WO2007111266A1 - 無線通信端末装置及び無線通信基地局装置 - Google Patents

無線通信端末装置及び無線通信基地局装置 Download PDF

Info

Publication number
WO2007111266A1
WO2007111266A1 PCT/JP2007/056069 JP2007056069W WO2007111266A1 WO 2007111266 A1 WO2007111266 A1 WO 2007111266A1 JP 2007056069 W JP2007056069 W JP 2007056069W WO 2007111266 A1 WO2007111266 A1 WO 2007111266A1
Authority
WO
WIPO (PCT)
Prior art keywords
mimo
information
radio communication
communication terminal
cqi
Prior art date
Application number
PCT/JP2007/056069
Other languages
English (en)
French (fr)
Inventor
Tomohiro Imai
Masayuki Hoshino
Yasuaki Yuda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP07739510A priority Critical patent/EP1988653A1/en
Priority to JP2008506871A priority patent/JP4898786B2/ja
Priority to US12/293,528 priority patent/US20090291702A1/en
Publication of WO2007111266A1 publication Critical patent/WO2007111266A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0643Feedback on request
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • Wireless communication terminal device and wireless communication base station device are wireless communication terminal devices and wireless communication base station device
  • the present invention relates to a radio communication terminal apparatus and a radio communication base station apparatus.
  • Standardization of next-generation cellular systems 3GPP LTE (Long Term Evolution) requires a peak rate of 100Mbps downstream, and a MIMO system is introduced as a technology to achieve this.
  • Single-User MIMO limits spatial resource allocation to a single user and can be expected to improve the peak rate.
  • user multiplexing is performed on the time axis and frequency axis, so there is no user interference on the spatial axis.
  • MultHJser MIMO can be expected to improve sector (cell) throughput because multi-user diversity gain can be obtained by allocating spatial resources to multiple users. In particular, when the cell radius is large, the throughput is greatly improved.
  • the average sector throughput is improved by up to 15% compared to single-user MIMO and the cell edge user throughput is improved by up to 87%, simulation results are also reported.
  • BS base station with two antennas
  • UE mobile station with two antennas
  • the BS scheduler unit assigns a user with good CQI to each antenna based on CQI (i, j) fed back from each UE, and performs Multi-User MIMO communication.
  • UE 1 is assigned to antenna 1 and UE 3 is assigned to antenna 2.
  • Non-Patent Document 1 Texas Instruments, 3GPP TSG RAN WGl # 42bis Rl- 051056, "Throu ghput comparison of single user and multi user MIMO for Downlink OFDMA E— UTR A", San Diego, USA, 10-14 October, 2005
  • An object of the present invention is to provide a radio communication terminal apparatus and a radio communication base station apparatus that are accommodated in a multi-user MIMO system even when the interference suppression capability is low.
  • a radio communication terminal apparatus includes a receiving means for receiving a pilot signal transmitted from a radio communication base station apparatus, channel estimation using the pilot signal, and channel estimation for obtaining a channel estimation value. And a plurality of beam information formed by the radio communication base station apparatus, a desired beam having a maximum reception quality obtained from the channel estimation value, and a beam directed to another user to be subjected to multi-user communication And a beam combination determining means for feeding back the determined beam combination to the radio communication base station apparatus.
  • the radio communication base station apparatus of the present invention includes a beam forming means for forming a plurality of beams, a desired beam to which the radio communication terminal apparatus power is also fed back, and a target for multi-user communication.
  • Allocation means for allocating wireless communication terminal devices to spatial resources based on the combination information with beams directed to other users and desired beam information to which other wireless communication terminal device forces are fed back, and spatial resources Based on the beam information fed back from the assigned radio communication terminal apparatus, a configuration is adopted that includes beam weight generating means for generating beam weights for controlling the beam forming means.
  • the transmission beam forming method of the present invention is based on a plurality of pieces of beam information formed by the radio communication base station apparatus, to a desired beam having the maximum reception quality and to other users who are targets of multi-user communication. Determining a combination with the beam to be directed, feeding back the determined combination of beams from the radio communication terminal apparatus to the radio communication base station apparatus, and based on the feedback beam combination! / And a step of forming a transmission beam for the wireless communication terminal device and the other user.
  • the interference suppression capability is low and the radio communication terminal apparatus can be accommodated in the Multi-User MIMO system.
  • FIG. 1 Schematic diagram of Multi-User MIMO system disclosed in Non-Patent Document 1
  • FIG.2 Conceptual diagram showing the communication mode of Multi-User MIMO system
  • FIG. 4 is a diagram showing a weight table of beam yarn alignment information possessed by the beam weight generator shown in FIG.
  • FIG. 5 is a flowchart showing the operation of the scheduler unit shown in FIG.
  • FIG. 6 is a block diagram showing the configuration of the non-MIMO UE shown in FIG.
  • FIG. 7 is a block diagram showing the internal configuration of the beam combination determining unit shown in FIG.
  • FIG. 9 is a block diagram showing the configuration of the MIMO UE shown in FIG.
  • FIG. 12 is a block diagram showing a configuration of a UE according to Embodiment 2 of the present invention.
  • FIG. 13 is a flowchart showing the operation of the beam information determination unit shown in FIG.
  • FIG. 14 is a sequence diagram showing an operation between a UE and a BS according to Embodiment 2 of the present invention.
  • FIG. 15 is a block diagram showing a BS configuration according to Embodiment 3 of the present invention.
  • FIG. 16 is a diagram showing a terminal performance table possessed by the terminal performance determination unit shown in FIG.
  • FIG. 17 is a diagram showing an in-cell terminal performance determination table possessed by the terminal performance determination unit shown in FIG.
  • FIG. 18 is a block diagram showing a configuration of a UE according to Embodiment 3 of the present invention.
  • FIG. 19 is a flowchart showing the operation of the beam information determination unit shown in FIG.
  • FIG. 20 is a sequence diagram showing an operation between a UE and a BS according to Embodiment 3 of the present invention.
  • the number of BS antennas is set to 2
  • the number of UEs accommodated in the BS cell is set to 3.
  • the three UEs one is a non-MIMO UE with 1 antenna and the other 2 are MIMO UEs with 2 antennas.
  • the BS forms a transmit beam, and this beam information (beam information) is shared between the BS and UE.
  • FIG. 3 is a block diagram showing a configuration of the BS shown in FIG.
  • transmission buffer section 101-1 accumulates transmission data for non-MIMO UEs and outputs the accumulated transmission data to scheduler section 102.
  • the transmission buffer units 101-2 and 101-3 store the transmission data for UE1 and the transmission data for UE2, respectively, and output the stored transmission data to the scheduler unit 102.
  • Beamer combination information and non-MIMO CQI described later are fed back to scheduler section 102 from non-MIMO UE, and desired beam information and CQI for each UE are fed back from UE1 and UE2. Based on the fed back information, the scheduler unit 102 sends a spatial resource.
  • the transmission data of the allocated users is output as user streams 1 and 2 to modulation sections 103-1 and 103-2, respectively.
  • the scheduler unit 102 also outputs CQI corresponding to each user stream to the modulation units 103-1, 103-2. Further, the beam information is output to the beam weight generation unit 104.
  • Modulation sections 103-1 and 103-2 determine a modulation scheme and a coding rate (MCS) from the CQI output from scheduler section 102, and determine the determined modulation scheme and code ratio.
  • the user stream output from the scheduler unit 102 is modulated and encoded according to the probability.
  • the modulated and encoded user stream is output to transmission beam forming section 105.
  • the beam weight generation unit 104 includes a weight table shared between the BS and each UE, and also reads out and reads the weight table power corresponding to the beam information output from the scheduler unit 102.
  • the beam weight is output to the transmission beam forming unit 105.
  • the weight vectors corresponding to each transmission beam are represented as w 1, w 2, w, the beam combination information
  • the weight table of report B can be expressed as shown in Fig. 4.
  • the weight vector of the desired beam of the MIMO UE that is the target of multi-user communication is w
  • each of the weights w and w is combined with the stream index information in the transmission beam forming unit 10.
  • the beam information B of each UE is
  • the transmission beam forming unit 105 performs weight multiplication on the user stream output from the modulation units 103-1 and 103-2 using the beam weight output from the beam weight generation unit 104, and transmits the transmission beam. Form.
  • the weighted user stream is output to RF sections 107-1 and 107-2.
  • the user streams output from the modulators 103-1, 103-2 are S and S, respectively, and the weight multiplication is output to the RF units 107-1, 107-2.
  • the subsequent streams are X and X, respectively, and the beam output from the beam weight generation unit 104 If weights are set to [w, w], x and ⁇ can be expressed as the following equation (1).
  • the no-lot generation unit 106 generates a no-lot signal and transmits the generated pilot signal to the RF unit 1
  • RF sections 107-1 and 107-2 perform predetermined radio transmission processing such as up-conversion on the user stream output from transmission beam forming section 105 and the pilot signal output from pilot generation section 106. Then, transmit from antennas 108-1 and 108-2.
  • the beam combination information fed back from the non-MIMO UE is represented as B and CQI is represented as CQI comb nonMI. Furthermore, for beam combination information, the desired beam of non-MIMO UE is designated as B (
  • the desired beam of MO comb nonMIMO) and MIMO UE is represented as B (MIMO). Also, UE1, UE2 comb
  • UEi represents UEi.
  • step (hereinafter referred to as “ST”) 401 it is confirmed whether or not the non-MIMO UE exists in the cell.
  • the UE When each UE synchronizes with the BS, the UE notifies the BS of terminal information indicating whether the UE is a MIMO UE or a non-MIMO UE. Therefore, the BS determines whether or not there is a non-MIMO UE in the cell. Can be confirmed. If there is a non-MIMO UE, the process proceeds to ST402, and if there is no non-MIMO UE, the process proceeds to ST404.
  • the scheduler section 102 assigns a CQI that is a CQI of the non-MIMO UE as a CQI for stream 1, and user stream 1 Is output from the transmission buffer unit 101—1 and nonMIMO
  • the beam information output to the beam weight generation unit 104 is the beam combination information B to which the non-MIMO UE power is also fed back.
  • the desired beam information B (MIMO) of the MIMO UE notified by the non-MIMO UE matches the desired beam information B of each UE, and another spatial resource is allocated to the UE having the largest CQI.
  • the beam information output to beam weight generation section 104 is B.
  • the beam information output to the beam weight generation unit 104 is B and B.
  • the scheduler unit 102 when there are a plurality of non-M IMO UEs in a power cell in which the number of non-MIMO UEs is 1, the scheduler unit 102 has the largest CQI among the plurality of non-MIMO UEs. Allocate 1 stream to the thing.
  • FIG. 6 is a block diagram showing a configuration of the non-MIMO UE shown in FIG.
  • the RF unit 502 receives the signal transmitted also with the BS power shown in FIG. 3 via the antenna 501, and performs predetermined radio reception processing such as down-conversion on the received signal.
  • predetermined radio reception processing such as down-conversion on the received signal.
  • the data portion is output to demodulation section 505, and the pilot signal is output to channel estimation section 503.
  • Channel estimation section 503 performs channel estimation using the pilot signal output from RF section 502 and outputs the estimated value to beam combination determination section 504 as channel estimation information.
  • the beam combination determining unit 504 uses the channel estimation information output from the channel estimation unit 503 and the beam information shared between the BS and the UE, and uses the beam yarn alignment information and the CQ. I is calculated. The beam combination information and CQI are fed back to the BS shown in Fig.2. Also, the CQI calculated one frame before is output to the demodulator 505. Details of the beam combination determining unit 504 will be described later.
  • Demodulation section 505 obtains the modulation scheme and coding rate (MCS) from the CQI output from beam combination decision section 504, and outputs from RF section 502 using the obtained modulation scheme and coding rate.
  • MCS modulation scheme and coding rate
  • the received data is obtained by demodulating and decoding the received data portion.
  • FIG. 7 is a block diagram showing an internal configuration of the beam combination determining unit 504.
  • CQI determination section 511 detects the maximum SINR value output from received SINR calculation section 510 and feeds back the detected SINR to the BS as CQI. Also, the beam combination information when SINR is maximized is fed back to the BS. If CQI fed back to the BS is CQI, CQI can be expressed as the following equation (8).
  • FIG. 8 is a diagram illustrating a relationship between a gain of a transmission beam formed by three transmission beam weights and a signal arrival direction.
  • the solid line is the transmit beam weight w
  • the dotted line is the transmit beam weight w
  • the alternate long and short dash line is the transmit beam weight w.
  • Each of the transmit beams formed by 1 2 3 is shown.
  • FIG. 9 is a block diagram showing a configuration of MIMO UE shown in FIG.
  • the RF units 802-1 and 802-2 receive the signals transmitted from the BS power shown in FIG. 3 via the antennas 801-1 and 801-2, and downconvert the received signals. Performs predetermined radio reception processing. Of the signal subjected to the radio reception processing, the data portion is output to interference canceling section 804, and the no-lot signal is output to channel estimating section 803.
  • Channel estimation section 803 performs channel estimation using the pilot signals output from RF sections 802-1 and 802-2, and uses the estimated value as channel estimation information as interference cancellation section 804 and CQI. Output to the calculation unit 805.
  • the interference cancellation unit 804 obtains weights such as ZF and MMSE from the channel estimation information output from the channel estimation unit 803, and outputs the obtained weights from the RF units 802-1 and 802-2. By multiplying the data portion, interference with other users is suppressed and a desired signal is extracted. The signal in which the interference from other users is suppressed is output to demodulation section 806.
  • CQI calculation section 805 calculates desired beam information and CQI using channel estimation information output from channel estimation section 803 and beam information shared between BS and UE. Specifically, the CQI when each transmission beam is used is calculated, and the maximum value of the calculated CQI and the transmission beam at this time are fed back to the BS as desired beam information. The CQI one frame before is output to the demodulator 806.
  • Demodulation section 806 obtains the modulation scheme and code rate (MCS) from the CQI output from CQI calculation section 805, and outputs it from interference cancellation section 804 using the obtained modulation scheme and coding rate.
  • MCS modulation scheme and code rate
  • the received signal is demodulated and decoded to obtain received data.
  • the BS transmits a pilot signal orthogonal between the BS antennas to each UE, and each UE acquires a channel estimation value using the received pilot signal.
  • Each UE calculates CQI (Reception SINR) from the beam information and channel estimation value shared with the BS.
  • the MIMO UE is the CQI maximum among the transmission beam candidates included in the beam information.
  • the transmitted beam is determined as desired beam information, and the CQI and desired beam information at this time are fed back to the BS.
  • the non-MIMO UE includes a transmission beam having a maximum received SIR or SINR and a MIMO UE based on the transmission beam candidate included in the beam information and the transmission beam candidate of the MIMO UE that is the target of multiuser communication.
  • the transmission beam is determined as beam combination information, and the CQI and beam combination information at this time are fed back to the BS.
  • the BS determines a user to which a spatial resource is allocated.
  • UEl is selected as the MIMO UE that wants the same transmit beam as the beam information specified by the non-MIMO UE as the target MIMO UE for the multi-user communication. It shall be.
  • the BS forms a multi-beam with beams desired by the non-MIMO UE and UE 1 and transmits downlink data to each UE.
  • the transmission beam thus formed is as shown in FIG.
  • the amount of interference with non-MIMO UEs is reduced, and non-MIMO UEs can be accommodated in a multi-user MIMO system.
  • UE1 is a MIMO UE and has signal separation processing capability, the reception quality of UE1 is not affected even if the interference to UE1 is not reduced. If interference with UE1 is also reduced, UE1's CQI can be improved and the MCS level can be raised, so that throughput can be improved.
  • a desired beam of a non-MIMO UE is preferentially assigned to a MIMO UE, and the non-MIMO UE transmits a beam to another MIM O UE that is a target of multiuser communication. Since non-MIMO UEs can reduce interference from other MIMO UEs that perform multi-user communication, it is possible to accommodate non-MIMO UEs in a Multi-User MIMO system. This increases the number of terminals that can be accommodated in the multi-user MIMO system, thereby increasing the multiuser diversity gain and improving the system throughput. In addition, since the beam is selected on the UE side, link adaptation considering the amount of interference can be realized by reporting the reception status when each beam is used from the UE to the BS.
  • Embodiment 2 In Embodiment 1, the power for explaining the case where a non-MIMO UE is preferentially assigned a beam to a MIMO UE In Embodiment 2 of the present invention, a MIMO UE having a high channel correlation among a plurality of MIMO UEs The case where beams are preferentially assigned to will be explained.
  • the number of BS and UE antennas is set to 2, and the number of UEs accommodated in the BS cell is set to 3 (UE1 to UE3).
  • the BS forms a transmission beam, and this beam information (beam information) is shared between the BS and UE.
  • FIG. 12 is a block diagram showing a configuration of UE according to Embodiment 2 of the present invention.
  • FIG. 12 differs from FIG. 9 in that a correlation detection unit 1101 is added and that the CQI calculation unit 805 is changed to a beam information determination unit 1102.
  • correlation detection section 1101 detects channel correlation using channel estimation information output from channel estimation section 803 and outputs the detected channel correlation information to beam information determination section 1102.
  • channel estimation information is H
  • channel correlation information is p
  • p can be expressed by the following equation (9).
  • E [] represents the ensemble average, and h and h represent the elements of the MIMO channel matrix H. However, h ⁇ .
  • Beam information determination section 1102 calculates CQI based on channel estimation information output from channel estimation section 803, channel correlation information output from correlation detection section 1101, and beam information, and calculates the calculated CQI. Is output to the demodulator 806 and fed back to the BS. Also, desired beam information or beam combination information is generated and fed back to the BS.
  • the beam information determining unit 1102 functions as a beam combination determining unit.
  • channel correlation information p is equal to or greater than a predetermined threshold Td. If the channel correlation information p is greater than or equal to the threshold value Td, the process proceeds to ST1202, and if the channel correlation information p is less than the threshold value Td, the process proceeds to ST1204.
  • a transmission beam combination that maximizes the received SINR is determined as beam combination information from transmission beam candidates in the beam information and transmission beam candidates of other users.
  • ST1204 determines a transmission beam having the maximum CQI from the transmission beam candidates in the beam information as a desired beam, and ST1 205 determines the desired beam information and the maximum value. CQI is output.
  • the BS transmits a pilot signal orthogonal between the BS antennas to each UE, and each UE acquires a channel estimation value using the received pilot signal.
  • Each UE also detects the channel correlation of the channel estimation power.
  • each UE calculates CQI (received SINR) from the beam information and channel estimation information shared with the BS.
  • CQI calculation method differs depending on the channel correlation information.
  • the transmission beam having the maximum CQI is determined as the desired beam information, and the CQI and desired beam information at this time are determined. Is fed back to the BS.
  • the transmission beam candidates included in the beam information and the other user's are determined as beam combination information, and the CQI and beam combination information at this time are fed back to the BS.
  • the BS determines a user to which a spatial resource is allocated.
  • UE3 having a high channel correlation selects UE1 as another user who desires the same transmission beam as the beam information specified for the other user.
  • the BS forms a multi-beam with the beams desired by UE3 and UE1, and transmits downlink data to each UE.
  • Embodiment 2 a desired beam of a MIMO UE having a high channel correlation is obtained.
  • interference from other users of the MIMO UE whose reception SINR has deteriorated due to high channel correlation can be reduced, improving reception SINR.
  • System throughput can be improved.
  • the BS scheduler section 102 when there are a plurality of users with high channel correlation in a power cell in which the number of users with high channel correlation is 1, the BS scheduler section 102 has the largest CQI. Allocate 1 stream to the thing.
  • Embodiment 2 a case has been described in which a beam is preferentially assigned to a MIMO UE having a high channel correlation among a plurality of MIMO UEs.
  • Embodiment 3 of the present invention signal separation is performed among a plurality of MIMO UEs. The case where beams are preferentially assigned to MIMO UEs with low processing capabilities is explained.
  • the number of BS and UE antennas is 2, and the number of UEs accommodated in the BS cell is 3 (UE1-3).
  • the BS forms a transmission beam, and this beam information (beam information) is shared between the BS and UE.
  • FIG. 15 is a block diagram showing the configuration of the BS according to Embodiment 3 of the present invention.
  • FIG. 15 differs from FIG. 3 in that a terminal performance determination unit 1401 is added.
  • terminal performance determination section 1401 obtains UE terminal performance (signal separation capability) information from each UE, and UE determines the terminal performance based on the highest terminal performance in the cell.
  • the reference intra-cell terminal performance information is calculated, and the calculated intra-cell terminal performance information is transmitted to each UE.
  • Terminal performance determining section 1401 is assumed to share a terminal performance table as shown in FIG. 16 with each UE, for example.
  • ZF performs signal separation using the Zero Forcing method
  • MMSE performs signal separation using the least square error method
  • SIC performs signal separation using a successive interference canceller such as V-BALST.
  • MLD shows the signal separation process using the maximum likelihood estimation method.
  • the larger the index the higher the signal separation capability.
  • the terminal performance determination unit 1401 uses the index information as terminal performance information Rc. UE power is reported, and based on the in-cell terminal performance determination table shown in FIG. 17, the reported terminal performance information Rc and in-cell terminal performance information Be are determined.
  • the standard is the same.
  • Be 0 is set so that each UE does not judge its own terminal performance.
  • the receiving performance other than that shown in FIG. 16 may be introduced by increasing the terminal performance level by dividing the terminal performance into four levels.
  • the terminal performance in a cell can be determined flexibly according to the stage of terminal performance.
  • FIG. 18 is a block diagram showing a configuration of a UE according to Embodiment 3 of the present invention. 18 is different from FIG. 12 in that the correlation detection unit 1101 is deleted and the beam information determination unit 1102 is changed to a beam information determination unit 1701.
  • Beam information determination section 1701 determines the terminal performance of the own terminal based on the intra-cell terminal performance information Be transmitted from the BS, and calculates and calculates CQI according to the terminal performance of the own terminal.
  • the CQI is output to the demodulator 806 and fed back to the BS.
  • desired beam information or beam combination information is generated and fed back to the BS.
  • the beam information determination unit 1701 functions as a beam combination determination unit.
  • Terminal performance information Rc is the cell
  • the BS requests each UE to notify the UE of the terminal performance in order to grasp the signal separation capability of each UE.
  • each UE notifies the BS of the signal separation capability.
  • the BS reports in-cell terminal performance information to all UEs as information serving as a reference for each UE in the cell to determine the signal separation capability based on the signal separation capability notified from each UE.
  • Each UE judges its own signal separation capability based on the reported in-cell terminal performance information.
  • UE1 and UE2 are determined to be UEs with high signal separation capability
  • UE3 is determined to be a UE with low signal separation capability.
  • the BS transmits a pilot signal orthogonal between the BS antennas to each UE, and each UE acquires a channel estimation value using the received pilot signal.
  • Each UE calculates CQI (Reception SINR) from the beam information and channel estimation information shared with the BS.
  • CQI calculation method differs depending on the signal separation capability of each UE.
  • the transmission beam having the maximum CQI is determined as desired beam information, and the CQI at this time is determined. And the desired beam information are fed back to the BS.
  • UE3 since UE3 is assumed to have low signal separation capability, it is considered that UE3 is prioritized for beam assignment to other users. Based on the transmission beam candidates of other users, the transmission beam with the maximum received SIR or SINR and the transmission beam of the MIMO UE are determined as beam combination information, and the CQI and beam combination information at this time are fed back to the BS. .
  • the BS determines a user to which a spatial resource is allocated.
  • UE3 having a high channel correlation selects UE1 as another user who desires the same transmission beam as the beam information specified for the other user.
  • the BS forms a multi-beam with the beams desired by UE3 and UE1, and transmits downlink data to each UE.
  • a desired beam of a UE having a relatively low signal separation capability in a cell is preferentially assigned to a UE having a high signal separation capability. With a low signal separation capability, the UE can reduce interference from other users.
  • the number of terminals with low signal separation capability is set to 1.
  • BS scheduler section 102 has CQI among them. Allocate one stream for the largest.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • LSI due to the difference in the power integration of LSI,
  • IC system LSI
  • super LSI super LSI
  • ultra LSI ultra LSI
  • circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • An FPGA Field Programmable Gate Array
  • reconfigurable 'processor that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
  • the base station (BS) in the above embodiment may be expressed as Node B.
  • the radio communication terminal apparatus and radio communication base station apparatus can accommodate a radio communication terminal apparatus with low interference suppression capability in a MultHJser MIMO system, and can be applied to a Multi-U ser MIMO system.

Abstract

 干渉抑圧能力が低くても、Multi-User MIMOシステムに収容される無線通信端末装置及び無線通信基地局装置を提供する。スケジューラ部(102)は、非MIMO UEからフィードバックされたビーム組合せ情報と、他のMIMO UEからフィードバックされたビーム情報及びCQIとに基づいて、非MIMO UEに空間リソースを割り当て、残りのリソースを他のMIMO UEに割り当てる。ビームウェイト生成部(104)は、ビーム組合せ情報に基づいて、ウェイトを生成し、送信ビーム形成部(105)は、変調部(103-1、103-2)から出力された各ストリームにウェイトを乗算して、送信ビームを形成する。

Description

明 細 書
無線通信端末装置及び無線通信基地局装置
技術分野
[0001] 本発明は、無線通信端末装置及び無線通信基地局装置に関する。
背景技術
[0002] 近年、携帯電話機等に代表される無線セルラシステムにお ヽては、サービス形態 が多様ィ匕し、音声データのみならず、静止画像、動画像等の大容量データを伝送す ることが要求される。これに対して、高い周波数利用効率を実現する MIMO (Multi-I nput Multi-Output)システムの研究が盛んに行われて 、る。
[0003] 次世代セルラシステムの標準化 3GPP LTE (Long Term Evolution)にお!/、ては、 下り 100Mbpsのピークレートが要求されており、これを実現する技術として MIMOシ ステムが導入される。 MIMOシステムにおける空間多重方式としては、 SDM (空間 分割多重:別称 Single- User MIMO)と SDMA (空間分割多重アクセス:別称 Multト U ser MIMO)の使用が検討されて 、る。
[0004] Single-User MIMOは空間リソース割り当てを単一ユーザに限定するもので、ピーク レートの向上が期待できる。 Single-User MIMOでは、時間軸、周波数軸でユーザ多 重を行うので、空間軸でのユーザ干渉がない。一方、 MultHJser MIMOは空間リソー スを複数のユーザに割り当てることによってマルチユーザダイバーシチ利得が得られ るので、セクタ(セル)スループットの向上が期待できる。特に、セル半径が大きいとき 、スループットは大きく改善する。 Single- User MIMOに対して平均セクタスループット を最大 15%改善し、セルエッジユーザスループットを最大 87%改善すると 、うシミュ レーシヨン結果も報告されて 、る。
[0005] ここで、 2つのアンテナを備えた基地局(以下、「BS」 t 、う)と、 2つのアンテナを備 えた移動局(以下、「UE」 t\、う)が 3ユーザ (UE1〜3)存在する場合の MultHJser MIMOシステムの概略図を図 1に示す (非特許文献 1参照)。
[0006] 図 1にお!/、て、各 UEは BSの各アンテナから送信された直交パイロットシンボルを 受信し、 CQI ( = SINR)を計算する。その後、各 UEは BSのアンテナ毎の CQI (i, j) を BSにフィードバックする。ここで、 iはユーザ番号(i= l〜3)、 jは BSのアンテナ番 号 (j = l, 2)を表す。
[0007] BSのスケジューラ部では、各 UEよりフィードバックされた CQI (i, j)を基にアンテナ 毎に CQIの良いユーザを割り当て、 Multi-User MIMO通信を行う。図 1では、アンテ ナ 1に対して UE 1が、アンテナ 2に対して UE3がそれぞれ割り当てられて ヽる。
非特許文献 1 : Texas Instruments, 3GPP TSG RAN WGl #42bis Rl- 051056, "Throu ghput comparison of single user and multi user MIMO for Downlink OFDMA E— UTR A", San Diego, USA, 10 - 14 October, 2005
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、上記の Multi-User MIMOでは、他ユーザ干渉を除去する必要がある ので、 UEは信号分離能力(アンテナ数 2以上で ZF, MMSE等の機能)を備えてい なければならない。したがって、アンテナ数が 1本、あるいは信号分離能力を備えな い非 MIMO UE、すなわち、干渉抑圧能力が低い端末は、受信 SNRが良くても他 ユーザ干渉により受信 SINRが劣化するので、 Multi-User MIMOシステムに収容でき ないという問題がある。
[0009] 本発明の目的は、干渉抑圧能力が低くても、 Multi-User MIMOシステムに収容され る無線通信端末装置及び無線通信基地局装置を提供することである。
課題を解決するための手段
[0010] 本発明の無線通信端末装置は、無線通信基地局装置から送信されたパイロット信 号を受信する受信手段と、前記パイロット信号を用いてチャネル推定を行い、チヤネ ル推定値を求めるチャネル推定手段と、前記無線通信基地局装置が形成する複数 のビーム情報を有し、前記チャネル推定値から求まる受信品質が最大となる所望の ビームと、マルチユーザ通信の対象となる他のユーザに向けるビームとの組合せを決 定し、決定したビームの組合せを前記無線通信基地局装置にフィードバックするビー ム組合せ決定手段と、を具備する構成を採る。
[0011] 本発明の無線通信基地局装置は、複数のビームを形成するビーム形成手段と、無 線通信端末装置力もフィードバックされた所望のビームと、マルチユーザ通信の対象 となる他のユーザに向けるビームとの組合せ情報、および、他の無線通信端末装置 力もフィードバックされた所望のビーム情報に基づいて、無線通信端末装置を空間リ ソースに割り当てる割り当て手段と、空間リソースに割り当てた無線通信端末装置か らフィードバックされたビーム情報に基づ 、て、前記ビーム形成手段を制御するビー ムウェイトを生成するビームウェイト生成手段と、を具備する構成を採る。
[0012] 本発明の送信ビーム形成方法は、無線通信基地局装置が形成する複数のビーム 情報に基づいて、受信品質が最大となる所望のビームと、マルチユーザ通信の対象 となる他のユーザに向けるビームとの組合せを決定し、決定したビームの組合せを無 線通信端末装置から前記無線通信基地局装置にフィードバックする工程と、フィード バックされた前記ビームの組合せに基づ!/、て、前記無線通信端末装置及び前記他 のユーザに送信ビームを形成する工程と、を具備するようにした。 発明の効果
[0013] 本発明によれば、干渉抑圧能力が低!、無線通信端末装置を Multi- User MIMOシ ステムに収容することができる。
図面の簡単な説明
[0014] [図 1]非特許文献 1に開示の Multi-User MIMOシステムの概略図
[図 2]Multi-User MIMOシステムの通信態様を示す概念図
[図 3]図 2に示した BSの構成を示すブロック図
[図 4]図 3に示したビームウェイト生成部が有するビーム糸且合せ情報のウェイトテープ ルを示す図
[図 5]図 3に示したスケジューラ部の動作を示すフロー図
[図 6]図 2に示した非 MIMO UEの構成を示すブロック図
[図 7]図 6に示したビーム組合せ決定部の内部構成を示すブロック図
[図 8]3つの送信ビームウェイトによって形成される送信ビームの利得 (ゲイン)と信号 の到来方向との関係を示す図
[図 9]図 2に示した MIMO UEの構成を示すブロック図
[図 10]図 2に示した BS、非 MIMO UE、 MIMO UEの動作を示すシーケンス図 [図 11]送信ビームが形成される様子を示す概念図 [図 12]本発明の実施の形態 2に係る UEの構成を示すブロック図
[図 13]図 12に示したビーム情報決定部における動作を示すフロー図
[図 14]本発明の実施の形態 2に係る UEと BS間の動作を示すシーケンス図
[図 15]本発明の実施の形態 3に係る BSの構成を示すブロック図
[図 16]図 15に示した端末性能決定部が有する端末性能テーブルを示す図
[図 17]図 15に示した端末性能決定部が有するセル内端末性能決定テーブルを示す 図
[図 18]本発明の実施の形態 3に係る UEの構成を示すブロック図
[図 19]図 18に示したビーム情報決定部における動作を示すフロー図
[図 20]本発明の実施の形態 3に係る UEと BS間の動作を示すシーケンス図 発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実 施の形態において、同一機能を有する構成には同一符号を付し、重複する説明は 省略する。
[0016] (実施の形態 1)
本発明の実施の形態 1では、図 2に示すように、 BSのアンテナ数を 2とし、この BS のセル内に収容される UE数を 3とする。また、 3つの UEのうち、 1つはアンテナ数 1 の非 MIMO UEとし、残りの 2つはアンテナ数 2の MIMO UEとする。また、 BSは送 信ビームを形成し、このビームの情報 (ビーム情報)は BSと UEとにおいて共有される ものとする。
[0017] 図 3は、図 2に示した BSの構成を示すブロック図である。この図において、送信バッ ファ部 101— 1は、非 MIMO UE用の送信データを蓄積し、蓄積した送信データをス ケジユーラ部 102に出力する。送信バッファ部 101— 2, 101 - 3は、 UE1用の送信 データ、 UE2用の送信データをそれぞれ蓄積し、蓄積した送信データをスケジユー ラ部 102に出力する。
[0018] スケジューラ部 102には、非 MIMO UEから後述するビーム組合せ情報及び非 MI MO用 CQIと、 UE1及び UE2から所望ビーム情報と各 UE用 CQIとがフィードバック される。スケジューラ部 102は、フィードバックされた情報に基づいて、空間リソースへ のユーザ割り当てを行 ヽ、割り当てたユーザの送信データをそれぞれユーザストリー ム 1、 2として変調部 103— 1、 103— 2に出力する。また、スケジューラ部 102は各ュ 一ザストリームに対応する CQIも変調部 103— 1, 103— 2に出力する。さらに、ビー ム情報をビームウェイト生成部 104に出力する。
[0019] 変調部 103— 1, 103— 2は、スケジューラ部 102から出力された CQIから変調方 式及び符号化率(MCS : Modulation and Coding Scheme)を決定し、決定した変調方 式及び符号ィ匕率によって、スケジューラ部 102から出力されたユーザストリームの変 調及び符号化を行う。変調及び符号化されたユーザストリームは送信ビーム形成部 1 05に出力される。
[0020] ビームウェイト生成部 104は、 BSと各 UEとの間で共有しているウェイトテーブルを 備え、スケジューラ部 102から出力されたビーム情報に対応するビームウェイトをゥェ イトテーブル力も読み出し、読み出したビームウェイトを送信ビーム形成部 105に出 力する。ここで、例えば、 BS—UE間で共有している送信ビームが 3つであるとし、各 送信ビームに対応するウェイトベクトルを w , w , wと表すとすると、ビーム組合せ情
1 2 3
報 B のウェイトテーブルは図 4のように表すことができる。
comb
[0021] 図 4より、例えば、 B = 1の場合、非 MIMO UEの所望ビームのウェイトベクトル comb
が w、マルチユーザ通信の対象となる MIMO UEの所望ビームのウェイトベクトルが wとなり、各ウェイト w ,wがストリームインデックス情報と併せて送信ビーム形成部 10
2 1 2
5に出力される。
[0022] また、セル内に非 MIMO UEが存在しない場合、各 UEのビーム情報 B はウェイ
UEi トを表すので、ストリームインデックス情報と併せて送信ビーム形成部 105に出力され る。
[0023] 送信ビーム形成部 105は、変調部 103— 1, 103— 2から出力されたユーザストリー ムに対して、ビームウェイト生成部 104から出力されたビームウェイトによるウェイト乗 算を行い、送信ビームを形成する。ウェイト乗算されたユーザストリームは RF部 107 - 1, 107— 2に出力される。ここで、変調部 103— 1, 103— 2から出力されたユーザ ストリームをそれぞれ S , Sとし、 RF部 107— 1, 107— 2に出力されるウェイト乗算
1 2
後のストリームをそれぞれ X , Xとし、ビームウェイト生成部 104から出力されるビーム ウェイトを [w , w ]とおくと、 x , χは次式(1)のように表すことができる。
1 2 1 2
[数 1]
Figure imgf000008_0001
[0024] ノ ィロット生成部 106は、ノ ィロット信号を生成し、生成したパイロット信号を RF部 1
07 - 1, 107— 2にそれぞれ出力する。
[0025] RF部 107— 1, 107— 2は、送信ビーム形成部 105から出力されたユーザストリー ム及びパイロット生成部 106から出力されたパイロット信号にアップコンバート等の所 定の無線送信処理を行って、アンテナ 108— 1, 108— 2から送信する。
[0026] 次に、上述したスケジューラ部 102の動作について図 5を用いて説明する。ここでは
、非 MIMO UEからフィードバックされるビーム組合せ情報を B 、 CQIを CQI comb nonMI と表す。さらに、ビーム組合せ情報について非 MIMO UEの所望ビームを B (
MO comb nonMIMO)、 MIMO UEの所望ビームを B (MIMO)と表す。また、 UE1, UE2 comb
力もフィードバックされる所望ビーム情報を B (i= l, 2)、CQIを CQI (i= l, 2)と
UEi UEi 表す。
[0027] 図 5において、ステップ(以下「ST」という) 401では、非 MIMO UEがセル内に存 在する力否かを確認する。なお、各 UEは BSと同期する際に、自端末が MIMO UE か非 MIMO UEかを示す端末情報を BSに通知しているため、 BSではセル内に非 MIMO UEが存在するか否かを確認することができる。非 MIMO UEが存在する場 合には ST402に移行し、非 MIMO UEが存在しない場合には ST404に移行する。
[0028] ST402では、非 MIMO UEは MIMO UEに対して優先的にビームを割り当てら れるので、スケジューラ部 102は、ストリーム 1用 CQIとして非 MIMO UEの CQIであ る CQI を割り当て、ユーザストリーム 1に送信バッファ部 101— 1から出力され nonMIMO
た非 MIMO UEデータを割り当てる。また、ビームウェイト生成部 104に出力するビ ーム情報を非 MIMO UE力もフィードバックされたビーム組合せ情報 B とする。
comb
[0029] ST403では、 BSが割り当てることのできるユーザ数は 2であるから、もう 1つの空間 リソースを UE1または UE2に割り当てることになる。このとき、非 MIMO UEが通知 する MIMO UEの所望ビーム情報 B (MIMO)と各 UEの所望ビーム情報 B と がー致し、かつ、 CQI が最大の UEに対してもう 1つの空間リソースを割り当てる。
[0030] 例えば、 B (MIMO) =B 、 B (MIMO)≠B である場合、もう 1つの空間 リソースに UEIを割り当てることになり、ユーザストリーム 2に送信バッファ部 101— 2 力も出力された UE1用データが割り当てられ、ストリーム 2用 CQI = CQI となる。な お、ビーム組合せ情報と一致する MIMO UEの所望ビームは必ず存在するものとす る。また、セル内のユーザ数が多ぐ B (MIMO) =B を満たすユーザが多数い る場合は、その中で CQI が最大のユーザが選択される。
[0031] 一方、 ST404では、非 MIMO UEがセル内に存在しないので、各 UEからフィード バックされる CQI情報 CQI に基づいて、 CQIの大きさが 1番目と 2番目の UEがそ れぞれストリーム 1, 2に割り当てられる。
[0032] ST405では、ビームウェイト生成部 104に出力されるビーム情報は B となる。例 えば、 UEI, UE2がそれぞれストリーム 1 , 2に割り当てられる場合、ビームウェイト生 成部 104に出力されるビーム情報は B , B である。
[0033] なお、本実施の形態では、非 MIMO UE数を 1としている力 セル内に複数の非 M IMO UEが存在する場合、スケジューラ部 102は複数の非 MIMO UEの中で CQI が最大のものに 1ストリームを割り当てる。
[0034] 図 6は、図 2に示した非 MIMO UEの構成を示すブロック図である。この図におい て、 RF部 502は、図 3に示した BS力も送信された信号をアンテナ 501を介して受信 し、受信した信号にダウンコンバート等の所定の無線受信処理を行う。無線受信処理 した信号のうち、データ部分は復調部 505に出力され、パイロット信号はチャネル推 定部 503に出力される。
[0035] チャネル推定部 503は、 RF部 502から出力されたパイロット信号を用いてチャネル 推定を行 ヽ、推定した値をチャネル推定情報としてビーム組合せ決定部 504に出力 する。
[0036] ビーム組合せ決定部 504は、チャネル推定部 503から出力されたチャネル推定情 報と、 BS—UE間で共有しているビーム情報とを用いて、ビーム糸且合せ情報及び CQ Iを算出する。ビーム組合せ情報及び CQIは図 2に示した BSにフィードバックされる。 また、 1フレーム前に算出した CQIが復調部 505に出力される。なお、ビーム組合せ 決定部 504の詳細については後述する。
[0037] 復調部 505は、ビーム組合せ決定部 504から出力された CQIから変調方式及び符 号化率 (MCS)を求め、求めた変調方式及び符号化率を用いて、 RF部 502から出 力されたデータ部分の復調及び復号処理を行!ヽ、受信データを取得する。
[0038] 図 7は、ビーム組合せ決定部 504の内部構成を示すブロック図である。この図にお いて、受信 SINR算出部 510は、チャネル推定部 503から出力されたチャネル推定 情報と BS—UE間で共有しているビーム情報とから各送信ビームを用いた場合の受 信 SINRを算出する。受信 SINR算出部 510は、図 4に示したウェイトテーブルを備え ているものとする。ここで、チャネル推定情報を H、雑音電力を Nとすると、各ビーム組 合せ時(B = 1〜6のそれぞれに対応)の SINRi (i= 1〜6)は以下の式(2)〜(7)
comb
で表すことができる。
[数 2]
Figure imgf000010_0001
[数 3]
Figure imgf000010_0002
[数 4]
SI肌 ( 4 )
Figure imgf000010_0003
[数 5]
Figure imgf000011_0001
[数 6]
Figure imgf000011_0002
[数 7]
SINR6 = 3 ( 7 )
Figure imgf000011_0003
このように算出された SINRi (i= 1〜6)は CQI決定部 511に出力される。 CQI決定部 511は、受信 SINR算出部 510から出力された SINRの最大値を検出 し、検出した SINRを CQIとして BSにフィードバックする。また、 SINRが最大となると きのビーム組合せ情報も BSにフィードバックする。 BSにフィードバックする CQIを CQ I とすると、 CQI は次式(8)のように表すことができる。
ηοηΜΙΜΟ ηοηΜΙΜΟ
[数 8]
CQI nonMIMO =
Figure imgf000011_0004
( 8 )
[0040] ここで、ビーム組合せ決定部 504におけるビーム組合せ決定方法について図 8を 用いて説明する。図 8は、 3つの送信ビームウェイトによって形成される送信ビームの 利得 (ゲイン)と信号の到来方向との関係を示す図である。図 8において、実線は送 信ビームウェイト w ,点線は送信ビームウェイト w ,一点鎖線は送信ビームウェイト w
1 2 3 によって形成される送信ビームをそれぞれ示す。
[0041] 今、非 MIMO UE用信号の到来方向が約 140° であるとすると、非 MIMO UEの 送信ビームウェイトを w、 MIMO UE用の送信ビームウェイトを wとしたとき、 SIR, すなわち SINRが最大となる。このときの SINRが CQIとして BSにフィードバックされ る。また、ビーム組合せは [w , w ]であるから、図 4と対応させると B = 2が BS
1 3 comb
フィードバックされる。
[0042] 図 9は、図 2に示した MIMO UEの構成を示すブロック図である。この図において、 RF部 802—1, 802— 2は、図 3に示した BS力ら送信された信号をアンテナ 801— 1 , 801— 2を介して受信し、受信した信号にダウンコンバート等の所定の無線受信処 理を行う。無線受信処理した信号のうち、データ部分は干渉除去部 804に出力され、 ノ ィロット信号はチャネル推定部 803に出力される。
[0043] チャネル推定部 803は、 RF部 802— 1, 802— 2から出力されたパイロット信号を用 Vヽてチャネル推定を行 ヽ、推定した値をチャネル推定情報として干渉除去部 804及 び CQI算出部 805に出力する。
[0044] 干渉除去部 804は、チャネル推定部 803から出力されたチャネル推定情報カゝら ZF , MMSE等のウェイトを求め、求めたウェイトを RF部 802— 1, 802— 2力ら出力され たデータ部分に乗算することにより他ユーザ干渉を抑圧し、希望信号を取り出す。他 ユーザ干渉が抑圧された信号は復調部 806に出力される。
[0045] CQI算出部 805は、チャネル推定部 803から出力されたチャネル推定情報と、 BS —UE間で共有しているビーム情報とを用いて、所望ビーム情報と CQIを算出する。 具体的には、各送信ビームを用いた場合の CQIを算出し、算出した CQIの最大値と 、このときの送信ビームを所望ビーム情報として BSにフィードバックする。また、 1フレ ーム前の CQIは復調部 806に出力される。
[0046] 復調部 806は、 CQI算出部 805から出力された CQIから変調方式及び符号ィ匕率( MCS)を求め、求めた変調方式及び符号化率を用いて、干渉除去部 804から出力 された信号の復調及び復号処理を行!、、受信データを取得する。
[0047] 次に、図 2に示した BS、非 MIMO UE、 MIMO UEの動作について図 10を参照 して説明する。 BSは、 BSのアンテナ間で直交したパイロット信号を各 UEに送信し、 各 UEは、受信したパイロット信号を用いてチャネル推定値を取得する。各 UEは BS と共有しているビーム情報とチャネル推定値とから CQI (受信 SINR)を算出する。
[0048] ここで、 MIMO UEは、ビーム情報に含まれる送信ビーム候補のうち、 CQI最大と なる送信ビームを所望ビーム情報として決定し、このときの CQIと所望ビーム情報とを BSへフィードバックする。
[0049] 一方、非 MIMO UEは、ビーム情報に含まれる送信ビーム候補とマルチユーザ通 信の対象となる MIMO UEの送信ビーム候補とより、受信 SIRまたは SINRが最大と なる送信ビームと MIMO UEの送信ビームとをビーム組合せ情報として決定し、この ときの CQIとビーム組合せ情報とを BSへフィードバックする。
[0050] BSは、スケジューラ部 102において、空間リソースを割り当てるユーザを決定する。
具体的には、各 UEからフィードバックされた情報に基づいて、非 MIMO UEがマル チューザ通信の対象となる MIMO UEに指定したビーム情報と同じ送信ビームを所 望している MIMO UEとして UElを選択するものとする。 BSは、非 MIMO UEと UE 1とが所望するビームによりマルチビームを形成し、それぞれの UEに対して下りデー タを送信する。
[0051] このようにして形成された送信ビームは、図 11に示すようになる。図 11からも分かる ように、非 MIMO UEへの干渉量は削減され、非 MIMO UEを Multi- User MIMOシ ステムに収容することができる。一方、 UE1は MIMO UEであり、信号分離処理能力 を備えているので、 UE1への干渉が削減されなくても UE1の受信品質には影響がな い。仮に、 UE1への干渉も削減されれば、 UE1の CQIが改善し、 MCSレベルを上 げることができるので、スループットを向上させることができる。
[0052] このように実施の形態 1によれば、非 MIMO UEの所望ビームを MIMO UEに対 して優先的に割り当て、非 MIMO UEがマルチユーザ通信の対象となる他の MIM O UEへビームを指定することにより、非 MIMO UEはマルチユーザ通信を行う他の MIMO UEからの干渉を軽減することができるので、 Multi-User MIMOシステムに非 MIMO UEを収容することができる。これにより、 Multi- User MIMOシステムに収容 可能な端末数が増加するので、マルチユーザダイバーシチ利得が増加し、システム スループットを向上させることができる。また、 UE側でビームを選択するため、各ビー ムを使用した場合の受信状態を UEから BSに報告することにより、干渉量を考慮した リンクァダプテーシヨンを実現することができる。
[0053] (実施の形態 2) 実施の形態 1では、非 MIMO UEが MIMO UEに対して優先的にビームを割り当 てられる場合について説明した力 本発明の実施の形態 2では、複数の MIMO UE のうちチャネル相関の高い MIMO UEに優先的にビームを割り当てる場合について 説明する。
[0054] 本実施の形態では、 BS及び UEのアンテナ数をそれぞれ 2とし、この BSのセル内 に収容される UE数を 3 (UE1〜3)とする。また、 BSは送信ビームを形成し、このビー ムの情報 (ビーム情報)は BSと UEとにおいて共有されるものとする。
[0055] 図 12は、本発明の実施の形態 2に係る UEの構成を示すブロック図である。図 12が 図 9と異なる点は、相関検出部 1101を追加したことと、 CQI算出部 805をビーム情報 決定部 1102に変更したことである。
[0056] 図 12において、相関検出部 1101は、チャネル推定部 803から出力されたチヤネ ル推定情報を用いて、チャネル相関を検出し、検出したチャネル相関情報をビーム 情報決定部 1102に出力する。ここで、チャネル推定情報を H、チャネル相関情報を とおくと、 pは以下の式(9)によって表すことができる。
[数 9]
Figure imgf000014_0001
なお、 E[ ]はアンサンブル平均を表し、 h , h は MIMOチャネル行列 Hの要素を 表す。ただし、 h ≠ である。
[0057] ビーム情報決定部 1102は、チャネル推定部 803から出力されたチャネル推定情 報、相関検出部 1101から出力されたチャネル相関情報、ビーム情報に基づいて、 C QIを算出し、算出した CQIを復調部 806に出力すると共に、 BSにフィードバックする 。また、所望ビーム情報またはビーム組合せ情報を生成し、 BSにフィードバックする。 なお、ビーム情報決定部 1102はビーム組合せ決定手段として機能する。
[0058] 次に、ビーム情報決定部 1102における動作について図 13を用いて説明する。図 13において、 ST1201では、チャネル相関情報 pが所定の閾値 Td以上であるか否 かが判定され、チャネル相関情報 pが閾値 Td以上であれば、 ST1202へ移行し、チ ャネル相関情報 pが閾値 Td未満であれば、 ST1204へ移行する。
[0059] ST1202では、ビーム情報内の送信ビーム候補と、他ユーザの送信ビーム候補と から、受信 SINRが最大となる送信ビームの組合せをビーム組合せ情報として決定し 、 ST1203では、ビーム組合せ情報と CQI=max(SINR)とを出力する。
[0060] 一方、チャネル相関情報 pが閾値 Td未満の場合、 ST1204では、ビーム情報内 の送信ビーム候補から、 CQI最大となる送信ビームを所望ビームとして決定し、 ST1 205では、所望ビーム情報と最大 CQIとを出力する。
[0061] 次に、本発明の実施の形態 2に係る UEと BS間の動作について図 14を参照して説 明する。 BSは、 BSのアンテナ間で直交したパイロット信号を各 UEに送信し、各 UE は、受信したパイロット信号を用いてチャネル推定値を取得する。また、各 UEは、チ ャネル推定値力もチャネル相関を検出する。さら〖こ、各 UEは BSと共有しているビー ム情報とチャネル推定情報とから CQI (受信 SINR)を算出する。ただし、チャネル相 関情報によって CQIの算出方法が異なる。
[0062] UE1と UE2はチャネル相関が低いと仮定すると、ビーム情報に含まれる送信ビー ム候補のうち、 CQI最大となる送信ビームを所望ビーム情報として決定し、このときの CQIと所望ビーム情報とを BSへフィードバックする。
[0063] 一方、 UE3はチャネル相関が高いと仮定すると、 UE3はビーム割り当てを他ユー ザに対して優先して行われるものとみなされるので、ビーム情報に含まれる送信ビー ム候補と他ユーザの送信ビーム候補とより、受信 SIRまたは SINRが最大となる送信 ビームと MIMO UEの送信ビームとをビーム組合せ情報として決定し、このときの C QIとビーム組合せ情報とを BSへフィードバックする。
[0064] BSは、スケジューラ部 102において、空間リソースを割り当てるユーザを決定する。
具体的には、各 UE力もフィードバックされた情報に基づいて、チャネル相関の高い UE3が他ユーザに指定したビーム情報と同じ送信ビームを所望している他ユーザと して UE1を選択するものとする。 BSは、 UE3と UE1とが所望するビームによりマルチ ビームを形成し、それぞれの UEに対して下りデータを送信する。
[0065] このように実施の形態 2によれば、チャネル相関の高い MIMO UEの所望ビームを チャネル相関の低い MIMO UEに対して優先的に割り当てることにより、高いチヤネ ル相関によって受信 SINRが劣化していた MIMO UEの他ユーザからの干渉を軽 減することができるので、受信 SINRを改善することができ、システムスループットを向 上させることができる。
[0066] なお、本実施の形態では、チャネル相関の高いユーザ数を 1としている力 セル内 にチャネル相関が高いユーザが複数存在する場合、 BSのスケジューラ部 102はそ の中で CQIが最大のものに 1ストリームを割り当てる。
[0067] (実施の形態 3)
実施の开態 2では、複数の MIMO UEのうちチャネル相関の高い MIMO UEに優 先的にビームを割り当てる場合について説明したが、本発明の実施の形態 3では、 複数の MIMO UEのうち信号分離処理能力の低い MIMO UEに優先的にビームを 割り当てる場合について説明する。
[0068] 本実施の形態では、 BS及び UEのアンテナ数をそれぞれ 2とし、この BSのセル内 に収容される UE数を 3 (UE1〜3)とする。また、 BSは送信ビームを形成し、このビー ムの情報 (ビーム情報)は BSと UEとにおいて共有されるものとする。
[0069] 図 15は、本発明の実施の形態 3に係る BSの構成を示すブロック図である。図 15が 図 3と異なる点は、端末性能決定部 1401を追加したことである。
[0070] 図 15において、端末性能決定部 1401は、各 UEから UEの端末性能 (信号分離能 力)情報を取得し、セル内で最も高い端末性能に基づいて、 UEが端末性能を判断 する基準となるセル内端末性能情報を算出し、算出したセル内端末性能情報を各 U Eに送信する。
[0071] 端末性能決定部 1401は、例えば、図 16に示すような端末性能テーブルを各 UEと 共有しているものとする。図 16において、 ZFは Zero Forcing法を用いた信号分離処 理を、 MMSEは最小二乗誤差法を用いた信号分離処理を、 SICは V— BALSTの ような逐次干渉キャンセラを用いた信号分離処理を、 MLDは最尤推定法を用いた信 号分離処理をそれぞれ示す。また、インデックスが大きいほど信号分離能力は高くな る。
[0072] 端末性能決定部 1401は、これらのインデックス情報が端末性能情報 Rc として各 UE力 報告され、図 17に示すセル内端末性能決定テーブルに基づいて、報告され た端末性能情報 Rc カゝらセル内端末性能情報 Beを決定する。
UEi
[0073] 図 17に示すように、セル内で最も信号分離能力が高い端末が MLD端末 (Rc =
UEi
4)である場合、 MMSE処理が行えるかどうかが各 UEの端末性能を判断する基準( Be = 2)となる。セル内で最も信号分離能力が高 、端末が SIC端末 (Rc = 3)であ
UEi
る場合も基準は同じである。
[0074] また、セル内で最も信号分離能力が高い端末が MMSE端末 (Rc = 2)である場
UEi
合、 ZF処理が行えるかどうかが各 UEの端末性能を判断する基準 (Bc = 1)となる。
[0075] さらに、セル内に ZF端末 (Rc = 1)しか存在しない場合、端末の性能差は見られ
UEi
ないので、 Be = 0として各 UEが自身の端末性能を判断しないようにする。
[0076] なお、本実施の形態では、端末性能を 4段階に分けて示した力 図 16に示したもの 以外の受信処理を導入し、さらに端末性能の段階を増やしてもよい。また、セル内端 末性能の決定も端末性能の段階に応じて柔軟に設定することができる。
[0077] 図 18は、本発明の実施の形態 3に係る UEの構成を示すブロック図である。図 18が 図 12と異なる点は、相関検出部 1101を削除し、ビーム情報決定部 1102をビーム情 報決定部 1701に変更したことである。
[0078] ビーム情報決定部 1701は、 BSから送信されたセル内端末性能情報 Beに基づい て、自端末の端末性能を判断し、自端末の端末性能に応じて、 CQIを算出し、算出 した CQIを復調部 806に出力すると共に、 BSにフィードバックする。また、所望ビー ム情報またはビーム組合せ情報を生成し、 BSにフィードバックする。なお、ビーム情 報決定部 1701はビーム組合せ決定手段として機能する。
[0079] 次に、ビーム情報決定部 1701における動作について図 19を用いて説明する。た だし、図 19が図 13と共通する部分には同一の符号を付し、重複する説明は省略す る。図 19において、 ST1801では、自端末の端末性能情報 Rc 力 ¾S力も送信され
UEi
たセル内端末性能情報 Be以下であるか否かが判定される。例えば、 Bc = 2-CRc
UEI
=4であれば、 UEIは信号分離能力が高い端末と判断され、 Bc = 2で Rc = 2で
UE3 あれば、 UE3は信号分離能力が低い端末と判断される。端末性能情報 Rc がセル
UEi 内端末性能情報 Be以下であれば、 ST1202へ移行し、端末性能情報 Rc がセル 内端末性能情報 Beを超えれば、 ST1204へ移行する。
[0080] 次に、本発明の実施の形態 3に係る UEと BS間の動作について図 20を参照して説 明する。 BSは、各 UEの信号分離能力を把握するため、各 UEに対して端末性能の 通知を要求する。これに対して、各 UEは信号分離能力を BSに通知する。
[0081] BSは、各 UEから通知された信号分離能力に基づいて、セル内における各 UEが 信号分離能力を判断する基準となる情報として、セル内端末性能情報を全 UEに報 知する。各 UEは報知されたセル内端末性能情報に基づいて、自端末の信号分離 能力を判断する。ここでは、 UE1及び UE2が信号分離能力の高い UE、 UE3が信 号分離能力の低い UEと判断されるものとする。
[0082] そして、 BSは、 BSのアンテナ間で直交したパイロット信号を各 UEに送信し、各 UE は、受信したパイロット信号を用いてチャネル推定値を取得する。また、各 UEは BSと 共有しているビーム情報とチャネル推定情報とから CQI (受信 SINR)を算出する。た だし、各 UEの信号分離能力によって CQIの算出方法が異なる。
[0083] UE1と UE2は信号分離能力が高いと仮定しているので、ビーム情報に含まれる送 信ビーム候補のうち、 CQI最大となる送信ビームを所望ビーム情報として決定し、こ のときの CQIと所望ビーム情報とを BSへフィードバックする。
[0084] 一方、 UE3は信号分離能力が低いと仮定しているので、 UE3はビーム割り当てを 他ユーザに対して優先して行われるものとみなされるので、ビーム情報に含まれる送 信ビーム候補と他ユーザの送信ビーム候補とより、受信 SIRまたは SINRが最大とな る送信ビームと MIMO UEの送信ビームとをビーム組合せ情報として決定し、このと きの CQIとビーム組合せ情報とを BSへフィードバックする。
[0085] BSは、スケジューラ部 102において、空間リソースを割り当てるユーザを決定する。
具体的には、各 UE力もフィードバックされた情報に基づいて、チャネル相関の高い UE3が他ユーザに指定したビーム情報と同じ送信ビームを所望している他ユーザと して UE1を選択するものとする。 BSは、 UE3と UE1とが所望するビームによりマルチ ビームを形成し、それぞれの UEに対して下りデータを送信する。
[0086] このように実施の形態 3によれば、セル内において相対的に信号分離能力の低い UEの所望ビームを信号分離能力の高い UEに対して優先的に割り当てることにより 、信号分離能力の低 、UEは他ユーザからの干渉を軽減することができる。
[0087] なお、本実施の形態では、信号分離能力の低い端末数を 1としているが、セル内に 信号分離能力の低い端末が複数存在する場合、 BSのスケジューラ部 102はその中 で CQIが最大のものに 1ストリームを割り当てる。
[0088] 上記各実施の形態では、本発明をノヽードウエアで構成する場合を例にとって説明 したが、本発明はソフトウェアで実現することも可能である。
[0089] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されてもよいし、一部または全 てを含むように 1チップィ匕されてもよい。ここでは、 LSIとした力 集積度の違いにより、
IC、システム LSI、スーパー LSI、ウルトラ LSIと呼称されることもある。
[0090] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progra mmable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフ ィギユラブル'プロセッサーを利用してもよい。
[0091] さらには、半導体技術の進歩または派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って もよい。バイオ技術の適応等が可能性としてありえる。
[0092] 上記実施の形態における基地局(BS)は、 Node Bと表されることがある。
[0093] 2006年 3月 24曰出願の特願 2006— 083897の曰本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0094] 本発明にかかる無線通信端末装置及び無線通信基地局装置は、干渉抑圧能力が 低い無線通信端末装置を MultHJser MIMOシステムに収容することができ、 Multi-U ser MIMOシステムに適用できる。

Claims

請求の範囲
[1] 無線通信基地局装置から送信されたパイロット信号を受信する受信手段と、
前記ノ ィロット信号を用いてチャネル推定を行 、、チャネル推定値を求めるチヤネ ル推定手段と、
前記無線通信基地局装置が形成する複数のビーム情報を有し、前記チャネル推 定値力 求まる受信品質が最大となる所望のビームと、マルチユーザ通信の対象と なる他のユーザに向けるビームとの組合せを決定し、決定したビームの組合せを前 記無線通信基地局装置にフィードバックするビーム組合せ決定手段と、
を具備する無線通信端末装置。
[2] 前記チャネル推定値を用いてチャネル相関を検出する相関検出手段を具備し、 前記ビーム組合せ決定手段は、前記チャネル相関が所定の閾値以上となる場合、 前記ビームの組合せを決定する請求項 1に記載の無線通信端末装置。
[3] 前記ビーム組合せ決定手段は、自端末装置の信号分離能力がセル内の他の端末 装置に対して相対的に低 、場合、前記ビームの組合せを決定する請求項 1に記載 の無線通信端末装置。
[4] ZFまたは MMSEの信号分離能力を有する干渉除去手段を具備する請求項 3に記 載の無線通信端末装置。
[5] 複数のビームを形成するビーム形成手段と、
無線通信端末装置力もフィードバックされた所望のビームと、マルチユーザ通信の 対象となる他のユーザに向けるビームとの組合せ情報、および、他の無線通信端末 装置からフィードバックされた所望のビーム情報に基づいて、無線通信端末装置を 空間リソースに割り当てる割り当て手段と、
空間リソースに割り当てた無線通信端末装置力もフィードバックされたビーム情報に 基づ 、て、前記ビーム形成手段を制御するビームウェイトを生成するビームウェイト生 成手段と、
を具備する無線通信基地局装置。
[6] 無線通信基地局装置が形成する複数のビーム情報に基づいて、受信品質が最大 となる所望のビームと、マルチユーザ通信の対象となる他のユーザに向けるビームと の組合せを決定し、決定したビームの組合せを無線通信端末装置から前記無線通 信基地局装置にフィードバックする工程と、
フィードバックされた前記ビームの組合せに基づ V、て、前記無線通信端末装置及 び前記他のユーザに送信ビームを形成する工程と、
を具備する送信ビーム形成方法。
PCT/JP2007/056069 2006-03-24 2007-03-23 無線通信端末装置及び無線通信基地局装置 WO2007111266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07739510A EP1988653A1 (en) 2006-03-24 2007-03-23 Radio communication terminal and radio communication base station device
JP2008506871A JP4898786B2 (ja) 2006-03-24 2007-03-23 無線通信端末装置及び無線通信基地局装置
US12/293,528 US20090291702A1 (en) 2006-03-24 2007-03-23 Radio communication terminal and radio communication base station device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-083897 2006-03-24
JP2006083897 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007111266A1 true WO2007111266A1 (ja) 2007-10-04

Family

ID=38541183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056069 WO2007111266A1 (ja) 2006-03-24 2007-03-23 無線通信端末装置及び無線通信基地局装置

Country Status (4)

Country Link
US (1) US20090291702A1 (ja)
EP (1) EP1988653A1 (ja)
JP (1) JP4898786B2 (ja)
WO (1) WO2007111266A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542157A (ja) * 2006-06-30 2009-11-26 サムスン エレクトロニクス カンパニー リミテッド 閉ループ多重アンテナシステムにおけるデータ送受信装置及びその方法
WO2010050718A2 (en) * 2008-10-27 2010-05-06 Samsung Electronics Co., Ltd. Cooperative beamforming apparatus and method in wireless communication system
WO2010053044A1 (ja) * 2008-11-04 2010-05-14 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置及び無線基地局装置
WO2011043475A1 (ja) * 2009-10-09 2011-04-14 京セラ株式会社 通信システム、無線基地局及び通信制御方法
CN102204114A (zh) * 2008-10-31 2011-09-28 爱立信电话股份有限公司 用天线波束抖动和cqi校正改进无线通信系统中覆盖的基站和方法
JP2014524705A (ja) * 2011-08-16 2014-09-22 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングベースの無線通信システムにおける多重アンテナ送信をサポートするための装置及び方法
JP2014195256A (ja) * 2009-09-09 2014-10-09 Lg Electronics Inc 無線lanシステムにおける制御情報送信方法及びこれをサポートする装置
US9065502B2 (en) 2009-09-09 2015-06-23 Lg Electronics Inc. Method and apparatus for transmitting control information in WLAN system
CN105210306A (zh) * 2013-05-10 2015-12-30 三星电子株式会社 无线通信系统中用于选择发送和接收波束的设备和方法
US9300512B2 (en) 2010-02-12 2016-03-29 Lg Electronics Inc. Method for transmitting control information and apparatus for the same
JP2016538789A (ja) * 2013-11-29 2016-12-08 ▲華▼▲為▼▲終▼端有限公司 ビームプリコーディング方式報告方法、スケジューリング方法、およびデバイス
JP2022532878A (ja) * 2019-05-10 2022-07-20 華為技術有限公司 無線受信ステーションの能力表示のためのシステム及び方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396162B2 (en) * 2008-11-03 2013-03-12 Motorola Mobility Llc Method and apparatus for choosing a modulation and coding rate in a multi-user, MIMO communication system
KR100990395B1 (ko) * 2008-11-11 2010-10-29 한국전자통신연구원 무선 통신 시스템에서 데이터 송신 장치 및 방법
US8665806B2 (en) * 2008-12-09 2014-03-04 Motorola Mobility Llc Passive coordination in a closed loop multiple input multiple out put wireless communication system
US8213360B2 (en) * 2009-04-29 2012-07-03 Nokia Corporation Apparatus and method for flexible switching between device-to-device communication mode and cellular communication mode
KR101534865B1 (ko) 2009-06-23 2015-07-27 엘지전자 주식회사 링크 적응 절차 수행 방법
CN102056220B (zh) * 2009-10-28 2014-02-19 华为技术有限公司 实现信道测量的方法及装置
US8554261B2 (en) * 2010-07-28 2013-10-08 Intel Corporation Power loading in MU-MIMO
WO2012124892A1 (ko) * 2011-03-14 2012-09-20 엘지전자 주식회사 채널상태정보 송수신 방법 및 송수신 장치
WO2012150748A1 (en) * 2011-05-04 2012-11-08 Lg Electronics Inc. Method for transmitting channel status information and user equipment, and method for receiving channel status information and base station
US9026560B2 (en) * 2011-09-16 2015-05-05 Cisco Technology, Inc. Data center capability summarization
CN103269242B (zh) * 2013-06-04 2016-01-13 山东大学 一种基于凸优化的上行协作中继波束成形方法
US20160191201A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel quality indicator information of beams in communication system
KR102293045B1 (ko) * 2015-05-29 2021-08-26 삼성전자주식회사 Mimo 기반 빔포밍을 지원하는 방법 및 장치
WO2017206100A1 (en) * 2016-06-01 2017-12-07 Intel IP Corporation Cqi reporting for flexible transmission mode switching

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194262A (ja) * 2002-10-18 2004-07-08 Ntt Docomo Inc 信号伝送システム、信号伝送方法及び送信機
JP2006005908A (ja) * 2004-05-20 2006-01-05 Matsushita Electric Ind Co Ltd 無線通信システム、無線通信方法、基地局装置及び端末装置
JP2006083897A (ja) 2004-09-14 2006-03-30 Ntn Corp チルトヒンジ
JP2006333482A (ja) * 2005-05-24 2006-12-07 Ntt Docomo Inc ランダムビームフォーミング方式によるmimo通信システム及びそのユーザスケジューリング方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060264184A1 (en) * 2005-02-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194262A (ja) * 2002-10-18 2004-07-08 Ntt Docomo Inc 信号伝送システム、信号伝送方法及び送信機
JP2006005908A (ja) * 2004-05-20 2006-01-05 Matsushita Electric Ind Co Ltd 無線通信システム、無線通信方法、基地局装置及び端末装置
JP2006083897A (ja) 2004-09-14 2006-03-30 Ntn Corp チルトヒンジ
JP2006333482A (ja) * 2005-05-24 2006-12-07 Ntt Docomo Inc ランダムビームフォーミング方式によるmimo通信システム及びそのユーザスケジューリング方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542157A (ja) * 2006-06-30 2009-11-26 サムスン エレクトロニクス カンパニー リミテッド 閉ループ多重アンテナシステムにおけるデータ送受信装置及びその方法
US8442448B2 (en) 2006-06-30 2013-05-14 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a closed-loop multi-antenna system
WO2010050718A2 (en) * 2008-10-27 2010-05-06 Samsung Electronics Co., Ltd. Cooperative beamforming apparatus and method in wireless communication system
US9055448B2 (en) 2008-10-27 2015-06-09 Samsung Electronics Co., Ltd Cooperative beamforming apparatus and method in wireless communication system
WO2010050718A3 (en) * 2008-10-27 2010-07-29 Samsung Electronics Co., Ltd. Cooperative beamforming apparatus and method in wireless communication system
CN102204114A (zh) * 2008-10-31 2011-09-28 爱立信电话股份有限公司 用天线波束抖动和cqi校正改进无线通信系统中覆盖的基站和方法
CN102204114B (zh) * 2008-10-31 2015-06-17 爱立信电话股份有限公司 用于改进固定波束形成无线通信网络中覆盖的方法、基站和用户终端中的装置
WO2010053044A1 (ja) * 2008-11-04 2010-05-14 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置及び無線基地局装置
US9749025B2 (en) 2009-09-09 2017-08-29 Lg Electronics Inc. Method and apparatus for transmitting control information in WLAN system
US9398570B2 (en) 2009-09-09 2016-07-19 Lg Electronics Inc. Method and apparatus for transmitting control information in WLAN system
JP2014195256A (ja) * 2009-09-09 2014-10-09 Lg Electronics Inc 無線lanシステムにおける制御情報送信方法及びこれをサポートする装置
US9065502B2 (en) 2009-09-09 2015-06-23 Lg Electronics Inc. Method and apparatus for transmitting control information in WLAN system
WO2011043475A1 (ja) * 2009-10-09 2011-04-14 京セラ株式会社 通信システム、無線基地局及び通信制御方法
JPWO2011043475A1 (ja) * 2009-10-09 2013-03-04 京セラ株式会社 通信システム、無線基地局及び通信制御方法
US9300512B2 (en) 2010-02-12 2016-03-29 Lg Electronics Inc. Method for transmitting control information and apparatus for the same
US9559887B2 (en) 2010-02-12 2017-01-31 Lg Electronics Inc. Method for transmitting control information and apparatus for the same
US9876882B2 (en) 2010-02-12 2018-01-23 Lg Electronics, Inc. Method for transmitting control information and apparatus for the same
JP2014524705A (ja) * 2011-08-16 2014-09-22 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングベースの無線通信システムにおける多重アンテナ送信をサポートするための装置及び方法
CN105210306A (zh) * 2013-05-10 2015-12-30 三星电子株式会社 无线通信系统中用于选择发送和接收波束的设备和方法
JP2016538789A (ja) * 2013-11-29 2016-12-08 ▲華▼▲為▼▲終▼端有限公司 ビームプリコーディング方式報告方法、スケジューリング方法、およびデバイス
US10051485B2 (en) 2013-11-29 2018-08-14 Huawei Device Co., Ltd. Beam precoding manner reporting method, scheduling method, and device
JP2022532878A (ja) * 2019-05-10 2022-07-20 華為技術有限公司 無線受信ステーションの能力表示のためのシステム及び方法
JP7285962B2 (ja) 2019-05-10 2023-06-02 華為技術有限公司 無線受信ステーションの能力表示のためのシステム及び方法

Also Published As

Publication number Publication date
JPWO2007111266A1 (ja) 2009-08-13
EP1988653A1 (en) 2008-11-05
US20090291702A1 (en) 2009-11-26
JP4898786B2 (ja) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4898786B2 (ja) 無線通信端末装置及び無線通信基地局装置
JP5119977B2 (ja) 無線リソースの割当制御装置及び方法並びに無線基地局
KR100955446B1 (ko) 셀룰러 시스템에서의 적응 섹터화
JP4945333B2 (ja) 無線システム、基地局装置および端末装置
US8416748B2 (en) Radio communication system, radio communication method, base station device, and terminal device
JP4350491B2 (ja) 無線通信システム、無線通信方法、及び無線通信装置
JP5455912B2 (ja) 基地局装置、端末装置、および、送信方法
JP5226786B2 (ja) Ofdm用の干渉ベース位相シフト・プリコーディング
KR101331651B1 (ko) 다중 사용자 조인트 송수신 빔포밍을 용이하게 하는 방법 및 장치
CA2689906C (en) Interference-improved uplink data rates for a group of mobile stations transmitting to a base station
US20070223423A1 (en) Grouping of users for mimo transmission in a wireless communication system
KR100580840B1 (ko) 다중 입력 다중 출력 시스템의 데이터 통신 방법
Balachandran et al. NICE: A network interference cancellation engine for opportunistic uplink cooperation in wireless networks
EP2051426A1 (en) Multiantenna radio transmitting apparatus and multiantenna radio transmitting method
RU2560806C2 (ru) Устройство терминальной станции, устройство базовой станции, способ передачи и способ управления
JP2009542066A (ja) セル間干渉除去システム及びスケジューラ
EP1759470A1 (en) Apparatus and method for beamforming in a multi-antenna system
WO2006080352A1 (ja) 無線基地局装置及び端末装置
US10461829B2 (en) Multiple access method in a massive MIMO system
JP5020287B2 (ja) 無線通信システム、無線通信方法、及び無線通信装置
JP5666871B2 (ja) 無線通信システム、基地局装置、無線通信方法
Benjebbour et al. Outdoor experimental trials of advanced downlink NOMA using smartphone-sized devices
KR102503794B1 (ko) 사용자 클러스터링 및 강화학습 기반 전송전력 할당 방법
US10448407B2 (en) Interference cancellation enhancement in HetNets through coordinated SIMO/MIMO interference codes
KR100975227B1 (ko) 다중 사용자 자원공유를 위한 채널 할당 시스템 및 다중사용자 자원공유를 위한 채널 할당 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506871

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12293528

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007739510

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE