WO2007115769A2 - Machine à vapeur à piston, à évaporation éclair interne du fluide de travail - Google Patents

Machine à vapeur à piston, à évaporation éclair interne du fluide de travail Download PDF

Info

Publication number
WO2007115769A2
WO2007115769A2 PCT/EP2007/003052 EP2007003052W WO2007115769A2 WO 2007115769 A2 WO2007115769 A2 WO 2007115769A2 EP 2007003052 W EP2007003052 W EP 2007003052W WO 2007115769 A2 WO2007115769 A2 WO 2007115769A2
Authority
WO
WIPO (PCT)
Prior art keywords
working
piston
steam engine
engine according
working medium
Prior art date
Application number
PCT/EP2007/003052
Other languages
German (de)
English (en)
Other versions
WO2007115769A3 (fr
Inventor
Michael Löffler
Original Assignee
Electricite De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France filed Critical Electricite De France
Priority to EP07723993.7A priority Critical patent/EP2002089B1/fr
Priority to CA2650541A priority patent/CA2650541C/fr
Priority to JP2009503486A priority patent/JP5145326B2/ja
Priority to KR1020087026893A priority patent/KR101417143B1/ko
Publication of WO2007115769A2 publication Critical patent/WO2007115769A2/fr
Publication of WO2007115769A3 publication Critical patent/WO2007115769A3/fr
Priority to IL194523A priority patent/IL194523A/en
Priority to US12/246,269 priority patent/US8061133B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/02Steam engine plants not otherwise provided for with steam-generation in engine-cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B5/00Reciprocating-piston machines or engines with cylinder axes arranged substantially tangentially to a circle centred on main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/16Instantaneous or flash steam boilers involving spray nozzles for sprinkling or injecting water particles on to or into hot heat-exchange elements, e.g. into tubes

Definitions

  • the steam generators required for a piston steam engine usually consist of a heat exchanger in which the working medium, such as water, is vaporized at the desired working pressure.
  • the heat required for the evaporation process is thereby provided by a heat transfer medium, such as flue gases.
  • the heat transfer medium in the steam generator is cooled to a temperature in the range of the evaporation temperature of the working medium.
  • the compression ratio or the expansion ratio also referred to below as the volume ratio, is approximately 4 to a maximum of 8 in a screw machine
  • volume ratios of large 100 can be achieved.
  • the convective heat exchange hiss the working medium and the walls of the screw machine is very large, since there is a fully developed two-phase flow and, incidentally, the warm non-wearing surface is very large.
  • the volumetric efficiency of a screw machine is due to design relatively poor, the leakage losses can not be reduced by a piston or piston rings as in a Kolbendampfmaschme.
  • the heat transfer medium of the heat source should be cooled down to ambient temperature in as reversible a process as possible.
  • the heat transfer medium of the heat source only cools down to a temperature close to the evaporation or condensation temperature.
  • the heat transfer medium is cooled, for example, only from 200 ° C to 140 0 C and not to the ambient temperature.
  • this relatively high end temperature of the heat transfer medium of the heat source and the associated low exergetic efficiency have a particular effect unfavorable to the performance and economy of the heat engine.
  • the invention is based on the object to provide a heat engine, which at least partially overcomes the above-mentioned disadvantages of the known from the prior art heat engines.
  • the highest possible proportion of the available heat is based on the object to provide a heat engine, which at least partially overcomes the above-mentioned disadvantages of the known from the prior art heat engines.
  • Piston steam engine is introduced when the piston is in the range of a top dead center (TDC).
  • TDC top dead center
  • At least one pre-chamber is provided, which is in communication with the working space, wherein the working medium is preferably introduced into the pre-chamber and particularly preferably on a circular path in the antechamber.
  • the circular path of the liquid phase causes centrifugal forces which greatly accelerate the liquid phase radially outward due to the high density.
  • the resulting in the flash evaporation of the working medium vapor has a significantly lower density than the liquid phase and can flow into the cylinder chamber, since the connection between the antechamber and the working chamber in the center of the prechamber opens into this.
  • the radial acceleration causes the liquid phase can not escape from the antechamber. This achieves a very simple and at the same time effective phase separation.
  • the volume of the prechamber should be as small as possible.
  • a plurality of pre-chambers and / or a plurality of injectors per cylinder are provided, which are all connected to the working space.
  • This makes it possible to introduce the working fluid at different temperatures as a function of the pressure prevailing in the working space during the working cycle and / or the prevailing temperature in the working space and / or the position of the piston in the atria and / or the working space.
  • This allows working media with different Temperatures without Exergielope be coupled due to mixing operations in the piston steam engine according to the invention.
  • liquid working medium can be atomized during the injection process and distributed in the form of small drops within the working space and, if available, and the antechamber.
  • the friction between the droplets and the gaseous phase of the working medium avoids direct contact between the droplets and the surfaces of the piston steam engine. As a result, the unwanted heat transfer between the drops and the surfaces of the piston steam engine is greatly reduced.
  • injectors may serve injectors, as used in fuel injection systems of conventional gasoline or diesel internal combustion engines. Of course, it may be necessary to adapt these commercially available injectors to the specific conditions of use, in particular the sometimes very high temperatures and the corrosive working media.
  • the heat transfer medium has a temperature of about 200 c C to 350 ° C, water has proved to be particularly suitable.
  • R134a has been found to be particularly suitable.
  • the internal thermal insulation is of particular importance to prevent the cooling liquid working fluid from the cyclone wall or other surfaces of the
  • This warmedammende coating disposed on the work space or cyclone inner wall may be for example made of Teflon, enamel or ceramic.
  • the surfaces of the piston steam engine which come into contact with the working medium can be heated in order to effectively prevent the condensation of the working medium on these surfaces.
  • the components of the machine which are accessible to the gaseous phase must have a temperature which is greater than the condensation temperature of the working medium at the gas pressure currently being applied. If the surfaces of the components were cold, some of the resulting gaseous phase would abruptly condense on these surfaces and the condensed phase would no longer be available to drive the piston and the performance and efficiency of the machine would decrease.
  • FIGS. 1 and 2 exemplary embodiments of piston steam engines according to the invention with cyclone
  • Figure 3 An antechamber of a piston steam engine according to the invention.
  • Figure 4 an embodiment of an inventive
  • Piston steam engines with an injector injecting into the working space.
  • Figure 1 shows an example of the structure of a first embodiment of a piston steam engine according to the invention with an antechamber 13, a piston 3, a cylinder 5, a connecting rod 7 and a crankshaft 9, which may be coupled to a generator, not shown.
  • the piston 3 and the cylinder 5 define a working space 11.
  • An antechamber 13 is connected to the working space 11.
  • In the antechamber 13 open a supply line 15 and a discharge line 17 for the working medium.
  • the discharge 17 for the working medium can also open directly into the working space 11 (not shown).
  • a switchable inlet valve 19 is arranged in the supply line 15 for the liquid working medium.
  • this inlet valve which can be designed as an injector, liquid working fluid can be injected into the pre-chamber 13 become. This injection is preferably carried out when the piston 3 is in the region of the top dead center OT.
  • a switchable outlet valve 21 located in the outlet 17 for the working medium is opened and the piston 3 pushes the remaining liquid phase and the working medium which has become vaporous during its subsequent movement in the direction TDC the work space 11 from.
  • the discharge line 17 serves to discharge the liquid phase remaining in the pre-chamber 13. About the derivative 17 and the vaporized working medium can be removed. Alternatively, it is also possible in the working space 11 to provide an additional steam valve 22, which takes over the removal of the vaporized working medium.
  • the steam valve 22 may be formed as a poppet valve and (not shown) by a camshaft, similar to a gas exchange valve of an internal combustion engine and be actuated.
  • the discharge line 17.1 for the working medium flows into a condenser 23.
  • the working medium discharged through the steam valve 22 can be led into the condenser 23 through a discharge line 17.3.
  • Figure 2 shows the structure of a piston steam engine according to the invention with two prechambers 13.1 and 13.2, two supply lines 15.1 and 15.2 for the working fluid.
  • the supply lines 15.1 and 15.2 are two switchable intake valves
  • the remaining components of the piston steam engine and its periphery can be designed as in the first exemplary embodiment according to FIG. 1, to which reference is hereby made.
  • the working medium contained in the first supply line 15.1 has a higher temperature than that in the second supply line
  • the two Temperature levels is available.
  • the waste heat of an internal combustion engine can be used optimally, since in an internal combustion engine, the exhaust gases at a temperature greater 200 0 C incurred while the Kuhlschwarme and the oil have a temperature of about 120 0 C.
  • a first heat exchanger (not shown), which is operated with the waste heat of the exhaust gases, and a second heat exchanger (not shown), which is heated with the waste heat of Kuhlwassers and the oil required ,
  • the warmer working medium is injected at a temperature of 200 0 C. If this has cooled to 120 0 C, then some 120 0 C hot working medium is injected.
  • the related to the heat of combustion efficiency of an internal combustion engine can be increased by about 10% with the Kolbendampfmaschme shown.
  • the erfmdungsgeemployede Kolbendampfmaschme works on the two-stroke principle. Em intake stroke and a compression stroke omitted.
  • the outlet valve or valves 21 are closed and then the working medium is injected through the inlet valve 19.
  • the outlet valve 21 is opened.
  • the remaining liquid phase and the resulting gaseous phase are discharged through the outlet valve 21. Liquid and gaseous phase can pass through the same outlet valve 21 or separate valves are provided.
  • FIG. 3 shows the construction of an antechamber 13 for a piston steam engine according to the invention.
  • the prechamber 13 is constructed similar to a cyclone separator.
  • the supply line 15, the discharge line 17 and the valves 19 and 21 are indicated.
  • the liquid working fluid is introduced into the prechamber 13 substantially tangentially and moves on a radially outer circular path. Due to its lower density, the steam produced in the flash evaporation is forced into the middle of the prechamber 13, so that a separation of liquid and vaporous working medium m of the prechamber 13 takes place.
  • a compound 29 is arranged, which mouths in the working space 11. Via the connection 29, the vaporous working medium passes from the antechamber into the working space 11.
  • the gravity supports the separation of liquid and vapor phase in addition.
  • the affected surfaces of the piston 3, cylinder 5 and prechamber 13 must be heated and / or heat-sealed.
  • two alternative measures can be taken.
  • the pre-chamber 13 is geometrically designed such that the injected liquid phase of the working medium can move stably on a circular path.
  • the pre-chamber 13 is referred to in this case as a cyclone.
  • the centrifugal forces occurring on the circular path ensure that the resulting steam, on which act due to lower density of low centrifugal forces, can escape into the cylinder chamber of the piston steam engine and the liquid Heat transfer medium, act on the large density due to the large centrifugal forces, m the circular path remains. Experiments have shown that in this way a phase separation is achieved during the evaporation process.
  • phase separation succeeds: the liquid phase remains in the cyclone during the flash evaporation, while the vapor phase escapes from the cylinder space.
  • FIG. 4 shows a further exemplary embodiment of a piston steam engine according to the invention.
  • the pre-chamber 13 is omitted and the liquid working medium is injected directly into the working space 11. This can be done with the aid of an injector known from the prior art.
  • the working fluid is atomized during the injection process into small drops, similar to the injection of diesel fuel into the combustion chamber of an internal combustion engine.
  • the drops are held in suspension by friction in the gas phase. In this way, the drops can touch the hot surfaces only to a small extent and the heat exchange between the liquid phase and the hot surfaces is kept low.
  • piston steam engine With the piston steam engine according to the invention approximately twice the mechanical power can be obtained in an existing heat source compared to conventional machines in which an ORC or a Kalina process are realized.
  • a safe working fluid such as water, can be used compared to ORC processes and quay processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne une machine à vapeur à piston, à évaporation éclair. La machine à vapeur à piston selon l'invention est de construction simple, présente un très bon rendement exergétique et peut fonctionner avec différents fluides de travail et à différentes température. De plus, la puissance volumique pouvant être atteinte de la machine à vapeur à piston selon l'invention est très élevée.
PCT/EP2007/003052 2006-04-04 2007-04-04 Machine à vapeur à piston, à évaporation éclair interne du fluide de travail WO2007115769A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07723993.7A EP2002089B1 (fr) 2006-04-04 2007-04-04 Machine à vapeur à piston, à évaporation éclair interne du fluide de travail
CA2650541A CA2650541C (fr) 2006-04-04 2007-04-04 Machine a vapeur a piston a vaporisation eclair interne de support de milieu de travail
JP2009503486A JP5145326B2 (ja) 2006-04-04 2007-04-04 作業媒体を内部フラッシュ蒸発させるピストン蒸気機関
KR1020087026893A KR101417143B1 (ko) 2006-04-04 2007-04-04 작동 매체의 내부 플래시 기화를 포함하는 피스톤 증기 엔진
IL194523A IL194523A (en) 2006-04-04 2008-10-05 Piston steam engine having internal flash vapourisation of a working medium
US12/246,269 US8061133B2 (en) 2006-04-04 2008-10-06 Piston steam engine with internal flash vaporization of a work medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006015754 2006-04-04
DE102006015754.0 2006-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/246,269 Continuation US8061133B2 (en) 2006-04-04 2008-10-06 Piston steam engine with internal flash vaporization of a work medium

Publications (2)

Publication Number Publication Date
WO2007115769A2 true WO2007115769A2 (fr) 2007-10-18
WO2007115769A3 WO2007115769A3 (fr) 2008-07-10

Family

ID=38581444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/003052 WO2007115769A2 (fr) 2006-04-04 2007-04-04 Machine à vapeur à piston, à évaporation éclair interne du fluide de travail

Country Status (8)

Country Link
US (1) US8061133B2 (fr)
EP (1) EP2002089B1 (fr)
JP (1) JP5145326B2 (fr)
KR (1) KR101417143B1 (fr)
CN (1) CN101454542A (fr)
CA (1) CA2650541C (fr)
IL (1) IL194523A (fr)
WO (1) WO2007115769A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013673B3 (de) * 2008-03-11 2009-09-17 Richard Engelmann Kolbendampfmaschine für einen solar betriebenen Rankine-Kreislauf
WO2010029020A1 (fr) * 2008-09-10 2010-03-18 Ago Ag Energie + Anlagen Machine motrice et procédé de fonctionnement d'une machine motrice
WO2010042446A2 (fr) * 2008-10-06 2010-04-15 Solartrec, Inc. Améliorations apportées à un moteur thermique
WO2012022288A3 (fr) * 2010-07-16 2012-07-05 Josef Birner Dispositif permettant de mettre en œuvre un cycle thermodynamique
WO2019205773A1 (fr) * 2018-04-28 2019-10-31 Cao Lianguo Nouvelle machine à vapeur renfermant un milieu de travail à fonctionnement cyclique
DE102021102803A1 (de) 2021-02-07 2022-08-11 Kristian Roßberg Vorrichtung und Verfahren zur Umwandlung von thermischer Energie in technisch nutzbare Energie
DE102021108558B4 (de) 2021-04-06 2023-04-27 Kristian Roßberg Verfahren und Vorrichtung zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie
EP4306775A1 (fr) 2022-07-11 2024-01-17 Kristian Roßberg Procédé et dispositif de conversion de chaleur à basse température en énergie mécanique techniquement utilisable

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169984B2 (ja) * 2009-05-11 2013-03-27 株式会社デンソー 熱機関
WO2010132924A1 (fr) * 2009-05-18 2010-11-25 Martin De Silva Système, procédé et composants pour puissance thermique
WO2012097215A1 (fr) 2011-01-13 2012-07-19 General Compression, Inc. Systèmes, procédés et dispositifs permettant la gestion de l'élimination de chaleur dans un dispositif ou un système de compression et/ou de dilatation
CN102230404B (zh) * 2011-07-06 2013-10-16 浙江大学 智能热能回收转换系统及其使用方法
JP5804555B2 (ja) * 2011-09-14 2015-11-04 定見 ▲吉▼山 蒸気機関
WO2013059522A1 (fr) * 2011-10-18 2013-04-25 Lightsail Energy Inc Système de stockage d'énergie à gaz comprimé
CN102434257B (zh) * 2011-11-17 2013-08-14 徐明奇 车、船发动机废热发电装置
US9574765B2 (en) * 2011-12-13 2017-02-21 Richard E. Aho Generation of steam by impact heating
DE102013007337A1 (de) * 2013-04-27 2014-10-30 Manfred Carlguth Wärmekraftmaschine mit hohem thermischen Wirkungsgrad
WO2015127910A1 (fr) 2014-02-25 2015-09-03 Manfred Carlguth Moteur thermique présentant un rendement thermique élevé
CN104806297A (zh) * 2015-03-11 2015-07-29 郭富强 一种余热利用的方法
AU2016263229B2 (en) 2015-05-18 2019-11-21 Richard E. Aho Cavitation engine
JP5826962B1 (ja) * 2015-05-25 2015-12-02 ライトブレインラボ合同会社 凝縮室付き熱機関
DE102015109174B3 (de) * 2015-06-10 2016-03-31 En3 Gmbh Verfahren zur Energieanreicherung eines Arbeitsmediums bei einer Entspannungsverdampfung und Vorrichtung zur Durchführung des Verfahrens
MX2018001785A (es) * 2015-08-13 2018-09-06 Gas Expansion Motors Ltd Motor termodinámico.
DE102015013896B3 (de) * 2015-10-27 2017-01-12 JuB-Creative Product GmbH Niedertemperaturwärmekraftanlage
DE102015013895B4 (de) * 2015-10-27 2020-06-18 JuB-Creative Product GmbH Gebäudetechnische Hybridanlage
CN113803114A (zh) * 2020-06-16 2021-12-17 机械科学研究院浙江分院有限公司 活塞式甲醇蒸汽机及其系统,以及蒸汽机循环做功方法
CN112343662A (zh) * 2020-12-14 2021-02-09 王新跃 一种以水为能源的发动机
WO2023232672A1 (fr) * 2022-05-31 2023-12-07 Manfred Rapp Moteur à air/vapeur et son utilisation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB171291A (en) * 1920-10-18 1921-11-17 Walter Irving Hoover Improvements in combined steam generators and engines
US3720188A (en) * 1971-01-11 1973-03-13 G Mead Compact steam generator and system
FR2258520A1 (en) * 1974-01-21 1975-08-18 Boehler & Co Ag Geb Steam turbine process using diphenyl - has wet vapour fed to each stage, to give saturated state after expansion
US4301655A (en) * 1979-12-14 1981-11-24 Thomas Luther B Combination internal combustion and steam engine
GB2082683A (en) * 1980-08-18 1982-03-10 Thermal Systems Ltd External combustion reciprocating heat engine
JPH06117256A (ja) * 1992-09-30 1994-04-26 Isuzu Motors Ltd 直接噴射式ディーゼル機関の燃焼室
EP0787900A2 (fr) * 1996-01-30 1997-08-06 Wartsila Diesel International Ltd. OY Soupape d'injection
DE10000082A1 (de) * 1999-11-12 2001-05-17 Guenter Frank Dampfmotor und Verfahren zum Betreiben von Dampfmotoren
DE10062835A1 (de) * 2000-12-17 2002-06-20 Erich Schneider Kolbenverbrennungsmotor mit sequentieller Dampfeinspritzung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE689961C (de) * 1937-08-06 1940-04-10 Kloeckner Humboldt Deutz Akt G Dampfkraftmaschine mit Dampfbildung im Zylinder
US3720186A (en) * 1971-10-14 1973-03-13 Rourke W O Dispensing apparatus
US4149383A (en) * 1977-07-29 1979-04-17 Spalding Wesley H Internal vaporization engine
JPS5638507A (en) * 1979-09-03 1981-04-13 Toshimi Negishi Prime mover
US4416113A (en) * 1980-12-15 1983-11-22 Francisco Portillo Internal expansion engine
JPS58140410A (ja) * 1981-07-23 1983-08-20 ジアンニ・アブラモ・ドツト 往復機関
US4599859A (en) * 1985-02-01 1986-07-15 Urso Charles L Combined steam generator and engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB171291A (en) * 1920-10-18 1921-11-17 Walter Irving Hoover Improvements in combined steam generators and engines
US3720188A (en) * 1971-01-11 1973-03-13 G Mead Compact steam generator and system
FR2258520A1 (en) * 1974-01-21 1975-08-18 Boehler & Co Ag Geb Steam turbine process using diphenyl - has wet vapour fed to each stage, to give saturated state after expansion
US4301655A (en) * 1979-12-14 1981-11-24 Thomas Luther B Combination internal combustion and steam engine
GB2082683A (en) * 1980-08-18 1982-03-10 Thermal Systems Ltd External combustion reciprocating heat engine
JPH06117256A (ja) * 1992-09-30 1994-04-26 Isuzu Motors Ltd 直接噴射式ディーゼル機関の燃焼室
EP0787900A2 (fr) * 1996-01-30 1997-08-06 Wartsila Diesel International Ltd. OY Soupape d'injection
DE10000082A1 (de) * 1999-11-12 2001-05-17 Guenter Frank Dampfmotor und Verfahren zum Betreiben von Dampfmotoren
DE10062835A1 (de) * 2000-12-17 2002-06-20 Erich Schneider Kolbenverbrennungsmotor mit sequentieller Dampfeinspritzung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013673B3 (de) * 2008-03-11 2009-09-17 Richard Engelmann Kolbendampfmaschine für einen solar betriebenen Rankine-Kreislauf
WO2010029020A1 (fr) * 2008-09-10 2010-03-18 Ago Ag Energie + Anlagen Machine motrice et procédé de fonctionnement d'une machine motrice
WO2010042446A2 (fr) * 2008-10-06 2010-04-15 Solartrec, Inc. Améliorations apportées à un moteur thermique
WO2010042446A3 (fr) * 2008-10-06 2013-06-27 Solartrec, Inc. Améliorations apportées à un moteur thermique
WO2012022288A3 (fr) * 2010-07-16 2012-07-05 Josef Birner Dispositif permettant de mettre en œuvre un cycle thermodynamique
WO2019205773A1 (fr) * 2018-04-28 2019-10-31 Cao Lianguo Nouvelle machine à vapeur renfermant un milieu de travail à fonctionnement cyclique
DE102021102803A1 (de) 2021-02-07 2022-08-11 Kristian Roßberg Vorrichtung und Verfahren zur Umwandlung von thermischer Energie in technisch nutzbare Energie
DE102021108558B4 (de) 2021-04-06 2023-04-27 Kristian Roßberg Verfahren und Vorrichtung zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie
EP4306775A1 (fr) 2022-07-11 2024-01-17 Kristian Roßberg Procédé et dispositif de conversion de chaleur à basse température en énergie mécanique techniquement utilisable

Also Published As

Publication number Publication date
CN101454542A (zh) 2009-06-10
US20090100832A1 (en) 2009-04-23
US8061133B2 (en) 2011-11-22
JP5145326B2 (ja) 2013-02-13
IL194523A0 (en) 2009-08-03
KR101417143B1 (ko) 2014-07-08
WO2007115769A3 (fr) 2008-07-10
KR20080112362A (ko) 2008-12-24
JP2009532619A (ja) 2009-09-10
EP2002089A2 (fr) 2008-12-17
IL194523A (en) 2013-02-28
CA2650541C (fr) 2014-12-09
CA2650541A1 (fr) 2007-10-18
EP2002089B1 (fr) 2016-03-23

Similar Documents

Publication Publication Date Title
EP2002089B1 (fr) Machine à vapeur à piston, à évaporation éclair interne du fluide de travail
EP1330592B1 (fr) Procede de fonctionnement d'un moteur thermique a vapeur, en particulier comme mecanisme d'entrainement de vehicule
DD156097A5 (de) Drehkolbenmotor mit aeusserer verbrennung,verfahren zum betrieb dieses motors und bausatz aus teilen des motors
DD156096A5 (de) Verbrennungsmotor mit hin-und hergehenden kolben und mit aeusserer verbrennung
DE3049124A1 (de) "kolbenmotor, verfahren zu seinem betrieb und bausatz aus teilen des motors"
DE3049182A1 (de) Drehkolbenmotor, verfahren zum betrieb des drehkolbenmotors und bausatz mit teilen des drehkolbenmotors
DE102007038073A1 (de) Effiziente Energiewandlungsmaschine durch kombinierte Brennkraftmaschine mit Dampfprozess
DE4303692A1 (de) Freikolben-Exergie-Verbrennungsmotor mit verringertem Brennstoffbedarf
DE10055524A1 (de) Dampfmotor und Verfahren zum Betreiben von Dampfmotoren
DE102010027347B4 (de) Vorrichtung zur Durchführung eines thermodynamischen Kreisprozesses
DE19533249C1 (de) Strömungsmaschine zur Erzeugung mechanischer Arbeit aus Wärmeenergie und ein Verfahren zur Erzeugung mechanischer Arbeit aus Wärmeenergie mit einer solchen Strömungsmaschine
DE10160593B4 (de) Wärmekraftanlage
DE2240426A1 (de) Verbrennungsmotor mit abwaermeverwertung
DE2743584A1 (de) Waermekraftmaschine
DE19506186B4 (de) Verfahren zum Betreiben einer Dampfkraftmaschinenanlage und Vorrichtung zur Durchführung des Verfahrens
CH699696A2 (de) Verfahren zur Erhöhung des Wirkungsgrades eines Hubkolben-Verbrennungsmotors sowie Hubkolben-Verbrennungsmotor.
EP1700023A2 (fr) Moteur a gaz chaud
DE102013013807A1 (de) Verdampfungs-Hubkolbenmotor
DE2953036C2 (de) Kolbenbrennkraftmaschine mit Abwärmenutzung
DE332227C (de) Vereinigte Viertaktexplosionskraft- und Dampfmaschine
DE531532C (de) Vereinigte Brennkraft- und Dampfkraftanlage
DE3129178A1 (de) "verbrennungsmotor"
DE2544015A1 (de) Verzoegernd expandierende antriebsmaschine
DE102011052502B4 (de) Verbrennungsmotor
DE2506040A1 (de) Gasturbine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018111.3

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 194523

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2009503486

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007723993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2650541

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087026893

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 4449/KOLNP/2008

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07723993

Country of ref document: EP

Kind code of ref document: A2