WO2007110270A2 - Procédé et dispositif de télécommande d'une capsule de travail comportant des bobines de détection - Google Patents

Procédé et dispositif de télécommande d'une capsule de travail comportant des bobines de détection Download PDF

Info

Publication number
WO2007110270A2
WO2007110270A2 PCT/EP2007/051389 EP2007051389W WO2007110270A2 WO 2007110270 A2 WO2007110270 A2 WO 2007110270A2 EP 2007051389 W EP2007051389 W EP 2007051389W WO 2007110270 A2 WO2007110270 A2 WO 2007110270A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
capsule
coils
locating
coil system
Prior art date
Application number
PCT/EP2007/051389
Other languages
German (de)
English (en)
Other versions
WO2007110270A3 (fr
Inventor
Dirk Diehl
Johannes Reinschke
Rudolf Röckelein
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2007110270A2 publication Critical patent/WO2007110270A2/fr
Publication of WO2007110270A3 publication Critical patent/WO2007110270A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/72Micromanipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/732Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry

Definitions

  • the invention relates to a method and a device for wireless remote control of at least three mutually orthogonal locating coils having working capsule of a Mag ⁇ netspulensystems.
  • the z. B. may be a diagnosis or treatment.
  • the target of such a medical procedure is often a hollow organ in the patient in question, in particular its gastrointestinal tract.
  • Ka a hollow organ in the patient in question
  • Conventional catheter endoscopes here have various ⁇ dene disadvantages such. For example, they cause pain to the patient or make it difficult or impossible for them to reach distant internal organs.
  • video capsules from the company Given Imaging are known, which the patient swallows.
  • the video capsule moves through the patient's digestive tract due to peristalsis, taking up a series of video images. These are transmitted to the outside of the patient by radio.
  • the patient is able to move freely throughout the body during the capsule stay lasting several hours, since he has corresponding receiving antennas and a recorder for recording the video images on the body.
  • the orientation of the capsule and thus the viewing direction of the video images as well as the length of stay in the patient's body are random or unaffected.
  • the capsule has no active functionality. Di ⁇ agnosefunktionen as targeted observation, cleaning, Biop- they are just as impossible as targeted treatments inside the patient, eg. B. medication. For a more permanent ⁇ diagnosis this is unacceptable or unsatisfactory.
  • a magnetic body in this case is, for example, a working capsule containing a permanent magnet, also called endocapsule or endo-robot.
  • the work capsules have functionalities on a conventional endoscope, for example, video recording, Biop ⁇ them or clip.
  • a working capsule as a medical action may autonomously, ie wirelessly or are catheters performed terok, so there is no cable ⁇ or mechanical connection of the working capsule outwards, while the medical procedure is the patient at least temporarily, in whole or in part within ⁇ the magnetic coil system.
  • FIG. 5 of the drawings shows a corresponding, known from DE 103 40 925 B3 magnetic coil system 100, which will be briefly described below. Regarding further, more detailed description of the magnet coil system 100 and its operation 103 40 925 B3 verwie ⁇ is sen to DE.
  • the magnet coil system 100 comprises fourteen excitation coils 102a-n, of which only the excitation coils 102a-c, 102e, and 102g-n are visible in FIG.
  • the six exciter coils 102a-f are rectangular and form the edges of a cuboid. The remaining eight excitation coils
  • each one of the excitation coils 102a-n is connected to a power supply 106 via a supply line 104a-n.
  • supply lines 104a-c and 104e are shown in FIG.
  • Each of the exciting coils 102a-n thus generates a magnetic field for itself.
  • the interior 108 of the magnetic coil system 100 can thus almost any magnetic field distribution bezüg ⁇ lich strength, direction and geometry are generated.
  • this interior 108 is a patient, not shown, and in the interior of the body, a working capsule 110 which a non-illustrated magnetic element, for. B. contains a permanent magnet.
  • the magnetic coil system 100 is associated with a locating device 112 which detects the position and orientation of the working capsule 110 in a coordinate system 114 assigned to the magnetic coil system 100.
  • the position or the location 116 of the working capsule 110, or the position of the geometric center ⁇ point of this, is indicated in Figure 5 by the dashed lines.
  • the orientation 118 of the working capsule 110 is shown in Fig. 5 by an arrow, and is processing device detects 112 with respect to the coordinate system 114 of the Or ⁇ .
  • the working capsule can be any, z. B. elongated or rotationally symmetrical, geometric shape have. The orientation would then correspond z. B.
  • the entire position of the working capsule 110, ie in particular the center of gravity coordinates and the longitudinal axis direction is thus completely described and known in the coordinate system 114.
  • the locating device 112 is processing device an electromagnetic Or ⁇ .
  • the working capsule 110 includes three (shown) to six mutually orthogonal locating ⁇ coils 124. These work with a carrier frequency of, for example, 12 kHz in the "Aurora" system of Fa. NDI.
  • the locating device 112 generated with the aid of an integrated coil assembly 125, an electromagnetic field, in particular ⁇ sondere on Kapselort represented by field lines 120.
  • the working capsule takes the field by the tracking coils 124 and sends the received field strength back to the locating device 120. This calculates the location 116 and the orientation 118 from the received field strength transmitted by the work capsule.
  • the locating device 112 transmits location 116 and orientation of the work 118 capsule 110 to the power supply 106.
  • This Mag ⁇ netfeld is designed so that it interacts with the permanent magnet in the working capsule 110 such that a desired force he ⁇ 122 and / or a desired non Darge ⁇ notified torque on the working capsule 110 engages. In this way, the work capsule 110 is moved, aligned and / or rotated in the patient.
  • the entire energy required by the working capsule itself during the implementation of the medical procedure is provided, for example, via batteries (not shown) or capacitors inside the working capsule or by wireless energy transmission (not shown) to the capsule.
  • Letz ⁇ tere is particularly favorable specific performance-intensive Medical Resident ⁇ measures, such as hollow organ illumination, biopsy acquisition, thermal coagulation or laser applications.
  • the inductive energy coupling into the working capsule 110 requires an induction coil (not shown) in the capsule and operates at frequencies of about 500 Hz to about 500 kHz.
  • the size of the working capsule is limited eg for use in the upper gastrointestinal tract including the small intestine to about 25 mm in length and about 10 mm in diameter; with pure use in the large intestine a little more. As a result, the space for installations is generally limited.
  • the capsule requires control signals from outside the patient, eg for releasing a biopsy specimen, for recording video images, for targeted medication, etc.
  • Remote control ranges from simple commands, such as "extend biopsy forceps", eg by transmitting a two-digit number codes, until the transmission of modified program code into the capsule, eg for a modified image preprocessing during video recording.
  • simple commands such as "extend biopsy forceps”
  • modify program code eg for a modified image preprocessing during video recording.
  • a low or high frequency carrier signal for remote control with low or high bandwidth for data transmission is needed.
  • a receiver coil (not shown) is provided for communication in the capsule 110, and a remote control unit 126 is provided outside the patient, which is connected to a capsule controller 128 for the capsule functions.
  • Remote control unit 126 is used to send the control commands to the capsule, but also optionally to receive feedback signals, e.g. for confirming a command received from the work capsule 110.
  • the communication along the arrow 130 thus always runs towards the capsule and optionally also from this back.
  • a high-frequency carrier signal in the 430 MHz range is used, e.g. Sensor data or live video images from the
  • the installation space is extremely limited, so there is very little space for the actual medical components available due to the large number of required coils or communication components.
  • this space is needed to accommodate e.g. To build a capsule with the widest possible range of functions, which can then be universally used for a wide range of medical purposes.
  • Object of the present invention is to further simplify the overall system or components and thus save space.
  • the object is achieved by a method according to claim 1.
  • the invention herein uses the following insight: onsbetician to positi ⁇ with the electromagnetic tracking system leg- hold the capsule at least three orthogonally from ⁇ directed receiver coil or tracking coil. These are usually designed to receive fields of eg 12kHz. The reception of alternating fields in this or a slightly different frequency range, eg 15kHz is possible.
  • the required remote control signals for the capsule are usually low frequency. Such signals are in the range of a carrier frequency of approximately 10 kHz. This is sufficient for most remote control tasks, since the amount of information to be transmitted is rather small, compared, for example, with image transmission of a camera signal. So the above-mentioned frequency range of the tracking system is enough for usual place ⁇ che remote control tasks.
  • the remote control signals in the form of the second magnetic field can also be received by the locating coils.
  • a separate receiver coil for the remote control in the cap ⁇ sel is superfluous and there is more space for the remaining ⁇ internals. This makes the overall system simpler and less expensive. Components are saved.
  • the locating coils are symmetrical. Since they are also orthogonal to each other, they cover the complete three-dimensional reception range for electromagnetic fields with respect to the field orientation.
  • the second magnetic field can thus be generated in any direction.
  • the locating coils have a preferred direction for the second magnetic field.
  • the position and orientation of the working capsule must be known anyway for the navigation, that is to say the exercise of force on the working capsule.
  • the relative position and orientation of the locating coils in the stationary coordinate system are therefore known.
  • the location of the locator coils in the capsule must be known. In the simplest case, therefore, the locating coils are rigidly installed in the capsule.
  • the instantaneous orientation of the locating coils in the magnet coil system is known.
  • the second magnetic field can then always be generated in such a way that it is aligned in the best possible manner with respect to the preferred direction of the locating coils, ie couples into them in the best possible way, e.g. is aligned exactly along the coil axis of a particular locating coil.
  • the power received in that locating coil and thus the signal quality are thus maximal.
  • First and second magnetic field can be generated in mutually different ⁇ first and second frequency ranges.
  • the frequency ranges can then be executed in particular not overlapping, so that location and Fernsteue ⁇ tion are assigned separate frequency ranges. A mutual interference is thus excluded.
  • the frequency range from 500 Hz to 500 kHz is particularly suitable for transmission through human body tissue to the capsule at the given distances of about 20 to 60 cm between the transmitters for first and second magnetic field and the working capsule.
  • the frequency ranges for the first and second magnetic fields for location and remote control these hardly influence each other.
  • the second magnetic field for remote control high-frequency and ers ⁇ te be selected for locating low frequency.
  • First and second magnetic field can therefore be superimposed.
  • a remote control of the capsule takes place simultaneously during locating.
  • a constant control of the capsule functions, so a control at any time, possible.
  • the remote control signal ie the second magnetic field, e.g. Amplitude modulated on the locating signal, so the first magnetic field to be modulated.
  • the second magnetic field can be generated in temporal multiplex to the first magnetic field.
  • the first and second fields are thus temporally alternating, and not at the same time he testifies ⁇ .
  • the respective maximum power of the transmitted first and second field is available both for determining the position and for the remote control, which enables a trouble-free signal transmission.
  • First and second magnetic field can be generated by a single or common coil system.
  • the complexity of the overall system in contrast to separate coils for positioning and remote control, decreases with the advantages already mentioned above.
  • a corresponding contraction and cooling for the common coil system thus only needs to be provided once.
  • the bobbins of the coil system are thus used together for location and remote control. A common control is done here. This reduces the expense of Ge ⁇ entire system.
  • the common coil arrangement may be the magnet ⁇ system for application of force to the capsule.
  • the magnetic coil system thus performs three tasks, namely capsule navigation, ie force application using the navigation magnetic fields, the location of the capsule and the remote control, ie transmission of control signals to the capsule, each time as described above, in temporal change or simultaneously.
  • these excitation coils can have a plurality of taps and can be operated via different taps.
  • an excitation coil can be operated in different operating modes, in each case favorable condition for the special fields. for example, certain impedance, number of turns or resistance.
  • first and second magnetic fields In order to generate the first and second magnetic fields, it is also possible to use other partial coils from the common coil arrangement or the magnet coil system which are better suited than others for this purpose.
  • the field generation for first and second magnetic field is optimized in each case.
  • remote control commands gen from the magnetic coil system for capsule übertra ⁇ it may be advantageous not only remote control commands gen from the magnetic coil system for capsule übertra ⁇ , but also feedback from the capsule to the outside to send.
  • this is a feedback that the remote control command has been received, eg a so-called acknowledge signal.
  • simple sensor data for example a temperature or pH value or other information from the capsule.
  • the feedback signal from the common coil system or the magnetic coil system can be received.
  • the respective transmission coils for first and second magnetic field then work as well
  • a separate receiving antenna is überflüs ⁇ sig.
  • the feedback signal can then be decoupled from this via a filter in the coil system and forwarded for further processing, for example to the aforementioned capsule control.
  • the combined electrical output signal of the locating coil can be divided into separate, respectively the first and second magnetic field corre ⁇ profiled electrical signals become. This can be done, for example, in the case of modulation by bandpass filters for different carrier frequencies or the like.
  • the capsule-side components for location and remote control can then each be supplied with the already separate remote control and location signals. So, these arrangements need not be modified. are compared with the solution with separate receiving antennas.
  • the common electrical signal coming from the locating coil is pre-amplified before the division.
  • the object of the invention is achieved by a device according to claim 13.
  • FIG. 1 a magnetic coil system for magnetic navigation and remote control of a working capsule
  • Fig. 2 coil currents of an excitation coil of FIG. 1 for Navi ⁇ and remote control (a) separately, (b) sequentially modulated and (c) in time division multiplex,
  • FIG. 3 shows an alternative control of the magnetic coil system in detail
  • Fig. 4 shows the working capsule in detail
  • Fig. 5 is a magnetic coil system for moving a magnetic body in a patient according to the prior art.
  • FIG. 1 shows again the known magnetic coil system 100 of FIG. 5 according to the prior art, but modi ⁇ fected according to the invention.
  • a force control 2 receives from the locating device 112 current position data 4 of the working capsule 110 in the coordinate system 114 as well as from an operating device, not shown, setpoint data for a new position and speed of the working capsule 110.
  • the position data 4 are location 116 and orientation 118 of the working capsule 110 in FIG Coordinate system 114, as explained in detail in connection with Figure 5.
  • the position data 4 of the evaluation and control unit 2 also provide position and orientation of the locating coils 124.
  • the capsule controller 128 which is responsible for the control of the capsule functions, sends, indicated by the arrow 6, a control signal to Errei ⁇ chen the working capsule 110, the locating device 112. This sends the coil assembly 125 of the prior art only serves to generate the locating signal, in the form of the field 8, the control signal to the capsule 110.
  • the field 8 thus represents the second magnetic field according to the invention.
  • the locating device 112 calculates the currents I A (t) in the coil arrangement 125 from the position data 4.
  • the currents I A (t) to I N (t) generate at the site of Ortungsspu- len 124 a magnetic field strength for locating and Fernsteue ⁇ tion of the capsule 110th
  • FIG. 2 a shows two temporal current profiles I or t (t) and I st (t), the sum of which is the current intensity I A (t) in the coil arrangement 125 of FIG. 1.
  • I location (t) is an exemplary zeitli ⁇ cher current intensity curve for locating the working capsule 110 ge ⁇ in accordance with the prior art.
  • the frequency fi of ort I (t) is here ⁇ at in the range of 0-50 Hz.
  • I st (t) shows a time current curve for I A (t) for transmitting a Fernberichtbe- tivs to the tracking coils 124.
  • the operating frequency f 2 of Ist (t) is about 10 kHz.
  • FIGS. 2b and 2c For the actual energization of the coil arrangement 125, two alternatives are shown in FIGS. 2b and 2c.
  • FIG. 2 a shows a current distribution I A (t) in which the currents I location (t) and I st (t) from FIG.
  • the energization or wiring of the coil arrangement 125 takes place here via the taps 18a and 18b, which are arranged at this end, ie the entire coil arrangement 125 is traversed by the current I A (t).
  • the taps 18a, b and c, as described below, are shown by way of example only for the coil assembly 125.
  • Fig. 2c shows in contrast a time course of the Stro ⁇ mes I A (t), in which the currents I or t (t) and I st (t) of Fig. 2a in time division multiplex as a current I A (t) to the Spulenanord ⁇ tion 125 are switched.
  • the energization or wiring of the coil arrangement 125 now takes place, as described above, only for the current I location (t) via the taps 18a and 18b.
  • the current supply with I st (t) takes place in each case via the taps 18 a and 18 c.
  • the Anzap ⁇ tion 18c is approximately centered in the coil assembly 125th arranged. Only a portion of the turns of Spulenanord ⁇ tion 125 is thus traversed by the current I st (t).
  • the coil assembly 125 then has a more suitable inductance or resistance for this current pattern.
  • the capsule feedback signals ( indicated by the arrows 22a, b, send to the magnetic coil system 100 or the Spu ⁇ lenanowski 125.
  • the signals are then collected by the respective coils, and sent to the capsule control 128.
  • a filter 20 is integrated, which derives the received feedback signals and along the
  • the receiver coil 124 then operates simultaneously as a transmit coil.
  • an external antenna 24 may be present, which collects the feedback signals along the arrow 26 and leads to the capsule control 128.
  • FIG. 3 again shows the control of the coil arrangement 125 in detail or in an alternative embodiment.
  • Each of the individual coils (not shown) in the coil system 125 is preceded by a power amplifier 30a-n which generates the actual respective coil currents I A (t).
  • the control of the power amplifier 30a-n is carried out in this connection by the locating device 112 and the Kapselsteue ⁇ tion 128 for remote control. Unlike in FIG. 1, that is, the navigation and remote control signals are not sel penetrateung in the chapter 128 ⁇ mixed.
  • the output signals of both units are therefore routed through separate signal lines 32a, b via preamplifiers 34 to combiners or mixers 36. Only there are the signals according to the alternatives mixed in Fig. 2 or multiplexed and then fed to the Leis ⁇ tung amplifiers 30a-n.
  • Fig. 4 shows the working capsule 110 in detail.
  • the locator coils 124 receive the magnetic field 120 for location and the field 8 for remote control, illustrated in FIG. 4 by a single arrow as an overall field, either simultaneously or in temporal multiplex, as explained above.
  • the total magnetic field is converted by the locating coils 124 into an electrical signal 38, which is forwarded to a circulator 40, thus reaches a signal divider 42 and is likewise forwarded to two bandpass filters 44a, b.
  • the band pass filter 44a is extracted from the signal 38 the correlated with the field 120 for locating position signal 46.
  • the band-pass filter 44b other hand, according to the extracted remote ⁇ control signal 48, the korre with the field 8 for remote control ⁇ is profiled.
  • Via preamplifier 50 both signals are respectively fed to the position detection 52 and the function control 54 of the capsule 110 and further processed there.
  • the function controller 54 operates the capsule fixtures, not shown, such as those shown in FIG. Biopsy forceps, medication reservoir, video camera or lighting.
  • the position detection 52 detects the field strength of the field 120 received by the location spins 124.
  • Capsule fixtures such as "light on” or “camera running” are sent outside the patient, not shown. Feedback can also come from the position detection 52. For example, For example, a number representing the field strength measured in the capsule is sent out from the capsule.
  • the return unit 56 transmits a corresponding command in the form of a feedback signal 58 to a mixer 60 for this purpose for Aufmodulation onto a carrier signal 61 of a Oszilla ⁇ gate 62 via the circulator 40 passes the resulting return signal to the coil assembly 124, which as an electro ⁇ magnetic field on the screen shown in FIG. 1 path 22a or 22c or 26 back to the capsule controller 128 or location device 112.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

L'invention concerne un procédé de télécommande sans fil d'une capsule de travail (110) comportant au moins trois bobines de détection (124) perpendiculaires les unes aux autres dans un patient, un premier champ magnétique (120) captable par les bobines de détection (124) étant produit, un dispositif de détection électromagnétique (112) calculant à l'aide du premier champ magnétique (120) captable par les bobines de détection (124) la position (116) et l'orientation (118) de la capsule de travail (110) par rapport (114) à un système de bobines magnétiques (100) comportant plusieurs, de préférence quatorze, bobines d'excitation (102a-n) à l'extérieur du patient, le système de bobines magnétiques (100) produisant à l'aide de la position (116) et de l'orientation (118) un champ magnétique de navigation (111) pour exercer une force (122) sur la capsule de travail (110), un deuxième champ magnétique (8) captable par ou moins l'une des bobines de détection (124) étant produit pour la télécommande de la capsule de travail (110). Un dispositif correspondant comporte un dispositif (112) servant à produire un premier champ magnétique (120), un système de bobines magnétiques (100) à l'extérieur du patient, un dispositif de détection électro magnétique (112), et un dispositif (128) servant à produire un deuxième champ magnétique (8) captable par au moins l'une des bobines de détection (124) pour la télécommande de la capsule de travail (110).
PCT/EP2007/051389 2006-03-27 2007-02-13 Procédé et dispositif de télécommande d'une capsule de travail comportant des bobines de détection WO2007110270A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006014045A DE102006014045B4 (de) 2006-03-27 2006-03-27 Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Ortungsspulen aufweisenden Arbeitskapsel
DE102006014045.1 2006-03-27

Publications (2)

Publication Number Publication Date
WO2007110270A2 true WO2007110270A2 (fr) 2007-10-04
WO2007110270A3 WO2007110270A3 (fr) 2008-03-13

Family

ID=38513134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/051389 WO2007110270A2 (fr) 2006-03-27 2007-02-13 Procédé et dispositif de télécommande d'une capsule de travail comportant des bobines de détection

Country Status (2)

Country Link
DE (1) DE102006014045B4 (fr)
WO (1) WO2007110270A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044384A3 (fr) * 2007-10-04 2009-05-28 Motilis Sarl Dispositif de mesure et méthode d'analyse de la motilité gastro-intestinale
US8797166B2 (en) 2011-05-27 2014-08-05 Pet Wireless Llc Systems, methods and computer program products for monitoring the behavior, health, and/or characteristics of an animal
WO2015061343A1 (fr) * 2013-10-22 2015-04-30 Rock West Solutions, Inc. Système pour localiser une pilule capteur à avaler avec trois éléments transmetteurs
US9131842B2 (en) 2012-08-16 2015-09-15 Rock West Solutions, Inc. System and methods for locating relative positions of multiple patient antennas
US9526080B2 (en) 2011-03-22 2016-12-20 Given Imaging Ltd. Systems and methods for synchronizing between an in-vivo device and a localization system
US10045713B2 (en) 2012-08-16 2018-08-14 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
CN113229770A (zh) * 2021-03-25 2021-08-10 北京善行医疗科技有限公司 医疗装置引导和控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215038A1 (en) 2003-04-24 2004-10-28 Xerox Corporation Colorant precursor compositions
DE10340925B3 (de) 2003-09-05 2005-06-30 Siemens Ag Magnetspulensystem zur berührungsfreien Bewegung eines magnetischen Körpers in einem Arbeitsraum
DE102005010489A1 (de) 2005-03-04 2006-09-14 Siemens Ag Spulensystem zur berührungsfreien magnetischen Navigation eines magnetischen Körpers in einem in einem Arbeitsraum befindlichen Patienten
DE102005053759A1 (de) 2005-11-10 2007-05-24 Siemens Ag Verfahren und Einrichtung zur drahtlosen Energieübertragung von einem Magnetspulensystem zu einer Arbeitskapsel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
DE69942912D1 (de) * 1998-09-08 2010-12-16 Robin Medical Inc Verfahren und vorrichtung zur abschätzung des ortes und der orientation von objekten während kernmagnetresonanzbildgebung
DE10142253C1 (de) * 2001-08-29 2003-04-24 Siemens Ag Endoroboter
JP2004298560A (ja) * 2003-04-01 2004-10-28 Olympus Corp カプセル内視鏡システム
US7214182B2 (en) * 2003-04-25 2007-05-08 Olympus Corporation Wireless in-vivo information acquiring system, body-insertable device, and external device
JPWO2004096022A1 (ja) * 2003-04-25 2006-07-13 オリンパス株式会社 無線型被検体内情報取得システムおよび被検体内導入装置
DE102004034444A1 (de) * 2003-07-18 2005-02-03 Pentax Corp. Kapsel-Vorrichtung
DE10341092B4 (de) * 2003-09-05 2005-12-22 Siemens Ag Anlage zur berührungsfreien Bewegung und/oder Fixierung eines magnetischen Körpers in einem Arbeitsraum unter Verwendung eines Magnetspulensystems
DE10359981A1 (de) * 2003-12-19 2005-07-21 Siemens Ag System und Verfahren zur In Vivo Positions- und Orientierungsbestimmung einer Endoskopie-Kapsel bzw. eines Endoroboters im Rahmen einer kabellosen Endoskopie
JP4150663B2 (ja) * 2003-12-25 2008-09-17 オリンパス株式会社 被検体内位置検出システム
JP5030392B2 (ja) * 2004-06-14 2012-09-19 オリンパス株式会社 医療装置の位置検出システムおよび医療装置誘導システム
DE102006014040B4 (de) * 2006-03-27 2012-04-05 Siemens Ag Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Arbeitskapsel eines Magnetspulensystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215038A1 (en) 2003-04-24 2004-10-28 Xerox Corporation Colorant precursor compositions
DE10340925B3 (de) 2003-09-05 2005-06-30 Siemens Ag Magnetspulensystem zur berührungsfreien Bewegung eines magnetischen Körpers in einem Arbeitsraum
DE102005010489A1 (de) 2005-03-04 2006-09-14 Siemens Ag Spulensystem zur berührungsfreien magnetischen Navigation eines magnetischen Körpers in einem in einem Arbeitsraum befindlichen Patienten
DE102005053759A1 (de) 2005-11-10 2007-05-24 Siemens Ag Verfahren und Einrichtung zur drahtlosen Energieübertragung von einem Magnetspulensystem zu einer Arbeitskapsel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044384A3 (fr) * 2007-10-04 2009-05-28 Motilis Sarl Dispositif de mesure et méthode d'analyse de la motilité gastro-intestinale
US9526080B2 (en) 2011-03-22 2016-12-20 Given Imaging Ltd. Systems and methods for synchronizing between an in-vivo device and a localization system
US8797166B2 (en) 2011-05-27 2014-08-05 Pet Wireless Llc Systems, methods and computer program products for monitoring the behavior, health, and/or characteristics of an animal
US9131842B2 (en) 2012-08-16 2015-09-15 Rock West Solutions, Inc. System and methods for locating relative positions of multiple patient antennas
US10045713B2 (en) 2012-08-16 2018-08-14 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
US11058322B2 (en) 2012-08-16 2021-07-13 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
WO2015061343A1 (fr) * 2013-10-22 2015-04-30 Rock West Solutions, Inc. Système pour localiser une pilule capteur à avaler avec trois éléments transmetteurs
US10945635B2 (en) 2013-10-22 2021-03-16 Rock West Medical Devices, Llc Nearly isotropic dipole antenna system
CN113229770A (zh) * 2021-03-25 2021-08-10 北京善行医疗科技有限公司 医疗装置引导和控制系统及方法
WO2022198975A1 (fr) * 2021-03-25 2022-09-29 北京善行医疗科技有限公司 Système de guidage et de commande d'appareil médical et procédé associé

Also Published As

Publication number Publication date
DE102006014045A1 (de) 2007-10-11
DE102006014045B4 (de) 2012-04-05
WO2007110270A3 (fr) 2008-03-13

Similar Documents

Publication Publication Date Title
DE102005053759B4 (de) Verfahren und Einrichtung zur drahtlosen Energieübertragung von einem Magnetspulensystem zu einer Arbeitskapsel
DE102006014040B4 (de) Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Arbeitskapsel eines Magnetspulensystems
DE102006014045B4 (de) Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer Ortungsspulen aufweisenden Arbeitskapsel
DE102005040528B4 (de) Drahtlose Erfassung der Ausrichtung eines Endoskops
EP2034879B1 (fr) Système de détermination de la position d'un instrument médical
DE19751761B4 (de) System und Verfahren zur aktuell exakten Erfassung von Behandlungszielpunkten
DE102005010489B4 (de) Spulensystem zur berührungsfreien magnetischen Navigation eines magnetischen Körpers in einem in einem Arbeitsraum befindlichen Patienten
DE10341092B4 (de) Anlage zur berührungsfreien Bewegung und/oder Fixierung eines magnetischen Körpers in einem Arbeitsraum unter Verwendung eines Magnetspulensystems
DE69733341T2 (de) Ortungsverfahren mit feldbestätigungssequenzen
DE102011017591A1 (de) Endoskopiekapsel zur Untersuchung und/oder Behandlung in einem Hohlorgan eines Körpers und Untersuchungs- und/oder Behandlungseinrichtung mit einer Endoskopiekapsel
EP0890117A1 (fr) Dispositif et procede de determinaton de position
DE102010037195A1 (de) System zur Erfassung von Hochfrequenz-Transceivern und dessen Verwendungen
DE102013208610A1 (de) Patiententransportsystem
DE10359981A1 (de) System und Verfahren zur In Vivo Positions- und Orientierungsbestimmung einer Endoskopie-Kapsel bzw. eines Endoroboters im Rahmen einer kabellosen Endoskopie
DE102006010730A1 (de) Einrichtung zur Positions- und/oder Orientierungsbestimmung eines navigierbaren Objects
DE102011078405B4 (de) Verfahren zur Endoskopie mit magnetgeführter Endoskopkapsel sowie Einrichtung dazu
DE102008035092B4 (de) Vorrichtung zur Durchführung einer minimalinvasiven Diagnose oder Intervention im Körperinneren eines Patienten mit einem Kapselendoskop sowie Verfahren zur Ermittlung der Istposition eines Kapselendoskops im Körperinneren eines Patienten
DE102011006537B4 (de) Verfahren zur Registrierung eines ersten Koordinatensystems einer ersten medizinischen Bildgebungseinrichtung mit einem zweiten Koordinatensystem einer zweiten medizinischen Bildgebungseinrichtung und/oder einem dritten Koordinatensystem eines medizinischen Instruments, welches durch Marker einer medizinischen Navigationseinrichtung definiert ist, und medizinisches Untersuchungs- und/oder Behandlungssystem
DE102007036242A1 (de) Magnetspulensystem zur Kraftausübung auf eine Endoskopiekapsel
DE102006040941A1 (de) Medizinische Einrichtung und Verfahren
DE102005010094A1 (de) Medizinische Anlage mit einem während der Durchführung einer medizinischen Maßnahme mobilen medizinischen Gerät und Verfahren zum Austausch von Daten in einer derartigen Anlage
DE102010001484A1 (de) Übertragungsvorrichtung zur kontaktlosen Übertragung von Energie und Daten, Übertragungssystem und Verfahren zur kontaktlosen induktiven Energieübertragung und Datenübertragung
DE102011006562B4 (de) Verfahren zur Unterstützung der Navigation eines medizinischen Instruments während einer Operation und medizinische Untersuchungs- und/oder Behandlungseinrichtung
WO2010091926A1 (fr) Procédé et dispositif pour déterminer un trajet parcouru par une capsule endoscopique dans un patient
DE102006014044B4 (de) Verfahren und Einrichtung zur drahtlosen Fernsteuerung der Kapselfunktionen einer eine HF-Sendespule aufweisenden Arbeitskapsel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07704561

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07704561

Country of ref document: EP

Kind code of ref document: A2