrifugal pump by the oil supply passage formed in the drive shaft (22) of the compressor (20) and the output shaft (32) of the expander (30).
  • a mechanical pump for example, a gear pump or a trochoid pump
  • the mechanical pump is driven by the drive shaft (22) or the output shaft (32).
  • the expansion mechanism (31) is connected to the lower end of the output shaft (32), and the mechanical pump is driven by the drive shaft (22) or the output shaft (32).
  • the pressure of the refrigeration oil stored in the expander casing (34) is the expansion mechanism (31). Since it is lower than the pressure of the refrigerant flowing into the centrifugal pump, it may be difficult for the centrifugal pump to secure a sufficient oil supply amount for the expansion mechanism (31). Further, even when the compressor (20) is a low-pressure dome type as in Embodiments 4 to 5, it may be difficult to ensure a sufficient amount of oil supply to the compression mechanism (21) with the centrifugal pump.
  • the present invention is useful for a refrigeration apparatus in which a compressor and an expander are provided in a refrigerant circuit.

Abstract

 空調機(10)の冷媒回路(11)には、圧縮機(20)と膨張機(30)が設けられる。圧縮機(20)では、油溜まり(27)から圧縮機構(21)へ冷凍機油が供給される。膨張機(30)では、油溜まり(37)から膨張機構(31)へ冷凍機油が供給される。圧縮機ケーシング(24)内は冷凍サイクルの高圧となり、膨張機ケーシング(34)内は冷凍サイクルの低圧となる。圧縮機ケーシング(24)と膨張機ケーシング(34)を繋ぐ油流通管(42)には、油量調節弁(52)が設けられる。油量調節弁(52)は、油面センサ(51)の出力信号に基づいて操作される。油量調節弁(52)を開くと、油流通管(42)では、圧縮機ケーシング(24)内の油溜まり(27)から膨張機ケーシング(34)内の油溜まり(37)へ向かって冷凍機油が流れる。

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、冷凍装置における圧縮機や膨張機への潤滑油の供給に関するもので ある。
背景技術
[0002] 従来より、冷媒回路で冷媒を循環させて冷凍サイクルを行う冷凍装置が知られてお り、空調機等の用途に広く利用されている。例えば特許文献 1には、冷媒を圧縮する 圧縮機と、冷媒を膨張させる動力回収用の膨張機とを備えた冷凍装置が開示されて いる。具体的に、特許文献 1の図 1に記載された冷凍装置では、膨張機が圧縮機と 1 本の軸で連結され、膨張機で得られた動力が圧縮機の駆動に利用される。また、特 許文献 1の図 6に記載された冷凍装置では、圧縮機には電動機が、膨張機には発電 機がそれぞれ連結されている。この冷凍装置は、圧縮機が電動機により駆動されて 冷媒を圧縮する一方、発電機が膨張機より駆動されて発電を行って!/ヽる。
[0003] 膨張機と圧縮機を 1本の軸で連結した流体機械は、例えば特許文献 2に開示され ている。この特許文献に開示された流体機械では、圧縮機としての圧縮機構と、膨張 機としての膨張機構と、両者を連結する軸とが 1つのケーシング内に収容されている 。また、この流体機械では、軸の内部に給油通路が形成されており、ケーシングの底 部に溜まった潤滑油が給油通路を通じて圧縮機構や膨張機構へ供給される。
[0004] また、特許文献 3には、いわゆる密閉型圧縮機が開示されている。この密閉型圧縮 機では、圧縮機構と電動機力^つのケーシング内に収容されている。また、この密閉 型圧縮機では、圧縮機構の駆動軸に給油通路が形成されており、ケーシングの底部 に溜まった潤滑油が給油通路を通じて圧縮機構へ供給される。特許文献 1の図 6に 記載された冷凍装置では、この種の密閉型圧縮機を用いることも可能である。
特許文献 1:特開 2000— 241033号公報
特許文献 2:特開 2005 - 299632号公報
特許文献 3 :特開 2005— 002832号公報 発明の開示
発明が解決しょうとする課題
[0005] 上述したように、冷媒回路に設けられる圧縮機としては、圧縮機構をケーシング内 に収容してケーシング内に貯留された潤滑油を圧縮機構へ供給する構造のものが 知られている。また、膨張機についても、膨張機構をケーシング内に収容してケーシ ング内に貯留された潤滑油を膨張機構へ供給する構造とすることが考えられる。
[0006] そして、特許文献 1の図 6に記載されているような冷凍装置では、それぞれが個別 にケーシングを備える圧縮機と膨張機を冷媒回路に設け、圧縮機ではそのケーシン グ内の潤滑油を利用して圧縮機構を潤滑し、膨張機ではそのケーシング内の潤滑油 を利用して膨張機構を潤滑することが考えられる。ところが、このような構成の冷凍装 置では、圧縮機と膨張機の一方に潤滑油が偏ってしまって焼き付き等のトラブルを招 くおそれがある。
[0007] この問題点について説明する。圧縮機の運転中には、圧縮機構へ供給された潤滑 油の一部が冷媒と共に圧縮機力も吐出される。また、膨張機の運転中には、膨張機 構へ供給された潤滑油の一部が冷媒と共に膨張機力 流出してゆく。つまり、圧縮機 と膨張機の両方を備える冷凍装置の冷媒回路では、圧縮機のケーシングから流出し た潤滑油と、膨張機のケーシンダカ 流出した潤滑油とが冷媒と共に循環する。そし て、圧縮機力 の流出量に見合った分の潤滑油を圧縮機のケーシングへ送り返し、 膨張機力 の流出量に見合った分の潤滑油を膨張機のケーシングへ送り返すことが できれば、圧縮機と膨張機の両方においてケーシング内の潤滑油の量が確保される
[0008] しかしながら、冷媒回路内を循環する潤滑油のうち圧縮機へ戻るものと膨張機へ戻 るものの割合を正確に設定するのは、極めて困難である。つまり、圧縮機からの流出 量に見合った分の潤滑油を圧縮機へ戻し、膨張機力 の流出量に見合った分の潤 滑油を膨張機へ戻すのは、実際問題として不可能である。このため、冷凍装置を運 転している間に圧縮機と膨張機の一方に潤滑油が偏在してしまい、両者のうちケー シング内の潤滑油の量が少なくなつた方で潤滑不良による焼き付き等のトラブルを招 くおそれがある。 [0009] 本発明は、力かる点に鑑みてなされたものであり、その目的は、それぞれ個別のケ 一シングを備える圧縮機と膨張機が冷媒回路に設けられている冷凍装置において、 その信頼性を確保することにある。
課題を解決するための手段
[0010] 第 1の発明は、圧縮機 (20)と膨張機 (30)とが接続された冷媒回路 (11)を備え、該 冷媒回路(11)で冷媒を循環させて冷凍サイクルを行う冷凍装置を対象とする。そし て、上記圧縮機 (20)には、冷媒を吸入して圧縮する圧縮機構 (21)と、該圧縮機構 (2 1)を収容する圧縮機ケーシング (24)と、該圧縮機ケーシング (24)内の油溜まり(27) から上記圧縮機構 (21)へ潤滑油を供給する給油機構 (22)とが設けられ、上記膨張 機 (30)には、流入した冷媒を膨張させて動力を発生させる膨張機構 (31)と、該膨張 機構 (31)を収容する膨張機ケーシング (34)と、該膨張機ケーシング (34)内の油溜ま り (37)から上記膨張機構 (31)へ潤滑油を供給する給油機構 (32)とが設けられ、上 記圧縮機ケーシング (24)と上記膨張機ケーシング (34)は、その一方の内圧が冷凍 サイクルの高圧となって他方の内圧が冷凍サイクルの低圧となる一方、上記圧縮機 ケーシング (24)内の油溜まり(27)と上記膨張機ケーシング (34)内の油溜まり(37)の 間で潤滑油を移動させるために該圧縮機ケーシング (24)と該膨張機ケーシング (34) を接続する油流通路 (42)と、上記油流通路 (42)における潤滑油の流通状態を調節 するための調節手段 (50)とを備えるものである。
[0011] 第 1の発明において、冷媒回路(11)では、冷媒が圧縮、凝縮、膨張、蒸発の各過 程を順に繰り返しながら循環する。圧縮機 (20)の運転中には、給油機構 (22)が圧縮 機ケーシング (24)内の油溜まり (27)力 圧縮機構 (21)へ潤滑油を供給し、圧縮機構 (21)へ供給された潤滑油の一部が圧縮機構 (21)で圧縮された冷媒と共に圧縮機 (2 0)から吐出される。膨張機 (30)の運転中には、給油機構 (32)が膨張機ケーシング (3 4)内の油溜まり (37)から膨張機構 (31)へ潤滑油を供給し、膨張機構 (31)へ供給さ れた潤滑油の一部が膨張機構 (31)で膨張した冷媒と共に膨張機 (30)力 送出され る。圧縮機 (20)や膨張機 (30)から流出した潤滑油は、冷媒回路 (11)内を冷媒と共 に循環し、圧縮機 (20)ある 、は膨張機 (30)へ戻ってくる。
[0012] この第 1の発明において、圧縮機ケーシング (24)内の油溜まり(27)と膨張機ケーシ ング (34)内の油溜まり(37)は、油流通路 (42)を介して互いに連通している。圧縮機 ケーシング (24)の内部空間と膨張機ケーシング (34)の内部空間との間には、圧力差 がある。このため、潤滑油は、圧縮機ケーシング (24)内の油溜まり(27)と膨張機ケー シング (34)内の油溜まり(37)の一方から他方へ向かって油流通路 (42)を流れる。油 流通路 (42)を流れる潤滑油の流通状態は、調節手段 (50)によって調節される。
[0013] 第 2の発明は、上記第 1の発明において、上記調節手段 (50)は、上記圧縮機ケー シング (24)内の油溜まり(27)又は上記膨張機ケーシング (34)内の油溜まり(37)にお ける油面の位置を検出する油面検出器 (51)と、上記油流通路 (42)に設けられると共 に上記油面検出器 (51)の出力信号に基づいて開度が制御される制御弁 (52)とを備 えるものである。
[0014] 第 2の発明において、調節手段 (50)は、油面検出器 (51)と制御弁 (52)とを備えて いる。圧縮機ケーシング (24)における潤滑油の貯留量は、圧縮機ケーシング (24)内 の油溜まり(27)における油面の高さに相関する。また、膨張機ケーシング (34)にお ける潤滑油の貯留量は、膨張機ケーシング (34)内の油溜まり(37)における油面の高 さに相関する。そして、圧縮機ケーシング (24)内の油溜まり(27)と膨張機ケーシング (34)内の油溜まり(37)の何れか一方における油面の位置に関する情報が得られれ ば、その情報に基づ 、て圧縮機 (20)と膨張機 (30)にお 、て潤滑油の過不足が生じ ているかどうかを判断できる。そこで、この発明では、圧縮機ケーシング (24)内の油 溜まり(27)と膨張機ケーシング (34)内の油溜まり(37)の何れか一方における油面の 位置を油面検出器 (51)によって検出し、油面検出器 (51)の出力信号に応じて制御 弁 (52)の開度を制御することで油流通路 (42)における潤滑油の流量を制御している
[0015] 第 3の発明は、上記第 1の発明において、上記圧縮機構 (21)は、上記圧縮機ケー シング (24)の外部から直接吸入した冷媒を圧縮して該圧縮機ケーシング (24)内へ 吐出する一方、上記冷媒回路(11)には、上記圧縮機 (20)の吸入側に接続する配管 と上記膨張機ケーシング (34)の内部空間とを連通させる低圧側連通路 (80)が設けら れるものである。
[0016] 第 4の発明は、上記第 1の発明において、上記圧縮機構 (21)は、上記圧縮機ケー シング (24)の外部から直接吸入した冷媒を圧縮して該圧縮機ケーシング (24)内へ 吐出する一方、上記冷媒回路(11)には、上記圧縮機 (20)の吸入側へ向かう低圧冷 媒の一部又は全部を上記膨張機ケーシング (34)の内部空間へ導入するための低圧 側導入通路 (81)と、上記膨張機ケーシング (34)の内部空間から低圧冷媒を導出し て上記圧縮機 (20)へ供給するための低圧側導出通路 (82)とが設けられるものである
[0017] 第 3及び第 4の発明では、圧縮機 (20)へ流れてきた冷媒を圧縮機構 (21)が直接吸 い込む。圧縮機構 (21)は、吸い込んだ冷媒を圧縮して圧縮機ケーシング (24)内へ 吐出する。つまり、圧縮機構 (21)で圧縮された冷媒は、圧縮機ケーシング (24)の内 部空間へ一旦吐出され、その後に圧縮機ケーシング (24)の外部へ送り出される。圧 縮機ケーシング (24)の内圧は、圧縮機構 (21)から吐出された冷媒の圧力(即ち、冷 凍サイクルの高圧)とほぼ等しくなる。
[0018] 第 3の発明において、膨張機ケーシング (34)の内部空間は、低圧側連通路 (80)を 介して圧縮機 (20)の吸入側に接続する配管と連通している。また、第 4の発明にお いて、圧縮機 (20)の吸入側へ向カゝぅ低圧冷媒は、低圧側導入通路 (81)を通って膨 張機ケーシング (34)の内部空間へ流入し、その後に低圧側導出通路 (82)を通って 圧縮機 (20)へ吸入される。従って、これらの発明において、膨張機ケーシング (34) の内圧は、圧縮機 (20)へ吸入される冷媒の圧力(即ち、冷凍サイクルの低圧)とほぼ 等しくなる。
[0019] このように、第 3及び第 4の発明では、圧縮機ケーシング (24)の内圧が膨張機ケー シング (34)の内圧よりも高くなる。このため、油流通路 (42)では、圧縮機ケーシング( 24)内の油溜まり(27)力も膨張機ケーシング (34)内の油溜まり(37)へ向かって潤滑 油が流れる。
[0020] 第 5の発明は、上記第 4の発明において、上記膨張機ケーシング (34)内には、上 記膨張機構 (31)によって駆動される発電機 (33)が、該膨張機ケーシング (34)の内 部空間を仕切るように収容される一方、上記膨張機ケーシング (34)の内部空間では 、上記発電機 (33)によって仕切られた一方の空間に上記低圧側導入通路 (81)が、 他方の空間に上記低圧側導出通路 (82)がそれぞれ接続しているものである。 [0021] 第 5の発明では、膨張機ケーシング (34)の内部空間に発電機 (33)が収容される。 膨張機構 (31)において冷媒カも回収された動力は、発電機 (33)を駆動するために 利用される。つまり、発電機 (33)では、冷媒から回収された動力が電力に変換される 。低圧側導入通路 (81)を通って膨張機ケーシング (34)内へ流入した低圧冷媒は、 例えば発電機 (33)自体に形成されている隙間や、発電機 (33)と膨張機ケーシング( 34)の間の隙間などを通過し、その後に低圧側導出通路 (82)へ流れ込んでゆく。低 圧冷媒と共に膨張機ケーシング (34)内へ流入した潤滑油は、発電機 (33)を通過す る間に冷媒と分離され、膨張機ケーシング (34)内の油溜まり(37)へと流れてゆく。
[0022] 第 6の発明は、上記第 5の発明において、上記膨張機ケーシング (34)の内部空間 は、上記発電機 (33)によって上下に仕切られる一方、上記膨張機ケーシング (34)の 内部空間では、上記発電機 (33)の下側の空間に上記低圧側導入通路 (81)が、上 記発電機 (33)の上側の空間に上記低圧側導出通路 (82)がそれぞれ接続して 、るも のである。
[0023] 第 6の発明にお 、て、低圧側導入通路 (81)力 膨張機ケーシング (34)内へ流入し た低圧冷媒は、発電機 (33)を下力 上へ向力つて通過する。一方、発電機 (33)を通 過する際に冷媒から分離された潤滑油は、重力を受けて上から下へ流れ落ちてゆく
[0024] 第 7の発明は、上記第 3又は第 4の発明において、上記冷媒回路(11)には、上記 膨張機 (30)の流出側に配置されて冷媒と潤滑油を分離させる油分離器 (70)と、該 油分離器 (70)から上記圧縮機ケーシング (24)内へ潤滑油を供給するための返油通 路 (71)とが設けられるものである。
[0025] 第 7の発明では、冷媒回路(11)内を冷媒と共に流れる潤滑油は、膨張機 (30)の下 流に配置された油分離器 (70)において冷媒と分離される。油分離器 (70)で冷媒と分 離された潤滑油は、返油通路(71)を通って圧縮機ケーシング (24)の内部へ送られる 。圧縮機ケーシング (24)内の潤滑油は、その一部が油流通路 (42)を通って膨張機 ケーシング (34)内へ供給される。つまり、膨張機 (30)や圧縮機 (20)カゝら流出して冷 媒回路(11)内を流れる潤滑油は、圧縮機ケーシング (24)内へ一旦送り返され、圧縮 機ケーシング (24)内の油溜まり(27)から膨張機 (30)へ分配される。 [0026] 第 8の発明は、上記第 3又は第 4の発明において、上記冷媒回路(11)には、上記 膨張機 (30)の流出側に配置されて冷媒と潤滑油を分離させる油分離器 (70)と、該 油分離器 (70)から上記膨張機ケーシング (34)内へ潤滑油を供給するための返油通 路 (72)とが設けられるものである。
[0027] 第 8の発明では、冷媒回路(11)内を冷媒と共に流れる潤滑油は、膨張機 (30)の下 流に配置された油分離器 (70)において冷媒と分離される。油分離器 (70)で冷媒と分 離された潤滑油は、返油通路(72)を通って膨張機ケーシング (34)の内部へ送られる 。つまり、膨張機ケーシング (34)内の油溜まり(37)へは、圧縮機ケーシング (24)内に 貯留する潤滑油と、油分離器 (70)で冷媒力 分離された潤滑油との両方が供給され る。
[0028] 第 9の発明は、上記第 3又は第 4の発明において、上記油流通路 (42)を流れる潤 滑油を上記圧縮機 (20)へ吸入される低圧冷媒と熱交換させて冷却する油冷却用熱 交換器 (90)を備えるものである。
[0029] 第 9の発明では、油冷却用熱交換器 (90)にお 、て、上記油流通路 (42)を流れる潤 滑油が圧縮機 (20)へ吸入される低圧冷媒と熱交換する。圧縮機ケーシング (24)の 内部空間は、圧縮機構 (21)力 吐出された高温高圧の冷媒で満たされている。この ため、圧縮機ケーシング (24)内に貯留された潤滑油は、比較的高温 (例えば 80°C程 度)となっている。一方、圧縮機 (20)へ吸入される低圧冷媒は、比較的低温 (例えば 5°C程度)となって!/、る。圧縮機ケーシング (24)内の油溜まり(27)から油流通路 (42) へ流入した潤滑油は、油冷却用熱交換器 (90)を通過する間に低圧冷媒と熱交換す ることによって冷却され、その後に膨張機ケーシング (34)内の油溜まり(37)へ流れ込 む。
[0030] 第 10の発明は、上記第 1の発明において、上記圧縮機構 (21)は、上記圧縮機ケ 一シング (24)内から吸入した冷媒を圧縮して該圧縮機ケーシング (24)の外部へ直 接吐出する一方、上記冷媒回路(11)には、上記圧縮機 (20)の吐出側に接続する配 管と上記膨張機ケーシング (34)の内部空間とを連通させる高圧側連通路 (85)と、上 記圧縮機 (20)の吐出側に配置されて冷媒と潤滑油を分離させる油分離器 (60)と、 該油分離器 (60)から上記膨張機ケーシング (34)内へ潤滑油を供給するための返油 通路 (62)とが設けられるものである。
[0031] 第 11の発明は、上記第 1の発明において、上記圧縮機構 (21)は、上記圧縮機ケ 一シング (24)内から吸入した冷媒を圧縮して該圧縮機ケーシング (24)の外部へ直 接吐出する一方、上記冷媒回路(11)には、上記圧縮機 (20)力 吐出された高圧冷 媒の一部又は全部を上記膨張機ケーシング (34)の内部空間へ導入するための高圧 側導入通路 (86)と、上記膨張機ケーシング (34)の内部空間力 高圧冷媒を導出す るための高圧側導出通路 (87)とが設けられるものである。
[0032] 第 10及び第 11の発明において、圧縮機 (20)へ向けて流れてきた低圧冷媒は、圧 縮機ケーシング (24)の内部空間へ一旦流れ込み、その後に圧縮機構 (21)へ吸入さ れる。圧縮機構 (21)は、吸い込んだ冷媒を圧縮して圧縮機ケーシング (24)の外部へ 直接吐き出す。圧縮機ケーシング (24)の内圧は、圧縮機構 (21)が吸入する冷媒の 圧力(即ち、冷凍サイクルの低圧)とほぼ等しくなる。
[0033] 第 10の発明において、膨張機ケーシング (34)の内部空間は、高圧側連通路 (85) を介して圧縮機 (20)の吐出側に接続する配管と連通している。また、第 11の発明に おいて、圧縮機 (20)から吐出された高圧冷媒は、高圧側導入通路 (86)を通って膨 張機ケーシング (34)の内部空間へ流入し、その後に高圧側導出通路 (87)を通って 膨張機ケーシング (34)力も流出してゆく。従って、これらの発明において、膨張機ケ 一シング (34)の内圧は、圧縮機 (20)から吐出された冷媒の圧力(即ち、冷凍サイク ルの高圧)とほぼ等しくなる。
[0034] このように、第 10及び第 11の発明では、膨張機ケーシング (34)の内圧が圧縮機ケ 一シング (24)の内圧よりも高くなる。このため、油流通路 (42)では、膨張機ケーシン グ (34)内の油溜まり(37)力も圧縮機ケーシング (24)内の油溜まり(27)へ向力つて潤 滑油が流れる。
[0035] 第 10の発明において、冷媒回路(11)内を冷媒と共に流れる潤滑油は、圧縮機 (20 )の下流に配置された油分離器 (60)において冷媒と分離される。油分離器 (60)で冷 媒と分離された潤滑油は、返油通路 (62)を通って膨張機ケーシング (34)の内部へ 送られる。膨張機ケーシング (34)内の潤滑油は、その一部が油流通路 (42)を通って 圧縮機ケーシング (24)内へ供給される。つまり、膨張機 (30)や圧縮機 (20)から流出 して冷媒回路(11)内を流れる潤滑油は、膨張機ケーシング (34)内へ一旦送り返され 、膨張機ケーシング (34)内の油溜まり(37)から圧縮機 (20)へ分配される。
[0036] 第 12の発明は、上記第 11の発明において、上記膨張機ケーシング (34)内には、 上記膨張機構 (31)によって駆動される発電機 (33)が、該膨張機ケーシング (34)の 内部空間を仕切るように収容される一方、上記膨張機ケーシング (34)では、上記発 電機 (33)によって仕切られた内部空間の一方に上記高圧側導入通路 (86)が、他方 に上記高圧側導出通路 (87)がそれぞれ接続して 、るものである。
[0037] 第 12の発明では、膨張機ケーシング (34)の内部空間に発電機 (33)が収容される 。膨張機構 (31)において冷媒カも回収された動力は、発電機 (33)を駆動するために 利用される。つまり、発電機 (33)では、冷媒から回収された動力が電力に変換される 。高圧側導入通路 (86)を通って膨張機ケーシング (34)内へ流入した高圧冷媒は、 例えば発電機 (33)自体に形成されている隙間や、発電機 (33)と膨張機ケーシング( 34)の間の隙間などを通過し、その後に高圧側導出通路 (87)へ流れ込んでゆく。高 圧冷媒と共に膨張機ケーシング (34)内へ流入した潤滑油は、発電機 (33)を通過す る間に冷媒と分離され、膨張機ケーシング (34)内の油溜まり(37)へと流れてゆく。
[0038] 第 13の発明は、上記第 12の発明において、上記膨張機ケーシング (34)の内部空 間は、上記発電機 (33)によって上下に仕切られる一方、上記膨張機ケーシング (34) の内部空間では、上記発電機 (33)の下側の空間に上記高圧側導入通路 (86)が、 上記発電機 (33)の上側の空間に上記高圧側導出通路 (87)がそれぞれ接続して!/、 るものである。
[0039] 第 13の発明では、高圧側導入通路 (86)力も膨張機ケーシング (34)内へ流入した 高圧冷媒は、発電機 (33)を下力 上へ向かって通過する。一方、発電機 (33)を通過 する際に冷媒力 分離された潤滑油は、重力を受けて上力 下へ流れ落ちてゆく。
[0040] 第 14の発明は、上記第 3,第 4又は第 11の発明において、上記冷媒回路(11)には 、上記圧縮機 (20)の吐出側に配置されて冷媒と潤滑油を分離させる油分離器 (60) と、該油分離器 (60)力 上記圧縮機ケーシング (24)内へ潤滑油を供給するための 返油通路 (61)とが設けられるものである。
[0041] 第 15の発明は、上記第 3,第 4又は第 11の発明において、上記冷媒回路(11)には 、上記圧縮機 (20)の吐出側に配置されて冷媒と潤滑油を分離させる油分離器 (60) と、該油分離器 (60)力 上記膨張機ケーシング (34)内へ潤滑油を供給するための 返油通路 (62)とが設けられるものである。
[0042] 第 14及び第 15の発明において、冷媒回路(11)内を冷媒と共に流れる潤滑油は、 圧縮機 (20)の下流に配置された油分離器 (60)において冷媒と分離される。つまり、 これら発明の油分離器 (60)では、圧縮機 (20)力も冷媒と共に吐出された潤滑油が 冷媒と分離される。そして、第 14の発明では、油分離器 (60)で冷媒と分離された潤 滑油が、返油通路 (61)を通って圧縮機ケーシング (24)の内部へ送られる。また、第 1 5の発明では、油分離器 (60)で冷媒と分離された潤滑油が、返油通路 (62)を通って 膨張機ケーシング (34)の内部へ送られる。
[0043] 第 16の発明は、上記第 3,第 4又は第 11の発明において、上記冷媒回路(11)には 、上記圧縮機 (20)の吸入側に配置されて冷媒と潤滑油を分離させる油分離器 (75) と、該油分離器 (75)から上記膨張機ケーシング (34)内へ潤滑油を供給するための 返油通路(77)とが設けられるものである。
[0044] 第 16の発明では、冷媒回路(11)内を冷媒と共に流れる潤滑油は、圧縮機 (20)の 上流に配置された油分離器 (75)において冷媒と分離される。油分離器 (75)で冷媒と 分離された潤滑油は、返油通路 (77)を通って膨張機ケーシング (34)の内部へ送ら れる。
発明の効果
[0045] 本発明では、圧縮機ケーシング (24)の内圧と膨張機ケーシング (34)の内圧を相違 させた上で、圧縮機ケーシング (24)と膨張機ケーシング (34)を油流通路 (42)によつ て接続している。そして、油流通路 (42)を利用することで、圧縮機ケーシング (24)と 膨張機ケーシング (34)のうち内圧の高 、方から内圧の低 、方へ向けて潤滑油を供 給している。このため、冷凍装置(10)の運転中に圧縮機 (20)と膨張機 (30)の一方に 潤滑油が偏在する状態となっても、潤滑油を圧縮機 (20)と膨張機 (30)へ分配しなお すことが可能となる。その結果、圧縮機ケーシング (24)と膨張機ケーシング (34)のそ れぞれにお ヽて潤滑油の貯留量を確保することができ、圧縮機構 (21)や膨張機構( 31)の潤滑を確実に行うことができる。従って、本発明によれば、圧縮機 (20)や膨張 機 (30)が潤滑不良によって損傷するのを防ぐことができ、冷凍装置 (10)の信頼性を ½保することができる。
[0046] 上記第 2の発明では、上記圧縮機ケーシング (24)内の油溜まり(27)又は上記膨張 機ケーシング (34)内の油溜まり(37)における油面の位置を油面検出器 (51)によって 検出して!/ヽる。このため、圧縮機 (20)と膨張機 (30)における潤滑油の貯留量を正確 に検知することができ、潤滑油不足による圧縮機 (20)や膨張機 (30)の損傷を、一層 確実に回避することができる。
[0047] 上記第 3の発明において、膨張機ケーシング (34)は、冷媒回路(11)のうち圧縮機( 20)へ向かって低圧冷媒が流れる配管と低温側連通路を介して接続されている。また 、上記第 4の発明では、圧縮機 (20)の吸入側へ向力う低圧冷媒が膨張機ケーシング (34)の内部空間を通過する。
[0048] ここで、冷媒回路(11)では、膨張機 (30)の下流に吸熱用の熱交換器が設置される ため、この熱交翻での冷媒の吸熱量を確保するには、膨張機 (30)から流出する冷 媒のェンタルピをできるだけ低くするのが望ましい。一方、圧縮機 (20)へ向力う低圧 冷媒の温度は、それほど高くない。
[0049] 第 3の発明では、膨張機ケーシング (34)が冷媒回路(11)のうち圧縮機 (20)へ向か つて低圧冷媒が流れる配管と連通しているため、膨張機ケーシング (34)内の温度は それ程は高くならない。また、第 4の発明では、比較的低温の低圧冷媒が膨張機ケ 一シング (34)の内部空間を通過するため、膨張機ケーシング (34)内の温度はそれ 程は高くならない。従って、これらの発明によれば、膨張機構 (31)で膨張する冷媒へ 侵入する熱量を抑えることができ、膨張機 (30)力 流出する冷媒のェンタルピを低く 抑えることができる。その結果、吸熱用の熱交換器における冷媒の吸熱量を充分に ½保することができる。
[0050] 上記第 5及び第 6の発明では、圧縮機 (20)の吸入側へ向力う低圧冷媒の一部又は 全部を膨張機ケーシング (34)の内部空間へ導入し、そこに配置された発電機 (33)を 利用して潤滑油と低圧冷媒を分離している。このため、膨張機ケーシング (34)内に 貯留される潤滑油の量を確保しやすくなる。
[0051] また、上記第 5及び第 6の発明では、膨張機ケーシング (34)内で低圧冷媒と潤滑 油を分離して!/、るため、冷媒と共に圧縮機構 (21)へ吸 、込まれる潤滑油の量を削減 することができる。圧縮機構 (21)が 1回の吸入工程で吸い込める流体の体積は決ま つて!/、るため、冷媒と共に圧縮機構 (21)へ吸 、込まれる潤滑油の量を削減できれば 、その分だけ圧縮機構 (21)へ吸い込まれる冷媒の量を増やすことができる。従って、 これらの発明によれば、圧縮機 (20)の性能を充分に発揮させることができる。
[0052] 更に、上記第 6の発明では、膨張機ケーシング (34)内へ流入した低圧冷媒が発電 機 (33)を下力 上へ向力つて通過する一方、発電機 (33)を通過する際に冷媒と分 離された潤滑油が上力も下へ向力つて流れ落ちる構成となっている。つまり、この発 明において、膨張機ケーシング (34)の内部空間では、低圧冷媒の流れる方向と、低 圧冷媒と分離された潤滑油の流れる方向とが逆向きになっている。従って、この発明 によれば、低圧冷媒と分離された潤滑油のうち、再び低圧冷媒と共に流れて低圧側 導出通路 (82)へ流入してしまうものの量を一層確実に削減できる。
[0053] また、上記第 7及び第 8の発明では、膨張機 (30)の下流に配置した油分離器 (70) で潤滑油を捕集している。従って、冷媒回路 (11)のうち油分離器 (70)から圧縮機 (2 0)の吸入側へ至るまでの部分を流れる潤滑油の量を削減することができる。冷媒回 路(11)のうち油分離器 (70)から圧縮機 (20)までの部分には、吸熱用の熱交換器が 設けられる。このため、これらの発明によれば、吸熱用の熱交^^における冷媒の吸 熱が潤滑油によって阻害されるのを抑制でき、この熱交^^の性能を充分に発揮さ せることが可能となる。
[0054] 上記第 9の発明では、圧縮機ケーシング (24)内の潤滑油を、油冷却用熱交換器 (9 0)で冷却して力 膨張機ケーシング (34)内の油溜まり(37)へ供給して 、る。上述し たように、冷媒回路(11)では、吸熱用の熱交換器での冷媒の吸熱量を確保するには 、膨張機 (30)力 流出する冷媒のェンタルピをできるだけ低くするのが望ましい。こ の発明では、圧縮機ケーシング (24)内の潤滑油が冷却されて力 膨張機ケーシング (34)内へ流入するため、膨張機構 (31)で膨張する冷媒へ侵入する熱量を抑えること ができる。従って、この発明によれば、膨張機 (30)力も流出する冷媒のェンタルピを 低く抑えることができ、吸熱用の熱交^^における冷媒の吸熱量を充分に確保する ことができる。 [0055] 上記第 10,第 14,及び第 15の発明では、圧縮機 (20)の下流に配置した油分離器 (60)で潤滑油を捕集している。このため、冷媒回路(11)のうち油分離器 (60)カも膨 張機 (30)の流入側へ至るまでの部分を流れる潤滑油の量を削減することができる。 冷媒回路 (11)のうち油分離器 (60)から膨張機 (30)までの部分には、放熱用の熱交 換器が設けられる。従って、この発明によれば、放熱用の熱交換器における冷媒の 放熱が潤滑油によって阻害されるのを抑制でき、この熱交^^の性能を充分に発揮 させることが可會となる。
[0056] 上記第 12及び第 13の発明では、圧縮機 (20)力も吐出された高圧冷媒の一部又は 全部を膨張機ケーシング (34)の内部空間へ導入し、そこに配置された発電機 (33)を 利用して潤滑油と高圧冷媒を分離している。このため、圧縮機 (20)から高圧冷媒と 共に吐出された潤滑油を膨張機ケーシング (34)内で捕集することができ、膨張機ケ 一シング (34)内に貯留される潤滑油の量を確保しやすくなる。
[0057] また、上記第 12及び第 13の発明では、膨張機ケーシング (34)内で高圧冷媒と潤 滑油を分離して 、るため、高圧側導出通路 (87)を通って膨張機ケーシング (34)から 高圧冷媒と共に流れ出す潤滑油の量を削減することができる。従って、これらの発明 によれば、上記第 10の発明の場合と同様に、放熱用の熱交翻における冷媒の放 熱が潤滑油によって阻害されるのを抑制でき、この熱交^^の性能を充分に発揮さ せることが可能となる。
[0058] 更に、上記第 13の発明では、膨張機ケーシング (34)内へ流入した高圧冷媒が発 電機 (33)を下力も上へ向力つて通過する一方、発電機 (33)を通過する際に冷媒と 分離された潤滑油が上力も下へ向力つて流れ落ちる構成となっている。つまり、この 発明において、膨張機ケーシング (34)の内部空間では、高圧冷媒の流れる方向と、 高圧冷媒と分離された潤滑油の流れる方向とが逆向きになっている。従って、この発 明によれば、高圧冷媒と分離された潤滑油のうち、再び高圧冷媒と共に流れて高圧 側導出通路 (87)へ流入してしまうものの量を一層確実に削減できる。
[0059] 上記第 16の発明では、圧縮機 (20)の上流に配置した油分離器 (75)で潤滑油を捕 集して 、るため、冷媒と共に圧縮機構 (21)へ吸 、込まれる潤滑油の量を削減するこ とができる。従って、この発明によれば、上記第 5及び第 6の発明と同様に、圧縮機 (2 0)の性能を充分に発揮させることができる。
図面の簡単な説明
[図 1]図 1は、実施形態 1における冷媒回路の構成と冷房運転中の冷媒の流れを示 す冷媒回路図である。
[図 2]図 2は、実施形態 1における冷媒回路の構成と暖房運転中の冷媒の流れを示 す冷媒回路図である。
[図 3]図 3は、実施形態 1における冷媒回路の要部拡大図である。
[図 4]図 4は、実施形態 1の変形例 1における冷媒回路の構成を示す冷媒回路図であ る。
[図 5]図 5は、実施形態 1の変形例 2における冷媒回路の構成を示す冷媒回路図であ る。
[図 6]図 6は、実施形態 1の変形例 3における冷媒回路の構成を示す冷媒回路図であ る。
[図 7]図 7は、実施形態 1の変形例 4における冷媒回路の構成を示す冷媒回路図であ る。
[図 8]図 8は、実施形態 1の変形例 5における冷媒回路の構成を示す冷媒回路図であ る。
[図 9]図 9は、実施形態 2における冷媒回路の構成を示す冷媒回路図である。
[図 10]図 10は、実施形態 2における冷媒回路の要部拡大図である。
[図 11]図 11は、実施形態 2の変形例 1における冷媒回路の構成を示す冷媒回路図 である。
[図 12]図 12は、実施形態 2の変形例 2における冷媒回路の構成を示す冷媒回路図 である。
[図 13]図 13は、実施形態 2の変形例 3における冷媒回路の構成を示す冷媒回路図 である。
[図 14]図 14は、実施形態 2の変形例 4における冷媒回路の構成を示す冷媒回路図 である。
[図 15]図 15は、実施形態 2の変形例 5における冷媒回路の構成を示す冷媒回路図 である。
[図 16]図 16は、実施形態 3における冷媒回路の構成を示す冷媒回路図である。
[図 17]図 17は、実施形態 3における冷媒回路の要部拡大図である。
[図 18]図 18は、実施形態 3の変形例 1における冷媒回路の構成を示す冷媒回路図 である。
[図 19]図 19は、実施形態 3の変形例 2における冷媒回路の構成を示す冷媒回路図 である。
[図 20]図 20は、実施形態 3の変形例 3における冷媒回路の構成を示す冷媒回路図 である。
[図 21]図 21は、実施形態 3の変形例 4における冷媒回路の構成を示す冷媒回路図 である。
[図 22]図 22は、実施形態 3の変形例 5における冷媒回路の構成を示す冷媒回路図 である。
[図 23]図 23は、実施形態 4における冷媒回路の構成を示す冷媒回路図である。
[図 24]図 24は、実施形態 4における冷媒回路の要部拡大図である。
[図 25]図 25は、実施形態 5における冷媒回路の構成を示す冷媒回路図である。
[図 26]図 26は、実施形態 5における冷媒回路の要部拡大図である。
[図 27]図 27は、実施形態 5の変形例 1における冷媒回路の構成を示す冷媒回路図 である。
[図 28]図 28は、実施形態 5の変形例 2における冷媒回路の構成を示す冷媒回路図 である。
[図 29]図 29は、実施形態 5の変形例 3における冷媒回路の構成を示す冷媒回路図 である。
[図 30]図 30は、実施形態 6における冷媒回路の構成を示す冷媒回路図である。
[図 31]図 31は、実施形態 6における冷媒回路の要部拡大図である。
[図 32]図 32は、実施形態 6の変形例 1における冷媒回路の構成を示す冷媒回路図 である。
[図 33]図 33は、実施形態 6の変形例 2における冷媒回路の構成を示す冷媒回路図 である。
[図 34]図 34は、実施形態 6の変形例 3における冷媒回路の構成を示す冷媒回路図 である。
[図 35]図 35は、その他の実施形態の第 1変形例における冷媒回路の構成を示す冷 媒回路図である。
[図 36]図 36は、その他の実施形態の第 2変形例における冷媒回路の構成を示す冷 媒回路図である。
[図 37]図 37は、その他の実施形態の第 2変形例における冷媒回路の構成を示す冷 媒回路図である。
[図 38]図 38は、その他の実施形態の第 3変形例における冷媒回路の構成を示す冷 媒回路図である。
[図 39]図 39は、その他の実施形態の第 4変形例における膨張機の要部拡大図であ る。
符号の説明
10 空調機 (冷凍装置)
11 冷媒回路
20 圧縮機
21 圧縮機構
22 駆動軸 (給油機構)
24 圧縮機ケーシング
27 油溜まり
30 膨張機
31 膨張機構
32 出力軸 (給油機構)
33 発電機
34 膨張機ケーシング
37 油溜まり
42 油流通管 (油流通路) 50 調節手段
51 油面センサ (油面検出器)
52 油長調節弁 (制御弁)
60 油分離器
61 返油管 (返油通路)
62 返油管 (返油通路)
70 油分離器
71 返油管 (返油通路)
72 返油管 (返油通路)
75 油分離器
77 返油管 (返油通路)
80 低圧側連通管 (低圧側連通路)
81 低圧側導入管 (低圧側導入通路)
82 低圧側導出管 (低圧側導出通路)
85 高圧側連通管 (高圧側連通路)
86 高圧側導入管 (高圧側導入通路)
87 高圧側導出管 (高圧側導出通路)
90 油冷却用熱交換器
発明を実施するための最良の形態
[0062] 以下、本発明の実施形態を図面に基づいて詳細に説明する。
[0063] 《発明の実施形態 1》
本発明の実施形態 1について説明する。本実施形態は、本発明に係る冷凍装置に よって構成された空調機(10)である。
[0064] 図 1及び図 2に示すように、本実施形態の空調機(10)は、冷媒回路(11)を備えて いる。この冷媒回路 (11)には、圧縮機 (20)と、膨張機 (30)と、室外熱交翻 (14)と、 室内熱交換器(15)と、第 1四方切換弁(12)と、第 2四方切換弁(13)とが接続されて いる。冷媒回路(11)には、冷媒として二酸ィ匕炭素 (CO )が充填されている。また、圧
2
縮機 (20)と膨張機 (30)は、概ね同じ高さに配置されて!、る。 [0065] 冷媒回路(11)の構成について説明する。圧縮機 (20)は、その吐出管 (26)が第 1四 方切換弁(12)の第 1のポートに接続され、その吸入管 (25)が第 1四方切換弁(12)の 第 2のポートに接続されている。膨張機 (30)は、その流出管 (36)が第 2四方切換弁( 13)の第 1のポートに接続され、その流入管 (35)が第 2四方切換弁(13)の第 2のポー トに接続されている。室外熱交翻(14)は、その一端が第 1四方切換弁(12)の第 3 のポートに接続され、その他端が第 2四方切換弁(13)の第 4のポートに接続されてい る。室内熱交換器(15)は、その一端が第 2四方切換弁(13)の第 3のポートに接続さ れ、その他端が第 1四方切換弁(12)の第 4のポートに接続されている。
[0066] 冷媒回路(11)には、低圧側連通管 (80)が設けられて 、る。低圧側連通管 (80)の 一端は、圧縮機 (20)の吸入管 (25)と第 1四方切換弁(12)の第 2のポートとを繋ぐ配 管に接続されている。低圧側連通管 (80)の他端は、膨張機 (30)に接続されている。 この低圧側連通管 (80)は、低圧側連通路を構成して!/ヽる。
[0067] 室外熱交 (14)は、冷媒を室外空気と熱交換させるための空気熱交^^である 。室内熱交 (15)は、冷媒を室内空気と熱交換させるための空気熱交^^である 。第 1四方切換弁(12)と第 2四方切換弁(13)は、それぞれ、第 1のポートと第 3のポ 一トが連通し且つ第 2のポートと第 4のポートが連通する状態(図 1に示す状態)と、第 1のポートと第 4のポートが連通し且つ第 2のポートと第 3のポートが連通する状態(図 2に示す状態)とに切り換わるように構成されて 、る。
[0068] 図 3にも示すように、圧縮機 (20)は、いわゆる高圧ドームタイプの全密閉型圧縮機 である。この圧縮機 (20)は、縦長の円筒形に形成された圧縮機ケーシング (24)を備 えている。圧縮機ケーシング (24)の内部には、圧縮機構 (21)と電動機 (23)と駆動軸 (22)とが収容されている。圧縮機構 (21)は、いわゆるロータリ式の容積型流体機械を 構成している。圧縮機ケーシング (24)内では、圧縮機構 (21)の上方に電動機 (23) が配置されている。駆動軸 (22)は、上下方向へ延びる姿勢で配置され、圧縮機構 (2 1)と電動機 (23)を連結して!/、る。
[0069] 圧縮機ケーシング (24)には、吸入管 (25)と吐出管 (26)が設けられている。吸入管( 25)は、圧縮機ケーシング (24)の胴部の下端付近を貫通しており、その終端が圧縮 機構 (21)へ直に接続されている。吐出管 (26)は、圧縮機ケーシング (24)の頂部を 貫通しており、その始端が圧縮機ケーシング (24)内における電動機 (23)の上側の空 間に開口している。圧縮機構 (21)は、吸入管 (25)力 吸い込んだ冷媒を圧縮して圧 縮機ケーシング (24)内へ吐出する。
[0070] 圧縮機ケーシング (24)の底部には、潤滑油としての冷凍機油が貯留されている。
つまり、圧縮機ケーシング (24)内には、油溜まり(27)が形成されている。
[0071] 駆動軸 (22)は、油溜まり(27)から圧縮機構 (21)へ冷凍機油を供給する給油機構 を構成している。駆動軸 (22)の内部には、図示しないが、その軸方向へ延びる給油 通路が形成されている。この給油通路は、駆動軸 (22)の下端に開口すると共に、い わゆる遠心ポンプを構成している。駆動軸 (22)の下端は、油溜まり(27)に浸力つた 状態となっている。駆動軸 (22)が回転すると、遠心ポンプ作用によって油溜まり(27) 力 給油通路へ冷凍機油が吸い込まれる。給油通路へ吸い込まれた冷凍機油は、 圧縮機構 (21)へ供給されて圧縮機構 (21)の潤滑に利用される。
[0072] 膨張機 (30)は、縦長の円筒形に形成された膨張機ケーシング (34)を備えて!/ヽる。
膨張機ケーシング (34)の内部には、膨張機構 (31)と発電機 (33)と出力軸 (32)とが 収容されている。膨張機構 (31)は、いわゆるロータリ式の容積型流体機械を構成し て 、る。膨張機ケーシング (34)内では、膨張機構 (31)の下方に発電機 (33)が配置 されている。出力軸 (32)は、上下方向へ延びる姿勢で配置され、膨張機構 (31)と発 電機 (33)を連結している。
[0073] 膨張機ケーシング (34)には、流入管 (35)と流出管 (36)が設けられている。流入管( 35)と流出管 (36)は、 V、ずれも膨張機ケーシング (34)の胴部の上端付近を貫通して いる。流入管 (35)は、その終端が膨張機構 (31)へ直に接続されている。流出管 (36) は、その始端が膨張機構 (31)へ直に接続されている。膨張機構 (31)は、流入管 (35 )を通って流入した冷媒を膨張させ、膨張後の冷媒を流出管 (36)へ送り出す。つまり 、膨張機 (30)を通過する冷媒は、膨張機ケーシング (34)の内部空間へは流れ込ま ずに膨張機構 (31)だけを通過する。
[0074] 膨張機ケーシング (34)の底部には、潤滑油としての冷凍機油が貯留されている。
つまり、膨張機ケーシング (34)内には、油溜まり(37)が形成されている。
[0075] 出力軸 (32)は、油溜まり(37)力 膨張機構 (31)へ冷凍機油を供給する給油機構 を構成している。出力軸 (32)の内部には、図示しないが、その軸方向へ延びる給油 通路が形成されている。この給油通路は、出力軸 (32)の下端に開口すると共に、い わゆる遠心ポンプを構成している。出力軸 (32)の下端は、油溜まり(37)に浸力つた 状態となっている。出力軸 (32)が回転すると、遠心ポンプ作用によって油溜まり(37) 力 給油通路へ冷凍機油が吸い込まれる。給油通路へ吸い込まれた冷凍機油は、 膨張機構 (31)へ供給されて膨張機構 (31)の潤滑に利用される。
[0076] 低圧側連通管 (80)は、膨張機ケーシング (34)に接続されて!、る。低圧側連通管 (8 0)の端部は、膨張機ケーシング (34)の内部空間のうち膨張機構 (31)と発電機 (33) の間の部分に開口している。膨張機ケーシング (34)の内部空間は、圧縮機 (20)の 吸入管 (25)に接続する配管に対し、低圧側連通管 (80)を介して連通している。
[0077] 圧縮機ケーシング (24)と膨張機ケーシング (34)の間には、油流通管 (42)が設けら れている。この油流通管 (42)は、油流通路を構成している。油流通管 (42)の一端は 、圧縮機ケーシング (24)の側面の下部に接続されている。油流通管 (42)の一端は、 駆動軸 (22)の下端よりも所定値だけ高 、位置で圧縮機ケーシング (24)の内部空間 に開口している。通常の運転状態において、圧縮機ケーシング (24)内の油溜まり(27 )の油面は、油流通管 (42)の一端よりも上に位置している。一方、油流通管 (42)の他 端は、膨張機ケーシング (34)の側面の下部に接続されている。油流通管 (42)の他 端は、出力軸 (32)の下端よりも所定値だけ高 、位置で膨張機ケーシング (34)の内 部空間に開口している。通常の運転状態において、膨張機ケーシング (34)内の油溜 まり(37)の油面は、油流通管 (42)の他端よりも上に位置して 、る。
[0078] 油流通管 (42)には、油量調節弁 (52)が設けられて 、る。油量調節弁 (52)は、外部 力もの信号に応じて開閉する電磁弁である。膨張機ケーシング (34)の内部には、油 面センサ(51)が収容されて 、る。油面センサ(51)は、膨張機ケーシング (34)内の油 溜まり(37)の油面高さを検出するものであって、油面検出器を構成している。冷凍装 置には、コントローラ(53)が設けられている。このコントローラ(53)は、油面センサ(51 )の出力信号に基づ 、て油量調節弁 (52)を制御する制御手段を構成して!/、る。
[0079] 本実施形態では、油流通管 (42)における冷凍機油の流通状態を調節するための 調節手段 (50)が、油量調節弁 (52)と油面センサ (51)とコントローラ (53)とによって構 成されている。また、油量調節弁 (52)は、油面センサ(51)の出力に応じて操作される 制御弁を構成している。
[0080] 運転動作
上記空調機(10)の動作について説明する。ここでは、空調機(10)の冷房運転時及 び暖房運転時の動作にっ 、て説明し、続 、て圧縮機 (20)と膨張機 (30)の油量を調 節する動作にっ 、て説明する。
[0081] 〈冷房運転〉
冷房運転時には、第 1四方切換弁(12)及び第 2四方切換弁(13)が図 1に示す状 態に設定され、冷媒回路(11)で冷媒が循環して蒸気圧縮冷凍サイクルが行われる。 この冷媒回路(11)で行われる冷凍サイクルは、その高圧が冷媒である二酸化炭素の 臨界圧力よりも高 、値に設定されて 、る。
[0082] 圧縮機 (20)では、電動機 (23)によって圧縮機構 (21)が回転駆動される。圧縮機構
(21)は、吸入管 (25)から吸 、込んだ冷媒を圧縮して圧縮機ケーシング (24)内へ吐 出する。圧縮機ケーシング (24)内の高圧冷媒は、吐出管 (26)を通って圧縮機 (20) 力 吐出される。圧縮機 (20)力も吐出された冷媒は、室外熱交 (14)へ送られて 室外空気へ放熱する。室外熱交換器 (14)で放熱した高圧冷媒は、膨張機 (30)へ流 入する。
[0083] 膨張機 (30)では、流入管 (35)を通って膨張機構 (31)へ流入した高圧冷媒が膨張 し、それによつて発電機 (33)が回転駆動される。発電機 (33)で発生した電力は、圧 縮機 (20)の電動機 (23)へ供給される。膨張機構 (31)で膨張した冷媒は、流出管 (36 )を通って膨張機 (30)力 送り出される。膨張機 (30)力 送出された冷媒は、室内熱 交 (15)へ送られる。室内熱交 (15)では、流入した冷媒が室内空気力 吸 熱して蒸発し、室内空気が冷却される。室内熱交換器(15)から出た低圧冷媒は、圧 縮機 (20)の吸入管 (25)へ流入する。
[0084] 〈暖房運転〉
暖房運転時には、第 1四方切換弁(12)及び第 2四方切換弁(13)が図 2に示す状 態に設定され、冷媒回路(11)で冷媒が循環して蒸気圧縮冷凍サイクルが行われる。 冷房運転時と同様に、この冷媒回路(11)で行われる冷凍サイクルは、その高圧が冷 媒である二酸ィ匕炭素の臨界圧力よりも高 、値に設定されて 、る。
[0085] 圧縮機 (20)では、電動機 (23)によって圧縮機構 (21)が回転駆動される。圧縮機構
(21)は、吸入管 (25)から吸 、込んだ冷媒を圧縮して圧縮機ケーシング (24)内へ吐 出する。圧縮機ケーシング (24)内の高圧冷媒は、吐出管 (26)を通って圧縮機 (20) 力も吐出される。圧縮機 (20)力 吐出された冷媒は、室内熱交 (15)へ送られる 。室内熱交換器(15)では、流入した冷媒が室内空気へ放熱し、室内空気が加熱さ れる。室内熱交 (15)で放熱した高圧冷媒は、膨張機 (30)へ流入する。
[0086] 膨張機 (30)では、流入管 (35)を通って膨張機構 (31)へ流入した高圧冷媒が膨張 し、それによつて発電機 (33)が回転駆動される。発電機 (33)で発生した電力は、圧 縮機 (20)の電動機 (23)へ供給される。膨張機構 (31)で膨張した冷媒は、流出管 (36 )を通って膨張機 (30)力 送り出される。膨張機 (30)力 送出された冷媒は、室外熱 交換器(14)へ送られる。室外熱交換器(14)では、流入した冷媒が室外空気から吸 熱して蒸発する。室外熱交換器 (14)から出た低圧冷媒は、圧縮機 (20)の吸入管 (25 )へ流入する。
[0087] 〈油量調節動作〉
先ず、圧縮機 (20)の運転中には、圧縮機ケーシング (24)内の油溜まり(27)から圧 縮機構 (21)へ冷凍機油が供給される。圧縮機構 (21)へ供給された冷凍機油は圧縮 機構 (21)の潤滑に利用されるが、その一部は圧縮後の冷媒と共に圧縮機ケーシン グ (24)の内部空間へ吐出される。圧縮機構 (21)力 冷媒と共に吐出された冷凍機 油は、電動機 (23)の回転子と固定子の間に形成された隙間や、固定子と圧縮機ケ 一シング (24)の間に形成された隙間などを通過する間にその一部が冷媒と分離され る。圧縮機ケーシング (24)内で冷媒と分離された冷凍機油は、油溜まり(27)へと流 れ落ちてゆく。一方、冷媒と分離されなかった冷凍機油は、冷媒と共に吐出管 (26)を 通って圧縮機 (20)の外部へ流出してゆく。
[0088] また、膨張機 (30)の運転中には、膨張機ケーシング (34)内の油溜まり(37)から膨 張機構 (31)へ冷凍機油が供給される。膨張機構 (31)へ供給された冷凍機油は膨張 機構 (31)の潤滑に利用されるが、その一部は膨張後の冷媒と共に膨張機構 (31)か ら送り出される。膨張機構 (31)力 送り出された冷凍機油は、流出管 (36)を通って膨 張機 (30)の外部へ流出してゆく。
[0089] このように、空調機(10)の運転中には、圧縮機 (20)や膨張機 (30)力 冷凍機油が 流出してゆく。圧縮機 (20)や膨張機 (30)から流出した冷凍機油は、冷媒と共に冷媒 回路(11)内を循環し、再び圧縮機 (20)や膨張機 (30)へ戻ってくる。
[0090] 圧縮機 (20)では、冷媒回路(11)内を流れる冷凍機油が冷媒と共に吸入管 (25)を 通って圧縮機構 (21)へ吸入される。吸入管 (25)から圧縮機構 (21)へ吸 ヽ込まれた 冷凍機油は、圧縮後の冷媒と共に圧縮機ケーシング (24)の内部空間へ吐出される。 上述したように、圧縮機構 (21)力 冷媒と共に吐出された冷凍機油の一部は、圧縮 機ケーシング (24)の内部空間を流れる間に冷媒と分離されて油溜まり(27)へ戻る。 つまり、圧縮機 (20)の運転中には、圧縮機ケーシング (24)内の冷凍機油が吐出管( 26)力 流出してゆくと同時に、吸入管 (25)から圧縮機構 (21)へ吸入された冷凍機 油が圧縮機ケーシング (24)内の油溜まり(27)へ戻ってくる。従って、圧縮機 (20)で は、圧縮機ケーシング (24)内における冷凍機油の貯留量が確保される。
[0091] 一方、膨張機 (30)でも、冷媒回路(11)内を流れる冷凍機油が冷媒と共に流入管 (3 5)を通って膨張機構 (31)へ流入する。ところが、膨張機構 (31)で膨張した冷媒は、 流出管 (36)を通って膨張機ケーシング (34)の外部へ直接送り出されてゆく。このた め、冷媒と共に膨張機構 (31)へ流入した冷凍機油は、流出管 (36)力も膨張機ケー シング (34)の外部へ直接送り出されてしまう。つまり、膨張機 (30)では、冷媒回路(11 )内を流れる冷凍機油が膨張機構 (31)へ流入するものの、この冷媒は膨張機ケーシ ング (34)内の油溜まり(37)へ戻ることなく膨張機ケーシング (34)から送り出されゆく。 また、膨張機 (30)では、膨張機ケーシング (34)内の油溜まり(37)力も膨張機構 (31) へ供給された冷凍機油が冷媒と共に膨張機 (30)力 送り出されてゆく。従って、膨張 機 (30)の運転中には、膨張機ケーシング (34)内に貯留された冷凍機油の量が次第 に減少してゆくことになる。
[0092] 膨張機ケーシング (34)内における冷凍機油の貯留量が減少すると、それに伴って 油溜まり(37)における油面の位置が低下する。コントローラ (53)は、油面センサ(51) の出力信号に基づいて油溜まり(37)の油面位置がある程度以下にまで低下したと判 断すると、油量調節弁 (52)を開く。油量調節弁 (52)が開くと、圧縮機ケーシング (24) 内の油溜まり(27)と膨張機ケーシング (34)内の油溜まり(37)が互いに連通する。
[0093] 上述したように、圧縮機 (20)では、圧縮機構 (21)で圧縮された冷媒が圧縮機ケー シング (24)の内部空間へ吐出される。このため、圧縮機ケーシング (24)の内圧は、 圧縮機構 (21)から吐出された冷媒の圧力(即ち、冷凍サイクルの高圧)とほぼ等しく なる。一方、膨張機 (30)では、膨張機ケーシング (34)に低圧側連通管 (80)が接続さ れており、膨張機ケーシング (34)の内部空間が圧縮機 (20)の吸入管 (25)に接続さ れた配管と連通している。このため、膨張機ケーシング (34)の内圧は、圧縮機 (20) へ吸入される冷媒の圧力(即ち、冷凍サイクルの低圧)とほぼ等しくなる。
[0094] このように、圧縮機ケーシング (24)の内圧は、膨張機ケーシング (34)の内圧よりも 高くなつている。このため、油量調節弁 (52)を開いた状態では、圧縮機ケーシング (2 4)内の油溜まり(27)力も膨張機ケーシング (34)内の油溜まり(37)へ向力つて油流通 管 (42)内を冷凍機油が流れる。そして、コントローラ (53)は、油面センサ(51)の出力 信号に基づいて油溜まり(37)の油面位置がある程度以上にまで上昇したと判断する と、油量調節弁 (52)を閉じる。
[0095] 一実施形態 1の効果
本実施形態では、圧縮機ケーシング (24)の内圧を膨張機ケーシング (34)の内圧よ りも高く設定し、油流通管 (42)を通じて圧縮機ケーシング (24)内の油溜まり(27)力 膨張機ケーシング (34)内の油溜まり(37)へ冷凍機油が供給されるようにしている。こ のため、空調機(10)の運転中に圧縮機 (20)に冷凍機油が偏在する状態となっても、 冷凍機油が過剰となって 、る圧縮機 (20)力 冷凍機油が不足して 、る膨張機 (30) へ油流通管 (42)を通じて冷凍機油を供給することができる。その結果、圧縮機ケー シング (24)と膨張機ケーシング (34)のそれぞれにお 、て冷凍機油の貯留量を充分 に確保することができ、圧縮機構 (21)や膨張機構 (31)の潤滑を確実に行うことがで きる。従って、本実施形態によれば、圧縮機 (20)や膨張機 (30)が潤滑不良によって 損傷するのを防ぐことができ、空調機(10)の信頼性を確保することができる。
[0096] ここで、冷媒回路 (11)では、蒸発器として機能する熱交^^が膨張機 (30)の下流 に位置している。蒸発器として機能する熱交^^での冷媒の吸熱量を確保するには 、膨張機 (30)力 流出する冷媒のェンタルピをできるだけ低くするのが望ましい。一 方、圧縮機構 (21)へ吸入される前の冷媒は、圧縮機構 (21)で圧縮された後の冷媒 と比べれば低温である。
[0097] 本実施形態にぉ 、て、膨張機ケーシング (34)は、圧縮機 (20)へ吸入される低圧冷 媒が流れる配管に対し、低圧側連通管 (80)を介して接続されている。この低圧冷媒 は比較的低温であるため、膨張機ケーシング (34)内の温度もそれ程は高くならない 。このため、膨張機構 (31)で膨張する冷媒へ侵入する熱量を抑えることができ、膨張 機 (30)力も流出する冷媒のェンタルピを低く抑えることができる。従って、本実施形 態によれば、蒸発器として機能する熱交換器における冷媒の吸熱量を充分に確保 することができる。
[0098] 実施形態 1の変形例 1
本実施形態では、冷媒回路(11)に油分離器 (60)と返油管 (62)を追加してもよ 、。 ここでは、本変形例の空調機(10)について、図 1,図 2に示すものと異なる点を説明 する。
[0099] 図 4に示すように、油分離器 (60)は、圧縮機 (20)の吐出側に配置されている。この 油分離器 (60)は、圧縮機 (20)から吐出された冷媒と冷凍機油を分離するためのもの である。具体的に、油分離器 (60)は、縦長円筒形の密閉容器状に形成された本体 部材 (65)を備えて!/、る。この本体部材 (65)には、入口管(66)と出口管(67)とが設け られている。入口管(66)は、本体部材 (65)力 横方向へ突出しており、本体部材 (65 )の側壁部の上部を貫通している。出口管(67)は、本体部材 (65)から上方向へ突出 しており、本体部材 (65)の頂部を貫通している。油分離器 (60)は、その入口管(66) が圧縮機 (20)の吐出管 (26)に接続され、その出口管 (67)が第 1四方切換弁(12)の 第 1のポートに接続されている。
[0100] 返油管 (62)は、油分離器 (60)と膨張機 (30)を接続しており、返油通路を形成して いる。返油管(62)の一端は、油分離器 (60)における本体部材 (65)の底部に接続さ れている。返油管(62)の他端は、膨張機ケーシング (34)の底部に接続されている。 返油管 (62)の途中には、冷凍機油を減圧するためのキヤビラリチューブ (63)が設け られている。油分離器 (60)の本体部材 (65)の内部空間は、返油管(62)を介して膨 張機ケーシング (34)内の油溜まり(37)と連通する。 [0101] 本変形例の空調機(10)で行われる油量調節動作につ!、て説明する。
[0102] 圧縮機 (20)力 冷媒と共に吐出された冷凍機油は、油分離器 (60)へ流入し、冷媒 から分離されて本体部材 (65)の底に溜まる。本体部材 (65)に溜まった冷凍機油は、 返油管 (62)へ流入し、キヤビラリチューブ (63)で減圧されて力 膨張機ケーシング (3 4)内の油溜まり(37)へ供給される。一方、膨張機 (30)力 冷媒と共に流出した冷凍 機油は、冷媒回路(11)を冷媒と共に流れて圧縮機 (20)の圧縮機構 (21)へ吸 、込ま れる。圧縮機構 (21)へ吸い込まれた冷凍機油は、圧縮後の冷媒と共に圧縮機ケー シング (24)の内部空間へ吐出され、その一部は圧縮機ケーシング (24)内の油溜まり (27)へ流れ落ちてゆく。
[0103] このように、本変形例において、圧縮機 (20)力も流出した冷凍機油は、油分離器 (6 0)と返油管 (62)を通って膨張機ケーシング (34)内へ供給される。一方、膨張機 (30) 力 流出した冷凍機油は、圧縮機ケーシング (24)内へ流入し、その一部は油流通管 (42)を通って膨張機ケーシング (34)内の油溜まり(37)へ送り返される。
[0104] 一実施形態 1の変形例 2—
上記変形例 1の冷媒回路(11)では、油分離器 (60)を膨張機ケーシング (34)では なく圧縮機ケーシング (24)に接続してもよい。ここでは、本変形例の空調機(10)につ いて、上記変形例 1と異なる点を説明する。
[0105] 図 5に示すように、本変形例の冷媒回路(11)では、油分離器 (60)の本体部材 (65) と圧縮機ケーシング (24)が返油管 (61)によって接続される。返油管 (61)は、その一 端が油分離器 (60)の本体部材 (65)の底部に接続され、その他端が圧縮機ケーシン グ (24)の底部に接続されている。この返油管(61)は、油分離器 (60)の本体部材 (65 )と圧縮機ケーシング (24)内の油溜まり(27)を連通させる返油通路を構成して!/、る。
[0106] 本変形例の冷媒回路(11)において、圧縮機 (20)力 冷媒と共に吐出された冷凍 機油は、油分離器 (60)で冷媒と分離され、その後に返油管 (61)を通じて圧縮機ケー シング (24)内の油溜まり(27)へ送り返される。また、膨張機 (30)から冷媒と共に流出 した冷凍機油は、圧縮機 (20)の圧縮機構 (21)へ吸入され、その一部は圧縮機ケー シング (24)内の油溜まり(27)へ流れ落ちる。つまり、本変形例では、圧縮機 (20)から 流出した冷凍機油と膨張機 (30)力 流出した冷凍機油の両方が圧縮機ケーシング( 24)内の油溜まり(27)へ集められ、圧縮機ケーシング (24)内の油溜まり(27)力も膨張 機ケーシング (34)内の油溜まり(37)へ冷凍機油が分配される。
[0107] 一実施形態 1の変形例 3—
本実施形態では、冷媒回路(11)に油分離器 (75)と返油管 (62)を追加してもよ 、。 ここでは、本変形例の空調機(10)について、図 1,図 2に示すものと異なる点を説明 する。
[0108] 図 6に示すように、油分離器 (75)は、圧縮機 (20)の吸入側に配置されている。この 油分離器 (75)自体は、上記変形例 1の油分離器 (60)と同様に構成されている。つま り、この油分離器 (75)は、本体部材 (65)と入口管 (66)と出口管 (67)とを備えて!/、る。 油分離器 (75)は、その入口管 (66)が第 1四方切換弁(12)の第 2のポートに接続され 、その出口管 (67)が圧縮機 (20)の吸入管 (25)に接続されて!、る。
[0109] 返油管(77)は、油分離器 (75)と膨張機ケーシング (34)を接続しており、返油通路 を形成している。返油管(77)の一端は、油分離器 (75)の本体部材 (65)の底部に接 続されている。返油管(77)の他端は、膨張機ケーシング (34)の底部に接続されてい る。油分離器 (75)の本体部材 (65)の内部空間は、返油管 (77)を介して膨張機ケー シング (34)内の油溜まり(37)と連通する。
[0110] 本変形例の冷媒回路(11)において、圧縮機 (20)力 冷媒と共に吐出された冷凍 機油は、冷媒回路 (11)内を流れて膨張機 (30)の流入管 (35)から膨張機構 (31)へ 流入する。膨張機構 (31)へ流入した冷凍機油は、膨張機ケーシング (34)内の油溜 まり(37)から膨張機構 (31)へ供給された冷凍機油と共に、流出管 (36)を通って膨張 機 (30)から流出してゆく。膨張機構 (31)から流出した冷凍機油は、冷媒回路 (11)内 を冷媒と共に流れて油分離器 (75)へ流入する。
[0111] 油分離器 (75)の本体部材 (65)内へ流入した冷凍機油は、その一部が冷媒と分離 されて本体部材 (65)内の底部に溜まる。本体部材 (65)内に溜まった冷凍機油は、 返油管 (77)を通って膨張機ケーシング (34)内の油溜まり(37)へ供給される。一方、 油分離器 (75)内の冷媒は、残りの冷凍機油と共に圧縮機 (20)の吸入管 (25)を通つ て圧縮機ケーシング (24)内へ流入する。
[0112] 本変形例では、圧縮機 (20)の吸入側に配置した油分離器 (75)で冷凍機油を捕集 している。このため、冷媒と共に圧縮機ケーシング (24)内へ流入する冷凍機油の量 を削減できる。つまり、圧縮機構 (21)へ吸い込まれる冷凍機油の量を削減することが できる。圧縮機構 (21)が 1回の吸入工程で吸い込める流体の体積は決まっているた め、冷媒と共に圧縮機構 (21)へ吸い込まれる冷凍機油の量を削減できれば、その分 だけ圧縮機構 (21)へ吸い込まれる冷媒の量を増やすことができる。従って、本変形 例によれば、圧縮機 (20)の性能を充分に発揮させることができる。
[0113] 一実施形態 1の変形例 4
本実施形態では、冷媒回路(11)に油分離器 (70)と返油管(72)を追加してもよ 、。 ここでは、本変形例の空調機(10)について、図 1,図 2に示すものと異なる点を説明 する。
[0114] 図 7に示すように、油分離器 (70)は、膨張機 (30)の流出側に配置されている。この 油分離器 (70)自体は、上記変形例 1の油分離器 (60)と同様に構成されている。つま り、この油分離器 (70)は、本体部材 (65)と入口管 (66)と出口管 (67)とを備えて!/、る。 油分離器 (70)は、その入口管 (66)が膨張機 (30)の流出管 (36)に接続され、その出 口管 (67)が第 2四方切換弁(13)の第 1のポートに接続されて 、る。
[0115] 返油管 (72)は、油分離器 (70)と膨張機ケーシング (34)を接続している。返油管 (7 2)の一端は、油分離器 (70)の本体部材 (65)の底部に接続されている。返油管(72) の他端は、膨張機ケーシング (34)の底部に接続されている。この返油管(72)は、油 分離器 (70)の本体部材 (65)と膨張機ケーシング (34)内の油溜まり(37)を連通させ る返油通路を構成している。
[0116] 本変形例の冷媒回路(11)において、圧縮機 (20)力 冷媒と共に吐出された冷凍 機油は、冷媒回路 (11)内を流れて膨張機 (30)の流入管 (35)から膨張機構 (31)へ 流入する。膨張機構 (31)へ流入した冷凍機油は、膨張機ケーシング (34)内の油溜 まり(37)から膨張機構 (31)へ供給された冷凍機油と共に、流出管 (36)を通って膨張 機 (30)力 流出してゆく。
[0117] 膨張機 (30)力 流出した冷凍機油は、膨張後の気液二相状態の冷媒と共に油分 離器 (70)の本体部材 (65)内へ流入する。本体部材 (65)の内部では、その下部に液 冷媒と冷凍機油の混合物が溜まり、その上部にガス冷媒が溜まる。また、冷媒回路(1 1)で用いられている冷凍機油の比重は、液冷媒の比重よりも大きくなつている。この ため、本体部材 (65)内の液溜まりでは、その底層ほど冷凍機油の割合が多くなり、そ の上層ほど液冷媒の割合が多くなる。
[0118] 上述したように、返油管(72)は本体部材 (65)の底部に接続されている。本体部材( 65)内の液溜まりの底層に存在する冷凍機油は、返油管(72)を通って膨張機ケーシ ング (34)内の油溜まり(37)へ供給される。一方、油分離器 (70)の出口管 (67)は、そ の下端部が本体部材 (65)内の液溜まりに浸力つた状態となっている。本体部材 (65) 内の液溜まりの上層に存在する液冷媒は、出口管(67)を通って本体部材 (65)から 流出し、冷房運転中であれば室内熱交換器(15)へ供給され、暖房運転中であれば 室外熱交換器 (14)へ供給される。
[0119] 一実施形態 1の変形例 5—
上記変形例 4の冷媒回路(11)では、油分離器 (70)を膨張機ケーシング (34)では なく圧縮機 (20)の吸入側に接続してもよい。ここでは、本変形例の空調機(10)につ いて、上記変形例 4と異なる点を説明する。
[0120] 図 8に示すように、本変形例の冷媒回路(11)では、油分離器 (70)の本体部材 (65) と圧縮機 (20)の吸入管 (25)が返油管(71)によって接続される。返油管(71)の一端 は、油分離器 (70)の本体部材 (65)の底部に接続され、返油管(71)の他端は、圧縮 機 (20)の吸入管 (25)と第 1四方切換弁(12)の第 2のポートを繋ぐ配管に接続されて V、る。この返油管 (71)は、油分離器 (70)と圧縮機 (20)の吸入管 (25)を接続しており 、返油通路を形成している。
[0121] 油分離器 (70)の本体部材 (65)内に溜まった冷凍機油は、返油管(71)を通って圧 縮機 (20)の吸入側へ流入し、冷媒と共に吸入管 (25)を通って圧縮機構 (21)へ吸入 される。圧縮機構 (21)へ吸い込まれた冷凍機油は、圧縮後の冷媒と共に圧縮機ケ 一シング (24)の内部空間へ吐出され、その一部は圧縮機ケーシング (24)内の油溜 まり(27)へ流れ落ちてゆく。つまり、本変形例では、圧縮機 (20)力 流出した冷凍機 油と膨張機 (30)力 流出した冷凍機油の両方が圧縮機ケーシング (24)内の油溜まり (27)へ一旦集められ、圧縮機ケーシング (24)内の油溜まり(27)力も膨張機ケーシン グ (34)内の油溜まり(37)へ冷凍機油が分配される。 [0122] 《発明の実施形態 2》
本発明の実施形態 2について説明する。本実施形態の空調機(10)は、上記実施 形態 1の冷媒回路(11)の構成を変更したものである。ここでは、本実施形態の空調 機(10)について、上記実施形態 1と異なる点を説明する。
[0123] 図 9及び図 10に示すように、本実施形態の冷媒回路(11)には、低圧側導入管 (81
)と低圧側導出管 (82)とが設けられている。この冷媒回路(11)において、上記実施 形態 1の低圧側連通管(80)は省略されて 、る。
[0124] 低圧側導入管 (81)は、低圧側導入通路を構成して!/、る。低圧側導入管 (81)の始 端は、圧縮機 (20)の吸入管 (25)と第 1四方切換弁(12)の第 2のポートとを繋ぐ配管 に接続されている。低圧側導入管 (81)の終端は、膨張機ケーシング (34)に接続され ている。この低圧側導入管 (81)の終端は、膨張機ケーシング (34)の内部空間のうち 発電機 (33)よりも下側の部分に開口して 、る。
[0125] 低圧側導出管 (82)は、低圧側導出通路を構成している。低圧側導出管 (82)の始 端は、膨張機ケーシング (34)に接続されている。この低圧側導出管 (82)の始端は、 膨張機ケーシング (34)の内部空間のうち膨張機構 (31)と発電機 (33)の間の部分に 開口している。低圧側導出管 (82)の他端は、圧縮機 (20)の吸入管 (25)と第 1四方切 換弁 (12)の第 2のポートとを繋ぐ配管に対し、低圧側導入管 (81)の接続箇所よりも圧 縮機 (20)寄りの位置で接続されて 、る。
[0126] 運転動作
本実施形態の冷媒回路(11)における冷房運転中及び暖房運転中の動作は、第 1 四方切換弁(12)を通って圧縮機 (20)へ吸入される冷媒の流通経路を除き、上記実 施形態 1の冷媒回路(11)で行われる動作と同じである。
[0127] 本実施形態において、室外熱交 (14)と室内熱交 (15)のうち蒸発器となつ ている方力も流出した冷媒は、その一部が膨張機ケーシング (34)を経由して圧縮機
(20)へ吸入され、残りが圧縮機 (20)へ直接に吸入される。
[0128] 具体的に、第 1四方切換弁(12)を通過した低圧冷媒は、その一部が低圧側導入管
(81)を通って膨張機ケーシング (34)内へ流入する。膨張機ケーシング (34)へ流入し た低圧冷媒は、発電機 (33)の回転子と固定子の間に形成された隙間や、固定子と 膨張機ケーシング (34)の間に形成された隙間などを、下から上へ向かって通過する 。その際には、低圧冷媒と共に膨張機ケーシング (34)内へ流入した冷凍機油が冷媒 と分離される。膨張機ケーシング (34)内で冷媒と分離された冷凍機油は、油溜まり (3 7)へと流れ落ちてゆく。発電機 (33)を通過した低圧冷媒は、低圧側導出管 (82)へ流 入し、第 1四方切換弁(12)から圧縮機 (20)へ直接向カゝぅ冷媒と合流してカゝら圧縮機 ( 20)へ吸入される。
[0129] 一実施形態 2の効果
本実施形態によれば、上記実施形態 1と同様の効果が得られる。また、本実施形態 では、圧縮機 (20)へ向力 低圧冷媒の一部が膨張機ケーシング (34)を通過して力 圧縮機 (20)へ吸入されるため、圧縮機 (20)へ冷媒と共に吸入される冷凍機油の量 を削減できる。従って、本実施形態によれば、上記実施形態 1の変形例 3の場合と同 様に、圧縮機構 (21)へ吸い込まれる冷媒の量を確保することで、圧縮機 (20)の性能 を充分に発揮させることができる。
[0130] ここで、運転条件によっては、室外熱交換器(14)と室内熱交換器(15)のうち蒸発 器となっている方で全ての液冷媒を蒸発させきれない場合があり、そのような場合に は、圧縮機 (20)へ向かう低圧冷媒に液冷媒が混入してしまう。これに対し、本実施形 態では、圧縮機 (20)へ向カゝぅ低圧冷媒の一部が膨張機ケーシング (34)内で発電機 (33)を通過する。このため、低圧冷媒に混じっている液冷媒は、発電機 (33)で生じる 熱を吸熱して蒸発する。従って、本実施形態によれば、圧縮機 (20)へ吸入される冷 媒に液冷媒が混入する可能性を低減でき、いわゆる液バックによって圧縮機 (20)が 破損する危険性を低減できる。つまり、膨張機ケーシング (34)をアキュームレータとし て利用することができる。
[0131] また、本実施形態では、圧縮機 (20)の吸入側へ向カゝぅ低圧冷媒の一部を膨張機ケ 一シング (34)の内部空間へ導入し、そこに配置された発電機 (33)を利用して冷凍機 油と低圧冷媒を分離している。このため、膨張機ケーシング (34)内に貯留される冷凍 機油の量を確保しやすくなる。
[0132] また、本実施形態の膨張機 (30)では、膨張機ケーシング (34)内へ流入した低圧冷 媒が発電機 (33)を下力も上へ向力つて通過する一方、発電機 (33)を通過する際に 冷媒と分離された冷凍機油が上力も下へ向力つて流れ落ちる。つまり、膨張機ケー シング (34)の内部空間では、低圧冷媒の流れる方向と、低圧冷媒と分離された冷凍 機油の流れる方向とが逆向きになっている。従って、本実施形態によれば、低圧冷 媒と分離された冷凍機油のうち、再び低圧冷媒と共に流れて低圧側導出管 (82)へ 流出してしまうものの量を一層確実に削減できる。
[0133] また、本実施形態の膨張機 (30)では、膨張機ケーシング (34)の内部空間を比較的 低温の低圧冷媒が通過する。このため、膨張機ケーシング (34)内に収容された発電 機 (33)を低圧冷媒によって冷却することができ、温度上昇に起因する発電機 (33)の 効率低下を抑えることができる。特に、本実施形態の膨張機ケーシング (34)内では、 低圧側導入管 (81)を通って流入した低圧冷媒が発電機 (33)を通過する。従って、 本実施形態によれば、低圧冷媒による発電機 (33)の冷却を確実に行うことができる。
[0134] 実施形態 2の変形例 1
図 11に示すように、本実施形態では、圧縮機 (20)の吐出側に油分離器 (60)を設 け、この油分離器 (60)の本体部材 (65)の底部と膨張機ケーシング (34)の底部を返 油管 (62)によって接続すると共に、冷凍機油を減圧するためのキヤビラリチューブ (6 3)を返油管 (62)に設けてもょ 、。
[0135] 本変形例の冷媒回路(11)と図 9に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 1 (図 4参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態 1の変形例 1につ 、ての説明を援用する。
[0136] 一実施形態 2の変形例 2—
図 12に示すように、本実施形態では、圧縮機 (20)の吐出側に油分離器 (60)を設 け、この油分離器 (60)の本体部材 (65)の底部と圧縮機ケーシング (24)の底部とを返 油管(61)によって接続してもよ!/、。
[0137] 本変形例の冷媒回路(11)と図 9に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 2 (図 5参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態 1の変形例 2についての説明を援用する。 [0138] 一実施形態 2の変形例 3—
図 13に示すように、本実施形態では、圧縮機 (20)の吸入側に油分離器 (75)を設 け、この油分離器 (75)の本体部材 (65)の底部と膨張機ケーシング (34)の底部とを返 油管(77)によって接続してもよ!/、。
[0139] 本変形例の冷媒回路(11)と図 9に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 3 (図 6参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態
1の変形例 3についての説明を援用する。
[0140] 一実施形態 2の変形例 4
図 14に示すように、本実施形態では、膨張機 (30)の流出側に油分離器 (70)を設 け、この油分離器 (70)の本体部材 (65)の底部と膨張機ケーシング (34)の底部とを返 油管(72)によって接続してもよ!/、。
[0141] 本変形例の冷媒回路(11)と図 9に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 4 (図 7参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態
1の変形例 4についての説明を援用する。
[0142] 一実施形態 2の変形例 5—
図 15に示すように、本実施形態では、膨張機 (30)の流出側に油分離器 (70)を設 け、この油分離器 (70)の本体部材 (65)の底部と圧縮機 (20)の吸入管 (25)とを返油 管(71)によって接続してもよ!/、。
[0143] 本変形例の冷媒回路(11)と図 9に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 5 (図 8参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態
1の変形例 5についての説明を援用する。
[0144] 《発明の実施形態 3》
本発明の実施形態 3について説明する。本実施形態の空調機(10)は、上記実施 形態 2の冷媒回路(11)の構成を変更したものである。ここでは、本実施形態の空調 機(10)について、上記実施形態 2と異なる点を説明する。 [0145] 図 16及び図 17に示すように、本実施形態の冷媒回路(11)では、圧縮機 (20)の吸 入管 (25)と第 1四方切換弁(12)の第 2のポートとを繋ぐ配管が省略されて 、る。そし て、この冷媒回路(11)では、低圧側導入管 (81)の始端が第 1四方切換弁(12)の第 2 のポートに接続され、低圧側導出管 (82)の終端が圧縮機 (20)の吸入管 (25)に接続 されている。なお、膨張機ケーシング (34)における低圧側導入管 (81)及び低圧側導 出管 (82)の接続位置は、上記実施形態 2の場合と同様である。
[0146] 本実施形態の冷媒回路(11)において、室外熱交換器(14)と室内熱交換器(15)の うち蒸発器となっている方力 流出した冷媒は、その全部が低圧側導入管 (81)を通 つて膨張機ケーシング (34)の内部空間へ流入し、発電機 (33)を下から上へ向かって 通過後に低圧側導出管 (82)を通って圧縮機 (20)へ吸入される。
[0147] 本実施形態では、圧縮機 (20)へ吸入される低圧冷媒の全てが膨張機ケーシング( 34)の内部空間を通過する。このため、本実施形態によれば、上記実施形態 2におい て得られる効果を、一層大きな程度で得ることができる。つまり、圧縮機 (20)へ冷媒と 共に吸入される冷凍機油の量を一層削減することができ、圧縮機 (20)の性能を充分 に発揮させることができる。また、圧縮機 (20)へ向かう低圧冷媒に液冷媒が含まれて いる場合でも、その液冷媒のほぼ全てを膨張機ケーシング (34)内で蒸発させること ができ、いわゆる液バックによって圧縮機 (20)が破損する危険性を低減できる。
[0148] 実施形態 3の変形例 1
図 18に示すように、本実施形態では、圧縮機 (20)の吐出側に油分離器 (60)を設 け、この油分離器 (60)の本体部材 (65)の底部と膨張機ケーシング (34)の底部を返 油管 (62)によって接続すると共に、冷凍機油を減圧するためのキヤビラリチューブ (6 3)を返油管 (62)に設けてもょ 、。
[0149] 本変形例の冷媒回路(11)と図 16に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 1 (図 4参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態 1の変形例 1につ 、ての説明を援用する。
[0150] 一実施形態 3の変形例 2—
図 19に示すように、本実施形態では、圧縮機 (20)の吐出側に油分離器 (60)を設 け、この油分離器 (60)の本体部材 (65)の底部と圧縮機ケーシング (24)の底部とを返 油管(61)によって接続してもよ!/、。
[0151] 本変形例の冷媒回路(11)と図 16に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 2 (図 5参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態
1の変形例 2についての説明を援用する。
[0152] 一実施形態 3の変形例 3—
図 20に示すように、本実施形態では、圧縮機 (20)の吸入側に油分離器 (75)を設 け、この油分離器 (75)の本体部材 (65)の底部と膨張機ケーシング (34)の底部とを返 油管(77)によって接続してもよ!/、。
[0153] ここでは、本変形例の冷媒回路(11)と図 16に示す冷媒回路(11)との相違点につ いて説明する。本変形例の冷媒回路(11)では、低圧側導入管 (81)の始端が油分離 器 (75)の出口管 (67)に接続される。それ以外の相違点は、上記実施形態 1の変形 例 3 (図 6参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相違点と同じで ある。そこで、ここでは、本変形例についての説明として、上記実施形態 1の変形例 3 についての説明を援用する。
[0154] 一実施形態 3の変形例 4
図 21に示すように、本実施形態では、膨張機 (30)の流出側に油分離器 (70)を設 け、この油分離器 (70)の本体部材 (65)の底部と膨張機ケーシング (34)の底部とを返 油管(72)によって接続してもよ!/、。
[0155] 本変形例の冷媒回路(11)と図 16に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 4 (図 7参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態
1の変形例 4についての説明を援用する。
[0156] 一実施形態 3の変形例 5—
図 22に示すように、本実施形態では、膨張機 (30)の流出側に油分離器 (70)を設 け、この油分離器 (70)の本体部材 (65)の底部と圧縮機 (20)の吸入管 (25)とを返油 管(71)によって接続してもよ!/、。 [0157] 本変形例の冷媒回路(11)と図 16に示す冷媒回路(11)との相違点は、上記実施形 態 1の変形例 5 (図 8参照)の冷媒回路(11)と図 1,図 2に示す冷媒回路(11)との相 違点と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態 1の変形例 5についての説明を援用する。
[0158] 《発明の実施形態 4》
本発明の実施形態 4について説明する。本実施形態の空調機(10)は、上記実施 形態 1において圧縮機 (20)の構成を変更したものである。ここでは、本実施形態の空 調機(10)について、上記実施形態 1と異なる点を説明する。
[0159] 図 23及び図 24に示すように、本実施形態の圧縮機 (20)は、いわゆる低圧ドームタ イブの全密閉型圧縮機 (20)である。この圧縮機 (20)にお 、て、吸入管 (25)は、圧縮 機ケーシング (24)の胴部の上端付近を貫通しており、その終端が圧縮機ケーシング (24)内における電動機 (23)の上側の空間に開口している。吐出管(26)は、圧縮機 ケーシング (24)の胴部の下端付近を貫通しており、その始端が圧縮機構 (21)へ直 に接続されている。なお、圧縮機構 (21)がロータリ式の容積型流体機械を構成して いる点や、駆動軸 (22)が給油機構を構成してる点は、上記実施形態 1の場合と同様 である。
[0160] 本実施形態の冷媒回路(11)には、油分離器 (60)と返油管 (62)とが設けられて 、る 。また、この冷媒回路(11)には、高圧側連通管 (85)が設けられている。
[0161] 油分離器 (60)は、圧縮機 (20)の吐出側に配置されている。この油分離器 (60)自体 は、上記実施形態 1の変形例 1の油分離器 (60)と同様に構成されている。つまり、こ の油分離器 (75)は、本体部材 (65)と入口管 (66)と出口管 (67)とを備えている。油分 離器 (75)は、その入口管 (66)が圧縮機 (20)の吐出管 (26)に接続され、その出口管 (67)が第 1四方切換弁(12)の第 1のポートに接続されている。
[0162] 返油管 (62)は、油分離器 (60)と膨張機 (30)を接続しており、返油通路を形成して いる。返油管(62)の一端は、油分離器 (60)における本体部材 (65)の底部に接続さ れている。返油管(62)の他端は、膨張機ケーシング (34)の底部に接続されている。 油分離器 (60)の本体部材 (65)の内部空間は、返油管 (62)を介して膨張機ケーシン グ (34)内の油溜まり(37)と連通する。 [0163] 高圧側連通管 (85)は、高圧側連通路を構成して!/、る。高圧側連通管 (85)の一端 は、圧縮機 (20)の吐出管 (26)と第 1四方切換弁(12)の第 1のポートとを繋ぐ配管に 接続されている。高圧側連通管 (85)の他端は、膨張機ケーシング (34)に接続されて いる。高圧側連通管 (85)の端部は、膨張機ケーシング (34)の内部空間のうち発電機 (33)の下側の部分に開口している。
[0164] 運転動作
本実施形態の冷媒回路(11)における冷房運転中及び暖房運転中の動作は、圧縮 機 (20)から吐出された冷媒が油分離器 (60)を通過する点を除き、上記実施形態 1の 冷媒回路(11)で行われる動作と同じである。本実施形態の冷媒回路(11)において、 圧縮機 (20)から吐出された冷媒は、油分離器 (60)を通過して力 第 1四方切換弁(1 2)へ流入し、冷房運転中であれば室外熱交換器(14)へ供給され、暖房運転中であ れば室内熱交換器 (15)へ供給される。
[0165] 本実施形態の空調機(10)で行われる油量調節動作にっ 、て説明する。
[0166] 圧縮機 (20)力 冷媒と共に吐出された冷凍機油は、油分離器 (60)へ流入し、冷媒 から分離されて本体部材 (65)の底に溜まる。本体部材 (65)に溜まった冷凍機油は、 返油管を通じて膨張機ケーシング (34)内の油溜まり(37)へ供給される。
[0167] 一方、膨張機 (30)力 冷媒と共に流出した冷凍機油は、冷媒回路(11)内を冷媒と 共に流れ、圧縮機 (20)の吸入管 (25)を通って圧縮機ケーシング (24)の内部空間へ 流入する。圧縮機ケーシング (24)内へ冷媒と共に流入した冷凍機油は、電動機 (23) の回転子と固定子の間に形成された隙間や、固定子と圧縮機ケーシング (24)の間 に形成された隙間などを通過する間にその一部が冷媒と分離され、油溜まり(27)へ 向かって流れ落ちてゆく。冷媒と分離されなかった冷凍機油は、冷媒と共に圧縮機 構 (21)へ吸 、込まれ、その後に圧縮機 (20)力 冷媒と共に吐出されてゆく。
[0168] このように、本実施形態では、圧縮機 (20)力 流出した冷凍機油が油分離器 (60) で捕集され、油分離器 (60)で捕集された冷凍機油が膨張機ケーシング (34)内へ供 給される。このため、空調機(10)の運転中には、膨張機ケーシング (34)内における 冷凍機油の貯留量が次第に増大してゆく一方、圧縮機ケーシング (24)内における冷 凍機油の貯留量が次第に減少してゆく。 [0169] 膨張機ケーシング (34)内における冷凍機油の貯留量が増大すると、それに伴って 油溜まり(37)における油面の位置が上昇する。コントローラ (53)は、油面センサ(51) の出力信号に基づいて油溜まり(37)の油面位置がある程度以上にまで上昇したと判 断すると、油量調節弁 (52)を開く。油量調節弁 (52)が開くと、圧縮機ケーシング (24) 内の油溜まり(27)と膨張機ケーシング (34)内の油溜まり(37)が互いに連通する。
[0170] ここで、圧縮機 (20)へ吸入される冷媒は、圧縮機ケーシング (24)の内部空間を通 過して力も圧縮機構 (21)へ吸入される。このため、圧縮機ケーシング (24)の内圧は、 圧縮機構 (21)へ吸入される冷媒の圧力(即ち、冷凍サイクルの低圧)とほぼ等しくな る。一方、膨張機 (30)では、膨張機ケーシング (34)に高圧側連通管 (85)が接続され ており、膨張機ケーシング (34)の内部空間が圧縮機 (20)の吐出管 (26)に接続され た配管と連通している。このため、膨張機ケーシング (34)の内圧は、圧縮機 (20)から 吐出された冷媒の圧力(即ち、冷凍サイクルの高圧)とほぼ等しくなる。
[0171] このように、膨張機ケーシング (34)の内圧は、圧縮機ケーシング (24)の内圧よりも 高くなつている。このため、油量調節弁 (52)を開いた状態では、膨張機ケーシング (3 4)内の油溜まり(37)から圧縮機ケーシング (24)内の油溜まり(27)へ向力つて油流通 管 (42)内を冷凍機油が流れる。そして、コントローラ (53)は、油面センサ(51)の出力 信号に基づいて油溜まり(37)の油面位置がある程度以下にまで低下したと判断する と、油量調節弁 (52)を閉じる。
[0172] 《発明の実施形態 5》
本発明の実施形態 5について説明する。本実施形態の空調機(10)は、上記実施 形態 4の冷媒回路(11)の構成を変更したものである。ここでは、本実施形態の空調 機(10)について、上記実施形態 4と異なる点を説明する。
[0173] 図 25及び図 26に示すように、本実施形態の冷媒回路(11)には、高圧側導入管 (8 6)と高圧側導出管 (87)とが設けられている。この冷媒回路(11)において、上記実施 形態 4の高圧側連通管 (85)、油分離器 (60)及び返油管 (62)は省略されて 、る。
[0174] 高圧側導入管 (86)は、高圧側導入通路を構成して!/、る。高圧側導入管 (86)の始 端は、圧縮機 (20)の吐出管 (26)と第 1四方切換弁(12)の第 1のポートとを繋ぐ配管 に接続されている。高圧側導入管 (86)の終端は、膨張機ケーシング (34)に接続され ている。この高圧側導入管 (86)の終端は、膨張機ケーシング (34)の内部空間のうち 発電機 (33)よりも下側の部分に開口して 、る。
[0175] 高圧側導出管 (87)は、高圧側導出通路を構成している。低圧側導出管 (82)の始 端は、膨張機ケーシング (34)に接続されている。この低圧側導出管 (82)の始端は、 膨張機ケーシング (34)の内部空間のうち膨張機構 (31)と発電機 (33)の間の部分に 開口して 、る。低圧側導出管 (82)の他端は、圧縮機 (20)の吐出管 (26)と第 1四方切 換弁 (12)の第 1のポートとを繋ぐ配管に対し、高圧側導入管 (86)の接続箇所よりも第
1四方切換弁(12)寄りの位置で接続されて 、る。
[0176] 運転動作
本実施形態の冷媒回路(11)における冷房運転中及び暖房運転中の動作は、圧縮 機 (20)から吐出されて第 1四方切換弁(12)へ向力う冷媒の流通経路を除き、上記実 施形態 4の冷媒回路(11)で行われる動作と同じである。
[0177] 本実施形態において、圧縮機 (20)力 吐出された冷媒は、その一部が膨張機ケー シング (34)を経由して第 1四方切換弁(12)へ流入し、残りが第 1四方切換弁(12)へ 直接に流入する。
[0178] 具体的に、圧縮機 (20)から吐出された冷媒は、その一部が高圧側導入管 (86)を通 つて膨張機ケーシング (34)内へ流入する。膨張機ケーシング (34)へ流入した高圧冷 媒は、発電機 (33)の回転子と固定子の間に形成された隙間や、固定子と膨張機ケ 一シング (34)の間に形成された隙間などを、下から上へ向力つて通過する。その際 には、高圧冷媒と共に膨張機ケーシング (34)内へ流入した冷凍機油が冷媒と分離さ れる。膨張機ケーシング (34)内で冷媒と分離された冷凍機油は、油溜まり(37)へと 流れ落ちてゆく。発電機 (33)を通過した高圧冷媒は、高圧側導出管 (87)へ流入し、 圧縮機 (20)から第 1四方切換弁(12)へ直接向かう冷媒と合流してから第 1四方切換 弁(12)へ流入する。
[0179] 上述したように、圧縮機 (20)力も冷媒と共に吐出された冷凍機油は、その一部が膨 張機ケーシング (34)内で高圧冷媒と分離される。このため、空調機(10)の運転中に は、膨張機ケーシング (34)内における冷凍機油の貯留量が次第に増大してゆく一方 、圧縮機ケーシング (24)内における冷凍機油の貯留量が次第に減少してゆく。 [0180] そこで、本実施形態のコントローラ (53)は、上記実施形態 4のものと同様の動作を 行う。つまり、コントローラ (53)は、油面センサ(51)の出力信号に基づいて油溜まり(3 7)の油面位置がある程度以上にまで上昇したと判断すると、油量調節弁 (52)を開き 、膨張機ケーシング (34)内の油溜まり(37)力も圧縮機ケーシング (24)内の油溜まり( 27)へ冷凍機油を供給する。そして、コントローラ (53)は、油面センサ(51)の出力信 号に基づいて油溜まり(37)の油面位置がある程度以下にまで低下したと判断すると 、油量調節弁 (52)を閉じる。
[0181] 一実施形態 5の効果
本実施形態によれば、上記実施形態 1で得られる効果に加え、以下に示すような効 果が得られる。
[0182] 本実施形態では、圧縮機 (20)から吐出された高圧冷媒の一部を膨張機ケーシング
(34)の内部空間へ導入し、そこに配置された発電機 (33)を利用して冷凍機油と高圧 冷媒を分離している。このため、膨張機ケーシング (34)内に貯留される冷凍機油の 量を確保しやすくなる。
[0183] また、本実施形態の膨張機 (30)では、膨張機ケーシング (34)内へ流入した高圧冷 媒が発電機 (33)を下力も上へ向力つて通過する一方、発電機 (33)を通過する際に 冷媒と分離された冷凍機油が上力も下へ向力つて流れ落ちる。つまり、膨張機ケー シング (34)の内部空間では、高圧冷媒の流れる方向と、高圧冷媒と分離された冷凍 機油の流れる方向とが逆向きになっている。従って、本実施形態によれば、高圧冷 媒と分離された冷凍機油のうち、再び高圧冷媒と共に流れて高圧側導出管 (87)へ 流出してしまうものの量を一層確実に削減できる。
[0184] 実施形態 5の変形例 1
本実施形態では、上記実施形態 4の場合と同様に、油分離器 (60)と返油管 (62)を 冷媒回路(11)に設けてもよい。ここでは、本変形例の空調機(10)について、図 25に 示すものと異なる点を説明する。
[0185] 図 27に示すように、油分離器 (60)は、冷媒回路(11)における圧縮機 (20)の吐出 側に設けられている。この油分離器 (60)自体は、上記実施形態 4の油分離器 (60)と 同様に構成されている。つまり、この油分離器 (60)は、本体部材 (65)と入口管 (66)と 出口管 (67)とを備えて!/、る。油分離器 (60)は、その入口管 (66)が吐出管 (26)に接 続され、その出口管 (67)が第 1四方切換弁(12)の第 1のポートに接続されている。
[0186] 返油管 (62)は、油分離器 (60)と膨張機ケーシング (34)を接続しており、返油通路 を形成している。返油管(62)の一端は、油分離器 (60)の本体部材 (65)の底部に接 続されている。返油管(62)の他端は、膨張機ケーシング (34)の底部に接続されてい る。油分離器 (60)の本体部材 (65)の内部空間は、返油管 (62)を介して膨張機ケー シング (34)内の油溜まり(37)と連通する。
[0187] 本変形例において、圧縮機 (20)力も冷媒と共に吐出された冷凍機油は、油分離器
(60)で高圧冷媒と分離され、返油管 (62)を通じて膨張機ケーシング (34)内の油溜ま り(37)へ供給される。
[0188] 一実施形態 5の変形例 2—
上記変形例 1の冷媒回路(11)では、油分離器 (60)を膨張機ケーシング (34)では なく圧縮機ケーシング (24)に接続してもよい。ここでは、本変形例の空調機(10)につ いて、上記変形例 1と異なる点を説明する。
[0189] 図 28に示すように、本変形例の冷媒回路(11)では、油分離器 (60)の本体部材 (65 )と圧縮機ケーシング (24)が返油管 (61)によって接続される。返油管 (61)は、その一 端が油分離器 (60)の本体部材 (65)の底部に接続され、その他端が圧縮機ケーシン グ (24)の底部に接続されている。返油管(61)には、冷凍機油を減圧するためのキヤ ビラリチューブ (63)が設けられている。この返油管 (61)は、油分離器 (60)の本体部 材 (65)と圧縮機ケーシング (24)内の油溜まり(27)を連通させる返油通路を構成して いる。
[0190] 本変形例の冷媒回路(11)において、圧縮機 (20)力 冷媒と共に吐出された冷凍 機油は、その一部が膨張機ケーシング (34)内で高圧冷媒と分離される一方、残りの 一部が油分離器 (60)で高圧冷媒と分離される。膨張機ケーシング (34)内で高圧冷 媒と分離された冷凍機油は、膨張機ケーシング (34)内の油溜まり(37)へ流入する。 一方、油分離器 (60)で高圧冷媒と分離された冷凍機油は、返油管 (61)を通って圧 縮機ケーシング (24)内の油溜まり(27)へ供給される。
[0191] 一実施形態 5の変形例 3— 本実施形態では、冷媒回路(11)に油分離器 (70)と返油管(71)を追加してもよ 、。 ここでは、本変形例の空調機(10)について、図 25に示すものと異なる点を説明する
[0192] 図 29に示すように、油分離器 (70)は、膨張機 (30)の流出側に配置されている。こ の油分離器 (70)自体は、上記実施形態 4の油分離器 (60)と同様に構成されている。 つまり、この油分離器 (70)は、本体部材 (65)と入口管 (66)と出口管 (67)とを備えて いる。油分離器 (70)は、その入口管 (66)が膨張機 (30)の流出管 (36)に接続され、 その出口管 (67)が第 2四方切換弁(13)の第 1のポートに接続されて 、る。
[0193] 返油管(71)は、その一端が油分離器 (70)の本体部材 (65)の底部に接続され、そ の他端が圧縮機ケーシング (24)の底部に接続されて!ヽる。
[0194] 返油管(71)の一端は、油分離器 (70)の本体部材 (65)の底部に接続され、返油管
(71)の他端は、圧縮機 (20)の吸入管 (25)と第 1四方切換弁(12)の第 2のポートを繋 ぐ配管に接続されている。この返油管 (71)は、油分離器 (70)の本体部材 (65)と圧縮 機ケーシング (24)内の油溜まり(27)を連通させる返油通路を構成して!/ヽる。
[0195] 本変形例の冷媒回路(11)において、膨張機 (30)力 流出した冷凍機油は、膨張 後の気液二相状態の冷媒と共に油分離器 (70)の本体部材 (65)内へ流入する。本体 部材 (65)の内部では、その下部に液冷媒と冷凍機油の混合物が溜まり、その上部に ガス冷媒が溜まる。また、冷媒回路(11)で用いられている冷凍機油の比重は、液冷 媒の比重よりも大きくなつている。このため、本体部材 (65)内の液溜まりでは、その底 層ほど冷凍機油の割合が多くなり、その上層ほど液冷媒の割合が多くなる。
[0196] 上述したように、返油管(71)は本体部材 (65)の底部に接続されている。本体部材( 65)内の液溜まりの底層に存在する冷凍機油は、返油管(71)を通って圧縮機ケーシ ング (24)内の油溜まり(27)へ供給される。一方、油分離器 (70)の出口管 (67)は、そ の下端部が本体部材 (65)内の液溜まりに浸力つた状態となっている。本体部材 (65) 内の液溜まりの上層に存在する液冷媒は、出口管(67)を通って本体部材 (65)から 流出し、冷房運転中であれば室内熱交換器(15)へ供給され、暖房運転中であれば 室外熱交換器 (14)へ供給される。
[0197] 《発明の実施形態 6》 本発明の実施形態 6について説明する。本実施形態の空調機(10)は、上記実施 形態 5の冷媒回路(11)の構成を変更したものである。ここでは、本実施形態の空調 機(10)について、上記実施形態 5と異なる点を説明する。
[0198] 図 30及び図 31に示すように、本実施形態の冷媒回路(11)では、圧縮機 (20)の吐 出管 (26)と第 1四方切換弁(12)の第 1のポートとを繋ぐ配管が省略されて 、る。そし て、この冷媒回路(11)では、高圧側導入管 (86)の始端が圧縮機 (20)の吐出管 (26) に接続され、高圧側導出管 (87)の終端が第 1四方切換弁(12)の第 1のポートに接続 されている。なお、膨張機ケーシング (34)における高圧側導入管 (86)及び高圧側導 出管 (87)の接続位置は、上記実施形態 5の場合と同様である。
[0199] 本実施形態の冷媒回路(11)において、圧縮機 (20)力 吐出された冷媒は、その全 部が高圧側導入管 (86)を通って膨張機ケーシング (34)の内部空間へ流入し、発電 機 (33)を下から上へ向かって通過した後に高圧側導出管 (87)を通って第 1四方切 換弁(12)へ流入する。
[0200] 本実施形態では、圧縮機 (20)力 吐出された高圧冷媒の全てが膨張機ケーシング
(34)の内部空間を通過する。このため、本実施形態によれば、上記実施形態 5にお いて得られる効果を、一層大きな程度で得ることができる。つまり、本実施形態では、 膨張機ケーシング (34)内で高圧冷媒と分離される冷凍機油の量が上記実施形態 5 の場合に比べて多くなるため、膨張機ケーシング (34)内に貯留される冷凍機油の量 を一層確保しやすくなり、冷凍機油の不足によって膨張機 (30)が損傷する危険性を 一層低減することができる。
[0201] 実施形態 6の変形例 1
図 32に示すように、本実施形態では、圧縮機 (20)の吐出側に油分離器 (60)を設 け、この油分離器 (60)の本体部材 (65)の底部と膨張機ケーシング (34)の底部を返 油管(62)によって接続してもよ!/、。
[0202] ここでは、本変形例の冷媒回路(11)と図 30に示す冷媒回路(11)との相違点につ いて説明する。本変形例の冷媒回路(11)では、高圧側導出管 (87)の終端が油分離 器 (75)の入口管 (66)に接続される。それ以外の相違点は、上記実施形態 5の変形 例 1 (図 27参照)の冷媒回路(11)と図 25に示す冷媒回路(11)との相違点と同じであ る。そこで、ここでは、本変形例についての説明として、上記実施形態 5の変形例 1に ついての説明を援用する。
[0203] 一実施形態 6の変形例 2—
図 33に示すように、本実施形態では、圧縮機 (20)の吐出側に油分離器 (60)を設 け、この油分離器 (60)の本体部材 (65)の底部と圧縮機ケーシング (24)の底部とを返 油管(61)によって接続してもよ!/、。
[0204] ここでは、本変形例の冷媒回路(11)と図 30に示す冷媒回路(11)との相違点につ いて説明する。本変形例の冷媒回路(11)では、高圧側導出管 (87)の終端が油分離 器 (75)の入口管 (66)に接続される。それ以外の相違点は、上記実施形態 5の変形 例 2 (図 28参照)の冷媒回路(11)と図 25に示す冷媒回路(11)との相違点と同じであ る。そこで、ここでは、本変形例についての説明として、上記実施形態 5の変形例 2に ついての説明を援用する。
[0205] 一実施形態 6の変形例 3—
図 34に示すように、本実施形態では、膨張機 (30)の流出側に油分離器 (70)を設 け、この油分離器 (70)の本体部材 (65)の底部と圧縮機ケーシング (24)の底部とを返 油管(71)によって接続してもよ!/、。
[0206] 本変形例の冷媒回路(11)と図 30に示す冷媒回路(11)との相違点は、上記実施形 態 5の変形例 3 (図 29参照)の冷媒回路(11)と図 25に示す冷媒回路(11)との相違点 と同じである。そこで、ここでは、本変形例についての説明として、上記実施形態 5の 変形例 3についての説明を援用する。
[0207] 《その他の実施形態》
上記実施形態にっ 、ては、以下のような構成としてもょ 、。
[0208] 第 1変形例
上記の各実施形態では、図 35に示すように、油流通管 (42)の途中に調整手段とし てのキヤビラリチューブ (54)を設けてもよい。なお、図 35に示す冷媒回路(11)は、上 記実施形態 1に本変形例を適用したものである。
[0209] 油流通管 (42)にキヤビラリチューブ (54)を設けると、油流通管 (42)を流れる冷凍機 油は、キヤビラリチューブ (54)を通過する際に減圧される。このため、互いに内圧の 異なる圧縮機ケーシング (24)と膨張機ケーシング (34)が油流通管 (42)を介して連通 して 、ても、圧縮機ケーシング (24)と膨張機ケーシング (34)のうち内圧の低 、方へ 冷凍機油が偏ることはない。つまり、キヤビラリチューブ (54)は、圧縮機ケーシング (2 4)と膨張機ケーシング (34)のうち内圧の低 、方へ冷凍機油が偏ることがな 、ように、 油流通管 (42)での冷凍機油の流量を調節して!/、る。
[0210] 第 2変形例
上記の各実施形態では、図 36,図 37に示すように、油面センサ(51)を圧縮機ケー シング (24)内に設けてもよい。なお、図 36に示す冷媒回路(11)は、上記実施形態 3 に本変形例を適用したものである。また、図 37に示す冷媒回路(11)は、上記実施形 態 6に本変形例を適用したものである。
[0211] 図 36に示す冷媒回路(11)では、圧縮機ケーシング (24)の内圧が膨張機ケーシン グ (34)の内圧よりも高くなる。このため、油量調節弁 (52)が開いた状態の油流通管( 42)では、圧縮機ケーシング (24)内の油溜まり(27)力も膨張機ケーシング (34)内の 油溜まり(37)へ向力つて冷凍機油が流れる。そこで、コントローラ (53)は、圧縮機ケ 一シング (24)内の油面位置がある程度以上にまで上昇したと判断すると油量調節弁 (52)を開き、圧縮機ケーシング (24)内の油面位置がある程度以下にまで低下したと 判断すると油量調節弁 (52)を閉じる。
[0212] 一方、図 37に示す冷媒回路(11)では、膨張機ケーシング (34)の内圧が圧縮機ケ 一シング (24)の内圧よりも高くなる。このため、油量調節弁 (52)が開いた状態の油流 通管 (42)では、膨張機ケーシング (34)内の油溜まり(37)から圧縮機ケーシング (24) 内の油溜まり(27)へ向力つて冷凍機油が流れる。そこで、コントローラ(53)は、圧縮 機ケーシング (24)内の油面位置がある程度以下にまで低下したと判断すると油量調 節弁 (52)を開き、圧縮機ケーシング (24)内の油面位置がある程度以上にまで上昇し たと判断すると油量調節弁 (52)を閉じる。
[0213] 第 3変形例
上記実施形態 1, 2及び 3では、図 38に示すように、冷媒回路(11)に油冷却用熱交 翻 (90)を設けてもよい。
[0214] 油冷却用熱交換器 (90)は、例えばプレート式熱交換器や、二重卷式熱交換器によ つて構成される。具体的に、油冷却用熱交 (90)には、第 1流路 (91)と第 2流路( 92)とが形成されている。油冷却用熱交換器 (90)の第 1流路 (91)は、油流通管 (42) の途中に設けられる。一方、油冷却用熱交換器 (90)の第 2流路 (92)は、圧縮機 (20) の吸入管 (25)と第 1四方切換弁(12)とを繋ぐ配管の途中に設けられる。そして、油冷 却用熱交換器 (90)では、油流通管 (42)内を流れる冷凍機油と、第 1四方切換弁(12 )から圧縮機 (20)へ向カゝぅ低圧冷媒とが熱交換する。
[0215] 上記実施形態 1, 2及び 3の圧縮機 (20)では、圧縮機構 (21)で圧縮された高温高 圧の冷媒が圧縮機ケーシング (24)の内部空間へ吐出される。従って、圧縮機ケーシ ング (24)内の油溜まり(27)に貯留する潤滑油は、比較的高温 (例えば 80°C程度)と なっている。一方、圧縮機 (20)へ吸入される低圧冷媒は、比較的低温 (例えば 5°C程 度)となって!/、る。このため、圧縮機ケーシング (24)内の油溜まり(27)から油流通管( 42)へ流入した潤滑油は、油冷却用熱交換器 (90)を通過する間に低圧冷媒と熱交 換することによって冷却され、その後に膨張機ケーシング (34)内の油溜まり(37)へ流 れ込む。
[0216] ここで、冷媒回路 (11)では、室外熱交 (14)と室内熱交 (15)のうち蒸発器 となっている方での冷媒の吸熱量を確保するには、膨張機 (30)から流出する冷媒の ェンタルピをできるだけ低くするのが望ましい。これに対し、本実施形態では、圧縮機 ケーシング (24)内の冷凍機油が油冷却用熱交 (90)で冷却されて力 膨張機ケ 一シング (34)内へ流入するため、膨張機構 (31)で膨張する冷媒へ侵入する熱量を 抑えることができる。従って、本実施形態によれば、膨張機 (30)から流出する冷媒の ェンタルピを低く抑えることができ、蒸発器における冷媒の吸熱量を充分に確保する ことができる。
[0217] 第 4変形例
上記の各実施形態では、図 39に示すように、膨張機ケーシング (34)内の膨張機構 (31)を断熱材 (38)で囲ってもょ 、。
[0218] 上述したように、膨張機構 (31)を通過する冷媒に外部から熱が侵入すると、侵入し た熱量分だけ蒸発器として機能する熱交換器での冷媒の吸熱量が減少してしまう。 これに対し、本変形例のように膨張機構 (31)を断熱材 (38)で囲えば、膨張機構 (31) を通過する冷媒へ侵入する熱量を削減することができ、蒸発器として機能する熱交 の性能を十分に発揮させることができる。
[0219] ここで、上記実施形態 4〜6のように膨張機ケーシング (34)の内圧が冷凍サイクル の高圧となる場合は、上記実施形態 1〜3のように膨張機ケーシング (34)の内圧が冷 凍サイクルの低圧となる場合に比べ、膨張機ケーシング (34)内における雰囲気温度 が高くなる。このため、本変形例は、上記実施形態 4〜6のような膨張機ケーシング (3 4)の内圧が冷凍サイクルの高圧となるにお 、て、特に有効である。
[0220] 第 5変形例
上記の各実施形態では、圧縮機構 (21)と膨張機構 (31)のそれぞれがロータリ式の 流体機械によって構成されているが、圧縮機構 (21)と膨張機構 (31)を構成する流体 機械の形式は、これに限定されるものではない。例えば、圧縮機構 (21)と膨張機構( 31)のそれぞれがスクロール式の流体機械によって構成されていてもよい。また、圧 縮機構 (21)と膨張機構 (31)は、互いに異なる形式の流体機械によって構成されて いてもよい。
[0221] 第 6変形例
上記の各実施形態では、圧縮機 (20)の駆動軸 (22)や膨張機 (30)の出力軸 (32) に形成された給油通路によって遠心ポンプを構成している力 駆動軸 (22)や出力軸 (32)の下端に機械式ポンプ (例えばギア式ポンプやトロコイド式ポンプ)を連結し、駆 動軸 (22)や出力軸 (32)で機械式ポンプを駆動して圧縮機構 (21)や膨張機構 (31) への給油を行ってもよい。
[0222] 上記実施形態 1〜3のように膨張機ケーシング (34)の内圧が冷凍サイクルの低圧と なる場合は、膨張機ケーシング (34)内に貯留する冷凍機油の圧力が膨張機構 (31) へ流入する冷媒の圧力よりも低くなるため、遠心ポンプでは膨張機構 (31)に対する 充分な給油量を確保しにくいことも有り得る。また、上記実施形態 4〜5のように圧縮 機 (20)が低圧ドームタイプの場合も、遠心ポンプでは圧縮機構 (21)に対する充分な 給油量を確保しにくいことも有り得る。従って、圧縮機 (20)と膨張機 (30)のうちケーシ ング (24,34)の内圧が冷凍サイクルの低圧となる方には、機械式の給油ポンプを設け るのが望ましい。 [0223] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。
産業上の利用可能性
[0224] 以上説明したように、本発明は、圧縮機と膨張機が冷媒回路に設けられている冷凍 装置について有用である。

Claims

請求の範囲
[1] 圧縮機 (20)と膨張機 (30)とが接続された冷媒回路 (11)を備え、該冷媒回路 (11) で冷媒を循環させて冷凍サイクルを行う冷凍装置であって、
上記圧縮機 (20)には、冷媒を吸入して圧縮する圧縮機構 (21)と、該圧縮機構 (21) を収容する圧縮機ケーシング (24)と、該圧縮機ケーシング (24)内の油溜まり(27)か ら上記圧縮機構 (21)へ潤滑油を供給する給油機構 (22)とが設けられ、
上記膨張機 (30)には、流入した冷媒を膨張させて動力を発生させる膨張機構 (31) と、該膨張機構 (31)を収容する膨張機ケーシング (34)と、該膨張機ケーシング (34) 内の油溜まり (37)から上記膨張機構 (31)へ潤滑油を供給する給油機構 (32)とが設 けられ、
上記圧縮機ケーシング (24)と上記膨張機ケーシング (34)は、その一方の内圧が冷 凍サイクルの高圧となって他方の内圧が冷凍サイクルの低圧となる一方、
上記圧縮機ケーシング (24)内の油溜まり(27)と上記膨張機ケーシング (34)内の油 溜まり(37)の間で潤滑油を移動させるために該圧縮機ケーシング (24)と該膨張機ケ 一シング (34)を接続する油流通路 (42)と、
上記油流通路 (42)における潤滑油の流通状態を調節するための調節手段 (50)と を備えている
ことを特徴とする冷凍装置。
[2] 請求項 1において、
上記調節手段 (50)は、上記圧縮機ケーシング (24)内の油溜まり(27)又は上記膨 張機ケーシング (34)内の油溜まり(37)における油面の位置を検出する油面検出器( 51)と、上記油流通路 (42)に設けられると共に上記油面検出器 (51)の出力信号に基 づ 、て開度が制御される制御弁 (52)とを備えて!/、る
ことを特徴とする冷凍装置。
[3] 請求項 1において、
上記圧縮機構 (21)は、上記圧縮機ケーシング (24)の外部から直接吸入した冷媒 を圧縮して該圧縮機ケーシング (24)内へ吐出する一方、
上記冷媒回路(11)には、上記圧縮機 (20)の吸入側に接続する配管と上記膨張機 ケーシング (34)の内部空間とを連通させる低圧側連通路 (80)が設けられている ことを特徴とする冷凍装置。
[4] 請求項 1において、
上記圧縮機構 (21)は、上記圧縮機ケーシング (24)の外部から直接吸入した冷媒 を圧縮して該圧縮機ケーシング (24)内へ吐出する一方、
上記冷媒回路(11)には、上記圧縮機 (20)の吸入側へ向力う低圧冷媒の一部又は 全部を上記膨張機ケーシング (34)の内部空間へ導入するための低圧側導入通路 (8 1)と、上記膨張機ケーシング (34)の内部空間から低圧冷媒を導出して上記圧縮機 ( 20)へ供給するための低圧側導出通路 (82)とが設けられて 、る
ことを特徴とする冷凍装置。
[5] 請求項 4において、
上記膨張機ケーシング (34)内には、上記膨張機構 (31)によって駆動される発電機 (33)が、該膨張機ケーシング (34)の内部空間を仕切るように収容される一方、 上記膨張機ケーシング (34)の内部空間では、上記発電機 (33)によって仕切られた 一方の空間に上記低圧側導入通路 (81)が、他方の空間に上記低圧側導出通路 (82 )がそれぞれ接続している
ことを特徴とする冷凍装置。
[6] 請求項 5において、
上記膨張機ケーシング (34)の内部空間は、上記発電機 (33)によって上下に仕切 られる一方、
上記膨張機ケーシング (34)の内部空間では、上記発電機 (33)の下側の空間に上 記低圧側導入通路 (81)が、上記発電機 (33)の上側の空間に上記低圧側導出通路 ( 82)がそれぞれ接続している
ことを特徴とする冷凍装置。
[7] 請求項 3又は 4において、
上記冷媒回路 (11)には、上記膨張機 (30)の流出側に配置されて冷媒と潤滑油を 分離させる油分離器 (70)と、該油分離器 (70)から上記圧縮機ケーシング (24)内へ 潤滑油を供給するための返油通路 (71)とが設けられている ことを特徴とする冷凍装置。
[8] 請求項 3又は 4において、
上記冷媒回路 (11)には、上記膨張機 (30)の流出側に配置されて冷媒と潤滑油を 分離させる油分離器 (70)と、該油分離器 (70)から上記膨張機ケーシング (34)内へ 潤滑油を供給するための返油通路 (72)とが設けられている
ことを特徴とする冷凍装置。
[9] 請求項 3又は 4において、
上記油流通路 (42)を流れる潤滑油を上記圧縮機 (20)へ吸入される低圧冷媒と熱 交換させて冷却する油冷却用熱交 (90)を備えて!/、る
ことを特徴とする冷凍装置。
[10] 請求項 1において、
上記圧縮機構 (21)は、上記圧縮機ケーシング (24)内から吸入した冷媒を圧縮して 該圧縮機ケーシング (24)の外部へ直接吐出する一方、
上記冷媒回路 (11)には、上記圧縮機 (20)の吐出側に接続する配管と上記膨張機 ケーシング (34)の内部空間とを連通させる高圧側連通路 (85)と、上記圧縮機 (20)の 吐出側に配置されて冷媒と潤滑油を分離させる油分離器 (60)と、該油分離器 (60) から上記膨張機ケーシング (34)内へ潤滑油を供給するための返油通路 (62)とが設 けられている
ことを特徴とする冷凍装置。
[11] 請求項 1において、
上記圧縮機構 (21)は、上記圧縮機ケーシング (24)内から吸入した冷媒を圧縮して 該圧縮機ケーシング (24)の外部へ直接吐出する一方、
上記冷媒回路(11)には、上記圧縮機 (20)力 吐出された高圧冷媒の一部又は全 部を上記膨張機ケーシング (34)の内部空間へ導入するための高圧側導入通路 (86) と、上記膨張機ケーシング (34)の内部空間力 高圧冷媒を導出するための高圧側 導出通路 (87)とが設けられて 、る
ことを特徴とする冷凍装置。
[12] 請求項 11において、 上記膨張機ケーシング (34)内には、上記膨張機構 (31)によって駆動される発電機 (33)が、該膨張機ケーシング (34)の内部空間を仕切るように収容される一方、 上記膨張機ケーシング (34)では、上記発電機 (33)によって仕切られた内部空間の 一方に上記高圧側導入通路 (86)が、他方に上記高圧側導出通路 (87)がそれぞれ 接続している
ことを特徴とする冷凍装置。
[13] 請求項 12において、
上記膨張機ケーシング (34)の内部空間は、上記発電機 (33)によって上下に仕切 られる一方、
上記膨張機ケーシング (34)の内部空間では、上記発電機 (33)の下側の空間に上 記高圧側導入通路 (86)が、上記発電機 (33)の上側の空間に上記高圧側導出通路 ( 87)がそれぞれ接続している
ことを特徴とする冷凍装置。
[14] 請求項 3, 4又は 11において、
上記冷媒回路(11)には、上記圧縮機 (20)の吐出側に配置されて冷媒と潤滑油を 分離させる油分離器 (60)と、該油分離器 (60)から上記圧縮機ケーシング (24)内へ 潤滑油を供給するための返油通路 (61)とが設けられている
ことを特徴とする冷凍装置。
[15] 請求項 3, 4又は 11において、
上記冷媒回路(11)には、上記圧縮機 (20)の吐出側に配置されて冷媒と潤滑油を 分離させる油分離器 (60)と、該油分離器 (60)から上記膨張機ケーシング (34)内へ 潤滑油を供給するための返油通路 (62)とが設けられている
ことを特徴とする冷凍装置。
[16] 請求項 3, 4又は 11において、
上記冷媒回路(11)には、上記圧縮機 (20)の吸入側に配置されて冷媒と潤滑油を 分離させる油分離器 (75)と、該油分離器 (75)から上記膨張機ケーシング (34)内へ 潤滑油を供給するための返油通路 (77)とが設けられている
ことを特徴とする冷凍装置。
PCT/JP2007/058288 2006-04-20 2007-04-16 冷凍装置 WO2007123088A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2007241901A AU2007241901B2 (en) 2006-04-20 2007-04-16 Refrigerating apparatus
EP07741724.4A EP2009368B1 (en) 2006-04-20 2007-04-16 Refrigerating apparatus
US12/226,433 US8122735B2 (en) 2006-04-20 2007-04-16 Refrigerating apparatus
ES07741724T ES2428438T3 (es) 2006-04-20 2007-04-16 Aparato de refrigeración
CN2007800138024A CN101427083B (zh) 2006-04-20 2007-04-16 冷冻装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006116694A JP4715615B2 (ja) 2006-04-20 2006-04-20 冷凍装置
JP2006-116694 2006-04-20

Publications (1)

Publication Number Publication Date
WO2007123088A1 true WO2007123088A1 (ja) 2007-11-01

Family

ID=38624988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058288 WO2007123088A1 (ja) 2006-04-20 2007-04-16 冷凍装置

Country Status (8)

Country Link
US (1) US8122735B2 (ja)
EP (1) EP2009368B1 (ja)
JP (1) JP4715615B2 (ja)
KR (1) KR100990570B1 (ja)
CN (1) CN101427083B (ja)
AU (1) AU2007241901B2 (ja)
ES (1) ES2428438T3 (ja)
WO (1) WO2007123088A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816220B2 (ja) * 2006-04-20 2011-11-16 ダイキン工業株式会社 冷凍装置
JP4924450B2 (ja) * 2008-01-25 2012-04-25 ダイキン工業株式会社 膨張機
JP5045471B2 (ja) * 2008-02-07 2012-10-10 ダイキン工業株式会社 膨張機
US9146046B2 (en) * 2010-07-28 2015-09-29 Lg Electronics Inc. Refrigerator and driving method thereof
JP5287831B2 (ja) * 2010-10-29 2013-09-11 株式会社デンソー 二段昇圧式冷凍サイクル
JP5418638B2 (ja) * 2012-06-12 2014-02-19 ダイキン工業株式会社 冷凍装置
CN102927714B (zh) * 2012-11-20 2015-07-01 中国石油大学(华东) 涡旋式制冷机制冷循环装置
WO2015045129A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JP6150907B2 (ja) * 2014-01-09 2017-06-21 三菱電機株式会社 冷凍サイクル装置
US10801522B2 (en) * 2014-05-30 2020-10-13 Nuovo Pignone Srl System and method for draining a wet-gas compressor
US10551098B2 (en) 2014-10-31 2020-02-04 Trane International Inc. Lubricant temperature control with a flow regulating device
CN105953453B (zh) * 2015-04-13 2021-04-16 李华玉 双向热力循环与第一类热驱动压缩式热泵
KR101668363B1 (ko) 2015-07-15 2016-10-21 한국에너지기술연구원 에너지 시스템
EP3379117B1 (en) * 2015-11-20 2020-09-02 Mitsubishi Electric Corporation Valve device and air conditioning device
EP3546849B1 (en) * 2016-11-25 2020-06-03 Mitsubishi Electric Corporation Refrigeration cycle device
CN112392556B (zh) * 2019-08-13 2024-05-03 江苏国富氢能技术装备股份有限公司 一种环形式低温气液化用透平膨胀系统
US11821663B2 (en) * 2020-07-22 2023-11-21 Purdue Research Foundation In-situ oil circulation ratio measurement system for vapor compression cycle systems
CN114771210B (zh) * 2022-05-30 2024-04-19 重庆长安汽车股份有限公司 能自动调节空调系统中润滑油含量的压缩机、方法及车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241033A (ja) 1999-02-23 2000-09-08 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
JP2001141315A (ja) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd 冷凍空調機
JP2003240366A (ja) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp 冷凍空調装置
JP2004257303A (ja) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp スクロール膨張機及び冷凍空調装置
JP2004325019A (ja) * 2003-04-28 2004-11-18 Hitachi Ltd 膨張機を備えた冷凍装置
JP2005002832A (ja) 2003-06-10 2005-01-06 Daikin Ind Ltd ロータリー流体機械
JP2005299632A (ja) 2004-03-17 2005-10-27 Daikin Ind Ltd 流体機械
JP2007024439A (ja) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2007113815A (ja) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd 冷凍サイクル装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383802A (en) * 1981-07-06 1983-05-17 Dunham-Bush, Inc. Oil equalization system for parallel connected compressors
JPH04116348A (ja) * 1990-09-05 1992-04-16 Naoji Isshiki 近似逆エリクソンサイクル冷凍機
US5136854A (en) * 1991-01-25 1992-08-11 Abdelmalek Fawzy T Centrifugal gas compressor - expander for refrigeration
US5467613A (en) * 1994-04-05 1995-11-21 Carrier Corporation Two phase flow turbine
JP4032634B2 (ja) * 2000-11-13 2008-01-16 ダイキン工業株式会社 空気調和装置
CN2453345Y (zh) * 2000-12-05 2001-10-10 浙江大学 利用涡旋机械的绿色天然工质制冷空调器
JP4517684B2 (ja) * 2004-03-10 2010-08-04 ダイキン工業株式会社 ロータリ式膨張機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241033A (ja) 1999-02-23 2000-09-08 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
JP2001141315A (ja) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd 冷凍空調機
JP2003240366A (ja) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp 冷凍空調装置
JP2004257303A (ja) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp スクロール膨張機及び冷凍空調装置
JP2004325019A (ja) * 2003-04-28 2004-11-18 Hitachi Ltd 膨張機を備えた冷凍装置
JP2005002832A (ja) 2003-06-10 2005-01-06 Daikin Ind Ltd ロータリー流体機械
JP2005299632A (ja) 2004-03-17 2005-10-27 Daikin Ind Ltd 流体機械
JP2007024439A (ja) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2007113815A (ja) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009368A4

Also Published As

Publication number Publication date
ES2428438T3 (es) 2013-11-07
KR100990570B1 (ko) 2010-10-29
EP2009368A4 (en) 2012-09-12
CN101427083A (zh) 2009-05-06
JP2007285681A (ja) 2007-11-01
CN101427083B (zh) 2010-06-16
US8122735B2 (en) 2012-02-28
JP4715615B2 (ja) 2011-07-06
KR20080100391A (ko) 2008-11-17
AU2007241901A1 (en) 2007-11-01
US20090071187A1 (en) 2009-03-19
EP2009368A1 (en) 2008-12-31
AU2007241901B2 (en) 2010-03-04
EP2009368B1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2007123088A1 (ja) 冷凍装置
JP4816220B2 (ja) 冷凍装置
JP2007285681A5 (ja)
KR100990782B1 (ko) 냉동장치
CN114111113B (zh) Hvacr系统的润滑剂管理
WO2006095572A1 (ja) 冷凍サイクル装置
JP2005214444A (ja) 冷凍装置
JP4591402B2 (ja) 冷凍装置
JP2008133968A (ja) 冷凍サイクル装置
JP5934931B2 (ja) 冷凍サイクル装置用タンク及びそれを備えた冷凍サイクル装置
JP4720594B2 (ja) 冷凍装置
JP4720593B2 (ja) 冷凍装置
JP2007239574A (ja) 膨張機一体型圧縮機および冷凍サイクル装置
KR20150022636A (ko) 냉매 사이클 시스템의 냉매 제어 방법 및 이를 위한 정압기
JP2013139897A (ja) 冷凍装置
JP2013139904A (ja) 冷凍装置
JP2005164056A (ja) 冷凍空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087025227

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780013802.4

Country of ref document: CN

Ref document number: 12226433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007241901

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007741724

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007241901

Country of ref document: AU

Date of ref document: 20070416

Kind code of ref document: A