WO2007101743A1 - Verfahren zur herstellung einer turbinen- oder verdichterkomponente sowie turbinen- oder verdichterkomponente - Google Patents

Verfahren zur herstellung einer turbinen- oder verdichterkomponente sowie turbinen- oder verdichterkomponente Download PDF

Info

Publication number
WO2007101743A1
WO2007101743A1 PCT/EP2007/050687 EP2007050687W WO2007101743A1 WO 2007101743 A1 WO2007101743 A1 WO 2007101743A1 EP 2007050687 W EP2007050687 W EP 2007050687W WO 2007101743 A1 WO2007101743 A1 WO 2007101743A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
cooling channel
component
cooling
blade
Prior art date
Application number
PCT/EP2007/050687
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Michael Dankert
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US12/224,729 priority Critical patent/US8109712B2/en
Priority to JP2008557700A priority patent/JP5111402B2/ja
Priority to CN200780007887.5A priority patent/CN101432504B/zh
Priority to EP07704118A priority patent/EP1991761A1/de
Publication of WO2007101743A1 publication Critical patent/WO2007101743A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage

Definitions

  • the invention relates to a method for producing a turbine or compressor component having at least one internal cooling channel, in particular a blast furnace. It further relates to such a turbine or compressor component.
  • the most favorable Autofrettagendruck and the duration of treatment depend heavily on the particular application, for example, on the nature of the component to be treated and the course of the cooling channels and possibly from other boundary conditions.
  • At least the cooling channel wall delimiting the areas of the room temperature lying treatment temperature are preferably directly before and / or immediately after and / or during the pressurization of an upper half ⁇ heated.
  • a treatment temperature from the interval of 3O 0 C to 1000 0 C is set.
  • the Temperaturbe ⁇ treatment can sen the elastic-plastic deformation of the underlying physical effects such beeinflus ⁇ that a particularly advantageous stabilization of it is reached ⁇ witnessed compressive residual stresses after the fall of the Autofret- days pressure.

Abstract

Eine Turbinen- oder Verdichterkomponente mit einem innenliegenden Kühlkanal (4), insbesondere eine Turbinenschaufel (2), sowie ein Verfahren zur Herstellung derselben sollen zumindest eine verbesserte Abschätzung der Lebensdauer der Komponente und darüber hinaus möglichst auch noch eine erhöhte Betriebssicherheit und Lebensdauer selbst, auch unter ständig wechselnder thermischer und mechanischer Belastung, gewährleisten. Dazu wird erfindungsgemäß der Kühlkanal (4) der Komponente während einer Druckbeaufschlagungsphase mit einem Innendruck beaufschlagt, der derart hoch gewählt ist, dass er zu einer zumindest teilplastischen Verformung der den Kühlkanal (4) begrenzenden Wandbereiche führt.

Description

Beschreibung
Verfahren zur Herstellung einer Turbinen- oder Verdichterkomponente sowie Turbinen- oder Verdichterkomponente
Die Erfindung betrifft ein Verfahren zur Herstellung einer mindestens einen innen liegenden Kühlkanal aufweisenden Turbinen- oder Verdichterkomponente, insbesondere einer Schau- fei. Sie betrifft weiterhin eine derartige Turbinen- oder Verdichterkomponente .
Turbinen- oder Verdichterschaufeln sowie Turbinen- oder Verdichterlaufräder sind sowohl thermisch als auch mechanisch hoch belastete Komponenten. Zur Verringerung der thermischen Belastung, der die eingesetzten Werkstoffe, insbesondere Chromstähle oder Nickel-Basis-Legierungen oder dergleichen, während des Betriebs der Turbine oder des Verdichters ausge¬ setzt sind, sind derartige Komponenten üblicherweise mit in- nen liegenden Kühlkanälen ausgestattet. Durch die Kühlkanäle strömt während des Betriebs ein zumeist gas- oder dampfförmi¬ ges Kühlmedium, wie beispielsweise Kühlluft, wobei eine über¬ wiegend konvektive Kühlung durch Wärmeübertragung von den den jeweiligen Kühlkanal begrenzenden Wandbereichen auf das vor- beiströmende Kühlmedium erfolgt. Um eine möglichst gleichmä¬ ßige Kühlung aller relevanten Bereiche der Komponente, z. B. einer Turbinenschaufel, zu erreichen, ist in der Regel ein mäanderförmiger Verlauf der Kühlkanäle oder Kühlluftpassagen innerhalb der Komponente, insbesondere in den Schaufelblät- tern von Turbinenschaufeln, vorgesehen. Wegen der beengten Raumverhältnisse innerhalb des Schaufelblatts sind zum Teil vergleichsweise kleine Querschnitte sowie vergleichsweise ge¬ ringe Krümmungsradien erforderlich.
Häufig findet ein "offenes" Kühlkonzept Anwendung, bei dem das Kühlmedium nach dem Durchströmen des jeweiligen Kühlkanals die zu kühlende Komponente über vom Kühlkanal abzwei¬ gende und in Austrittsöffnungen an der Oberfläche mündende Austrittskanäle verlässt, um sich anschließend mit dem den Strömungskanal der Turbine oder des Verdichters durchströmen¬ den heißen Arbeits- bzw. Strömungsmedium zu vermischen. Die Austrittsöffnungen können insbesondere in der Art so genann- ter Filmkühlöffnungen gestaltet und angeordnet sein, so dass das aus ihnen abströmende Kühlmedium an der Oberfläche der Komponente entlang strömt und dabei einen das Oberflächenma¬ terial vor unmittelbarem Kontakt mit dem heißen und aggressi¬ ven Arbeitsmedium schützenden Kühlfilm ausbildet.
Trotz derart ausgefeilter und ständig verfeinerter Kühlkonzepte ist die thermische Belastung der Turbinenschaufeln von Gas- oder Dampfturbinen beträchtlich. Hinzu kommt, insbesondere bei den an der Turbinenwelle angeordneten, mit hoher Um- drehungsgeschwindigkeit rotierenden Laufschaufeln, die mecha¬ nische Belastung aufgrund der auftretenden Fliehkräfte; aber auch mechanische Beanspruchungen aufgrund von Vibrationen oder Schlägen usw. führen häufig zu starken Belastungen. Insbesondere bei wiederholt auftretenden Lastwechselvorgängen und An- oder Abfahrsituationen, verbunden mit Variationen der Umdrehungsgeschwindigkeit, kommt es trotz neuartiger, in Be¬ zug auf die Wechselfestigkeit optimierter Werkstoffe bei fortgesetztem Betrieb der Turbine oder des Verdichters zu Materialermüdungserscheinungen. Derartige Ermüdungserschei- nungen in Form mikroskopischer Risse etc. begrenzen die Einsatzdauer oder Lebensdauer der jeweiligen Komponente.
Eine vorbeschriebene, offen gekühlte Turbinenschaufel ist beispielsweise aus der US 2003/143075 Al bekannt. Die Turbinenschaufel ist zum Kühlen ihrer Hinterkante durch das Ausblasen verwirbelter Kühlluft mit besonders kleinen Ausblaslöchern ausgestattet, die mittels eines speziellen Verfahrens hergestellt wurden. Dieses Verfahren sieht vor, dass in ein in der Hinterkante vorgesehenes Loch ein entlang seiner Erstreckung konturierter Dorn eingesetzt wird. Anschließend wird durch das Zusammenpressen der Hinterkantenaußenwände das die Löcher umgebende Material der Hinterkante plastisch so verformt, dass konturierte, mit Turbulatoren versehene Ausblaslöcher nach dem Entfernen des Dorns zurückbleiben. Gemäß der US 2003/143075 Al ist dabei darauf zu achten, dass die Gesamtdeformierung der Turbinenschaufel minimal ist, um die Spannungsbelastung innerhalb ihres Materials so gering wie möglich zu halten.
Außerdem ist aus der US2005/005910 Al ein Autofrettage- Verfahren zum Einbringen von Druckeigenspannungen in ein Rohr eines Common-Rail-Einspritzsystems bekannt.
Insgesamt ist daher im Interesse der Betriebssicherheit eine vergleichsweise häufige Inspektion und gegebenenfalls ein Austausch oder eine Erneuerung der Komponente erforderlich, was mit unerwünschten Stillstandszeiten und hohen Kosten verbunden ist. Da sich die Lebensdauer der hier interessierenden Turbinen- oder Verdichterkomponenten ä priori im Allgemeinen nur schwer abschätzen lässt, erweisen sich planmäßig durchgeführte Inspektionen mit eher konservativ veranschlagten, d. h. eher kurz gewählten Service-Intervallen im Nachhinein häufig als unnötig, da die Materialermüdung zum Inspektionszeitpunkt doch noch nicht so weit wie befürchtet fortgeschritten war.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Turbi- nen- oder Verdichterkomponente der eingangs genannten Art so¬ wie ein Verfahren zur Herstellung derselben anzugeben, die zumindest eine verbesserte Abschätzung der Lebensdauer der Komponente und darüber hinaus möglichst auch noch eine er¬ höhte Betriebssicherheit und Lebensdauer selbst, insbesondere auch unter ständig wechselnder thermischer und mechanischer Belastung, gewährleisten.
Bezüglich des Verfahrens wird die Aufgabe erfindungsgemäß ge¬ löst, indem der Kühlkanal während einer Druckbeaufschlagungs- phase mit einem Innendruck beaufschlagt wird, der derart hoch gewählt ist, dass er zu einer zumindest teilplastischen Ver¬ formung der den Kühlkanal begrenzenden Wandbereiche führt. Die Erfindung geht von der Überlegung aus, dass die auch als LCF-Lebensdauer (LCF = Low Cycle Fatigue) bezeichnete Lebens¬ dauer einer Turbinen- oder Verdichterkomponente unter wechselnden, zyklisch auftretenden Belastungen in besonderem Maße von der Verteilung der Eigenspannungen innerhalb der Komponente bestimmt ist. Dabei hat sich herausgestellt, dass ins¬ besondere die mäander- oder serpentinenförmig z. B. innerhalb einer Turbinenschaufel verlaufenden Kühlkanäle zu einer die Wechselfestigkeit herabsetzenden Eigenspannungsverteilung führen können. Gerade in der Nähe der Umkehrpunkte der Serpentinen treten infolge der vergleichsweise kleinen Krümmungsradien im Laufe des mit außerordentlich hohen Belastungsspitzen verbundenen Betriebs der Turbine Spannungsverläufe auf, bei denen im zeitlichen und räumlichen Mittel Zug- Spannungen über Druckspannungen dominieren. Derartige Zugspannungen setzen aber in der Regel die LCF-Festigkeit bzw. die Lebensdauer herab. Es ist daher wünschenswert, bereits bei der Fertigung der Turbinenkomponente Maßnahmen vorzuse¬ hen, die den üblicherweise mit der Existenz der Kühlkanäle einhergehenden Zugspannungen entgegenwirken. Derartige Gegenmaßnahmen sollten die Zugeigenspannungen zumindest teilweise kompensieren, oder besser noch überkompensieren und den mittleren Spannungsverlauf zumindest in der Nähe der den Kühlka¬ nal umschließenden Begrenzungswand in Richtung zu Druckeigen- Spannungen hin verschieben.
Zu diesem Zweck ist nach dem nunmehr vorliegenden Konzept eine Nachbehandlung des bereits mit Kühlkanälen versehenen, beispielsweise durch ein Gießverfahren hergestellten Schau- felgrundkörpers oder der sonstigen Turbinen- oder Verdichterkomponente vorgesehen, bei der die Kühlkanäle oder sonstigen zur Kühlluftzufuhr vorgesehenen Hohlräume im Schaufelinneren während einer Druckbeaufschlagungsphase mit einem Innendruck beaufschlagt werden, der wesentlich über der später zu erwar- tenden Betriebsbelastung liegt. Bei entsprechend gewählter Höhe des Innendrucks werden in einem derartig behandelten Bauteil Druckeigenspannungen in den an den jeweiligen Hohlraum angrenzenden Wandbereichen erzeugt, die auch nach dem Absenken des Drucks bestehen bleiben. Die Druckeigenspannungen werden bei einer über die Fließ- oder Elastizitätsgrenze des Materials hinausgehenden Druckbelastung durch eine Teil- plastifizierung, d. h. bleibende teilplastische Verformungen, verursacht. Die so erzeugten Druckeigenspannungen wirken bereits bestehenden (fertigungsbedingten) oder im Betrieb der Turbinen- oder Verdichterkomponente auftretenden Zugspannungen entgegen, wodurch sich die Dauerfestigkeit, insbesondere bei zyklischer Belastung, und damit die zu erwartende Lebens- dauer der Komponente erhöht.
Das Verfahren an sich ist bereits in einem ganz anderen Zusammenhang, nämlich bei der Behandlung von Gewehrläufen oder von druckführenden Zylinderrohren, als so genannte "Autofret- tage" bekannt; eine Anwendung auf Turbinen- oder Verdichterkomponenten mit integrierten oder eingebetteten Kühlkanälen wurde bislang noch nicht erwogen. Wie sich überraschenderwei¬ se herausgestellt hat, führt die Autofrettage insbesondere bei innen gekühlten Turbinenlaufschaufeln zu einer beträcht- liehen Erhöhung der LCF-Lebensdauer sowie der Widerstandsfähigkeit gegen Schwingbruch. Darüber hinaus wird die festig- keitsmindernde Wirkung von Spannungsspitzen, die beispiels¬ weise durch Absätze, Querbohrungen oder Verarbeitungsfehler entstehen, verringert. Schließlich ist die durch die Auto- frettage bewirkte Umverlagerung des Spannungsprofils auch in¬ sofern vorteilhaft, als sie dem Fachmann die Vorhersage der unter üblichen Betriebsbedingungen zu erwartenden Lebensdauer der Turbinenkomponente erleichtert, so dass etwaige Inspek- tions- und Service-Intervalle für die Turbine besonders be- darfsgerecht geplant und festgelegt werden können.
Vorteilhafterweise wird während der Druckbeaufschlagungsphase ein Innendruck aus dem Bereich von 1000 bis 10000 bar (1 bar = 105 Pa = 105 N/m2) eingestellt. Damit ist einerseits sichergestellt, dass der Beaufschlagungsdruck für eine teilplastische Verformung der den jeweiligen Kühlkanal umgebenden Wandzonen ausreichend hoch ist. Andererseits wird ein Bersten oder Reißen oder eine sonstige Beschädigung der Turbinen- oder Verdichterkomponente infolge Überdrucks sicher vermieden. Der günstigste Autofrettagendruck sowie die Behandlungsdauer hängen stark vom jeweiligen Anwendungsfall, z.B. von der Art der zu behandelnden Komponente und vom Verlauf der Kühlkanäle sowie ggf. von weiteren Randbedingungen ab.
Bevorzugt werden zumindest die den Kühlkanal begrenzenden Wandbereiche unmittelbar vor und/oder unmittelbar nach und/oder während der Druckbeaufschlagungsphase auf eine ober¬ halb der Raumtemperatur liegende Behandlungstemperatur erwärmt. Vorzugsweise wird eine Behandlungstemperatur aus dem Intervall von 3O0C bis 10000C eingestellt. Die Temperaturbe¬ handlung kann die der elastisch-plastischen Verformung zugrunde liegenden physikalischen Effekte derart beeinflus¬ sen, dass eine besonders vorteilhafte Stabilisierung der er¬ zeugten Druckeigenspannungen nach dem Abfallen des Autofret- tagedrucks erreicht wird.
Vorzugsweise wird zur Druckbeaufschlagung ein gasförmiges oder flüssiges Medium, insbesondere Luft, in den Kühlkanal der Komponente eingeleitet, wobei der vorgesehene Innendruck durch eine geeignete hydraulische oder pneumatische Vorrich¬ tung erzeugt wird. Das Beaufschlagungsmedium kann zweckmäßi- gerweise derart temperiert sein, dass es die oben bereits be¬ schriebene vorteilhafte Erwärmung der gesamten Komponente oder zumindest der an den Kühlkanal angrenzenden Zonen bewirkt. Alternativ kann die Druckbeaufschlagung auch dadurch erfolgen, dass ein zündfähiges Gasgemisch in den Kühlkanal eingebracht und darin gezielt zur Explosion gebracht wird.
Sofern die Komponente mehrere Kühlkanäle aufweist, die nicht miteinander in Verbindung stehen, so wird das Autofrettage- verfahren vorteilhafterweise auf jeden der Kühlkanäle ange- wandt. Alternativ kann es abhängig von dem angestrebten Spannungsverlauf auch zweckmäßig sein, nur einzelne der Kühlka¬ näle der Druckbehandlung zu unterziehen. Vorteilhafterweise wird die zu behandelnde Komponente während der Druckbeaufschlagungsphase in einer Einspannvorrichtung oder dergleichen eingespannt oder befestigt, damit sie sich an ihrer Außenseite nicht verzieht. Dies ist insbesondere bei Turbinenschaufeln, deren aerodynamische Eigenschaften vom exakten Profilverlauf des Schaufelblatts abhängen, zweckmäßig. Beispielsweise kann eine derartige Schaufel während der Druckbeaufschlagungsphase und gegebenenfalls während einer vorangehenden oder nachfolgenden Temperaturbehandlungsphase in der Art eines Sandwiches zwischen zwei an die Kontur des
Schaufelblatts angepassten, druckstabilen Formschalen fixiert sein .
Vorzugsweise werden bei der Herstellung der Komponente (z. B. einer Turbinenschaufel) erst im Anschluss an die Druckbehand¬ lungsphase vom Kühlkanal abzweigende und in Austrittsöffnun¬ gen an der Außenseite mündende Teilkanäle, die im späteren Betrieb für eine Filmkühlung der Außenseite vorgesehen sind, in die Komponente eingebracht. Dies hat den Vorteil, dass die Kühlkanäle bzw. die davon abzweigenden Teilkanäle an ihren Enden vor der Druckbeaufschlagung nicht erst mit Hilfe von Verschlusspfropfen oder dergleichen mühsam verschlossen und anschließend wieder geöffnet werden müssen, wobei es ohnehin schwierig wäre, die für die oben genannten vorteilhaften Druckverhältnisse erforderliche Dichtigkeit zu erzielen.
Stattdessen muss nach der hier vorgeschlagenen Methode allenfalls an der Einlassöffnung für das Beaufschlagungsmedium, die in der Regel auch die Einlassöffnung für das später im Betrieb einzuleitende Kühlmedium darstellt, für eine entspre- chende Abdichtung gesorgt werden. Nach der Autofrettagebe- handlung können dann die Filmkühlbohrungen bzw. die vergleichsweise kurzen, die Schaufelwand in der Regel geradlinig durchdringenden Austrittskanäle von außen in die Schaufel eingebracht werden, z. B. durch Laserbohren oder durch andere geeignete Verfahren. Die dabei möglicherweise erfolgende
Eigenspannungsumverlagerung ist unerheblich, da sie nur die unmittelbare Umgebung der Austrittskanäle betrifft und auch von der Größenordnung her vernachlässigbar ist. Wichtig ist vielmehr, dass zuvor durch die Autofrettagebehandlung an den Serpentinen und Umlenkungen der mäanderförmigen Kühlluftkanäle die Druckeigenspannungen erhöht wurden.
Bezüglich der Turbinen- oder Verdichterkomponente wird die eingangs gestellte Aufgabe gelöst durch eine Turbinen- oder Verdichterkomponente mit einem innen liegenden Kühlkanal, wo¬ bei die den Kühlkanal begrenzenden Wandabschnitte oder Rand¬ zonen im Ruhezustand der Komponente nach einer Druckbeaufschlagung derart unter Druckspannung stehen, dass unter dynamischen Belastungen beim Betrieb der Turbine oder des Verdichters innerhalb dieser Gebiete auftretende Zugspannungen zumindest teilweise, vorzugsweise vollständig, durch den voreingestellten Druckspannungsverlauf kompensiert werden. Die jeweilige Komponente ist dabei vorteilhafterweise nach dem oben beschriebenen Verfahren hergestellt, d. h. sie hat während der Fertigung einen mit einer Druckbeaufschlagung des Kühlkanals und Teilplastifizierung seiner Wandbereiche einhergehenden Verfestigungsprozess durchlaufen.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch das gezielte Einbringen von Druckei¬ genspannungen in die innen liegenden, die Kühlkanäle begrenzenden Wandgebiete einer Turbinen- oder Verdichterkomponente eine dauerhafte Umverlagerung des Eigenspannungsverlaufs in der Komponente bewirkt wird, die sich unter den im späteren Betrieb auftretenden Belastungszuständen günstig auf die Dauer- und Wechselfestigkeit auswirkt und somit die Lebens¬ dauer der Komponente erhöht .
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1 schematisch eine Turbinenschaufel mit innen liegen- den Kühlkanälen, und
FIG 2 ein Diagramm, in dem ein typischer Verlauf der mechanischen Spannungen über der Ausdehnung einer den Kühlkanal der Turbinenschaufel gemäß FIG 1 begren¬ zenden Wand aufgetragen ist.
Die in FIG 1 als Beispiel für eine Komponente einer Turbine dargestellte Laufschaufel 2 weist mehrere im Schaufelinneren geführte Kühlkanäle 4 auf, durch die während des Betriebs der zugehörigen Turbine vergleichsweise kalte Kühlluft strömt. Die Zuführung der Kühlluft erfolgt über im Schaufelfuß 6 an- geordnete Eintrittsöffnungen 8. Nachdem die Kühlluft die zum Teil mäanderförmigen, zum Teil geradlinig verlaufenden Kühlkanäle 4 durchströmt hat, wobei durch überwiegend konvektive Wärmeübertragung von den umliegenden Wandbereichen auf die vorbeiströmende Kühlluft eine Innenkühlung der Turbinenschau- fei 2 erfolgt, tritt die Kühlluft über vom jeweiligen Kühlka¬ nal 4 abzweigende Austrittskanäle 10 durch in der Schaufel¬ oberfläche angeordnete Austrittsöffnungen 12 aus und bildet dabei einen die Schaufeloberfläche vor dem heißen Arbeitsme¬ dium in der Turbine schützenden Kühlluftfilm aus. Die Aus- trittsöffnungen 12 können beispielsweise auch als Filmkühlöffnungen ausgebildet sein.
Bei Turbinenschaufeln 2 von bislang üblicher Bauart treten in den dem jeweiligen Kühlkanal 4 zugewandten Randzonen der um- gebenden Schaufelwand 14 während des Turbinenbetriebs ver¬ gleichsweise hohe Zugspannungen auf, die die auch LCF-Festig- keit bezeichnete Wechselfestigkeit und damit die Lebensdauer der Turbinenschaufel 2 beeinträchtigen. Zur Vermeidung derartiger Probleme werden gemäß dem nunmehr vorgesehenen Konzept die Kühlkanäle 4 in einem Fertigungsstadium der Turbinenschaufel 2, bei dem zwar schon die Kühlkanäle 4 im Schaufel¬ inneren, aber noch nicht die davon abzweigenden Austrittskanäle 10 ausgebildet sind, einmalig für eine kurze Zeit mit einem weit oberhalb des späteren Betriebsdrucks liegenden In- nendruck beaufschlagt. Dabei kommt es an den den jeweiligen
Kühlkanal 4 angrenzenden Wandbereichen der Turbinenschaufel 2 zur Überschreitung der Fließgrenze und damit zu einer elas¬ tisch-plastischen Verformung des Schaufelmaterials. Aufgrund des plastischen Anteils an der Verformung bilden sich in der Schaufelwand 14 in der Nähe der den Kühlkanal 4 umschließenden Innenflächen lokale Druckeigenspannungen aus, welche dauerhaft auch nach der Druckbeaufschlagung bestehen bleiben und dadurch den Zugspannungen aus der späteren Betriebsbelastung entgegenwirken. Die Dicke der plastisch verformten Zonen hängt weitgehend von dem angewendeten Autofrettagendruck und den Verformungseigenschaften des eingesetzten Schaufelwerkstoffes ab.
Zwar stehen Druckeigenspannungen und Zugeigenspannungen global gesehen, d. h. für die gesamte Turbinenschaufel 2 be¬ trachtet, in einem Gleichgewicht, so dass es bei der Anwen¬ dung der Autofrettage neben der Ausbildung der gewünschten Druckspannungen in der Nähe der Kühlkanäle 4 auch zur Ausbildung von an sich unerwünschten Zugspannungen in den äußeren Regionen der Schaufelwand 14 kommt; diese können sich aber über größere räumliche Regionen verteilen und erreichen dabei nur vergleichsweise geringe Spitzenwerte. Damit sind derar- tige Zugspannungen wesentlich besser beherrschbar als die bei Turbinenschaufeln herkömmlicher Bauart auftretenden Zugspannungen mit ihren vergleichsweise hohen Spitzenwerten.
Das Prinzip der Eigenspannungsumverlagerung ist in FIG 2 noch einmal schematisch veranschaulicht. Dabei ist in dem Diagramm der räumliche Verlauf der Eigenspannung σ über der Wandausdehnung t aufgetragen, der nach Anwendung der Autofrettage resultiert. Dabei ist angenommen, dass der Kühlkanal im Be¬ reich negativer t-Werte liegt und bei t = 0 von einer Innen- wand begrenzt wird. Bei t = to liegt die Außenwand der Turbi¬ nenschaufel. Die Variable t selbst bezeichnet die räumliche Ausdehnung der Schaufelwand 14, z. B. senkrecht zur Oberflä¬ che des Schaufelblatts 16 gemessen. Die nahe bei t = 0 vor¬ liegenden Druckspannungen, deren Betrag bei t = 0 (also an der Innenwand) am größten ist, sind mit einem negativen Vorzeichen versehen. Weiter außerhalb liegen aufgrund des globalen Spannungsgleichgewichtes Zugspannungen vor (positives Vorzeichen von σ) , die sich jedoch über einen größeren räum- liehen Bereich verteilen und daher wesentlich geringere Absolutwerte als die Druckspannungen annehmen. Die beiden von der Spannungsverlaufskurve und der t-Achse eingeschlossenen Flä¬ chen Ai und A2 sind gleich groß, d. h. Ai = A2.
Der vergleichsweise hohe Autofrettagedruck von beispielsweise 1000 bar bis 5000 bar wird im Ausführungsbeispiel aufge¬ bracht, indem die Eintrittsöffnungen 8 im Schaufelfuß 6 der Turbinenschaufel 2 über druckresistente Anschlussleitungen an ein hier nicht dargestelltes Druckreservoir oder an eine sonstige geeignete Druckerzeugungsvorrichtung angeschlossen werden, wobei ein unter hohem Druck stehendes Beaufschla¬ gungsmedium nach dem Öffnen eines Überströmventils in das System der Kühlkanäle 4 der Turbinenschaufel 2 einströmt und dabei die teilplastischen Verformungen der innen liegenden Wandbereiche bewirkt. Alternativ kann auch eine Druckbeauf¬ schlagung durch Herbeiführen einer oder mehrerer Explosionen eines zündfähigen Gasgemisches innerhalb der Kühlluftkanäle, vorzugsweise bei verschlossenen Eintrittsöffnungen 8, vorge- sehen sein. Nach erfolgter Druckbeaufschlagung, die gegebenenfalls bei erhöhter Temperatur der Turbinenschaufel 2 vor¬ genommen wird, werden anschließend die Austrittskanäle 10 von außen durch die Schaufelwand 14 eingebracht und die Turbinen¬ schaufel 2 damit fertiggestellt. Ggf. wird die Turbinenschau- fei 2 noch mit einer Wärmedämmschicht (TBC) beschichtet.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer mindestens einen innenliegenden Kühlkanal (4) aufweisenden Turbinen- oder Verdichterkomponente, insbesondere einer Schaufel (2), dadurch gekennzeichnet, dass der Kühlkanal (4) während einer Druckbeaufschlagungsphase mit einem Innendruck beaufschlagt wird, der derart hoch gewählt ist, dass er zu einer zumindest teilplastischen Verformung der den Kühlkanal (4) begrenzenden Wandbereiche führt.
2. Verfahren nach Anspruch 1, bei dem während der Druckbeaufschlagungsphase ein Innen¬ druck aus dem Bereich von 500 bar bis 10000 bar, insbesondere 1000 bar bis 5000 bar, eingestellt wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem zumindest die den Kühlkanal (4) begrenzenden Wand¬ bereiche unmittelbar vor und/oder unmittelbar nach und/oder während der Druckbeaufschlagungsphase auf eine oberhalb der Raumtemperatur liegende Behandlungstemperatur erwärmt werden .
4. Verfahren nach Anspruch 3, bei dem eine Behandlungstemperatur aus dem Intervall von 3O0C bis 10000C eingestellt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem zur Druckbeaufschlagung ein gasförmiges oder flüssiges Medium in den Kühlkanal (4) eingeleitet wird, wobei der gewünschte Innendruck durch eine externe Drucker¬ zeugungsvorrichtung erzeugt wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, bei dem ein zündfähiges Gasgemisch in den Kühlkanal (4) eingeleitet und anschließend bei verschlossenen Eintritts- und Austrittsöffnungen ( 8 , 12) zur Explosion gebracht wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem erst im Anschluss an die Druckbehandlungsphase vom Kühlkanal (4) abzweigende und in Austrittsöffnungen (12) an der Außenseite mündende Austrittskanäle (10) in die Kompo- nente eingebracht werden.
8. Turbinen- oder Verdichterkomponente, insbesondere Turbinenschaufel (2), mit einem innenliegenden Kühlkanal (4), wobei die den Kühlkanal (4) begrenzenden Wandabschnitte oder Randzonen im Ruhezustand der Komponente nach einer im Inneren stattfindenden Druckbeaufschlagung derart unter Druckspannung stehen, dass unter dynamischen Belastungen beim Betrieb der Turbine oder des Verdichters innerhalb dieser Gebiete auftretende Zugspannungen zumindest teil¬ weise durch den voreingestellten Druckspannungsverlauf kompensiert werden.
9. Thermische Strömungsmaschine, insbesondere Gasturbine oder Dampfturbine, mit einer Anzahl von Komponenten nach Anspruch 8.
PCT/EP2007/050687 2006-03-06 2007-01-24 Verfahren zur herstellung einer turbinen- oder verdichterkomponente sowie turbinen- oder verdichterkomponente WO2007101743A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/224,729 US8109712B2 (en) 2006-03-06 2007-01-24 Method of producing a turbine or compressor component, and turbine or compressor component
JP2008557700A JP5111402B2 (ja) 2006-03-06 2007-01-24 タービン構成要素又は圧縮機構成要素の製造方法並びにタービン構成要素又は圧縮機構成要素
CN200780007887.5A CN101432504B (zh) 2006-03-06 2007-01-24 用于制造涡轮机或者压缩机部件的方法以及涡轮机或者压缩机部件
EP07704118A EP1991761A1 (de) 2006-03-06 2007-01-24 Verfahren zur herstellung einer turbinen- oder verdichterkomponente sowie turbinen- oder verdichterkomponente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06004535A EP1832714A1 (de) 2006-03-06 2006-03-06 Verfahren zur Herstellung einer Turbinen- oder Verdichterkomponente sowie Turbinen- oder Verdichterkomponente
EP06004535.8 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007101743A1 true WO2007101743A1 (de) 2007-09-13

Family

ID=37433970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050687 WO2007101743A1 (de) 2006-03-06 2007-01-24 Verfahren zur herstellung einer turbinen- oder verdichterkomponente sowie turbinen- oder verdichterkomponente

Country Status (5)

Country Link
US (1) US8109712B2 (de)
EP (2) EP1832714A1 (de)
JP (1) JP5111402B2 (de)
CN (1) CN101432504B (de)
WO (1) WO2007101743A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216394A1 (de) * 2013-08-19 2015-03-12 MTU Aero Engines AG Verfahren zum Bearbeiten eines Gasturbinenbauteils

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228448B2 (en) * 2013-09-20 2016-01-05 United Technologies Corporation Background radiation measurement system
US10487665B2 (en) 2015-02-11 2019-11-26 Rolls-Royce Corporation Acoustic breakthrough detection
JP6425689B2 (ja) 2016-07-15 2018-11-21 株式会社日本製鋼所 水素用圧力容器およびその製造方法
DE102018127708A1 (de) * 2018-11-07 2020-05-07 Man Energy Solutions Se Verfahren zum Bearbeiten eines Gehäuses eines Turboladers
US11255200B2 (en) 2020-01-28 2022-02-22 Rolls-Royce Plc Gas turbine engine with pre-conditioned ceramic matrix composite components
CN111322117B (zh) * 2020-03-09 2020-11-13 北京南方斯奈克玛涡轮技术有限公司 一种发动机涡轮叶片装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143075A1 (en) * 2000-01-19 2003-07-31 General Electric Company Turbulated cooling holes
US20050005910A1 (en) * 2003-07-10 2005-01-13 Usui Kokusai Sangyo Kaisha Limited Common-rail injection system for diesel engine
EP1508400A1 (de) * 2003-08-13 2005-02-23 ROLLS-ROYCE plc Verfahren zur Herstellung eines Gegenstandes durch Diffusionsschweissen und superplastisches Verformen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE350918B (de) * 1971-03-26 1972-11-13 Asea Ab
JPS53119268A (en) * 1977-03-28 1978-10-18 Stanley Electric Co Ltd Explosive forming method for metallic product and appartus employed in this method
US4142831A (en) * 1977-06-15 1979-03-06 General Electric Company Liquid-cooled turbine bucket with enhanced heat transfer performance
JPS61210172A (ja) * 1985-03-13 1986-09-18 Kawasaki Heavy Ind Ltd タ−ビン翼の製造方法
US4925501A (en) * 1988-03-03 1990-05-15 General Motors Corporation Expolosive compaction of rare earth-transition metal alloys in a fluid medium
JPH0280149A (ja) * 1988-09-16 1990-03-20 Agency Of Ind Science & Technol タービンブレードの鍛造プリフォームの成形方法及び成形金型
JPH0447101A (ja) * 1990-06-15 1992-02-17 Toshiba Corp ターボ機械の動翼
US5072871A (en) * 1990-06-27 1991-12-17 Compressor Components Textron Inc. Method of making hollow articles
JPH04314930A (ja) * 1991-01-11 1992-11-06 Kobe Steel Ltd 円筒部材及びその製造方法
FR2672826B1 (fr) * 1991-02-20 1995-04-21 Snecma Procede de fabrication d'une aube creuse pour turbomachine.
GB9209464D0 (en) * 1992-05-01 1992-06-17 Rolls Royce Plc A method of manufacturing an article by superplastic forming and diffusion bonding
JP2669308B2 (ja) * 1993-10-01 1997-10-27 株式会社デンソー アモルファス被覆体及びその成形方法
JP3257258B2 (ja) * 1994-06-29 2002-02-18 日本鋼管株式会社 爆轟による磁気ディスク基板の矯正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143075A1 (en) * 2000-01-19 2003-07-31 General Electric Company Turbulated cooling holes
US20050005910A1 (en) * 2003-07-10 2005-01-13 Usui Kokusai Sangyo Kaisha Limited Common-rail injection system for diesel engine
EP1508400A1 (de) * 2003-08-13 2005-02-23 ROLLS-ROYCE plc Verfahren zur Herstellung eines Gegenstandes durch Diffusionsschweissen und superplastisches Verformen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216394A1 (de) * 2013-08-19 2015-03-12 MTU Aero Engines AG Verfahren zum Bearbeiten eines Gasturbinenbauteils
DE102013216394B4 (de) * 2013-08-19 2015-07-23 MTU Aero Engines AG Verfahren zum Bearbeiten eines Gasturbinenbauteils

Also Published As

Publication number Publication date
JP5111402B2 (ja) 2013-01-09
JP2009529113A (ja) 2009-08-13
CN101432504B (zh) 2012-06-13
US20090185913A1 (en) 2009-07-23
CN101432504A (zh) 2009-05-13
US8109712B2 (en) 2012-02-07
EP1832714A1 (de) 2007-09-12
EP1991761A1 (de) 2008-11-19

Similar Documents

Publication Publication Date Title
WO2007101743A1 (de) Verfahren zur herstellung einer turbinen- oder verdichterkomponente sowie turbinen- oder verdichterkomponente
EP1320661B1 (de) Gasturbinenschaufel
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
DE10116452B4 (de) Gasturbine und Reparaturverfahren für diese
EP1621730B1 (de) Gekühltes Bauteil einer Strömungsmaschine und Verfahren zum Giessen dieses gekühlten Bauteils
EP1899582B1 (de) Hitzeschild und turbinenleitschaufel für eine gasturbine
EP3183497B1 (de) Hitzeschildelement und verfahren zu seiner herstellung
DE112006001149T5 (de) Verfahren und Vorrichtung für die Nasskompression
WO2005108746A1 (de) Strömungsmaschinenschaufel
CH706090A1 (de) Verfahren zum Herstellen eines oberflächennahen Kühlkanals in einem thermisch hoch beanspruchten Bauteil sowie Bauteil mit einem solchen Kanal.
EP1904717B1 (de) HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE
EP1700009A2 (de) Verfahren zum betreiben einer turbomaschine, und turbomaschine
DE102011053702A1 (de) Turbinenschaufelblatt und Verfahren zur Kühlung eines Turbinenschaufelblattes
EP2203682B1 (de) Gasturbine mit geschweissten brennkammerschalen
EP1672281A1 (de) Hitzeschildelement
EP1219780A2 (de) Prallkühlung eines Bauteils in einer Strömungskraftmaschine
EP3762586B1 (de) Bauteilwand eines heissgasbauteils
EP1857635A1 (de) Turbinenschaufel für eine Gasturbine
DE112014006619B4 (de) Gasturbinenbrennkammer und mit selbiger versehene Gasturbine
DE102008061917B4 (de) Heißgaskammer
EP3274561B1 (de) Laufschaufel für eine gasturbine, herstellungsverfahren und nachbearbeitungsverfahren
EP2270397A1 (de) Gasturbinenbrennkammer und Gasturbine
DE102019214667A1 (de) Komponente mit einem zu kühlenden Bereich und Mittel zur additiven Herstellung derselben
EP1980631A1 (de) Verfahren zum Strahlen einer Turbinenschaufel für den Heissbereich einer Gasturbine
EP2628816A1 (de) Verfahren zum Aufbringen einer Wärmedämmschicht

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007704118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780007887.5

Country of ref document: CN

Ref document number: 2008557700

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12224729

Country of ref document: US