WO2007119753A1 - 送信電力制御方法および移動体端末装置 - Google Patents

送信電力制御方法および移動体端末装置 Download PDF

Info

Publication number
WO2007119753A1
WO2007119753A1 PCT/JP2007/057998 JP2007057998W WO2007119753A1 WO 2007119753 A1 WO2007119753 A1 WO 2007119753A1 JP 2007057998 W JP2007057998 W JP 2007057998W WO 2007119753 A1 WO2007119753 A1 WO 2007119753A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
control
transmission power
channel
physical
Prior art date
Application number
PCT/JP2007/057998
Other languages
English (en)
French (fr)
Inventor
Yuichi Nakai
Shinsuke Uga
Shingo Higuchi
Yuji Inoue
Yukihiko Okumura
Original Assignee
Mitsubishi Electric Corporation
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation, Ntt Docomo, Inc. filed Critical Mitsubishi Electric Corporation
Priority to JP2008510968A priority Critical patent/JP4786709B2/ja
Publication of WO2007119753A1 publication Critical patent/WO2007119753A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Definitions

  • the present invention relates to a transmission power control method and mobile terminal apparatus for performing downlink transmission power control from a base station to a mobile terminal apparatus (mobile station).
  • a target communication quality is given to each mobile terminal in order to secure subscriber capacity in a cell.
  • the mobile terminal has a function to perform downlink transmission power control for transmitting data from the base station to the mobile terminal in order to satisfy the required quality.
  • the downlink transmission power control process described in Patent Document 1 is configured by a double loop.
  • One of these loops compares the SIR (Signal to Interference Ratio) indicating the reception level with the target reception level (Target SIR), and the inner loop control (Inner loop control) that requests increase / decrease in downlink transmission power at high speed. ).
  • the control for updating the target SIR is called outer loop control (Outer loop).
  • Outer loop control is executed based on BLER (Block Error Rate), which is a parameter indicating the communication quality of data transmitted via DPDCH (Dedicated Physical Data Channel) Is done.
  • BLER is obtained from the number of transport blocks (TB Transport Block: basic unit of data transmitted between Layerl_MAC) and the reception demodulation error rate of CRC (Cyclic Redundancy Check) of each transport block. .
  • the jump algorithm increases or decreases the target SIR according to the CRC judgment result of the transport block, so that BLER can converge to the target value.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-318818
  • the conventional mobile terminal apparatus performs CRC determination and BLER measurement on data transmitted via the downlink DPDCH, and performs outer loop control.
  • AMR Adaptive Multi Rate
  • AV Audio Visual
  • UDI Unrestricted Digital Inf ormation
  • the base station When the base station does not transmit data to the mobile station using downlink DPDCH, or when packet data is intermittently transmitted from the base station using downlink DPDCH, packet data is not transmitted. During the interval, the mobile station cannot make a CRC decision, so it cannot measure BLER. In other words, the mobile station cannot perform transmission power control by the outer loop during a period when the downlink DPDCH is not received. During the period when the downlink DPDCH is not received, the base station maintains the transmission power based on the transmission power request performed by the mobile station using the latest target SIR.
  • Patent Document 2 discloses a communication apparatus that calculates a reception data error rate of a control channel including a pilot signal and updates a target SIR based on the calculation result.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-274117
  • a conventional mobile station has a problem that appropriate outer loop control is difficult at the time when presence / absence of downlink DPDCH data is switched, and communication quality deteriorates particularly when downlink DPDCH data communication is resumed. .
  • the present invention has been made to solve the above-described problems.
  • the present invention promptly detects the presence or absence of downlink DPDCH reception data, and performs transmission power control and downlink D based on downlink DPDCH data. It is an object of the present invention to obtain a transmission power control method and a mobile terminal apparatus that can quickly switch transmission power control using PCCH data.
  • the present invention quickly sets an appropriate target SIR at the time of transition from a state in which downlink DPDCH data transmission from the base station is interrupted to a state in which downlink DPDCH data transmission is resumed. It is an object to obtain a transmission power control method and a mobile terminal apparatus capable of performing outer loop transmission power control.
  • the transmission power control method executes an inner loop transmission power control step of generating a transmission power control signal according to a result of comparing the reception level of the received signal with the target reception level.
  • a physical data channel in which a transport channel for transmitting data from an upper layer is multiplexed, and a data transmitted via a physical control channel for transmitting control data related to this physical data channel are used.
  • Shin quality measurement scan Tetsupu is intended to include the outer loop transmission power control step for correcting the target reception level in accordance with the communication quality.
  • a mobile terminal apparatus performs inner loop transmission power control for generating a transmission power control signal according to a result of comparing a reception level of a received signal and a target reception level and transmitting the transmission power control signal to a base station.
  • the physical data channel in which the transport channel for transmitting data from the upper layer is multiplexed and the data transmitted through the physical control channel for transmitting control data related to the physical data channel are transmitted.
  • Communication quality measurement that measures the communication quality of data received by the physical data channel and the communication quality of the control data included in the physical control channel among the data received by the radio unit and the data received by the radio unit And the presence of data transmission through the physical data channel based on the control data contained in the physical control channel. If it is determined that there is no data transmission by the physical data Tachaneru, the communication quality of the control data And a control unit for performing outer loop transmission power control for correcting the target reception level based on this.
  • FIG. 1 is a block diagram showing a configuration of a mobile terminal apparatus according to the present invention.
  • FIG. 2 is a functional block diagram of a control unit 3 provided in the mobile terminal device according to the present invention.
  • FIG. 3 is a flowchart explaining outer loop transmission power control of the mobile terminal device according to the present invention.
  • FIG. 4 is a flowchart for explaining outer loop transmission power control when the mobile terminal according to the present invention does not receive DPDCH data.
  • FIG. 5 is an explanatory diagram for explaining the setting of the target SIR according to the operation mode and how the set target SIR is changed by the timer one loop control.
  • FIG. 6 is an explanatory diagram for explaining a time difference between DPDCH data reception timing and a target SIR.
  • FIG. 7 is an explanatory diagram for explaining a time difference between DPDCH data reception timing and a target SIR.
  • FIG. 8 is an explanatory diagram for explaining the time difference between the DPDCH data reception timing and the target SIR.
  • FIG. 9 is an explanatory diagram for explaining the time difference between the DPDCH data reception timing and the target SIR.
  • Embodiment 1 of the present invention will be described below.
  • the mobile station and the base station are connected to DPCCH (Dedicated Physical Control Channel) and DPDCH (Dedic Data transmission is performed using two types of individual physical channels (ated Physical Data Channel).
  • DPCCH has various control information in the physical layer, for example, pilot signal for synchronization (pilot), transmission power control command (TPC Transmit Power comm and), i, F and I (Transport format combination indicator and ⁇ DPCCH transmits control data for controlling DPDCH at the layer 1 level, while DPDCH is transmitted from the MAC layer (Media Access Control: protocol layer above the physical layer).
  • the channel used to transfer data between the MAC layer and the physical layer is called the transport channel, and multiple transport channels are multiplexed on the DPDCH.
  • the DPCCH and DPDCH described above are configured for both uplink and downlink.
  • FIG. 1 is a block diagram showing a configuration of a mobile terminal apparatus according to the present invention.
  • the mobile terminal device in Fig. 1 has an outer loop control function.
  • a mobile terminal device includes an antenna 1 that transmits or receives radio waves in space, a radio unit 2 that amplifies radio signals transmitted and received via antenna 1, and a reception unit.
  • the baseband unit 4 that demodulates / decodes the received radio waves and modulates / spreads the transmission data, and the terminal interface unit 5 that connects external devices such as microphones, speakers, and personal digital assistants (PDAs).
  • PDAs personal digital assistants
  • It is equipped with a control unit 3 that performs various controls of flow and communication.
  • the part to which the present invention is applied is mainly the control unit 3, which is characterized by a technique for downlink transmission power control of various data channels capable of transmitting packet data such as DPDCH.
  • the weak electrical signal received by the antenna 1 is received and amplified by the radio unit 2 in a rake.
  • the rake received and amplified electrical signal is output to the baseband unit 4.
  • the baseband unit 4 demodulates / decodes the electrical signal to extract information from the electrical signal.
  • the control unit 3 obtains the maximum likelihood information from the reception level (power value / power ratio) measured by the baseband unit 4 and the demodulation result of the reception transport block. Estimate the reception status. In addition, to obtain the target communication quality, the baseband unit 4 is notified of the required power ratio.
  • FIG. 2 shows functions of a control unit provided in the mobile terminal apparatus according to Embodiment 1 of the present invention. It is a block diagram.
  • FIG. 2 shows a part of the functional block of the baseband unit 4 as well as the functional block of the control unit 3, and shows a receiving side control system for downlink transmission power control in the W-CDMA communication system.
  • the transmission side control system (base station) for downlink transmission power control performs transmission power control in accordance with the instruction of the mobile terminal apparatus power.
  • the TPC bit is used for the transmission power control instruction from the mobile terminal device to the base station.
  • the transmission power control function of the mobile terminal device includes (1) a function for measuring reception quality (communication quality), (2) a function for measuring reception power 'SIR (reception level), and (3) target quality. And the reception quality are compared to control the transmission power.
  • the reception quality is the reception quality of the DPDCH that is the dedicated physical data channel and the reception quality of the DPCCH that is the dedicated physical control channel.
  • the reception quality of DPDCH is indicated by the BLER (block error rate) obtained from the error rate of the number of received transport blocks and the number of received transport blocks for which the CRC judgment result is incorrect.
  • the DPCCH reception quality is based on the BER (bit error rate) calculated based on the number of error bits in the fixed pattern (for example, pilot bits) on the DPCCH and the number of recoded error bits in TFCI. The calculated BER.
  • the mobile terminal apparatus includes a BLER measurement unit 10 that measures BLER from received downlink DPDCH, and a PhyCH BER estimation unit 8 that measures downlink DPCCH force BER.
  • the BLER measurement unit 10 performs a jump algorithm (Jump Algorithm) and performs outer loop control. Therefore, the BLER measurement unit 10 counts the number of CRC mismatches for each received transport block detected by the baseband unit 4 and calculates the CRC determination result. Accumulate and measure the error rate (BLER) of the received transport block.
  • the CRC determination process is performed by the CRC detection unit 9 in the functional block diagram shown in FIG.
  • the PhyCH BER estimation unit 8 compares the bit string obtained in the baseband unit 4 with a fixed pattern (pilot) and calculates a bit error rate (hereinafter referred to as BER).
  • BER is estimated based on the number of error correction bits in TFCI.
  • As an error rate calculation method for each of BLER and BER a method of calculating by integrating at an arbitrary measurement period, a method of obtaining through an arbitrary averaging filter, etc. are conceivable.
  • the baseband unit 4 measures the power value for each slot or frame. And every slot Alternatively, the received power or SIR is obtained directly from the power value for each frame, or by integrating an arbitrary measurement period, or through an arbitrary averaging filter (received level measurement).
  • the SIR comparison ZTPCbit generation unit 17 compares the SIR measurement value obtained by the processing in the baseband unit 4 with the target SIR for each slot, and the uplink DPCCH (Dedicated Physical Control Channel)
  • the TPC bit value (TPC command) to be notified to the base station is determined by.
  • a TPC command is generated to instruct to increase the transmission power.
  • the TPC command generator 17 reduces the transmission power.
  • the generated TPC command is inserted into DPCCH, modulated, and transmitted to the base station. Normally, the TPC command instructs to increase or decrease the transmission power with a control width of 1 dB per slot period.
  • the mobile terminal apparatus performs CRC determination and BLER measurement based on downlink D PDCH reception data, and further according to the CRC determination result of the transport block. Outer loop control is performed by executing a jump algorithm that sets the target SIR.
  • the mobile terminal apparatus such as a pilot signal included in the downlink DPCCH reception data, or FSW (Frame Sync Word) which is a part thereof is used.
  • Bit Err or Rate BER Bit Err or Rate BER
  • Fixed pattern Measures the bit error rate (Bit Err or Rate BER) of a control signal for controlling a physical channel such as TFCI, and sets the target SIR according to the comparison result of the measured BER and target BER.
  • the presence or absence of downlink DPDCH transmission (reception from the mobile station side) is determined, and when reception data of the downstream DPDCH exists, the reception quality is determined by BLER, and the jump algorithm
  • the outer loop control is performed using. If there is no downlink DPDCH reception data, an error is detected based on the BER of the control signal transmitted on the downlink DPCCH. One-loop control was performed. As described above, by switching the outer loop control process according to the presence / absence of downlink DPDCH reception data, it is possible to perform outer loop control regardless of the presence / absence of downlink DPDCH reception data. Regardless of changes in the communication environment such as the presence or absence of DPDCH transmission, downlink transmission power can be controlled appropriately.
  • the presence / absence of downlink DPDCH transmission is determined using TFCI, and the target SIR is set to be changed by an arbitrary amount at the moment when the presence / absence of downlink DPDCH transmission is switched. Specifically, at the moment when the DPDCH data is stopped from being transmitted, a transmission power control signal is generated to request a reduction in transmission power. Therefore, the target SIR is decreased by an arbitrary amount, and the DPDCH data At the moment when transmission is resumed from the state when a signal is transmitted, a transmission power control signal is generated that requests to increase the transmission power, so the target SIR is increased by an arbitrary amount.
  • the target SIR that has been changed by an arbitrary amount along with the switching of the operation mode as described above is further updated / changed by the outer loop control, so that the transmission power at the moment when the presence / absence of transmission of DPDCH data is switched. Control can be executed faster than in the past.
  • the operation state in which the mobile terminal apparatus receives the downlink DPDCH (the state in which the base station transmits data using the downlink DPDCH) is referred to as "DPDCH mode"
  • DPDCH mode the operation state in which the mobile terminal apparatus receives the downlink DPDCH
  • mode the operation status (including the operation status of the mobile station in the non-transmission section when the base station transmits packet data intermittently) is displayed as “DPCCH”.
  • mode the mobile terminal device operates in the “DPDCH mode” in the section where the transport block received by the mobile terminal device exists, and the mobile terminal device is “DPCCH” in the section where the transport block to be received does not exist.
  • the jump algorithm is executed to obtain the target SIR.
  • the target SIR is given by Desired.
  • control is performed at 1 TTI (Transmission Time Interval) period, taking into account that multiple transport blocks are received.
  • Target SIR Target SIR +
  • FIG. 3 is a flowchart for explaining outer loop transmission power control of the mobile terminal apparatus according to the present invention.
  • FIG. 4 is a flowchart for explaining outer loop transmission power control when the mobile terminal apparatus according to the present invention does not receive DPDCH data.
  • TF determination section 7 refers to TFCI to determine whether or not there is a reception transport block. Since TFCI can be identified at the beginning of a frame, whether or not downlink DPDCH is transmitted is determined until reception of 1 transport block data is completed (it takes 1 frame or more to receive 1 transport block data) it can.
  • the TF determination unit 7 controls the selector 15 according to the determination result, and selects either the output of the BLER comparison unit 12 or the output of the BER comparison unit 14. That is, the mobile terminal device transitions from a state in which downlink D PDCH data is received to a state in which downlink DPDCH data is not received by determining whether or not there is a reception transport block by referring to TFCI in step ST301.
  • step ST302 it is determined whether or not the operation mode has been switched based on the current operation mode and the result of the TFCI determination process in step ST301.
  • step ST301 determines whether downlink DPDCH data is received. If the current operation mode is the DPDCH mode in which downlink DPDCH data is received, and it is determined in step ST301 that the mobile terminal makes a transition to a state in which no downlink DPDCH data is received (DPCCH mode), step ST302 In step ST302, it is determined that switching from the DPDCH mode to the DPC CH mode is necessary (YES in step ST302), and step ST303 is executed.
  • step ST301 DPCCH mode in which downlink DPDCH data is not received
  • step ST301 DPCCH mode in which downlink DPDCH data is received
  • step ST302 DPCCH mode force, et DP It is determined that switching to the DCH mode is necessary (YES in step ST302), and step ST303 is executed. If it is determined in step ST302 that there is no need to change the current operation mode in consideration of the result of step ST301 (NO in step ST302), step ST304 is executed.
  • step ST303 the operation mode is switched from the DPDCH mode to the DPCCH mode, or from the DPCCH mode to the DPDCH mode.
  • FIG. 5 is an explanatory diagram for explaining the setting of the target SIR according to the operation mode and how the set target SIR is changed by the outer loop control.
  • Figure 5 shows the setting of the target SIR according to the operation mode and the change / update of the target SIR after the setting.
  • the DPDCH mode force transitions to the DPCCH mode
  • the amount of data to be transmitted from the base station to the mobile station decreases, so an arbitrary value is subtracted from the currently set target SIR.
  • the amount of data to be transmitted from the base station to the mobile station increases, so an arbitrary value is added to the current target SIR, and after the transition to the operation mode Set the target SIR for. Then, the target SIR set according to the operation mode is changed and updated by outer loop control performed after step ST304.
  • the target SIR setting at the time of the operation mode transition described above adds / subtracts an arbitrary value to the target SIR, but this “arbitrary value” is appropriately selected according to the communication environment and communication state. Also good. Also, the target SIR setting at the time of operation mode transition may be set to “any level” rather than adding and subtracting an arbitrary value to the current target SIR.
  • Step ST304 causes the process of either step ST305 or step ST306 to be executed in accordance with the operation mode switched in step ST303. Specifically, if the mode is switched to the DPDCH mode in step ST303, step ST305 is executed, and the target SIR is updated using the jump algorithm. On the other hand, In step ST303, if the mode is switched to the DPCCH mode, step ST306 is executed, and the target SIR update process in the DPCCH mode is executed. Details of the processing of step ST306 are shown in FIG. The series of processing described above is executed for each frame.
  • Target SIR update processing in the DPCCH mode will be described below with reference to FIG.
  • the mobile terminal device cannot perform outer loop control using downlink DPDCH data during the non-transmission period of packet data transmitted intermittently from the base station and transmitted by DPDCH.
  • the mobile terminal apparatus performs outer loop control based on the control data transmitted by the downlink DPCCH.
  • DPCCH transmits control data for controlling DPDCH at the layer 1 level, such as pilot signals, TPC commands, and TFCI.
  • the mobile terminal apparatus according to the present invention controls a pilot signal included in DPCCH reception data, or a fixed pattern such as FSW (Frame Sync Word) which is a part thereof, or a physical channel such as TFCI.
  • the bit error rate (Bit Error Rate BER) of the control signal is measured, and outer loop control is performed to set the target SIR according to the comparison result of the measured BER and target BER.
  • the mobile terminal apparatus demodulates / decodes the received downlink DPCCH in the radio unit 2, and further performs signal separation and error correction processing in the ding-leave / error correction decoding unit 6 of the baseband unit 4.
  • the PhyCH BER estimation unit 8 measures the bit error rate (BER) of control data such as FSW and TFCI which are pilot signals included in the downlink DPCCH or parts thereof. Accumulate the BER measurement results for one frame and store the accumulated results.
  • step ST402 it is determined whether the target SIR update period. If it is the target SIR update cycle, the process proceeds to step ST403, and if it is not the update cycle, the process ends.
  • BER bit error rate
  • BER is calculated according to the target SIR update period (update period TTI in the counter loop) necessary to maintain communication quality, and (2) to obtain accuracy. It may be performed according to the set number of frames.
  • the measured BER measured by the PhyCH BER estimation unit 8 shown in FIG. 2 is input to the BER comparison unit 14.
  • the BER comparison unit 14 compares the measured BER with the target BER read from the target BER storage unit 13. Measurement BER is greater than target BER If it is smaller (YES in step ST403), the communication quality is considered good, so execute step ST404.
  • Step ST404 is performed by the target SIR update / correction unit 16 shown in FIG. If the measured BER is smaller than the target BER as a result of executing step ST403, it is assumed that the communication quality is sufficient, and the target SIR is decreased by adding a correction decrease value to the target SIR, and a decrease in downlink transmission power is requested. .
  • step ST405 is executed.
  • step ST405 it is assumed that the communication quality has deteriorated, and the target SIR is increased by adding the correction increment value to the target SIR, and an increase in downlink transmission power is requested.
  • the mobile terminal apparatus changes the target SIR by an arbitrary amount as indicated by the down arrow in FIG. Decrease and set.
  • the target SIR is increased by an arbitrary amount as shown by the up arrow in Fig. 5.
  • DPCCH mode force The operation mode until transition to the DPDCH mode is referred to as “recovery mode” for convenience of explanation.
  • FIG. 6 is an explanatory diagram for explaining a situation in which a time difference occurs between changes in the DPDCH data reception timing and the target SIR.
  • the horizontal axis in Fig. 6 is the time axis, the scale of the time axis is 1 frame, and the section delimited by double lines is 1 TTI (Transmission Timing Interval in Fig. 6 is 20 milliseconds in units of 2 frames).
  • DPDCH data transmission is started at point A on the time axis (horizontal axis), but the target SIR is set corresponding to the DPDCH mode only after 1 TTI has elapsed from point A. Therefore, there is a possibility that receiving DPDCH data between A and B will result in an error.
  • DPDCH data transmission start is detected promptly in DPCCH mode, and DPD
  • the mobile terminal device performs TFCI determination. Since TFCI can be identified at the beginning of a frame, it is possible to determine whether or not downlink DPDCH is transmitted before reception of data for one transport block is completed.
  • FIG. 7 is an explanatory diagram for explaining the time difference between the DPDCH data reception timing and the target SIR. In Fig. 6, the force that required time of 1 TTI (2 frames) from the start of DPDCH data transmission at point A on the time axis until the target SIR is set corresponding to the DPDCH mode TFCI As shown in FIG.
  • the present invention for determining the presence / absence of DPDCH data by using can be performed in the time of one frame from point A to point B and point after the elapse of one frame time. In this way, by determining the presence / absence of downlink D PDCH transmission using TFCI, a high-speed response of the target SIR can be realized at the moment when the presence / absence of downlink DPDCH reception data is switched.
  • the target SIR is set higher than the level estimated to be necessary in order to receive downlink DPD CH data with high accuracy.
  • the operation mode at this time is referred to as a recovery mode.
  • the received data of the downlink DPDCH is theoretically decoded if the amount of power per symbol is sufficient.
  • the mobile terminal device according to the present invention can confirm the presence of DPDCH data at the point B 'when TFCI decoding is completed.
  • the power that was lacking in is added to one frame section (between ⁇ '-B) that operates in Rikanoku Remode. By controlling in this way, it is possible to decode downlink DPDCH received data without receiving errors.
  • FIG. 8 is an explanatory diagram for explaining the time difference between the DPDCH data reception timing and the target SIR.
  • the TFCI judgment is performed for the time of one frame from point A to point B 'after the lapse of one frame time, and the presence or absence of DPDCH data is judged.
  • provisional determination for convenience.
  • the presence of DPDCH data can be confirmed at time B "after about 1/2 frame time has elapsed from time A.
  • the presence of TFCI decoding and DPDC H data is determined.
  • the liquor mode can be lengthened by the shortened time (1/2 frame time).
  • “provisional determination” that performs TFCI determination when a part of the symbols is received degrades the accuracy of TFCI decoding, and may erroneously determine the presence or absence of DPDCH data. There is sex. Therefore, in addition to determining the presence / absence of DPDCH data based on some symbols of TFCI, as usual, determining the presence / absence of DPDCH data after receiving all symbols of TFCI, and if the judgment result of tentative judgment is incorrect, It needs to be corrected.
  • Figure 9 is an explanatory diagram explaining the time difference between the DPDCH data reception timing and the target SIR.
  • a pilot signal included in downlink DPCCH reception data or a part thereof, such as FSW (Frame Sync Word) or TFCI Measures the bit error rate (Bit Error Rate BER) of the control signal for controlling the physical channel, and performs outer loop control to set the target SIR according to the comparison result of the measured BER and target BER.
  • FSW Frarame Sync Word
  • TFCI TFCI
  • the mobile terminal apparatus determines whether or not there is downlink DPDCH transmission (reception from the mobile station side), and if there is downlink DPDCH reception data, the reception quality is determined by BLER.
  • the outer loop control is performed using the jump algorithm. When there is no downlink DPDCH reception data, control transmitted on downlink DPCCH Outer loop control was performed based on the BER of the signal. As described above, by switching the outer loop control process according to the presence or absence of downlink DPDCH reception data, the outer loop control can be performed regardless of the presence or absence of downlink DPDCH reception data. Regardless of changes in the communication environment such as the presence or absence of transmission, the downlink transmission power can be controlled appropriately.
  • the mobile terminal apparatus determines the presence / absence of downlink DPDCH transmission, and changes and sets the target SIR by an arbitrary amount at the moment when the presence / absence of downlink DPDCH transmission is switched. Specifically, when transitioning from DPDCH mode to DPCCH mode, the target SIR is decreased by an arbitrary amount, and when transitioning from DPCCH mode to DPDCH mode, the target SIR is increased by an arbitrary amount. Then, by further adjusting the target SIR set with the switching of the operation mode as described above by outer loop control, transmission power control at the moment when the presence or absence of transmission of DPDCH data is switched is made faster than before. Can be implemented.
  • the presence / absence of transmission of downlink DPDCH is determined using TFCI, so that the operation mode switching determination is performed immediately after TFCI decoding.
  • the received data can be detected as soon as possible without relying on TTI (one frame time unit), and at the moment when the presence or absence of downlink DPDCH received data is switched, it is possible to realize a high-speed response of the target SIR. .
  • the transmission power control method and the mobile terminal apparatus quickly detect the presence / absence of downlink D PDCH reception data, and perform transmission power control using downlink DPDCH data and transmission using downlink DPCCH data.
  • the base station power downlink DPDCH data transmission is interrupted, and when the transition is made to the state where downlink DPDCH data transmission is resumed, an appropriate target SIR is quickly set and the outer loop is set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 受信TBが有る状態ではBLERによる制御を行い、受信TBが無い状態ではBERによる制御を行う。BERにはパイロットまたはその一部であるFSW等の既知の固定パターンやTFCI等の誤り訂正ビット数を利用する。受信TBの有無の検出時には急峻な制御をかける。データ有無の切り替わる瞬間において、Target SIRの高速な応答を実現する。データ有無の判定にTFCIを用いることで、応答速度の改善を図る。送信側制御システムは、本受信側制御システムからの指示に従った送信電力制御を行う。受信側制御システムから送信側制御システムに対する指示には、TPC bitを用いる。

Description

明 細 書
送信電力制御方法および移動体端末装置
技術分野
[0001] この発明は、基地局から移動体端末装置 (移動局)への下りリンクの送信電力制御 を行う送信電力制御方法および移動体端末装置に関する。
背景技術
[0002] W— CDMA通信システムでは、セルにおける加入者容量を確保するため、移動体 端末ごとに目標通信品質を与えられている。移動体端末は、要求される品質を満た すため、基地局から移動体端末に対してデータを送信するための下りリンクの送信電 力制御を行う機能を有する。
[0003] たとえば、特許文献 1に記載の下り送信電力制御処理は二重のループで構成され る。そのループの 1つは受信レベルを示す SIR (Signal to Interference Ratio)を目標 受信レベル(目標 SIR: Target SIR)と比較し、高速に下り送信電力の増加/減少を 要求するインナーループ制御(Inner loop)である。また、この目標 SIRを更新する制 御をアウターループ制御(Outer loop)と称する。アウターループ制御は、 DPDCH ( Dedicated Physical Data Channel 個別物理データチャネル)を介して伝送されたデ ータの通信品質を示すパラメータであるところの BLER (Block Error Rate :ブロック誤 り率)に基づいて実行される。 BLERは、トランスポートブロック(TB Transport Block : Layerl_MAC間で伝送されるデータの基本単位)の数、各トランスポートブロックの C RC (Cyclic Redundancy Check :巡回冗長検查)の受信復調誤り率から求められる。
Algorithm)がある。ジャンプアルゴリズムは、トランスポートブロックの CRC判定結果 に応じて目標 SIRの増減を行うので、 BLERを目標値に収束させることができる。
[0004] 特許文献 1 :特開 2003— 318818号公報
[0005] 従来の移動体端末装置は、上記説明のように、下り DPDCHを介して伝送されたデ ータに対して CRC判定、 BLER測定を行い、アウターループ制御を実施していたの で、 AMR (Adaptive Multi Rate)や AV (Audio Visual)、 UDI (Unrestricted Digital Inf ormation)のようなデータが下り DPDCHを介して連続して受信する場合には特に問 題は生じなレ、。し力 ながら、パケットデータのように非連続的(間欠的に)に送信され るデータを受信する場合には、データを受信しない区間では、上記説明のようなァゥ ターループ制御を行うことができない。
[0006] 基地局が下り DPDCHを用いて移動局にデータを送信しない場合、あるいは、基 地局から下り DPDCHを用いてパケットデータを間欠的に送信している場合、バケツ トデータが送信されていない区間では、移動局は、 CRC判定を行うことができないた め BLERの測定を行うことができなレ、。つまり、移動局は、下り DPDCHを受信してい ない期間、アウターループによる送信電力制御を行うことができないことになる。下り DPDCHを受信していない期間は、基地局は、移動局が直近のターゲット SIRを用 いて実施した送信電力要求に基づく送信電力を維持する。このように、 DPDCHデ ータ送信が中断される直前のターゲット SIRを用いて、移動局が基地局に送信電力 要求を行うと、基地局は最低限必要と考えられる下り送信電力に対して過乗 IJな送信 電力で下り DPCCHを送信することになるので、適切な送信電力制御を行うことがで きず、他の移動局への干渉電力増加、セルに収容可能な端末数の減少といった問 題が生じる。下り DPDCHを送信していない場合、比較的弱い信号電力でも下り DP CCH (Dedicated Physical Control Channel 個別物理制御チャネル)が確立された 状態を維持できるので、下り DPDCHを送信していない区間の過剰な送信電力は、 W— CDMA通信システムにおいて用いられる無線リソースを無駄にしているといえる 。上記のような課題を解決するため、特許文献 2には、パイロット信号を含む制御用 チャネルの受信データ誤り率を算出し、この算出結果によりターゲット SIRを更新する 通信装置が開示されている。
[0007] 特許文献 2 :特開 2004— 274117号公報
[0008] 従来の移動局は、下り DPDCHデータの有無が切り換わる時点において、適切な アウターループ制御が困難であり、特に下り DPDCHデータ通信を再開したときの通 信品質が劣化するという問題がある。
[0009] 本発明は上記のような課題を解決するためになされたものであり、下り DPDCH受 信データの有無を速やかに検出し、下り DPDCHデータによる送信電力制御と下り D PCCHデータによる送信電力制御を速やかに切り換える送信電力制御方法および 移動体端末装置を得ることを目的とする。
[0010] また、本発明は、基地局からの下り DPDCHデータ送信が中断された状態から、下 り DPDCHデータ送信が再開された状態に遷移した時点において、速やかに適切な ターゲット SIRを設定してアウターループ送信電力制御を行うことができる送信電力 制御方法および移動体端末装置を得ることを目的とする。
発明の開示
[0011] 本発明に係る送信電力制御方法は、受信した信号の受信レベルと目標受信レべ ノレとを比較した結果に応じて送信電力制御信号を生成するインナーループ送信電 力制御ステップを実行する送信電力制御方法にぉレ、て、上位レイヤからのデータを 伝送するトランスポートチャネルが多重化された物理データチャネル、この物理デー タチャネルに関する制御データを伝送する物理制御チャネルを介して伝送されたデ ータを受信する受信ステップと、物理制御チャネルに含まれる制御データに基づレヽ て、物理データチャネルによるデータ伝送の有無を判定する判定ステップと、この判 定ステップの結果、物理データチャネルによるデータ伝送がないと判定された場合に 、物理制御チャネルに含まれる制御データの通信品質を測定する通信品質測定ス テツプと、通信品質に応じて目標受信レベルを補正するアウターループ送信電力制 御ステップとを含むものである。
[0012] 本発明に係る移動体端末装置は、受信した信号の受信レベルと目標受信レベルと を比較した結果に応じて送信電力制御信号を生成して基地局に送信するインナー ループ送信電力制御を行う移動体端末装置において、上位レイヤからのデータを伝 送するトランスポートチャネルが多重化された物理データチャネル、この物理データ チャネルに関する制御データを伝送する物理制御チャネルを介して伝送されたデー タを受信する無線機部と、この無線機部が受信したデータのうち、物理データチヤネ ルにより伝達されたデータの通信品質、および物理制御チャネルに含まれる制御デ ータの通信品質を測定する通信品質測定部と、物理制御チャネルに含まれる制御デ ータに基づいて、物理データチャネルによるデータ伝送の有無を判定し、物理デー タチャネルによるデータ伝送がないと判定された場合に、制御データの通信品質に 基づいて目標受信レベルを補正するアウターループ送信電力制御を行う制御部とを 設けたものである。
[0013] この発明によれば、受信データが存在しない場合でも、適切な下り送信電力制御を 行うことができ、環境変化に対する応答性の向上及び通信品質の保持が可能となる 図面の簡単な説明
[0014] [図 1]本発明に係る移動体端末装置の構成を示すブロック図である。
[図 2]本発明に係る移動体端末装置に設けられた制御部 3の機能ブロック図である。
[図 3]本発明に係る移動体端末装置のアウターループ送信電力制御を説明するフロ 一チャートである。
[図 4]本発明に係る移動体端末装置が DPDCHデータを受信しない場合のアウター ループ送信電力制御を説明するフローチャートである。
[図 5]動作モードに応じたターゲット SIRの設定、および設定されたターゲット SIRがァ ウタ一ループ制御により変更される様子を説明する説明図である。
[図 6]DPDCHデータ受信タイミングとターゲット SIRの時間差を説明する説明図であ る。
[図 7]DPDCHデータ受信タイミングとターゲット SIRの時間差を説明する説明図であ る。
[図 8]DPDCHデータ受信タイミングとターゲット SIRの時間差を説明する説明図であ る。
[図 9]DPDCHデータ受信タイミングとターゲット SIRの時間差を説明する説明図であ る。
発明を実施するための最良の形態
[0015] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
実施の形態 1.
以下、この発明の実施の形態 1について説明する。移動局と基地局は、 DPCCH ( Dedicated Physical Control Channel 個別物理制御チャネル)及び DPDCH (Dedic ated Physical Data Channel 個別物理データチャネル)の 2種類の個別物理チヤネ ルを用いてデータ伝送を行う。 DPCCHは、物理層における各種制御情報、例えば 、同期用パイロット信号(pilot)、送信電力制御コマンド(TPC Transmit Power comm and)、 i,Fし I (Transport r ormat combination Indicator と ^送 i 'する市 M卸テャィヽ ノレである。 DPCCHは、 DPDCHをレイヤ 1レベルで制御するための制御データを伝 送する。一方、 DPDCHは、 MAC層(Media Access Control :物理層の上位のプロト コル層)からの各種データを送信するデータチャネルである。なお、 MAC層と物理層 とのデータの受け渡しに使用されるチャネルをトランスポートチャネル(Transport cha nnel)といい、 DPDCHには複数のトランスポートチャネルが多重化されている。上記 説明の DPCCH及び DPDCHは、上りリンク及び下りリンクの両方に設定される。
[0016] 図 1は、本発明に係る移動体端末装置の構成を示すブロック図である。図 1の移動 体端末装置はアウターループ制御機能を有している。図 1において、移動体端末装 置は、空間中に電波を送信、あるいは空間中の電波を受信するアンテナ 1と、アンテ ナ 1を介して送受信する無線信号を増幅する無線機部 2と、受信した電波の復調/ 復号と送信データの変調/拡散を行うベースバンド部 4と、マイクロフォンやスピーカ 、携帯情報端末 (PDA)等の外部機器を接続する端末インタフェース部 5と、これらを 接続しデータの流れや通信の各種制御を行う制御部 3とを備えてレ、る。本発明を適 用する部位は主として制御部 3であり、 DPDCHのような、パケットデータを伝送可能 な各種データチャネルの下り送信電力制御の手法に特徴がある。
[0017] 次に、動作について説明する。アンテナ 1が受信した微弱電気信号は無線機部 2に てレイク (RAKE)受信及び増幅される。レイク受信及び増幅された電気信号は、ベ ースバンド部 4へ出力される。ベースバンド部 4では、電気信号から情報を取り出すた め、電気信号の復調/復号を行う。
[0018] 制御部 3は、ベースバンド部 4で計測された受信レベル (電力値 ·電力比)と受信トラ ンスポートブロックの復調結果ゃ最尤度情報を得ることで、移動体端末装置の信号 受信状態を推定する。また、 目標とする通信品質を得るために、ベースバンド部 4に 対して必要な電力比を通知する。
[0019] 図 2は、本発明の実施の形態 1に係る移動体端末装置に設けられた制御部の機能 ブロック図である。図 2には、制御部 3の機能ブロックのほカ ベースバンド部 4の機能 ブロックも一部図示されており、 W— CDMA通信方式における下り送信電力制御用 の受信側制御システムを示す。なお、下り送信電力制御用の送信側制御システム( 基地局)は、移動体端末装置力 の指示に従った送信電力制御を行う。移動体端末 装置から基地局に対する送信電力制御指示は、 TPCビットが用いられる。
[0020] 移動体端末装置の送信電力制御機能は、(1)受信品質 (通信品質)を測定する機 能、(2)受信電力 ' SIR (受信レベル)を測定する機能、 (3)目標品質と受信品質とを 比較して送信電力を制御する機能がある。上記受信品質とは、個別物理データチヤ ネルである DPDCHの受信品質と、個別物理制御チャネルである DPCCHの受信品 質である。 DPDCHの受信品質は、受信トランスポートブロック数と CRC判定結果が 誤りである受信トランスポートブロック数の誤り率を求めた BLER (ブロック誤り率)で示 される。また、 DPCCHの受信品質は、 DPCCH上にある固定パターン(たとえばパイ ロットビット)の誤りビット数をもとに算出した BER (ビット誤り率)や、 TFCIの再符号化 誤りビット数をもとに算出した BERである。
[0021] 以下、(1)受信品質を測定する機能について説明する。図 2の機能ブロック図に示 されるとおり、本発明に係る移動体端末装置は、受信した下り DPDCHから BLERを 測定する BLER測定部 10と、下り DPCCH力 BERを測定する PhyCH BER推定 部 8を有する。 BLER測定部 10は、ジャンプアルゴリズム(Jump Algorithm)を実施し てアウターループ制御を行うため、ベースバンド部 4で検出する受信トランスポートブ ロック毎の CRC不一致数を計数して、その CRC判定結果を積算し、受信トランスポ ートブロックの誤り率(BLER)を測定する。 CRC判定処理は、図 2に示す機能ブロッ ク図中、 CRC検出部 9によって実施される。一方、 PhyCH BER推定部 8は、ベー スバンド部 4にて得られたビット列と、固定パターン (パイロット)とを比較し、ビット誤り 率(以下、 BER)を算出する。または、 TFCIの誤り訂正ビット数をもとに BERを推定 する。 BLER, BERそれぞれの誤り率算出方式として、任意の測定周期で積算して 算出する方法、任意の平均化'フィルタを通して得る方法等が考えられる。
[0022] 次に、(2)受信電力 ' SIRを測定する機能について説明する。ベースバンド部 4は、 スロット(slot)毎またはフレーム(frame)毎の電力値を測定する。そして、スロット毎ま たはフレーム毎の電力値を直接、または任意の測定周期を積算し、或いは任意の平 均化'フィルタを通して受信電力または SIRを求める(受信レベル測定)。
[0023] 次に、(3)送信電力を制御する機能について説明する。インナーループ制御を実 行する場合、 SIR比較 ZTPCbit生成部 17は、ベースバンド部 4における処理で求 められた SIR計測値と、ターゲット SIRをスロット毎に比較し、上り DPCCH (Dedicated Physical control Channel)によって基地局に通知する TPCビットの値 (TPCコマンド )を決定する。現在の SIR値がターゲット SIR値より低い場合、送信電力を増加させる よう指示する TPCコマンドが生成され、現在の SIR値がターゲット SIR値より高い場合 、 TPCコマンド生成部 17は、送信電力を絞るよう指示する TPCコマンドを生成する。 生成された TPCコマンドは DPCCHに揷入されて変調され、基地局に送信される。 通常、 TPCコマンドは、 1スロット周期に 1デシベルの制御幅をもって送信電力の増 カロ、減少を指示する。
[0024] アウターループ制御に関し、本発明に係る移動体端末装置は、従来と同様、下り D PDCHの受信データより CRC判定、 BLER測定を行い、さらに、トランスポートブロッ クの CRC判定結果に応じてターゲット SIRを設定するジャンプアルゴリズムを実行す ることによりアウターループ制御を行う。また、本発明に係る移動体端末装置は、下り DPDCH受信データを利用できない場合には、下り DPCCHの受信データに含まれ るパイロット信号、またはその一部である FSW (Frame Sync Word)のような固定パタ ーンゃ TFCIのような物理チャネルを制御するための制御信号のビット誤り率(Bit Err or Rate BER)を測定し、測定した BERとターゲット BERの比較結果に応じてターゲッ ト SIRを設定するアウターループ制御を行う。このように、下り DPCCHで伝達された 制御信号の BERを用いてアウターループ制御を行うことにより、下り DPDCHが基地 局から送信されてレ、なレ、区間におレ、てもアウターループ送信電力制御を行うことが 可能となる。
[0025] 本発明では、下り DPDCHの送信 (移動局側から見れば受信)の有無を判定し、下 り DPDCHの受信データが存在する場合には、 BLERにより受信品質を判定し、ジャ ンプアルゴリズムを用いてアウターループ制御を行う。下り DPDCHの受信データが 存在しない場合には、下り DPCCHで伝達された制御信号の BERに基づいてァウタ 一ループ制御を行うこととした。上記説明のように、下り DPDCHの受信データの有 無に応じてアウターループ制御処理を切り換えることにより、下り DPDCHの受信デ ータの有無に関わらず、アウターループ制御を行うことができるので、下り DPDCHの 送信の有無のような通信環境の変化に関わらず下りリンクの送信電力を適切に制御 できる。
[0026] また、本発明では、下り DPDCHの送信の有無を TFCIを用いて判定し、下り DPD CHの送信有無が切り替わる瞬間に、ターゲット SIRを任意の量だけ変化させて設定 することとした。具体的には、 DPDCHデータが送信されている状態から停止される 瞬間には、送信電力を下げるよう要求する送信電力制御信号が生成するため、ター ゲット SIRを任意の量だけ減少させ、 DPDCHデータが送信されてレ、なレ、状態から送 信再開される瞬間には、送信電力を上げるよう要求する送信電力制御信号が生成す るため、ターゲット SIRを任意の量だけ増加させる。そして、上記のような動作モード の切り換わりとともに任意の量だけ変更されたターゲット SIRを、アウターループ制御 によってさらに更新/変更されることにより、 DPDCHデータの送信の有無が切り換 わる瞬間の送信電力制御を従来よりも高速に実行することができる。
[0027] さらに、本発明では、下り DPDCHの送信の有無を TFCIを用いて判定することによ り、下り DPDCH受信データ有無の切り替わる瞬間において、ターゲット SIRの高速 な応答を実現することができる。
[0028] なお、以下の説明では、便宜上、移動体端末装置が下り DPDCHを受信する動作 状態(基地局が下り DPDCHを用いてデータを送信してレ、る状態)を「DPDCHモー ド」、移動体端末装置が下り DPDCHを受信してレ、なレ、動作状態(基地局がパケット データを間欠的に送信している場合の非送信区間における移動局の動作状態も含 む)を「DPCCHモード」と称する。つまり、移動体端末装置が受信するトランスポート ブロックが存在する区間は、移動体端末装置は「DPDCHモード」で動作し、受信す るトランスポートブロックが存在しない区間は、移動体端末装置は「DPCCHモード」 で動作する。
[0029] 基地局から下り DPDCHによって送信されたデータを受信している場合、ジャンプ アルゴリズムを実行し、ターゲット SIRを求める。ターゲット SIRは、以下の数式により 求められる。なお、下記の数式は 1TTI (Transmission Time Interval)周期で制御を 行レ、、複数のトランスポートブロックを受信することを考慮してレ、る。
Target SIR=Target SIR +
― ― old
(CRC判定〇Kな受信 TB数) X (CRC 〇Κ時の下げ幅) +
(CRC判定 NGな受信 ΤΒ数) X (CRC NG時の上げ幅)
[0030] 図 3は、本発明に係る移動体端末装置のアウターループ送信電力制御を説明する フローチャートである。また、図 4は、本発明に係る移動体端末装置が DPDCHデー タを受信しない場合のアウターループ送信電力制御を説明するフローチャートである
[0031] ステップ ST301において、 TF判定部 7は、 TFCIを参照して受信トランスポートブロ ックの有無を判断する。 TFCIはフレームの先頭で識別できるため、 1トランスポートブ ロックのデータを受信完了するまで(1トランスポートブロックのデータを受信するには 1フレーム以上を要する)に、下り DPDCHの送信の有無を判定できる。 TF判定部 7 は、その判定結果に応じてセレクタ 15を制御し、 BLER比較部 12の出力と、 BER比 較部 14の出力のいずれかを選択する。すなわち、ステップ ST301で TFCIを参照し て受信トランスポートブロックの有無を判断することにより、移動体端末装置は、下り D PDCHデータを受信している状態から、下り DPDCHデータを受信しない状態に遷 移する力 (あるいは、 DPDCHデータを受信していない状態から、 DPDCHデータを 受信する状態に遷移する)判別できる。ステップ ST302では、現在の動作モードと、 上記ステップ ST301の TFCI判定処理の結果から、動作モードの切換が行われたか どうかを判定する。
[0032] たとえば、現在の動作モードが下り DPDCHデータを受信している DPDCHモード であって、ステップ ST301の結果、下り DPDCHデータの受信なしの状態(DPCCH モード)に遷移すると判断した場合、ステップ ST302では、 DPDCHモードから DPC CHモードへの切換要と判断し (ステップ ST302で YES)、ステップ ST303が実行さ れる。また、現在の動作モードが下り DPDCHデータを受信していない DPCCHモー ドであって、ステップ ST301の結果、下り DPDCHデータの受信ありの状態(DPDC Hモード)に遷移すると判断した場合、ステップ ST302では、 DPCCHモード力、ら DP DCHモードへの切換要と判断し (ステップ ST302で YES)、ステップ ST303が実行さ れる。ステップ ST301の結果を考慮して、ステップ ST302において、現在の動作モ ードを変更する必要はないと判断すると(ステップ ST302で NO)、ステップ ST304が 実行される。
[0033] ステップ ST302で、動作モードの切換要と判断された場合、ステップ ST303にお いて、 DPDCHモードから DPCCHモード、あるいは DPCCHモードから DPDCHモ ードへ動作モードが切り換えられるとともに、この動作モードの切換時にターゲット SI Rを任意の量だけ増加 Z減少させることにより、切り換えられた動作モードに応じてタ 一ゲット SIRを設定する。図 5は、動作モードに応じたターゲット SIRの設定、および 設定されたターゲット SIRがアウターループ制御により変更される様子を説明する説 明図である。動作モードに応じたターゲット SIRの設定と、設定後のターゲット SIRの 変更 ·更新は図 5に示される。
[0034] たとえば、 DPDCHモード力 DPCCHモードに遷移する場合には、基地局から移 動局に対して送信すべきデータ量が減少するので、現在設定されているターゲット S IRから任意の値を減算し、動作モード遷移後のターゲット SIRを設定する。一方、 DP CCHモードから DPDCHモードに遷移する場合には、基地局から移動局に対して 送信すべきデータ量が増加するので、現在のターゲット SIRに任意の値を加算し、動 作モード遷移後のターゲット SIRを設定する。そして、動作モードに応じて設定された ターゲット SIRは、ステップ ST304以降に実施されるアウターループ制御によって変 更、更新される。上記説明による動作モード遷移時のターゲット SIR設定は、ターゲッ ト SIRに任意の値を加算/減算していたが、この「任意の値」は、通信環境や通信状 態に応じて適宜選択してもよい。また、動作モード遷移時のターゲット SIR設定は、現 在のターゲット SIRに任意の値を加算 Z減算するのではなぐ「任意のレベル」に設 定するようにしてもかまわなレ、。
[0035] ステップ ST304は、ステップ ST303で切り換えられた動作モードに応じて、ステツ プ ST305とステップ ST306のいずれかの処理を実行させる。具体的には、ステップ ST303におレ、て、 DPDCHモードに切り換えられている場合には、ステップ ST305 が実行され、ジャンプアルゴリズムを用いてターゲット SIRが更新される。一方、ステツ プ ST303におレヽて、 DPCCHモードに切り換えられている場合には、ステップ ST30 6が実行され、 DPCCHモード時のターゲット SIR更新処理が実行される。ステップ S T306の処理の詳細は図 4に示される。上記説明の一連の処理が 1フレームごとに実 行される。
[0036] DPCCHモード時のターゲット SIR更新処理について、以下、図 4を参照して説明 する。移動体端末装置は、基地局から間欠的に送信されて DPDCHで伝達されるパ ケットデータの非送信区間は、下り DPDCHのデータを用いてアウターループ制御は できない。このような場合には、移動体端末装置は、下り DPCCHにより伝達される制 御データに基づいてアウターループ制御を行う。 DPCCHは、パイロット信号、 TPC コマンド、 TFCIのような、 DPDCHをレイヤ 1レベルで制御するための制御データを 伝送するものである。本発明に係る移動体端末装置は、 DPCCHの受信データに含 まれるパイロット信号、またはその一部である FSW (Frame Sync Word)のような固定 パターンや TFCIのような、物理チャネルを制御するための制御信号のビット誤り率( Bit Error Rate BER)を測定し、測定した BERとターゲット BERの比較結果に応じてタ 一ゲット SIRを設定するアウターループ制御を行う。
[0037] 移動体端末装置は、受信した下り DPCCHを無線機部 2で復調/復号処理し、さら にベースバンド部 4のディンターリーブ/誤り訂正復号部 6で信号の分離、誤り訂正 処理を行う。ステップ ST401では、 PhyCH BER推定部 8が、下り DPCCHに含ま れるパイロット信号またはその一部である FSWや TFCIのような制御データのビット誤 り率(BER)を測定する。 1フレームの BER測定結果を積算し、その累積結果は記憶 する。そして、ステップ ST402において、ターゲット SIR更新周期か判定する。ターゲ ット SIR更新周期であればステップ ST403へ進み、更新周期でなければ終了する。
BERの算出は、 (1)通信品質を維持するのに必要な、ターゲット SIRの更新周期(ァ ウタ一ループにおける更新周期 TTI)にあわせて実施されるほか、(2)確度を得るた めに設定された任意のフレーム数にあわせて実施されてもょレ、。
[0038] 図 2に示す PhyCH BER推定部 8が測定した測定 BERは、 BER比較部 14に入力 される。 BER比較部 14はステップ ST403において、測定 BERと、ターゲット BER記 憶部 13から読み出したターゲット BERとを比較する。測定 BERがターゲット BERより 小さい場合は(ステップ ST403で YES)、通信品質は良好と考えられるので、ステツ プ ST404を実行する。ステップ ST404は、図 2に示すターゲット SIR更新/補正部 1 6で実施される。ステップ ST403を実行した結果、測定 BERがターゲット BERよりも 小さい場合、通信品質は十分であると見なしてターゲット SIRに補正減少値を加算し てターゲット SIRを減少させ、下り送信電力の減少を要求する。一方、測定 BERがタ 一ゲット BERより大きい場合は (ステップ ST403で N〇)、通信品質は許容範囲を超 えて悪化していると考えられるので、ステップ ST405を実行する。ステップ ST405で は、通信品質が劣化していると見なし、ターゲット SIRに補正増分値だけ加算してタ 一ゲット SIRを増加させ、下り送信電力の増加を要求する。
[0039] 図 5に示されるとおり、本発明に係る移動体端末装置は、 DPDCHモードから DPC CHモードに動作モードが遷移する際、ターゲット SIRを図 5中の下り矢印のとおり任 意の量だけ減少させて設定する。逆に、 DPCCHモードから DPDCHモードに動作 モードが遷移する際、ターゲット SIRを図 5中の上り矢印のとおり任意の量だけ増加さ せて設定する。 DPCCHモード力 DPDCHモードに遷移するまでの動作モードを 説明の便宜上「リカバリモード」と称する。
[0040] DPCCHモード中のアウターループ送信電力制御に使用されるターゲット SIRは、 DPDCHデータを受信エラーなしで受信するのに必要なターゲット SIRよりも低いレ ベルに設定/更新されている。そのため、 DPCCHモードから DPDCHモードに遷 移するときの検出が遅れた場合、 DPDCHデータの受信にエラーが発生する。例え ば、図 6は、 DPDCHデータ受信タイミングとターゲット SIRの変化に時間差が発生す る状況を説明する説明図である。図 6中の横軸は時間軸であり、時間軸の目盛りは 1 フレーム、二重線で区切られた区間は 1TTI (Transmission Timing Interval 図 6では 2フレーム単位の 20ミリ秒)である。また、図 6中の実線がターゲット SIR、破線が DPC Hの SIRとする。図 6によると、時間軸 (横軸)の A点で DPDCHデータ送信が開始さ れているが、ターゲット SIRが DPDCHモードに対応して設定されるのは、 A点から 1 TTI経過後の B点であるので、 A— B間の DPDCHデータ受信はエラーとなる可能性 力咼レヽ。
[0041] DPCCHモード時に DPDCHデータ送信開始を速やかに検出し、速やかに DPD CHモードに移行させるため、本発明に係る移動体端末装置は、 TFCI判定を行って いた。 TFCIはフレームの先頭で識別できるため、 1トランスポートブロックのデータを 受信完了するまでに、下り DPDCHの送信の有無を判定できる。図 7は、 DPDCHデ ータ受信タイミングとターゲット SIRの時間差を説明する説明図である。図 6では、時 間軸の A点で DPDCHデータ送信が開始されてから、ターゲット SIRが DPDCHモ ードに対応して設定されるまで 1TTI (2フレーム)分の時間を要していた力 TFCIを 用いて DPDCHデータの有無を判定する本発明は、図 7に示すように、 A点から 1フ レーム時間経過後の B,点までの 1フレーム分の時間で可能となる。このように、下り D PDCHの送信の有無を TFCIを用いて判定することにより、下り DPDCH受信データ 有無の切り替わる瞬間において、ターゲット SIRの高速な応答を実現することができ る。
[0042] また、図 7において、 DPCCHモード力も DPDCHモードに遷移する際、下り DPD CHデータを高精度に受信するため、本来必要と推定されるレベルよりもターゲット SI Rを高く設定している。このときの動作モードをリカバリモードと称する。下り DPDCH の受信データは、理論上、シンボルあたりの電力量が十分であれば正しく復号される 。図 7に示すように、本発明に力かる移動体端末装置は、 TFCIのデコードが完了し た B'時点で DPDCHデータの存在を確認することができるので、 TFCIデコード中の A—B,間に不足していた電力を、リカノくリモードで動作する 1フレーム区間(Β'— B間 )に上乗せして要求している。このように制御することにより、下り DPDCHの受信デ ータを受信エラーなく復号できる。
[0043] また、上記説明よりも、 TFCIの判定を速やかに行レ、、下り DPDCHの送信の有無 を速やかに検出することも可能である。図 8は、 DPDCHデータ受信タイミングとター ゲット SIRの時間差を説明する説明図である。図 7では、 A点から 1フレーム時間経過 後の B'点までの 1フレーム分の時間で TFCI判定を行レ、、 DPDCHデータの有無を 判定していた。しかし、 TFCIを示すシンボルを全て受信して TFCI判定を行うのでは なぐ必要最小限のシンボルを受信した段階で一応の TFCI判定を行うことも可能で ある。後者のように、必要最小限のシンボルを用いた TFCI判定を、便宜上「仮判定」 と称する。 TFCIを示す全てのシンボルのおよそ半分のシンボルを用いて、 TFCIの 仮判定を行うと、図 8に示すように、 A時点からおよそ 1/2フレーム時間経過後の B" 時点で DPDCHデータの存在を確認することができる。 TFCIデコードおよび DPDC Hデータの有無を判定する時間を短縮することにより、短縮された時間(1/2フレー ム時間)分リカノ リモードを長くすることができる。
[0044] TFCIを示すシンボルのうち、一部のシンボルを受信した段階で TFCI判定を行う「 仮判定」は、 TFCIのデコードの精度が劣化するため、 DPDCHデータの有無の判定 を誤ってしまう可能性がある。そのため、 TFCIの一部のシンボルによって DPDCH データの有無を判定するほか、通常どおり、 TFCIの全てのシンボル受信後に DPD CHデータの有無を判定し、仮判定の判定結果が誤りである場合には、修正する必 要がある。図 9は、 DPDCHデータ受信タイミングとターゲット SIRの時間差を説明す る説明図であり、仮判定で誤って「DPDCHデータ有り」と判定し、 TFCIの全てのシ ンボル受信後に行った判定で「DPDCHデータなし」と判定した場合の例を示す。図 9では、仮判定の結果、 A時点からおよそ 1/2フレーム時間経過後の B"時点で DP DCHデータの存在を確認し、リカバリモードに移行する。しかし、リカバリモードに移 行した後、 TFCIの全てのシンボルを受信した B'時点で判定を行った結果、 DPDC Hデータなしと判定した結果、 B'時点以降で再度 DPCCHモードに復帰している。
[0045] 上記説明のように、本発明に係る移動体端末装置によれば、下り DPCCHの受信 データに含まれるパイロット信号またはその一部である FSW (Frame Sync Word)や T FCIのような、物理チャネルを制御するための制御信号のビット誤り率(Bit Error Rat e BER)を測定し、測定した BERとターゲット BERの比較結果に応じてターゲット SIR を設定するアウターループ制御を行う。このように、下り DPCCHで伝達された制御 信号の BERを用いてアウターループ制御を行うことにより、下り DPDCHが基地局か ら送信されていない区間においてもアウターループ送信電力制御を行うことが可能と なる。
[0046] また、本発明に係る移動体端末装置は、下り DPDCHの送信 (移動局側から見れ ば受信)の有無を判定し、下り DPDCHの受信データが存在する場合には、 BLER により受信品質を判定し、ジャンプアルゴリズムを用いてアウターループ制御を行う。 下り DPDCHの受信データが存在しない場合には、下り DPCCHで伝達された制御 信号の BERに基づいてアウターループ制御を行うこととした。上記説明のように、下り DPDCHの受信データの有無に応じてアウターループ制御処理を切り換えることに より、下り DPDCHの受信データの有無に関わらず、アウターループ制御を行うことが できるので、下り DPDCHの送信の有無のような通信環境の変化に関わらず下りリン クの送信電力を適切に制御できる。
[0047] また、本発明に係る移動体端末装置は、下り DPDCHの送信の有無を判定し、下り DPDCHの送信有無が切り替わる瞬間に、ターゲット SIRを任意の量だけ変化させて 設定する。具体的には、 DPDCHモードから DPCCHモードに遷移する際には、ター ゲット SIRを任意の量だけ減少させ、 DPCCHモードから DPDCHモードに遷移する 際には、ターゲット SIRを任意の量だけ増加させる。そして、上記のような動作モード の切り換わりとともに設定されたターゲット SIRを、アウターループ制御によってさらに 調整することにより、 DPDCHデータの送信の有無が切り換わる瞬間の送信電力制 御を従来よりも高速に実施することができる。
[0048] さらに、本発明では、下り DPDCHの送信の有無を TFCIを用いて判定することによ り、動作モード切り換えの判定を TFCIのデコード直後に行う。つまり、受信するデー タを TTIに依存することなぐ早期(1フレーム時間単位)に検出することができ、下り DPDCH受信データ有無の切り替わる瞬間において、ターゲット SIRの高速な応答 を実現すること力 Sできる。
産業上の利用可能性
[0049] 以上のように、この発明に係る送信電力制御方法および移動体端末装置は、下り D PDCH受信データの有無を速やかに検出し、下り DPDCHデータによる送信電力制 御と下り DPCCHデータによる送信電力制御を速やかに切り替えるとともに、基地局 力 の下り DPDCHデータ送信が中断された状態から、下り DPDCHデータ送信が 再開された状態に遷移した時点において、速やかに適切なターゲット SIRを設定して アウターループ送信電力制御を行うようにしたことで、受信データが存在しない場合 でも、適切な下り送信電力制御を行うことができ、環境変化に対する応答性の向上及 び通信品質の保持が可能となるため、 W— CDMA通信システムにおける送信電力 制御方法および移動体端末装置などに用いるのに適している。

Claims

請求の範囲
[1] 受信した信号の受信レベルと目標受信レベルとを比較した結果に応じて送信電力 制御信号を生成するインナーループ送信電力制御ステップを実行する送信電力制 御方法において、
上位レイヤからのデータを伝送するトランスポートチャネルが多重化された物理デ ータチャネル、この物理データチャネルに関する制御データを伝送する物理制御チ ャネルを介して伝送されたデータを受信する受信ステップと、
前記物理制御チャネルに含まれる制御データに基づいて、前記物理データチヤネ ルによるデータ伝送の有無を判定する判定ステップと、
この判定ステップの結果、前記物理データチャネルによるデータ伝送がなレ、と判定 された場合に、前記物理制御チャネルに含まれる制御データの通信品質を測定する 通信品質測定ステップと、
前記通信品質に応じて前記目標受信レベルを補正するアウターループ送信電力 制御ステップとを含むことを特徴とする送信電力制御方法。
[2] アウターループ送信電力制御ステップは、判定ステップの結果、前記物理データチ ャネルによるデータ伝送が有る状態から無い状態に遷移する場合、送信電力を下げ るよう要求する送信電力制御信号が生成されるように目標受信レベルを設定し、前記 物理データチャネルによるデータ伝送が無い状態から有る状態に遷移する場合、送 信電力を上げるよう要求する送信電力制御信号が生成されるように前記目標受信レ ベルを設定することを特徴とする請求項 1記載の送信電力制御方法。
[3] 判定ステップは、物理制御チャネルに含まれる制御データのうち、物理データチヤ ネルに多重化されてレ、るトランスポートチャネルに関する識別情報である TFCI (Tran sport Format Combination Indicator)を参照して判定することを特徴とする請求項 1 記載の送信電力制御方法。
[4] 判定ステップは、物理制御チャネルに含まれる TFCIを示すシンボルの一部を受信 した時点で、物理データチャネルによるデータ伝送の有無を判定する仮判定処理を 行うことを特徴とする請求項 3記載の送信電力制御方法。
[5] 通信品質測定ステップは、物理制御チャネルに含まれる制御データのうち、パイ口 ット信号のビット誤り率を求めることにより通信品質を測定する請求項 1記載の送信電 力制御方法。
[6] 受信した信号の受信レベルと目標受信レベルとを比較した結果に応じて送信電力 制御信号を生成して基地局に送信するインナーループ送信電力制御を行う移動体 端末装置において、
上位レイヤからのデータを伝送するトランスポートチャネルが多重化された物理デ ータチャネル、この物理データチャネルに関する制御データを伝送する物理制御チ ャネルを介して伝送されたデータを受信する無線機部と、
この無線機部が受信したデータのうち、前記物理データチャネルにより伝達された データの通信品質、および前記物理制御チャネルに含まれる前記制御データの通 信品質を測定する通信品質測定部と、
前記物理制御チャネルに含まれる制御データに基づいて、前記物理データチヤネ ルによるデータ伝送の有無を判定し、前記物理データチャネルによるデータ伝送が ないと判定された場合に、前記制御データの通信品質に基づいて前記目標受信レ ベルを補正するアウターループ送信電力制御を行う制御部とを設けたことを特徴とす る移動体端末装置。
[7] 制御部は、前記物理データチャネルによるデータ伝送が有る状態から無い状態に 遷移する場合、送信電力を下げるよう要求する送信電力制御信号が生成されるよう に目標受信レベルを設定し、前記物理データチャネルによるデータ伝送が無い状態 から有る状態に遷移する場合、送信電力を上げるよう要求する送信電力制御信号が 生成されるように前記目標受信レベルを設定することを特徴とする請求項 6記載の移 動体端末装置。
[8] 制御部は、物理制御チャネルに含まれる制御データのうち、物理データチャネルに 多重化されているトランスポートチャネルに関する識別情報である TFCI (Transport F ormat Combination Indicator)を参照して判定することを特徴とする請求項 6記載の 移動体端末装置。
[9] 制御部は、物理制御チャネルに含まれる TFCIを示すシンボルの一部を受信した 時点で、物理データチャネルによるデータ伝送の有無を判定する仮判定処理を行う ことを特徴とする請求項 8記載の移動体端末装置。
通信品質測定部は、物理制御チャネルに含まれる制御データのうち、パイロット信 号のビット誤り率を求めることにより通信品質を測定する請求項 6記載の移動体端末 装置。
PCT/JP2007/057998 2006-04-11 2007-04-11 送信電力制御方法および移動体端末装置 WO2007119753A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510968A JP4786709B2 (ja) 2006-04-11 2007-04-11 送信電力制御方法および移動体端末装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-108889 2006-04-11
JP2006108889 2006-04-11

Publications (1)

Publication Number Publication Date
WO2007119753A1 true WO2007119753A1 (ja) 2007-10-25

Family

ID=38609514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057998 WO2007119753A1 (ja) 2006-04-11 2007-04-11 送信電力制御方法および移動体端末装置

Country Status (2)

Country Link
JP (1) JP4786709B2 (ja)
WO (1) WO2007119753A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291765A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种外环功率控制方法和装置
CN101741434B (zh) * 2008-11-14 2013-04-24 普天信息技术研究院有限公司 一种闭环功率控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005762A (ja) * 2003-06-09 2005-01-06 Fujitsu Ltd 送信電力制御方法及び装置
JP2005203958A (ja) * 2004-01-14 2005-07-28 Nec Corp ダイバーシティ受信機およびアンテナ切り替え制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005762A (ja) * 2003-06-09 2005-01-06 Fujitsu Ltd 送信電力制御方法及び装置
JP2005203958A (ja) * 2004-01-14 2005-07-28 Nec Corp ダイバーシティ受信機およびアンテナ切り替え制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741434B (zh) * 2008-11-14 2013-04-24 普天信息技术研究院有限公司 一种闭环功率控制方法
CN102291765A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种外环功率控制方法和装置
EP2584711A4 (en) * 2010-06-21 2015-09-30 Zte Corp EXTERNAL CIRCULAR PERFORMANCE CONTROL METHOD AND DEVICE THEREFOR

Also Published As

Publication number Publication date
JP4786709B2 (ja) 2011-10-05
JPWO2007119753A1 (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
US6847828B2 (en) Base station apparatus and radio communication method
JP3473555B2 (ja) 送信電力制御方式、制御方法及び基地局、制御局並びに記録媒体
CA2461991C (en) Method and apparatus for multi-channel reverse link outer-loop power control
US7702354B2 (en) Transmission power control method and mobile terminal apparatus
AU2002312547B2 (en) Method and apparatus for controlling gain level of a supplemental channel in a CDMA communication system
US20050130690A1 (en) Transmission power control method and transmission power control device
JP5336493B2 (ja) 任意の搬送フォーマット選択アルゴリズムのためのcqi調整
US20030003875A1 (en) Power control in mobile radio telephone systems when transmission is interrupted
JP4933441B2 (ja) 通信システムを動作する方法、無線局及び無線通信システム
JP5393979B2 (ja) 無線通信システム、無線局及びデータ伝送方法
WO2006121089A1 (ja) 送信電力制御方法および装置
ZA200508893B (en) Communication system
JP2003037558A (ja) 移動無線通信システムにおける内部出力制御ループの目標値を調整する方法
JP3860538B2 (ja) 無線システムでの送信電力調整方法
JP2003332943A (ja) チャネル推定を行う無線通信局および無線通信方法
JP2002084578A (ja) 基地局装置および無線通信方法
WO2007119753A1 (ja) 送信電力制御方法および移動体端末装置
JP2004274117A (ja) 通信装置及び送信電力制御方法
US7369521B2 (en) Power control during retransmission
US7813756B2 (en) Mobile communication system, user equipment in mobile communication system, control program thereof, and transmission power control method in mobile communication system
JP4192572B2 (ja) 携帯情報端末
JP3870925B2 (ja) 送信電力制御システム、制御方法及び基地局並びに基地局における送信電力制御方法
JP4609364B2 (ja) 移動端末装置およびその送信電力制御方法
JP2004088635A (ja) 無線通信装置および送信電力制御方法
JP2008079212A (ja) 無線通信装置および電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510968

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741434

Country of ref document: EP

Kind code of ref document: A1