WO2007105403A1 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
WO2007105403A1
WO2007105403A1 PCT/JP2007/052754 JP2007052754W WO2007105403A1 WO 2007105403 A1 WO2007105403 A1 WO 2007105403A1 JP 2007052754 W JP2007052754 W JP 2007052754W WO 2007105403 A1 WO2007105403 A1 WO 2007105403A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
power generation
type thermoelectric
conversion member
electrode
Prior art date
Application number
PCT/JP2007/052754
Other languages
English (en)
French (fr)
Inventor
Naoki Uchiyama
Original Assignee
Kabushiki Kaisha Atsumitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Atsumitec filed Critical Kabushiki Kaisha Atsumitec
Priority to CN2007800148257A priority Critical patent/CN101432911B/zh
Priority to US12/224,148 priority patent/US8288042B2/en
Priority to CA2642498A priority patent/CA2642498C/en
Priority to EP07714284A priority patent/EP1990853B1/en
Priority to KR1020087020199A priority patent/KR101332996B1/ko
Publication of WO2007105403A1 publication Critical patent/WO2007105403A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04052Storage of heat in the fuel cell system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation device capable of efficiently using thermal energy for operating a fuel cell.
  • a hydrogen fuel cell attracts attention as an energy source that can suppress the emission of carbon dioxide and carbon dioxide!
  • a fuel cell main body in which a fuel electrode and an air electrode are joined to an electrolyte body is heated, for example, by an external heater, and maintained at a predetermined power generation start temperature or higher. Power is generated by supplying gas and the like.
  • a solid oxide fuel cell is a solid oxide fuel in which a fuel electrode (hydrogen electrode) and an air electrode (oxygen electrode) are joined (formed) to an electrolyte composed of solid oxide. It has a battery cell body. In this solid oxide fuel cell, the fuel cell main body generates power by being supplied with fuel gas, air and the like.
  • the solid oxide fuel cell can obtain high output, and not only hydrogen gas but also gas containing a large amount of carbon dioxide can be used as fuel.
  • the solid oxide fuel cell operates at high temperature, it is possible to adopt an internal reforming system which eliminates the need for using an expensive platinum catalyst.
  • it is equipped with a solid oxide fuel cell such as a fuel that can generate hydrogen and carbon dioxide necessary for fuel cell reaction such as methane by utilizing the heat generated from the fuel cell main body. It is possible to reduce the size and increase the efficiency of the device.
  • a single-chamber type can generate power by arranging the fuel cell main body in an atmosphere in which a fuel gas such as hydrogen or methane and the like are mixed without separating the fuel electrode and the air electrode with a separator.
  • Solid oxide fuel cells are also known.
  • Such single-chamber solid oxide fuel cells are disclosed, for example, in Japanese Patent Application Laid-Open No. 2002-280015, Japanese Patent Laid-open Application 2002-2800017, and Japanese Open Patent Application 2002-313357. Is disclosed in Japanese Patent Application Laid-Open No. 2002-280015, Japanese Patent Laid-open Application 2002-2800017, and Japanese Open Patent Application 2002-313357. Is disclosed in Japanese Patent Application Laid-Open No. 2002-280015, Japanese Patent Laid-open Application 2002-2800017, and Japanese Open Patent Application 2002-313357. Is disclosed in Japanese Patent Application Laid-Open No. 2002-280015, Japanese Patent Laid-open Application 2002-2800017, and Japanese Open Patent Application 2002-313357. Is disclosed in Japanese Patent Application Laid-Open No. 2002-280015, Japanese Patent Laid-open Application 2002-2800017, and Japanese Open Patent Application 2002-313357. Is disclosed in Japanese Patent Application Laid-Open No. 2002-280015, Japanese Patent Laid-open Application 2002-2800017,
  • the present invention is a power generation device capable of effectively utilizing thermal energy for operating a fuel cell and preferably reaction heat to realize high power generation efficiency.
  • the purpose is to provide.
  • a power generation apparatus is joined to at least one of a cell body having an electrolyte body, a fuel electrode and an air electrode, the fuel electrode and the air electrode, and a P type thermoelectric conversion member And a secondary power generation unit having an N-type thermoelectric conversion member.
  • the P-type thermoelectric conversion member and the N-type thermoelectric conversion member joined to the cell main body performing power generation under high temperature environment are more than power generation by the cell main body.
  • secondary power generation means can be configured to obtain power by the Seebeck effect. Therefore, the power generation efficiency can be improved.
  • reaction heat at the fuel electrode or the air electrode where the P-type thermoelectric conversion member and the N-type thermoelectric conversion member are joined is also converted to electric power by the Seebeck effect, higher power generation efficiency can be realized.
  • the N-type thermoelectric conversion member may be joined to the fuel electrode of the cell body, and the P-type thermoelectric conversion member may be joined to the air electrode of the cell body.
  • the cell body is interposed between the P-type thermoelectric conversion member and the N-type thermoelectric conversion member to be a thermocouple, a voltage obtained by adding the generated voltage by the Seebeck effect to the generated voltage by the cell body is supplied to the outside. Can.
  • the secondary power generation means may comprise an electrical insulating layer disposed at a junction with the cell body.
  • the secondary power generation means is electrically isolated from the cell body by the electrical insulation layer, the cell body and the secondary power generation means are appropriately connected in series or in parallel to obtain a desired generated voltage. Can.
  • the P-type thermoelectric conversion member is joined to the fuel electrode of the cell body via the first electrical insulating layer, and the N-type thermoelectric conversion member is a second electrical insulating layer at the air electrode of the cell body.
  • the second power generation means is connected to the electrode of the P-type thermoelectric conversion member facing the first insulating layer, and the electrode of the N-type thermoelectric conversion member facing the second insulating layer. You may further provide the electrically-conductive member which conduct
  • the reaction heat at the fuel electrode and the air electrode can be transmitted to the P-type thermoelectric conversion member and the N-type thermoelectric conversion member, respectively, the power generation efficiency by the Seebeck effect is improved.
  • the N-type thermoelectric conversion member and the P-type thermoelectric conversion member are disposed apart from the insulating layer, and the secondary power generation unit is configured to face the insulating layer and the P-type thermoelectric conversion member and the N-type thermoelectric conversion member It further comprises a conductive member for conducting the electrodes of
  • the arrangement of the cell body, the P-type thermoelectric conversion member and the N-type thermoelectric conversion member can be optimized in a high temperature atmosphere, so that the power generation efficiency can be further improved.
  • the cell main body may constitute a part of a solid oxide fuel cell.
  • more power can be obtained by the secondary power generation means by supplementing the cell body of the solid oxide fuel cell that generates electric power under a high temperature environment, and the power generation efficiency is further enhanced.
  • a power generation apparatus comprises a cell body having an electrolyte body, a fuel electrode and an air electrode, and a secondary power generation means having a P-type thermoelectric conversion member and an N-type thermoelectric conversion member.
  • the P-type thermoelectric conversion member doubles as the air electrode of the cell body.
  • the reaction heat of the air electrode is directly transmitted to the P-type thermoelectric conversion member, so that the power generation efficiency by the Seebeck effect is further enhanced.
  • the thermoelectric conversion member and a part of the cell body are common, the number of components of the power generation device can be reduced.
  • the N-type thermoelectric conversion member may also serve as the fuel electrode of the cell body.
  • reaction heat of both the fuel electrode and the air electrode is directly transferred to the secondary power generation means to further enhance the power generation efficiency by the Zebeck effect. Further, by sharing the cell body and the thermoelectric conversion member, simplification and cost reduction of the power generation apparatus can be realized. Furthermore, the output voltage of the secondary power generation means can be added to the output voltage of the cell body and output.
  • the cell body generates electric power, and the thermal energy discharged to the outside as waste heat without being used for power generation can be used for power generation.
  • the reaction heat at the fuel electrode and air electrode of the cell body is converted to electric power by the Seebeck effect by the P-type thermoelectric conversion member and the N-type thermoelectric conversion member, the efficiency as a power generation device using a fuel cell is further enhanced. It can be enhanced.
  • FIG. 1 is a schematic cross-sectional view of a power generation device according to a first embodiment of the present invention
  • FIG. 2 A diagram showing a schematic cross-sectional structure of a power generation apparatus in which a P-type thermoelectric conversion member and an N-type thermoelectric conversion member are further joined to a fuel electrode through an electrical insulation layer in the first embodiment.
  • FIG. 3 A diagram showing a cross-sectional schematic structure of a power generation device according to a modification of the first embodiment
  • FIG. 4 A diagram showing a cross-sectional schematic structure of a power generation device according to a second embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view of a power generation device according to a third embodiment of the present invention
  • FIG. 6 A diagram showing a cross-sectional schematic structure of a power generation apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 is a view showing a cross-sectional schematic structure of a power generation device according to a modification of the fourth embodiment.
  • FIG. 1 A power generation apparatus according to a first embodiment of the present invention will be described based on FIG. 1 and FIG.
  • FIG. 1 shows a schematic cross-sectional structure of a power generation device according to a first embodiment of the present invention.
  • a solid oxide fuel cell main body single-chamber type
  • a cell main body fuel cell main body of a power generation device.
  • the power generation system 10 has a gas flow path 11, a cell body 20, and a secondary power generation device (secondary power generation means) 30.
  • the cell body 20 is accommodated in the gas flow passage 11 and constitutes a part of a single-chamber solid oxide fuel cell.
  • a temperature at which the cell body 20 starts power generation (a power generation start temperature) in which a mixed fuel gas obtained by mixing a fuel gas such as CHx (hydrocarbon compound) and COx (carbon compound) and air is mixed. It is heated above and introduced into the gas flow path 11 from the outside of the power generation device 10.
  • the power generation start temperature is, for example, 500 to 1000 degrees Celsius.
  • the fuel electrode 22 is bonded to one surface of the solid oxide electrolyte 21 and the air electrode 23 is bonded to the other surface.
  • the fuel electrode 24 is bonded to the surface opposite to the bonding surface of the fuel electrode 22 with the solid oxide electrolyte 21.
  • an air electrode 25 is bonded to the surface opposite to the bonding surface of the air electrode 23 with the solid oxide electrolyte 21.
  • the fuel electrode 24 is connected to the outside of the gas flow passage 11 by a conductor 24a and the air electrode 25 by a conductor 25a.
  • the solid oxide electrolyte 21 is, for example, 8 mol-YSZ (yttria-stable zirconia), 5 mol- YSZ, SDC (scandiner-doped ceria), GDC (gadrium-doped ceria), or ScSZ ( It can be formed by scandia (stable) (zirkoyua) etc.
  • Fuel pole 22 For example, NiO + YSZ, NiO + SDC, NiO + GDC, LSCM (lanthanum cobaltium cobalt manganite), Fe 2 O, or the like can be formed.
  • the cathode 23 is an example
  • LSM lathanum strontium manganite
  • LSC lathanum strontium cobaltite
  • the secondary power generation device 30 has a P-type thermoelectric conversion member 31 and an N-type thermoelectric conversion member 32. One end side of the P-type thermoelectric conversion member 31 and one end side of the N-type thermoelectric conversion member 32 are bonded to each other on the fuel electrode 24. The P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 joined in this way are in contact with the fuel electrode 22 via the fuel electrode 24 to form a high temperature side contact of the thermocouple.
  • a P member electrode 31 a is joined to the other end side of the P-type thermoelectric conversion member 31 located outside the gas flow passage 11, and an N-type thermoelectric conversion also located outside the gas flow passage 11.
  • An N member electrode 32 a is joined to the other end side of the member 32.
  • the P-type thermoelectric conversion member 31 can be formed, for example, using chromel, and the N-type thermoelectric conversion member 32 can be formed, for example, using constantan or the like.
  • the temperature of the cell body 20 is equal to or higher than the power generation start temperature. It is heated to operate as a fuel cell.
  • oxygen ions (0 2 _ ) are generated by the air in the mixed fuel gas.
  • the oxygen ions move in the solid oxide electrolyte body 21 to the fuel electrode 22, and the cell body 20 generates electric power.
  • the transferred oxygen ions react with CH x and CO x contained in the mixed fuel gas at the fuel electrode 22, and carbon dioxide (CO 2) and water (
  • the power generation apparatus 10 can generate power as the single-chamber solid oxide fuel cell and also generate power by the Seebeck effect, so high power generation efficiency can be obtained. Since reaction heat is generated also in the air electrode 23, a secondary power generation device may be bonded to the air electrode 23, and a secondary power generation device may be bonded to both the fuel electrode 22 and the air electrode 23. . Further, as shown in FIG. 2, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 constituting the secondary power generation device 30 are made of the fuel electrode 22 and the air electrode 23 via the electrical insulating layer 40. It may be bonded to either one or both. When the electrical insulating layer 40 is used as described above, the secondary power generation device 30 and the cell main body 20 are electrically insulated. Therefore, the cell main body 20 and the secondary power generation device 30 are appropriately connected in series or in parallel. By connecting, a desired generated voltage can be obtained.
  • FIG. 3 shows a schematic cross-sectional structure of a power generation apparatus which is a modification of the first embodiment.
  • the components having the same functions as those of the first embodiment are given the same reference numerals, and the description thereof is omitted.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 that constitute the secondary power generation device 30 are connected to the fuel electrode 22 via the electrical insulating layer 40. It is joined to the fuel electrode 24 and twisted.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 are separated on the electrical insulating layer 40, and one end side of the P-type thermoelectric conversion member 31 and one end side of the N-type thermoelectric conversion member 32 are conductive members. Connected to each other via 33
  • the reaction heat of the cell body 20 can be efficiently utilized at a position P
  • the mold-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 can be disposed.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 can be disposed at positions where heat energy can be efficiently absorbed from the mixed fuel gas flowing in the vicinity of the cell main body 20.
  • the power generation device 10a can further enhance the power generation efficiency.
  • FIG. 4 shows a schematic cross-sectional structure of a power generation device according to a second embodiment of the present invention.
  • the components having the same functions as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • the P-type thermoelectric conversion member 31 is joined to the fuel electrode 24 of the fuel electrode 22 through the first electrical insulation layer 40, and the N-type thermoelectric conversion member 32 is the second electrical insulation layer 41. Through It is joined to the air electrode 25 of the air electrode 23.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 constitute a secondary power generation device (secondary power generation means) 30.
  • a second P-member electrode 3 lb which is an electrode of the P-type thermoelectric conversion member is formed.
  • a second N member electrode 32b which is an electrode of the N-type thermoelectric conversion member is formed.
  • the second P-member electrode 3 lb and the second N-member electrode 32 b are electrically connected by the conductive member 33.
  • the fuel battery cell main body 20 When mixed fuel gas heated to the power generation start temperature or higher is introduced into the external gas flow passage 11 of the power generation device 10b in the power generation device 10b, the fuel battery cell main body (hereinafter referred to as the cell main body) 20 is heated to a temperature above the power generation start temperature to operate as a fuel cell.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 are heated by the thermal energy of the mixed fuel gas. Because such heating is applied, the P-type thermoelectric conversion member 31 is also heated by the reaction heat of the fuel electrode 22, and the N-type thermoelectric conversion member 32 is also heated by the reaction heat of the air electrode 23. The efficiency of the
  • the power generation device 10b can generate power as a single-chamber solid fuel cell and generate power by the Seebeck effect to further enhance the power generation efficiency.
  • the secondary power generation device 30 and the cell main body 20 are electrically isolated, a desired generated voltage can be obtained by appropriately connecting the cell main body 20 and the secondary power generation device 30 in series or in parallel. You can get
  • FIG. 5 shows a schematic cross-sectional structure of a power generation device according to a third embodiment of the present invention.
  • the components having the same functions as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • the P-type thermoelectric conversion member 31 is directly joined to the air electrode 23, and the N-type thermoelectric conversion member 32 is directly joined to the fuel electrode 22.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 constitute a secondary power generation device (secondary power generation means) 30. That is, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 of the secondary power generation device 30 are electrically connected to each other through the fuel cell main body (hereinafter referred to as the cell main body) 20! .
  • the cell main body 20 In the power generation apparatus 10c, when the mixed fuel gas heated above the power generation start temperature is also introduced into the gas flow path 11 of the power generation apparatus 10c, the cell body 20 is heated to a temperature above the power generation start temperature. Operates as a fuel cell.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 are heated by thermal energy contained in the mixed fuel gas. Such heating is effective, the P-type thermoelectric conversion member 31 is also heated by the reaction heat of the air electrode 23, and the N-type thermoelectric conversion member 32 is also heated by the reaction heat of the fuel electrode 22. As a result, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 which constitute the secondary power generation device 30 generate power by the Seebeck effect.
  • the power generation device 10c can generate power more efficiently by the Seebeck effect, so that the power generation efficiency can be further enhanced. it can.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 of the secondary power generation device 30 are electrically connected via the cell body 20, the cell body 20 and the secondary power generation are generated.
  • the device 30 is electrically connected in series. Therefore, a voltage obtained by adding the generated voltage of the secondary power generation device 30 to the generated voltage of the cell body 20 is output between the first P member electrode 31 a and the first N member electrode 32 a.
  • FIG. 6 shows a schematic cross-sectional structure of a power generation device according to a fourth embodiment of the present invention.
  • the components having the same functions as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • the fuel electrode 22 is joined to one surface of the solid oxide electrolyte 21, and the N-type thermoelectric conversion member 32 is interposed via the fuel electrode 24. It is joined to the fuel electrode 22.
  • a P-type thermoelectric conversion member 31 which is also an air electrode is joined to the other surface of the solid oxide electrolyte 21. That is, the cell body 20a has a solid oxide electrolyte 21, a fuel electrode 22, and a P-type thermoelectric conversion member 31 which is also an air electrode.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 constituting the secondary power generation device (secondary power generation means) 30 are the solid oxide electrolyte body 21, the fuel electrode 22 and the fuel electrode 24. Electrically connected through!
  • the cell body 20a is heated to a temperature higher than the power generation start temperature. Be operated as a fuel cell.
  • the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 are heated by thermal energy contained in the mixed fuel gas. At this time, since the P-type thermoelectric conversion member 31 reacts as an air electrode, the reaction heat is also heated. As a result, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 constituting the secondary power generation device 30 generate electric power by the Seebeck effect.
  • the power generation device 10d can generate power as a single-chamber solid fuel cell and can generate power by the Seebeck effect, power generation efficiency can be enhanced. Further, in the power generation device 10d, since the P-type thermoelectric conversion member 31 reacts as an air electrode, the reaction heat can be used more efficiently for power generation.
  • FIG. 7 shows a schematic cross-sectional structure of a power generation device according to a modification of the fourth embodiment.
  • the components having the same functions as those of the above-described embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • an N-type thermoelectric conversion member 32 which is also a fuel electrode, is joined to one surface of the solid oxide type electrolyte body 21.
  • a P-type thermoelectric conversion member 31 which is also an air electrode is joined to the other surface of the solid oxide electrolyte 21. That is, the cell main body 20b has a solid oxide type electrolyte body 21, a P-type thermoelectric conversion member 31 which is also an air electrode, and an N-type thermoelectric conversion member 32 which is also a fuel electrode.
  • the N-type thermoelectric conversion member 32 and the P-type thermoelectric conversion member 31 constituting the secondary power generation device (secondary power generation means) 30 are electrically connected to each other via the solid oxide electrolyte body 21. .
  • the cell body 20b is heated to a temperature equal to or higher than the power generation start temperature. Be operated as a fuel cell. Further, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 are heated by the thermal energy of the mixed fuel gas, and both are heated by the reaction heat of the fuel cell. As a result, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 constituting the secondary power generation device 30 generate electric power by the Seebeck effect. Thus, in the power generation device 10e, the P-type thermoelectric conversion member 31 and the N-type thermoelectric conversion member 32 Since the heat of reaction is directly heated, the power generation efficiency is further enhanced.
  • the power generating apparatus comprises a fuel cell main body, and if the reaction heat of the fuel electrode or the air electrode in the fuel cell main body can be used, the electrolyte body is a solid oxide electrolyte body. It is not limited to Further, the type of fuel cell constituted by the fuel cell main body is not limited to the single-chamber fuel cell. Furthermore, the power generator according to the present invention may have a plurality of fuel cell main bodies.
  • the fuel cell body is heated by the high temperature combustion exhaust gas to generate electric power.
  • the secondary power generation device can generate electric power by the heat energy of the combustion exhaust gas and the heat of reaction in either or both of the fuel electrode and the air electrode, the power generation efficiency is improved. be able to.
  • a power generation apparatus is applied to a car or the like, it is possible to generate electricity using combustion exhaust gas, and it is possible to improve combustion cost and clean the combustion exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

 発電装置は、セル本体と2次発電デバイスとを備える。セル本体は、電解質体、燃料極及び空気極を有する。2次発電デバイスは燃料極及び空気極のうちの少なくとも一方に接合されており、P型熱電変換部材とN型熱電変換部材とを有する。この発電装置では、セル本体による発電に加え、発電開始温度以上の温度でセル本体が発電を行う際に、セル本体に接合されたP型熱電変換部材とN型熱電変換部材とが熱電対となり、ゼーベック効果によって電力を発生する。  

Description

明 細 書
発電装置
技術分野
[0001] 本発明は、燃料電池セルを動作させるための熱エネルギーを効率よく利用できる 発電装置に関する。
背景技術
[0002] 二酸ィ匕炭素の排出を抑制できるエネルギー源として水素燃料電池が注目されて!/、 る。水素燃料電池では、電解質体に燃料極と空気極とを接合した燃料電池セル本体 (セル本体)が、例えば外部ヒータ等で加熱されることにより所定の発電開始温度以 上に維持されながら、燃料ガスなどが供給されることにより発電を行う。
固体酸化物型燃料電池(solid oxide foel cell : SOFC)は、固体酸化物からなる電解 質に燃料極 (水素極)と空気極 (酸素極)とが接合 (形成)された固体酸化物型燃料電 池セル本体を備える。この固体酸化物型燃料電池では、上記燃料電池セル本体が、 燃料ガス及び空気等を供給されることにより電力を発生する。
[0003] 2005年 1月 15日に株式会社オーム社より発行された、電気学会'燃料電池発電 次世代システム技術調査専門委員会編による「燃料電池の技術」、第 1版第 3刷 (以 下文献 1という)の 183頁乃至 230頁の記載などによれば、上記固体酸化物型燃料 電池は様々な利点を有することが知られて 、る。
即ち、固体酸化物型燃料電池は、高出力を得ることができ、水素ガスだけではなく 、一酸ィ匕炭素を多量に含むガスも燃料として使用することができる。また、固体酸ィ匕 物型燃料電池は高温で動作するので高価な白金触媒を使用する必要がなぐ内部 改質方式を採用することができる。更に、上記燃料電池セル本体からの発熱を利用 してメタンなどの燃料力も電池反応に必要な水素や一酸ィ匕炭素を生成させることが できる力ら、固体酸ィ匕物型燃料電池を備えた装置の小型化と高効率ィ匕を図ることが できる。
[0004] こうした固体酸化物型燃料電池は、燃料極と空気極とをセパレータで遮って、燃料 極に燃料ガスを供給すると共に、空気極に空気などを供給する二室型固体酸化物 型燃料電池が一般的であることが上記文献 1などにより知られている。
一方、燃料極と空気極とをセパレータで遮ることなぐ水素やメタン等の燃料ガスと 空気等とを混合した雰囲気内に燃料電池セル本体を配設して電力を発生することが できる単室型固体酸化物型燃料電池も知られて 、る。
[0005] このような単室型固体酸ィ匕物型燃料電池は、例えば日本国特開 2002— 280015 号公報、 日本国特開 2002— 280017号公報、及び日本国特開 2002— 313357号 公報に開示されている。
しかし、燃料電池は熱エネルギーを排出してエネルギー損失を生じる。このため、 特に高温環境下にお!/、て動作 (発電)する固体酸化物型燃料電池では、発電効率 の低下が否めない。また、燃料極及び空気極における反応熱 (熱エネルギー)が有 効に利用されず外部に排出されてしまうことも否めない。
発明の開示
[0006] 本発明は、このような課題を解決するため、燃料電池を動作させる熱エネルギーと 、好ましくは反応熱とを有効に利用することができて、高い発電効率を実現できる発 電装置の提供を目的とする。
上記目的を達成するため本発明に係る発電装置は、電解質体と燃料極と空気極と を有するセル本体と、上記燃料極及び空気極のうちの少なくとも一方に接合され、 P 型熱電変換部材と N型熱電変換部材とを有する 2次発電手段とを備えたことを特徴と する。
[0007] 力かる構成を有する発電装置では、セル本体による発電にカ卩え、高温環境下で発 電を行うセル本体に接合された P型熱電変換部材と N型熱電変換部材とが熱電対と なって、 2次発電手段を構成し、ゼーベック効果により電力を得ることができる。従つ て、発電効率を向上させることができる。
更に、 P型熱電変換部材と N型熱電変換部材とが接合された燃料極もしくは空気極 における反応熱もゼーベック効果によって電力に変換されるから、より一層高 、発電 効率を実現できる。
[0008] 上記 N型熱電変換部材は上記セル本体の上記燃料極に接合され、上記 P型熱電 変換部材は上記セル本体の上記空気極に接合されてもよい。 このような構成とすることにより、燃料極及び空気極における反応熱を絶縁層を介さ ず 2次発電手段に効率よく伝達できて、ゼーベック効果による発電効率がさらに高ま る。
更に、熱電対となる P型熱電変換部材と N型熱電変換部材との間にセル本体が介 在するので、セル本体による発電電圧にゼーベック効果による発電電圧を加算した 電圧を外部に供給することができる。
[0009] 上記 2次発電手段は、上記セル本体との接合部分に配された電気絶縁層を備えて ちょい。
この場合、電気絶縁層により 2次発電手段がセル本体と電気的に絶縁されて 、るの で、セル本体と 2次発電手段とを適宜直列あるいは並列接続して、所望の発電電圧 を得ることができる。
上記 P型熱電変換部材は、上記セル本体の上記燃料極に第 1の電気絶縁層を介 して接合され、上記 N型熱電変換部材は、上記セル本体の上記空気極に第 2電気 絶縁層を介して接合され、上記 2次発電手段は、上記第 1の絶縁層に面する上記 P 型熱電変換部材の電極と、上記第 2の絶縁層に面する上記 N型熱電変換部材の電 極とを導通する導電部材を更に備えるようにしてもょ 、。
[0010] この場合、燃料極及び空気極における反応熱を P型熱電変換部材と N型熱電変換 部材とにそれぞれ伝達できるから、ゼーベック効果による発電効率が向上する。 或いは、上記 N型熱電変換部材及び P型熱電変換部材は上記絶縁層に離れて配 設され、上記 2次発電手段は、上記絶縁層に面する上記 P型熱電変換部材及び N型 熱電変換部材の電極を導通する導電部材を更に備えるようにしてもょ ヽ。
このような構成とすることにより、セル本体と、 P型熱電変換部材及び N型熱電変換 部材の配置を高温雰囲気中にお 、て最適化できるから、更なる発電効率の向上を 図ることができる。
[0011] 以上のような発電装置のいずれかにおいて、上記セル本体は、固体酸化物型燃料 電池の一部を構成するようにしてもよい。この場合には、高温環境下で電力を発生す る固体酸化物型燃料電池のセル本体を 2次発電手段が補うことにより、より多くの電 力を得ることができ、発電効率一層高まる。 或いは、上記目的を達成するため本発明に係る発電装置は、電解質体と燃料極と 空気極とを有するセル本体と、 P型熱電変換部材と N型熱電変換部材とを有する 2次 発電手段とを備え、上記 P型熱電変換部材は、上記セル本体の上記空気極を兼ね ていることを特徴とする。
[0012] 力かる構成を有する発電装置では、空気極の反応熱が直接 P型熱電変換部材に 伝達されるから、ゼーベック効果による発電効率がさらに高まる。また、熱電変換部材 とセル本体の一部が共通することにより、発電装置の構成要素を少なくすることがで きる。
この結果、発電装置の発電効率を高めながら、発電装置の簡易化とコスト低減とを 実現することができる。
[0013] 更に上記 N型熱電変換部材は、上記セル本体の上記燃料極を兼ねるようにしても よい。
この場合、燃料極と空気極の反応熱が何れも直接 2次発電手段に伝達されて、ゼ 一ベック効果による発電効率がさらに高まる。また、セル本体と熱電変換部材とが共 通することにより、更なる発電装置の簡易化とコスト低減とを実現することができる。更 に、セル本体の出力電圧に 2次発電手段の出力電圧を加算して出力することができ る。
以上のように、本発明に係る発電装置によれば、セル本体が電力を発生すると共に 、発電に使用されずに廃熱として外部に排出される熱エネルギーを発電に利用でき る。また、セル本体の燃料極や空気極における反応熱が、 P型熱電変換部材及び N 型熱電変換部材によりゼーベック効果で電力に変換されるから、燃料電池を用いた 発電装置としての効率をより一層高めることができる。
図面の簡単な説明
[0014] [図 1]本発明の第 1実施形態に係る発電装置の断面概略構造を示す図、
[図 2]第 1実施形態において P型熱電変換部材と N型熱電変換部材とを更に電気絶 縁層を介して燃料極に接合した発電装置の断面概略構造を示す図、
[図 3]第 1実施形態の変形例に係る発電装置の断面概略構造を示す図、
[図 4]本発明の第 2実施形態に係る発電装置の断面概略構造を示す図、 [図 5]本発明の第 3実施形態に係る発電装置の断面概略構造を示す図、
[図 6]本発明の第 4実施形態に係る発電装置の断面概略構造を示す図、及び
[図 7]第 4実施形態の変形例に係る発電装置の断面概略構造を示す図である。 発明を実施するための最良の形態
[0015] 以下、本発明の実施形態について図面に基づき説明する。
(第 1実施形態)
本発明の第 1実施形態に係る発電装置を図 1及び図 2に基づいて説明する。
図 1は、本発明の第 1実施形態に係る発電装置の断面概略構造を示す。第 1実施 形態では、発電装置の燃料電池セル本体 (以下セル本体という)として固体酸化物 型燃料電池セル本体 (単室型)が用いられる。
[0016] まず、発電装置の構成について以下に説明する。
図 1に示すように、発電装置 10は、ガス流路 11、セル本体 20、及び 2次発電デバ イス(2次発電手段) 30を有して 、る。セル本体 20はガス流路 11に収容されて単室 型の固体酸化物型燃料電池の一部を構成する。発電装置 10では、例えば CHx (炭 化水素化合物)及び COx (炭素化合物)力 なる燃料ガスと空気などとを混合した混 合燃料ガスが、セル本体 20が発電を開始する温度 (発電開始温度)以上に加熱され て、発電装置 10の外部からガス流路 11へと導入される。この発電開始温度は、例え ば摂氏 500度乃至 1000度である。
セル本体 20では、固体酸化物型電解質体 21の一方の面に燃料極 22が接合され 、他方の面には空気極 23が接合されている。なお、セル本体 20が発電する電力を 外部に出力するために、燃料極 22の固体酸化物型電解質体 21との接合面とは反 対側となる面には燃料極電極 24が接合され、また空気極 23の固体酸化物型電解質 体 21との接合面とは反対側となる面には空気極電極 25が接合されている。そして、 燃料極電極 24は導体 24aで、空気極電極 25は導体 25aで、それぞれガス流路 11 の外部に接続されている。
[0017] 固体酸化物型電解質体 21は、例えば、 8mol-YSZ (イットリア安定ィ匕ジルコユア) 、 5mol— YSZ、 SDC (スカンジナドープドセリア)、 GDC (ガドリゥムドープドセリア)、 または ScSZ (スカンジァ安定ィ匕ジルコユア)などで形成することができる。燃料極 22 は、例えば、 NiO+YSZ、 NiO + SDC、 NiO + GDC、 LSCM (ランタンストロンチウ ムコバルトマンガナイト)、または FeOなどで形成することができる。空気極 23は、例
3
えば、 LSM (ランタンストロンチウムマンガナイト)や LSC (ランタンストロンチウムコバ ルタイト)などで形成することができる。
2次発電デバイス 30は、 P型熱電変換部材 31と N型熱電変換部材 32とを有する。 P型熱電変換部材 31の一端側と N型熱電変換部材 32の一端側とが燃料極電極 24 上にお!、て互いに接合されて 、る。こうして接合された P型熱電変換部材 31と N型熱 電変換部材 32とは、燃料極電極 24を介して燃料極 22に接することにより熱電対の 高温側接点を形成する。
[0018] 一方、ガス流路 11の外部に位置する P型熱電変換部材 31の他端側には P部材電 極 31 aが接合され、同じくガス流路 11の外部に位置する N型熱電変換部材 32の他 端側には N部材電極 32aが接合されて 、る。
なお P型熱電変換部材 31は例えばクロメルなどを用いて形成することができ、 N型 熱電変換部材 32は例えばコンスタンタンなどを用いて形成することができる。
[0019] 次に、発電装置 10の作用について以下に説明する。
発電装置 10では、外部から発電開始温度以上に加熱された混合燃料ガスが、ガス 流路 11の図 1中における左側力 右側へ向けて導入されると、セル本体 20が発電 開始温度以上の温度に加熱されて燃料電池として動作する。
即ち、加熱されたセル本体 20の空気極 23では、混合燃料ガス中の空気で酸素ィ オン (02_)が生成される。この酸素イオンは固体酸化物型電解質体 21内を燃料極 2 2に移動し、セル本体 20が電力を発生する。また移動した酸素イオンは、燃料極 22 において混合燃料ガスに含まれる CHxや COxと反応して、二酸化炭素(CO )や水(
2
H O)を生成する。また、 P型熱電変換部材 31と N型熱電変換部材 32とは、混合燃
2
料ガスが有する熱エネルギーと燃料極 22における上記反応熱とで加熱され、ゼ一べ ック効果によって電力を発生する。
[0020] このようにして発電装置 10は、単室型固体酸化物型燃料電池として電力を発生す ると共に、ゼーベック効果によって電力を発生することができるから、高い発電効率を 得ることができる。 なお、空気極 23でも反応熱が生じるから、空気極 23に 2次発電デバイスを接合し てもよ ヽし、燃料極 22及び空気極 23の双方に 2次発電デバイスを接合してもよ 、。 また、図 2に示すように、 2次発電デバイス 30を構成する P型熱電変換部材 31と N 型熱電変換部材 32とを、電気絶縁層 40を介して、燃料極 22と空気極 23との何れか 一方もしくは双方に接合してもよい。このように電気絶縁層 40を用いた場合には、 2 次発電デバイス 30とセル本体 20とが電気的に絶縁されるから、セル本体 20と 2次発 電デバイス 30とを適宜直列あるいは並列に接続することにより、所望の発電電圧を 得ることができる。
[0021] 図 3は、第 1実施形態の変形例である発電装置の断面概略構造を示す。なお、第 1 実施形態と同様の機能を有する構成要素には、同一の符号を付してその説明を省 略する。
第 1実施形態の変形例に係る発電装置 10aでは、 2次発電デバイス 30を構成する P型熱電変換部材 31と N型熱電変換部材 32とが、電気絶縁層 40を介して燃料極 2 2の燃料極電極 24に接合されて ヽる。 P型熱電変換部材 31と N型熱電変換部材 32 とは、電気絶縁層 40上において離れており、 P型熱電変換部材 31の一端側と N型 熱電変換部材 32の一端側とは、導電部材 33を介して互いに接続されて 、る。
[0022] 発電装置 10aでは、 P型熱電変換部材 31と N型熱電変換部材 32とが、電気絶縁 層 40上で離れて 、るから、セル本体 20の反応熱を効率よく利用できる位置に P型熱 電変換部材 31と N型熱電変換部材 32とを配設することができる。また、セル本体 20 の近傍を流動する混合燃料ガスから、効率よく熱エネルギーを吸収できる位置に P型 熱電変換部材 31と N型熱電変換部材 32とを配設することができる。このため、発電 装置 10aは、その発電効率をより一層高めることができる。
[0023] (第 2実施形態)
図 4は、本発明の第 2実施形態に係る発電装置の断面概略構造を示す。なお、前 述した各実施形態と同様の機能を有する構成要素には、それぞれ同一の符号を付 してその説明を省略する。
発電装置 10bでは、 P型熱電変換部材 31が第 1の電気絶縁層 40を介して燃料極 2 2の燃料極電極 24に接合し、 N型熱電変換部材 32が第 2の電気絶縁層 41を介して 空気極 23の空気極電極 25に接合している。これら P型熱電変換部材 31及び N型熱 電変換部材 32は 2次発電デバイス(2次発電手段) 30を構成する。
[0024] 第 1の電気絶縁層 40に面する P型熱電変換部材 31の一端側には、 P型熱電変換 部材の電極である第 2の P部材電極 3 lbが形成されている。また、第 2の電気絶縁層 41に面する N型熱電変換部材 32の一端側には、 N型熱電変換部材の電極である 第 2の N部材電極 32bが形成されている。第 2の P部材電極 3 lbと第 2の N部材電極 32bとは、導電部材 33で電気的に接続されている。
発電装置 10bにお ヽて、発電開始温度以上に加熱された混合燃料ガスが発電装 置 10bの外部カゝらガス流路 11に導入されると、燃料電池セル本体 (以下セル本体と いう) 20は、発電開始温度以上の温度に加熱されて燃料電池として動作する。
[0025] P型熱電変換部材 31及び N型熱電変換部材 32は、混合燃料ガスが有する熱エネ ルギ一で加熱される。このような加熱にカ卩え、 P型熱電変換部材 31は燃料極 22の反 応熱でも加熱され、 N型熱電変換部材 32は空気極 23の反応熱でも加熱されるので 、ゼーベック効果による発電の効率が一層高まる。
力べして発電装置 10bは、単室型固体燃料電池として電力を発生すると共に、ゼー ベック効果により電力を発生して、その発電効率を一層高めることができる。
また発電装置 10bでは、 2次発電デバイス 30とセル本体 20とが電気的に絶縁され るから、セル本体 20と 2次発電デバイス 30とを適宜直列あるいは並列に接続すること により、所望の発電電圧を得ることができる。
[0026] (第 3実施形態)
図 5は、本発明の第 3実施形態に係る発電装置の断面概略構造を示す。なお、前 述した各実施形態と同様の機能を有する構成要素には、それぞれ同一の符号を付 してその説明を省略する。
発電装置 10cでは、 P型熱電変換部材 31が直接空気極 23に接合し、 N型熱電変 換部材 32が直接燃料極 22に接合している。 P型熱電変換部材 31及び N型熱電変 換部材 32は 2次発電デバイス(2次発電手段) 30を構成する。即ち、 2次発電デバィ ス 30の P型熱電変換部材 31と N型熱電変換部材 32とは、燃料電池セル本体 (以下 セル本体と 、う) 20を介して電気的に接続されて!、る。 [0027] 発電装置 10cにおいて、発電開始温度以上に加熱された混合燃料ガスが発電装 置 10cの外部力もガス流路 11に導入されると、セル本体 20は発電開始温度以上の 温度に加熱されて燃料電池として動作する。
P型熱電変換部材 31及び N型熱電変換部材 32は、混合燃料ガスが有する熱エネ ルギ一で加熱される。このような加熱にカ卩え、 P型熱電変換部材 31は空気極 23の反 応熱でも加熱され、 N型熱電変換部材 32は燃料極 22の反応熱でも加熱される。この 結果、 2次発電デバイス 30を構成する P型熱電変換部材 31及び N型熱電変換部材 32はゼーベック効果によって電力を発生する。
[0028] 力べして発電装置 10cは、単室型固体燃料電池として電力を発生すると共に、ゼー ベック効果で更に効率よく電力を発生することができるので、その発電効率をより一 層高めることができる。
また発電装置 10cでは、 2次発電デバイス 30の P型熱電変換部材 31と N型熱電変 換部材 32とがセル本体 20を介して電気的に接続されているから、セル本体 20と 2次 発電デバイス 30とは電気的に直列に接続されている。従って、セル本体 20の発電電 圧に 2次発電デバイス 30の発電電圧を加えた電圧が、第 1の P部材電極 31 aと第 1の N部材電極 32aとの間に出力される。
[0029] (第 4実施形態)
図 6は、本発明の第 4実施形態に係る発電装置の断面概略構造を示す。なお、前 述した各実施形態と同様の機能を有する構成要素には、それぞれ同一の符号を付 してその説明を省略する。
発電装置 10dの燃料電池セル本体(以下セル本体という) 20aでは、固体酸化物型 電解質体 21の一方の面に燃料極 22が接合され、 N型熱電変換部材 32が燃料極電 極 24を介して燃料極 22に接合されている。固体酸化物型電解質体 21の他方の面 には、空気極でもある P型熱電変換部材 31が接合されている。即ちセル本体 20aは 、固体酸化物型電解質体 21、燃料極 22、そして空気極でもある P型熱電変換部材 3 1を有している。また、 2次発電デバイス(2次発電手段) 30を構成する P型熱電変換 部材 31と N型熱電変換部材 32とは、固体酸化物型電解質体 21、燃料極 22及び燃 料極電極 24を介して電気的に接続されて!ヽる。 [0030] 発電装置 lOdにおいて、発電開始温度以上に加熱された混合燃料ガスが発電装 置 10dの外部力もガス流路 11に導入されると、セル本体 20aは、発電開始温度以上 の温度に加熱されて燃料電池として動作する。
P型熱電変換部材 31及び N型熱電変換部材 32は、混合燃料ガスが有する熱エネ ルギ一で加熱される。このとき、 P型熱電変換部材 31は空気極として反応するから、 その反応熱でも加熱される。この結果、 2次発電デバイス 30を構成する P型熱電変換 部材 31と N型熱電変換部材 32とがゼーベック効果によって電力を発生する。
力べして発電装置 10dは、単室型固体燃料電池として電力を発生すると共に、ゼー ベック効果により電力を発生することができるから、発電効率を高めることができる。ま た発電装置 10dでは、 P型熱電変換部材 31は空気極として反応するから、その反応 熱をより効率的に発電に利用することができる。
[0031] 図 7は、第 4実施形態の変形例に係る発電装置の断面概略構造を示す。なお、前 述した各実施形態と同様の機能を有する構成要素には、それぞれ同一の符号を付 してその説明を省略する。
発電装置 10eの燃料電池セル本体(以下セル本体という) 20bでは、固体酸化物型 電解質体 21の一方の面に、燃料極でもある N型熱電変換部材 32が接合されている 。固体酸化物型電解質体 21の他方の面には、空気極でもある P型熱電変換部材 31 が接合されている。即ちセル本体 20bは、固体酸化物型電解質体 21、空気極でもあ る P型熱電変換部材 31、及び燃料極でもある N型熱電変換部材 32を有している。ま た、 2次発電デバイス(2次発電手段) 30を構成する N型熱電変換部材 32と P型熱電 変換部材 31とが、固体酸化物型電解質体 21を介して電気的に接続されている。
[0032] 発電装置 10eにおいて、発電開始温度以上に加熱された混合燃料ガスが発電装 置 10eの外部力もガス流路 11へ導入されると、セル本体 20bは、発電開始温度以上 の温度に加熱されて燃料電池として動作する。また、 P型熱電変換部材 31と N型熱 電変換部材 32とは、混合燃料ガスが有する熱エネルギーで加熱されると共に、いず れも燃料電池の反応熱で加熱される。この結果、 2次発電デバイス 30を構成する P型 熱電変換部材 31と N型熱電変換部材 32とがゼーベック効果によって電力を発生す る。このように発電装置 10eでは、 P型熱電変換部材 31と N型熱電変換部材 32とが 反応熱で直接加熱されるので、その発電効率が更に高まる。
以上で本発明の実施形態に関する説明を終えるが、本発明に係る発電装置は上 記実施形態として示されたものに限定されない。
即ち、本発明に係る発電装置は、燃料電池セル本体を備え、燃料電池セル本体に おける燃料極や空気極の反応熱を利用できるものであれば、電解質体を固体酸ィ匕 物型電解質体に限定するものではない。また、燃料電池セル本体によって構成され る燃料電池の形式も単室型燃料電池に限定されるものではない。更に、本発明に係 る発電装置は複数の燃料電池セル本体を有するものであってもよい。
また、混合燃料ガスとして、発電開始温度以上の温度を有して排出される内燃機関 や外燃機関の燃焼排ガスを使用すれば、燃料電池セル本体が高温の燃焼排ガスで 加熱されて電力を発生する。しカゝも、燃焼排ガスの熱エネルギーと、燃料極と空気極 との何れか一方もしくは双方における反応の熱で 2次発電デバイスが電力を発生す ることができるので、その発電効率を向上させることができる。また、燃焼排ガスに含 まれる炭化水素化合物 (CHx)や炭素酸化物 (COx)から二酸化炭素 (CO )や水(
2
H O)が生成されるから、燃焼排ガスを浄ィ匕することができる。従って、本発明に係る
2
発電装置を自動車などに適用すれば、燃焼排ガスを用いて発電することができ、燃 費が向上すると共に、燃焼排ガスを浄ィ匕することができる。

Claims

請求の範囲
[1] 電解質体と燃料極と空気極とを有するセル本体と、
上記燃料極及び空気極のうちの少なくとも一方に接合され、 P型熱電変換部材と N 型熱電変換部材とを有する 2次発電手段と
を備えたことを特徴とする発電装置。
[2] 上記 N型熱電変換部材は上記セル本体の上記燃料極に接合され、上記 P型熱電 変換部材は上記セル本体の上記空気極に接合されたことを特徴とする請求項 1に記 載の発電装置。
[3] 上記 2次発電手段は、上記セル本体との接合部分に配された電気絶縁層を更に備 えることを特徴とする請求項 1に記載の発電装置。
[4] 上記 P型熱電変換部材は、上記セル本体の上記燃料極に第 1の電気絶縁層を介 して接合され、
上記 N型熱電変換部材は、上記セル本体の上記空気極に第 2電気絶縁層を介し て接合され、
上記 2次発電手段は、上記第 1の絶縁層に面する上記 P型熱電変換部材の電極と 、上記第 2の絶縁層に面する上記 N型熱電変換部材の電極とを導通する導電部材 を更に備えたことを特徴とする請求項 3に記載の発電装置。
[5] 上記 N型熱電変換部材及び P型熱電変換部材は上記絶縁層に離れて配設され、 上記 2次発電手段は、上記絶縁層に面する上記 P型熱電変換部材及び N型熱電 変換部材の電極を導通する導電部材を更に備えたことを特徴とする請求項 3に記載 の発電装置。
[6] 上記セル本体は、固体酸化物型燃料電池の一部を構成していることを特徴とする 請求項 1乃至 5のいずれかに記載の発電装置。
[7] 電解質体と燃料極と空気極とを有するセル本体と、
P型熱電変換部材と N型熱電変換部材とを有する 2次発電手段とを備え、 上記 P型熱電変換部材は、上記セル本体の上記空気極を兼ねて 、ることを特徴と する発電装置。
[8] 上記 N型熱電変換部材は、上記セル本体の上記燃料極を兼ねていることを特徴と する請求項 7に記載の発電装置。
PCT/JP2007/052754 2006-02-27 2007-02-15 発電装置 WO2007105403A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800148257A CN101432911B (zh) 2006-02-27 2007-02-15 发电装置
US12/224,148 US8288042B2 (en) 2006-02-27 2007-02-15 Electric power generation device
CA2642498A CA2642498C (en) 2006-02-27 2007-02-15 Power generating apparatus
EP07714284A EP1990853B1 (en) 2006-02-27 2007-02-15 Power generating apparatus
KR1020087020199A KR101332996B1 (ko) 2006-02-27 2007-02-15 발전장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-050121 2006-02-27
JP2006050121A JP5128777B2 (ja) 2006-02-27 2006-02-27 発電装置

Publications (1)

Publication Number Publication Date
WO2007105403A1 true WO2007105403A1 (ja) 2007-09-20

Family

ID=38509241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052754 WO2007105403A1 (ja) 2006-02-27 2007-02-15 発電装置

Country Status (7)

Country Link
US (1) US8288042B2 (ja)
EP (1) EP1990853B1 (ja)
JP (1) JP5128777B2 (ja)
KR (1) KR101332996B1 (ja)
CN (1) CN101432911B (ja)
CA (1) CA2642498C (ja)
WO (1) WO2007105403A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178143A4 (en) * 2007-08-06 2014-01-22 Atsumitec Kk GENERATOR
US9083011B2 (en) 2010-12-13 2015-07-14 Ngk Insulators, Ltd. Solid oxide fuel cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051949A1 (de) * 2009-11-04 2011-05-05 Benteler Automobiltechnik Gmbh Thermoelektrisches Generatorenmodul und abgasführendes Bauteil
KR101179390B1 (ko) 2010-06-23 2012-09-04 삼성전기주식회사 연료 전지 시스템
US20110139204A1 (en) * 2010-10-04 2011-06-16 King Fahd University Of Petroleum And Minerals Energy conversion efficient thermoelectric power generator
CN102024973A (zh) * 2010-11-16 2011-04-20 成都振中电气有限公司 固体氧化物燃料电池
CN107681925A (zh) * 2017-10-26 2018-02-09 浙江大学 一种两级温差发电的余热利用装置
JP2022512893A (ja) * 2018-10-30 2022-02-07 フイリツプス66カンパニー 熱電的に強化された燃料電池
US11777113B2 (en) 2021-10-15 2023-10-03 Toyota Motor Engineering & Manufacturing North America, Inc. Waste heat reclamation in a power generation system and method of operating a power generation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280073A (ja) * 1991-03-08 1992-10-06 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池
JPH09289030A (ja) * 1996-04-23 1997-11-04 Mitsubishi Heavy Ind Ltd 固体電解質燃料電池モジュール
JP2000173640A (ja) * 1998-12-03 2000-06-23 Tokyo Gas Co Ltd 熱電変換方法及び装置
JP2001028805A (ja) * 1999-07-12 2001-01-30 Toyota Motor Corp 移動体の駆動装置
JP2002141077A (ja) * 2000-11-06 2002-05-17 Sony Corp 固体高分子電解質型燃料電池及び燃料電池スタック
WO2005004263A2 (fr) * 2003-06-16 2005-01-13 Renault S.A.S Cogeneration d’electricite par utilisation de l’effet seebeck a l’interieur d’une pile a combustible
JP2006147400A (ja) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd 燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290073A (ja) * 1991-03-19 1992-10-14 Fujitsu Ltd 画像データ圧縮装置
JP4904568B2 (ja) 2001-03-21 2012-03-28 独立行政法人産業技術総合研究所 単室型固体電解質型燃料電池及びその製造方法
JP4900747B2 (ja) 2001-03-21 2012-03-21 独立行政法人産業技術総合研究所 単室型固体電解質型燃料電池及びその製造方法
JP2002313357A (ja) 2001-04-06 2002-10-25 Toyota Central Res & Dev Lab Inc 単室型燃料電池
US20060157102A1 (en) * 2005-01-12 2006-07-20 Showa Denko K.K. Waste heat recovery system and thermoelectric conversion system
US8039726B2 (en) * 2005-05-26 2011-10-18 General Electric Company Thermal transfer and power generation devices and methods of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280073A (ja) * 1991-03-08 1992-10-06 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池
JPH09289030A (ja) * 1996-04-23 1997-11-04 Mitsubishi Heavy Ind Ltd 固体電解質燃料電池モジュール
JP2000173640A (ja) * 1998-12-03 2000-06-23 Tokyo Gas Co Ltd 熱電変換方法及び装置
JP2001028805A (ja) * 1999-07-12 2001-01-30 Toyota Motor Corp 移動体の駆動装置
JP2002141077A (ja) * 2000-11-06 2002-05-17 Sony Corp 固体高分子電解質型燃料電池及び燃料電池スタック
WO2005004263A2 (fr) * 2003-06-16 2005-01-13 Renault S.A.S Cogeneration d’electricite par utilisation de l’effet seebeck a l’interieur d’une pile a combustible
JP2006147400A (ja) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1990853A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178143A4 (en) * 2007-08-06 2014-01-22 Atsumitec Kk GENERATOR
US9083011B2 (en) 2010-12-13 2015-07-14 Ngk Insulators, Ltd. Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2007227306A (ja) 2007-09-06
KR101332996B1 (ko) 2013-11-25
CA2642498A1 (en) 2007-09-20
EP1990853B1 (en) 2012-08-01
CN101432911A (zh) 2009-05-13
EP1990853A1 (en) 2008-11-12
US8288042B2 (en) 2012-10-16
KR20080098036A (ko) 2008-11-06
CA2642498C (en) 2013-08-20
CN101432911B (zh) 2012-03-21
EP1990853A4 (en) 2010-08-11
US20090087691A1 (en) 2009-04-02
JP5128777B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2007105403A1 (ja) 発電装置
KR102307827B1 (ko) 고체 산화물 연료 전지 시스템
CN215578650U (zh) 使用氨气为燃料的固体氧化物燃料电池与质子交换膜燃料电池混合系统
US20120251905A1 (en) Fuel cell module
JP5030436B2 (ja) 単室型固体酸化物型燃料電池
US20120178012A1 (en) Sealing member for solid oxide fuel cell and solid oxide fuel cell employing the same
CN113506902A (zh) 使用氨气为燃料的固体氧化物燃料电池与质子交换膜燃料电池混合系统
JP2011222136A (ja) 燃料電池モジュール
JP2007200710A (ja) 固体酸化物形燃料電池スタック
KR101395528B1 (ko) 발전장치
JP2011044361A (ja) 燃料電池モジュール
JP4342018B2 (ja) 化学反応器
JP4654631B2 (ja) 固体酸化物形燃料電池
KR102288572B1 (ko) 고체산화물 연료전지의 스택 모듈
JP2011044244A (ja) 燃料電池スタック装置
JP5491079B2 (ja) 燃料電池システム
Kalra et al. Design of a High Temperature Solid Oxide Fuel Cell: A Review
Khare et al. Diesel generator and SOFC fuel cell based hybrid energy system
Li Fuel cells-the environmentally friendly energy converter and power generator
TAKATSUKA et al. Development of Polymer Electrolyte Membrane Fuel Cell
Singhal Zirconia Electrolyte-based Solid Oxide Fuel Cells
KR20140026868A (ko) 열전소자를 갖는 다중 연료전지 운전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2642498

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007714284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224148

Country of ref document: US

Ref document number: 1020087020199

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200780014825.7

Country of ref document: CN