WO2007108394A1 - 積層体及び炭素膜堆積方法 - Google Patents
積層体及び炭素膜堆積方法 Download PDFInfo
- Publication number
- WO2007108394A1 WO2007108394A1 PCT/JP2007/055218 JP2007055218W WO2007108394A1 WO 2007108394 A1 WO2007108394 A1 WO 2007108394A1 JP 2007055218 W JP2007055218 W JP 2007055218W WO 2007108394 A1 WO2007108394 A1 WO 2007108394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- substrate
- carbon film
- resin material
- film
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
- C23C16/0281—Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/269—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
Definitions
- the present invention relates to a laminate of a carbon film and a resin material having new physical properties, and a carbon film deposition method on a substrate made of a resin material.
- PP S polysulfide
- PPS resin is a crystalline polymer having a melting point of about 280 ° C, and has excellent heat resistance and rigidity, as well as chemical resistance, dimensional stability, electrical properties, mechanical properties, and injection moldability. It is a flame-retardant resin having properties. Sarakuko PPS has high heat resistance, strength, rigidity, and excellent dimensional stability by strengthening with glass fiber, carbon fiber or inorganic filler (inorganic filler), and at the same time, it is excellent as a thermoplastic resin. It has been put into practical use as a heat-resistant engineering plastic with excellent moldability.
- thermosetting resin represented by metals such as die casting and phenol resin is substituted by thermosetting resin.
- the PPS resin product is a resin that is expected to greatly expand its application and enables metal replacement. Therefore, it is expected to play an important role in reducing the weight of automobiles and electronic devices in the future.
- PPS resin products in order to use PPS resin products more widely in these applications, it is necessary to further increase the thermal conductivity and sliding properties of PPS resin products, as well as heat resistance, strength, and rigidity.
- plasma vapor chemical vapor deposition is generally used for the lamination of diamond films and the deposition of carbon films having excellent characteristics as described in Patent Document 1.
- the source gas is usually a mixed gas of hydrogen and methane, and the mixing ratio of hydrogen gas is generally 90% or more.
- the resin is exposed to a large amount of hydrogen plasma. Strength The reactivity of hydrogen plasma was so high that the resin material was damaged due to the reaction with hydrogen plasma.
- Patent Document 1 International Publication No. 2005Z103326 Pamphlet
- the present invention has been made in view of the circumstances as described above, and the purpose thereof is to impart higher characteristics with respect to the thermal conductivity characteristics, rigidity, scratch resistance, and slidability of the resin material.
- the present invention provides a carbon film and resin laminate and a carbon film deposition method on a substrate made of a resin material.
- the present inventors have deposited a carbon film having high thermal conductivity, rigidity, scratch prevention, and high slidability on a resin material.
- the present inventors have found that it is possible to form a laminate of a carbon film and a resin that has higher thermal conductivity characteristics, rigidity, scratch resistance, and slidability.
- the reaction gas is mixed with low reactivity argon gas and z or hydrogen gas, and a very low gas pressure is used. It has been found that a carbon film can be deposited without damaging or melting the substrate.
- the present invention has been completed based on these findings, and is as follows.
- a resin material is laminated with a carbon film having a thermal conductivity of 70 to 700 WZmK, a resistance value of 1 X 10 70 «11 or more (film thickness of 50 ⁇ ! To 10 ⁇ m having 100 °, and the carbon
- the film has a Bragg angle (2 0 ⁇ 0.3 °) of 41 to 42 in the X-ray diffraction spectrum by CuK rays.
- the plasma resistant film is made of a metal or alloy such as gold, silver, copper, titanium, aluminum, iron, stainless steel, molybdenum, ceramics such as tungsten carbide, alumina, boron nitride, silicon, sapphire, quartz, SiO. , Glass, diamond-like carbon power is also selected
- the laminate according to (2) which is at least one.
- a resin such as polysulfide sulfide, polycarbonate, polyethylene terephthalate, polyethersulfone or the like, carbon fiber, glass fiber, inorganic filler, etc.
- a method for depositing a carbon film on a substrate made of a resin material comprising a microwave plasma CVD reaction A gas mixture of carbon-containing gas and argon gas and / or hydrogen gas is introduced into the furnace as the reaction gas, and the gas pressure is 1 to: Plasma is generated with LOO Pascal, and plasma electrons are generated.
- the substrate is arranged at a temperature of 0.5 to 3.0 eV, and the generational force of the plasma is directed toward the substrate so as to reach the radical particles in the plasma almost uniformly on the surface of the substrate. And depositing the carbon film.
- a carbon film deposition method in which radical particles in plasma are moved toward the substrate almost uniformly on the surface of the substrate.
- the laminate of the carbon film and the resin of the present invention can further enhance the thermal conductivity and sliding property, as well as heat resistance, strength, and rigidity of a conventional resin material. Further, when a film having plasma resistance is laminated on the resin material, the resin material can be prevented from being damaged by hydrogen plasma. Furthermore, according to the carbon film deposition method of the present invention, it is possible to prevent melting and thermal deformation of the resin material by using a force to prevent damage to the resin material used as a base material by the plasma.
- FIG. 1 is a cross-sectional view showing an outline of a laminate of a carbon film and a resin (PPS material) according to the present invention.
- FIG. 2 is a cross-sectional view showing an outline of a laminate of a carbon film, a plasma resistant film (titanium) and a resin (PPS material) of the present invention.
- FIG. 3 An outline of a laminate of a carbon film, a plasma resistant film (SiO 2) and a resin (PPS material) of the present invention is shown.
- FIG. 1 A first figure.
- FIG. 4 is a diagram showing a configuration of a production apparatus for a laminate of a carbon film and a resin according to the present invention.
- FIG. 6 A diagram showing the distance dependence of the plasma density from the bottom surface (CVD reactor side) of the quartz window for microwave introduction.
- FIG. 10 is a diagram showing an X-ray diffraction spectrum by CuK X-ray and a peak fitting result of an example carbon film of the present invention.
- FIG. 11 A diagram showing a typical X-ray diffraction spectrum ((111) reflection peak) of CuK X-rays in diamond, and peak fitting results.
- FIG. 1 is a cross-sectional view showing an outline of a laminate of a carbon film and a resin (PPS material) of the present invention.
- FIG. 2 is a cross-sectional view showing an outline of a laminate of a carbon film of the present invention, a plasma resistant film (titanium) and a resin (PPS material), and
- FIG. 3 shows a carbon film of the present invention and a plasma resistant film (SiO 2). And rosin (PPS material)
- the laminate of the carbon film and resin of the present invention has a film thickness of 50 ⁇ having a resin material, a thermal conductivity of 70 to 700 WZmK, and a resistance value of 1 ⁇ 10 7 ⁇ cm or more (100 ° C.)!
- a carbon film with a thickness of ⁇ 10 ⁇ m is laminated, and the carbon film has a spectrum peak at a Bragg angle (2 0 ⁇ 0.3) of 41-42 ° in the X-ray diffraction spectrum by CuK rays. It is a laminate.
- the laminate of the carbon film and the resin of the present invention includes a resin material, a plasma resistant film, a thermal conductivity of 70 to 700 WZmK: a film thickness having a resistance value of 1 ⁇ 10 7 Q cm or more (100 ° C.).
- a carbon film having a thickness of 600 nm to 2 ⁇ m is laminated, and the carbon film has a spectrum peak at 41 to 42 ° of the Bragg angle (20 ⁇ 0.3 °) in the X-ray diffraction spectrum by CuK rays. It is a laminated body provided with.
- metals or alloys such as gold, silver, copper, titanium, aluminum, iron, stainless steel, molybdenum, ceramics such as tungsten carbide, alumina, boron nitride, silicon, sapphire, quartz, SiO , Glass, diamond-like car
- At least one selected from the Bonn force is used and is integrally formed with the resin material.
- a resin material in the present invention a resin such as polysulfide, polycarbonate, polyethylene terephthalate, polyethersulfone, etc., carbon fiber, glass fiber
- Surface resistance layers with plasma resistance include metals such as gold, silver, copper, titanium, aluminum, iron, stainless steel, molybdenum, ceramics such as tungsten carbide, alumina, boron nitride, silicon, SiO, quartz, glass, Diamond-like carbon is suitable.
- Gold, silver, Metals such as copper, titanium, aluminum, iron, stainless steel, and molybdenum are preferably stacked by vacuum deposition or by a sputtering method.
- Ceramics such as tandastencarnoid, alumina, and boron nitride are suitable for lamination by sputtering.
- silicon, SiO, quartz, glass, diamond-like carbon, etc. are C
- Lamination by VD treatment, coating drying method, sputtering method, etc. is suitable.
- the thickness of these plasma-resistant surface coatings is suitably from lOOnm to 2 ⁇ m.
- nanocrystalline diamond particles, cluster diamond particles, or graphs are applied to a resin material or a resin material laminated with a plasma resistant film. It is preferable to attach a catalyst to which the eye cluster diamond particles are attached, or adamantane (CH 3), a derivative thereof or a multimer thereof.
- adamantane CH 3
- nanocrystal diamond particles are diamond produced by explosive synthesis or by grinding diamond synthesized at high temperature and high pressure.
- Cluster diamond particles are aggregates of nanocrystal diamond particles, and graphite cluster diamond particles are cluster diamond particles containing a large amount of graphite and amorphous carbon components.
- Nanocrystal diamond is a nanocrystal diamond powder produced from a colloidal solution in which nanocrystal diamond by explosion synthesis is dispersed in a solvent from Nanocarbon Laboratories Co., Ltd. or by pulverization. Dispersed products are already sold by Tomeidaya Corporation.
- the nanocrystal diamond particles used in the present invention have an average particle size force of ⁇ 100 nm, preferably 4 to 10 nm. For nanocrystal diamond particles, see, for example, “Hiraki Makita, New Diamond Vol.12 No. 3, p. p. 8-13 (1996) ”.
- nanocrystal diamond particles are attached to a resin material or a resin material laminated with a plasma resistant film
- the particles are dispersed in water or ethanol.
- a surfactant for example, sodium lauryl sulfate ester, sodium oleate, etc.
- the substrate is immersed in this dispersion and subjected to an ultrasonic cleaner, and then the substrate is immersed in ethanol. After performing ultrasonic cleaning by immersing in the substrate, the substrate is taken out and dried.
- the adhesion rate of the nanocrystal diamond particles to the substrate surface is preferably 10 9 to 10 12 per lcm 2 , more preferably 10 1G to 11 L0.
- Diamond particles adhering to a resin material or a resin material laminated with a plasma resistant film act as a seed crystal for carbon film growth in plasma CVD processing.
- the adhesion ratio of the nanocrystal diamond particles adhering to the substrate surface can be reduced.
- the nucleation density of the carbon particles can be lowered in the plasma CVD process, and a discontinuous film composed of carbon particles can be obtained.
- the areal density of the carbon particles in this aggregate can be controlled by the concentration of nanocrystalline diamond particles in the dispersion.
- the particle size of the carbon particles can be controlled by the time during which the plasma CVD process is performed.
- the concentration very thin it is possible to produce an aggregate with carbon particle force isolated on the substrate.
- only the carbon particles can be obtained by removing the substrate from the aggregate by treating the aggregate with an organic solvent or the like.
- a dispersion of the nanocrystal diamond is spin-coated on the substrate, and then dried.
- a drying method is also effective. This pre-treatment method using spin coating can provide the same adhesion effect as the above ultrasonic cleaning method.
- Cluster diamond particles are aggregates of nanocrystal diamonds produced by an explosive synthesis method, are excellent in transparency, and are already sold by Tokyo Diamond Tool Mfg. Co., Ltd.
- the particle size distribution is preferably 4 to 100 nm, more preferably 4 to 10 nm.
- the cluster diamond particles are described in detail in the document “Hiroshi Makita, New Diamond, Vol.12 No.3, p.8-13 (1996)”.
- the particles are dispersed in water or ethanol.
- a surfactant for example, sodium lauryl sulfate ester, sodium oleate, etc.
- the substrate is immersed in this dispersion and subjected to an ultrasonic cleaner. Is immersed in ethanol for ultrasonic cleaning, and then the substrate is taken out and dried.
- a resin material having cluster diamond particles attached to the surface or a resin material laminated with a plus or a polymer resistant film can be obtained. Adhesion of the cluster diamond particles to a resin material or a resin material laminated with a plasma resistant film is due to a part of the particles being embedded in the substrate surface by physical force in ultrasonic cleaning treatment. .
- the adhesion ratio of cluster diamond particles to the substrate surface is preferably 10 9 to 10 12 per 1 cm 2 , more preferably 10 1G to 11 L0.
- Diamond particles adhering to a resin material or a resin material laminated with a plasma resistant film act as seed crystals for carbon film growth in the plasma CVD process.
- the concentration of the cluster diamond particles dispersed in the dispersion medium water, ethanol, etc.
- the adhesion ratio of the cluster diamond particles adhering to the substrate surface can be reduced.
- the nucleation density of carbon particles can be reduced in the plasma CVD process, and a discontinuous film composed of an aggregate of carbon particles can be obtained rather than a continuous film.
- the areal density of the carbon particles in this aggregate can be controlled by the concentration of cluster diamond particles in the dispersion.
- plasma CVD treatment The particle size of the carbon particles can be controlled by the time to perform.
- by making the concentration very thin it is possible to produce an integrated body with isolated carbon particle force on the substrate.
- only the carbon particles can be obtained by removing the substrate from the aggregate by treating the aggregate with an organic solvent or the like.
- the particles are first dispersed in water or ethanol.
- a surfactant for example, sodium lauryl sulfate ester salt, sodium oleate, etc.
- the substrate is immersed in this dispersion and subjected to an ultrasonic cleaner. Is immersed in ethanol for ultrasonic cleaning, and then the substrate is taken out and dried.
- the adhesion ratio of diamond particles to the substrate surface is preferably 10 9 to 10 12 per 1 cm 2 , more preferably 10 1 G to 11 L0.
- Diamond particles adhering to a resin material or a resin material laminated with a plasma resistant film act as a seed crystal for carbon film growth in plasma CVD processing.
- the adhesion rate of the graphite cluster diamond particles adhering to the substrate surface can be reduced. it can.
- the surface density of the carbon particles in this aggregate is determined by the dispersion solution. It can be controlled by the concentration of the graphite cluster diamond particles inside.
- the particle size of the carbon particles can be controlled by the time during which the plasma CVD process is performed.
- the concentration very thin, it is possible to produce an isolated body having carbon particle force isolated on the substrate. Furthermore, only the carbon particles can be obtained by treating the aggregate with an organic solvent or the like to remove the substrate from the aggregate force. Furthermore, when a continuous film is formed on a substrate, a self-supporting film can be formed by removing the substrate.
- Adamantane is a molecule represented by the molecular formula C H and is the basic bone of diamond.
- the substance is used as a solvent (for example, ethanol, hexane, acetonitrile, etc.). Then, the substrate is immersed in the solution and subjected to ultrasonic cleaning, and then the substrate is taken out and dried. In this way, it is possible to obtain a resin material in which adamantane or a derivative thereof or a multimer thereof is attached to the surface, or a resin material laminated with a plasma resistant film.
- a solvent for example, ethanol, hexane, acetonitrile, etc.
- the adhesion ratio of adamantane or its derivative or their multimer adhering to the substrate surface is reduced. Can do.
- the surface density of the carbon particles in the aggregate can be controlled by the concentration of adamantane or a derivative thereof or a multimer thereof in the solution.
- the particle size of the child can be controlled.
- the concentration very low it is possible to produce an aggregate with carbon particle force isolated on the substrate. Further, by treating the aggregate with an organic solvent or the like, the aggregate strength can also be obtained only by removing carbon from the substrate.
- a resin for treating a resin material or a resin material laminated with a plasma resistant film using a microwave plasma CVD apparatus, or a resin material Alternatively, the pretreatment is performed on the resin material on which the plasma resistant film is laminated, and then the treatment is performed using a microwave plasma CVD apparatus.
- the resin material was kept from room temperature to 200 ° C. Holding at such a low temperature not only has an effect of preventing plasma damage but also has a remarkable effect of preventing melting and thermal deformation of the resin material.
- a mixed gas of carbon-containing gas and argon gas and / or hydrogen gas is introduced as a reaction gas into a microwave plasma CVD reactor, and the gas pressure is set to 1 to: LOO Pascal.
- the substrate is placed at a position where the plasma electron temperature is 0.5 to 3.0 eV, and the plasma is generated so that radical particles in the plasma reach the surface of the substrate almost uniformly. This is achieved by adopting a carbon film deposition method in which the origin force is moved toward the substrate.
- the present invention particularly relates to a laminate of a resin material and a carbon film formed by holding the resin material from room temperature to 200 ° C and performing a microwave plasma CVD process, and a method for forming the laminate.
- a method for forming the laminate Is.
- metals, ceramics, semiconductors, etc. as the base material, and extending the method to hold the base material at a high temperature of about 400 ° C to 900 ° C on the sample table, base materials such as metals, ceramics, semiconductors, etc. It is possible to deposit a diamond film.
- this method can be expanded as a method for depositing diamond-like carbon (DLC) films. Is possible.
- a material such as polyphenylene sulfide (PPS), polycarbonate (PC), polyethylene terephthalate (PET), polyethersulfone (PES) is provided with a plasma resistant film as needed, or diamond fine particles are ultrasonicated.
- the low-temperature microwave plasma CVD apparatus is used to deposit radical particles in the plasma, which is the source of film formation, on the surface of the resin substrate placed on the sample stage.
- the plasma generation source force is supplied by a down flow that moves toward the substrate so as to reach the substrate uniformly, and plasma CVD processing is performed.
- the raw material gas (reactive gas) used for the CVD process is a mixed gas composed of a carbon-containing gas, argon gas and / or hydrogen.
- the carbon-containing gas include methane, ethanol, acetone, and methanol.
- the mixing ratio of the mixed gas suitable for film formation varies depending on the respective resin used for the substrate, and also varies depending on the state of the surface treatment of the resin.
- the concentration of the carbon-containing gas is 0.5 to 10 mol%. , Preferably 1 to 4 mol%. If the carbon-containing gas exceeds the above range, problems such as a decrease in light transmittance of the carbon film occur, which is not preferable.
- the amount of CO and / or CO added is preferably 0.5 to 1 in the total mixed gas.
- Addition of argon gas and Z or hydrogen is extremely effective in preventing plasma damage on the surface of the resin material.
- it is effective to prevent plasma damage by increasing the proportion of argon gas compared to the proportion of hydrogen.
- the proportion of hydrogen gas is 0 to 95.5 mol%, and the proportion of argon gas is 0 to 95.5 mol%.
- the plasma CVD processing time is from several minutes to several tens of hours, and the processing temperature is 20 to 300 ° C.
- the gas pressure of the plasma CVD process and the position where the resin base material is disposed are very important and were confirmed as follows.
- FIG. 4 shows an example of an apparatus used for forming a laminate of a carbon film and a resin according to the present invention.
- 101 is a microwave plasma CVD reactor (hereinafter simply referred to as “plasma generation chamber”)
- 102 is a rectangular waveguide with a slot for introducing microwaves into the plasma generation chamber 101
- 103 is a microwave Is a quartz member for introducing the substrate into the plasma generation chamber 101
- 104 is a metal support member for supporting the quartz member
- 105 is a substrate for deposition
- 106 is a sample stage for installing the substrate for deposition. It is equipped with a vertical movement mechanism and a film formation substrate cooling mechanism
- 107 is a supply / drainage of the cooling water.
- Reference numeral 108 denotes exhaust
- 109 is a gas introduction means for generating plasma.
- 110 is a reactor for performing plasma CVD processing.
- Plasma generation using the apparatus is performed as follows.
- the plasma generation chamber 101 is evacuated by an exhaust device (not shown). Subsequently, the plasma generating gas is introduced into the plasma generating chamber 101 at a predetermined flow rate through the plasma generating chamber gas introducing means 109. Next, a pressure control valve (not shown) provided in the exhaust device is adjusted to maintain the plasma generation chamber 101 at a predetermined pressure. A microwave of a desired power from a 2.45 GHz microwave generator (not shown) is supplied into the plasma generation chamber 101 via the slotted rectangular waveguide 102 and the quartz member 103, thereby generating a plasma generation chamber. Plasma is generated in 101.
- the microwave introducing quartz member 103 which is the origin of the plasma, is generated so that the radical particles in the plasma, which is the source of the film formation, reach the surface of the resin substrate placed on the sample stage almost uniformly. It can be moved from the lower surface of the substrate (CVD processing reactor side) toward the substrate and supplied by downflow.
- Fig. 5 shows the distance from the lower surface of the quartz window for introducing microwaves (on the CVD reactor side) of the electron temperature (electron kinetic energy) in the plasma obtained by measuring the plasma characteristics using a Langmuir probe.
- the Langmuir probe used for this plasma characteristic measurement was a plasma diagnostic probe L2P type manufactured by Kobe Steel.
- measurement is performed by a technique called double probe method using two probes of platinum and tungsten. went.
- the Langmuir probe method is described in detail, for example, in the document “Hideo Sakurai, Plasma Electronics, Ohmsha 2000, p.58”.
- the gas used for the measurement in this figure is 100% hydrogen and the pressure is lOPa.
- the electron temperature in the plasma has the characteristic that it decreases as the distance of the quartz window increases.
- Fig. 6 shows the dependence of the plasma density on the distance from the bottom surface (CVD reactor side) of the quartz window for microwave introduction.
- methane gas 0.5-10 mol%, carbon dioxide gas 0-10 mol%, hydrogen gas 0-95.5 mol%, argon gas 0-95.5 mol% are mixed in any proportion. Electron temperature and plasma density were measured. As a result, the characteristics of the plasma were almost unchanged in the measured gas mixing range.
- the resin substrate is placed on a sample stage that can move up and down so that the resin substrate can be placed at an arbitrary position from the quartz window.
- the electron temperature in the plasma shown in FIG. Based on the plasma density data shown in Fig. 6 and the gas pressure lOPa, the position of the resin substrate was changed to 1, 1 and 1, and the film formation experiment was conducted! We searched for the optimal electron temperature and plasma density conditions.
- the film was not formed at the position of the substrate where the electron temperature was 3 eV or higher, or only a slightly soot-like film was deposited on the carbon film of the present invention.
- the area force of the quartz window force was 20 mm or less. V was not deposited, or it was an area where only a saddle-like film was deposited.
- the carbon film of the present invention was confirmed in the region where the electron temperature was 3 eV or less. For example, it was confirmed that the film was formed in the region of 20 mm to 200 mm at a pressure of lOPa. At a pressure of 1 OPa, the electron temperature in this region was 3 eV to 0.8 eV.
- the film formation speed was 50 mn from the quartz window! Maximum at ⁇ 7 Omm. This is the dependence of the plasma density on the distance from the quartz window in Fig. 6. The plasma density reaches its maximum at 50 mm, so the film formation speed becomes maximum at about 50 mm. Can explain. Therefore, when it is desired to increase the deposition rate as much as possible, it became clear that the optimum position of the resin material for deposition is that the electron temperature is 3 eV or less and the plasma density is maximized. .
- the position of the resin material suitable for film formation can be selected so that the radical particles in the plasma, which is the source of film formation, reach the surface of the resin substrate placed on the sample stage almost uniformly.
- the generation source force of the plasma is moved toward the substrate to form a distribution of electron temperature that gradually decreases toward the substrate. I can say that I could do it.
- the film thickness of the carbon film suitable for forming a laminate of the resin material and the carbon film was 5011111 to 10111, preferably 100 nm to 5 ⁇ m.
- a laminate of a carbon film and a resin material can be formed.
- this carbon film has a peak fitting curve A of 43.9 ° at 43.9 ° with a Bragg angle (2 ⁇ ⁇ 0.3 °) in the X-ray diffraction spectrum by CuK ray. 3 ° peak fitting It has a remarkable characteristic different from other carbon particles such as diamond and carbon film, such as having an approximate spectral curve obtained by superimposing the inging curve B and the base line.
- the film is excellent in flatness and adhesion, and its surface roughness Ra is 20 nm or less, and in some cases, it is flat and reaches 3 nm or less.
- it has excellent optical properties, such as excellent transparency and very little birefringence of 2.1 or higher, and its resistivity is 10 7 ⁇ at a temperature of 100 ° C. It has excellent electrical properties such as very high electrical insulation at « ⁇ or more.
- the film is formed of crystalline carbon particles having a particle size of lnm and several tens of nm without any gaps.
- the film thickness of the resulting carbon film is 2 nm to: LOO ⁇ m, preferably 50 nm to: LO ⁇ m, more preferably 100 nm to 5 ⁇ m, and the particle size of the particles is preferably 1 to: LOOnm. More preferably 2 to 20 nm.
- Example 1 Formation of a carbon film on a PPS resin base material provided with a plasma resistant film (Ti)
- the base material is formed by injection molding of poly-lens sulfide (PPS) resin into a plate shape.
- PPS poly-lens sulfide
- Toray Industries, Inc. PPS rosin Tolerina A504X90 was used as PPS rosin.
- This A504X90 is PPS resin with glass fiber reinforcement.
- an injection molding machine equipped with a venting device model number; Ecomac HS100 manufactured by Haruna Co., Ltd.
- an injection molding machine model number; Roboshot ⁇ -100IA manufactured by Juanak Co., Ltd. Injection molded.
- Haruna's injection molding machine degassing device is a device that removes outgas and moisture generated in the plastic soot from the resin material in the cylinder of the injection molding machine.
- the shape of the PPS resin base material was 100mm x 100mm and the thickness was 2mm.
- the average surface roughness of the PPS resin base material surface was te at 3.5 m by observing a 10 m ⁇ 10 m region using an atomic force microscope.
- a titanium film having a thickness of 1 ⁇ m was provided as a plasma resistant film on the surface of the PPS resin base material by sputtering.
- the PPS resin base material provided with this titanium plasma-resistant film was pretreated to attach nanocrystal diamond particles dispersed in water.
- a PPS resin base material is immersed in this dispersion and subjected to an ultrasonic cleaner. Then, the base material is immersed in ethanol for ultrasonic cleaning, and then the base material is taken out and dried. It was. In this way, a PPS resin base material was obtained in which a plasma-resistant film having nanocrystal diamond particles attached to the surface was laminated.
- Adhesion of the nanocrystalline diamond particles to the PPS resin base material on which the plasma resistant film is laminated is due to a part of the particles being embedded in the substrate surface by physical force in ultrasonic cleaning treatment.
- Diamond particles adhering to the PPS resin base material on which a plasma resistant film is laminated act as a seed crystal for carbon film growth in plasma CVD processing.
- Gas used in the CVD process the hydrogen gas 90 mole 0/0, carbon dioxide 5 mole 0/0, were methane 5 molar%.
- Plasma was generated with a gas pressure of lOPa, the substrate was placed 50 mm from the quartz window where the plasma electron temperature was leV, and plasma CVD treatment was performed for 4 hours. The temperature of the substrate during the plasma treatment was measured by bringing a thermocouple placed on the sample stage 106 into contact with the back surface of the substrate. The substrate temperature was approximately 40 ° C throughout the plasma CVD process.
- a carbon film with a thickness of approximately 1 m was deposited on the surface of the PPS resin substrate.
- FIG. 7 shows a Raman scattering spectrum (excitation light wavelength: 244 nm) of a laminate of a PPS resin base material and a carbon film coated with a plasma resistant film produced by the above method.
- the Raman scattering spectrum of the laminate clearly shows peaks located near the Raman shift of 1333 cm- 1 , and it is clear that a carbon film is deposited.
- this peak is 1320-1340 cm “ 1 It was found that it always falls within the range of 1333 ⁇ 10 cm— 1 .
- the broad peak near the Raman shift of 1600 cm- 1 indicates the presence of the carbon sp 2 bond component. In this case, the full width at half maximum (FWHM) of the peak located near the Raman shift of 1333 cm- 1 was about 22 cm "1.
- the FWHM was in the range of 10 to 40 cm- 1 .
- the argon gas has a strong force. Since a plasma-resistant film was provided on the surface of the PPS resin substrate, the substrate surface was not damaged even if the argon gas was not added. Of course, the addition of argon gas was also effective in forming the carbon film.
- the base material used was a poly-lens sulfide (PPS) resin molded into a plate shape by injection molding.
- PPS resin fat Torelina A310M manufactured by Toray Industries, Inc. was used as PPS resin.
- A310M is PPS resin reinforced with glass fiber and inorganic filler. This is injection-molded using an injection molding machine equipped with an injection molding machine (model number; Ecomac HS 100) manufactured by Haruna Co., Ltd. on an injection molding machine manufactured by FANUC (model number; Roboshot ex 1 100IA). did.
- Haruna's injection molding machine degassing device is a device that removes outgas and moisture generated in the plastic soot from the resin material in the cylinder of the injection molding machine.
- the shape of the PPS resin base material was lOOmm x 100mm and thickness 2mm.
- the average surface roughness of the PPS resin base material surface was 3.5 ⁇ m, as observed in the 10 m ⁇ 10 ⁇ m region using an atomic force microscope.
- Copper having a thickness of 1 ⁇ m was provided as a plasma resistant film on the surface of the PPS resin base material by sputtering.
- the pre-treatment for attaching nanocrystal diamond particles or the like which is applied to the PPS resin base material provided with titanium as a plasma resistant film, is not performed. I was strong.
- the PPS resin base material provided with copper as a plasma resistant film as described below, it was possible to grow and deposit a carbon film without performing a pretreatment for attaching nanocrystal diamond particles and others.
- a carbon film was formed on the PPS resin substrate using the plasma CVD apparatus shown in Fig. 4 as follows.
- Gas used in the CVD process the hydrogen gas 90 mole 0/0, carbon dioxide 5 mole 0/0, were methane 5 molar%.
- Plasma was generated with a gas pressure of lOPa, the substrate was placed 50 mm from the quartz window where the plasma electron temperature was leV, and plasma CVD treatment was performed for 4 hours.
- the temperature of the substrate during the plasma treatment was measured by bringing a thermocouple placed on the sample stage 106 into contact with the back surface of the substrate.
- the substrate temperature was 40 ° C throughout the plasma treatment.
- a carbon film with a thickness of approximately 1 ⁇ m was deposited on the substrate surface.
- FIG. 8 shows the Raman scattering spectrum (excitation light wavelength: 244 nm) of the laminate of the PPS resin base material and the carbon film coated with the plasma resistant film (Cu) produced by the above method.
- the Raman scattering spectrum of the laminate clearly shows a peak located near the Raman shift of 1333 cm- 1 , and it is clear that a carbon film is deposited.
- the PPS resin base material provided with Cu as a plasma resistant film was capable of growing and depositing a carbon film without performing pretreatment for attaching nanocrystal diamond particles and others.
- the peak is in the range of from 1,320 to 1 340 cm- 1, that always fall within the scope of 1333 ⁇ 10 cm- 1 I understood.
- the broad peak near the Raman shift of 1600 cm- 1 indicates the presence of the carbon sp 2 bond component.
- the full width at half maximum (FWHM) of the peak located near 1 was approximately 22 cm " 1.
- the results of measurements on a number of other samples were similar, and FWHM was 10-40 cm— It was found to be in the range of 1 .
- the argon gas has a strong force. Since a plasma-resistant film was provided on the surface of the PPS resin substrate, the substrate surface was not damaged even if the argon gas was not added. Of course, the addition of argon gas was also effective in forming the carbon film.
- the base material used was a poly-lens sulfide (PPS) resin molded into a plate shape by injection molding.
- PPS resin fat Torelina A504X90, A310M, and A900 manufactured by Toray Industries, Inc. were used as PPS resin.
- A504X90 is a PPS resin reinforced with glass fiber
- A310M is a PPS resin reinforced with glass fiber and inorganic filler
- A90 0 is reinforced with glass fiber or inorganic filler
- Molded. Haruna's injection molding machine gas venting device is a device that removes outgas and moisture generated in the plastic soot from the resin material in the cylinder of the injection molding machine.
- the shape of the PPS resin base material was lOOmm x 100mm and the thickness was 2mm.
- the average surface roughness of the PPS resin base material surface was 3.5 ⁇ m, as observed in the 10 m ⁇ 10 m region using an atomic force microscope.
- PPS resin base materials were pretreated by attaching nanocrystalline diamond particles dispersed in water.
- a PPS resin base material is immersed in this dispersion and subjected to an ultrasonic cleaner. Then, the base material is immersed in ethanol for ultrasonic cleaning, and then the base material is taken out and dried. It was. In this way, a PPS resin base material having nanocrystal diamond particles adhered to the surface was obtained. Adhesion of the nanocrystal diamond particles to the PPS resin base material is due to a part of the particles being embedded in the substrate surface by physical force in ultrasonic cleaning treatment. Diamond particles adhering to the PPS resin base material act as seed crystals for carbon film growth in plasma CVD processing.
- a carbon film was formed as follows on the PPS substrate that had been subjected to the above pretreatment.
- Gas used in the CVD process argon 95 mol 0/0 was methane 5 mol 0/0.
- hydrogen gas and carbon dioxide were not added. Addition of hydrogen gas and carbon dioxide gas is also effective for carbon film formation.
- hydrogen gas exceeds 50 mol%, high-quality carbon film and PPS that cause severe plasma damage on the surface of PPS resin substrate It was difficult to form a laminate with greaves.
- Plasma was generated at a gas pressure of lOPa, the substrate was placed 50 mm from the quartz window where the plasma electron temperature was leV, and plasma CVD treatment was performed for 4 hours. The temperature of the substrate during the plasma CVD process was measured by bringing a thermocouple placed on the sample stage 106 into contact with the back surface of the substrate.
- FIG. 9 shows the Raman scattering spectrum (excitation light wavelength: 244 nm) of the laminate of the PPS resin base material and the carbon film produced by the above method.
- the figure shows an example of using Torayna A310 M manufactured by Toray Industries, Inc. for PPS resin.
- the Raman scattering spectrum of the laminate clearly shows a peak located near the Raman shift of 1333 cm- 1 , indicating that a carbon film was deposited.
- this peak is in the range of 1320 to 1340 cm- 1 , and always falls within the range of 1333 ⁇ 10 cm- 1. It was.
- the broad peak near the Raman shift of 1600 cm- 1 indicates the presence of the carbon sp 2 bond component.
- the full width at half maximum (FWHM) of the peak located near the Raman shift of 1333 cm- 1 was approximately 22 cm- 1 .
- PPS resin is particularly used as the resin material.
- PC polycarbonate
- PET polyethylene terephthalate
- PES polyethersulfone
- the laminate of the carbon film of the present invention and PPS resin was observed by X-ray diffraction. Details of the measurement are described below.
- the X-ray diffractometer used was Rigaku Corporation X-ray diffractometer RINT2100 XRD-DSC II, and the gometer was an Ultimalll horizontal goometer manufactured by Rigaku Corporation.
- a multi-purpose sample stand for thin film standard is attached to this go-homer.
- the measured sample is a 500 nm thick carbon film deposited on the 2 mm thick PPS resin base material of the present invention.
- the X-ray was a copper (Cu) wire.
- the applied voltage 'current of the X-ray tube was 40kV' and 40mA.
- a scintillation counter was used as the X-ray detector.
- the scattering angle (2 ⁇ angle) was calibrated using a silicon standard sample. The deviation of 2 ⁇ angle was + 0.02 ° or less.
- the measurement sample is fixed to the sample stage, and the 2 ⁇ angle is 0 °, that is, the X-ray incident direction is parallel to the sample surface and the X-ray is incident on the detector. was adjusted so that half of the sample was blocked by the sample.
- This state force was also generated by rotating the gometer and irradiating the sample surface with X-rays at an angle of 0.5 degrees. With this incident angle fixed, the 2 ⁇ angle was rotated from 10 ° to 90 ° in steps of 0.02 °, and the intensity of X-rays that scattered the sample force at each 2 ⁇ angle was measured.
- the computer program used for the measurement is RINT2000 / PC software Windows version manufactured by Rigaku Corporation.
- the measured X-ray diffraction spectrum is shown in FIG. White circles in the figure are measurement points. 2 It can be seen that there is a clear peak at ⁇ of 43.9 °. What is interesting here is that, as shown in Fig. 10, the 43.9 ° peak has a shoulder on its low angle side, 2 ⁇ force 1 to 42 °. (For the “Shoulder” of “Swettle”, it is recommended to refer to “The University of Tokyo Dictionary” (Tokyo Kagaku Dojin).) Therefore, this peak is 43.9. It consists of two peaks, a peak centered around the first peak (first peak) and another peak distributed around 41-42 ° (second peak).
- Diamond is known as a carbon-based material with a peak at 2 ⁇ of 43.9 ° by X-ray diffraction using Cu K-rays.
- Fig. 11 shows a spectrum obtained by X-ray diffraction measurement of diamond by the same method, and the peak is due to (111) reflection of diamond.
- the difference in the X-ray diffraction spectrum between the carbon film of the laminate of the present invention and diamond is clear, and the second peak distributed around 41-42 ° seen in the spectrum of the carbon film of the laminate of the present invention is a diamond. I can't see it in Mondo.
- the (111) reflection of diamond is composed of one component (only the first peak) centered at 43.9 °, and the shoulder on the low angle side like the carbon film of the laminate of the present invention is not observed. Therefore, the second peak distributed around 41 to 42 ° seen in the spectrum of the carbon film of the laminate of the present invention is a peak characteristic of the carbon film of the laminate of the present invention.
- the peak of the X-ray diffraction spectrum of the carbon film of the laminate of the present invention in FIG. It can be seen that it is much wider than the diamond peak.
- the width of the X-ray diffraction peak is increased, and it can be said that the size of the particles constituting the carbon film of the laminate of the present invention is very small.
- the size (average diameter) of the carbon particles constituting the carbon film of the laminate of the present invention is estimated from the peak width by the Scherrer formula usually used in X-ray diffraction, it is about 15 nm. It was. Refer to “Japan Society for the Promotion of Science, Thin Film 131st Committee, Thin Film Handbook, Ohmsha 1983, p. 375” for the Sierra formula.
- the peak of 2 ⁇ angle is between 39 ° and 48 ° using peak fitting. Analyzed. A function called Pearson VII function was used for fitting the first peak. This function is most commonly used to represent the peak profile of diffraction methods such as X-ray diffraction and neutron diffraction.
- ORIGIN-PFM Japanese version peak fitting module
- ORIGIN-PFM Japanese version peak fitting module
- the Pearson VII function is represented as "Pearson7”
- the asymmetric normal distribution function is represented as "BiGauss”
- the linear function is represented as "Line”.
- the fitting completion condition was the correlation coefficient (ORIGIN — PFM “COR” or “Corr Coe ⁇ ” of 0.99 or higher.
- this measured spectrum shows that the first peak by the Pearson VII function (fitting curve A in the figure) and the second peak by the asymmetric normal distribution function (fitting in the figure).
- the center of fitting curve A is 2 ⁇ force 3.9 °
- fitting curve B is maximum at 41.7 °.
- the area surrounded by each fitting curve and baseline is the intensity of each peak. This analyzed the intensity of the second peak relative to the intensity of the first peak. In the case of this sample, the intensity of the second peak (fitting curve B) was 45.8% of the intensity of the first peak (fitting curve A).
- a point to be noted in the analysis method of the X-ray diffraction measurement is that if the intensity of the X-ray is small, the variation in measurement data becomes large, and reliable fitting is impossible. Therefore, it is necessary to perform the analysis by the above-mentioned fitting for those whose peak maximum intensity is 5000 counts or more.
- the carbon film of the laminate of the present invention has a wide peak with 2 ⁇ centering on 43.9 ° in the X-ray diffraction measurement by CuK line, and the peak of the force is also at a low angle. It became clear that it had a structure with shoulders on the side. Based on analysis using peak fitting, this peak is the first peak due to the Pearson VII function centered at 20 ° 3.9 °, the second peak due to the asymmetric normal distribution function that is maximum at 41.7 °, and the first order Baseline by function (Background) superimposition can be very well approximated.
- the carbon film of the laminate of the present invention is characterized in that the second peak described above is observed, and is a carbon film having a structure different from that of the diamond.
- the production process of the carbon film of the laminate of the present invention and other measurement results were examined and the structure was examined.
- the carbon film synthesis method in the laminate of the present invention is compared with the diamond CVD synthesis method, it has the following significant features. First, normal diamond synthesis is performed at a temperature of at least 700 ° C., whereas the carbon film of the laminate of the present invention is synthesized at a very low temperature.
- the characteristics of the X-ray diffraction peak as described above are linked to the high function of the carbon film of the laminate of the present invention. That is, because of the slow synthesis at low carbon source concentration, Etching of eye and graphite-like materials is facilitated, resulting in a structure with a high concentration of defects, while keeping the thermal conductivity, strength, hardness and transparency of the carbon film high. In addition, because it is synthesized at a low temperature, cubic diamond and hexagonal diamond are mixed and contain a high concentration of defects. Thanks to such a low temperature, thermal damage is also caused to the resin material. Direct coating is possible without giving.
- the carbon particles in the carbon film have a uniform particle size, and the strain due to heat is very small.
- the structure in which cubic diamond and hexagonal diamond are mixed and contains a very high concentration of defects has the characteristics that thermal distortion is relaxed and optical birefringence is small. Similarly, thanks to this structure, very high electrical insulation is achieved.
- the electric resistance measuring device and Hall effect measuring device used are ResiTest8310S type machine manufactured by Toyo Telecommunications.
- the sample holder used is a VHT type manufactured by Toyo Tec-Power.
- the measured sample is a carbon film having a thickness of 500 nm prepared on a PPS resin substrate having a thickness of 2 mm by the method of the present invention.
- a PPS resin base material cut into 4 mm square was measured.
- Ti was deposited to a thickness of 0.3 nm in a circle with a diameter of 0.3 mm by vacuum evaporation at four corners of the sample.
- the electrical resistance was measured in an atmosphere of 1 mbar helium. Performed at room temperature and 100 ° C. As a result, a high resistance value of 1 X 10 9 Q cm or more at 100 ° C and 1 X 10 1G Q cm or more at room temperature (20 ° C) was exhibited.
- Example 6 Measurement of thermal conductivity of carbon film
- the thermal conductivity of the carbon film formed on the PPS resin material of the present invention was measured.
- the film thickness of the carbon film is 1 / zm.
- the optical alternating current method was used for the measurement method.
- the thermal diffusivity at 25 ° C was obtained.
- the specific heat and density of the carbon film of this laminate were measured. By multiplying these by the thermal diffusivity, the following thermal conductivity was obtained for two samples of the carbon film of the present invention.
- Measurement of the thermal conductivity of the carbon film formed on the PPS resin base material of the present invention was performed using a laser flash method different from the above-mentioned optical alternating current method. In this measurement method, it is difficult to measure heat conduction with a carbon film deposited on a PPS resin substrate, so quartz glass was used as the substrate. A carbon film was deposited on a quartz glass substrate, and the thermal conductivity of the carbon film was evaluated. A carbon film having a thickness of 1 ⁇ m was formed on a quartz glass substrate having a thickness of 5 mm ⁇ 5 mm and a thickness of 100 m. 30 sheets of these were stacked to create a 5mm x 5mm cuboid sample with a side thickness of about 3mm.
- the side of approximately 3 mm thickness was irradiated with an infrared laser, and the thermal diffusivity in the in-plane direction of the quartz glass on which a carbon film was formed was determined by the laser flash method.
- the infrared laser irradiation surface was blackened to increase the absorption of infrared light.
- the carbon film of the laminate of the present invention was verified for the effect of preventing scratches.
- the carbon film of the present invention was laminated to a thickness of 300 nm on the surface of a PPS resin material having a diameter of 10 cm and a thickness of 1 mm. And the force I rubbed 100 times with 100 sandpaper was not scratched at all. On the other hand, the PPS resin material without the carbon film was clearly damaged. Thus, the carbon film of the laminated body of the present invention proved to be highly effective in preventing damage to the PPS resin material.
- the laminate of the carbon film and the resin of the present invention has the above-described characteristics, it is a heat sink for electronic devices such as personal computers, mobile phones, multimedia-related devices, and mechanical parts that have conventionally used metals. It can also be used for applications such as light weight replacement by replacing resin with structural parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
Abstract
樹脂材の熱伝導率、摺動性、さらには耐熱性、強度、剛性を一層高め、高熱伝導性、剛性、傷つき防止、高摺動性などの特性を付与された樹脂材及びその製造方法を提供することを目的とするものであって、樹脂材と、熱伝導率70~700W/mK、抵抗値1×107Ωcm以上(100°C)を有する膜厚50nm~10μmの炭素膜であって、かつ、CuKα1線によるX線回折スペクトルにおいて、ブラッグ角(2θ±0.3°)の41~42°にスペクトルのピークを備える炭素膜とを積層した積層体、又は必要に応じて該樹脂材上にプラズマ耐性膜が一体成形された積層体であって、該樹脂材への炭素膜の堆積方法として、反応ガスにアルゴン及び/又は水素を混合したものを用い、かつガス圧を1~100パスカルにてプラズマを発生させるとともに、プラズマの電子温度が0.5~3.0eVの位置にプラズマ耐性膜を備えた前記基板を配置して、プラズマ中のラジカル粒子を前記基板の表面上にほぼ均一に到達するように該プラズマの発生起源から該基板に向けて移動させる方法を採用する。
Description
明 細 書
積層体及び炭素膜堆積方法
技術分野
[0001] 本発明は、新しい物性を備えた炭素膜と榭脂材との積層体、及び榭脂材からなる 基板への炭素膜堆積方法に関するものである。
背景技術
[0002] 近年、榭脂材料は、生活の中のあらゆるところで使用されている。特に最近では従 来の榭脂材と比較して特性の優れた、エンジニアリングプラスチックスと呼ばれるもの が多数開発されている。たとえば、以下に述べるポリフエ-ルサルファイド (以下、 PP S)榭脂もそのひとつである。
[0003] PPS榭脂は、約 280°Cの融点を有する結晶性ポリマーで、耐熱性と剛性、さらに耐 薬品性、寸法安定性、電気特性、機械的性質、射出成形性等においても優れた特 性を有する難燃性榭脂である。さら〖こ PPSは、ガラス繊維や炭素繊維あるいは無機 質充填材 (無機フィラー)で強化することによって高い耐熱性、強度、剛性、優れた寸 法安定性が得られ、同時に熱可塑性榭脂として優れた成形加工性を備えた耐熱ェ ンジニアリングプラスチックとして実用化されて 、る。
カゝくして、耐熱性向上による表面実装技術対応、精密成形性向上による電子部品 の小型化への対応、自動車の燃費向上、半導体、パソコン、携帯電話、マルチメディ ァ関連、さらには亜鉛、アルミダイカスト等の金属やフエノール榭脂に代表される熱硬 化性榭脂の代替による自動車、電気、電子部品等の分野で大幅に需要が増加して いる。
[0004] PPS榭脂製品は、上述したように大きく用途の拡大が見込まれ、また金属代替を可 能にする榭脂である。したがって、今後自動車や電子機器の軽量化にとって重要な 役割を果たすと期待されている。しかし、 PPS榭脂製品をより広範にこれらの用途に 利用するためには、 PPS榭脂製品の熱伝導率及び摺動性、さらには耐熱性、強度、 剛性を一層高めることが必要である。
また、以上のような特性向上は、 PPS榭脂製品だけでなくほとんどすべての種類の
榭脂に対して望まれている。
[0005] 一方、高 、熱伝導率、摺動性、強度、剛性などの特性をもつダイヤモンドは既に公 知であり(特許文献 1など)、前述のような榭脂材においてもその特性向上のための積 層材として望まれてきた。たとえば、もし PPS榭脂射出成形材にダイヤモンド膜を積 層することが可能であれば、 PPS榭脂製品の熱伝導率及び摺動性、さらには耐熱性
、強度、剛性を一層高めるであろう。しかし、ダイヤモンド膜の積層プロセスでは、積 層を施される基材の温度を通常 800°C以上の高温に保持する必要がある。従来、こ のような高温に耐えることの出来ない榭脂材にダイヤモンド膜を積層することにより、 その特性を向上することは不可能であるという問題があった。したがってダイヤモンド 膜の積層にかわる、榭脂材の熱伝導率及び摺動性、さらには耐熱性、強度、剛性を 向上し、かつ低温での積層が可能な積層材および手法の開発が望まれてきた。
[0006] また、ダイヤモンド膜の積層や、前記特許文献 1にもあるような優れた特性をもつ炭 素膜の堆積には、プラズマ気相化学蒸着法 (CVD)を用いるのが一般的である。この 場合、原料ガスは通常、水素とメタンの混合ガスであり、水素ガスの混合比は一般に 90%以上である。したがって、積層プロセスにおいて、榭脂材は多量の水素プラズ マに暴露される。し力 水素プラズマの反応性がたいへん高いため、榭脂材が水素 プラズマとの反応により損傷を受けるという大きな問題があった。
さらに、プラズマ処理中のプラズマからの加熱により、基板の榭脂材が溶けてしまう という問題があり、これを避けるために処理温度を低温にすると、ダイヤモンド膜や炭 素膜の堆積が困難になるという問題があった。
特許文献 1:国際公開第 2005Z103326号パンフレット
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、以上のような事情に鑑みてなされたものであって、その目的は、榭脂材 のもつ熱伝導特性、剛性、傷つき耐性、摺動性についてより高い特性が付与された、 炭素膜と樹脂との積層体、及び榭脂材からなる基板への炭素膜堆積方法を提供す ることにめる。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、高熱伝導性、剛 性、傷つき防止、高摺動性をもつ炭素膜を榭脂材に堆積することにより、榭脂材のも つ熱伝導特性、剛性、傷つき耐性、摺動性についてより高い特性が付与された、炭 素膜と樹脂の積層体を形成できることを見出した。さらに、反応ガスに反応性の低い アルゴンガス及び z又は水素ガスとを混合し、かつ非常に低 ヽガス圧力を使用する とともに、低電子温度プラズマを利用することにより、基板である榭脂材に損傷を与え たり或いは基板を溶力したりすることなく炭素膜が堆積できることを見出した。
[0009] 本発明は、これらの知見に基づいて完成するに至ったものであり、以下のとおりのも のである。
(1)榭脂材と、熱伝導率 70〜700WZmK、抵抗値 1 X 1070 «11以上(100° を有 する膜厚 50ηπ!〜 10 μ mの炭素膜とを積層し、かつ前記炭素膜は、 CuK 線による X線回折スペクトルにおいて、ブラッグ角(2 0 ± 0. 3° )の 41〜42。 にスペクトルの ピークを備える積層体。
(2)榭脂材と、プラズマ耐性膜と、熱伝導率 70〜700WZmK、抵抗値 1 X 107 Q cm 以上 (100°C)を有する膜厚 50ηπ!〜 10 mの炭素膜とを積層し、かつ前記炭素膜は 、 CuK 線による X線回折スペクトルにおいて、ブラッグ角(2 Θ ± 0. 3° )の 41〜42 ° にスペクトルのピークを備える積層体。
(3)前記榭脂材の最大表面粗さ力 3. 5 m以下である上記 (1)又は (2)の積層体。
(4)前記炭素膜の最大表面粗さは、 20nm以下である上記 (1)又は (2)の積層体。
(5)前記プラズマ耐性膜が、金、銀、銅、チタン、アルミニウム、鉄、ステンレス、モリブ デン等の金属又は合金、タングステンカーバイド、アルミナ、窒化ホウ素等のセラミツ ク、シリコン、サフアイャ、石英、 SiO、ガラス、ダイヤモンドライクカーボン力も選ばれ
2
た少なくとも 1つである上記 (2)の積層体。
(6)前記榭脂材と前記プラズマ耐性膜とは一体成形されて ヽる上記 (2)の積層体。
(7)前記榭脂材が、ポリフエ二ルサルファイド、ポリカーボネート、ポリエチレンテレフタ レート、ポリエーテルサルホン等の榭脂または炭素繊維、ガラス繊維、無機フイラ一等 を含有した前記樹脂のいずれか 1つである上記 (1)又は (2)の積層体。
(8)榭脂材カゝらなる基板への炭素膜堆積方法であって、マイクロ波プラズマ CVD反応
炉内に、反応ガスとして、含炭素ガスと、アルゴンガス及び/又は水素ガスとの混合ガ スを導入し、かつガス圧を 1〜: LOOパスカルにてプラズマを発生させるとともに、プラ ズマの電子温度が 0. 5〜3.0eVの位置に前記基板を配置して、プラズマ中のラジカ ル粒子を該基板の表面上にほぼ均一に到達するように該プラズマの発生起源力ゝら該 基板に向けて移動させてなる炭素膜堆積方法。
(9)榭脂材カゝらなる基板への炭素膜堆積方法であって、マイクロ波プラズマ CVD反応 炉内に、反応ガスとして、含炭素ガスと、アルゴンガス及び/又は水素ガスとの混合ガ スを導入し、かつガス圧を 1〜: L00パスカルにてプラズマを発生させるとともに、プラ ズマの電子温度が 0. 5〜3. OeVの位置にプラズマ耐性膜を備えた前記基板を配置 して、プラズマ中のラジカル粒子を前記基板の表面上にほぼ均一に到達するよう〖こ 該プラズマの発生起源力ゝら該基板に向けて移動させてなる炭素膜堆積方法。
(10)前記榭脂材力もなる基板の温度を室温から 200°Cに保持したことを特徴とする上 記 (8)又は (9)の炭素膜堆積方法。
(11)前記榭脂材力 なる基板は、超音波及び又はスピンコートによって前処理されて V、ることを特徴とする上記 (8)又 (9)の炭素膜堆積方法。
発明の効果
[0010] 本発明の炭素膜と樹脂の積層体は、従来の榭脂材の熱伝導性及び摺動性さらに は耐熱性、強度、剛性を一層高めることが可能である。また、榭脂材に、プラズマ耐 性をもつ膜を積層した場合には、水素プラズマによる榭脂材の損傷を防止することが できる。さらに、本発明の炭素膜堆積方法によれば、基材として用いる榭脂材のブラ ズマによる損傷を防止するば力りでなぐ榭脂材の溶融や熱変形を防止することがで きる。
図面の簡単な説明
[0011] [図 1]本発明の炭素膜と榭脂 (PPS材)の積層体の概要を示す断面図。
[図 2]本発明の炭素膜とプラズマ耐性膜 (チタン)と榭脂 (PPS材)の積層体の概要を 示す断面図。
[図 3]本発明の炭素膜とプラズマ耐性膜 (SiO )と榭脂 (PPS材)の積層体の概要を示
2
す断面図。
O
[図 4]本発明の炭素膜と樹脂の積層体の製造装置の構成を示す図。
[図1— 5]ラングミュアプローブを用いたプラズマ特性測定で得た、プラズマ中の電子温度
1—
(電子の運動エネルギー)のマイクロ波導入用石英窓の下面 (CVD反応炉側)からの 距離依存性を示す図。
[図 6]プラズマ密度のマイクロ波導入用石英窓の下面 (CVD反応炉側)からの距離依 存性を示す図。
圆 7]プラズマ耐性膜 (Ti)を施した PPS基材への炭素膜形成を示すラマンスペクトル 図。
圆 8]プラズマ耐性膜 (Cu)を施した PPS基材への炭素膜形成を示すラマンスぺタト ル図。
圆 9]プラズマ耐性膜のない PPS基材への炭素膜形成を示すラマンスペクトル図。
[図 10]本発明の一例の炭素膜の CuK X線による X線回折スペクトル、およびピーク フィッティング結果を示す図。
[図 11]ダイヤモンドにおける CuK X線による典型的な X線回折スペクトル ((111)反 射ピーク)、およびピークフィッティング結果を示す図。
符号の説明
プラズマ発生室
102 スロット付き角型導波管
103 マイクロ波導入するための石英部材
104 石英部材を支持する金属製支持部材
105 被成膜基材
106 被成膜基材を設置するための試料台
107 冷却水の給排水
108 排気
109 プラズマ発生用ガス導入手段
110 反応炉
発明を実施するための最良の形態
013] 図 1は、本発明の炭素膜と榭脂 (PPS材)の積層体の概要を示す断面図であり、図
2は、本発明の炭素膜とプラズマ耐性膜 (チタン)と榭脂 (PPS材)の積層体の概要を 示す断面図であり、図 3は、本発明の炭素膜とプラズマ耐性膜 (SiO )と榭脂 (PPS材)
2
の積層体の概要を示す断面図である。
本発明の炭素膜と樹脂との積層体は、榭脂材と熱伝導率 70〜700WZmK、抵抗 値 1 X 107 Ω cm以上 (100°C)を有する膜厚 50ηπ!〜 10 μ mの炭素膜とを積層し、か つ前記炭素膜は、 CuK 線による X線回折スペクトルにおいて、ブラッグ角(2 0 ±0 . 3。 )の 41〜42° にスペクトルのピークを備える積層体である。
また、本発明の炭素膜と樹脂との積層体は、榭脂材と、プラズマ耐性膜と熱伝導率 70〜700WZmK:、抵抗値 1 X 107 Q cm以上 (100°C)を有する膜厚 600nm〜2 μ mの炭素膜とを積層し、かつ前記炭素膜は、 CuK 線による X線回折スペクトルにお いて、ブラッグ角(2 0 ±0. 3° )の 41〜42° にスペクトルのピークを備える積層体で ある。
本発明におけるプラズマ耐性膜としては、金、銀、銅、チタン、アルミニウム、鉄、ス テンレス、モリブデン等の金属又は合金、タングステンカーバイド、アルミナ、窒化ホウ 素等のセラミック、シリコン、サフアイャ、石英、 SiO、ガラス、ダイヤモンドライクカー
2
ボン力 選ばれた少なくとも 1つが用いられ、前記榭脂材と一体成形されていることが 好ましい。
本発明における榭脂材としては、ポリフエ-ルサルファイド、ポリカーボネート、ポリ エチレンテレフタレート、ポリエーテルサルホン等の榭脂または炭素繊維、ガラス繊維
、無機フイラ一等を含有した前記樹脂のいずれか 1つが用いられる。
榭脂材カゝらなる基板への炭素膜の形成に用いられるプラズマ CVD処理では、榭脂 材は多量の水素プラズマに暴露される力 水素プラズマの反応性が高いため、榭脂 材表面が水素プラズマとの反応により損傷を受けることがある。
このような場合は、水素プラズマによる榭脂材の損傷を防止するため、榭脂材に対 して、プラズマ耐性をもつ膜の積層処理を行うことが効果的である。プラズマ耐性をも つ表面コーティング層としては、金、銀、銅、チタン、アルミニウム、鉄、ステンレス、モ リブデンなどの金属、タングステンカーバイド、アルミナ、窒化ホウ素などのセラミック、 シリコン、 SiO、石英、ガラス、ダイヤモンドライクカーボンなどが適当である。金、銀、
銅、チタン、アルミニウム、鉄、ステンレス、モリブデンなどの金属は真空蒸着法ゃス ノ ッタリング法で積層するのがよい。あるいは榭脂材を射出成形する際にこれら金属 膜を金型にあらかじめ挿入し、榭脂材と一体成形する方法も適している。タンダステ ンカーノイド、アルミナ、窒化ホウ素などのセラミックはスパッタリングで積層するのが 適している。さらにシリコン、 SiO、石英、ガラス、ダイヤモンドライクカーボンなどは C
2
VD処理や塗布乾燥法、スパッタリング法などによる積層が適している。これらプラズ マ耐性をもつ表面コーティングの厚さは lOOnmから 2 μ mが適している。
[0015] また、榭脂材の表面粗さが大きいと、水素、およびその他のプラズマによる損傷が 激しい。特に原子間力顕微鏡を用いた榭脂材表面の 10 m X 10 mの領域の観 察により、表面平均粗さが 3. 5 mを超えると水素プラズマによる損傷が著しくなるこ とがわかった。したがって、プラズマ損傷を防止するための許容される榭脂材の最大 表面粗さは 3. 5 mであり、表面粗さがこれを超えない榭脂財を基材として使用する こともプラズマ損傷の防止に効果がある。
[0016] 本発明にお ヽては、前記プラズマ CVD処理の前処理として、榭脂材、又はプラズ マ耐性膜を積層した榭脂材に対して、ナノクリスタルダイヤモンド粒子、クラスターダイ ャモンド粒子またはグラフアイトクラスターダイヤモンド粒子を付着させるカゝ、またはァ ダマンタン (C H )、その誘導体またはその多量体を付着させることが好ましい。
10 16
[0017] 通常ナノクリスタルダイヤモンド粒子は、爆発合成により、または高温高圧合成され たダイヤモンドを粉砕することにより製造されるダイヤモンドである。クラスターダイヤ モンド粒子は、ナノクリスタルダイヤモンド粒子の凝集体であり、グラフアイトクラスター ダイヤモンド粒子は、グラフアイトやアモルファス炭素成分を多量に含むクラスターダ ィャモンド粒子である。
[0018] ナノクリスタルダイヤモンドは、爆発合成によるナノクリスタルダイヤモンドを溶媒に 分散させたコロイド溶液が有限会社ナノ炭素研究所等から、また粉砕により製造され たナノクリスタルダイヤモンド粉末、ある 、はそれを溶媒に分散させたものがトーメイダ ィャ株式会社等から、既に販売されている。本発明で用いるナノクリスタルダイヤモン ド粒子は、その平均粒径力 〜100nm、好ましくは 4〜10nmである。ナノクリスタル ダイヤモンド粒子については、例えば文献で「牧田寛, New Diamond Vol.12 No. 3, p
p. 8- 13 (1996)」に詳述されている。
[0019] 榭脂材、又はプラズマ耐性膜を積層した榭脂材上にナノクリスタルダイヤモンド粒 子を付着させる前処理では、まず該粒子を水またはエタノール中に分散させる。この 際分散性を向上させるために、界面活性剤 (例えばラウリル硫酸エステルナトリウム塩 、ォレイン酸ナトリウム等)を加え、この分散液に基板を浸して超音波洗浄器にかけ、 その後、該基板をエタノール中に浸して超音波洗浄を行った後、該基板を取り出して 乾燥させる。
このようにして、表面にナノクリスタルダイヤモンド粒子を付着させる前処理を施した 榭脂材、又はプラズマ耐性膜を積層した榭脂材を得ることができる。榭脂材、又はプ ラズマ耐性膜を積層した榭脂材への該ナノクリスタルダイヤモンド粒子の付着は超音 波洗浄処理における物理的力により、該粒子の一部が基板表面へ埋没することによ るものである。
基板表面に対するナノクリスタルダイヤモンド粒子の付着割合は、好ましくは lcm2 当たり 109〜1012個、さらに好ましくは 101G〜: L011個である。榭脂材、又はプラズマ耐 性膜を積層した榭脂材に付着するダイヤモンド粒子は、プラズマ CVD処理における 炭素膜成長の種結晶として作用する。
[0020] このとき、分散媒 (水、エタノール等)に分散させるナノクリスタルダイヤモンド粒子の 濃度を希薄にすることにより、基板表面に付着するナノクリスタルダイヤモンド粒子の 付着割合を小さくすることができる。これにより、プラズマ CVD処理において炭素粒 子の核発生密度を下げ、連続膜ではなぐ炭素粒子の集積体力ゝら成る不連続膜を得 ることができる。この集積体における炭素粒子の面密度は、分散溶液中のナノクリスタ ルダイヤモンド粒子の濃度によって制御することができる。さらには、プラズマ CVD処 理を行う時間によって、炭素粒子の粒径を制御できる。また、その濃度を非常に薄く することにより、基板上に孤立した炭素粒子力 なる集積体を作製することもできる。 さらには、この集積体を有機溶剤等で処理することなどにより、該集積体から基板を 除去することによって、炭素粒子のみを得ることもできる。
[0021] また、該基板上にナノクリスタルダイヤモンド粒子を付着させる前処理の別な方法と して、該ナノクリスタルダイヤモンドの分散液を該基板上にスピンコートし、その後乾
燥させる方法も有効である。このスピンコートを用いる前処理法も、上記超音波洗浄 による方法と同様な付着効果が得られる。
[0022] クラスターダイヤモンド粒子は、爆発合成法により製造されるナノクリスタルダイヤモ ンドの凝集体であり、透明性に優れており、既に東京ダイヤモンド工具製作所等から 販売されている。本発明で用いるクラスターダイヤモンド粒子において、その粒径分 布は好ましくは 4〜100nm、さらに好ましくは 4〜10nmである。このクラスターダイヤ モンド粒子については、文献「牧田寛, New Diamond, Vol.12 No. 3, p.8— 13 (1996)」 に詳述されている。
[0023] 榭脂材、又はプラズマ耐性膜を積層した榭脂材上にクラスターダイヤモンド粒子を 付着させる前処理では、まず該粒子を水またはエタノール中に分散させる。この際分 散性を向上させるために、界面活性剤(例えばラウリル硫酸エステルナトリウム塩、ォ レイン酸ナトリウム等)を加え、この分散液に基板を浸して超音波洗浄器にかけ、その 後、該基板をエタノール中に浸して超音波洗浄を行った後、該基板を取り出して乾 燥させる。
このようにして、表面にクラスターダイヤモンド粒子が付着した榭脂材、又はプラス、 マ耐性膜を積層した榭脂材を得ることができる。榭脂材、又はプラズマ耐性膜を積層 した榭脂材への該クラスターダイヤモンド粒子の付着は超音波洗浄処理における物 理的力により、該粒子の一部が基板表面へ埋没することによるものである。
基板表面に対するクラスターダイヤモンド粒子の付着割合は、 1cm2当たり好ましく は 109〜1012個、さらに好ましくは 101G〜: L011個である。榭脂材、又はプラズマ耐性 膜を積層した榭脂材に付着するダイヤモンド粒子は、プラズマ CVD処理における炭 素膜成長の種結晶として作用する。
[0024] このとき、分散媒 (水、エタノール等)に分散させるクラスターダイヤモンド粒子の濃 度を希薄にすることにより、基板表面に付着するクラスターダイヤモンド粒子の付着 割合を小さくすることができる。これにより、プラズマ CVD処理において炭素粒子の 核発生密度を下げ、連続膜ではなぐ炭素粒子の集積体から成る不連続膜を得るこ とができる。この集積体における炭素粒子の面密度は、分散溶液中のクラスターダイ ャモンド粒子の濃度によって制御することができる。さらには、プラズマ CVD処理を
行う時間によって、炭素粒子の粒径を制御できる。また、その濃度を非常に薄くする ことにより、基板上に孤立した炭素粒子力もなる集積体を作製することもできる。さら には、この集積体を有機溶剤等で処理することなどにより、該集積体から基板を除去 することによって、炭素粒子のみを得ることもできる。
[0025] また、該基板上にクラスターダイヤモンド粒子を付着させる前処理の別な方法として 、該クラスターダイヤモンドの分散液を該基板上にスピンコートし、その後乾燥させる 方法も有効である。このスピンコートを用いる前処理法も、上記超音波洗浄による方 法と同様な付着効果が得られる。
[0026] 榭脂材、又はプラズマ耐性膜を積層した榭脂材上にグラフアイトクラスターダイヤモ ンド粒子を付着させる前処理では、まず該粒子を水またはエタノール中に分散させる 。この際分散性を向上させるために、界面活性剤 (例えばラウリル硫酸エステルナトリ ゥム塩、ォレイン酸ナトリウム等)を加え、この分散液に基板を浸して超音波洗浄器に かけ、その後、該基板をエタノール中に浸して超音波洗浄を行った後、該基板を取り 出して乾燥させる。
このようにして、表面にグラフアイトクラスターダイヤモンド粒子が付着した榭脂材、 又はプラズマ耐性膜を積層した榭脂材を得ることができる。榭脂材、又はプラズマ耐 性膜を積層した榭脂材への該グラファイトクラスターダイヤモンド粒子の付着は超音 波洗浄処理における物理的力により、該粒子の一部が基板表面へ埋没することによ るものである。
基板表面に対するダイヤモンド粒子の付着割合は、 1cm2当たり好ましくは 109〜1 012個、さらに好ましくは 101G〜: L011個である。榭脂材、又はプラズマ耐性膜を積層し た榭脂材に付着するダイヤモンド粒子は、プラズマ CVD処理における炭素膜成長の 種結晶として作用する。
[0027] このとき、分散媒 (水、エタノール等)に分散させるグラフアイトクラスターダイヤモンド 粒子の濃度を希薄にすることにより、基板表面に付着するグラフアイトクラスターダイ ャモンド粒子の付着割合を小さくすることができる。これにより、プラズマ CVD処理に おいて炭素粒子の核発生密度を下げ、連続膜ではなぐ炭素粒子の集積体力 成る 不連続膜を得ることができる。この集積体における炭素粒子の面密度は、分散溶液
中のグラフアイトクラスターダイヤモンド粒子の濃度によって制御することができる。さ らには、プラズマ CVD処理を行う時間によって、炭素粒子の粒径を制御できる。また 、その濃度を非常に薄くすることにより、基板上に孤立した炭素粒子力 なる集積体 を作製することもできる。さらには、この集積体を有機溶剤等で処理することなどによ り、該集積体力も基板を除去することによって、炭素粒子のみを得ることもできる。さら に、基板上に連続膜を作製した場合は、この基板除去によって自立膜を作製するこ とがでさる。
[0028] また、該基板上にグラフアイトクラスターダイヤモンド粒子を付着させる前処理の他 の方法として、該グラフアイトクラスターダイヤモンド分散液を該基板上にスピンコート し、その後乾燥させる方法も有効である。このスピンコートを用いる前処理法も、上記 超音波洗浄による方法と同様な付着効果が得られる。
[0029] ァダマンタンは、 C H という分子式で表せられる分子で、ダイヤモンドの基本骨
10 16
格と同様の立体構造を有する昇華性の分子性結晶(常温,常圧)であり、石油の精製 過程より製造される。その粉末およびその誘導体およびそれらの多量体が、既に出 光興産株式会社より販売されている。
[0030] 榭脂材、又はプラズマ耐性膜を積層した榭脂材上に、ァダマンタンまたはその誘導 体あるいはそれらの多量体を付着させるには、該物質を溶媒 (例えば、エタノール、 へキサン、ァセトニトリル等)に溶解した後、該基板を該溶液中に浸して超音波洗浄 を行った後、該基板を取り出して乾燥させる。このようにして、表面にァダマンタンま たはその誘導体ある 、はそれらの多量体を付着させた榭脂材、又はプラズマ耐性膜 を積層した榭脂材を得ることができる。
[0031] このとき、溶媒に溶解させるァダマンタンまたはその誘導体あるいはそれらの多量 体の濃度を希薄にすることにより、基板表面に付着するァダマンタンまたはその誘導 体あるいはそれらの多量体の付着割合を小さくすることができる。これにより、プラズ マ CVD処理において炭素粒子の核発生密度を下げ、連続膜ではなぐ炭素粒子の 集積体力 成る不連続膜を得ることができる。この集積体における炭素粒子の面密 度は、溶液中のァダマンタンまたはその誘導体あるいはそれらの多量体の濃度によ つて制御することができる。さらには、プラズマ CVD処理を行う時間によって、炭素粒
子の粒径を制御できる。また、その濃度を非常に薄くすることにより、基板上に孤立し た炭素粒子力 なる集積体を作製することもできる。さらには、この集積体を有機溶 剤等で処理することなどにより、該集積体力も基板を除去することによって、炭素粒子 のみを得ることちできる。
[0032] また、該基板上に、ァダマンタンまたはその誘導体あるいはそれらの多量体を付着 させる前処理の他の方法として、該物質溶液を該基板上にスピンコートし、その後乾 燥させる方法も有効である。このスピンコートを用いる前処理法も、上記超音波洗浄 による方法と同様な付着効果が得られる。
[0033] 本発明にお ヽては、榭脂材、又はプラズマ耐性膜を積層した榭脂材に対して、マイ クロ波プラズマ CVD装置を用いて処理を施すカゝ、或いは、榭脂材、又はプラズマ耐 性膜を積層した榭脂材に対して、前処理を施した後、マイクロ波プラズマ CVD装置 を用いて処理を施す。
この際、榭脂材が、生成するプラズマによって損傷を受けないようにするためには、 操作条件として原料ガスの濃度やモル比、反応時間などを選定すること及び比較的 低温下で操作することなどが必要である。本発明においては、榭脂材は室温から 20 0°Cに保持した。このような低温に保持することは、プラズマ損傷の防止に効果がある だけでなぐ榭脂材の溶融や熱変形を防止する顕著な効果もある。本発明において は、マイクロ波プラズマ CVD反応炉内に、反応ガスとして、含炭素ガスと、アルゴンガ ス及び/又は水素ガスとの混合ガスを導入し、かつガス圧を 1〜: LOOパスカルにてプ ラズマを発生させるとともに、プラズマの電子温度が 0. 5〜3.0eVの位置に前記基板 を配置して、プラズマ中のラジカル粒子を該基板の表面上にほぼ均一に到達するよ うに該プラズマの発生起源力ゝら該基板に向けて移動させてなる炭素膜堆積方法を採 用することにより達成するものである。
[0034] 本発明は、特に榭脂材を室温から 200°Cに保持し、マイクロ波プラズマ CVD処理 を施すことにより形成する榭脂材と炭素膜の積層体、およびその形成の手法に関す るものである。基材として金属、セラミックス、半導体などを用い、基材を試料台で 40 0°C〜900°C程度の高温に保持するという手法に拡張することにより、金属、セラミツ タス、半導体などの基材にダイヤモンド膜の堆積を行うことが可能である。
さらにまた原料ガス中の炭素源としてベンゼン、アセチレン、トルエン、または 10% 以上の高濃度のメタンガスなどを用いることにより、本手法をダイヤモンドライクカーボ ン (DLC)膜の堆積を行う手法として拡張することが可能である。
[0035] 本発明の積層体の製造方法について、例を挙げて概略を以下に説明する。
例えば、ポリフエ二レンサルファイド (PPS)、ポリカーボネイト (PC)、ポリエチレンテレ フタレート (PET)、ポリエーテルスルホン (PES)などの材料に、必要に応じてプラズマ 耐性膜を設け、或いはさらにダイヤモンド微粒子を超音波処理によって付着させる等 の前処理を施した後、これを低温マイクロ波プラズマ CVD装置にて、成膜の源となる プラズマ中のラジカル粒子を、試料台に設置した榭脂基板の表面上にほぼ均一に到 達するように、該プラズマの発生起源力 該基板に向けて移動させるダウンフローに て供給し、プラズマ CVD処理を行う。
[0036] 本発明にお 、て、 CVD処理に用いる原料ガス (反応ガス)は、含炭素ガスと、アル ゴンガス及び/又は水素とからなる混合ガスである。含炭素ガスとしては、メタン、ェ タノール、アセトン、メタノール等が包含される。
成膜に適する混合ガスの混合比は、基材に用いるそれぞれの榭脂によって異なり、 また、榭脂の表面処理の状態によっても異なる力 その含炭素ガスの濃度は 0. 5〜1 0モル%、好ましくは 1〜4モル%である。含炭素ガスが前記範囲より多くなると炭素 膜の光の透過率の低下等の問題が生じるので好ましくない。
また、前記混合ガスには、添加ガスとして、 COや COを添加することが好ましい。こ
2
れらのガスは酸素源として作用し、プラズマ CVD処理においては、不純物を除去す る作用を示す。 CO及び/又は COの添加量は、全混合ガス中、好ましくは 0. 5〜1
2
0モル0 /0、さらに好ましくは 1〜 5モル0 /0である。
アルゴンガス及び Z又は水素の添カ卩は、榭脂材表面のプラズマ損傷の防止に著し く有効である。特に樹脂の表面にプラズマ耐性膜を設けていない場合は、水素の割 合に比べてアルゴンガスの割合を大きくすることが、プラズマ損傷の防止に有効であ る。水素ガスの割合は 0〜95. 5モル%、アルゴンガスの割合は 0〜95. 5モル%が適 する。
[0037] プラズマ CVD処理時間としては、数分から数十時間であり、またその処理温度とし
ては 20〜300°Cである。
本発明においては、プラズマ CVD処理のガス圧力と、榭脂基材を配置する位置は たいへん重要であり、以下のようにして確認した。
[0038] 図 4に、本発明の炭素膜と樹脂の積層体形成に用いる装置の一例を示す。
図中、 101はマイクロ波プラズマ CVD反応炉(以下、単に「プラズマ発生室」という。 )、 102はマイクロ波をプラズマ発生室 101に導入するためのスロット付き角型導波管 、 103はマイクロ波をプラズマ発生室 101に導入するための石英部材、 104は石英 部材を支持する金属製支持部材、 105は被成膜基材、 106は被成膜基材を設置す るための試料台であり、上下動機構と被成膜基材の冷却機構を備えており、 107は その冷却水の給排水である。また 108は排気であり、 109はプラズマ発生用ガス導入 手段である。 110はプラズマ CVD処理を行う反応炉である。
[0039] 該装置を用いたプラズマ発生は以下のようにして行う。
排気装置(図示せず)によりプラズマ発生室 101を真空排気する。つづいてプラズ マ発生室用ガス導入手段 109を介して所定の流量でプラズマ発生室 101にプラズマ 発生用ガスを導入する。次に排気装置に設けられた圧力調節バルブ (図示せず)を 調整し、プラズマ発生室 101内を所定の圧力に保持する。 2.45GHzのマイクロ波発生 装置(図示せず)より所望の電力のマイクロ波を、スロット付き角型導波管 102および 石英部材 103を介してプラズマ発生室 101内に供給することにより、プラズマ発生室 101内にプラズマが発生する。これにより、成膜の源となるプラズマ中のラジカル粒子 を、試料台に設置した榭脂基板の表面上にほぼ均一に到達するように、該プラズマ の発生起源となるマイクロ波導入用石英部材 103の下面 (CVD処理反応炉側)から 該基板に向けて移動させ、ダウンフローにて供給することができる。
[0040] 図 5は、ラングミュアプローブを用 、たプラズマ特性測定で得た、プラズマ中の電子 温度 (電子の運動エネルギー)のマイクロ波導入用石英窓の下面 (CVD反応炉側)か らの距離依存性を示す。このプラズマ特性測定に用いたラングミュアプローブは、神 戸製鋼所製プラズマ診断用プローブ L2P型機を用いた。この際、マイクロ波励起の無 電極放電プラズマのプラズマ密度および電子温度を正確に測定するため、白金とタ ングステンの二つのプローブを用いた、ダブルプローブ法と呼ばれる手法で測定を
行った。ラングミュアプローブ法については、例えば文献「菅井秀郎,プラズマエレク トロ-タス,オーム社 2000年, p.58」に詳述されている。
この図の測定に用いたガスは水素 100%、圧力は lOPaである。このようにプラズマ 中の電子温度は、石英窓力もの距離が大きくなるにしたがって減少するという特性を 持っている。また図 6は、プラズマ密度のマイクロ波導入用石英窓の下面 (CVD反応 炉側)からの距離依存性を示す。
上記測定の他、メタンガス 0. 5〜10モル%、炭酸ガス 0〜10モル%、水素ガス 0〜95 . 5モル%、アルゴンガス 0〜95. 5モル%の範囲で任意の割合で混合し、電子温度と プラズマ密度の測定を行った。その結果、測定したガス混合範囲では、プラズマの特 性はほとんど変化しな力つた。
[0041] 榭脂基板を上下動が可能な試料台に設置して、石英窓から任意の位置に榭脂基 板を配置することができるようにし、図 5に示したプラズマ中の電子温度、および図 6 に示したプラズマ密度のデータをもとにして、ガス圧力 lOPaにお ヽて榭脂基板の位 置を 1、ろ 1、ろと変えて成膜実験を行!、、成膜に最適な電子温度とプラズマ密度の条 件の探索を行った。
その結果、電子温度が 3eV以上となる基板の位置では成膜されないか、本発明の 炭素膜ではなぐ煤状の膜がわずかに堆積するだけであることがわ力つた。たとえば 図 5に示した圧力 lOPaでは、石英窓力もの距離が 20mm以下の領域力 成膜されな V、か、煤状の膜がわずかに堆積するだけの領域であった。
一方電子温度が 3eV以下となる領域では本発明の炭素膜の形成が確認できた。た とえば圧力 lOPaでは、 20mm〜200mmの領域で成膜されることを確認した。圧力 1 OPaのとき、この領域では電子温度は 3eV〜0. 8eVであった。
本実験で使用した試料台の上下動可動範囲が最大で 200mmであるため、これ以 上の距離での実験は行うことができな力つた力 試料台を工夫することにより、さらに 大きな距離での実験が可能である。
[0042] この成膜が確認された領域において、成膜速度は石英窓からの距離が 50mn!〜 7 Ommで最大となった。これは図 6のプラズマ密度の石英窓からの距離依存性で、プ ラズマ密度は 50mmで最大となって ヽることから、 50mm程度で成膜速度が最大とな
ることが説明できる。したがって成膜速度をできるだけ大きくしたい場合、成膜に最適 な榭脂材の位置は、電子温度が 3eV以下であり、かつプラズマ密度が最大となるよう な位置であることが明ら力となった。
[0043] 上記の実験を 、ろ 、ろなガス圧力で行った。その結果、炭素膜の堆積に適するガ ス圧力は l〜100Pa、好ましくは l〜50Paであることが分かった。ガス圧力が 200Pa 以上では、成膜が確認できな力つた。これはガス圧力が高いため、プラズマからの加 熱により榭脂基板の熱損傷、熱膨張、熱変形が大きいことによると考えられる。またこ れらの実験により、成膜に最適な榭脂材の位置は、プラズマ CVD処理におけるガス 圧力によって変化することが明ら力となった。それぞれのガス圧力において、プラズ マの電子温度が 0. 5〜3eVの位置に榭脂材を配置すると、炭素膜が榭脂材に堆積 可能であることが明ら力となった。
このような、成膜に適する榭脂材の位置を選定できるのは、成膜の源となるプラズマ 中のラジカル粒子を、試料台に設置した榭脂基板の表面上にほぼ均一に到達する ように該プラズマの発生起源力 該基板に向けて移動させたことにより、図 5に示すよ うな、該プラズマの発生起源力ゝら該基板に向けて徐々に減少するような電子温度の 分布を形成することができたこと〖こよる。
[0044] 以上のようにして榭脂材に堆積した炭素膜を光学顕微鏡で観察した結果、膜厚が 50nm以下では榭脂材上で炭素膜を均一に成膜することが困難であることが明らか となった。膜厚 50nm以上では榭脂材上で炭素膜を均一に成膜することが可能とな るが、膜厚 lOOnm以上では榭脂材上で炭素膜をより均一に成膜することが可能であ ることが明らかとなった。また膜厚 10 m以上では、堆積した炭素膜の榭脂材力もの 剥離が生じやす力つた。膜厚 5 m以下では、スコッチテープを用いた密着強度試 験に十分耐える密着性をもつ炭素膜を榭脂材上に形成できた。したがって、榭脂材 と炭素膜との積層体を形成するのに適当な炭素膜の膜厚は、 5011111〜10 111、好ま しくは 100nm〜5 μ mであった。
[0045] 本発明により、炭素膜と榭脂材の積層体を形成することができる。この炭素膜は、 C uK 線による X線回折スペクトルにおいて、図 10にみられるように、ブラッグ角(2 Θ ± 0. 3° )の 43. 9° のピークフィッティング曲線 Aに 41. 7 ± 0. 3° のピークフイツテ
イング曲線 Bおよびベースラインを重畳して得られる近似スペクトル曲線を有するとい う、ダイヤモンド等他の炭素粒子および炭素膜とは異なる著しい特徴を有するもので ある。
また、ラマン散乱分光スペクトル (励起光波長 244nm)において、図 7〜9にみられ るように、ラマンシフト 1333cm_1付近に明瞭なピークがみられ、その半値全幅(FWH M)は 10〜40cm_ 1である。さらに該膜の場合、平坦性および密着性に優れており、 その表面粗さ Raは 20nm以下であり、場合によっては 3nm以下にも達する平坦なも のである。また、透明性に優れ屈折率が 2. 1以上と非常に高ぐ複屈折も殆ど示さな いなど、光学的に優れた性質を持ち、かつ 100°Cの温度でその抵抗率が 107 Ω «η 以上と非常に高い電気絶縁性を示すなど、電気的にも優れた性質を持つ。
また、その膜断面の高分解能透過型電子顕微鏡による観察から、該膜は粒径 lnm 力 数十 nmの結晶性炭素粒子が隙間なく詰まって形成されており、し力もその膜と 基板との界面、その膜中および膜最表面付近とにおいて、その粒径分布が変化して V、な 、(平均粒径がほぼ等し 、)ことが特徴的であることがわ力つた。得られる炭素膜 の膜厚は、 2nm〜: LOO μ m、好ましくは 50nm〜: LO μ m、さらに好ましくは 100nm〜 5 μ mであり、その粒子の粒径は、好ましくは 1〜: LOOnmであり、さらに好ましくは 2〜 20nmである。
実施例
以下、本発明を実施例等によりさらに具体的に説明するが、本発明はこれらの実施 例等によっては何ら限定されるものではない。
(実施例 1:プラズマ耐性膜 (Ti)を設けた PPS榭脂基材への炭素膜の形成) 基材にはポリフ -レンサルファイド (PPS)榭脂を射出成形により板状に成形した ものを用いた。具体的には、 PPS榭脂として、東レ (株)製 PPS榭脂トレリナ A504X9 0を用いた。この A504X90はガラス繊維強化を施した PPS榭脂である。これをフアナ ック (株)製射出成形機 (型番;ロボショット α— 100IA)に (株)ハルナ製射出成形機 内ガス抜き装置 (型番;ェコマック HS100)を装着した射出成形装置を用いて、射出 成形した。(株)ハルナ製射出成形機内ガス抜き装置は射出成形機シリンダー内に おいて榭脂原料が可塑ィ匕中に発生するアウトガス及び水分を除去する装置である。
PPS榭脂基材の形状は 100mm X 100mm,厚さ 2mmであった。 PPS榭脂基材表 面の平均表面粗さは原子間力顕微鏡を用いた 10 m X 10 mの領域の観察により 、 3. 5 mで teつた。
[0047] この PPS榭脂基材の表面に、スパッタリング法により厚さ 1 μ mのチタン膜をプラズ マ耐性膜として設けた。このチタンのプラズマ耐性膜を設けた PPS榭脂基材に、水中 に分散させたナノクリスタルダイヤモンド粒子を付着させる前処理を行った。これには 、この分散液に PPS榭脂基材を浸して超音波洗浄器にかけ、その後、該基材をエタ ノール中に浸して超音波洗浄を行った後、該基材を取り出して乾燥させた。このよう にして、表面にナノクリスタルダイヤモンド粒子を付着させたプラズマ耐性膜を積層し た PPS榭脂基材を得た。プラズマ耐性膜を積層した PPS榭脂基材への該ナノクリス タルダイヤモンド粒子の付着は超音波洗浄処理における物理的力により、該粒子の 一部が基板表面へ埋没することによるものである。プラズマ耐性膜を積層した PPS榭 脂基材に付着するダイヤモンド粒子は、プラズマ CVD処理における炭素膜成長の 種結晶として作用する。
[0048] 上記前処理を行った PPS榭脂基材に図 4に示すプラズマ CVD装置を用いて、以 下のようにして炭素膜を形成した。
CVD処理に用いたガスは、水素ガス 90モル0 /0、炭酸ガス 5モル0 /0、メタンガス 5モ ル%であった。ガス圧を lOPaにてプラズマを発生させ、プラズマの電子温度が leVと なる、石英窓から 50mmの位置に基板を配置し、 4時間プラズマ CVD処理を行った 。プラズマ処理中の基板の温度は、試料台 106に設置した熱電対を基板の裏面に 接触させることにより測定した。プラズマ CVD処理を通じて基板の温度はおよそ 40 °Cであった。このプラズマ処理により、およそ 1 mの厚さの炭素膜が PPS榭脂基材 表面に堆積した。
[0049] 上記の方法で作製したプラズマ耐性膜を施した PPS榭脂基材と炭素膜の積層体 の、ラマン散乱分光スペクトル (励起光波長 244nm)を図 7に示す。図 7に見るように 、その積層体のラマン散乱スペクトルには、ラマンシフト 1333 cm— 1付近に位置するピ ークが明瞭に認められ、炭素膜が堆積したことが明らかである。同手法で作製した他 の多数の試料についても、同様に測定を行った結果、このピークは 1320〜1340 cm"1
の範囲にあり、 1333 ± 10 cm— 1の範囲に必ず入ることが分かった。また、ラマンシフト 16 00 cm— 1付近に見られるブロードなピークは、炭素の sp2結合成分の存在を示す。この 場合のラマンシフト 1333 cm— 1付近に位置するピークの半値全幅(FWHM)は約 22 cm" 1であった。
他の多数の試料についても、同様に測定を行った結果、 FWHMは 10〜40 cm— 1の 範囲にあることが分力つた。
この例ではアルゴンガスは添カ卩しな力つた力 PPS榭脂基材表面にプラズマ耐性 膜を設けたため、アルゴンガスを添加しなくても基材表面の損傷は生じなかった。も ちろん、アルゴンガスを添加することも、炭素膜の形成に有効であった。
[0050] (実施例 2:プラズマ耐性膜 (Cu)を設けた PPS基材への炭素膜の形成)
基材にはポリフ -レンサルファイド (PPS)榭脂を射出成形により板状に成形した ものを用いた。具体的には、 PPS榭脂として、東レ (株)製 PPS榭脂トレリナ A310M を用いた。この A310Mはガラス繊維および無機フィラーによって強化を施した PPS 榭脂である。これをファナック (株)製射出成形機 (型番;ロボショット ex一 100IA)に( 株)ハルナ製射出成形機内ガス抜き装置 (型番;ェコマック HS 100)を装着した射出 成形装置を用いて、射出成形した。 (株)ハルナ製射出成形機内ガス抜き装置は射 出成形機シリンダー内において榭脂原料が可塑ィ匕中に発生するアウトガス及び水分 を除去する装置である。 PPS榭脂基材の形状は lOOmm X 100mm、厚さ 2mmであ つた。 PPS榭脂基材表面の平均表面粗さは原子間力顕微鏡を用いた 10 m X 10 μ mの領域の観察により、 3.5 μ mであった。
[0051] この PPS榭脂基材の表面に、スパッタリング法により厚さ 1 μ mの銅をプラズマ耐性 膜として設けた。この銅をプラズマ耐性膜として設けた PPS榭脂基材では、チタンをプ ラズマ耐性膜として設けた PPS榭脂基材に施したような、ナノクリスタルダイヤモンド 粒子その他の付着を行う前処理は施さな力 た。銅をプラズマ耐性膜として設けた P PS榭脂基材では、これから述べるように、ナノクリスタルダイヤモンド粒子その他を付 着する前処理は行わずとも、炭素膜の成長堆積が可能であった。もちろん銅をプラズ マ耐性膜として設けた PPS榭脂基材に炭素膜を堆積成長するために、ナノクリスタル ダイヤモンド粒子その他を付着する前処理を行ってもよい。
[0052] 上記 PPS榭脂基材に図 4に示すプラズマ CVD装置を用いて、以下のようにして炭 素膜を形成した。
CVD処理に用いたガスは、水素ガス 90モル0 /0、炭酸ガス 5モル0 /0、メタンガス 5モ ル%であった。ガス圧を lOPaにてプラズマを発生させ、プラズマの電子温度が leVと なる、石英窓から 50mmの位置に基板を配置し、 4時間プラズマ CVD処理を行った 。プラズマ処理中の基板の温度は、試料台 106に設置した熱電対を基板の裏面に 接触させることにより測定した。プラズマ処理を通じて基板の温度は 40°Cであった。こ のプラズマ処理により、およそ 1 μ mの厚さの炭素膜が基材表面に堆積した。
[0053] 上記の方法で作製したプラズマ耐性膜 (Cu)を施した PPS榭脂基材と炭素膜の積 層体の、ラマン散乱分光スペクトル (励起光波長 244nm)を図 8に示す。図 8に見るよ うに、その積層体のラマン散乱スペクトルには、ラマンシフト 1333 cm— 1付近に位置す るピークが明瞭に認められ、炭素膜が堆積したことが明らかである。このように、 Cuを プラズマ耐性膜として設けた PPS榭脂基材では、ナノクリスタルダイヤモンド粒子その 他を付着する前処理は行わずとも、炭素膜の成長堆積が可能であった。同手法で作 製した他の多数の試料についても、同様に測定を行った結果、このピークは 1320〜1 340 cm— 1の範囲にあり、 1333 ± 10 cm— 1の範囲に必ず入ることが分かった。また、ラマ ンシフト 1600 cm— 1付近に見られるブロードなピークは、炭素の sp2結合成分の存在を 示す。ラマンシフト 1333 cm— 1付近に位置するピークの半値全幅(FWHM)は約 22 cm"1 であった。他の多数の試料についても、同様に測定を行った結果、 FWHMは 10〜40 cm— 1の範囲にあることが分かった。
この例ではアルゴンガスは添カ卩しな力つた力 PPS榭脂基材表面にプラズマ耐性 膜を設けたため、アルゴンガスを添加しなくても基材表面の損傷は生じなかった。も ちろん、アルゴンガスを添加することも、炭素膜の形成に有効であった。
[0054] (実施例 3:プラズマ耐性膜を設けな 、PPS基材への炭素膜の形成)
基材にはポリフ -レンサルファイド (PPS)榭脂を射出成形により板状に成形した ものを用いた。具体的には、 PPS榭脂として、東レ (株)製 PPS榭脂トレリナ A504X9 0、 A310M、および A900を用いた。 A504X90はガラス繊維強化を施した PPS榭 脂、 A310Mはガラス繊維および無機フィラーによって強化を施した PPS榭脂、 A90
0はガラス繊維や無機フィラーで強化して 、な 、PPS榭脂である。これをファナック( 株)製射出成形機 (型番;ロボショット oc一 100IA)に (株)ハルナ製射出成形機内ガ ス抜き装置 (型番;ェコマック HS 100)を装着した射出成形装置を用いて、射出成形 した。(株)ハルナ製射出成形機内ガス抜き装置は射出成形機シリンダー内において 榭脂原料が可塑ィ匕中に発生するアウトガス及び水分を除去する装置である。 PPS榭 脂基材の形状は lOOmm X 100mm、厚さ 2mmであった。 PPS榭脂基材表面の平 均表面粗さは原子間力顕微鏡を用いた 10 m X 10 mの領域の観察により、 3. 5 μ mであった。
[0055] これらの PPS榭脂基材に、水中に分散させたナノクリスタルダイヤモンド粒子を付 着させる前処理を施した。これには、この分散液に PPS榭脂基材を浸して超音波洗 浄器にかけ、その後、該基材をエタノール中に浸して超音波洗浄を行った後、該基 材を取り出して乾燥させた。このようにして、表面にナノクリスタルダイヤモンド粒子を 付着させた PPS榭脂基材を得た。 PPS榭脂基材への該ナノクリスタルダイヤモンド粒 子の付着は超音波洗浄処理における物理的力により、該粒子の一部が基板表面へ 埋没すること〖こよるものである。 PPS榭脂基材に付着するダイヤモンド粒子は、プラズ マ CVD処理における炭素膜成長の種結晶として作用する。
[0056] 上記前処理を行った PPS基材に図 4に示すプラズマ CVD装置を用いて、以下のよ うにして炭素膜を形成した。
CVD処理に用いたガスは、アルゴン 95モル0 /0、メタンガス 5モル0 /0であった。この 例では水素ガス、および炭酸ガスは添カ卩しなかった。水素ガス、および炭酸ガスを添 加することも炭素膜形成に有効である力 水素ガスが 50モル%を超えると、 PPS榭 脂基材表面のプラズマ損傷が激しぐ高品質の炭素膜と PPS榭脂との積層体の形成 が困難であった。ガス圧を lOPaにてプラズマを発生させ、プラズマの電子温度が leV となる、石英窓から 50mmの位置に基板を配置し、 4時間プラズマ CVD処理を行つ た。プラズマ CVD処理中の基板の温度は、試料台 106に設置した熱電対を基板の 裏面に接触させることにより測定した。プラズマ CVD処理を通じて基板の温度は 40 °Cであった。このプラズマ CVD処理により、およそ 1 μ mの厚さの炭素膜が基材表面 に堆積した。
[0057] 上記の方法で作製した PPS榭脂基材と炭素膜の積層体の、ラマン散乱分光スぺク トル (励起光波長 244nm)を図 9に示す。図は PPS榭脂に東レ (株)製トレリナ A310 Mを用いた場合の例である。図 9に見るように、その積層体のラマン散乱スペクトルに は、ラマンシフト 1333 cm— 1付近に位置するピークが明瞭に認められ、炭素膜が堆積し たことが明らかである。同手法で作製した他の多数の試料についても、同様に測定を 行った結果、このピークは 1320〜1340 cm— 1の範囲にあり、 1333± 10 cm— 1の範囲に必 ず入ることが分かった。また、ラマンシフト 1600 cm— 1付近に見られるブロードなピーク は、炭素の sp2結合成分の存在を示す。ラマンシフト 1333 cm— 1付近に位置するピーク の半値全幅(FWHM)は約 22 cm— 1であった。
他の多数の試料についても、同様に測定を行った結果、 FWHMは 10〜40 cm— 1の 範囲にあることが分力つた。 PPS榭脂として、東レ (株)製トレリナ A504X90、および A900を用いた場合でも、上記 A310Mと同様に炭素膜の堆積をラマン散乱分光に より確認することができた。
[0058] 以上は、榭脂材として、 PPS榭脂を特に用いた実施例である。本発明では、ポリ力 ーボネート(PC)榭脂、ポリエチレンテレフタレート(PET)榭脂、ポリエーテルサルホ ン (PES)榭脂を用いて、炭素膜との積層体の作成も試みた。 PPS榭脂と同様の手法 により、これら PC、 PET、 PES榭脂材を用いて、プラズマ耐性膜を施した場合も、プ ラズマ耐性膜を施さない場合でも炭素膜の堆積を確認した。したがって、本発明の手 法は、 PC、 PET、 PES榭脂材にも PPS榭脂材と同様に適用することができる。
以上のことから、本発明の手法は、本実施例で述べていない多くの種類の榭脂材 に容易に適用することができると考えられる。
[0059] (実施例 4:炭素膜の X線回折)
本発明の炭素膜と PPS榭脂との積層体を X線回折により観察した。以下、測定の詳 細を記す。
使用した X線回折装置は株式会社リガク製 X線回折測定装置 RINT2100 XRD-DSC IIであり、ゴ-ォメーターは理学社製 Ultimalll水平ゴ-ォメーターである。このゴ-オメ 一ターに薄膜標準用多目的試料台を取り付けてある。測定した試料は本発明の厚さ 2mmの PPS榭脂基材上に堆積した膜厚 500nmの炭素膜である。 PPS榭脂基材ごと
30mm角に切り出したものを測定した。 X線は銅 (Cu)の 線を用いた。 X線管の 印加電圧 '電流は 40kV' 40mAであった。 X線の検出器にはシンチレーシヨンカウン ターを用いた。まず、シリコンの標準試料を用いて、散乱角(2 Θ角)の校正を行った 。 2 Θ角のズレは + 0. 02° 以下であった。次に測定用試料を試料台に固定し、 2 Θ 角を 0° 、すなわち検出器に X線が直接入射する条件で、 X線入射方向と試料表面 とが平行となり、かつ、入射する X線の半分が試料によって遮られるように調整した。 この状態力もゴ-ォメーターを回転させ、試料表面に対して 0. 5度の角度で X線を照 射した。この入射角を固定して、 2 Θ角を 10度から 90度まで 0. 02度きざみで回転し 、それぞれの 2 Θ角で試料力も散乱する X線の強度を測定した。測定に用いたコンビ ユータープログラムは、株式会社リガク製 RINT2000/PCソフトウェア Windows版であ る。
[0060] 測定した X線回折のスペクトルを図 10に示す。図中の白丸が測定点である。 2 Θが 43. 9° に明瞭なピークがあることがわかる。ここで興味深いのは、図 10からわ力るよ うに、 43. 9° のピークはその低角度側、 2 Θ力 1〜42° に肩を持つている。(スベタ トルの「肩」については「ィ匕学大辞典」(東京化学同人)を参照するとよい。)したがって このピークは、 43. 9。 付近を中心とするピーク(第 1ピーク)と、 41〜42° あたりに分 布するもうひとつのピーク (第 2ピーク)の、 2成分のピークにより構成されている。 Cu K 線による X線回折で、 2 Θが 43. 9° にピークをもつ炭素系物質としてはダイヤモ ンドが知られている。ここで図 11は、同様の方法によりダイヤモンドを X線回折測定し たスペクトルであり、ピークはダイヤモンドの (111)反射によるものである。本発明の積 層体の炭素膜とダイヤモンドの X線回折スペクトルの違 ヽは明瞭で、本発明の積層 体の炭素膜のスペクトルに見られる 41〜42° あたりに分布する第 2ピークは、ダイヤ モンドには見ることができない。このようにダイヤモンドの (111)反射は 43. 9° を中心 とする 1成分 (第 1ピークのみ)で構成され、本発明の積層体の炭素膜の様な低角度 側の肩は観測されない。したがって本発明の積層体の炭素膜のスペクトルに見られ る 41〜42° あたりに分布する第 2ピークは、本発明の積層体の炭素膜に特徴的なピ ークである。
[0061] また、図 10の本発明の積層体の炭素膜の X線回折スペクトルのピークは、図 11の
ダイヤモンドのピークと比較して、たいへん幅が広いことがわかる。一般に膜を構成 する粒子の大きさが小さくなると X線回折ピークの幅が広くなり、本発明の積層体の 炭素膜を構成する粒子の大きさが非常に小さいといえる。本発明の積層体の炭素膜 を構成する炭素粒子の大きさ(平均の直径)を、 X線回折で通常用いられるシエラー( Scherrer)の式によりピークの幅から見積もってみると、およそ 15nmであった。シエラ 一の式については、例えば「日本学術振興会'薄膜第 131委員会編 薄膜ハンドブッ ク,オーム社 1983年, p. 375」を参照するとよい。
[0062] 次にこのピークの構成の詳細(それぞれのピークの成分の位置や強度など)を見る ことにする。
本発明の積層体の炭素膜の X線回折測定における 2 Θが 43. 9° のピークの詳細 な構成を知るために、 2 Θ角が 39度から 48度の間で、ピークフィッティングを用いて 解析した。第 1ピークのフィッティングには、ピアソン VII関数と呼ばれる関数を用いた 。この関数は、 X線回折や中性子回折などの回折法のピークのプロファイルを表すも のとして、最も一般的に用いられているものである。このピアソン VII関数については、 「粉末 X線解析の実際 リートベルト法入門」(日本分析化学会 X線分析研究懇談会 編、朝倉書店)を参照するとよい。また第 2ピークのフィッティングには、いろいろな関 数を検討した結果、非対称の関数を用いるとよいことが判明した。ここでは非対称正 規分布関数 (ガウス分布関数)を用いた。この関数はピーク位置の右側と左側で別々 の分散 (標準偏差)値を持つ正規分布関数であり、非対称ピークのフィッティングに用 いる関数としては最も簡単な関数のひとつである力 非常によくピークフィッティング ができた。また、ベースライン (バックグラウンド)関数としては直線関数 (一次関数)を 用いた。
[0063] 実際のフィッティング作業はいろいろなコンピュータープログラムが利用できる力 こ こでは ORIGINバージョン 6日本語版ピークフィッティングモジュール (以下、 ORIGIN - PFM)を用いた。 ORIGIN— PFMで、ピアソン VII関数は" Pearson7"、非対称正規分布 関数は" BiGauss"、直線関数は" Line"と表されている。フィッティングの完了条件は、 フィッティングの信頼度を表す相関係数 (ORIGIN— PFMで" COR"あるいは" Corr Coe Πが 0.99以上となることとした。
[0064] このピークフィッティングを用いた解析により、図 10に示すようにこの測定スペクトル はピアソン VII関数による第 1ピーク (図中フィッティング曲線 A)、非対称正規分布関 数による第 2ピーク(図中フィッティング曲線 B)、および一次関数によるベースライン( ノ ックグラウンド)の和 (図中フィッティング合計曲線)で大変よく近似できることがわ力つ た。この測定でフィッティング曲線 Aの中心は 2 Θ力 3. 9° にあり、これに対してフィ ッティング曲線 Bは 41. 7° で最大となる。それぞれのフィッティング曲線とベースライ ンで囲まれた面積がそれぞれのピークの強度である。これにより第 1ピークの強度に 対する第 2ピークの強度を解析した。この試料の場合、第 2ピーク (フィッティング曲線 B)の強度は第 1ピーク (フィッティング曲線 A)の強度の 45. 8%であった。
[0065] 本発明の積層体の炭素膜の多くの試料について X線回折測定を行ったところ、す ベての試料で 2 0力 3. 9° を中心に図 10に示すような幅の広いピークが観測され た。し力も図 10に示すような低角度側に肩をもつ形をしており、第 1ピークと第 2ピー クにより構成されることがゎカゝつた。多数の試料で測定した X線回折スペクトルについ て同様のピークフィッティングによる解析を行つたところ、上述の関数を用いて非常に うまくフィッティングできることがわかった。第 1ピークの中心は 2 0力 3. 9±0. 3° であった。また第 2ピークは 2 Θ力 1. 7±0. 3° で最大となることがわ力つた。第 1ピ ークに対する強度比は最小が 5%で、最大が 90%であった。この強度比は合成温度 依存性が大きぐ温度が低いほど大きくなる傾向があった。一方ピークの位置につい ては合成温度によらずほぼ一定であつた。
[0066] この X線回折測定の解析手法の注意すべき点は、 X線の強度が小さいと測定デー タのばらつきが大きくなり、信頼できるフィッティングが不可能となることである。そのた め、ピークの最大強度が 5000カウント以上のものについて、上述のフィッティングに よる解析を行う必要がある。
[0067] このように本発明の積層体の炭素膜には、 CuK 線による X線回折測定において 、 2 Θが 43. 9° を中心に幅の広いピークを持ち、し力もそのピークは低角度側に肩 のある構造をもつことが明ら力となった。ピークフィッティングを用いた解析により、こ のピークは 2 0力 3. 9° に中心をもつピアソン VII関数による第 1ピークと 41. 7° で 最大となる非対称正規分布関数による第 2ピーク、および一次関数によるベースライ
ン (バックグラウンド)の重畳で大変よく近似できることがわ力つた。
[0068] 同様のピークフィッティングによる解析を図 11に示したダイヤモンドのスペクトルに ついて行った。上述の本発明の積層体の炭素膜とはまったく異なり、ダイヤモンドの 場合は 2 0力 3. 9° に中心をもつピアソン VII関数だけで大変よく近似できることが わかった。したがって本発明の積層体の炭素膜はダイヤモンドとは異なる構造をもつ 物質であることがわ力つた。
[0069] 本発明の積層体の炭素膜は上述の第 2ピークが観測されることが特徴であり、ダイ ャモンドとは異なる構造をもつ炭素膜である。本発明の積層体の炭素膜の製造工程 、およびその他の測定結果を吟味し、その構造を検討した。本発明の積層体におけ る炭素膜の合成法を、ダイヤモンドの CVD合成法と比較した場合、以下のような大き な特徴がある。まず、通常のダイヤモンド合成が少なくとも 700°C以上の温度で行わ れているのに対して、本発明の積層体の炭素膜は非常に低温で合成を行っている。 また従来ダイヤモンド膜の粒径を小さくする場合、原料ガスに含まれる炭素源濃度 (メ タンガスのモル比)が 10%程度の高い濃度により高速成長する方法が用いられてき たが、本発明では炭素源濃度が 1%程度とかなり低い。すなわち、本手法では低温 において非常にゆっくりと時間をかけ、炭素粒子を析出し、膜を形成している。したが つて、炭素粒子はダイヤモンドになるかならないかのぎりぎりの状況で析出する。この ため通常の立方晶のダイヤモンドより安定な炭素による結晶である六方晶ダイヤモン ドの析出や、さらに安定なグラフアイトの析出を促すような力が働き、結晶の析出状況 としては非常に不安定である。さらにいつたん析出したグラフアイトおよび非晶質炭素 物質も、原料ガスに含まれる水素プラズマにより、エッチングにより除去される。このよ うな析出機構により、立方晶ダイヤモンドと六方晶ダイヤモンドが入り混じり、かつエツ チングによって除去された部分が非常に高濃度の欠陥として残留した構造となって いる。この欠陥は原子空孔のような点欠陥であったり、転位のような線状の欠陥であ つたり、また積層欠陥のような面単位の欠陥も大量に含まれている。このため 43. 9° の X線回折ピークが低角度側に肩をもつ構造となるのである。
[0070] し力しながら、以上のような X線回折ピークの特徴が、本発明の積層体の炭素膜の 高い機能に結びついている。すなわち、低炭素源濃度での低速合成のため、グラフ
アイトおよびグラフアイト様物質のエッチングが促進されるため、高濃度の欠陥を含む 構造となるが、その一方で炭素膜の熱伝導性、強度、硬度および透明度を高く保つ ている。また、低温で合成しているため立方晶ダイヤモンドと六方晶ダイヤモンドが入 り混じり、かつ高濃度の欠陥を含んでいるが、そのような低温のおかげで、榭脂材へ も熱的な損傷を与えることなぐ直接コーティングが可能となった。さらに低温での合 成のため、炭素膜中の炭素粒子の微小な粒径が揃っており、熱による歪が非常に小 さい。すなわち立方晶ダイヤモンドと六方晶ダイヤモンドが入り混じり、かつ非常に高 濃度の欠陥を含んだ構造により、熱歪が緩和され、光学的な複屈折性が小さいという 特徴が生じている。また同様に、この構造のおかげで、非常に高い電気的絶縁性が 発現している。
[0071] (実施例 5:炭素膜の電気抵抗測定及びホール効果測定)
本発明の積層体の炭素膜の電気的特性を知るために、電気抵抗測定およびホー ル効果測定を行った。以下、測定の詳細を記す。使用した電気抵抗測定装置および ホール効果測定装置は東陽テク-力製 ResiTest8310S型機である。また使用した試 料ホルダーは東陽テク-力製 VHT型である。測定した試料は本発明の手法で厚さ 2mmの PPS榭脂基材に作製した膜厚 500nmの炭素膜である。 PPS榭脂基材ごと 4 mm角に切り出したものを測定した。電極として試料の 4角に真空蒸着により直径 0. 3mmの円形に Tiを厚さ 50nm堆積した。さらにこの上に Ptを 50nm、 Auを lOOnm 蒸着し、 Ti電極の酸ィ匕を防止した。これを高抵抗アルミナ製の試料台に取り付け、 φ 250 μ mの金のワイヤーを電極に超音波ボンディングして配線を行った。
電気抵抗測定はヘリウム 1ミリバールの雰囲気中で行った。室温と 100°Cで行った。 この結果 100°Cでは 1 X 109 Q cm以上、また室温 (20°C)では 1 X 101G Q cm以上の 高い抵抗値を示した。
ホール効果測定により電気伝導性のタイプの決定も試みた力 高抵抗のため、 p形 力 n形かの判定はできなかった。
以上のような電気的な性質は、本発明の積層体の炭素膜が大変良い電気的絶縁 膜として機能することを示して 、る。
[0072] (実施例 6:炭素膜の熱伝導率測定)
本発明の PPS榭脂材に形成した炭素膜の熱伝導率測定を行った。炭素膜の膜厚 は 1 /z mである。測定法は光交流法を用いた。(光交流法については、「熱量測定'熱 分析ハンドブック」(日本熱測定学会編、丸善)を参照するとよい。)その結果、 25°C における熱拡散率を得た。同時にこの積層体の炭素膜の比熱および密度を測定した 。これらを熱拡散率に乗算することにより、本発明の炭素膜の 2つのサンプルについ て、以下のような熱伝導率を得た。
サンプル(1) : 70〜500WZmK
サンプノレ(2): 110〜700WZmK
(実施例 7:炭素膜の熱伝導率測定)
本発明の PPS榭脂基材に形成する炭素膜の熱伝導測定、上記の光交流法とは別 の、レーザーフラッシュ法を用いて行った。この測定法では PPS榭脂基材に炭素膜 を堆積した状態での熱伝導測定が困難であるため、基材には石英ガラスを用いた。 石英ガラス基材に炭素膜を堆積し、炭素膜の熱伝導性の評価を行った。 5mm X 5m m、厚さ 100 mの石英ガラス基材に、膜厚 1 μ mの炭素膜を形成した。これを 30枚 重ねて 5mmX 5mm、側面の厚さおよそ 3mmの直方体形状の試料を作成した。この 厚さおよそ 3mmの側面に赤外光レーザーを照射し、レーザーフラッシュ法により炭 素膜を形成した石英ガラスの面内方向の熱拡散率を求めた。赤外光レーザー照射 面は赤外光の吸収を高めるため、黒化処理を行った。(本実施例で用いたレーザー フラッシュ法による測定およびデータ解析では、「最新熱測定—基礎力も応用-」(八 田一郎監修、アルバック理工 (株)編集、ァグネ技術センター)に記載の手法に則った 。)同時に、炭素膜のない石英ガラス基材のみを同様に 30枚重ねた直方体形状の試 料を作成し、石英ガラス基材のみの熱拡散率を測定した。以上の測定から、炭素膜 のある石英ガラス基材と、炭素膜のない石英ガラス基材の熱拡散率を比較し、炭素 膜のみの面内方向の 25°Cにおける熱拡散率を得た。またこの積層体の炭素膜の比 熱および密度を測定した。これらを熱拡散率に乗算することにより、本発明の炭素膜 の 2つのサンプルについて、以下のような熱伝導率を得た。
サンプル(3): 150〜600WZmK
サンプノレ(4): 70〜700WZmK
[0074] (実施例 8:傷つき防止効果の検証)
本発明の積層体の炭素膜の、傷つき防止効果の検証を行った。直径 10cm厚さ 1 mmの PPS榭脂材の表面に本発明の炭素膜を 300nmの厚さで積層した。そして 10 00番のサンドペーパーで往復 100回こすってみた力 まったく傷がつかなかった。一 方、炭素膜を積層していない PPS榭脂材には明らかに傷がついた。このように本発 明の積層体の炭素膜は PPS榭脂材の傷つき防止効果が高いことがわ力つた。
産業上の利用可能性
[0075] 本発明の炭素膜と樹脂の積層体は、前記した特性を有することから、パソコン、携 帯電話、マルチメディア関連などの電子機器のヒートシンク、また従来金属が用いら れてきた機械部品や構造部品の榭脂での代替による軽量ィ匕などの用途に用いること ができる。
Claims
[1] 榭脂材と、熱伝導率 70〜700WZmK、抵抗値 1 X 10? Ω cm以上 (100°C)を有する 膜厚 50ηπ!〜 10 mの炭素膜とを積層し、かつ前記炭素膜は、 CuK 線〖こよる X線 回折スペクトルにおいて、ブラッグ角(2 0 ± 0. 3° )の 41〜42。 にスペクトルのピー クを備える積層体。
[2] 榭脂材と、プラズマ耐性膜と、熱伝導率 70〜700WZmK、抵抗値 1 X 10? Ω cm以 上 (100°C)を有する膜厚 50ηπ!〜 10 mの炭素膜とを積層し、かつ前記炭素膜は、 CuK 線による X線回折スペクトルにおいて、ブラッグ角 CuK の 41〜42° にスぺ タトルのピークを備える積層体。
[3] 前記榭脂材の最大表面粗さは、 3. 5 μ m以下であることを特徴とする請求の範囲第 1項又は第 2項に記載の積層体。
[4] 前記炭素膜の最大表面粗さは、 20nm以下であることを特徴とする請求の範囲第 1 項又は第 2項に記載の積層体。
[5] 前記プラズマ耐性膜は、金、銀、銅、チタン、アルミニウム、鉄、ステンレス、モリブデ ン等の金属又は合金、タングステンカーバイド、アルミナ、窒化ホウ素等のセラミック、 シリコン、サフアイャ、石英、 SiO、ガラス、ダイヤモンドライクカーボン力も選ばれた
2
少なくとも 1つであることを特徴とする請求の範囲第 2項に記載の積層体。
[6] 前記榭脂材と前記プラズマ耐性膜とは一体成形されていることを特徴とする請求の 範囲第 2項に記載の積層体。
[7] 前記榭脂材は、ポリフエ-ルサルファイド、ポリカーボネート、ポリエチレンテレフタレ ート、ポリエーテルサルホン等の榭脂または炭素繊維、ガラス繊維、無機フイラ一等を 含有した前記樹脂のいずれか 1つであることを特徴とする請求の範囲第 1項又は第 2 項に記載の積層体。
[8] 榭脂材カゝらなる基板に炭素膜を堆積する方法であって、マイクロ波プラズマ CVD反 応炉内に、反応ガスとして、含炭素ガスと、アルゴンガス及び/又は水素ガスとの混合 ガスを導入し、かつガス圧を 1〜: L00パスカルにてプラズマを発生させるとともに、プ ラズマの電子温度が 0. 5〜3. OeVの位置に前記基板を配置して、プラズマ中のラジ カル粒子を該基板の表面上にほぼ均一に到達するように該プラズマの発生起源から
該基板に向けて移動させることを特徴とする炭素膜堆積方法。
[9] 榭脂材カゝらなる基板に炭素膜を堆積する方法であって、マイクロ波プラズマ CVD反 応炉内に、反応ガスとして、含炭素ガスと、アルゴンガス及び/又は水素ガスとの混合 ガスを導入し、かつガス圧を 1〜: LOOパスカルにてプラズマを発生させるとともに、プ ラズマの電子温度が 0. 5〜3. OeVの位置にプラズマ耐性膜を備えた前記基板を配 置して、プラズマ中のラジカル粒子を前記基板の表面上にほぼ均一に到達するよう に該プラズマの発生起源力ゝら該基板に向けて移動させることを特徴とする炭素膜堆 積方法。
[10] 前記榭脂材力もなる基板の温度を室温力も 200°Cに保持したことを特徴とする請求 の範囲第 8項又は第 9項に記載の炭素膜堆積方法。
[11] 前記榭脂材力もなる基板は、超音波及び又はスピンコートによって前処理されている ことを特徴とする請求の範囲第 8項又は第 9項に記載の炭素膜堆積方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07738668.8A EP1997620B1 (en) | 2006-03-17 | 2007-03-15 | Laminated body and carbon film deposition method |
US12/293,370 US20090324892A1 (en) | 2006-03-17 | 2007-03-15 | Laminate and Method for Depositing Carbon Film |
JP2008506267A JP4883590B2 (ja) | 2006-03-17 | 2007-03-15 | 積層体及び炭素膜堆積方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006074038 | 2006-03-17 | ||
JP2006-074038 | 2006-03-17 | ||
JP2006237740 | 2006-09-01 | ||
JP2006-237740 | 2006-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007108394A1 true WO2007108394A1 (ja) | 2007-09-27 |
Family
ID=38522424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/055218 WO2007108394A1 (ja) | 2006-03-17 | 2007-03-15 | 積層体及び炭素膜堆積方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090324892A1 (ja) |
EP (1) | EP1997620B1 (ja) |
JP (2) | JP4883590B2 (ja) |
WO (1) | WO2007108394A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009137077A (ja) * | 2007-12-04 | 2009-06-25 | National Institute Of Advanced Industrial & Technology | ポリカーボネート積層体 |
JP2014502690A (ja) * | 2010-12-22 | 2014-02-03 | ティコナ・エルエルシー | 複雑な3次元構成を有する高温導管 |
WO2016013478A1 (ja) * | 2014-07-22 | 2016-01-28 | 東洋紡株式会社 | 薄膜積層フィルム |
JP2017024278A (ja) * | 2015-07-23 | 2017-02-02 | 積水化学工業株式会社 | バリア性シートおよび建造物 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463059B2 (ja) * | 2009-03-23 | 2014-04-09 | 東洋炭素株式会社 | ダイヤモンド薄膜を被覆した炭素材料及びその製造方法 |
TWI491868B (zh) * | 2012-04-09 | 2015-07-11 | Ind Tech Res Inst | 量測熱擴散係數的裝置以及量測熱擴散係數的方法 |
FR2989513B1 (fr) * | 2012-04-12 | 2015-04-17 | Aselta Nanographics | Procede de correction des effets de proximite electronique utilisant des fonctions de diffusion de type voigt |
US9239118B2 (en) | 2013-04-24 | 2016-01-19 | Hamilton Sundstrand Corporation | Valve including multilayer wear plate |
US10494713B2 (en) * | 2015-04-16 | 2019-12-03 | Ii-Vi Incorporated | Method of forming an optically-finished thin diamond film, diamond substrate, or diamond window of high aspect ratio |
US20200286732A1 (en) * | 2019-03-04 | 2020-09-10 | Samsung Electronics Co., Ltd. | Method of pre-treating substrate and method of directly forming graphene using the same |
CN113710939A (zh) * | 2019-04-26 | 2021-11-26 | 株式会社富士金 | 隔膜、阀、以及隔膜的制造方法 |
CN111781240A (zh) * | 2020-07-06 | 2020-10-16 | 上海理工大学 | 差示扫描量热法dsc曲线的分峰拟合方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118853A (ja) * | 1993-10-19 | 1995-05-09 | Gunze Ltd | ダイヤモンド膜を有する有機高分子材料の製造法 |
WO2005103326A1 (ja) * | 2004-04-19 | 2005-11-03 | National Institute Of Advanced Industrial Science And Technology | 炭素膜 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2637509B2 (ja) * | 1987-10-15 | 1997-08-06 | キヤノン株式会社 | 新規なダイヤモンド状炭素膜及びその製造方法 |
JPH0853116A (ja) * | 1994-08-11 | 1996-02-27 | Kirin Brewery Co Ltd | 炭素膜コーティングプラスチック容器 |
JPH1158587A (ja) * | 1997-08-12 | 1999-03-02 | Mitsui Chem Inc | 酸化防止用包装フィルム |
JP2000117881A (ja) * | 1998-10-20 | 2000-04-25 | Toppan Printing Co Ltd | ガスバリア性プラスチック製容器 |
JP4505923B2 (ja) * | 2000-02-04 | 2010-07-21 | 東洋製罐株式会社 | 被覆プラスチック容器 |
JP2001310412A (ja) * | 2000-04-28 | 2001-11-06 | Mitsui Chemicals Inc | ガスバリアーフィルム |
JP2002047480A (ja) * | 2000-07-31 | 2002-02-12 | Mitsubishi Cable Ind Ltd | シール材 |
JP4369264B2 (ja) * | 2003-03-25 | 2009-11-18 | 東京エレクトロン株式会社 | プラズマ成膜方法 |
CN1938224B (zh) * | 2004-03-30 | 2011-03-30 | 东洋先进机床有限公司 | 基材表面处理方法及处理了表面的基材、医疗材料和器具 |
US20090226718A1 (en) * | 2005-07-04 | 2009-09-10 | Masataka Hasegawa | Carbon film |
-
2007
- 2007-03-15 US US12/293,370 patent/US20090324892A1/en not_active Abandoned
- 2007-03-15 EP EP07738668.8A patent/EP1997620B1/en not_active Not-in-force
- 2007-03-15 JP JP2008506267A patent/JP4883590B2/ja not_active Expired - Fee Related
- 2007-03-15 WO PCT/JP2007/055218 patent/WO2007108394A1/ja active Application Filing
-
2011
- 2011-07-15 JP JP2011156747A patent/JP5637396B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118853A (ja) * | 1993-10-19 | 1995-05-09 | Gunze Ltd | ダイヤモンド膜を有する有機高分子材料の製造法 |
WO2005103326A1 (ja) * | 2004-04-19 | 2005-11-03 | National Institute Of Advanced Industrial Science And Technology | 炭素膜 |
Non-Patent Citations (3)
Title |
---|
"Calorimetry and Thermal Analysis Handbook", MARUZEN CO., LTD. |
HAKUMAKU: "Thin Film) Handbook", 1983, OHMUSHA LTD., pages: 375 |
HIROSHI MAKITA, NEW DIAMOND, vol. 12, no. 3, 1996, pages 8 - 13 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009137077A (ja) * | 2007-12-04 | 2009-06-25 | National Institute Of Advanced Industrial & Technology | ポリカーボネート積層体 |
JP2014502690A (ja) * | 2010-12-22 | 2014-02-03 | ティコナ・エルエルシー | 複雑な3次元構成を有する高温導管 |
WO2016013478A1 (ja) * | 2014-07-22 | 2016-01-28 | 東洋紡株式会社 | 薄膜積層フィルム |
JPWO2016013478A1 (ja) * | 2014-07-22 | 2017-04-27 | 東洋紡株式会社 | 薄膜積層フィルム |
US10605760B2 (en) | 2014-07-22 | 2020-03-31 | Toyobo Co., Ltd. | Thin film-laminated film |
JP2017024278A (ja) * | 2015-07-23 | 2017-02-02 | 積水化学工業株式会社 | バリア性シートおよび建造物 |
Also Published As
Publication number | Publication date |
---|---|
JP4883590B2 (ja) | 2012-02-22 |
EP1997620B1 (en) | 2016-06-15 |
EP1997620A1 (en) | 2008-12-03 |
EP1997620A4 (en) | 2010-05-19 |
JP2011240704A (ja) | 2011-12-01 |
JP5637396B2 (ja) | 2014-12-10 |
JPWO2007108394A1 (ja) | 2009-08-06 |
US20090324892A1 (en) | 2009-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5637396B2 (ja) | 積層体 | |
JP4538587B2 (ja) | 積層体及びその製造方法並びに該積層体を備えた光デバイス、光学ガラス、腕時計、電子回路基板、研磨用工具 | |
Li et al. | Synthesis of graphene films on copper foils by chemical vapor deposition | |
JP5317088B2 (ja) | 炭素膜 | |
Zhai et al. | Evolution of structural and electrical properties of carbon films from amorphous carbon to nanocrystalline graphene on quartz glass by HFCVD | |
CN114411118A (zh) | 包括金刚石层以及金刚石和碳化硅以及任选的硅的复合层的基板 | |
Im et al. | Xenon Flash Lamp‐Induced Ultrafast Multilayer Graphene Growth | |
Zhai et al. | Investigation of substrate temperature and cooling method on the properties of amorphous carbon films by hot-filament CVD with acetylene | |
Zagho et al. | A brief overview of RF sputtering deposition of boron carbon nitride (BCN) thin films | |
Tiwari et al. | Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition | |
Ali | Etching of photon energy into binding energy in depositing carbon films at different chamber pressures | |
Zhang et al. | Preparation of carbon-coated silicon nanoparticles with different hydrocarbon gases in induction thermal plasma | |
Dwivedi et al. | Unusual high hardness and load-dependent mechanical characteristics of hydrogenated carbon–nitrogen hybrid films | |
Kumar et al. | Unveiling the multifaceted impact of C2H2 flow on SiCN CVD coatings: Mechanical mastery and beyond | |
Li et al. | Achieving good bonding strength of the Cu layer on PET films by pretreatment of a mixed plasma of carbon and copper | |
Chong et al. | Synthesis and mechanical properties of cubic boron nitride/nanodiamond composite films | |
JP5182852B2 (ja) | 炭化珪素の研磨剤、及びそれを用いた炭化珪素の研磨方法 | |
JP5187821B2 (ja) | ポリカーボネート積層体 | |
Jing et al. | Critical Role of Organometallic Chemical Vapor Deposition Temperature in Tuning Composition, Structural Units, Microstructure, and Corrosion Performance of SiOC Coatings | |
Varshney et al. | Spontaneously detaching self-standing diamond films | |
Quinton | Aligned Carbon Nanotube Carpets on Carbon Substrates for High Power Electronic Applications | |
JP2024540405A (ja) | 対象となる基板上にグラフェン又は酸化グラフェンを直接堆積させる方法 | |
Piazza et al. | Carbon Trends | |
Qing-Hua et al. | First-principles study of structural and electronic properties of layered B2CN crystals | |
CA3235547A1 (en) | Process for direct deposition of graphene or graphene oxide onto a substrate of interest |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07738668 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008506267 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12293370 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007738668 Country of ref document: EP |