JP2006147400A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006147400A
JP2006147400A JP2004337433A JP2004337433A JP2006147400A JP 2006147400 A JP2006147400 A JP 2006147400A JP 2004337433 A JP2004337433 A JP 2004337433A JP 2004337433 A JP2004337433 A JP 2004337433A JP 2006147400 A JP2006147400 A JP 2006147400A
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
cell system
fuel
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004337433A
Other languages
English (en)
Inventor
Masato Odajima
真人 小田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004337433A priority Critical patent/JP2006147400A/ja
Publication of JP2006147400A publication Critical patent/JP2006147400A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池スタックの発電電力を蓄電池に充電することなく、低温時からの起動の際も通常時と同じ時間で燃料電池スタックの起動を開始する。
【解決手段】燃料電池スタック2は、燃料電池スタック2を挟持する一対の集電板3と、一対の集電板3を挟持する絶縁板5と、集電板3と絶縁板5の間に配設され、集電板3と絶縁板5間の温度差によるゼーベック効果を利用して発電する熱電素子4を備える。これにより、燃料電池スタック2の発電電力を蓄電池に充電することなく、低温時からの起動の際も通常時と同じ時間で燃料電池スタック2の起動を開始することができる。
【選択図】図1

Description

本発明は、燃料電池が複数積層された燃料電池スタックを有する燃料電池システムに関し、より詳しくは、燃料電池スタックの発電電力を蓄電池に充電することなく、低温時の起動の際も通常時と同じ時間で燃料電池スタックを起動可能にするための技術に係わる。
従来より、燃料極(アノード)と酸化剤極(カソード)により高分子イオン交換膜(陽イオン交換膜)を挟持する膜電極接合体と膜電極接合体を挟持するセパレータとを有する固体高分子型燃料電池(以下、燃料電池と略記)が複数積層された燃料電池スタックが知られている。このような燃料電池スタックでは、燃料極に供給された燃料ガス(水素含有ガス)が、電極面上で水素イオン化され、適度に加湿された高分子イオン交換膜を介して酸化剤極方向に移動する。そして、燃料ガスが水素イオン化された際に生じた電子は、外部回路に取り出され、直流の電気エネルギーとして利用される。一方、酸化剤極には、酸素含有ガスや空気等の酸化剤ガスが供給され、電極面上の三相界面において水素イオン,電子,及び酸素ガスが反応することにより水が生成される。
ところで、従来までの燃料電池スタックでは、寒冷地における起動時等の低温時からの起動の際、燃料電池スタックの温度が低いために、上述の反応により生成された水が内部で凍結していることがある。そして、水が凍結している状態で燃料電池スタックを起動した場合には、燃料ガスと酸化剤ガスの供給が氷により阻害されることによって、上述の反応が活発に行われないので、未使用の燃料ガスが多く排出され、エネルギー効率が低下する。従って、低温時からの起動の際には、エネルギー効率を低下させないために、燃料電池の電極面内温度を十分発電可能な温度まで速やかに上げる必要性がある。
このような背景から、最近では、燃料電池スタックを冷却するための冷却媒体の循環経路に、冷却媒体を所定温度以上に保温,貯蔵する蓄熱装置を設け、起動の際、蓄熱装置内の冷却媒体を燃料電池スタックに供給することにより、燃料電池スタックを暖機する燃料電池システムが提案されている(例えば、特許文献1を参照)。また、燃料極を冷却するための第1冷却媒体と酸化剤極を冷却するための第2冷却媒体の流路とをそれぞれ独立して設け、第1冷却媒体が所定温度以下である場合、第1冷却媒体よりも融点の低い第2冷却媒体を加熱し、加熱された第2冷却媒体を燃料電池スタックに供給することにより、燃料電池スタックを暖機する燃料電池システムも提案されている(例えば、特許文献2を参照)。
特開2002−42846号公報 特開平10−55812号公報
しかしながら、従来までの燃料電池システムによれば、冷却媒体の保温や第2冷却媒体の加熱のための電力を確保ために、定常運転時に燃料電池スタックの発電電力を充電池に充電しておく必要がある。また、充電池が満充電の状態で燃料電池スタックが運転を停止していない場合には、次回の起動時に備えて、充電池の充電量が所定量になるまで燃料電池スタックを運転させなければならないために、燃料電池スタックのエネルギー効率が悪化する。また、従来までの燃料電池システムによれば、冷却媒体の熱容量を利用して燃料電池スタックを暖機するために、燃料電池スタックが発電可能な状態になるまでに多くの時間を要する。
本発明は、上述の課題を解決するためになされたものであり、その目的は、燃料電池スタックの発電電力を蓄電池に充電することなく、低温時からの起動の際も通常時と同じ時間で燃料電池スタックの起動を開始することが可能な燃料電池システムを提供することにある。
上述の課題を解決するために、本発明に係る燃料電池システムは、燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスの供給を受けて発電する燃料電池が複数積層された燃料電池スタックを有する燃料電池システムであって、燃料電池スタックは、燃料電池スタックを挟持する一対の集電板と、一対の集電板を挟持する絶縁板と、集電板と絶縁板の間に配設され、集電板と絶縁板間の温度差によるゼーベック効果を利用して発電する熱電素子とを備える。
本発明に係る燃料電池システムによれば、熱電素子が集電板と絶縁板間の温度差によるゼーベック効果を利用して発電するので、燃料電池スタックの発電電力を蓄電池に充電することなく、低温時からの起動の際も通常時と同じ時間で燃料電池スタックの起動を開始することができる。
以下、図面を参照して、本発明の一実施形態となる燃料電池システムの構成について説明する。
〔燃料電池システムの構成〕
本発明の一実施形態となる燃料電池システムは、図1,2に示すように、燃料極及び酸化剤極にそれぞれ水素及び空気の供給を受けて発電する燃料電池1が複数積層された燃料電池スタック2を有する。なお、この実施形態では、燃料電池1は、固体高分子型燃料電池により構成され、燃料極と酸化剤極により高分子イオン交換膜を挟持する膜電極接合体と、膜電極接合体を挟持するセパレータとを有する。また、燃料極及び酸化剤極における電気化学反応及び燃料電池スタック全体としての電気化学反応は以下に示す式(1)〜(3)による。
〔燃料極〕 H2 → 2H+ +2e- …(1)
〔酸化剤極〕 1/2 O2 +2H+ +2e- → H2O …(2)
〔全体〕 H2 +1/2 O2 → H2O …(3)
また、燃料電池スタック2は、図1,2に示すように、一対の集電板3,熱電素子4,絶縁板5,及びエンドプレート6により一体的に固定され、燃料電池スタック2が発電した電力は集電板3を介して外部に取り出される。上記熱電素子4は、BiTe系,PbTe系,GIGA−TOPAZ(登録商標)等のゼーベック効果を利用して温度差を起電力に変換する素子により構成され、この実施形態では、集電板3と絶縁板5間の温度差に対応する起電力を生成する。なお、本明細書でいうゼーベック効果とは、2種類の金属や半導体の接合部に温度差をつけると電位差を生じる現象のことを意味し、この実施形態では、熱を発する燃料電池スタック2側の集電板3の温度が絶縁板5の温度よりも高くなることにより電位差が生じる。
〔制御系の構成〕
上記燃料電池システムの制御系は、熱電素子4が発電した電力を蓄電する蓄電池7と、蓄電池7と熱電素子4の接続/非接続を切り換えるスイッチ8aと、蓄電池7と燃料電池1の接続/非接続を切り換える8bと、燃料電池1の電極面温度を直接反映する酸化剤極側のセパレータの温度を検出する温度センサ9と、燃料電池システム全体の動作を制御する制御ユニット10を備える。なお、この実施形態では、蓄電池7は、鉛蓄電池,ニッケル−カドミニウム蓄電池,ニッケル−水素蓄電池,リチウム二次電池等の二次電池により構成され、その容量は、燃料電池スタック2を最低発電可能温度T1(例えば5℃)に所定時間T1(例えば10時間)保持するために必要な電力を充電可能な大きさに構成されている。また、温度センサ9は10枚等の燃料電池1の所定積層枚数毎に設けられている。
そして、このような構成を有する燃料電池システムでは、制御ユニット10が以下に示す充電処理及び保温処理を実行することにより、燃料電池スタック2の発電電力を蓄電池7に充電することなく、低温からの起動の際も通常時と同じ時間で燃料電池スタック2を起動する。以下、この充電処理及び保温処理を実行する際の制御ユニット10の動作について説明する。
〔充電処理〕
始めに、充電処理を実行する際の制御ユニット10の動作について説明する。
充電処理は燃料電池システムが起動されるのに応じて開始となり、制御ユニット10は、集電板3と絶縁板5の温度差が所定温度範囲内であるか否かを判別する。そして、集電板3と絶縁板5の温度差が所定温度範囲内の場合、制御ユニット10は、スイッチ8aをオフ状態に制御することにより、集電板3と蓄電池7との間を非接続状態にする。そして、燃料電池スタック2が発電を開始し、集電板3の温度が絶縁板5の温度よりも高くなることにより、集電板3と絶縁板5の温度差が所定温度範囲以上の場合は、制御ユニット10は、スイッチ8aをオン状態に制御することにより熱電素子4と蓄電池7を接続し、集電板3と絶縁板5の温度差に応じて熱電素子4が発電した電力を蓄電池7に充電する。このような処理によれば、燃料電池スタック2の発電電力を利用することなく、後述する保温処理に必要となる電力を充電池7に充電することができる。
〔保温処理〕
次に、図4に示すフローチャートを参照して、保温処理を実行する際の制御ユニット10の動作について説明する。
図4に示すフローチャートは、燃料電池システムが停止するのに応じて開始となり、保温処理はステップS1の処理に進む。なお、この保温処理は、例えば5分間隔等の所定の制御周期T[sec]毎に繰り返し実行されるものとする。
ステップS1の処理では、制御ユニット10が、温度センサ9を介して燃料電池1の電極面温度tを検出する。なお、この実施形態では、温度センサ9は、燃料電池1の電極面温度tを検出するが、燃料電池スタック2を冷却するための冷却媒体の温度を検出するようにしてもよい。これにより、このステップS1の処理は完了し、保温処理はステップS2の処理に進む。
ステップS2の処理では、制御ユニット10が、燃料電池1の電極面温度tが燃料電池スタック2の最低発電可能温度T2より高いか否かを判別する。そして、判別の結果、燃料電池1の電極面温度tが燃料電池スタック2の最低発電可能温度T2より低い場合、制御ユニット10は、暖機が必要であると判断し、保温処理をステップS3の処理に進める。一方、燃料電池1の電極面温度tが燃料電池スタック2の最低発電可能温度T2より高い場合には、制御ユニット10は、暖機は不要であると判断し、保温処理をステップS4の処理に進める。
ステップS3の処理では、制御ユニット10が、スイッチ8bをオン状態に制御することにより燃料電池1のセパレータに弱電流を流し、セパレータで発生したジュール熱によって燃料電池スタック2を暖機する(保温運転)。このような処理によれば、燃料電池スタック2の温度を最低発電可能温度T2よりも高くし、低温からの起動の際も通常時と同じ時間で燃料電池スタック2を起動することができる。これにより、このステップS3の処理は完了し、一連の保温処理は終了する。
ステップS4の処理では、制御ユニット10が、スイッチ8bをオフ状態に制御することにより、上記保温運転を停止する。これにより、このステップS4の処理は完了し、一連の保温処理は終了する。
以上の説明から明らかなように、本発明の一実施形態となる燃料電池システムによれば、燃料電池スタック2は、燃料電池スタック2を挟持する一対の集電板3と、一対の集電板3を挟持する絶縁板5と、集電板3と絶縁板5の間に配設され、集電板3と絶縁板5間の温度差によるゼーベック効果を利用して発電する熱電素子4を備えるので、燃料電池スタック2の発電電力量を向上させることができる。
また、本発明の一実施形態となる燃料電池システムは、熱電素子4が発電した電力を蓄電する蓄電池7を備えるので、燃料電池スタック2の発電電力を利用することなく蓄電池7を充電することができる。
また、本発明の一実施形態となる燃料電池システムは、制御ユニット10が、蓄電池7に充電された電力を利用して停止時及び保管時に燃料電池スタック2を保温するので、低温時からの起動の際も通常時と同じ時間で燃料電池スタック2の起動を開始することができる。
また、本発明の一実施形態となる燃料電池システムによれば、制御ユニット10は、蓄電池7に充電された電力を利用して燃料電池1のセパレータを負荷とする回路に電流を流し、セパレータで発生したジュール熱を利用して燃料電池スタック2を保温するので、冷却媒体を使用することなく燃料電池スタック2を加熱,保温することができる。
以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。例えば、熱電素子4の絶縁板側表面に、集電板3と絶縁板5の温度差を大きくするための放熱フィンを設けてもよい。このような構成によれば、集電板3と絶縁板5の温度差が大きくなるので、熱電素子4の発電効率が向上し、より多くの電力を生成することができる。このように、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。
本発明の一実施形態となる燃料電池スタックの構成を示す鳥瞰図である。 図1に示す燃料電池スタックの構成を示す側面図である。 本発明の一実施形態となる燃料電池システムの構成を示す模式図である。 本発明の一実施形態となる保温処理の流れを示すフローチャート図である。
符号の説明
1:燃料電池
2:燃料電池スタック
3:集電板
4:熱電素子
5:絶縁板
6:エンドプレート
7:蓄電池
8a,8b:スイッチ
9:温度センサ
10:制御ユニット

Claims (5)

  1. 燃料極及び酸化剤極にそれぞれ燃料ガス及び酸化剤ガスの供給を受けて発電する燃料電池が複数積層された燃料電池スタックを有する燃料電池システムであって、
    前記燃料電池スタックは、
    前記燃料電池スタックを挟持する一対の集電板と、
    前記一対の集電板を挟持する絶縁板と、
    前記集電板と前記絶縁板の間に配設され、集電板と絶縁板間の温度差によるゼーベック効果を利用して発電する熱電素子と
    を備えることを特徴とする燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記熱電素子が発電した電力を蓄電する蓄電手段を備えることを特徴とする燃料電池システム。
  3. 請求項2に記載の燃料電池システムであって、
    前記蓄電手段が蓄電する電力を利用して停止時及び保管時に前記燃料電池スタックを保温する保温手段を備えることを特徴とする燃料電池システム。
  4. 請求項3に記載の燃料電池システムであって、
    前記燃料電池は、燃料極と酸化剤極により固体高分子膜を挟持する膜電極接合体と、当該膜電極接合体を挟持するセパレータとを有し、
    前記保温手段は、前記蓄電手段が蓄電する電力を利用して前記セパレータを負荷とする回路に電流を流し、当該セパレータで発生したジュール熱を利用して前記燃料電池スタックを保温することを特徴とする燃料電池システム。
  5. 請求項1から請求項4のうち、いずれか1項に記載の燃料電池システムであって、
    前記熱電素子の絶縁板側表面には、前記集電板と前記絶縁板の温度差を大きくするための放熱手段が設けられていることを特徴とする燃料電池システム。
JP2004337433A 2004-11-22 2004-11-22 燃料電池システム Pending JP2006147400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004337433A JP2006147400A (ja) 2004-11-22 2004-11-22 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004337433A JP2006147400A (ja) 2004-11-22 2004-11-22 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2006147400A true JP2006147400A (ja) 2006-06-08

Family

ID=36626834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004337433A Pending JP2006147400A (ja) 2004-11-22 2004-11-22 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2006147400A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105403A1 (ja) * 2006-02-27 2007-09-20 Kabushiki Kaisha Atsumitec 発電装置
JP2008140611A (ja) * 2006-11-30 2008-06-19 Suzuki Motor Corp 車両用燃料電池システムの温度制御装置
JP2020156976A (ja) * 2019-03-28 2020-10-01 日本電気株式会社 中敷き型電子機器および中敷き型電子機器の制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105403A1 (ja) * 2006-02-27 2007-09-20 Kabushiki Kaisha Atsumitec 発電装置
US8288042B2 (en) 2006-02-27 2012-10-16 Kabushiki Kaisha Atsumitec Electric power generation device
JP2008140611A (ja) * 2006-11-30 2008-06-19 Suzuki Motor Corp 車両用燃料電池システムの温度制御装置
JP2020156976A (ja) * 2019-03-28 2020-10-01 日本電気株式会社 中敷き型電子機器および中敷き型電子機器の制御方法
JP7326811B2 (ja) 2019-03-28 2023-08-16 日本電気株式会社 中敷き型電子機器および中敷き型電子機器の制御方法

Similar Documents

Publication Publication Date Title
JP3999498B2 (ja) 燃料電池システム及びその停止方法
JP3601166B2 (ja) 燃料電池システム
JP2009118729A (ja) 車両用蓄電手段の加熱装置
JP5640884B2 (ja) 2次電池型燃料電池システム
US20020068202A1 (en) Method for cold-starting a fuel cell battery, and fuel cell battery suitable for this method
CN109904488A (zh) 燃料电池系统及其低温启动方法
CN111211337A (zh) 一种直接甲醇燃料电池系统
JP3677266B2 (ja) 燃料電池スタックおよびその暖機方法
JP2004253189A (ja) 電源装置
JP2005093282A (ja) 高分子電解質型燃料電池システム及びその運転方法
JP4533604B2 (ja) 燃料電池の低温起動方法
JP4929600B2 (ja) 燃料電池システム及び燃料電池システムの停止方法
JP3857214B2 (ja) 燃料電池システムの暖機方法
JP2006147400A (ja) 燃料電池システム
KR20110006055A (ko) 저온형 연료전지 스택의 냉각 장치 및 그 제어방법
JP2007280678A (ja) 燃料電池
JP2005293902A (ja) 燃料電池用セパレータ及び燃料電池
US7534511B2 (en) Thermal control of fuel cell for improved cold start
JP2005183047A (ja) 燃料電池スタック
JP2005302491A (ja) 燃料電池システム
JP4984546B2 (ja) 燃料電池システム
JP2931581B1 (ja) ナトリウム−硫黄電池の温度制御システム
JP2007026784A (ja) 燃料電池、燃料電池システム及び燃料電池システムの運転方法
JP2007250216A (ja) 燃料電池システム及びその運転方法
JP2005174600A (ja) 燃料電池システム