WO2007108204A1 - 分析試料調製方法および分析試料ならびに糖鎖捕捉物質 - Google Patents

分析試料調製方法および分析試料ならびに糖鎖捕捉物質 Download PDF

Info

Publication number
WO2007108204A1
WO2007108204A1 PCT/JP2007/000214 JP2007000214W WO2007108204A1 WO 2007108204 A1 WO2007108204 A1 WO 2007108204A1 JP 2007000214 W JP2007000214 W JP 2007000214W WO 2007108204 A1 WO2007108204 A1 WO 2007108204A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
substance
analytical sample
trapping
sample preparation
Prior art date
Application number
PCT/JP2007/000214
Other languages
English (en)
French (fr)
Inventor
Hideyuki Shimaoka
Hiromitsu Kuramoto
Shinichiro Nishimura
Yasuro Shinohara
Yoshiaki Miura
Jun-Ichi Furukawa
Original Assignee
Sumitomo Bakelite Co., Ltd.
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd., National University Corporation Hokkaido University filed Critical Sumitomo Bakelite Co., Ltd.
Priority to JP2008506173A priority Critical patent/JP5115988B2/ja
Priority to US12/224,953 priority patent/US7964410B2/en
Publication of WO2007108204A1 publication Critical patent/WO2007108204A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/60Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/18Sulfur containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/18Sulfur containing
    • Y10T436/182Organic or sulfhydryl containing [e.g., mercaptan, hydrogen, sulfide, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials

Definitions

  • the present invention relates to an analytical sample preparation method, and more particularly to an analytical sample preparation method for releasing a sugar chain from a biological sample as an analytical sample, and an analysis obtained by using the analytical sample preparation method Further, the present invention relates to a sugar chain-capturing substance used in this analytical sample preparation method.
  • Biopolymers play an important role in the fields of biotechnology such as medicine, cell engineering, and organ engineering. It is the development of the biotechnological field to elucidate the control mechanism of biological reactions by these substances. It will lead to.
  • sugar chains are very diverse and are substances involved in various functions of living organisms that exist in nature.
  • Sugar chains often exist as complex carbohydrates bound to proteins and lipids in vivo, and are one of the important components in the body. It is becoming clear that sugar chains in living organisms are deeply involved in cell-to-cell information transmission, protein functions, and coordination of interactions.
  • the sugar chain refers to glucose, galactose, mannose, fucose, xylose, N-acetylyldarcosamine, N-acetylethylgalactosamine, sialic acid and other monosaccharides and their derivatives formed by glycosidic bonds. It is a general term for molecules linked in a chain.
  • biopolymers having a sugar chain include peptide darlicans on the cell wall of plant cells that contribute to cell stabilization, glycolipids that affect cell differentiation, proliferation, adhesion, migration, etc., and cells Glycoproteins involved in intercellular interactions and cell recognition.
  • the mechanisms by which sugar chains contained in these biopolymers control advanced and precise biological reactions while substituting, assisting, amplifying, regulating, or inhibiting functions with other biopolymers are gradually being clarified.
  • the relationship between such sugar chains and cell differentiation and proliferation, cell adhesion, immunity, and cell canceration If it is clarified, it can be expected that new development will be made by closely linking this glycoengineering with medicine, cell engineering or organ engineering.
  • Patent Document 1 describes substances that can specifically react with such sugar chains, and also describes a method for separating sugar chains using these substances.
  • Patent Document 1 International Publication No. 2 0 0 4Z 0 5 8 6 8 7
  • Patent Document 1 an acid treatment using trifluoroacetic acid or an acidic resin is used to release (cut out) the sugar chain captured by the sugar chain-trapping substance from the sugar chain-trapping substance.
  • An example is given. Exposing glycans to such harsh conditions means that glycans such as desorption of sialic acid residues that bind to the ends of glycans removed from biological samples and are easily desorbed under acidic conditions. Therefore, it has been desired to remove the sugar chain under milder conditions.
  • a sugar chain capture step comprising a reaction of capturing a sugar chain and a Z or sugar derivative with a sugar chain capture substance from a biological sample;
  • the sugar chain and Z or sugar derivative A cleaving step of cleaving and liberating the compound containing the trapping moiety.
  • a sugar chain capture step comprising a reaction of capturing a sugar chain and a Z or sugar derivative with a sugar chain capture substance from a biological sample;
  • a washing step of washing the sugar chain-trapping substance after the sugar chain-trapping reaction is a washing step of washing the sugar chain-trapping substance after the sugar chain-trapping reaction
  • the sugar chain-capturing substance is immobilized on a carrier via a disulfide bond, and the excision step can include a reaction in which the disulfide bond is broken.
  • the sugar chain-trapping substance used in the sugar chain-trapping step may have a structure represented by the following formula (1):
  • the carrier is an inorganic substance or organic polymer substance that does not contribute to the sugar chain capture reaction
  • L is a partial position of the linker
  • A is a capture site for capturing the sugar chain
  • one S—S— is a disulfide. Is a bond).
  • the capture site A can be either an aminooxy group or a hydrazide group.
  • the linker partial position L may include a portion consisting of at least one of arginine, triftophan, phenylalanine, tyrosine, cysteine, and derivatives thereof.
  • the linker site of the sugar chain-capturing substance may include a site containing a chromophore or a fluorophore. Furthermore, the partial linker position of this sugar chain-trapping substance may contain a cysteine residue and a 2-aminobenzoyl group. H 1 2
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain capture reaction.
  • the sugar chain-trapping substance may have a structure represented by the following formula (4):
  • R is a functional group that can be introduced via an amino group.
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain-trapping reaction.
  • the sugar chain-trapping substance may have a structure represented by the following formula (5) or (6):
  • the linker partial position L can be an unlabeled group composed of an alkyl chain or a group containing an ester bond or an amide bond. Furthermore, the linker partial position L may include a structure represented by the following formula or a structure obtained by combining a plurality of structures arbitrarily selected from the structures represented by the following formula.
  • the disulfide bond may be cleaved by the action of the reducing agent in the cleaving stage.
  • the reaction between the sugar chain-trapping substance and the biological sample performed in the sugar chain-trapping step may be performed under the conditions of pH 4-8.
  • the reaction of cleaving a compound containing a moiety that captures a sugar chain and Z or a sugar derivative from a sugar chain-capturing substance May be performed under conditions near neutrality.
  • the carrier in formula (1) may be particles.
  • the carrier in formula (1) may be a solid substrate or a substance that directly binds to the surface of the solid substrate.
  • the analytical sample according to the present invention is obtained by being prepared from a biological sample by any one of the analytical sample preparation methods described above.
  • the sugar chain-trapping substance according to the present invention comprises:
  • the carrier is an inorganic substance or organic polymer substance that does not contribute to the sugar chain capture reaction
  • L is a partial position of the linker
  • A is a capture site for capturing the sugar chain
  • one S—S— is a disulfide. That is,
  • the capture site A can be either an aminooxy group or a hydrazide group.
  • the linker partial position L may include a portion consisting of at least one of arginine, triftophan, phenylalanine, tyrosine, cysteine, and derivatives thereof.
  • the aforementioned sugar chain-trapping substance may have a structure represented by the following formula (2):
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain capture reaction.
  • a part of the linker may include a site containing a chromophore or a fluorophore. Further, this linker site may contain a cysteine residue and a 2_aminobenzoyl group.
  • the aforementioned sugar chain-trapping substance may have the structure of the following formula (3)
  • the carrier is an inorganic substance or organic polymer substance that does not contribute to the sugar chain capture reaction.
  • the aforementioned sugar chain-trapping substance may have a structure represented by the following formula (4): [0041] [Chemical Formula 8]
  • R is a functional group that can be introduced via an amino group.
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain-trapping reaction).
  • the sugar chain-trapping substance may have a structure represented by the following formula (5) or (6):
  • the linker partial position L can be an unlabeled group composed of an alkyl chain or a group containing an ester bond or an amide bond.
  • the linker partial position L may include a structure represented by the following formula or a structure in which a plurality of structures arbitrarily selected from the structures represented by the following formula are combined.
  • the carrier in formula (1) may be a particle.
  • the carrier in formula (1) may be a substance that directly binds to the solid phase substrate or the surface of the solid phase substrate.
  • the sugar chain when collecting and purifying a sugar chain for an analysis sample from a biological sample containing a sugar chain, the sugar chain is captured using a capture substance and the sugar chain is gently cut out. It is possible to do with conditions.
  • FIG. 1 is a flowchart showing the procedure of an embodiment of an analytical sample preparation method according to the present invention.
  • FIG. 2 is a block diagram showing an apparatus to which the analytical sample preparation method according to this embodiment is applied.
  • FIG. 3 is a diagram showing a chart of M A L D I-TO F—M S of a compound containing a capture site that has captured a sugar chain obtained in an experimental example.
  • FIG. 4 is a diagram showing a chart of M A L D I-TO F—M S of a compound containing a capture site that has captured a sugar chain obtained in an experimental example.
  • FIG. 5 is a graph showing a separation pattern of the target product obtained in FIG. 4 by HPLC.
  • FIG. 1 is a flowchart showing a procedure for capturing, recovering and purifying sugar chains as an embodiment of the analytical sample preparation method of the present invention.
  • Step S as a sugar chain capturing step including a reaction of capturing a sugar chain and Z or a sugar derivative (hereinafter sometimes simply referred to as “sugar chain”) from a biological sample by a sugar chain capturing substance.
  • 20 and step S 30 as a washing step for washing the sugar chain-trapping substance after the sugar chain-trapping reaction, and cleaving the compound containing the sugar-trapping part from the sugar chain-trapping substance after washing Including step S 40 as the cutting stage.
  • step S10 recovery of sugar chains from a given biological sample containing sugar chains and Z or sugar derivatives, eg, complex molecules containing sugar chains, such as glycoproteins, glycopeptides, glycolipids, etc. Processing is performed.
  • sugar derivatives eg, complex molecules containing sugar chains, such as glycoproteins, glycopeptides, glycolipids, etc. Processing is performed.
  • the biological sample is not particularly limited as long as it is a material to which a sugar chain derived from a living organism is bound or attached, and may be any animal, plant, bacteria, virus, or cultured cell.
  • Body fluids from animals such as whole blood, plasma, serum, sweat, saliva, urine, sputum, amniotic fluid, cerebrospinal fluid, and animal-derived tissues such as biopsy histology and hand Samples collected by surgery.
  • Biological samples also include those that have not been previously separated from the individual, for example, mucosal tissues that can be contacted by a test solution from the outside, or glandular tissues, preferably ductal tissues attached to the mammary gland, prostate, and spleen. Contains the upper skin.
  • examples of the pretreatment performed on the biological sample include glycosidase treatment, hydrazine degradation and, if necessary, protease treatment, cell disruption, degreasing treatment, and heat denaturation treatment.
  • the obtained sample is obtained in the state of a solution, a dispersion, a suspension, or a dried product.
  • the pretreated biological sample may be used as it is in the next step, or may be dried once and dissolved in a desired solution before being used in the next step.
  • step S20 a sugar chain capture reaction in which a specific sugar chain-capturing substance captures a sugar chain is performed using the pretreated biological sample obtained in step S10.
  • the sugar chain capture substance is introduced into the pretreated sample, and Under the condition of 8 and in the reaction system under the condition of the reaction temperature of 4 to 90 ° C, preferably 25 to 90 ° C, more preferably 40 to 90 ° C, 10 minutes -24 hours, preferably 10 minutes to 8 hours, more preferably 10 minutes to 2 hours.
  • the sugar chain-trapping substance used in this reaction is a substance having an aminooxy group or hydrazide group, and this aminooxy group or hydrazide group is a cyclic hemiacetal type formed from sugar chains in a solution such as an aqueous solution.
  • a solution such as an aqueous solution.
  • the sugar chain capture reaction refers to the reaction shown below.
  • the sugar chain-capturing substance is immobilized on the carrier via a disulfide bond. As will be described later, this disulfide is removed in the cutting step (step S 40). It is preferred that the bond is broken.
  • sugar chain-trapping substance examples include those having a structure represented by the following formula (1).
  • the carrier is an inorganic substance or organic polymer substance that does not contribute to the sugar chain capture reaction
  • L is a partial linker position
  • A is a capture site for capturing a sugar chain
  • S—S— is a disulfide bond.
  • A is an aminoxy group or a hydrazide group as described above, and reacts with an aldehyde group in an equilibrium between the cyclic hemiacetal type and the acyclic aldehyde type of the sugar chain as described above. Functions as a capture site for capturing sugar chains.
  • the linker partial position L represents a linker site connecting the capture site A and the site of disulfide binding.
  • examples of the linker partial position L include groups containing a moiety selected from peptides, oligopeptides and derivatives thereof. For example, at least one of arginine, tryptophan, phenylalanine, tyrosine, cysteine and derivatives thereof. The part which consists of may be included.
  • the oligopeptide is particularly preferably a dipeptide (dimer) containing at least one of arginine, triftophan, phenylalanine, tyrosine, and cysteine, and may be a tripeptide (trimer) or more. .
  • the peptide or oligopeptide derivative includes at least one of arginine, ⁇ ribtophan, phenylalanine, tyrosine, cysteine, and other amino acid derivatives, and compounds thereof. Examples include those in which some of the constituent elements are converted to heavy elements.
  • L can be, for example, a linker partial position composed of a dipeptide, for example, one arginine (R) —tributophane (W) ⁇ , —R—phenol dilanalanin (F) ⁇ , -R-tyrosine (Y)-, I-R-cysteine (C)-.
  • R arginine
  • W tributophane
  • F phenol dilanalanin
  • Y -R-tyrosine
  • C I-R-cysteine
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain capture ou reaction.
  • cysteine residue can act as a binding site to the carrier as described later. It is not necessary to carry out a reaction for introducing a thiol group, such as a reaction using an amine (compound (f)).
  • the compound represented by formula (2) is first produced as a compound (h) having a capture site and a linker partial position, It can be obtained by reacting with a carrier to which thiol sepharose is bound.
  • compound (b) is obtained by deprotecting compound (a) in which the amino group of the tritophan fan moiety is protected by a phenyl group or the like.
  • the tribute fan part is phenylalanine, tyrosine, cysteine. It can be replaced by
  • compound (d) is synthesized by a condensation reaction such as a mixed acid anhydride method between compound (b) and hydroxyamine (BocNH0CH 2 C00H) (c).
  • the protective group for hydroxyamine is not limited to Boc, and may be Fmoc, Troc, or the like.
  • compound (e) is obtained by hydrolysis (genation) of the terminal methoxy group of compound (d).
  • 2_mercaptoethylamine (compound (f)) is allowed to act on compound (e) to synthesize a condensate (g), and this condensate (g) is deprotected to give compound ( h) is obtained.
  • this deprotection treatment include treatment with trifluoroacetic acid (TFA) when the protecting group is Boc.
  • a labeled functional group may be introduced to provide a site containing a chromophore or a fluorophore.
  • the labeling functional group include aromatic residues typified by 2-aminobenzoyl group, benzyl group, naphthyl group, anthracenyl group, pyridyl group and the like, substituents including dansyl group and Fmoc group. Further, it may contain a deuterated (or not) acetyl group as described later.
  • the linker L contains a 2-aminobenzoyl group, and one of the disulfide bonds is derived from cysteine, for example, Those having the structure of the following formula (3) are mentioned.
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain capture reaction.
  • a 2-aminobenzoyl group is a labeled compound for imparting fluorescence, and is generally used for HPLC analysis of sugar chains. Therefore, it is possible to easily prepare a labeled sample in which this group is introduced into a sugar chain captured by this sugar chain-capturing substance or a derivative thereof. By using this labeled sample, the sugar chain or its derivative captured by the sugar chain-capturing substance can be analyzed with high resolution and high sensitivity by HPLC using a reverse phase column.
  • the sugar chain-trapping substance represented by the formula (3) first produces a compound (n) having a capture site and a linker partial position.
  • a compound (n) having a capture site and a linker partial position For example, it can be obtained by reacting with a carrier to which activated thiol Sepharose is bound.
  • examples of the sugar chain-trapping substance containing a acetyl group include those having a structure in which the 2-aminobenzoyl group is modified with another functional group in the above formula (3), for example, the above formula (1) In the above, those having the structure of the following formula (4) are mentioned.
  • R is a functional group that can be introduced via an amino group.
  • the carrier is an inorganic substance or an organic polymer substance that does not contribute to the sugar chain-trapping reaction.
  • R examples include a light hydrogenated or deuterated acetyl group, a light hydrogenated or deuterated succinyl group, a levulinol group, and the like.
  • R is a acetyl group (_C0CH 3 ) or a deuterated acetyl group (—C 0CD 3 ) can be preferably used. That is, in the above formula (4), those having the following structure (5) or (6) can be used. [0087] [Chemical 20]
  • the sugar chain-trapping substance represented by the formula (5) or (6) first produced a compound (s) having a capture site and a linker partial position prepared in Scheme 5 as shown below.
  • a compound (s) having a capture site and a linker partial position prepared in Scheme 5 as shown below.
  • it can be obtained by reacting with a carrier to which activated thiol Sepharose is bound.
  • R -COCH 3 (s-1) or-COCD 3 (s-2)
  • R -COCH 3 (r-1) or -COCD 3 (r-2)
  • the compound (q_1) or (q_2) is reacted with hydrazine to obtain a compound (r) having an aminooxy group.
  • a compound (r) having an aminooxy group when R is a acetyl group (_C0CH 3 ), a light hydride (r _ 1) is obtained, and when R is a deuterated acetyl group (_C0CD 3 ), a deuteride is obtained. (R _2) is obtained.
  • the compound (r) is reduced with a reducing agent such as DTT, the disulfide bond is cleaved, and the aminooxy group-containing compound having a 2-aminobenzoyl group in which the amino group is acetylated and a cysteine (S) is obtained.
  • a reducing agent such as DTT
  • the disulfide bond is cleaved
  • the aminooxy group-containing compound having a 2-aminobenzoyl group in which the amino group is acetylated and a cysteine (S) is obtained.
  • R when R is a acetyl group (_C0CH 3 ), a light hydride ( s-1) is obtained, and when R is a deuterated acetyl group (_C0CD 3 ), a deuteride (s _ 2) is obtained.
  • the captured sugar chain can be detected with high accuracy and high sensitivity.
  • examples of the linker partial position L include an unlabeled group composed of an alkyl chain or a group containing an ester bond or an amide bond in addition to the above-described labeled group.
  • it may include a structure represented by the following formula, or a structure obtained by combining a plurality of structures arbitrarily selected from the structures represented by the following formula (wherein n represents an arbitrary integer).
  • the sugar chain-capturing substance can be applied to a carrier comprising a solid phase substrate described later.
  • the carrier is an inorganic substance or an organic polymer substance, and is used as a particle, a solid phase substrate, or a substance that directly binds to the surface of the solid phase substrate.
  • the inorganic substance that can be used as a carrier is in the form of particles.
  • examples thereof include silica particles, alumina particles, glass particles, and metal particles.
  • organic polymer substances include polysaccharide gels typified by agarose and sepharose, polymers obtained by polymerizing vinyl compounds, and those immobilized on the surface of a solid substrate. It is done. Further, the surface of the solid phase substrate may be constituted using these substances.
  • the shape of the particles is preferably a sphere, and the particle size has an upper limit of 20 m, preferably 150 m, and a lower limit of 20 m, preferably 5 0 m.
  • the average particle size is 80-1O O Zm. It is considered that the carrier particles having a particle size in such a range can be easily collected by centrifugation, a filter, etc., and have a sufficient surface area, so that the reaction efficiency with sugar chains is high. When the particle size is significantly larger than the above range, the reaction efficiency with the sugar chain may be lowered due to the small surface area. In addition, when the particle size is much smaller than the above range, it may be difficult to collect the particles, particularly with a filter. Furthermore, when the particles are packed in a column and used, if the particle size is too small, the pressure loss during liquid passage may increase.
  • examples of the solid phase substrate include a microplate and a flat substrate. By doing so, it becomes possible to prepare an analysis sample by applying the sugar chain-capturing substance to the sugar chain microarray substrate.
  • the particulate sugar chain-capturing substance as described above may be packed in a column or the like and passed through a pretreated biological sample (continuous type), and the particles are preliminarily stored. It may be carried out by stirring in a treated biological sample (batch type). Alternatively, the pretreated biological sample may be continuously put into a reaction container pre-filled with particles and stirred (semi-batch method).
  • step S30 the sugar chain-trapping substance after the sugar chain-trapping reaction in step S20 is washed, and sugar chains that have not been captured by the sugar chain-trapping substance, other biological samples, etc. Remove.
  • the solution used for washing the sugar chain-trapping substance includes sodium dodecyl sulfate.
  • An aqueous solution of a surfactant represented by thorium (SDS), alcohols such as methanol and ethanol; water and aqueous buffers are used.
  • SDS thorium
  • alcohols such as methanol and ethanol
  • water and aqueous buffers are used.
  • the pH of this aqueous solution is preferably near neutral, and the pH is 4 to 10 and more preferably 6 to 8.
  • the washing treatment may be performed continuously from the sugar chain capture reaction by passing a washing solution through the column.
  • substances other than the sugar chain-trapping substance may be removed by filtration or centrifugation.
  • washing step in step S30 may not be performed depending on the initial state of the biological sample, for example, the degree of mixing of substances other than sugar chains.
  • step S40 if necessary, after washing in step S30, the compound containing the sugar chain-capturing part is cleaved from the sugar chain-trapping substance and released, that is, as described above.
  • a reaction is performed to cut out a compound consisting of a partial linker position and a capture site from the sugar chain-trapping substance.
  • the capture site includes both those that have captured the sugar chain and those that have not.
  • This reaction is a reaction that cleaves the disulfide bond contained in the sugar chain-trapping substance, whereby the carrier and the partial linker are separated at a high reaction rate in a short time.
  • a reducing agent may be allowed to act on this disulfide bond cleavage reaction, and usable reducing agents include dithiothreitol, dithioerythritol, 2_mercaptoethanol, 2_mercaptoethylamine and the like. I can get lost.
  • These reducing agents may be used in the form of a solid phase.
  • This reaction can be carried out at pH near neutral, preferably at pH 6-9, and the reaction temperature at this time is 4 to 90 ° C, preferably 25 to 90 ° C. More preferably, it can be carried out at 40 to 90 ° C.
  • the most preferred form is the reaction of 1 to 1 O O m M in an aqueous ammonium bicarbonate solution.
  • the reaction time is 10 minutes to 24 hours, preferably 10 minutes to 8 hours, and more preferably 10 minutes to 2 hours.
  • the disulfide (S—S) bond moiety can be efficiently cleaved by the action of the reducing agent, so the captured sugar chain release efficiency is high.
  • the sensitivity of sugar chain analysis can be increased.
  • step S50 the compound containing the capture site obtained by the cleaving reaction and the carrier are separated, the portion of the compound containing the capture site is recovered, and the preparation of the analysis sample ends.
  • the recovery method include separation operation methods such as centrifugation and filtration.
  • a compound containing a capture site that was not captured is also taken out together, but it does not interfere with the identification of the sugar chain, and since it is easy to separate the two, there is no particular problem.
  • FIG. 2 is a block diagram showing an apparatus to which the analytical sample preparation method of the present embodiment is applied. In the description of each configuration, if it is related to each procedure in the flowchart of FIG. 1, the step number is also shown.
  • the biological sample introduction unit 10 is loaded with the biological sample that has been pre-processed by pre-processing the biological sample by a predetermined method (step S10). Introduced into the reaction section 1 2.
  • the cleaning liquid introduction section 14 is charged with a cleaning liquid for performing the washing of the reaction mixture after the sugar chain capture reaction described above (step S30), and this cleaning liquid is used in the reaction section 1 2 described later. To be introduced.
  • the reducing agent introduction unit 16 is charged with a solution containing the reducing agent used in the above-described sugar chain excision step (step S40), and the reducing agent solution is added to the reaction unit described later.
  • the reaction unit 12 is connected to the biological sample introduction unit 10, the cleaning liquid introduction unit 14, and the reducing agent introduction unit 16.
  • the reaction section 12 for example, the above-described particulate form
  • the sugar chain-trapping substance is filled, and in the part filled with these particles, the sugar chain-trapping stage (Step S 2 0), the washing stage (Step S 30), the sugar chain-cleaving stage (Step S 40) It is supposed to provide a place to execute.
  • the eluate extraction unit 18 is provided on the elution side of the reaction unit 12, and is separated from the carrier of the sugar chain-trapping substance from the reaction unit 12 after the cutting step (step S 40).
  • the compound containing the trapping site is eluted, and the eluate thus obtained can be taken out.
  • the separation unit 20 the eluate obtained in the eluate extraction unit 18 is charged, and the compound containing the capture unit and the carrier are separated by the method as described above. ing.
  • the separation unit 20 may be directly connected to the eluate extraction unit 18 so that the eluate from the reaction unit 12 can be directly charged, or the eluate extraction unit 1 8.
  • the eluate obtained in step 1 may be inserted by human operation.
  • the biological sample that has undergone the pretreatment is introduced into the reaction unit 12 from the biological sample introduction unit 10 and the introduced biological sample is subjected to the conditions as described above.
  • the sugar chain capture reaction occurs in which the sugar chain is captured by the sugar chain capturing substance from the biological sample (step S 20).
  • the cleaning liquid is introduced into the reaction section 12 from the cleaning liquid introduction section 14 and the surface of the sugar chain-trapping substance after the sugar chain capture reaction is washed under the conditions described above, and the biological sample is not captured. Substances other than the sugar chains and unreacted sugar chains are washed away (step S 30).
  • a solution containing a reducing agent is introduced from the reducing agent introduction unit 16 into the reaction unit 12 and the compound containing the capture site is cleaved on the surface of the sugar chain capture substance under the conditions described above. Then, the compound containing the capture site of the sugar chain-trapping substance is cut out and eluted, and taken out by the eluate take-out section 18 (step S 40).
  • the separation unit 20 the compound containing the capture site and the carrier are separated from the eluate, and an analysis sample containing the compound containing the capture site is obtained.
  • sugar chains for analysis samples are recovered from biological samples containing sugar chains.
  • a sugar chain-capturing substance When purifying, capture a sugar chain using a sugar chain-capturing substance and recover the compound that captures this sugar chain under mild conditions, for example, without decomposing the captured sugar chain. Is possible.
  • an analytical sample containing a compound containing a capture site that captures a sugar chain is directly obtained from a biological sample, identification and quantification of this sugar chain are facilitated.
  • the biological sample introduction process, the sugar chain capture process (step S 20), the washing process (step S 30), and the sugar chain excision process (step S 40) are continuously processed.
  • the present invention is not limited to this.
  • particles made of a sugar chain-capturing substance are introduced into a biological sample, and shaken or stirred to capture the sugar chain. Filter the reactant obtained by trapping the substance (step S 2 0) through a filter, introduce a washing solution onto this filter and wash it (step S 3 0), then reduce it to the filtered reactant.
  • An excision reaction (step S 40) may be performed by acting an agent. The conditions described above for the processing at each stage can be applied.
  • the analysis sample according to the present embodiment is obtained from a biological sample prepared by the analysis sample preparation method described above, specifically, a thiol group derived from a disulfide bond of the sugar chain-trapping substance, and For example, it can be obtained as a substance represented by the following formulas (t _ 1) and (t _ 2).
  • those containing a deuterated functional group can improve detection sensitivity by mass spectrometry, and can be qualitative and quantitative.
  • the analysis sample of the present embodiment has a thiol group (one SH) derived from a disulfide bond in the molecule.
  • a compound that specifically reacts with the thiol group can be introduced into the analytical sample.
  • an ICAT Immunotope Coded Affinity Tag
  • the analysis sample of this embodiment can be applied to quantitative analysis by the ICAT method.
  • the solution was concentrated under reduced pressure and the resulting residue was The target compound (d) (Boc-NH0CH2C0-WR-0Me) was obtained by purification using Siri-force gel chromatography.
  • the target [M + H] ion was observed at m / z 547 by MAL-TOF-MS analysis.
  • Compound (e) is dissolved in methanol, and WSC (water-soluble carpositimide) is dissolved.
  • a condensate was prepared by adding 1 equivalent of aminoethanethiol (f) and stirring for 2 hours.
  • the target compound (g) was obtained by refining the reaction solution using Siri-Force gel chromatography.
  • Treated serum was added to the sugar chain-trapping substance (10 mg) prepared in Experimental Example 1.
  • the pH of the reaction solution was adjusted to 4 with acetate Z sodium acetate buffer, and then allowed to stand at 80 ° C. for 1 hour to bind the sugar chain to the sugar chain-trapping substance.
  • reaction product after the sugar chain capture reaction was washed with 0.5% SDS, 50% methanol, and pure water.
  • the sugar chain-trapping substance of the formula (3) was measured in a container so that the theoretical functional group amount was 300 nmol, and dispersed with acetonitrile containing 2% acetic acid. To this, 50 I N-acetyllactosamine (LacNAc) was added, and heated at 80 ° C for 1 hour to capture LacNAc on the sugar chain-capturing substance.
  • LacNAc N-acetyllactosamine
  • a separately prepared compound (t_2) was measured by HP LC, and the separation / ⁇ turn shown in Fig. 5 was obtained.
  • a peak corresponding to the molecular weight of the compound (t-12) was observed at the peak position indicated by the arrow in the figure.

Abstract

 生体試料から糖鎖捕捉物質により糖鎖および/または糖の誘導体を捕捉する反応を含む糖鎖捕捉段階と、糖鎖捕捉反応後の前記糖鎖捕捉物質から糖鎖および/または糖の誘導体を捕捉する部分を含む化合物を切り出して遊離させる切出段階とを含む分析試料調製方法。

Description

明 細 書
分析試料調製方法および分析試料ならびに糖鎖捕捉物質
技術分野
[0001 ] 本発明は、 分析試料調製方法に関し、 特に生体試料から糖鎖を分析するた めの分析試料として遊離させるための分析試料調製方法に関し、 およびこの 分析試料調製方法を用いて得られる分析試料に関し、 さらにこの分析試料調 製方法に使用される糖鎖捕捉物質に関する。
背景技術
[0002] 生体高分子は、 医学、 細胞工学、 臓器工学などのバイオテクノロジー分野 において重要な役割を担っており、 これら物質による生体反応の制御機構を 明らかにすることはバイオテクノ口ジー分野の発展に繋がることになる。
[0003] 生体高分子の中でも、 糖鎖は、 非常に多様性に富んでおり、 天然に存在す る生物が有する様々な機能に関与する物質である。 糖鎖は生体内でタンパク 質や脂質などに結合した複合糖質として存在することが多く、 生体内の重要 な構成成分の一つである。 生体内の糖鎖は細胞間情報伝達, タンパク質の機 能や相互作用の調整などに深く関わっていることが明らかになりつつある。
[0004] なお、 糖鎖とは、 グルコース, ガラクトース, マンノース, フコース, キ シロース, N—ァセチルダルコサミン, N—ァセチルガラクトサミン, シァ ル酸などの単糖およびこれらの誘導体がグリコシド結合によつて鎖状に結合 した分子の総称である。
[0005] 例えば、 糖鎖を有する生体高分子としては、 細胞の安定化に寄与する植物 細胞の細胞壁のペプチドダリカン、 細胞の分化、 増殖、 接着、 移動等に影響 を与える糖脂質、 及び細胞間相互作用や細胞認識に関与している糖タンパク 質等が挙げられる。 これらの生体高分子に含まれる糖鎖が、 他の生体高分子 と互いに機能を代行、 補助、 増幅、 調節、 あるいは阻害しあいながら高度で 精密な生体反応を制御する機構が次第に明らかにされつつある。 さらに、 こ のような糖鎖と細胞の分化増殖、 細胞接着、 免疫、 及び細胞の癌化との関係 が明確にされれば、 この糖鎖工学と、 医学、 細胞工学、 あるいは臓器工学と を密接に関連させて新たな展開を図ることが期待できる。
[0006] 特許文献 1には、 このような糖鎖と特異的に反応しうる物質が記載されて おり、 これらの物質を用いて糖鎖を分離などする方法が併せて記載されてい る。
特許文献 1 :国際公開第 2 0 0 4Z 0 5 8 6 8 7号パンフレツ卜
発明の開示
発明が解決しょうとする課題
[0007] ところで、 特許文献 1には、 糖鎖捕捉物質に捕捉された糖鎖をこの糖鎖捕 捉物質より遊離する (切り出す) ために、 トリフルォロ酢酸や酸性樹脂など を用いた酸処理を用いる例が記載されている。 このような過酷な条件に糖鎖 をさらすことは、 生体試料から取り出された糖鎖の末端に結合し、 かつ、 酸 性条件で脱離しやすい性質を持つシアル酸残基の脱離など糖鎖の変性を引き 起こすおそれがあリ、 より穏やかな条件での糖鎖切リ出しを行うことが望ま れていた。 なお、 糖鎖に結合するシアル酸の有無および結合場所は、 疾患と 関連することが多く、 シアル酸が完全な状態で糖鎖を分析することが望まれ 、 分析前の前処理段階でシアル酸の一部でも脱離してしまうと正確な糖鎖情 報を得ることができなくなるものである。
[0008] そこで、 本発明は、 糖鎖を含む生体試料より分析試料のための糖鎖を回収 ,精製するに際して、 糖鎖捕捉物質を用いて糖鎖を捕捉し、 この糖鎖の切り 出しを穏やかな条件で行うことを可能にする分析試料調製方法、 およびこの 方法を適用して得られる分析試料、 ならびにこの分析試料調製に用いられる 糖鎖捕捉物質を提供することを目的としている。
課題を解決するための手段
[0009] 本発明に係る分析試料調製方法は、
生体試料から糖鎖捕捉物質によリ糖鎖および Zまたは糖の誘導体を捕捉す る反応を含む糖鎖捕捉段階と、
糖鎖捕捉反応後の前記糖鎖捕捉物質から糖鎖および Zまたは糖の誘導体を 捕捉する部分を含む化合物を切リ出して遊離させる切出段階と を含む。
[0010] また、 本発明に係る分析試料調製方法は、
生体試料から糖鎖捕捉物質によリ糖鎖および Zまたは糖の誘導体を捕捉す る反応を含む糖鎖捕捉段階と、
糖鎖捕捉反応後の前記糖鎖捕捉物質を洗浄する洗浄段階と、
洗浄後に前記糖鎖捕捉物質から糖鎖および Zまたは糖の誘導体を捕捉する 部分を含む化合物を切リ出して遊離させる切出段階と
を含む。
[0011 ] 前述した分析試料調製方法において、 糖鎖捕捉物質はジスルフィド結合を 介して担体に固定化されており、 前記切出段階はこのジスルフィド結合が切 断される反応を含むことができる。
[0012] あるいは、 前述した分析試料調製方法において、 糖鎖捕捉段階で用いられ る糖鎖捕捉物質は、 下記式 (1 ) で示される構造を有してもよい:
(担体) _ S _ S _ L _ A ( 1 )
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 であり、 Lはリンカ一部位であり、 Aは糖鎖を捕捉する捕捉部位であり、 一 S— S—はジスルフィド結合である) 。
[0013] さらに、 この分析試料調製方法において、 捕捉部位 Aを、 アミノォキシ基 、 ヒドラジド基のいずれかとすることができる。 また、 リンカ一部位 Lを、 アルギニン、 トリブトファン、 フエ二ルァラニン、 チロシン、 システィンお よびこれらの誘導体の少なくとも一つからなる部分を含むようにしてもよい
[0014] また、 前述した分析試料調製方法において、 糖鎖捕捉物質は、 下記式 (2 ) の構造を有してもよい:
[0015] [化 1 ]
(担体ト S- S_C— C -N-C- C-C— 0-NH2
Η一 2 HN=
Η一 2
Figure imgf000006_0001
[0016] (式中、 担体は糖鎖捕捉反 ou応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[0017] 前述した分析試料調製方法において、 糖鎖捕捉物質のリンカー部位しが、 クロモフォアまたはフルオロフオアを含む部位を含むようにしてもよい。 さ らに、 この糖鎖捕捉物質のリンカ一部位しが、 システィン残基および 2—ァ ミノベンゾィル基を含んでいてもよい。 H一 2
[0018] さらに、 この分析試料調製方法において、 糖鎖捕捉物質が、 下記式 (3 ) の構造を有してもよい:
[0019] [化 2]
Figure imgf000006_0002
[0020] (式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[0021 ] また、 前述した分析試料調製方法において、 糖鎖捕捉物質が、 下記式 (4 ) の構造を有してもよい:
[0022] [化 3]
(
Figure imgf000007_0001
[0023] (式中、 Rはアミノ基を介して導入し得る官能基である。 担体は糖鎖捕捉反 応に寄与しない無機物質あるいは有機高分子物質である。 ) 。
[0024] さらに、 この分析試料調製方法において、 糖鎖捕捉物質が、 下記式 (5 ) または (6 ) の構造を有してもよい:
[0025] [化 4]
(担
Figure imgf000007_0002
Figure imgf000007_0003
[0026] また、 前述した分析試料調製方法において、 リンカ一部位 Lを、 アルキル 鎖、 またはエステル結合またはアミド結合を含む基で構成される標識化され ていない基とすることができる。 さらに、 リンカ一部位 Lを、 下記式に示す 構造、 または下記式に示す構造から任意に選ばれる複数の構造を組み合わせ た構造を含むようにしてもよい。
[0027]
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0003
[0028] また、 前述した分析試料調製方法において、 切出段階では、 還元剤の作用 により、 ジスルフィド結合を切断してもよい。
[0029] また、 前述した分析試料調製方法において、 糖鎖捕捉段階で行われる糖鎖 捕捉物質と生体試料との反応を、 p H 4〜 8の条件で行つてもよい。
[0030] また、 前述のいずれかの分析試料調製方法において、 切出段階で行われる 糖鎖捕捉物質から糖鎖および Zまたは糖の誘導体を捕捉する部分を含む化合 物を切り出す反応を、 p Hが中性付近の条件で行ってもよい。
[0031 ] また、 前述した分析試料調製方法において、 式 (1 ) 中の担体が粒子であ つてもよい。
また、 前述した分析試料調製方法において、 式 (1 ) 中の担体が固相基板 または固相基板の表面に直接結合する物質であってもよい。
[0032] 本発明に係る分析試料は、 前述のいずれかの分析試料調製方法にて生体試 料より調製されて得られるものである。
[0033] 本発明に係る糖鎖捕捉物質は、
下記式 (1 ) で示される構造を有することを特徴としている: (担体) _ S _ S _ L _ A ( 1 )
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 であり、 Lはリンカ一部位であり、 Aは糖鎖を捕捉する捕捉部位であり、 一 S— S—はジスルフィ ド結合である) 。
[0034] この糖鎖捕捉物質において、 捕捉部位 Aを、 アミノォキシ基、 ヒドラジド 基のいずれかとすることができる。 また、 リンカ一部位 Lを、 アルギニン、 トリブトファン、 フエ二ルァラニン、 チロシン、 システィンおよびこれらの 誘導体の少なくとも一つからなる部分を含むようにしてもよい。
[0035] あるいは、 前述の糖鎖捕捉物質において、 下記式 (2 ) の構造を有しても よい:
[0036] [化 6]
,+口,,、 H2 H2 H
ί担体ト S-S- C— C -N
Figure imgf000009_0001
[0037] (式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[0038] また、 前述の糖鎖捕捉物質において、 リンカ一部位しが、 クロモフォアま たはフルオロフオアを含む部位を含むようにしてもよい。 さらに、 このリン カー部位しが、 システィン残基および 2 _アミノベンゾィル基を含むように してもよい。
また、 前述の糖鎖捕捉物質において、 下記式 (3 ) の構造を有してもよい
[0039] [化 7]
Figure imgf000010_0001
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[0040] また、 前述の糖鎖捕捉物質において、 下記式 (4 ) の構造を有してもよい [0041 ] [化 8]
Figure imgf000010_0002
[0042] (式中、 Rはアミノ基を介して導入し得る官能基である。 担体は糖鎖捕捉反 応に寄与しない無機物質あるいは有機高分子物質である。 ) 。
[0043] また、 この糖鎖捕捉物質において、 下記式 (5 ) または (6 ) の構造を有 してもよい:
[0044]
Figure imgf000011_0001
Figure imgf000011_0002
[0045] また、 前述した糖鎖捕捉物質において、 リンカ一部位 Lを、 アルキル鎖、 またはエステル結合またはアミド結合を含む基で構成される標識化されてい ない基とすることができる。 さらに、 リンカ一部位 Lを、 下記式に示す構造 、 または下記式に示す構造から任意に選ばれる複数の構造を組み合わせた構 造を含むようにしてもよい。
[0046]
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
[0047] また、 前述した糖鎖捕捉物質において、 式 (1 ) 中の担体が粒子であって もよい。
また、 前述した糖鎖捕捉物質において、 式 (1 ) 中の担体が固相基板また は固相基板の表面に直接結合する物質であってもよい。
発明の効果
[0048] 本発明によれば、 糖鎖を含む生体試料よリ分析試料のための糖鎖を回収■ 精製するに際して、 捕捉物質を用いて糖鎖を捕捉し、 この糖鎖の切り出しを 穏やかな条件で行うことを可能にする。
図面の簡単な説明
[0049] 上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好 適な実施の形態、 およびそれに付随する以下の図面によってさらに明らかに なる。
[図 1 ]本発明に係る分析試料調製方法の実施形態の手順を示すフローチャート である。 [図 2]本実施形態に係る分析試料調製方法を適用した装置を示すブロック図で める。
[図 3]実験例で得られた糖鎖を捕捉した捕捉部位を含む化合物の M A L D I - T O F—M Sのチャートを示す図である。
[図 4]実験例で得られた糖鎖を捕捉した捕捉部位を含む化合物の M A L D I - T O F—M Sのチャートを示す図である。
[図 5]図 4で得られた目的物の H P L Cによる分離パターンを示すグラフであ る。
発明を実施するための最良の形態
[0050] 以下に、 本発明の分析試料調製方法およびこの方法を適用して得られる分 析試料、 ならびにこの方法に用いられる糖鎖捕捉物質について詳細に説明す る。
[0051 ] 図 1は、 本発明の分析試料調製方法にかかる実施形態として、 糖鎖の捕捉 、 回収,精製の手順を示すフローチャートである。
本実施形態は、 生体試料から糖鎖捕捉物質によリ糖鎖および Zまたは糖の 誘導体 (以下、 単に 「糖鎖」 ということもある) を捕捉する反応を含む糖鎖 捕捉段階としてのステップ S 2 0と、 糖鎖捕捉反応後の糖鎖捕捉物質を洗浄 する洗浄段階としてのステップ S 3 0と、 洗浄後に糖鎖捕捉物質から糖鎖を 捕捉する部分を含む化合物を切リ出して遊離させる切出段階としてのステッ プ S 4 0とを含む。
[0052] 以下、 図 1に示した各ステップについて説明する。
ステップ S 1 0では、 糖鎖および Zまたは糖の誘導体、 例えば糖鎖を含む 複合分子、 例えば糖タンパク質、 糖ペプチド、 糖脂質などを含む所定の生体 試料から糖鎖を回収■精製するための予備処理が行われる。
[0053] ここで、 生体試料とは、 生物由来の糖鎖が結合または付属する材料であれ ば特にその由来に限定はなく、 動物、 植物、 細菌、 ウィルス、 培養細胞を問 わないが、 好ましくは動物由来の体液、 例えば全血、 血漿、 血清、 汗、 唾液 、 尿、 塍液、 羊水、 髄液、 および動物由来の組織、 例えば生検組織診断や手 術により採取した試料などがあげられる。 また、 生体試料には、 個体から予 め分離されていないものも含まれ、 例えば外部から試液が接触可能な粘膜組 織、 あるいは腺組織、 好ましくは乳腺、 前立腺、 塍臓に付属する管組織の上 皮が含まれる。
[0054] また、 生体試料に行う予備処理としては、 グリコシダーゼ処理、 ヒドラジ ン分解および必要に応じてプロテアーゼ処理、 細胞破砕、 脱脂処理、 加熱変 性処理が挙げられ、 生体試料を予備処理して得られた試料は、 溶液、 分散液 、 懸濁液、 乾燥体の状態で得られる。 なお、 予備処理済の生体試料は、 その まま次のステップで用いてもよいし、 一度乾燥させて所望の溶液に溶解させ てから次のステップで用いてもよい。
[0055] ステップ S 2 0では、 ステップ S 1 0で得られた予備処理済の生体試料を 用いて、 特定の糖鎖捕捉物質に糖鎖を捕捉させる糖鎖捕捉反応が行われる。
[0056] ここで、 糖鎖捕捉反応、 すなわち糖鎖捕捉物質と予備処理済の生体試料と の反応は、 予備処理済の試料に糖鎖捕捉物質を導入して、 卩1~1が4〜8の条 件にて、 また反応温度が 4〜9 0 °C、 好ましくは 2 5〜9 0 °C、 より好まし くは 4 0〜 9 0 °Cの条件における反応系で、 1 0分間〜 2 4時間、 好ましく は 1 0分間〜 8時間、 より好ましくは 1 0分間〜 2時間行われる。
[0057] この反応で用いられる糖鎖捕捉物質は、 アミノォキシ基またはヒドラジド 基を有する物質であり、 このアミノォキシ基またはヒドラジド基が、 水溶液 などの溶液中で糖鎖より形成される環状のへミアセタール型と非環状のアル デヒド型との平衡において、 アルデヒド基と反応して特異的、 かつ、 安定な 結合を形成して、 糖鎖を捕捉することができるようになる。 例えば、 ァミノ ォキシ基を例にとり、 糖鎖捕捉反応とは、 以下に示すような反応をいう。
[0058] [化 11 ]
Figure imgf000014_0001
糖鎖捕捉物質は、 ジスルフィド結合を介して担体に固定化されてものであ リ、 後述するように、 切出段階 (ステップ S 4 0 ) では、 このジスルフィド 結合が切断されることが好ましい。
このような糖鎖捕捉物質としては、 具体的には、 下記式 (1 ) で示される 構造を有するものが挙げられる。
(担体) _ S _ S _ L _ A ( 1 )
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 であり、 Lがリンカ一部位であり、 Aは糖鎖を捕捉する捕捉部位であり、 一
S— S—はジスルフィ ド結合である。 )
[0060] Aは、 前述のように、 アミノォキシ基またはヒドラジド基であり、 前述の ように、 糖鎖の環状のへミアセタール型と非環状のアルデヒド型との平衡に おいて、 アルデヒド基と反応して糖鎖を捕捉する捕捉部位として機能する。
[0061 ] リンカ一部位 Lは、 捕捉部位 Aとジスルフィ ド結合の部位とをつなぐリン カー部位を表す。
まず、 リンカ一部位 Lの例として、 ペプチド、 オリゴペプチドおよびそれ ら誘導体から選ばれる部分を含む基が挙げられ、 例えばアルギニン、 トリプ トフアン、 フエ二ルァラニン、 チロシン、 システィンおよびこれらの誘導体 の少なくとも一つからなる部分を含んでいてもよい。
[0062] オリゴペプチドとしては、 特にアルギニン、 トリブトファン、 フエニルァ ラニン、 チロシン、 システィンの少なくとも一つを含んだジペプチド (2量 体) が好ましく、 トリペプチド (3量体) 以上のものであってもよい。
[0063] また、 ぺプチドまたはオリゴぺプチドの誘導体としては、 アルギニン、 卜 リブトフアン、 フエ二ルァラニン、 チロシン、 システィンおよびその他のァ ミノ酸の誘導体の少なくとも一つを含んだもの、 およびこれらの化合物を構 成する元素の一部が重元素化されたもの等が挙げられる。
[0064] 式 (1 ) 中で、 Lは、 例えばジペプチドからなるリンカ一部位とすること ができ、 例えば一アルギニン (R) —トリブトファン (W) -, —R—フエ 二ルァラニン (F ) -, —R—チロシン (Y ) ―, 一R—システィン (C) —などを挙げることができる。 これらを代表して、 以下の式 (2 ) に、 しが - R _W_で示した構造を有する化合物を示す。 [0065] [化 12]
(担体ト S- S_C— C -N-C- C-C— 0-NH2
Η一 2 HN=
Η一 2
Figure imgf000016_0001
[0066] (式中、 担体は糖鎖捕捉 ou反応に寄与しない無機物質あるいは有機高分子物 質である。 ) 。
このように、 リンカ一部位 Lにアルギニン (R) 残基を挿入すると、 MA LD I—TOFMS測定時にイオン化が促進され, 検出感度が向上すること が知られている。 また、 トリブトファン (W) は蛍光性のアミノ酸であり、 かつ疎水性であることから、 逆相 H P LCでの H一分 2離性向上と、 蛍光検出感度 向上を図ることができる。 なお、 フエ二ルァラニンおよびチロシンを用いた 場合には、 UV吸収による検出に適している。
[0067] また、 システィンを用いた場合には、 後述するようにシスティン残基を担 体との結合部位として作用させることができるようになるため、 下記スキー ム 1にて行う 2 _メルカプトェチルァミン (化合物 ( f ) ) を用いる反応な どのチオール基を導入する反応を行う必要がなくなる。
[0068] 式 (2) に示した化合物は、 下記のスキーム 1に示したように、 まず捕捉 部位とリンカ一部位とを備えた化合物 (h) を製造し、 続くスキーム 2にて 、 例えば活性化チオールセファロースを結合させた担体と反応させて得るこ とができる。
[0069] [化 13]
(スキーム 1)
Figure imgf000017_0001
[化 14]
(スキーム 2)
O
n H H2H2
H2N-0-C'C- N-C C SH
+ (担体 - S-
Activated Thiol Sepharose
Figure imgf000017_0002
(
Figure imgf000017_0003
スキーム 1において、 化合物 (b) は、 トリブトファン部分のァミノ基が フエニル基などにより保護された化合物 (a) の脱保護により得られる。 こ こで、 トリブトファン部分は、 フエ二ルァラニン、 チロシン、 システィンな どにより置換することもできる。
[0072] 続いて、 化合物 (b) とヒドロキシァミン (BocNH0CH2C00H) (c) との混 合酸無水物法などの縮合反応により、 化合物 (d) が合成される。 このヒド 口キシァミンの保護基は、 Bocに限られることはなく、 Fmoc, Trocなどであつ てもよい。 続いて、 化合物 (d) の末端のメ トキシ基の加水分解 (ゲン化) により、 化合物 (e) が得られる。
[0073] 化合物 (e) に 2_メルカプトェチルァミン (化合物 ( f ) ) を作用させ て縮合物 (g) を合成し、 この縮合物 (g) を脱保護処理することにより、 化合物 (h) が得られる。 この脱保護処理としては、 例えば保護基が B o c である場合には、 トリフルォロ酢酸 (T FA) による処理が挙げられる。
[0074] また、 上記式 (1 ) のリンカ一 Lにおいて、 標識化官能基を導入して、 ク ロモフォアまたはフルオロフオアを含む部位を設けてもよい。 標識化官能基 としては、 2—ァミノベンゾィル基、 ベンジル基、 ナフチル基、 アン卜ラセ ニル基、 ピリジル基などに代表される芳香族残基、 Dansyl基、 Fmoc基を含む 置換基などが挙げられる。 また、 後述のように重水素化された (あるいはさ れていない) ァセチル基などを含んでも良い。
[0075] 2 _アミノベンゾィル基を含む糖鎖捕捉物質としては、 例えば上記式 (1 ) において、 リンカ一 Lに 2—ァミノベンゾィル基が含まれ、 ジスルフイ ド 結合の一方のィォゥがシスティン由来の構造、 例えば下記式 (3) の構造を 有するものが挙げられる。
[0076] [化 15]
Figure imgf000018_0001
[0077] (式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。 このような 2—ァミノベンゾィル基は、 蛍光性を付与するための標識化合 物であり、 糖鎖の H P L C分析に一般的に使用されている。 したがって、 こ の糖鎖捕捉物質により捕捉した糖鎖またはその誘導体にこの基を導入した標 識化サンプルの調製を容易に行うことが可能になる。 この標識化サンプルを 用いることにより、 糖鎖捕捉物質によリ捕捉された糖鎖またはその誘導体を 、 逆相カラムを用いた H P L Cにて高分解能、 高感度で分析することが可能 になる。
[0078] 式 (3 ) に示した糖鎖捕捉物質は、 下記のスキーム 3に示したように、 ま ず捕捉部位とリンカ一部位とを備えた化合物 (n ) を製造し、 続くスキーム 4にて、 例えば活性化チオールセファロースを結合させた担体と反応させて 得ることができる。
[0079] [化 16]
(スキーム 3)
Figure imgf000019_0001
(i)
(k)
Figure imgf000019_0002
(n)
[0080] [化 17] (スキーム 4)
Figure imgf000020_0001
Activated Thiol Sepharose
(n)
Figure imgf000020_0002
[0081] スキーム 3において、 シスチンのメチルエステル (化合物 ( i ) ) に、 2 ーァミノ安息香酸 (化合物 ( j ) ) を反応させて、 化合物 ( i ) の窒素原子 と化合物 (j ) のカルボニル基との間でアミド結合を形成し、 化合物 (k) が得られる。 化合物 (k) と、 ヒドラジン (化合物 ( I ) ) とを反応させて 、 アミノォキシ基を有する化合物 (m) が得られる。 さらに、 化合物 (m) を DTTなどの還元剤を用いて還元し、 ジスルフイ ド結合を切断して、 2_ ァミノベンゾィル基と、 システィンとを有するアミノォキシ基含有化合物 ( n) が得られる。
[0082] また、 ァセチル基を含む糖鎖捕捉物質としては、 例えば上記式 (3) にお いて、 2 _アミノベンゾィル基が別の官能基で修飾された構造を有するもの 、 例えば上記式 (1 ) において下記式 (4) の構造を有するものが挙げられ る。
[0083] [化 18]
Figure imgf000021_0001
[0084] (式中、 Rはアミノ基を介して導入し得る官能基である。 担体は糖鎖捕捉反 応に寄与しない無機物質あるいは有機高分子物質である。 ) 。
Rとしては、 例えば軽水素化または重水素化ァセチル基、 軽水素化または 重水素化スクシニル基、 レブリノィル基などが挙げられ、 これらを下記に示 す。
[0085] [化 19]
Figure imgf000021_0002
Figure imgf000021_0003
Π2 Γΐ2
—— C― C — C — C一 CH3
II II
〇 〇
これらのうち、 Rがァセチル基 (_C0CH3) 、 または重水素化ァセチル基 (-C 0CD3) であるものを好適に用いることができる。 すなわち、 上記式 (4 ) にお いて、 下記 (5 ) または (6 ) の構造を有するものを用いることができる。 [0087] [化 20]
Figure imgf000022_0001
Figure imgf000022_0002
[0088] このようなァセチル基を導入することにより、 捕捉した糖鎖またはその誘 導体に重水素または軽水素を導入した標識化サンプル、 すなわち重水素化ま たは軽水素化サンプルの調製を容易に行うことが可能になる。
[0089] 式 (5 ) または (6 ) に示した糖鎖捕捉物質は、 まず下記に示したような スキーム 5で調製された捕捉部位とリンカ一部位とを備えた化合物 (s ) を 製造し、 前述のスキーム 4にて、 例えば活性化チオールセファロースを結合 させた担体と反応させて得ることができる。
[0090]
(スキーム 5)
Figure imgf000023_0001
R = -COCH3(s-1) or-COCD3(s-2)
R = -COCH3(r-1 ) or -COCD3(r-2)
(s)
(r)
[0091] スキーム 5において、 前記スキーム 3で得られた化合物 (k) に無水酢酸 を作用させて、 2—ァミノベンゾィル基のアミノ基をァセチル化させて、 化 合物 (q) が得られる。 このとき、 無水酢酸である化合物 (o) を用いるこ とにより軽水素化化合物 (q— 1 ) が得られ、 一方重水素化無水酢酸である 化合物 (P) を用いることにより重水素化化合物 (q_2) が得られる。
[0092] 続いて、 化合物 (q_ 1 ) または (q_2) と、 ヒドラジンとを反応させ て、 アミノォキシ基を有する化合物 ( r) が得られる。 なお、 化合物 ( r) において Rがァセチル基 (_C0CH3) であるときは軽水素化物 ( r _ 1 ) が得ら れ、 Rが重水素化ァセチル基 (_C0CD3) であるときは重水素化物 ( r _2) が 得られる。
[0093] さらに、 化合物 ( r) に DTTなどの還元剤を用いて還元し、 ジスルフィ ド結合を切断して、 ァミノ基がァセチル化された 2—ァミノベンゾィル基と 、 システィンとを有するアミノォキシ基含有化合物 (s) が得られる。 なお 、 化合物 ( r) において Rがァセチル基 (_C0CH3) であるときは軽水素化物 ( s - 1 ) が得られ、 Rが重水素化ァセチル基 (_C0CD3) であるときは重水素化 物 (s _ 2 ) が得られる。
[0094] 以上のように、 これらのような基をリンカ一部位 Lに導入する場合、 捕捉 された糖鎖を高精度かつ高感度に検出することができるようになる。
[0095] また、 リンカ一部位 Lの例として、 上述した標識化された基の他に、 アル キル鎖、 またはエステル結合またはアミド結合を含む基で構成される標識化 されていない基が挙げられ、 例えば下記式に示す構造、 または下記式に示す 構造から任意に選ばれる複数の構造を組み合わせた構造を含むものであって もよい (式中、 nは任意の整数を表す) 。
[0096] [化 22]
Figure imgf000024_0001
[0097] このように、 標識化されていない基をリンカー部位 Lに導入することによ リ、 糖鎖捕捉物質を後述する固相基板からなる担体に適用することができる
[0098] また、 担体は無機物質または有機高分子物質であり、 粒子、 固相基板また は固相基板の表面に直接結合する物質の形態として用いられる。
[0099] ここで、 担体として用いることができる無機物質としては、 粒子状のもの を用いることができ、 例えばシリカ粒子、 アルミナ粒子、 ガラス粒子、 金属 粒子などが挙げられる。
[0100] また、 有機高分子物質としては、 ァガロース、 セファロースに代表される 多糖類ゲル、 ビニル化合物の重合体であるポリマーを粒子状にしたもの、 固 相基板の表面に固定化したものが挙げられる。 また、 これら物質を用いて固 相基板の表面を構成してもよい。
[0101 ] また、 粒子としたときの形状は球であることが好ましく、 その粒径は、 上 限が 2 0 0 m、 好ましくは 1 5 0 mであり、 下限が 2 0 m、 好ましく は 5 0 mである。 また、 粒子の平均径は 8 0〜 1 O O Z mである。 このよ うな範囲の粒径を有する担体の粒子は、 遠心分離, フィルタなどによる回収 が容易であり、 かつ、 充分な表面積を有しているために糖鎖との反応効率も 高いと考えられる。 粒径が上記の範囲よりも大幅に大きい場合、 表面積が小 さくなるために糖鎖との反応効率が低くなることがある。 また、 粒径が上記 の範囲よリも大幅に小さい場合、 特にフィルタによる粒子の回収が難しくな ることがある。 さらに、 粒子をカラムに充填して用いる場合、 粒径が過小で あると通液の際の圧力損失が大きくなってしまうことがある。
[0102] また、 固相基板としては、 マイクロプレート、 平板状の基板が挙げられる 。 このようにすることで、 糖鎖捕捉物質を糖鎖マイクロアレイ用基板に適用 して、 分析試料を調製することが可能になる。
[0103] ここで、 糖鎖捕捉反応は、 上述のような粒子状の糖鎖捕捉物質をカラムな どに充填して予備処理済の生体試料を通してもよい (連続式) し、 この粒子 を予備処理済の生体試料中に投入して攪拌して行ってもよい (回分式) 。 ま た、 粒子が予め充填された反応容器内に予備処理済みの生体試料を連続的に 投入して攪拌して行ってもよい (半回分式) 。
[0104] 続いて、 ステップ S 3 0では、 ステップ S 2 0での糖鎖捕捉反応後の糖鎖 捕捉物質を洗浄して、 糖鎖捕捉物質に捕捉されなかった糖鎖、 他の生体試料 などを除去する。
[0105] ここで、 糖鎖捕捉物質の洗浄に用いられる溶液としては、 ドデシル硫酸ナ トリウム (S D S ) に代表される界面活性剤の水溶液、 メタノール、 ェタノ ールなどのアルコール類;水および水性緩衝液などが使用される。 ここで、 洗浄に水溶液が用いられる場合、 この水溶液の p Hは中性付近であることが 好ましく、 その p Hは 4〜 1 0、 より好ましくは 6〜8である。
[0106] この洗浄処理は、 前述したように連続式にて糖鎖捕捉反応を行った場合に は、 カラムに洗浄溶液を通して糖鎖捕捉反応から連続的に処理してもよい。 また、 回分式および半回分式の場合には、 ろ過操作あるいは遠心操作により 糖鎖捕捉物質以外の物質を除去してもよい。
[0107] なお、 ステップ S 3 0の洗浄工程は、 当初の生体試料の状態、 例えば糖鎖 以外の物質の混在の程度によっては行わなくても構わない。
[0108] ステップ S 4 0では、 必要に応じてステップ S 3 0にて洗浄処理した後に 、 糖鎖捕捉物質から糖鎖を捕捉する部分を含む化合物を切リ出して遊離させ る、 すなわち前述した糖鎖捕捉物質を用いた場合、 リンカ一部位および捕捉 部位からなる化合物を糖鎖捕捉物質から切り出す反応を行う。 この際、 捕捉 部位は、 糖鎖を捕捉したものと捕捉しなかったものの両方を含む。
[0109] この反応は、 糖鎖捕捉物質に含まれるジスルフィド結合を切断する反応で あって、 これにより、 担体とリンカ一部位とが、 短時間で高い反応率で切り 離される。 また、 このジスルフィド結合の切断反応には、 還元剤を作用させ てもよく、 使用可能な還元剤としてはジチオスレィトール、 ジチォエリスリ トール, 2 _メルカプトエタノール, 2 _メルカプトェチルァミンなどが挙 げられる。 これらの還元剤は固相化されているものを用いることもできる。
[01 10] この反応は、 p Hが中性付近、 好ましくは p H 6〜9で行うことができ、 このときの反応温度は 4〜9 0 °C、 好ましくは 2 5〜9 0 °C、 より好ましく は 4 0〜9 0 °Cで行うことができる。 最も好ましい形態は、 1〜 1 O O m M の重炭酸アンモニゥム水溶液中での反応である。 また、 反応時間は、 1 0分 間〜 2 4時間、 好ましくは 1 0分間〜 8時間、 より好ましくは 1 0分間〜 2 時間である。
[01 1 1 ] 中性付近で、 糖鎖切り出し反応を行うことができるため、 従来のトリフル ォロ酢酸による切出しのような強酸の存在下での切出し反応に比べて、 シァ ル酸残基の脱離など捕捉された糖鎖の加水分解などを引き起こすことを抑制 することができるようになる。
[0112] また、 式 (1 ) の構造中、 ジスルフィド (S— S ) 結合の部分は還元剤の 作用により、 効率よく切断することが可能なため、 捕捉された糖鎖の遊離効 率が高く、 糖鎖分析の感度を高くすることができる。
[0113] ステップ S 5 0では、 切り出し反応により得られた捕捉部位を含む化合物 と担体とを分離して、 捕捉部位を含む化合物の部分を回収し、 分析試料の調 製処理は終了する。 この回収方法としては、 遠心分離、 ろ過などの分離操作 方法が挙げられる。
[0114] このようにして、 糖鎖を捕捉した捕捉部位を含む化合物が取り出される。
なお、 捕捉しなかった捕捉部位を含む化合物も一緒に取り出されるが、 糖鎖 の同定には差し支えなく、 また両者を分離することも容易であるため、 特段 の問題にはならない。
[0115] 図 2は、 本実施形態の分析試料調製方法を適用した装置を示すブロック図 である。 なお、 各構成の説明で、 図 1のフローチャートの各手順に関連する 場合には、 そのステップ番号を併せて示す。
[0116] 生体試料導入部 1 0には、 生体試料を所定の手法で予備処理して (ステツ プ S 1 0 ) 得られた予備処理済の生体試料を装入し、 この生体試料が後述す る反応部 1 2に導入されるようになっている。
[0117] 洗浄液導入部 1 4には、 前述の糖鎖捕捉反応後の反応混合物の洗浄 (ステ ップ S 3 0 ) を行う際の洗浄液を装入し、 この洗浄液が後述する反応部 1 2 に導入されるようになっている。
[0118] 還元剤導入部 1 6には、 前述の糖鎖の切出段階 (ステップ S 4 0 ) で用い られる還元剤を含有する溶液を装入し、 この還元剤の溶液が後述する反応部
1 2に導入されるようになっている。
[0119] 反応部 1 2は、 生体試料導入部 1 0、 洗浄液導入部 1 4および還元剤導入 部 1 6に接続されている。 また、 反応部 1 2には、 例えば前述した粒子状の 糖鎖捕捉物質が充填されており、 この粒子が充填された部分において、 糖鎖 捕捉段階 (ステップ S 2 0 ) 、 洗浄段階 (ステップ S 3 0 ) 、 糖鎖切出段階 (ステップ S 4 0 ) を実行する場を提供するようになっている。
[0120] 溶出物取出部 1 8は、 反応部 1 2の溶出側に設けられており、 切出段階 ( ステップ S 4 0 ) の後に、 反応部 1 2より糖鎖捕捉物質の担体から切り離さ れた捕捉部位を含む化合物が溶出され、 こうして得られる溶出物を取り出す ことができるようになつている。
[0121 ] 分離部 2 0では、 溶出物取出部 1 8で得られる溶出物を装入して、 捕捉部 位を含む化合物と、 担体とが、 前述したような方法により分離されるように なっている。 なお、 分離部 2 0は、 溶出物取出部 1 8と直接接続し、 反応部 1 2からの溶出物が直接装入されるようになっていてもよいし、 あるいは溶 出物取出部 1 8にて得られる溶出物を人による操作により、 装入されるよう になっていてもよい。
[0122] この処理装置によれば、 予備処理が済んだ生体試料を生体試料導入部 1 0 より反応部 1 2に導入し、 反応部 1 2では導入された生体試料を、 前述した ような条件で保持し、 この生体試料から糖鎖が糖鎖捕捉物質によリ捕捉され る糖鎖捕捉反応が起こる (ステップ S 2 0 ) 。
[0123] 続いて、 洗浄液導入部 1 4より洗浄液を反応部 1 2に導入し、 糖鎖捕捉反 応後の糖鎖捕捉物質の表面を前述した条件で洗浄して、 生体試料の捕捉され なかった糖鎖以外の物質および未反応の糖鎖が洗い流される (ステップ S 3 0 ) 。
[0124] さらに、 還元剤導入部 1 6より還元剤を含む溶液を反応部 1 2に導入して 、 前述した条件にて糖鎖捕捉物質の表面において、 捕捉部位を含む化合物の 切リ出し反応が行われ、 糖鎖捕捉物質の捕捉部位を含む化合物が切リ出され て溶出され、 溶出物取出部 1 8にて取り出される (ステップ S 4 0 ) 。
[0125] 続いて、 分離部 2 0では、 この溶出物から、 捕捉部位を含む化合物と担体 とを分離し、 捕捉部位を含む化合物を含む分析試料が得られる。
[0126] このようにして、 糖鎖を含む生体試料より分析試料のための糖鎖を回収- 精製するに際して、 糖鎖捕捉物質を用いて糖鎖を捕捉し、 この糖鎖を捕捉す る化合物の切リ出しを穏やかな条件で、 例えば捕捉された糖鎖を分解するこ となく回収することが可能になる。 また、 生体試料より糖鎖を捕捉した捕捉 部位を含む化合物を含む分析試料が直接得られるため、 この糖鎖の同定、 定 量が容易になる。
[0127] なお、 捕捉しなかった捕捉部位を含む化合物も一緒に取り出されるが、 糖 鎖の同定には差し支えなく、 また両者を分離することも容易であるため、 特 段の問題にはならない。
[0128] なお、 図 2では、 生体試料導入、 糖鎖捕捉工程 (ステップ S 2 0 ) 、 洗浄 工程 (ステップ S 3 0 ) 、 糖鎖切出工程 (ステップ S 4 0 ) を連続的に処理 するように構成された装置を説明したが、 これに限定されることはなく、 例 えば生体試料に糖鎖捕捉物質からなる粒子を導入して、 震とうまたは攪拌し て、 糖鎖を糖鎖捕捉物質に捕捉 (ステップ S 2 0 ) させて得られる反応物を フィルタにかけてろ過して、 このフィルタ上で洗浄液を導入して洗浄 (ステ ップ S 3 0 ) した後に、 ろ取した反応物に還元剤を作用させて、 切り出し反 応 (ステップ S 4 0 ) を行ってもよい。 なお、 各段階の処理を行う条件は上 述したものが適用できる。
[0129] また、 本実施形態に係る分析試料は、 前述した分析試料調製方法にて生体 試料より調製されて得られ、 具体的には前記の糖鎖捕捉物質のジスルフィド 結合由来のチオール基と、 リンカ一部位とを含む、 例えば下記式 (t _ 1 ) および (t _ 2 ) で示される物質として得られる。
[0130] [化 23]
Figure imgf000029_0001
[0131 ] O
C— N— CH-C-NH-N=C― (糖鎖)
O CH2
SH (t- 2
[0132] したがって、 このような分析試料は、 リンカ一部位にペプチド、 2 _アミ ノベンゾィル基、 重水素化された官能基などを含んでいる。 特に、 ペプチド を含むものは、 前述したように M A L D I—T O F M S測定による検出感度 を向上させることができ、 2—ァミノベンゾィル基を含むものは前述したよ うに蛍光を検出することで H P L C分析が可能になる。
[0133] また、 重水素化された官能基を含むものは、 質量分析による検出感度を向 上させ、 定性および定量が可能になる。
[0134] 例えば、 化合物 (6 ) の糖鎖捕捉物質を用いて重水素化されたサンプルお よび化合物 (5 ) を用いて軽水素化されたサンプルを組み合わせて用いるこ とにより、 例えば未知の糖鎖含有サンプル (例えば、 血清を処理したもの) に含まれる糖鎖の質量分析による定性および定量分析が可能になる。
[0135] これにより、 例えば組成も濃度も既知のサンプルを重水素標識化し、 未知 のサンプルを軽水素標識化して、 両サンプルを混合してから質量分析を行つ た場合、 重水素化サンプルの各ピークは軽水素化サンプルの対応する各ピー クよりも導入した重水素の数だけ高分子量の方にシフトして観測される。 そ こで、 各ピークの位置 (mZ z値) および強度を解析して、 未知のサンプル の各ピークが示す糖鎖の種類と、 そのサンプル中の濃度とがわかる。 このよ うな解析は、 既知サンプルを軽水素化し、 未知サンプルを重水素化すること によっても可能である。
[0136] また、 この解析において、 健常人から採取したサンプルを重水素化し、 疾 病患者から採取したサンプルを軽水素化することにより、 あるいは健常者サ ンプルを軽水素化し、 疾病患者サンプルを重水素化することにより、 両者の サンプル中に含まれる糖鎖の種類、 量における相違を解析することが可能に なる。 したがって、 このような分析試料は、 糖の代謝が関与する生体反応に 基づく疾病の診断、 このような生体反応を制御することによる治療などの用 途に好適に使用される。
[0137] また、 本実施形態の分析試料は、 分子中にジスルフィ ド結合由来のチォー ル基 (一 S H) が存在する。 このチオール基と特異的に反応する化合物を、 この分析試料に導入することができる。 例えば、 この化合物として I CAT (Isotope Coded Affinity Tag) 試薬を用いることにより、 本実施形態の分 析試料を I CAT法による定量分析に適用させることができる。
実施例
[0138] 以下、 本発明を以下の実験例からなる実施例により説明する。 しかし、 本 発明はこれら実験例に限定されるものではない。
[0139] (実験例 1 )
(糖鎖捕捉物質の調製)
( 1 ) チオール基およびアミノォキシ基含有化合物の合成
前記スキーム 1にしたがって、 化合物 (h) を合成した。
(a) WR-OMe (化合物 (b) ) の合成
Z-WR-0Me (10 mg, 20 mmol) および 10% Pd/C (10mg) にメタノール (5ml) を加え、 水素ガス雰囲気下、 室温で 2時間攪拌した。 反応溶液を水系メンブ レンフィルタでろ過することにより Pd/Cを除去し、 ろ液を減圧濃縮すること で目的物である化合物 (b) (WR-OMe) を得た。 MAL -T0F-MSによる解析に より、 目的物の [M+H] +イオンを m/z: 376に観測した。
[0140] (b) Boc-NH0CH2C0-W-R-0Me (化合物 (d) ) の合成
Bocアミノォキシ酢酸 (2.5mmol) の TH F (6ml) 溶液を- 20°Cに冷却した 。 ついで N-メチルモルホリン (3.0mmo とギ酸イソブチル (3.0mmo を添 加し、 1 5分攪拌することで混合酸無水物を調製した。 反応溶液を 0°Cとし 、 別の反応溶液にて化合物 (b) (WR-OMe O.Ommol) ) を水 (3m I ) に溶 解し、 炭酸水素ナトリウム (3.0mmol) を添加することにより調製した WR-OMe 溶液を混合し、 1時間攪拌した。 反応溶液を減圧濃縮し、 得られた残留物を シリ力ゲルク口マトグラフィ一によリ精製することで目的物である化合物 ( d) (Boc-NH0CH2C0-W-R-0Me) を得た。 MAL -TOF-MSによる解析により、 目 的物の [M+H] イオンを m/z 547に観測した。
[0141] (c) Boc-NH0CH2C0-W-R-0H (化合物 (e) ) の合成
化合物 (d) を水酸化ナトリウム Zメタノール溶液で処理することでゲン 化し, 化合物 (e) を得た。
[0142] (d) Boc-NH0CH2C0-W-R-NHCH2CH2SH (化合物 (g) ) の合成
化合物 (e) をメタノールに溶解し, WSC (水溶性カルポジイミド) を
3等量加えた。 1等量のアミノエタンチオール ( f ) を加え, 2時間攪拌す ることで縮合物を調製した。 反応溶液をシリ力ゲルク口マトグラフィ一で精 製することで目的化合物 (g) を得た。
[0143] (e) NH20CH2C0-W-R-NHCH2CH2SH (化合物 (h) ) の合成
化合物 (g) に T FA (2ml) を加え、 _20°Cで 2時間攪拌した。 反応液 を減圧濃縮し、 トルエンを加え共沸を繰り返して T F Aを除去して、 目的物 である化合物 (h) を得た。 MALm-TOF-MSによる解析により、 目的物の [M+H
] イオンを m/z 493に観測した。
[0144] (2) 糖鎖捕捉物質の調製
前記スキーム 2にしたがって、 化合物 (h) の溶液を Activated Thiol Sep harose (Amersham Biosciences社製)と混合し、 室温で一昼夜静置後、 純水で 余剰試薬を除去して、 式 (2) の糖鎖捕捉物質を得た。
[0145] [化 25] H2 H2 H ί? Η2
(担体ト S- S_C— C -N C-C— 0-NH2 (ゥヽ
Figure imgf000032_0001
[0146] (実験例 2)
(生体試料の予備処理) ヒト血清 (5 I ) をトリプシン消化することにより、 含まれるタンパク をペプチド断片化した。 トリプシンを熱変性で不活化したのち、 ペプチド: Nダリカナーゼ F (Roche社製) 処理によりペプチドから糖鎖を遊離させた。 さらに、 塩酸で p H 2に調整し、 90°Cで 1時間処理することにより、 シァ ル酸含有糖鎖を脱シァリル化した。
[0147] (糖鎖捕捉反応)
実験例 1で調製した糖鎖捕捉物質 (10mg) に処理済み血清を添加した。 酢 酸 Z酢酸ナトリウム緩衝液により反応液の p Hを 4に調整したのち、 80°C で 1時間静置することで糖鎖を糖鎖捕捉物質に結合させた。
[0148] (洗浄)
糖鎖捕捉反応後の反応物を 0.5%の SDS、 50%のメタノール、 純水で洗浄した
[0149] (糖鎖切出 (遊離) 反応)
洗浄後の反応物に、 50mMジチオスレィトールを 1 0 μ I添加し、 室温 で 30分静置した。 フィルタろ過により糖鎖を捕捉した捕捉部位を含む下記 式の化合物 (t _ 1 ) を含むろ液と、 糖鎖捕捉物質の担体を含む部分とを分 離し、 ろ液を回収した。
[0150] [化 26]
Figure imgf000033_0001
[0151] (MAL -TOF-MS分析)
ろ液を MAL -TOF-MSで測定したところ, 図 3に示したように, チャートに おいて血清から捕捉された糖鎖に化合物 (h) が付加した分子量に相当する mZz値にシャープなピークを観測した。 図 3では、 各ピークに対応して、 mZz値から推定される糖鎖を模式的に示している。 なお、 図 3において、 還元末端の標識化合物 (h) の構造は省略されている。
[0152] (実験例 3)
(糖鎖捕捉物質の調製)
( 1 ) チオール基およびアミノォキシ基含有化合物の合成
スキーム 3にしたがって、 化合物 (n) を合成した。
(a) (2-AB-Cys-0Me)2 (化合物 (k) ) の合成
(Cys-0Me)2 (3.4g, 12.7mmol) をテトラヒドロフラン (THF) に溶解した。 ついで 2—ァミノ安息香酸 (2-aminobenzoic acid: ( j ) ) (3.5g, 25.4mm ol) およびカルポジイミダゾールを添加し、 室温で 1 6時間攪拌した。 生成 物を重曹および食塩の飽和水溶液で抽出精製することで目的物である化合物 (k) ((2-AB-Cys-0Me)2) を得た。 MAL -TOF-MSによる解析により、 目的物 の [M+H] +イオンを m/z: 507に観測した。
[0153] (b) (2-AB-Cys-C0NHNH2)2 (化合物 (m) ) の合成
化合物 (k) (5. Omg, 9.9mmol) および過剰量のヒドラジン水和物 ( I ) をメタノールに溶解し、 室温で 1 6時間攪拌することで化合物 (m) を得た
[0154] (c) 2-AB-Cys-C0NHNH2 (化合物 (n) ) の合成
化合物 (m) を 100mM DTT, 25mM重炭酸アンモニゥム水溶液に溶解し、 室温 で 1時間攪拌した。 生成物をシリカゲルカラムクロマ卜グラフィで精製する ことで化合物 (n) を得た。 MALm-TOF-MSによる解析により、 目的物の [M+H ] +イオンを m/z: 255に観測した。
[0155] (2) 糖鎖捕捉物質の調製
前記スキーム 4にしたがって、 化合物 (n) の水 Zァセトニトリル溶液を A ct i vated Thiol Sepharose (Amersham Biosciences社製)と混合し、 至温で一 昼夜静置後、 純水で余剰試薬を除去して、 式 (3) の糖鎖捕捉物質を得た。
[0156] [化 27]
( (3)
Figure imgf000035_0001
[0157] (実験例 4)
(糖鎖捕捉反応)
式 (3) の糖鎖捕捉物質を、 理論官能基量が 300nmolとなるよう容器に測り 取り、 酢酸 2%を含むァセトニトリルで分散させた。 これに 50 Iの N-ァ セチルラクトサミン (LacNAc) を加え、 80°Cで 1時間加熱することで LacNAc を糖鎖捕捉物質に捕捉させた。
[0158] (糖鎖切出 (遊離) 反応)
反応物に 100mMジチオスレィトール (DTT, 25mM重炭酸アンモニゥム水溶液 ) を 20 I添加し、 60°Cで 30分静置した。 フィルタろ過により糖鎖を 捕捉した捕捉部位を含む下記式の化合物 (t _2) を含むろ液と、 糖鎖捕捉 物質の担体を含む部分とを分離し、 ろ液を回収した。
[0159] [化 28]
Figure imgf000035_0002
[0160] (MAL -TOF-MS分析)
ろ液を MAL -TOF-MSで測定したところ、 図 4に示したように、 チャートに おいて LacNAcに化合物 (n) が付加した分子量に相当する場所にシャープな ピークを観測した。 図 4において、 ピーク (A) は糖鎖捕捉しなかった未反 応物である化合物 (n) 由来であり、 ピーク (B) は捕捉されなかった未反 応物の糖鎖 (LacNAc) 由来であり、 ピーク (C) は糖鎖 (LacNAc) を捕捉し た目的物由来である。
[0161] (HPLC分析)
別途調製した化合物 (t _2) を HP LCで測定したところ、 図 5に示す 分離/《タ一ンが得られた。 各ピークを分取して MALD I -T0F-MSで分析したとこ ろ、 図中矢印で示すピーク位置に化合物 (t一 2) の分子量に相当するピー クを観測した。
[0162] (実験例 5)
(糖鎖捕捉物質の調製)
(1 ) チオール基およびアミノォキシ基含有化合物の合成
スキーム 5にしたがって重水素ァセチル化リンカ一 (化合物 (s_ 1 ) ) を合成した。
( a ) 化合物 ( q _ 1 ) の合成
実験例 3で得られた化合物 (k) (5.0g, 9.9mmol) をピリジンに溶解した 。 これに無水酢酸を過剰量添加し, 室温で 1 6時間攪拌することで化合物 ( q- 1 ) を得た。
[0163] (b) 化合物 ( r _ 1 ) の合成
実験例 3 (1 ) (b) と同様の方法で化合物 (q_ 1 ) とヒドラジン水和 物 ( I ) を反応させ, 化合物 ( r一 1 ) を得た。
[0164] (c) 化合物 (s_ 1 ) の合成
実験例 3 (1 ) (c) と同様の方法で化合物 ( r _ 1 ) を DTTで処理し 、 化合物 (s_ 1 ) を得た。 得られた生成物を MAL -TOF-MSで測定したとこ ろ, 目的物の [M+H] +イオンを m/z: 297に観測した。
(2) 糖鎖捕捉物質の調製
前記スキーム 4にしたがって、 化合物 (s_ 1 ) を含む溶液を Activated T hiol Sepharose (Amersham Biosciences社製)と混合し、 式 (5) の糖鎖捕捉 物質を得る。
[0165] (実験例 6)
(糖鎖捕捉物質の調製) (1 ) チオール基およびアミノォキシ基含有化合物の合成
スキーム 5にしたがって軽水素ァセチル化リンカ一 (化合物 (s_2) ) を合成した。
(a) 化合物 (q_2) の合成
実験例 3で得られた化合物 (k) (5.0g, 9.9mmol) をピリジンに溶解した 。 これに無水酢酸- d6を過剰量添加し, 室温で 1 6時間攪拌することで化合物 (q-2) を得た。
[0166] (b) 化合物 ( r _2) の合成
実験例 3 (1 ) (b) と同様の方法で化合物 (q_2) とヒドラジン水和 物 ( I ) を反応させ, 化合物 ( r _2) を得た。
[0167] (c) 化合物 (s_2) の合成
実験例 3 (1 ) (c) と同様の方法で化合物 ( r _2) を DTTで処理し 、 化合物 (s_2) を得た。 得られた生成物を MAL -TOF-MSで測定したとこ ろ, 目的物の [M+H] +イオンを m/z: 300に観測した。
(2) 糖鎖捕捉物質の調製
前記スキーム 4にしたがって、 化合物 (s_2) を含む溶液を Activated T hiol Sepharose (Amersham Biosciences社製)と混合し、 式 (6) の糖鎖捕捉 物質を得る。
[0168]
[化 29]
Figure imgf000038_0001
Figure imgf000038_0002

Claims

請求の範囲
[1] 生体試料から糖鎖捕捉物質によリ糖鎖および Zまたは糖の誘導体を捕捉す る反応を含む糖鎖捕捉段階と、
糖鎖捕捉反応後の前記糖鎖捕捉物質から糖鎖および Zまたは糖の誘導体を 捕捉する部分を含む化合物を切リ出して遊離させる切出段階と
を含む分析試料調製方法。
[2] 生体試料から糖鎖捕捉物質によリ糖鎖および Zまたは糖の誘導体を捕捉す る反応を含む糖鎖捕捉段階と、
糖鎖捕捉反応後の前記糖鎖捕捉物質を洗浄する洗浄段階と、
洗浄後に前記糖鎖捕捉物質から糖鎖および Zまたは糖の誘導体を捕捉する 部分を含む化合物を切リ出して遊離させる切出段階と
を含む分析試料調製方法。
[3] 請求項 1または 2に記載の分析試料調製方法において、
前記糖鎖捕捉物質はジスルフィド結合を介して担体に固定化されておリ、 前記切出段階はこのジスルフィド結合が切断される反応を含むことを特徴と する分析試料調製方法。
[4] 請求項 1または 2に記載の分析試料調製方法において、
前記糖鎖捕捉段階で用いられる糖鎖捕捉物質は、 下記式 (1 ) で示される 構造を有することを特徴とする分析試料調製方法:
(担体) _ S _ S _ L _ A ( 1 )
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 であり、 Lはリンカ一部位であり、 Aは糖鎖を捕捉する捕捉部位であり、 一 S— S—はジスルフィド結合である) 。
[5] 請求項 4に記載の分析試料調製方法において、
前記捕捉部位 Aが、 アミノォキシ基、 ヒドラジド基のいずれかであること を特徴とする分析試料調製方法。
[6] 請求項 4に記載の分析試料調製方法において、
前記リンカ一部位しが、 アルギニン、 トリブトファン、 フエ二ルァラニン 、 チロシン、 システィンおよびこれらの誘導体の少なくとも一つからなる部 分を含むことを特徴とする分析試料調製方法。
[7] 請求項 3または 4に記載の分析試料調製方法において、
前記糖鎖捕捉物質は、 下記式 (2 ) の構造を有することを特徴とする分析 試料調製方法:
[化 30]
,+口 、 H2 H2 H
(担体ト S- S_C— C -N- ίC- ί C? Η2
-C— 0-NH2 ( ヽ
HN=
Figure imgf000040_0001
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[8] 請求項 4に記載の分析試料調製方法において、
前記糖鎖捕捉物質のリンカ一部位しが、 クロモフォアまたはフルオロフォ ァを含む部位を含むことを特徴とする分析試料調製方法。
[9] 請求項 8に記載の分析試料調製方法において、
前記糖鎖捕捉物質のリンカー部位しが、 システィン残基および 2 _アミノ ベンゾィル基を含むことを特徴とする分析試料調製方法。
[10] 請求項 9に記載の分析試料調製方法において、
前記糖鎖捕捉物質が、 下記式 (3 ) の構造を有することを特徴とする分析 試料調製方法:
[化 31 ]
(担体 )
Figure imgf000040_0002
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
請求項 9に記載の分析試料調製方法において、
前記糖鎖捕捉物質が、 下記式 (4 ) の構造を有することを特徴とする分析 試料調製方法:
[化 32]
Figure imgf000041_0001
(式中、 Rはアミノ基を介して導入し得る官能基である。 担体は糖鎖捕捉反 応に寄与しない無機物質あるいは有機高分子物質である。 ) 。
請求項 1 1に記載の分析試料調製方法において、
前記糖鎖捕捉物質が、 下記式 (5 ) または (6 ) の構造を有することを特 徴とする分析試料調製方法:
[化 33]
Figure imgf000041_0002
(6)
Figure imgf000041_0003
[13] 請求項 4に記載の分析試料調製方法において、
前記リンカ一部位しが、 アルキル鎖、 またはエステル結合またはアミド結 合を含む基で構成される標識化されていない基であることを特徴とする分析 試料調製方法。
[14] 請求項 1 3に記載の分析試料調製方法において、
前記リンカ一部位しが、 下記式に示す構造、 または下記式に示す構造から 任意に選ばれる複数の構造を組み合わせた構造を含むことを特徴とする分析 試料調製方法。
[化 34]
Figure imgf000042_0001
[15] 請求項 3〜 1 4のいずれか 1項に記載の分析試料調製方法において、 前記切出段階では、 還元剤の作用により、 ジスルフィド結合が切断される ことを特徴とする分析試料調製方法。
[16] 請求項 4に記載の分析試料調製方法において、
前記糖鎖捕捉段階で行われる糖鎖捕捉物質と生体試料との反応は、 p H 4 〜 8の条件で行われることを特徴とする分析試料調製方法。
[17] 請求項 1〜 1 6のいずれかに記載の分析試料調製方法において、 前記切出段階で行われる糖鎖捕捉物質から糖鎖および Zまたは糖の誘導体 を捕捉する部分を含む化合物を切り出す反応は、 P Hが中性付近の条件で行 われることを特徴とする分析試料調製方法。
[18] 請求項 4に記載の分析試料調製方法において、
式 (1 ) 中の担体が粒子であることを特徴とする分析試料調製方法。
[19] 請求項 4に記載の分析試料調製方法において、
式 (1 ) 中の担体が固相基板または固相基板の表面に直接結合する物質で あることを特徴とする分析試料調製方法。
[20] 請求項 1〜 1 9のいずれかに記載の分析試料調製方法にて生体試料よリ調 製されて得られる分析試料。
[21 ] 下記式 (1 ) で示される構造を有することを特徴とする糖鎖捕捉物質:
(担体) _ S _ S _ L _ A ( 1 )
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 であり、 Lはリンカ一部位であり、 Aは糖鎖を捕捉する捕捉部位であり、 一 S— S—はジスルフィド結合である) 。
[22] 請求項 2 1に記載の糖鎖捕捉物質において、
前記捕捉部位 Aが、 アミノォキシ基、 ヒドラジド基のいずれかであること を特徴とする糖鎖捕捉物質。
[23] 請求項 2 1に記載の糖鎖捕捉物質において、
前記リンカ一部位しが、 アルギニン、 トリブトファン、 フエ二ルァラニン 、 チロシン、 システィンおよびこれらの誘導体の少なくとも一つからなる部 分を含むことを特徴とする糖鎖捕捉物質。
[24] 請求項 2 1に記載の糖鎖捕捉物質において、
下記式 (2 ) の構造を有することを特徴とする糖鎖捕捉物質: [化 35]
(担体ト S- S_C— C -N-C- C-C— 0-NH2
Η一 2 HN=
Η一 2
Figure imgf000044_0001
(式中、 担体は糖鎖捕捉反 ou応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[25] 請求項 2 1に記載の糖鎖捕捉物質において、
前記リンカ一部位しが、 クロモフォアまたはフルオロフオアを含む部位を 含むことを特徴とする糖鎖捕捉物質。
[26] 請求項 2 5に記載の糖鎖捕捉物質において、 H一 2
前記リンカ一部位しが、 システィン残基および 2—ァミノベンゾィル基を 含むことを特徴とする糖鎖捕捉物質。
[27] 請求項 2 6に記載の糖鎖捕捉物質において、
下記式 (3 ) の構造を有することを特徴とする糖鎖捕捉物質: [化 36]
(3)
( ゝ ノ
Figure imgf000044_0002
(式中、 担体は糖鎖捕捉反応に寄与しない無機物質あるいは有機高分子物質 である。 ) 。
[28] 請求項 2 6に記載の糖鎖捕捉物質において、
下記式 (4 ) の構造を有することを特徴とする糖鎖捕捉物質: [化 37]
Figure imgf000045_0001
(式中、 Rはアミノ基を介して導入し得る官能基である。 担体は糖鎖捕捉反 応に寄与しない無機物質あるいは有機高分子物質である。 ) 。
請求項 2 8に記載の糖鎖捕捉物質において、
下記式 (5 ) または ( 6 ) の構造を有することを特徴とする糖鎖捕捉物質
[化 38]
Figure imgf000045_0002
Figure imgf000045_0003
[30] 請求項 2 1に記載の糖鎖補足物質において、
前記リンカ一部位しが、 アルキル鎖、 またはエステル結合またはアミド結 合を含む基で構成される標識化されていない基であることを特徴とする糖鎖 補足物質。
[31] 請求項 3 0に記載の糖鎖補足物質において、 前記リンカ一部位しが、 下記式に示す構造、 または下記式に示す構造から 任意に選ばれる複数の構造を組み合わせた構造を含むことを特徴とする糖鎖 補足物質。
[化 39]
Figure imgf000046_0001
[32] 請求項 2 1に記載の糖鎖補足物質において、
式 (1 ) 中の担体が粒子であることを特徴とする糖鎖捕捉物質。
[33] 請求項 2 1に記載の糖鎖補足物質において、
式 (1 ) 中の担体が固相基板または固相基板の表面に直接結合する物質で あることを特徴とする糖鎖捕捉物質。
PCT/JP2007/000214 2006-03-16 2007-03-13 分析試料調製方法および分析試料ならびに糖鎖捕捉物質 WO2007108204A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008506173A JP5115988B2 (ja) 2006-03-16 2007-03-13 分析試料調製方法および分析試料ならびに糖鎖捕捉物質
US12/224,953 US7964410B2 (en) 2006-03-16 2007-03-13 Method for preparing analysis sample, analysis sample and sugar chain capture agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006073170 2006-03-16
JP2006-073170 2006-03-16

Publications (1)

Publication Number Publication Date
WO2007108204A1 true WO2007108204A1 (ja) 2007-09-27

Family

ID=38522240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000214 WO2007108204A1 (ja) 2006-03-16 2007-03-13 分析試料調製方法および分析試料ならびに糖鎖捕捉物質

Country Status (3)

Country Link
US (1) US7964410B2 (ja)
JP (1) JP5115988B2 (ja)
WO (1) WO2007108204A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156587A (ja) * 2007-12-25 2009-07-16 Sumitomo Bakelite Co Ltd 糖タンパク質糖鎖の分析方法
JP2009244147A (ja) * 2008-03-31 2009-10-22 Sumitomo Bakelite Co Ltd 抗癌剤の有効性予測方法
JP5500067B2 (ja) * 2008-04-30 2014-05-21 住友ベークライト株式会社 糖鎖標識方法
WO2015022854A1 (ja) * 2013-08-16 2015-02-19 住友ベークライト株式会社 糖鎖試料を標識するための化合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482150A (zh) * 2017-09-11 2019-03-19 中国科学院大连化学物理研究所 一种糖肽或糖蛋白富集材料及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313197A (ja) * 2002-04-19 2003-11-06 Japan Science & Technology Corp 高い会合速度定数を有するリガンドの生産方法、およびこの生産方法を実施するリガンド生産システム
WO2004058687A1 (ja) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. 糖鎖捕捉分子を用いた糖鎖精製濃縮法および糖鎖構造解析法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313197A (ja) * 2002-04-19 2003-11-06 Japan Science & Technology Corp 高い会合速度定数を有するリガンドの生産方法、およびこの生産方法を実施するリガンド生産システム
WO2004058687A1 (ja) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. 糖鎖捕捉分子を用いた糖鎖精製濃縮法および糖鎖構造解析法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LAMBERT J.M. ET AL.: "Purified Immunotoxins That Are Reactive with Human Lymphoid Cells", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 260, no. 22, 1985, pages 12035 - 12041, XP001146340 *
MANZ B. ET AL.: "Synthesis of a New Disulfide Affinity Adsorbent for Purification of Human Uterine Progesterone Receptor", EUR. J. BIOCHEM., vol. 128, 1982, pages 249 - 255, XP003017898 *
SHIMAOKA H. ET AL.: "Fukugo Toshitsu Tosa Seisei Kit 'S-BioBlotGlyco' no Kaihatsu", BIO INDUSTRY, vol. 22, no. 11, 2005, pages 54 - 59, XP003017897 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156587A (ja) * 2007-12-25 2009-07-16 Sumitomo Bakelite Co Ltd 糖タンパク質糖鎖の分析方法
JP2009244147A (ja) * 2008-03-31 2009-10-22 Sumitomo Bakelite Co Ltd 抗癌剤の有効性予測方法
JP5500067B2 (ja) * 2008-04-30 2014-05-21 住友ベークライト株式会社 糖鎖標識方法
WO2015022854A1 (ja) * 2013-08-16 2015-02-19 住友ベークライト株式会社 糖鎖試料を標識するための化合物

Also Published As

Publication number Publication date
US7964410B2 (en) 2011-06-21
JPWO2007108204A1 (ja) 2009-08-06
US20090068752A1 (en) 2009-03-12
JP5115988B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5301708B2 (ja) 糖鎖捕捉物質およびその用途
AU2009241146B2 (en) Method of labelling sugar chain
JP5115988B2 (ja) 分析試料調製方法および分析試料ならびに糖鎖捕捉物質
JP4783292B2 (ja) 分析試料調製方法および分析試料ならびに分析試料調製用化合物
JP5076878B2 (ja) 糖タンパク質糖鎖の分析方法
Frolov et al. Site‐specific synthesis of Amadori‐modified peptides on solid phase
JP4568551B2 (ja) 糖たん白質糖鎖の分析方法及び非標識糖鎖の製造方法
JPWO2015108020A1 (ja) 組成物、糖鎖試料の調製方法及び糖鎖の分析方法
JP4257492B2 (ja) ペプチドのc末端アミノ酸配列解析方法
JP2732377B2 (ja) ペプチド、蛋白質のd/l−アミノ酸配列分析法
JP2010047487A (ja) ミモシン又はその酸付加塩とミモシン誘導体の製造方法並びにミモシンの品質管理法
WO2021150614A1 (en) Compounds and methods for selective c-terminal labeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07736873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506173

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12224953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07736873

Country of ref document: EP

Kind code of ref document: A1