WO2007116692A1 - 燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池 - Google Patents

燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池 Download PDF

Info

Publication number
WO2007116692A1
WO2007116692A1 PCT/JP2007/056238 JP2007056238W WO2007116692A1 WO 2007116692 A1 WO2007116692 A1 WO 2007116692A1 JP 2007056238 W JP2007056238 W JP 2007056238W WO 2007116692 A1 WO2007116692 A1 WO 2007116692A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
container
fuel
anode
force sword
Prior art date
Application number
PCT/JP2007/056238
Other languages
English (en)
French (fr)
Inventor
Yumiko Takizawa
Nobuyasu Negishi
Hirofumi Kan
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to JP2008509746A priority Critical patent/JPWO2007116692A1/ja
Publication of WO2007116692A1 publication Critical patent/WO2007116692A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Fuel cell storage container fuel cell mounted electronic device storage container, and fuel cell with container
  • the present invention relates to a container used when a fuel cell or an electronic device equipped with a fuel cell is transported or stored.
  • lithium ion secondary batteries In response to such a demand for secondary batteries, for example, lithium ion secondary batteries have been developed. In addition, the operation time of portable electronic devices tends to increase further. With lithium-ion secondary batteries, the power of materials and the power of structure have almost reached their limits in terms of energy density. Is becoming unable to meet the demands.
  • Patent No. 3413111 and International Publication WO2005 / 112172A1 each relate to an internal vaporization type fuel cell that supplies vaporized fuel obtained by vaporizing liquid fuel such as methanol to an anode.
  • the internal vaporization type DMFC described in Japanese Patent No. 3413111 includes a fuel permeation layer for holding liquid fuel, and a fuel vaporization layer for diffusing the vaporization component of the liquid fuel held in the fuel permeation layer. Thus, the vaporized liquid fuel is supplied from the fuel vaporization layer to the fuel electrode.
  • Japanese Patent No. 3413111 and International Publication WO2005 / 112172A1 each relate to an internal vaporization type fuel cell that supplies vaporized fuel obtained by vaporizing liquid fuel such as methanol to an anode.
  • the internal vaporization type DMFC described in Japanese Patent No. 3413111 includes a fuel permeation layer for holding liquid fuel, and a fuel vaporization layer for diffusing the vaporization component of the liquid fuel held in the fuel
  • An object of the present invention is to provide a fuel cell storage container, a fuel cell-equipped electronic device storage container, and a fuel cell with a container capable of suppressing a decrease in output characteristics due to transportation or storage. .
  • the fuel cell storage container according to the present invention includes a vent hole.
  • the fuel cell-equipped electronic device storage container of the present invention includes a vent hole.
  • a fuel cell with a container according to the present invention includes the fuel cell storage container and a fuel cell stored in the fuel cell storage container.
  • a fuel cell with a container according to the present invention includes a container having a vent
  • a container-equipped fuel cell comprising:
  • the fuel cell includes an outer container having an air inlet
  • a fuel cell with a container according to the present invention includes a container having a vent
  • a container-equipped fuel cell comprising:
  • the fuel cell includes an outer container having an air inlet
  • Vaporized fuel supply means for supplying vaporized fuel to the anode, housed in the outer container,
  • Water supply means for supplying the anode with water generated by the force sword, housed in the outer container;
  • FIG. 1 is a schematic view showing a container-equipped fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example (direct methanol fuel cell) of the fuel cell of FIG.
  • FIG. 3 is a schematic view showing a fuel cell storage container according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a fuel cell storage container according to another embodiment of the present invention.
  • FIG. 5 is a schematic view showing a fuel cell storage container according to another embodiment of the present invention.
  • Fig. 6 is a characteristic diagram showing changes in battery voltage and output density when the current density is changed in the fuel cells of Examples:! To 3 and Comparative Example.
  • the present invention is not limited to the following embodiments as they are, but can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the following embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • FIG. 1 schematically shows a fuel cell storage container according to an embodiment of the present invention.
  • the container 1 has a rectangular tube shape, and a large number of circular vent holes 2 are opened on the surface.
  • the shape of the vent hole is not limited to a circle, but may be, for example, a triangle, a square, a rectangle, a rhombus, a hexagon, an ellipse, or the like.
  • the entire container 1 is vented
  • the vent hole 2 may be opened only in a specific side or direction that does not have a hole.
  • the configuration is not limited as long as air is introduced into the fuel cell.
  • the open area ratio of the container 1 is desirably 50% or less. This is because if the open area ratio exceeds 50%, the strength of the container 1 may be insufficient, and water may leak during transportation. In order to sufficiently suppress the decrease in output due to transportation and storage, it is desirable to set the hole area ratio to 10% or more. A more preferable range is 30 to 50%. By setting this range, it is possible to achieve output characteristics that are the same as before transport and storage.
  • Examples of the material forming the container 1 include paper, hard resin, foamed resin, rubber, fiber, metal, leather, and a combination of these materials.
  • the fuel cell 3 is stored in the container 1 at the time of shipment, distribution in the market, or at the time of carrying.
  • the type of the fuel cell 3 is not particularly limited, but includes a vaporized fuel supply means for supplying vaporized fuel to the anode, and a water supply means for supplying water generated by the power sword to the anode.
  • a fuel cell is preferred. According to the present invention, when a fuel cell provided with vaporized fuel supply means and water supply means or a fuel cell-equipped electronic device equipped with the fuel cell is housed in an airtight container for transportation and storage, After that, when the liquid fuel was replenished and used, the output characteristics were deteriorated compared to before transport and storage, and the output characteristics were stored in a container equipped with vents for transport and storage. It has been found that the decrease in the resistance is suppressed.
  • FIG. 2 shows an example of a fuel cell (direct methanol fuel cell) provided with vaporized fuel supply means and water supply means.
  • a membrane electrode assembly (MEA) 5 is accommodated in the outer container 4.
  • the membrane electrode assembly (MEA) 5 includes a cathode (oxidizer electrode) composed of a force sword catalyst layer 6a and a force sword gas diffusion layer 6b, and an anode (fuel electrode) composed of an anode catalyst layer 7a and an anode gas diffusion layer 7b. And a proton conductive electrolyte membrane 8 disposed between the force sword catalyst layer 6a and the anode catalyst layer 7a.
  • the force sword catalyst layer 6a preferably includes force sword catalyst particles and a proton conductive material. That's right.
  • the anode catalyst layer 7a preferably contains anode catalyst particles and a proton conductive material.
  • Examples of the force sword catalyst and the anode catalyst include platinum group element simple metals (Pt, Ru, Rh, Ir, Os, Pd, etc.), alloys containing platinum group elements, and the like. It is desirable to use platinum as the cathode catalyst, but this is not a limitation.
  • the anode catalyst is preferably Pt_Ru, which is highly resistant to methanol and carbon monoxide, but is not limited to this. Further, a supported catalyst using a conductive support such as a carbon material may be used, or an unsupported catalyst may be used.
  • Examples of the proton conductive material included in the force sword catalyst layer 6a, the anode catalyst layer 7a, and the proton conductive electrolyte membrane 8 include fluorine having a sulfonic acid group such as perfluorocarbon sulfonic acid. It is also possible to use inorganic substances such as resin-based resins, hydrated carbon-based resins having sulfonic acid groups, and tungsten phosphotungstic acid.
  • the force sword catalyst layer 6a is laminated on the force sword gas diffusion layer 6b, and the anode catalyst layer 7a is laminated on the anode gas diffusion layer 7b.
  • the force sword gas diffusion layer 6b plays a role of uniformly supplying the oxidant gas to the force sword catalyst layer 6a.
  • the anode gas diffusion layer 7b serves to uniformly supply fuel to the anode catalyst layer 7a.
  • porous carbon paper can be used for the force sword gas diffusion layer 6b and the anode gas diffusion layer 7b.
  • the anode conductive layer 9 as the anode current collector is laminated on the anode gas diffusion layer 7 b of the membrane electrode assembly 5.
  • the force sword conductive layer 10 as the force sword current collector is laminated on the force sword gas diffusion layer 6 b of the membrane electrode assembly 5.
  • the anode conductive layer 9 and the force sword conductive layer 10 are for improving the conductivity of the force sword and the anode.
  • the anode conductive layer 9 and the force sword conductive layer 10 are provided with gas permeation holes (not shown) through which the oxidant gas or the vaporized fuel permeates.
  • a gold electrode in which an Au foil is supported on a PET substrate can be used.
  • One of the rectangular frame-shaped sealing materials 11 a is formed on the proton conductive electrolyte membrane 8 so as to surround the periphery of the force sword.
  • the other l ib is the opposite side of the proton conducting electrolyte membrane 8.
  • the sealing materials 11a and l ib function as O-rings for preventing fuel leakage and oxidant gas leakage from the membrane electrode assembly 5.
  • a liquid fuel tank 12 as a fuel storage unit is disposed on the anode side of the membrane electrode assembly 5 (below the membrane electrode assembly 5 in FIG. 2).
  • the liquid fuel tank 12 contains a liquid fuel 13 made of liquid methanol or methanol aqueous solution. It is desirable that the concentration of the methanol aqueous solution be higher than 50 mol%. The purity of pure methanol is desirably 95% by weight or more and 100% by weight or less.
  • the liquid fuel stored in the liquid fuel tank 12 is not necessarily limited to methanol fuel.
  • ethanol fuel such as ethanol aqueous solution and pure ethanol
  • propanol fuel such as propanol aqueous solution and pure propanol
  • aqueous glycol solution are pure.
  • It can be Daricol fuel such as glycol, dimethyl ether, formic acid, or other liquid fuel.
  • liquid fuel corresponding to the fuel cell is accommodated.
  • liquid fuel tank 12 When the fuel cell is accommodated in the container 1, it is desirable to leave the liquid fuel tank 12 in an empty state, but there is no problem even when the fuel is filled. If the fuel is empty, occasionally the liquid fuel tank 12 can be supplemented with a small amount of liquid fuel 13 to reduce the output drop. Needless to say, liquid fuel 13 is replenished before the fuel cell is taken out of the container 1 and used.
  • vaporized fuel supply means for supplying a vaporized component of the liquid fuel to the anode, for example, a gas-liquid separation membrane 14 is arranged.
  • the gas-liquid separation membrane 14 is a membrane that allows only the vaporized component of the liquid fuel to permeate and does not allow the liquid fuel to permeate. Only the vaporized component of the liquid fuel permeates through the gas-liquid separation membrane 14, and the vaporized fuel can be supplied to the anode.
  • a water-repellent membrane having methanol permeability can be used for the gas-liquid separation membrane 14.
  • water-repellent membrane having methanol permeability examples include a silicone sheet, a polyethylene porous membrane, a polypropylene porous membrane, a polyethylene-polypropylene porous membrane, and a polytetrafluoroethylene porous membrane.
  • a frame 15 a is arranged between the gas-liquid separation membrane 14 and the anode conductive layer 9.
  • the space enclosed by frame 15a is a vaporization to adjust the amount of vaporized fuel supplied to the anode. Functions as a fuel storage chamber 16.
  • a frame 15 b is laminated on the force sword conductive layer 10 of the membrane electrode assembly 5.
  • a moisturizing plate 17 for suppressing the transpiration of water generated in the force sword catalyst layer 6a is laminated.
  • the moisturizing plate 17 functions as a water supply means for supplying water generated by the force sword to the anode.
  • the moisture retaining plate 17 is made of an insulating material that is inert to methanol and has dissolution resistance, oxygen permeability, and moisture permeability.
  • an insulating material include polyolefin such as polyethylene and polypropylene.
  • moisture retention plate 17 it is preferable air permeability defined by JIS P- 8117- 1998 is 50 seconds ZlOOcm 3 below. This is because if the air permeability exceeds ZlOOcm 3 for 50 seconds, air diffusion to the air inlet 18 force sword may be hindered and high output may not be obtained. A more preferable range of the air permeability is 10 seconds / 100 cm 3 or less.
  • the moisture retaining plate 17 has a moisture permeability of 6000 g / m 224 h or less as defined by the JIS L-1099-1993 A-1 method.
  • the value of moisture permeability is JIS L-1099-1993.
  • the temperature is 40 ⁇ 2 ° C. This is because if the moisture permeability exceeds 60 00 g / m 2 24 h, the amount of water evaporated from the power sword increases, and the effect of promoting water diffusion from the power sword to the anode may not be sufficiently obtained. In addition, if the moisture permeability is less than 500 g / m 2 24 h, excess water may be supplied to the anode and high output may not be obtained, so the moisture permeability is 500 to 6000 g / m 2 24 h. Ability to make range S desirable. A more preferable range of moisture permeability is 1000 to 4000 g / m 2 24 h.
  • the exterior container 4 has a plurality of air inlets 18 formed on the surface facing the moisture retention plate 17. Since the outer container 4 also plays a role of pressurizing the stack including the membrane electrode assembly 5 to enhance its adhesion, for example, a metal such as SUS304, carbon steel, stainless steel, alloy steel, titanium alloy, nickel alloy, etc. Formed from.
  • a metal such as SUS304, carbon steel, stainless steel, alloy steel, titanium alloy, nickel alloy, etc. Formed from.
  • the vaporized component of the liquid fuel 13 in the liquid fuel tank 12 is supplied to the anode catalyst layer 7 a through the gas-liquid separation membrane 14.
  • protons (H + ) and electrons (e are generated by the oxidation reaction of the fuel.
  • the catalyst reaction that occurs in the anode catalyst layer 7a is as follows ( Shown in equation 1). [0038] CH OH + HO ⁇ CO + 6H + + 6e "(1)
  • Protons (H + ) generated in the anode catalyst layer 7a diffuse to the force sword catalyst layer 6a through the proton conductive membrane 8. At the same time, the electrons generated in the anode catalyst layer 7a flow through the external circuit connected to the fuel cell, work on the load (resistance, etc.) of the external circuit, and flow into the cathode catalyst layer 6a.
  • Oxidant gas such as air passes from the air inlet 18 of the outer container 4 to the force sword catalyst layer 6a through the moisture retaining plate 17, the space in the frame 15b, the force sword conductive layer 10 and the force sword gas diffusion layer 6b. Supplied. Oxygen in the oxidant gas undergoes a reduction reaction with the proton (H + ) that has diffused through the proton-conducting membrane 8 and the electrons (e—) that have flowed through the external circuit, producing reaction products. To do. For example, when air is used as the oxidant gas, the reaction in which oxygen contained in the air is generated in the force sword catalyst layer 6a is expressed by the following equation (2). In this case, the reaction product is water (H0). is there.
  • the moisture retaining plate 17 is disposed between the force sword and the outer container 4, the evaporation of water from the force sword is suppressed, and the amount of water retained in the force sword catalyst layer 6a is increased as the power generation reaction proceeds. To increase. For this reason, it is possible to create a state in which the moisture retention amount of the force sword catalyst layer 6a is larger than the moisture retention amount of the anode catalyst layer 7a. As a result, a reaction in which water generated in the cathode catalyst layer 6a moves to the anode catalyst layer 7a through the proton conductive membrane 8 can be promoted by the osmotic pressure phenomenon. This makes it possible to realize a small and high-power fuel cell.
  • the container for storing the fuel cell is not limited to the structure shown in FIG. 1 described above.
  • the container 1 is formed of a mesh plate as shown in FIG. May be used.
  • the shape of the container is not limited to the rectangular tube shape as shown in FIGS. 1 and 3, for example, a bag shape as shown in FIG. 4 or a cylindrical shape as shown in FIG. is there.
  • the container for storing the fuel cell may be provided with a detecting means for detecting the oxygen concentration in the container to detect a decrease in the oxygen concentration in the container.
  • a humidity control mechanism is provided in the container.
  • the fuel cell storage container can be applied to a container that stores one or a plurality of fuel cells, but is applied to a storage container as a container that stores a plurality of the storage containers. It is also possible to do.
  • the force described as a container for housing the fuel cell 3 in the above description can be applied to an electronic device equipped with the fuel cell on which the fuel cell 3 is mounted.
  • the fuel cell-mounted electronic device is transported for shipping, market distribution, etc., a packaging container for sale or storage to a customer, a container for storing a plurality of the packaging containers, etc. It can also be applied.
  • the direct methanol fuel cell shown in Fig. 2 was produced as follows.
  • Carbon particles carrying platinum ruthenium alloy fine particles were mixed with Dupont DE2020 and a homogenizer to prepare a slurry, which was applied to a carbon paper which is the anode gas diffusion layer 7b. Then, this was dried at room temperature to prepare an anode in which the anode catalyst layer 7a was laminated on the anode gas diffusion layer 7b.
  • a perfluorocarbon sulfonic acid membrane (nafion (registered trademark) membrane, manufactured by DuPont) having a thickness of 30 am and a water content of 10 to 20% by weight is prepared as the proton conductive electrolyte membrane 8 did .
  • This electrolyte membrane was sandwiched between a force sword and an anode, and pressed under the conditions of a temperature of 120 ° C. and a pressure of 10 kgf / cm 2 , thereby producing a membrane electrode assembly (MEA) 5.
  • this membrane electrode assembly 5 is used for taking in air and vaporized methanol.
  • a force sword conductive layer 10 and an anode conductive layer 9 were formed by sandwiching them with a gold foil having a plurality of openings.
  • the laminated body in which the membrane electrode assembly (MEA) 5, the anode conductive layer 9, and the force sword conductive layer 10 described above was laminated was sandwiched between two frames 15a and 15b made of resin. Rubber O-rings 11a and 1 lb are inserted between the force sword side of the membrane electrode assembly 5 and one frame 15b, and between the anode side of the membrane electrode assembly 5 and the other frame 15a, respectively. Sealed with interposition. Further, the anode-side frame 15a was fixed to the liquid fuel tank 12 via a gas-liquid separation membrane 14 with screws. For the gas-liquid separation membrane 14, a 0.1 mm thick silicone sheet was used.
  • a polyethylene porous film was prepared.
  • a moisturizing plate 17 is arranged on the frame 15b on the force sword side.
  • the obtained laminate is stored in an outer container 4 having a 2 mm-thick stainless steel plate (SUS304) in which air inlets 18 (diameter 2.5 mm, number 8) for air intake are formed.
  • the direct methanol fuel cell shown in Fig. 2 was obtained.
  • the obtained fuel cell was stored in the container 1 having the shape shown in Fig. 1 in a state where the liquid fuel tank 12 was filled.
  • the material of the container was a resin material (polyethylene terephthalate) and the porosity was 50%. Storage conditions were stored in air at 30 ° C and 50% relative humidity for 48 hours.
  • the fuel cell was taken out of the container 1, and 5 ml of pure methanol was injected into the liquid fuel tank 12 as the liquid fuel 13.
  • the power density and the cell voltage were measured when the current density was increased.
  • the results are shown in Fig. 6 where the change in output density is curve A1 and the change in battery voltage is curve B1.
  • the horizontal axis in FIG. 6 is current density (mAZcm 2 ), the right vertical axis is output density (mW / cm 2 ), and the left vertical axis is battery voltage (V).
  • Example 1 A fuel cell having the same configuration as described in Example 1 was manufactured, and the obtained fuel cell was stored in the container 1 having the shape shown in FIG. 1 in a state where the liquid fuel tank 12 was filled.
  • container 1 the same one as in Example 1 was used except that the hole area ratio was 30%.
  • the storage conditions were the same as in Example 1.
  • Example 2 After storage, the fuel cell was taken out of the container 1 and liquid fuel 13 similar to that in Example 1 was injected into the liquid fuel tank 12. Next, the output density and battery voltage were measured in the same manner as in Example 1. The results are shown in Fig. 6 with the power density change as curve A2 and the battery voltage change as curve B2.
  • Example 1 A fuel cell having the same configuration as described in Example 1 was manufactured, and the obtained fuel cell was stored in the container 1 having the shape shown in FIG. 1 in a state where the liquid fuel tank 12 was filled.
  • the container 1 the same one as in Example 1 was used except that the opening ratio was 10%.
  • the storage conditions were the same as in Example 1.
  • Example 1 A fuel cell having the same configuration as described in Example 1 was manufactured, and the obtained fuel cell was stored in an airtight container without a vent hole in a state where the liquid fuel tank 12 was filled. .
  • the storage conditions were the same as in Example 1.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the spirit of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the structure of the fuel cell has been described with the structure having the fuel storage part below the membrane electrode assembly (MEA).
  • the fuel supply from the fuel storage part to the membrane electrode assembly is The fuel storage unit and the membrane electrode assembly may be connected via a flow path.
  • a passive type fuel cell has been described as an example of the configuration of the fuel cell main body.
  • the present invention can also be applied to other fuel cells.
  • the semi-passive type fuel cell the fuel supplied from the fuel storage unit to the membrane electrode assembly is used for the power generation reaction, and is not circulated and returned to the fuel storage unit.
  • the semi-passive type fuel cell is different from the conventional active method because the fuel does not circulate, and does not impair the downsizing of the device.
  • the fuel cell uses a pump to supply fuel, and is different from the pure passive type such as the conventional internal vaporization type. For this reason, as described above, it is called a semi-passive fuel cell.
  • a fuel cutoff valve may be arranged in place of the pump as long as fuel is supplied from the fuel storage unit to the membrane electrode assembly. In this case, the fuel cutoff valve is provided to control the supply of liquid fuel through the flow path.
  • a fuel cell storage container a fuel cell-mounted electronic device storage container, and a fuel cell with a container that can suppress a decrease in output characteristics due to transportation or storage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池収納容器(1)及び燃料電池搭載電子機器収納容器は、それぞれ、通気孔(2)を備えるものである。

Description

明 細 書
燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料 電池
技術分野
[0001] 本発明は、燃料電池あるいは燃料電池搭載電子機器の搬送や保管の際に使用さ れる容器に関するものである。
背景技術
[0002] 近年、電子技術の進歩により、電子機器の小型化、高性能化、ポータブル化が進 んでおり、携帯用電子機器においては、使用される電池の高工ネルギ密度化の要求 が強まっている。このため、軽量で小型でありながら高容量の二次電池が要求されて いる。
[0003] このような二次電池への要求に対して、例えば、リチウムイオン二次電池が開発さ れてきた。また、携帯電子機器のオペレーション時間は、さらに増加する傾向にあり、 リチウムイオン二次電池では、材料の観点力、らも構造の観点力 もエネルギ密度の向 上はほぼ限界にきており、更なる要求に対応できなくなりつつある。
[0004] このような状況のもと、リチウムイオン二次電池に代わって、小型の燃料電池が注目 を集めている。特に、メタノールを燃料として用いた直接メタノール型燃料電池(DM FC)は、水素ガスを使用する燃料電池に比べ、水素ガスの取り扱いの困難さも、有 機燃料を改質して水素を作り出す装置等の必要もなぐ小型化に優れていると考えら れる。
[0005] 特許第 3413111号及び国際公開 WO2005/112172A1は、それぞれ、メタノー ルのような液体燃料を気化させた気化燃料をアノードに供給する内部気化型の燃料 電池に関するものである。特許第 3413111号に記載の内部気化型 DMFCは、液体 燃料を保持する燃料浸透層と、燃料浸透層中に保持された液体燃料のうち気化成 分を拡散させるための燃料気化層とを備えるもので、気化した液体燃料が燃料気化 層から燃料極に供給される。特許第 3413111号では、液体燃料としてメタノールと 水が 1: 1のモル比で混合されたメタノール水溶液が使用され、メタノールと水の双方 を気化ガスの形で燃料極に供給している。一方、国際公開 WO2005/112172A1 では、発電反応により力ソードで生成する水を、プロトン伝導性膜を介してアノードに 供給することにより、液体燃料のメタノール濃度を高くした際の出力特性の向上を図 つている。
[0006] 前述した特許第 3413111号あるいは国際公開 WO2005/112172A1に記載の 燃料電池は、小型で高い出力密度が得られるものの、燃料電池単体あるいは燃料電 池を搭載した燃料電池搭載電子機器として出荷や市場での流通等のために行われ る搬送や保管によって出力特性が低下する恐れがあった。
発明の開示
[0007] 本発明の目的は、搬送や保管等による出力特性の低下を抑制することが可能な燃 料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池を提供す ることである。
[0008] 本発明に係る燃料電池収納容器は、通気孔を備える。
[0009] 本発明の燃料電池搭載電子機器収納容器は、通気孔を備える。
[0010] 本発明に係る容器付燃料電池は、前記燃料電池収納容器と、前記燃料電池収納 容器内に収納される燃料電池とを具備する。
[0011] 本発明に係る容器付燃料電池は、通気孔を有する容器と、
前記容器内に収納される燃料電池と
を具備する容器付燃料電池であって、
前記燃料電池は、空気導入口を有する外装容器と、
前記外装容器内に収納され、空気を酸化剤として用いる力ソードと、
前記外装容器内に収納されたアノードと
を具備する。
[0012] 本発明に係る容器付燃料電池は、通気孔を有する容器と、
前記容器内に収納される燃料電池と
を具備する容器付燃料電池であって、
前記燃料電池は、空気導入口を有する外装容器と、
前記外装容器内に収納され、空気を酸化剤として用いる力ソードと、 前記外装容器内に収納されたアノードと、
前記外装容器内に収納され、前記アノードに気化燃料を供給するための気化燃料 供給手段と、
前記外装容器内に収納され、前記力ソードで生成した水を前記アノードに供給する ための水供給手段と
を具備する。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の一実施形態に係る容器付燃料電池を示す模式図である。
[図 2]図 2は、図 1の燃料電池の一例(直接メタノール型燃料電池)を模式的に示した 断面図である。
[図 3]図 3は、本発明の実施形態に係る燃料電池収納容器を示す模式図である。
[図 4]図 4は、本発明の別な実施形態に係る燃料電池収納容器を示す模式図である
[図 5]図 5は、本発明の別な実施形態に係る燃料電池収納容器を示す模式図である
[図 6]図 6は、実施例:!〜 3及び比較例の燃料電池における電流密度を変化させた際 の電池電圧変化と出力密度変化を示す特性図である。
発明を実施するための最良の形態
[0014] 以下、本発明の実施形態について図面を参照して説明する。
[0015] なお、本発明は下記実施形態そのままに限定されるものではなぐ実施段階ではそ の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、下記実施形態 に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成で きる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても よい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[0016] 図 1には、本発明の実施形態に係る燃料電池収納容器が模式的に示されている。
図 1に示すように、容器 1は、四角筒形状で、表面に円形の通気孔 2が多数開口され ている。通気孔の形状は、円形に限定されるものではなぐ例えば、三角形、正方形 、長方形、菱形、六角形、楕円等にすることができる。さらには、容器 1の全体に通気 孔を有するのではなぐ特定の辺あるいは方向にのみ通気孔 2を開口してもよい。燃 料電池への空気の導入が行われる構成であれば何らその構成を限定されるもので はない。
[0017] 容器 1の開孔率は、 50%以下にすることが望ましい。これは、開孔率が 50%を超え ると、容器 1の強度が不足する恐れがあり、また、搬送の際に水漏れを生じる可能性 力あるからである。また、搬送や保管による出力低下を十分に抑制するためには、開 孔率は 10%以上にすることが望ましい。さらに好ましい範囲は、 30〜50%である。こ の範囲にすることによって、搬送や保管前と変わらない出力特性を実現することがで きる。
[0018] 容器 1を形成する材料としては、例えば、紙、硬質樹脂、発泡樹脂、ゴム、繊維、金 属、皮革、およびこれら複数の材料の組み合わせたもの等を挙げることができる。
[0019] 燃料電池 3は、出荷の際や、市場で流通させる際、あるいは携帯の際に、容器 1内 に収納される。燃料電池 3の種類は特に限定されるものではないが、アノードに気化 燃料を供給するための気化燃料供給手段と、力ソードで生成した水をアノードに供給 するための水供給手段とを備えた燃料電池が好適である。本発明は、気化燃料供給 手段及び水供給手段を備えた燃料電池、あるいはその燃料電池を搭載した燃料電 池搭載電子機器を、気密性を備えた容器に収納して搬送や保管を行うと、その後に 液体燃料を補充して使用した際の出力特性が、搬送や保管前よりも劣化していること に気付き、通気孔を備えた容器に収納して搬送や保管を行うことによって、出力特性 の低下が抑制されることを見出したものである。
[0020] 気化燃料供給手段及び水供給手段を備えた燃料電池の一例 (直接メタノール型燃 料電池)を図 2に示す。
[0021] 図 2に示すように、外装容器 4内に膜電極接合体 (MEA) 5が収納されている。膜電 極接合体(MEA) 5は、力ソード触媒層 6a及び力ソードガス拡散層 6bからなるカソー ド(酸化剤極)と、アノード触媒層 7a及びアノードガス拡散層 7bからなるアノード (燃料 極)と、力ソード触媒層 6aとアノード触媒層 7aの間に配置されるプロトン伝導性の電 解質膜 8とを備えるものである。
[0022] 力ソード触媒層 6aは、力ソード触媒粒子及びプロトン伝導性材料を含むことが望ま しい。一方、アノード触媒層 7aは、アノード触媒粒子及びプロトン伝導性材料を含む ことが好ましい。
[0023] 力ソード触媒及びアノード触媒としては、例えば、白金族元素の単体金属(Pt、 Ru 、 Rh、 Ir、 Os、 Pd等)、白金族元素を含有する合金などを挙げることができる。カソー ド触媒には、白金を用いることが望ましいが、これに限定されるものでは無レ、。ァノー ド触媒には、メタノールや一酸化炭素に対する耐性の強い Pt_Ruを用いることが望 ましいが、これに限定されるものでは無い。また、炭素材料のような導電性担持体を 使用する担持触媒を使用しても、あるいは無担持触媒を使用しても良い。
[0024] 力ソード触媒層 6a、アノード触媒層 7a及びプロトン伝導性の電解質膜 8に含まれる プロトン伝導性材料としては、例えば、パーフルォロカーボンスルホン酸のようなスル ホン酸基を有するフッ素系樹脂、スルホン酸基を有するハイド口カーボン系樹脂、タ ングステン酸ゃリンタングステン酸などの無機物等を使用しても良レ、。
[0025] 力ソード触媒層 6aは力ソードガス拡散層 6bに積層され、かつアノード触媒層 7aは アノードガス拡散層 7bに積層されている。力ソードガス拡散層 6bは力ソード触媒層 6 aに酸化剤ガスを均一に供給する役割を担うものである。一方、アノードガス拡散層 7 bはアノード触媒層 7aに燃料を均一に供給する役割を果たす。力ソードガス拡散層 6 b及びアノードガス拡散層 7bには、例えば、多孔質カーボンぺーパを使用することが できる。
[0026] アノード集電部としてのアノード導電層 9は、膜電極接合体 5のアノードガス拡散層 7bに積層されている。一方、力ソード集電部としての力ソード導電層 10は、膜電極接 合体 5の力ソードガス拡散層 6bに積層されている。アノード導電層 9及び力ソード導 電層 10は、力ソード及びアノードの導電性を向上させるためのものである。また、ァノ ード導電層 9及び力ソード導電層 10には、酸化剤ガスあるいは気化燃料が透過する ためのガス透過孔(図示しない)が開口されている。アノード導電層 9及び力ソード導 電層 10には、例えば、 PET基材に Au箔を担持させた金電極を使用することができる
[0027] 矩形枠状のシール材の一方 11aは、プロトン伝導性電解質膜 8上に力ソードの周囲 を囲むように形成されている。また、他方 l ibは、プロトン伝導性電解質膜 8の反対側 の面上にアノードの周囲を囲むように形成されている。シール材 11a, l ibは、膜電 極接合体 5からの燃料漏れ及び酸化剤ガス漏れを防止するためのオーリングとして 機能する。
[0028] 膜電極接合体 5のアノード側(図 2では膜電極接合体 5の下方)には、燃料貯蔵部と しての液体燃料タンク 12が配置されている。液体燃料タンク 12には、液体のメタノー ルあるいはメタノール水溶液からなる液体燃料 13が収容されている。メタノール水溶 液の濃度は 50モル%を超える高濃度にすることが望ましい。また、純メタノールの純 度は、 95重量%以上 100重量%以下にすることが望ましい。なお、液体燃料タンク 1 2に収容する液体燃料は必ずしもメタノール燃料に限られるものではなぐ例えばエタ ノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノ ール等のプロパノール燃料、グリコール水溶液ゃ純グリコール等のダリコール燃料、 ジメチルエーテル、ギ酸、もしくはその他の液体燃料であってもよレ、。いずれにしても 、燃料電池に応じた液体燃料が収容される。
[0029] なお、容器 1内に燃料電池を収容する際には、液体燃料タンク 12を空の状態にし ておくことが望ましいが、燃料が充填されている状態でも問題は生じない。燃料が空 の状態の場合は、時折、液体燃料タンク 12に少量の液体燃料 13を補充すると、出 力低下をより少なくすることができる。言うまでもないが、燃料電池を容器 1から取り出 して使用する前には、液体燃料 13を補充する。
[0030] 液体燃料タンク 12とアノードとの間には、液体燃料の気化成分をアノードに供給す るための気化燃料供給手段、例えば気液分離膜 14が配置されている。気液分離膜 14は、液体燃料の気化成分のみを透過させて、液体燃料は透過できない膜である。 液体燃料のうち気化成分のみが気液分離膜 14を透過し、アノードに気化燃料を供 給することが可能となる。気液分離膜 14には、例えば、メタノール透過性を有する撥 水性膜を使用することができる。メタノール透過性を有する撥水性膜としては、例えば 、シリコーンシート、ポリエチレン多孔膜、ポリプロピレン多孔膜、ポリエチレン一ポリプ ロピレン多孔膜、ポリテトラフルォロエチレン多孔膜等を挙げることができる。
[0031] 気液分離膜 14とアノード導電層 9の間には、フレーム 15aが配置されている。フレ ーム 15aで囲まれた空間は、アノードへの気化燃料の供給量を調整するための気化 燃料収容室 16として機能する。
[0032] 一方、膜電極接合体 5の力ソード導電層 10には、フレーム 15bが積層されている。
フレーム 15b上には、力ソード触媒層 6aにおいて生成した水の蒸散を抑止する保湿 板 17が積層されている。保湿板 17は、力ソードで生成した水をアノードに供給するた めの水供給手段として機能する。
[0033] 保湿板 17は、メタノールに対して不活性で、耐溶解性、酸素透過性及び透湿性を 有する絶縁材料から形成されていることが望ましい。このような絶縁材料としては、例 えば、ポリエチレンやポリプロピレンなどのポリオレフインを挙げることができる。
[0034] 保湿板 17は、 JIS P— 8117— 1998で規定される透気度が 50秒 ZlOOcm3以下 であることが望ましい。これは、透気度が 50秒 ZlOOcm3を超えると、空気導入口 18 力 力ソードへの空気拡散が阻害されて高出力を得られない恐れがあるからである。 透気度のさらに好ましい範囲は、 10秒/ 100cm3以下である。
[0035] 保湿板 17は、 JIS L— 1099— 1993 A— 1法で規定される透湿度が 6000g/m 224h以下であることが望ましレ、。なお、上記透湿度の値は、 JIS L— 1099— 1993
A— 1法の測定方法で示されている通り、 40 ± 2°Cの温度の値である。透湿度が 60 00g/m224hを超えると、力ソードからの水分蒸発量が多くなり、力ソードからアノード への水拡散を促進する効果を十分に得られない恐れがあるからである。また、透湿 度を 500g/m224h未満にすると、過剰量の水がアノードへ供給されて高出力を得ら れない恐れがあることから、透湿度は、 500〜6000g/m224hの範囲にすること力 S 望ましい。透湿度のさらに好ましい範囲は、 1000〜4000g/m224hである。
[0036] 外装容器 4は、保湿板 17と対向する面に、空気導入口 18が複数個形成されている 。外装容器 4は、膜電極接合体 5を含むスタックを加圧してその密着性を高める役割 も果たしているため、例えば、 SUS304、炭素鋼、ステンレス鋼、合金鋼、チタン合金 、ニッケル合金のような金属から形成される。
[0037] 液体燃料タンク 12内の液体燃料 13は、その気化成分が気液分離膜 14を通してァ ノード触媒層 7aに供給される。アノード触媒層 7aにおいては、燃料の酸化反応によ つてプロトン (H+)と電子(e を生成する。例えば、燃料としてメタノールを用いた場 合に、アノード触媒層 7aで起こる触媒反応を下記(1)式に示す。 [0038] CH OH + H O → CO + 6H+ + 6e" (1)
3 2 2
アノード触媒層 7aで生成したプロトン (H+)は、プロトン伝導性膜 8を通じて力ソード 触媒層 6aへ拡散する。また同時に、アノード触媒層 7aで生成した電子は、燃料電池 に接続された外部回路を流れ、外部回路の負荷 (抵抗等)に対して仕事をし、カソー ド触媒層 6aに流入する。
[0039] 空気などの酸化剤ガスは、外装容器 4の空気導入口 18から保湿板 17、フレーム 15 b内の空間、力ソード導電層 10及び力ソードガス拡散層 6bを通して力ソード触媒層 6 aに供給される。酸化剤ガス中の酸素は、プロトン伝導性膜 8を通じて拡散してきたプ 口トン (H+)と、外部回路を流れてきた電子 (e—)と共に、還元反応を起こし、反応生 成物を生成する。例えば、酸化剤ガスとして空気を使用した場合、空気に含まれる酸 素が力ソード触媒層 6aで生じる反応は下記(2)式の通りで、この場合は反応生成物 は水(H〇)である。
2
[0040] 1. 50 + 6H+ + 6e" → 3H〇 (2)
2 2
この(1)式と(2)式の反応とが同時に生じることにより、燃料電池としての発電反応 が完結する。トータルの燃焼反応を下記(3)式に示す。
[0041] CH OH + 1. 50 → CO + 2H O (3)
3 2 2 2
力ソードと外装容器 4の間には保湿板 17が配置されているため、力ソードからの水 分の蒸発が抑制され、発電反応の進行に伴って力ソード触媒層 6a中の水分保持量 が増加する。このため、力ソード触媒層 6aの水分保持量がアノード触媒層 7aの水分 保持量よりも多い状態を作り出すことができる。その結果、浸透圧現象によって、カソ ード触媒層 6aに生成した水がプロトン伝導性膜 8を通過してアノード触媒層 7aに移 動する反応を促進することができる。これにより、小型で、かつ高出力な燃料電池を 実現すること力 Sできる。
[0042] 燃料電池を収容する容器は、前述した図 1に示す構造のものに限定されず、例え ば図 3に示すようなメッシュ板から形成され、その網目を通気孔 2として使用する容器 1を用いても良い。また、容器の形状は、図 1や図 3のような四角い筒形状に限定され るものではなぐ例えば、図 4に示すような袋状、図 5に示すような円筒形状にすること も可能である。 [0043] 燃料電池を収容する容器には、容器内の酸素濃度を検出するための検出手段を 設けて容器内の酸素濃度の低下を検出しても良い。また、容器内に調湿機構を設け
、容器内の湿度を一定に保つことも可能である。さらに、湿度の上昇を検知して空気 を強制的に取り入れる機構を設けても良い。
[0044] なお、燃料電池収納容器は、燃料電池を 1個あるいは複数個を収納する容器に適 用することも可能であるが、その収納容器を複数個収納するコンテナとしての収納容 器に適用することも可能である。
[0045] また、上記説明では燃料電池 3を収納するための容器として説明した力 この燃料 電池 3を搭載した燃料電池搭載電子機器に適用することもできる。
[0046] すなわち、燃料電池搭載電子機器が出荷や市場での流通等のために行われる搬 送、顧客への販売や保管のための包装容器、その包装容器を複数個収納するコン テナなどに適用することもできるのである。
[0047] 以下、本発明の実施例を図面を参照して詳細に説明する。
[0048] (実施例 1)
図 2に示す直接メタノール型燃料電池を以下のようにして作製した。
[0049] 白金担持グラフアイト粒子を Dupont社製の DE2020とホモジナイザで混合してス ラリを作製し、これを力ソードガス拡散層 6bであるカーボンぺーパに塗布した。そして
、これを常温で乾燥し、力ソードガス拡散層 6bに力ソード触媒層 6aを積層したカソー ドを作製した。
[0050] 白金ルテニウム合金微粒子を担持したカーボン粒子を Dupont社製の DE2020と ホモジナイザで混合してスラリを作製し、これをアノードガス拡散層 7bであるカーボン ぺーパに塗布した。そして、これを常温乾燥し、アノードガス拡散層 7bにアノード触 媒層 7aを積層したアノードを作製した。
[0051] プロトン伝導性電解質膜 8として、厚さが 30 a mで、含水率が 10〜20重量%のパ 一フルォロカーボンスルホン酸膜 (nafion (登録商標)膜、デュポン社製)を用意した 。この電解質膜を、力ソードおよびアノードで挟持し、温度が 120°C、圧力が lOkgf/ cm2の条件でプレスし、膜電極接合体 (MEA) 5を作製した。
[0052] 続いて、この膜電極接合体 5を、空気および気化したメタノールを取り入れるための 複数の開孔を有する金箔で挟み、力ソード導電層 10及びアノード導電層 9を形成し た。
[0053] 上記した膜電極接合体 (MEA) 5、アノード導電層 9、力ソード導電層 10が積層さ れた積層体を樹脂製の 2つのフレーム 15a, 15bで挟み込んだ。なお、膜電極接合 体 5の力ソード側と一方のフレーム 15bとの間、膜電極接合体 5のアノード側と他方の フレーム 15aとの間には、それぞれゴム製の Oリング 11a, 1 lbを介在させてシールを 施した。また、アノード側のフレーム 15aは、気液分離膜 14を介して、液体燃料タンク 12にネジ止めによって固定した。気液分離膜 14には 0. 1mm厚さのシリコーンシー トを使用した。
[0054] 保湿板として厚さが 500 x mで、透気度が 2秒/ 100cm3 (JIS P— 8117— 1998 )で、透湿度力 4000gZm224h (JIS L— 1099— 1993 A— 1法)のポリエチレン 製多孔質フィルムを用意した。力ソード側のフレーム 15b上に保湿板 17を配置した。
[0055] 得られた積層物を、空気取り入れのための空気導入口 18 (口径 2. 5mm、 口数 8個 )が形成された厚さが 2mmのステンレス板(SUS304)力 なる外装容器 4に収納し、 図 2に示す直接メタノール型燃料電池を得た。
[0056] 得られた燃料電池を液体燃料タンク 12が充填された状態で、前述した図 1に示す 形状の容器 1に保管した。なお、容器の材質は、樹脂材 (ポリエチレンテレフタレート) とし、また開孔率は 50%とした。保管条件は、 30°C、相対湿度 50%の大気中に 48 時間保管した。
[0057] 保管後、容器 1から燃料電池を取り出し、液体燃料タンク 12に、液体燃料 13として 純メタノールを 5ml注入した。温度 25°C、相対湿度 50%の環境で、電流密度(curre nt density)を増加させた際の出力密度(power density)と電池電圧(cell volt age)を測定した。その結果を出力密度変化を曲線 A1とし、電池電圧変化を曲線 B1 として図 6に示す。図 6の横軸が電流密度 (mAZcm2)で、右側の縦軸が出力密度( mW/cm2)で、左側の縦軸が電池電圧 (V)である。
[0058] (実施例 2)
実施例 1で説明したのと同様な構成の燃料電池を作製し、得られた燃料電池を液 体燃料タンク 12が充填された状態で、前述した図 1に示す形状の容器 1に保管した。 容器 1には、開孔率を 30%にすること以外は実施例 1と同様なものを使用した。保管 条件は実施例 1と同様にした。
[0059] 保管後、容器 1から燃料電池を取り出し、液体燃料タンク 12に、実施例 1と同様な 液体燃料 13を注入した。次いで、実施例 1と同様にして出力密度と電池電圧を測定 した。その結果を出力密度変化を曲線 A2とし、電池電圧変化を曲線 B2として図 6に 示した。
[0060] (実施例 3)
実施例 1で説明したのと同様な構成の燃料電池を作製し、得られた燃料電池を液 体燃料タンク 12が充填された状態で、前述した図 1に示す形状の容器 1に保管した。 容器 1には、開孔率を 10%にすること以外は実施例 1と同様なものを使用した。保管 条件は実施例 1と同様にした。
[0061] 保管後、容器 1から燃料電池を取り出し、液体燃料タンク 12に、実施例 1と同様な 液体燃料 13を注入した。次いで、実施例 1と同様にして出力密度と電池電圧を測定 した。その結果を出力密度変化を曲線 A3とし、電池電圧変化を曲線 B3として図 6に 示した。
[0062] 図 6の出力密度変化 Al , A2, A3に示す通りに、最大出力密度は、燃料電池収納 容器 1の開孔率が増加するに従って増加している。開孔率が 30〜50%の実施例 1 , 2の最大出力密度が、開孔率が 10%の実施例 3に比して優れていた。
[0063] また、電池電圧変化 Bl, B2, B3に示す通りに、電流密度を増加させた際の電池 電圧の低下幅は、燃料電池収納容器 1の開孔率が増加するに従って減少している。 開孔率が 30〜50%の実施例 1 , 2の電圧特性が、開孔率が 10%の実施例 3に比し て優れていた。
[0064] (比較例)
実施例 1で説明したのと同様な構成の燃料電池を作製し、得られた燃料電池を液 体燃料タンク 12が充填された状態で、通気孔を持たない気密性を有する容器に保 管した。保管条件は実施例 1と同様にした。
[0065] 保管後、容器から燃料電池を取り出し、液体燃料タンク 12に、実施例 1と同様な液 体燃料 13を注入した。次いで、実施例 1と同様にして出力密度と電池電圧を測定し た。その結果を出力密度変化を曲線 A4とし、電池電圧変化を曲線 B4として図 6に示 した。
[0066] 図 6に示す通り、通気孔を持たない容器を使用した比較例では、電流密度の上昇 に伴って電池電圧(曲線 B4)が急激に下降し、また、最大出力密度(曲線 A4)は実 施例 1〜 3に比して低かつた。
[0067] なお、本発明は上記実施形態そのままに限定されるものではなぐ実施段階ではそ の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態 に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成で きる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても よい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[0068] 例えば、上記した説明では、燃料電池の構成として膜電極接合体 (MEA)の下部 に燃料貯蔵部を有する構造で説明したが、燃料貯蔵部から膜電極接合体への燃料 の供給は、燃料貯蔵部と膜電極接合体とを流路を介して接続して行ってもよい。また 、燃料電池本体の構成としてパッシブ型の燃料電池を例に挙げて説明したが、ァク ティブ型の燃料電池、さらには燃料供給など一部にポンプ等を用いたセミパッシブと 称される型の燃料電池に対しても本発明を適用することができる。セミパッシブ型の 燃料電池では、燃料貯蔵部から膜電極接合体に供給された燃料は発電反応に使用 され、その後に循環して燃料貯蔵部に戻されることはない。セミパッシブ型の燃料電 池は、燃料が循環しないことから、従来のアクティブ方式とは異なるものであり、装置 の小型化等を損なうものではない。また、燃料電池は、燃料の供給にポンプを使用し ており、従来の内部気化型のような純パッシブ方式とも異なる。このため、上述したよ うにセミパッシブ方式燃料電池と呼称される。なお、このセミパッシブ型の燃料電池で は、燃料貯蔵部から膜電極接合体への燃料供給が行われる構成であればポンプに 代えて燃料遮断バルブを配置する構成とすることも可能である。この場合には、燃料 遮断バルブは、流路による液体燃料の供給を制御するために設けられるものである。
[0069] 以上説明したような構成の燃料電池であっても、上記した説明と同様の作用効果が 得られる。 MEAへ供給される燃料の蒸気においても、燃料の全てを蒸気として供給 してもよいが、燃料の一部が液体状態で供給される場合であっても本発明を適用す ること力 Sできる。
産業上の利用可能性
本発明によれば、搬送や保管等による出力特性の低下を抑制することが可能な燃 料電池収納容器、燃料電池搭載電子機器用収納容器及び容器付燃料電池を提供 すること力 Sできる。

Claims

請求の範囲
[1] 通気孔を備える燃料電池収納容器。
[2] 開孔率が 50%以下である請求項 1記載の燃料電池収納容器。
[3] 請求項 1記載の燃料電池収納容器と、前記燃料電池収納容器内に収納される燃 料電池とを具備する容器付燃料電池。
[4] 通気孔を備える燃料電池搭載電子機器収納容器。
[5] 開孔率が 50%以下である請求項 4記載の燃料電池搭載電子機器収納容器。
[6] 通気孔を有する容器と、
前記容器内に収納される燃料電池と
を具備する容器付燃料電池であって、
前記燃料電池は、空気導入口を有する外装容器と、
前記外装容器内に収納され、空気を酸化剤として用いる力ソードと、
前記外装容器内に収納されたアノードと、
を具備する容器付燃料電池。
[7] 前記外装容器内に収納され、前記アノードに気化燃料を供給するための気化燃料 供給手段と、
前記外装容器内に収納され、前記力ソードで生成した水を前記アノードに供給する ための水供給手段と
をさらに具備する請求項 6記載の容器付燃料電池。
[8] 前記容器は、開孔率が 50%以下である請求項 6または 7記載の容器付燃料電池。
PCT/JP2007/056238 2006-03-31 2007-03-26 燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池 WO2007116692A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509746A JPWO2007116692A1 (ja) 2006-03-31 2007-03-26 燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-100485 2006-03-31
JP2006100485 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007116692A1 true WO2007116692A1 (ja) 2007-10-18

Family

ID=38580991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056238 WO2007116692A1 (ja) 2006-03-31 2007-03-26 燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池

Country Status (3)

Country Link
JP (1) JPWO2007116692A1 (ja)
TW (1) TW200810195A (ja)
WO (1) WO2007116692A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055797A (ja) * 2008-08-26 2010-03-11 Toshiba Corp 燃料電池内蔵装置用カバーおよび燃料電池内蔵装置
JP2014002938A (ja) * 2012-06-19 2014-01-09 Fujikura Ltd ダイレクトメタノール型燃料電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2002373693A (ja) * 2001-06-15 2002-12-26 Sharp Corp 燃料電池
JP2003282131A (ja) * 2002-03-20 2003-10-03 Samsung Sdi Co Ltd 通気型直接メタノール燃料電池セルパック
WO2005112172A1 (ja) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba 燃料電池
JP2006252982A (ja) * 2005-03-11 2006-09-21 Central Res Inst Of Electric Power Ind 遮熱容器を備えた燃料電池
JP2007128853A (ja) * 2005-11-02 2007-05-24 Samsung Sdi Co Ltd 直接液体燃料電池システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848612B2 (ja) * 2003-10-02 2011-12-28 日本電気株式会社 燃料電池および燃料電池の運転方法
JP5049487B2 (ja) * 2004-12-28 2012-10-17 キヤノン株式会社 燃料電池装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268836A (ja) * 1999-03-15 2000-09-29 Sony Corp 発電デバイス
JP2002373693A (ja) * 2001-06-15 2002-12-26 Sharp Corp 燃料電池
JP2003282131A (ja) * 2002-03-20 2003-10-03 Samsung Sdi Co Ltd 通気型直接メタノール燃料電池セルパック
WO2005112172A1 (ja) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba 燃料電池
JP2006252982A (ja) * 2005-03-11 2006-09-21 Central Res Inst Of Electric Power Ind 遮熱容器を備えた燃料電池
JP2007128853A (ja) * 2005-11-02 2007-05-24 Samsung Sdi Co Ltd 直接液体燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055797A (ja) * 2008-08-26 2010-03-11 Toshiba Corp 燃料電池内蔵装置用カバーおよび燃料電池内蔵装置
JP2014002938A (ja) * 2012-06-19 2014-01-09 Fujikura Ltd ダイレクトメタノール型燃料電池

Also Published As

Publication number Publication date
TWI342081B (ja) 2011-05-11
JPWO2007116692A1 (ja) 2009-08-20
TW200810195A (en) 2008-02-16

Similar Documents

Publication Publication Date Title
WO2006040961A1 (ja) 燃料電池
JP2006318712A (ja) 燃料電池
TWI332726B (ja)
US20090042090A1 (en) Fuel cell
WO2007080763A1 (ja) 固体高分子型燃料電池
US20110275003A1 (en) Fuel cell
CN101151754B (zh) 燃料电池
WO2006101033A1 (ja) 燃料電池
WO2007034756A1 (ja) 燃料電池
WO2008023634A1 (fr) Pile à combustible
WO2007116692A1 (ja) 燃料電池収納容器、燃料電池搭載電子機器収納容器及び容器付燃料電池
JP2008293705A (ja) 膜電極接合体および燃料電池
JP2008310995A (ja) 燃料電池
JPWO2008023632A1 (ja) 膜電極接合体及びその製造方法と燃料電池
WO2007110941A1 (ja) 燃料電池
JPWO2008068886A1 (ja) 燃料電池
JPWO2008068887A1 (ja) 燃料電池
JP2008186799A (ja) 燃料電池
JP2007026873A (ja) 燃料電池
WO2011052650A1 (ja) 燃料電池
JP2011096468A (ja) 燃料電池
JP2007080628A (ja) 燃料電池の収容構造
WO2010116893A1 (ja) 燃料電池
JP2009038014A (ja) 燃料電池および燃料電池の製造方法
WO2008023633A1 (fr) Pile à combustible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739676

Country of ref document: EP

Kind code of ref document: A1