WO2007102378A1 - 電気泳動用カセットおよびその製造方法 - Google Patents

電気泳動用カセットおよびその製造方法 Download PDF

Info

Publication number
WO2007102378A1
WO2007102378A1 PCT/JP2007/053796 JP2007053796W WO2007102378A1 WO 2007102378 A1 WO2007102378 A1 WO 2007102378A1 JP 2007053796 W JP2007053796 W JP 2007053796W WO 2007102378 A1 WO2007102378 A1 WO 2007102378A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cassette
substrate
siox film
support
Prior art date
Application number
PCT/JP2007/053796
Other languages
English (en)
French (fr)
Inventor
Koji Sakairi
Chie Hayashida
Ichiji Namatame
Kenji Yokoyama
Atsunori Hiratsuka
Kisho Shiseki
Original Assignee
Toppan Printing Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Sharp Kabushiki Kaisha
Katayanagi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006052544A external-priority patent/JP2007232476A/ja
Priority claimed from JP2006052543A external-priority patent/JP2007232475A/ja
Application filed by Toppan Printing Co., Ltd., National Institute Of Advanced Industrial Science And Technology, Sharp Kabushiki Kaisha, Katayanagi Institute filed Critical Toppan Printing Co., Ltd.
Priority to US12/224,337 priority Critical patent/US20090314643A1/en
Publication of WO2007102378A1 publication Critical patent/WO2007102378A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories

Definitions

  • the present invention relates to a cassette for electrophoresis used for chemical analysis and the like, and is capable of satisfactorily injecting a support precursor solution and forming a support.
  • an electrophoresis cassette (hereinafter sometimes abbreviated as “cassette”), for example, as shown in FIG. 6, two types of substrates 1 and 2 are combined to face each other.
  • One-dimensional cassettes using media can be exemplified.
  • a recess 3 is formed on one substrate 1 of the one-dimensional cassette, and the presence of the recess 3 forms a cavity for forming a support such as a polyacrylamide gel.
  • Cassettes using synthetic resin substrates have the advantage that they can be easily mass-produced by injection molding and are not easily damaged.
  • the substrate surface is hydrophobic and less hydrophilic than a glass substrate. Therefore, an uncured support precursor solution such as liquid acrylamide is used.
  • an uncured support precursor solution such as liquid acrylamide is used.
  • the affinity between the support precursor solution and the substrate surface is insufficient, the precursor solution cannot be injected smoothly, and the injection may be uneven. There were inconveniences such as distorted boundaries.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-132785
  • the problem in the present invention is that the two substrates made of synthetic resin are combined.
  • a cassette it is to be able to smoothly inject a support precursor solution and to form a good support without distorting the boundary between the separated gel and the concentrated gel after injection.
  • the present invention is an electrophoresis cassette comprising a substrate made of a synthetic resin and having a cavity for forming a support in the substrate.
  • An electrophoresis cassette is provided in which the surface in contact with the support is covered with a SiOx film, and the contact angle of the SiOx film with water is 30 degrees or less.
  • a plastic film is provided between the surface of the support and the SiOx film.
  • an anchoring layer is preferably formed between the surface of the support and the SiOx film.
  • a plastic film and an anchoring layer are formed between the surface of the support and the SiOx film, and the plastic film is formed on the surface of the support.
  • an anchoring layer is formed between the SiOx film and the SiOx film.
  • the anchoring layer and the SiOx film are continuously formed.
  • the present invention provides a plasma CVD method directly or via a plastic film when producing an electrophoresis cassette configured by combining substrates made of synthetic resin.
  • An electrophoretic cassette manufacturing method is provided.
  • the affinity between the support precursor solution and the outermost surface of the substrate in other words, the wettability is good, and smooth injection is possible when the support precursor solution is poured into the separation gel.
  • a good support can be formed in which the boundary between and the concentrated gel is not distorted.
  • by attaching a plastic film on the substrate and forming a SiOx film on the substrate it is possible to avoid damage to the gel due to breakage of the cassette, etc., when taking out the gel after electrophoresis from the cassette.
  • the SiOx membrane inhibits the polymerization of the support precursor solution by preventing the migration of oxygen from the synthetic resin substrate during the polymerization of the support precursor solution such as acrylamide, which has a relatively low oxygen permeability. It is never done.
  • the adhesion between them is increased, and as a result, the bonding force between the substrate and the SiOx film is enhanced.
  • a plastic film is attached to the substrate surface, and an anchoring layer and
  • FIG. 1 is a schematic cross-sectional view showing the main part of a first specific example of a substrate constituting the cassette of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the main part of a second specific example of the substrate constituting the cassette of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the main part of a third specific example of the substrate constituting the cassette of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing the main part of a fourth specific example of the substrate constituting the cassette of the present invention.
  • FIG. 5A is a schematic cross-sectional view showing a two-dimensional electrophoresis cassette according to the present invention.
  • FIG. 5B is a schematic plan view showing a two-dimensional electrophoresis cassette according to the present invention.
  • FIG. 6 is a schematic perspective view showing a configuration of a one-dimensional electrophoresis cassette according to the present invention. Explanation of symbols [0013] 1, 2, 11 ... substrate, 3 ... recess
  • FIG. 1 shows a main part of a first specific example of the cassette according to the present invention, and reference numeral 11 denotes a substrate constituting the cassette.
  • the substrate 11 is made of a synthetic resin such as a styrene resin, a styrene acrylonitrile copolymer, an acrylic resin, a polyester resin, a cellulose resin, or a vinyl chloride resin, and is manufactured by a molding method such as an injection molding method.
  • a synthetic resin such as a styrene resin, a styrene acrylonitrile copolymer, an acrylic resin, a polyester resin, a cellulose resin, or a vinyl chloride resin
  • a SiOx film 13 is provided on the surface of the substrate 11 in contact with the support.
  • the SiOx film 13 is formed directly on the surface of the substrate 11 by various thin film forming means, for example, vapor deposition, sputtering, CVD, plasma CVD, or the like.
  • various thin film forming means for example, vapor deposition, sputtering, CVD, plasma CVD, or the like.
  • the plasma CVD method using siloxanes such as hexamethyldisiloxane and oxygen as a raw material gas in a mixing ratio of 10: 100 to 5: 100 is particularly preferable.
  • the SiOx film 13 having a contact angle of 30 degrees or less can be obtained by such a thin film forming means by controlling film forming conditions such as a mixing ratio of siloxanes and oxygen as raw materials.
  • the substrate temperature is 30 to 50 ° C, and the pressure is 0.01 to 300 Pa.
  • the SiOx film 13 has a carbon content in its composition of 6% or less in atomic percent, preferably Preferably, the lower the carbon content, which is desirable to be 4.8% or less, the more hydrophilic the film and the smaller the contact angle. In other words, the minimum value of the most preferable carbon content is 0%.
  • the carbon content can be reduced to 6% or less by controlling the film forming conditions in thin film forming means such as plasma CVD.
  • the surface of the substrate 11 exhibits high hydrophilicity.
  • the liquid flows well on the surface of the substrate 11 and can be injected smoothly.
  • the boundary where the boundary between the separated gel and the concentrated gel after injection is not distorted becomes uniform. Furthermore, since the SiOx film 13 has a certain degree of oxygen barrier property, the migration of oxygen from the substrate 11 is prevented, and the polymerization inhibition of the precursor solution such as acrylamide by oxygen is also prevented.
  • FIG. 2 shows a main part of the second specific example of the cassette of the present invention, and the same reference numerals are given to the same components as those in the first specific example, and the description thereof will be omitted.
  • a plastic film 14 is affixed to the surface that comes into contact with the support of the substrate 11, and a SiOx film 13 is provided on the surface of the plastic film 14.
  • plastic film 14 a film made of polystyrene, polyethylene terephthalate, polymethylmethacrylate, cyclic olefin, polyethylene, cellulose acetate, etc. and having a thickness of 10 to 300 ⁇ is used. It is affixed by bonding means such as adhesion and welding.
  • the formation of the SiOx film 13 on the surface of the plastic film 14 can be performed by the same thin film forming means as in the previous example, in particular, the plasma CVD method.
  • FIG. 3 shows a main part of a third specific example of the cassette of the present invention.
  • the same reference numerals are given to the same components as those in the first specific example, and the description thereof will be omitted.
  • the surface to be in contact with the support of the substrate 11 is provided with an anchoring layer 12.
  • the SiOx film 13 is provided on the anchor processing layer 12.
  • the anchor treatment layer 12 is for increasing the adhesion of the SiOx film 13 to the substrate 11 and is a polymer film of disiloxanes such as hexamethyldisiloxane having a thickness of 20 to 300 nm.
  • the anchoring layer 12 can be formed by various methods. For example, a method of applying the treatment agent by a method such as spin coating or ink jet, a method of immersing the treatment agent in an anchor treatment agent, and the like can be mentioned. Alternatively, when the resin substrate is molded, it may be provided by a method such as extruding an anchor treatment agent together with the resin.
  • a thin film forming method using a vacuum film forming process can be exemplified. According to this method, a uniform anchoring layer can be formed without being affected by the shape of the substrate.
  • thin film forming means include the CVD method and the plasma CVD method. Of these thin film forming means, the plasma CVD method using siloxanes such as hexamethyldisiloxane as a raw material gas is particularly preferred.
  • the substrate temperature is ⁇ 30 to 50 ° C.
  • the pressure is 0.01 to 300 Pa
  • the plasma output is 50 to 800 W
  • the SiOx film 13 can be formed in the same manner as in the first specific example.
  • the SiOx film 13 of the third specific example is more hydrophilic as the carbon content in the composition is desirably 10% or less in atomic percentage, preferably 5% or less.
  • the contact angle can be reduced. That is, the most preferable minimum value of carbon content is 0%.
  • the carbon content can be reduced to 10% or less by controlling the film forming conditions in thin film forming means such as plasma CVD.
  • the plasma CVD method is used for forming the anchor treatment layer 12 and the SiOx film 13, it is preferable to continuously form these.
  • disiloxanes such as hexamethyldisiloxane are supplied as raw materials to the chamber of the plasma CVD apparatus, and plasma polymerization is performed to form the anchor processing layer 12 on the substrate 11, and the chamber is left as it is.
  • disiloxanes such as hexamethyldisiloxane and oxygen are supplied as raw materials, and a SiOx film 13 is continuously formed on the anchor processing layer 12 by plasma CVD. Is.
  • the formation of the anchoring layer 12 is performed with oxygen being zero or a minute amount, and the formation of the SiO X film 13 is performed continuously by increasing the flow rate ratio of oxygen.
  • the SiOx film 13 has a certain degree of oxygen barrier property, the migration of oxygen from the substrate 11 is prevented, and the polymerization inhibition of the precursor solution such as acrylamide by oxygen is also prevented.
  • the adhesion between the SiOx film 13 and the substrate 11 is enhanced, and the SiOx film 13 is not peeled off even during long-term use. The effect continues.
  • FIG. 4 shows the main part of a fourth specific example of the cassette of the present invention, and the same reference numerals are given to the same components as those in the first specific example, and description thereof will be omitted.
  • a plastic film 14 is affixed to the surface that comes into contact with the support of the substrate 11, and an anchoring layer 12 and a SiOx film 13 are provided on the surface of the plastic film 14. It can be formed in the same way using the same material as Lum14.
  • a substrate having a SiOx film 13 and possibly a plastic film and a Z or anchoring layer is formed.
  • One-dimensional cassettes as shown can be exemplified.
  • the gel is filled in the concave portion 3 of the substrate 1.
  • at least the substrate forming the recess 3 has the characteristic layer structure.
  • the cassette of the present invention may be a two-dimensional cassette whose cross section is represented by FIG. 5A and whose plane is represented by FIG. 5B.
  • a support housing portion 24 is provided between the first buffer solution tank 28a and the second buffer solution tank 28b.
  • the support accommodating portion 24 is filled with gel. For this reason, at least the substrate forming the support housing portion 24 has the characteristic layer structure.
  • a set of two substrates constituting the cassette was made by injection molding of styrene resin. This substrate was placed in the chamber of the plasma CVD apparatus, and the pressure in the chamber was reduced to 1 ⁇ 5 ⁇ 10_3 Pa. Next, hexamethyldisiloxane (H MDS) and oxygen are simultaneously introduced into the chamber, with a plasma output of 300 W, a substrate temperature of 20 ° C., a time of about 120 seconds, and a SiOx film having a thickness of about 70 nm is formed. Filmed.
  • H MDS hexamethyldisiloxane
  • a cassette was prepared using the substrate on which the SiOx film was formed in this manner, an acrylamide solution was poured into the cavity, and the injection state and the acrylamide gel formation state were observed.
  • an acrylamide solution for a separation gel was prepared as follows.
  • This acrylamide solution was poured into the cassette cavity, and distilled water was superposed to form a separation gel composed of an acrylamide gel. After the separation gel was formed, the superimposed distilled water was removed, and an acrylamide solution for concentrated gel prepared as described below was injected, and distilled water was superimposed to form a concentrated gel.
  • the solution filling property and gel forming property were judged on the basis of the characteristics of the cassette obtained from the glass substrate. Specifically, ⁇ is given when it has the same level of solution filling and gel-forming properties as a glass cassette, ⁇ when it is roughly the same, ⁇ when slightly inferior, and comparison not possible. When it was inferior to the extent, it evaluated by attaching X. For comparison, a substrate with a water-repellent film formed by plasma CVD using only HMDS without adding oxygen (test number 5) and one using a glass substrate (test No. 6) was also evaluated. The results are also shown in Table 2 and Table 3.
  • a cassette was made in the same manner as in Example 1 except that a plastic film consisting of polyethylene terephthalate force was affixed to the surface of a styrene resin substrate obtained by injection molding with an epoxy adhesive, and a SiOx film was formed on the surface of this plastic film. Were manufactured and evaluated. Evaluations similar to those shown in Table 2 and Table 3 were obtained. [0047] (Example 3)
  • a set of two substrates making up the cassette was made by injection molding of styrene resin.
  • HMDS was introduced into this chamber at a flow rate of 20 sccm, the plasma output was 600 W, the substrate temperature was 20 ° C., the time was about 60 seconds, plasma polymerization was performed, and an anchor treatment layer having a thickness of about 11 Onm was formed. .
  • the substrate was deposited an anchor treatment layer directly placed in Chiya members of a plasma CVD apparatus, the pressure in the chamber one 1. Mamama kept at 5 X 10- 3 Pa in the chamber in one Simultaneously introducing HMDS and oxygen, a plasma output of 300 W, a substrate temperature of 20 ° C., a time of about 120 seconds, and a SiOx film having a thickness of about 70 nm were formed by plasma CVD.
  • Table 4 shows that the contact angle of the obtained SiOx film with water can be changed and controlled by changing the flow rate of HMDS and oxygen introduced into the chamber.
  • Example 3 Similar to Example 3 except that a plastic film made of polyethylene terephthalate was attached to the surface of a styrene resin substrate obtained by injection molding with an epoxy adhesive, and an anchoring layer and SiOx film were formed on the surface of this plastic film. A cassette was manufactured and evaluated. Evaluations similar to those shown in Table 5 and Table 6 were obtained.
  • the affinity between the support precursor solution and the outermost surface of the substrate in other words, the wettability is good, and smooth injection is possible when the support precursor solution is poured into the separation gel.
  • a good support can be formed in which the boundary between and the concentrated gel is not distorted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の目的は、合成樹脂からなる2枚の基板を組み合わせて構成されるカセットにおいて、支持体前駆液のスムースな注入が行え、かつ注入後の分離ゲルと濃縮ゲルとの境界が歪むことなどがなく、良好な支持体の形成が行えるようにすることにあり、この目的を達成するために、合成樹脂からなる2枚の基板を組み合わせて構成され、その内部に支持体を形成するためのキャビティを有する電気泳動用カセットにおいて、上記基板の支持体に接する表面をSiOx膜で覆い、このSiOx膜の水に対する接触角が30度以下、好ましくは10度以下とする。

Description

明 細 書
電気泳動用カセットおよびその製造方法
技術分野
[0001] この発明は、化学分析などに用いられる電気泳動用カセットに関し、支持体前駆液 の注入、支持体の形成が良好に行えるようにしたものである。
本願は、 2006年 2月 28曰に、 日本に出願された特願 2006— 052543号および特 願 2006— 052544号に基づき優先権を主張し、その内容をここに援用する。
背景技術
[0002] 電気泳動用カセット(以下、カセットと略記することがある。)としては、例えば図 6に 示すように、 2枚の基板 1、 2を対向して組み合わせて構成される、 1種の媒体を使用 する一次元カセットを例示することができる。この一次元カセットの一方の基板 1には 、凹部 3が形成され、この凹部 3の存在によりポリアクリルアミドゲルなどの支持体が形 成されるキヤビティが形成されるようになっている。
[0003] このようなカセットにあっては、従来ガラス製の基板を用いるものが主流であった力 最近スチレン樹脂、アクリル樹脂などの合成樹脂製基板を用いたものが使用されるよ うになってきてレ、る(特許文献 1参照)。
合成樹脂製基板を用いたカセットでは、射出成型法などによって容易に大量生産 ができ、破損しにくいなどの利点がある。
[0004] しかし、合成樹脂製基板を用いたカセットにあっては、基板表面の特性が疎水的で 、ガラス基板に比べて親水性が低いため、未硬化の液状のアクリルアミドなどの支持 体前駆液を流し込む際に、支持体前駆液と基板表面との親和性が不足し、前駆液が スムースに注入できず、注入が不均一になることがあり、注入後の分離ゲルと濃縮ゲ ルとの境界が歪むなどの不都合があった。
特許文献 1:特開平 10— 132785号公報
発明の開示
発明が解決しょうとする課題
[0005] よって、本発明における課題は、合成樹脂からなる 2枚の基板を組み合わせて構成 されるカセットにおいて、支持体前駆液のスムースな注入が行え、かつ注入後の分離 ゲルと濃縮ゲルとの境界が歪むことなどがなぐ良好な支持体の形成が行えるように することにある。
課題を解決するための手段
[0006] 上記課題を解決するために、本発明は、合成樹脂からなる基板を組み合わせて構 成され、その内部に支持体を形成するためのキヤビティを有する電気泳動用カセット であって、上記基板の支持体に接する表面が SiOx膜で覆われており、この SiOx膜 の水に対する接触角が 30度以下である電気泳動用カセットを提供する。
上記電気泳動用カセットにおいては、前記支持体の表面と SiOx膜との間に、ブラ スチックフィルムが設けられることが好ましレ、。
また、上記電気泳動用カセットにおいては、前記支持体の表面と SiOx膜との間に、 アンカー処理層が形成されることが好ましい。
また、上記電気泳動用カセットにおいては、前記支持体の表面と SiOx膜との間に、 プラスチックフィルムとアンカー処理層とが形成され、上記プラスチックフィルムが支 持体表面上に形成され、そのプラスチックフィルムと前記 SiOx膜との間にアンカー処 理層が形成されることが好ましい。
さらに、上記アンカー処理層と Si〇x膜とが連続して成膜されたものであることが好 ましい。
[0007] また、本発明は上記課題を解決するために、合成樹脂からなる基板を組み合わせ て構成される電気泳動用カセットを製造する際、上記基板に直接またはプラスチック フィルムを介して、プラズマ CVD法によりアンカー処理層および SiOx膜を成膜する 電気泳動用カセットの製造方法であって、前記プラズマ CVD法によるアンカー処理 層および SiOx膜の成膜が、共通する原料ガスを用いて連続して行われることを特徴 とする電気泳動用カセットの製造方法を提供する。
発明の効果
[0008] 本発明にあっては、支持体前駆液と基板最表面との親和性、換言すれば濡れ性が 良好となり、支持体前駆液を流し込む際にスムースな注入が可能になり、分離ゲルと 濃縮ゲルとの境界が歪むことがなぐ良好な支持体を形成することができる。 また、プラスチックフィルムを基板上に貼付し、この上に SiOx膜を形成することで、 電気泳動を完了したゲルをカセットより取り出す際、カセットの破損等によるゲルの損 傷を回避できる。
[0009] また、 Si〇x膜は、酸素透過性が比較的低ぐアクリルアミドなどの支持体前駆液の 重合時に合成樹脂製基板からの酸素の移行が防止されて支持体前駆液の重合が 阻害されることもない。
[0010] また、基板と SiOx膜との間にアンカー処理層が存在する電気泳動用カセットにあつ ては、基板と Si〇x膜との密着性が高められ、 SiOx膜の基板からの剥落が防止され、 長期間の使用が可能となる。
さらに、アンカー処理層と Si〇x膜とを連続して成膜することで、両者の密着力が高 まり、結果的に基板と SiOx膜との接合力が高められる。
[0011] また、プラスチックフィルムを基板表面に貼付して、この上にアンカー処理層および
SiOx膜をもうけることで、カセットより電気泳動を完了したゲルを取り出す際、カセット の破損等によるゲルの損傷を回避できることになる。
図面の簡単な説明
[0012] [図 1]本発明のカセットを構成する基板の第 1具体例の要部を示す概略断面図である
[図 2]本発明のカセットを構成する基板の第 2具体例の要部を示す概略断面図である
[図 3]本発明のカセットを構成する基板の第 3具体例の要部を示す概略断面図である
[図 4]本発明のカセットを構成する基板の第 4具体例の要部を示す概略断面図である
[図 5A]図 5Aは本発明に力かる二次元電気泳動用カセットを示す概略断面図である
[図 5B]図 5Bは本発明に力かる二次元電気泳動用カセットを示す概略平面図である [図 6]本発明にかかる一次元電気泳動用カセットの構成を示す概略斜視図である。 符号の説明 [0013] 1、 2、 11 · · ·基板、 3 · · ·凹部
12 · · ·アンカー処理層 13 ' ' ' Si〇x膜
14· · ·プラスチックフィルム 24 · · ·支持体収容部
28a- · ·第 1緩衝液槽 28b · · ·第 2緩衝液槽
発明を実施するための最良の形態
[0014] 図 1は、本発明のカセットの第 1具体例の要部を示すもので、符号 11はカセットを構 成する基板を示す。
この基板 11は、スチレン樹脂、スチレン アクリロニトリル共重合体、アクリル樹脂、 ポリエステル樹脂、セルロース樹脂、塩ィヒビニル樹脂などの合成樹脂からなるもので 、射出成形法などの成形方法によって製作されたものである。
[0015] この基板 11の支持体と接する表面には、 SiOx膜 13が設けられている。
この SiOx膜 13は、 X=:!〜 2の組成を有する酸化ケィ素からなる厚さ 30〜: !OOnm の薄膜であって、水に対する接触角が 30度以下、好ましくは 10度以下となっている ものである。この接触角が 30度を超えると基板 11の表面の親水性が不足し、支持体 前駆液のスムースな注入が行えなくなる。
[0016] また、この SiOx膜 13は、基板 11の表面に直接種々の薄膜形成手段、例えば蒸着 法、スパッタ法、 CVD法、プラズマ CVD法などよつて形成されたものである。これらの 薄膜形成手段のうち、なかでも原料ガスとしてへキサメチルジシロキサンなどのシロキ サン類と酸素とを流量比 10: 100〜5: 100の混合割合として用いたプラズマ CVD法 が特に好ましい。
このような薄膜形成手段によって接触角が 30度以下の SiOx膜 13を得るには、原 料となるシロキサン類と酸素との混合割合などの成膜条件を制御することで可能にな る。
[0017] 例えば、プラズマ CVD法によって、このような接触角を有する Si〇x膜 13を成膜す る場合の成膜条件としては、基板温度を 30〜50°C、圧力 0. 01〜300Pa、プラズ マ出力 50〜800W、ジシロキサン類流量 5〜50sccm、酸素流量 50〜200sccm、 時間 10〜600秒の範囲から定められる。
[0018] さらに、この SiOx膜 13は、その組成中の炭素含有率が原子百分率で 6%以下、好 ましくは 4. 8%以下であることが望ましぐ炭素含有率が低いほど親水性が高い膜と なって結果的に接触角を小さくすることができる。つまり、もっとも好ましい炭素含有 率の最低値は 0%である。炭素含有率を 6%以下とするには、プラズマ CVD法などの 薄膜形成手段での成膜条件を制御することで可能になる。
[0019] このようなカセットにあっては、基板 11の表面に SiOx膜 13を設けることで、基板 11 の表面が高い親水性を示すものとなり、支持体前駆液をキヤビティに流し込む際に、 前駆液が基板 11表面によく濡れて流れ、その注入がスムースに行える。
また、注入後の分離ゲルと濃縮ゲルとの境界が歪むことがなぐ境界が均一となる。 さらには、 SiOx膜 13は、ある程度の酸素遮断性を有することから、基板 11からの 酸素の移行が防止され、酸素によるアクリルアミドなどの前駆液の重合阻害も防止す ることちでさる。
[0020] 図 2は、本発明のカセットの第 2具体例の要部を示すもので、第 1具体例と共通する 構成部分には同じ符号を付してその説明を省略する。
この例では、基板 11の支持体と接することになる表面にプラスチックフィルム 14が 貼付され、このプラスチックフィルム 14の表面に SiOx膜 13が設けられてものである。
[0021] 上記プラスチックフィルム 14としては、ポリスチレン、ポリエチレンテレフタレート、ポ リメチルメタタリレート、環状ォレフィン、ポリエチレン、セルロースアセテートなどからな る厚さ 10〜300 μ ΐηのフィルムが用いられ、基板 11に対して接着、溶着などの接合 手段によって貼付されている。
このプラスチックフィルム 14の表面への SiOx膜 13の形成は、先の例と同様の薄膜 形成手段、なかでもプラズマ CVD法によって行うことができる。
[0022] このように基板 11の表面にプラスチックフィルム 14を貼付し、このプラスチックフィル ム 14の表面に SiOx膜 13を設けることで、先の例と同様の作用効果が得られる以外 に、電気泳動を完了したゲルをカセットより取り出す際、カセットの破損等によるゲル の損傷を回避できるなどの効果を新たに得ることができる。
[0023] 図 3は、本発明のカセットの第 3具体例の要部を示すもので、第 1具体例と共通する 構成部分には同じ符号を付してその説明を省略する。
この例では、この基板 11の支持体と接することになる表面には、アンカー処理層 12 が設けられており、このアンカー処理層 12上に SiOx膜 13が設けられている。このァ ンカー処理層 12は、基板 11に対する SiOx膜 13の密着力を高めるためのもので、厚 さ 20〜300nmのへキサメチルジシロキサンなどのジシロキサン類の重合膜である。
[0024] アンカー処理層 12の形成は、様々な方法で実施することができる。例えば処理剤 をスピンコートやインクジヱットなどの手法で塗工する方法、アンカー処理剤に浸漬す る方法などが挙げられる。あるいは樹脂基板を成形する際に、樹脂と共にアンカー処 理剤を押出すなどの方法により設けておいても良い。
[0025] より好ましい方法としては、真空成膜プロセスによる薄膜形成手法を挙げることがで きる。この方法によれば基板の形状に影響を受けることなぐ均一なアンカー処理層 を形成できる。薄膜形成手段としては、例えば CVD法、プラズマ CVD法などを挙げ ること力 Sできる。これらの薄膜形成手段のうち、なかでも原料ガスとしてへキサメチル ジシロキサンなどのシロキサン類を用いたプラズマ CVD法が特に好ましレ、。
例えば、プラズマ CVD法によって、このようなアンカー処理層 12を成膜する場合の 成膜条件としては、基板温度を— 30〜50°C、圧力 0. 01〜300Pa、プラズマ出力 5 0〜800W、ジシロキサン類流量 3〜50sccm、時間 10〜600秒の範囲から定められ る。
[0026] 上記 SiOx膜 13は、上記第 1具体例と同様にして形成することができる。
なお、本第 3具体例の SiOx膜 13は、その組成中の炭素含有率が原子百分率で 1 0%以下、好ましくは 5%以下であることが望ましぐ炭素含有率が低いほど親水性が 高い膜となって結果的に接触角を小さくすることができる。つまり、もっとも好ましい炭 素含有率の最低値は 0%である。炭素含有率を 10%以下とするには、プラズマ CVD 法などの薄膜形成手段での成膜条件を制御することで可能になる。
[0027] また、アンカー処理層 12および Si〇x膜 13の成膜にプラズマ CVD法を用いる場合 には、これらを連続して成膜することが好ましい。すなわち、プラズマ CVD装置のチ ヤンバーに原料としてへキサメチルジシロキサンなどのジシロキサン類を供給してプラ ズマ重合させてアンカー処理層 12を基板 11上に成膜し、そのままの状態のチャンバ 一に引き続いて原料としてへキサメチルジシロキサンなどのジシロキサン類と酸素と を供給してプラズマ CVDにより Si〇x膜 13をアンカー処理層 12上に連続して形成す るものである。
すなわち、アンカー処理層 12の成膜は、酸素をゼロまたは微量として成膜し、 SiO X膜 13の成膜は酸素の流量比を増やして、連続して成膜するものである。
この連続成膜方法を採用することによって、アンカー処理層 12と SiOx膜 13との密 着性が高まる上に生産性も向上する。
[0028] このようなカセットにあっては、基板 11の表面に SiOx膜 13を設けることで、基板 11 の表面が高い親水性を示すものとなり、支持体前駆液をキヤビティに流し込む際に、 前駆液が基板 11表面によく濡れて流れ、その注入がスムースに行える。また、注入 後の分離ゲルと濃縮ゲルとの境界が歪むことがなぐ境界が均一となる。
さらには、 SiOx膜 13は、ある程度の酸素遮断性を有することから、基板 11からの 酸素の移行が防止され、酸素によるアクリルアミドなどの前駆液の重合阻害も防止す ることちでさる。
[0029] また、アンカー処理層 12を設けることで、 SiOx膜 13と基板 11との密着性が高めら れ、長期間の使用に際しても、 SiOx膜 13が剥落することがなぐ SiOx膜 13による上 記効果が持続する。
[0030] 図 4は、本発明のカセットの第 4具体例の要部を示すもので、第 1具体例と共通する 構成部分には同じ符号を付してその説明を省略する。
この例では、基板 11の支持体と接することになる表面にプラスチックフィルム 14が 貼付され、このプラスチックフィルム 14の表面にアンカー処理層 12と SiOx膜 13とが 設けられてものである。 ルム 14と同様の材料を使用して同様に形成できる。
[0032] このように基板 11の表面にプラスチックフィルム 14を貼付し、このプラスチックフィル ム 14の表面にアンカー処理層 12と Si〇x膜 13とを設けることで、先の例と同様の作 用効果が得られる以外に、電気泳動を完了したゲルをカセットより取り出す際、カセッ トの破損等によるゲルの損傷を回避できる効果を新たに得ることができる。
[0033] 本発明のカセットの一例として、 Si〇x膜 13を具備し、場合によってはプラスチックフ イルムおよび Z又はアンカー処理層が形成されてなる基板を用いた、例えば、図 6に 示したような一次元カセットを例示できる。一次元カセットの場合、基板 1の特に凹部 3にゲルが充填される。このため、少なくともこの凹部 3をなす基板が上記特徴的な層 構造を有する。
さらには、本発明のカセットは、その断面が図 5Aで表され、その平面が図 5Bで表さ れるような二次元カセットであってもよい。図 5に示される二次元カセットの場合、第一 緩衝液槽 28aと第二緩衝液槽 28bとの間に支持体収容部 24が設けられている。この 支持体収容部 24にゲルが充填される。このため、少なくともこの支持体収容部 24を なす基板が上記特徴的な層構造を有する。
実施例
[0034] (実施例 1)
カセットを構成する 2枚 1組の基板をスチレン樹脂の射出成形法によって作成した。 この基板をプラズマ CVD装置のチャンバ一内に設置し、チャンバ一内の圧力を 1 · 5 X 10_3Paまで減圧した。次に、このチャンバ一内にへキサメチルジシロキサン(H MDS)と酸素とを同時に導入し、プラズマ出力 300W、基板温度 20°C、時間約 120 秒とし、厚さ約 70nmの SiOx膜を成膜した。
[0035] この時、チャンバ一内に導入する HMDSおよび酸素の流量を表 1に示すように変 化させて、 SiOx膜を成膜した。得られた SiOx膜の水に対する接触角を測定し、表 1 に HMDSおよび酸素の流量と対応して示した。
[0036] [表 1]
Figure imgf000010_0001
[0037] 表 1から、チャンバ一内に導入する HMDSおよび酸素の流量を変化させることで、 得られる SiOx膜の水に対する接触角を変化、制御することができることがわかる。
[0038] ついで、このようにして SiOx膜が形成された基板を使って、カセットを作成し、その キヤビティにアクリルアミド溶液を流し込み、その注入状態およびアクリルアミドゲルの 形成状態を観察した。
まず、分離ゲル用のアクリルアミド溶液を以下のように調製した。
[0039] · 30%アクリルアミド溶液
(アタリノレアミド 280/0、 N, —メチレンビスアタリノレアミド 20/0): 2. 15ml
,蒸留水: 1. 55ml
'トリス塩酸緩衝液(pH8. 8、 1. 5M): 1. 25ml
'過硫酸アンモニゥム: 50 μ ΐ
•N, N, N', N'—テトラメチルエチレンジァミン: 5 μ 1
[0040] このアクリルアミド溶液をカセットのキヤビティに注入し、蒸留水を重畳してアクリルァ ミドゲルからなる分離ゲルとした。分離ゲルが形成された後、重畳した蒸留水を除き、 さらに以下のように調製した濃縮ゲル用アクリルアミド溶液を注入し、蒸留水を重畳し て濃縮ゲルを形成した。
[0041] · 30%アクリルアミド溶液
(アタリノレアミド 28%、 Ν, Ν'—メチレンビスアクリルアミド 2%): 0. 65ml
,蒸留水: 3. 05ml
'トリス塩酸緩衝液(ρΗ8· 8、 1. 5Μ): 1. 25ml
'過硫酸アンモニゥム: 50 μ ΐ
•Ν, Ν, Ν' , Ν'—テトラメチルエチレンジァミン: 10 μ ΐ
[0042] この 2種のアクリルアミド溶液のカセット内への充填性(注入時の状況)および注入 後のゲル形成性 (ゲルの形成状況)を目視により観察した。その結果を表 2および表 3に示す。
なお、溶液充填性およびゲル形成性は、ガラス基板で得たカセットの特性を基準に して判断した。具体的には、ガラス製カセットと同程度の溶液充填性およびゲル形成 性を具備する場合には◎を付し、概ね同程度である場合には〇、やや劣る場合には △、そして比較できない程度に劣る場合には Xを付して評価した。 また、比較のために、酸素を加えず HMDSのみを用いてプラズマ CVD法によって 成膜された撥水膜を有する基板を備えたもの(試験番号 5)と、ガラス製基板を用いた もの (試験番号 6)についても評価を行た。その結果も合わせて表 2および表 3に示す
[表 2]
Figure imgf000012_0001
[0044] [表 3]
Figure imgf000012_0002
[0045] 表 2および表 3の結果から、接触角が 30度以下の SiOx膜を有する合成樹脂製基 板では、ガラス製基板と同等の充填性、ゲル形成性が得られることが判る。
[0046] (実施例 2)
射出成形によって得たスチレン樹脂製基板に表面にポリエチレンテレフタレート力、 らなるプラスチックフィルムをエポキシ接着剤で貼付し、このプラスチックフィルムの表 面に SiOx膜を形成した以外は実施例 1と同様にしてカセットを製造し、評価を行った 。上記表 2および表 3に示す評価と同様の評価を得た。 [0047] (実施例 3)
まず、カセットを構成する 2枚 1組の基板をスチレン樹脂の射出成形法によって作成 した。
この基板をプラズマ CVD装置のチャンバ一内に設置し、チャンバ一内の圧力を 1. 5 X 10— 3Paまで減圧した。次に、このチャンバ一内に HMDSを流量 20sccmで導入 し、プラズマ出力 600W、基板温度 20°C、時間約 60秒とし、プラズマ重合を行い、厚 さ約 11 Onmのアンカー処理層を成膜した。
[0048] このようにしてアンカー処理層を成膜した基板をそのままプラズマ CVD装置のチヤ ンバー内に置き、チャンバ一内の圧力を 1. 5 X 10— 3Paに保ったまままこのチャンバ 一内に HMDSと酸素とを同時に導入し、プラズマ出力 300W、基板温度 20°C、時間 約 120秒とし、プラズマ CVDによって、厚さ約 70nmの Si〇x膜を成膜した。
[0049] この時、チャンバ一内に導入する HMDSおよび酸素の流量を表 4に示すように変 化させて、 SiOx膜を成膜した。得られた SiOx膜の水に対する接触角を測定し、表 4 に HMDSおよび酸素の流量と対応して示した。
[0050] [表 4]
Figure imgf000013_0001
[0051] 表 4力ら、チャンバ一内に導入する HMDSおよび酸素の流量を変化させることで、 得られる SiOx膜の水に対する接触角を変化、制御することができることがわかる。
[0052] ついで、このようにして Si〇x膜が形成された基板を使って、カセットを作成し、その キヤビティに上記実施例 1で使用した分離ゲル用および濃縮ゲル用のアクリルアミド 溶液と同様のアクリルアミド溶液を流し込み、その注入状態およびアクリルアミドゲル の形成状態を目視によりそれぞれ観察した。その結果を表 5および表 6に示す。 [0053] なお、溶液充填性およびゲル形成性は、上記実施例と同様に評価した。
また、比較のために、酸素をカ卩えず HMDSのみを用いてプラズマ CVD法によって 成膜された撥水膜を有する基板を備えたもの (試験番号 11)と、ガラス製基板を用い たもの(試験番号 12)についても評価を行った。その結果も合わせて表 5および表 6 に示す。
[0054] [表 5]
Figure imgf000014_0001
[0055] [表 6] 議 謹纖角
纖键 雾儀
養暑 (&)
»饞 * 鏖纏 纖簿 窗纖翁に¾« ,
? 6.9 ©
屏漏 《 ¾ K *fc
»麵 と處瞻 *境爨 観 fe直纖麵& ¾ ,
8 14,? 0
》*麗 ア fe
纖 舊 ψ 醫
9 34. S Δ
や *影慮 Sfe ¾教
»麵 ί:囊纏ゲ *聰
10 4S.8
ΨΨΨ - ts im論ら .ttfc
戆ゲ 鏖纏 Λ聰雰 *
11 籠 X
12 12 -
[0056] 表 5および表 6の結果から、接触角が 30度以下の Si〇x膜を有する合成樹脂製基 板では、ガラス製基板と同等の充填性、ゲル形成性が得られることが判る。
[0057] (実施例 4)
射出成形によって得たスチレン樹脂製基板に表面にポリエチレンテレフタレートか らなるプラスチックフィルムをエポキシ接着剤で貼付し、このプラスチックフィルムの表 面にアンカー処理層と SiOx膜を形成した以外は実施例 3と同様にしてカセットを製 造し、評価を行った。上記表 5および表 6に示す評価と同様の評価を得た。
産業上の利用可能性
[0058] 本発明にあっては、支持体前駆液と基板最表面との親和性、換言すれば濡れ性が 良好となり、支持体前駆液を流し込む際にスムースな注入が可能になり、分離ゲルと 濃縮ゲルとの境界が歪むことがなぐ良好な支持体を形成することができる。
また、プラスチックフィルムを基板上に貼付し、この上に SiOx膜を形成することで、 カセットより電気泳動を完了したゲルを取り出す際、カセットの破損等によるゲルの損 傷を回避できる。

Claims

請求の範囲
[1] 合成樹脂からなる基板を組み合わせて構成され、その内部に支持体を形成するた めのキヤビティを有する電気泳動用カセットであって、
上記基板の支持体に接する表面が SiOx膜で覆われており、この Si〇x膜の水に対 する接触角が 30度以下である電気泳動用カセット。
[2] 前記支持体の表面と Si〇x膜との間に、プラスチックフィルムが設けられた請求項 1 記載の電気泳動用カセット。
[3] 前記支持体の表面と SiOx膜との間に、アンカー処理層が形成された請求項 1記載 の電気泳動用カセット。
[4] 前記支持体の表面と SiOx膜との間に、プラスチックフィルムとアンカー処理層とが 形成され、上記プラスチックフィルムが支持体表面上に形成され、そのプラスチックフ イルムと前記 SiOx膜との間にアンカー処理層が形成された請求項 1記載の電気泳動 用カセット。
[5] アンカー処理層と SiOx膜とが連続して成膜されたものである請求項 3記載の電気 泳動用カセット。
[6] アンカー処理層と Si〇x膜とが連続して成膜されたものである請求項 4記載の電気 泳動用カセット。
[7] 合成樹脂からなる基板を組み合わせて構成される電気泳動用カセットを製造する 際、上記基板に直接またはプラスチックフィルムを介して、プラズマ CVD法によりアン カー処理層および SiOx膜を成膜する電気泳動用カセットの製造方法であって、 前記プラズマ CVD法によるアンカー処理層および SiOx膜の成膜力 共通する原 料ガスを用いて連続して行われることを特徴とする電気泳動用カセットの製造方法。
PCT/JP2007/053796 2006-02-28 2007-02-28 電気泳動用カセットおよびその製造方法 WO2007102378A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/224,337 US20090314643A1 (en) 2006-02-28 2007-02-28 Electrophoresis Cassette and Method for Producing the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006052544A JP2007232476A (ja) 2006-02-28 2006-02-28 電気泳動用カセットおよびその製造方法
JP2006-052544 2006-02-28
JP2006-052543 2006-02-28
JP2006052543A JP2007232475A (ja) 2006-02-28 2006-02-28 電気泳動用カセット

Publications (1)

Publication Number Publication Date
WO2007102378A1 true WO2007102378A1 (ja) 2007-09-13

Family

ID=38474810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053796 WO2007102378A1 (ja) 2006-02-28 2007-02-28 電気泳動用カセットおよびその製造方法

Country Status (2)

Country Link
US (1) US20090314643A1 (ja)
WO (1) WO2007102378A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453256A (en) * 2007-09-27 2009-04-01 Toppan Printing Co Ltd Electrophoresis support integrated with transfer medium
JP2009080082A (ja) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd 電気泳動用支持体保持具および電気泳動用チップ
JP2010286391A (ja) * 2009-06-12 2010-12-24 Toppan Printing Co Ltd 電気泳動カセット
JP2010286273A (ja) * 2009-06-09 2010-12-24 Toppan Printing Co Ltd 電気泳動用カセット及び電気泳動用カセットの製造方法
JP2012073078A (ja) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd 電気泳動用ゲルカセット及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067444A1 (en) * 2003-01-30 2004-08-12 Gyros Ab Inner walls of microfluidic devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA884511B (en) * 1987-07-15 1989-03-29 Boc Group Inc Method of plasma enhanced silicon oxide deposition
MX9303141A (es) * 1992-05-28 1994-04-29 Polar Materials Inc Metodos y aparatos para depositar recubrimientos de barrera.
DE69519228T2 (de) * 1994-05-13 2001-02-22 Novex San Diego Vorrichtung mit einer beschichteten Kunststoffgiessform für elektroforetisches Gel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067444A1 (en) * 2003-01-30 2004-08-12 Gyros Ab Inner walls of microfluidic devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453256A (en) * 2007-09-27 2009-04-01 Toppan Printing Co Ltd Electrophoresis support integrated with transfer medium
JP2009080082A (ja) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd 電気泳動用支持体保持具および電気泳動用チップ
GB2453256B (en) * 2007-09-27 2009-11-25 Toppan Printing Co Ltd Multilayer body for electrophoresis and transfer,chip for electrophoresis and transfer, electrophoresis and transfer apparatus,method of electrophoresis and
JP2010286273A (ja) * 2009-06-09 2010-12-24 Toppan Printing Co Ltd 電気泳動用カセット及び電気泳動用カセットの製造方法
JP2010286391A (ja) * 2009-06-12 2010-12-24 Toppan Printing Co Ltd 電気泳動カセット
JP2012073078A (ja) * 2010-09-28 2012-04-12 Toppan Printing Co Ltd 電気泳動用ゲルカセット及びその製造方法

Also Published As

Publication number Publication date
US20090314643A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
WO2007102378A1 (ja) 電気泳動用カセットおよびその製造方法
US9728746B2 (en) Encapsulation structures, encapsulation methods, and display devices of organic electroluminescent devices
US20070202270A1 (en) Method And Apparatus For Coating A Substrate Using Dielectric Barrier Discharge
CN1628187A (zh) 在基底上进行电晕致化学气相沉积
KR20070072899A (ko) 향상된 증착 속도의 플라즈마 강화 화학 기상 방법
JP2006258685A (ja) 二次元電気泳動法用試料注入器具及びそれを含む二次元電気泳動用装置並びに該装置を用いた二次元電気泳動法
WO2014041904A1 (ja) 凹凸形状付積層体の製造方法および転写フィルム
EP0759165B1 (en) Apparatus comprising a coated plastic mold for electrophoresis gel.
JP3358131B2 (ja) 撥水撥油性フィルムとその製造方法
TW201139467A (en) Liquid repellent surfaces
US11548194B2 (en) Method for manufacturing fluid device composite member
JP2013103373A (ja) 封止フィルム
WO2009025135A9 (ja) 電気泳動用プレキャストゲル、その製造方法及びその使用方法
JP3974219B2 (ja) ガスバリア性フィルム
JP2007232475A (ja) 電気泳動用カセット
JP4467868B2 (ja) 高はっ水性積層体
JP2008018679A (ja) 剥離フィルム
JP2007232476A (ja) 電気泳動用カセットおよびその製造方法
JP2009270963A (ja) 電気泳動用カセット
JP5239870B2 (ja) マイクロチップ、及びマイクロチップの製造方法
JP3565928B2 (ja) 液晶表示素子用プラスチック基板の製造方法
KR101913908B1 (ko) 고분자 기판의 표면 개질 방법 및 이에 의하여 개질된 표면을 갖는 고분자 기판
JPS62132940A (ja) 高分子基材へのプラズマ重合薄膜形成方法
KR100530319B1 (ko) 디스플레이 패널용 플라스틱 필름의 제조방법
JP3712342B2 (ja) 透明ガスバリアフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12224337

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07715071

Country of ref document: EP

Kind code of ref document: A1