WO2007099794A1 - 半導体ナノ粒子の製造方法及びその製造装置 - Google Patents

半導体ナノ粒子の製造方法及びその製造装置 Download PDF

Info

Publication number
WO2007099794A1
WO2007099794A1 PCT/JP2007/052915 JP2007052915W WO2007099794A1 WO 2007099794 A1 WO2007099794 A1 WO 2007099794A1 JP 2007052915 W JP2007052915 W JP 2007052915W WO 2007099794 A1 WO2007099794 A1 WO 2007099794A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
semiconductor nanoparticles
semiconductor
nuclei
growth
Prior art date
Application number
PCT/JP2007/052915
Other languages
English (en)
French (fr)
Inventor
Satoshi Hachiya
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US12/280,174 priority Critical patent/US20090029563A1/en
Priority to EP07714441A priority patent/EP1990311A1/en
Publication of WO2007099794A1 publication Critical patent/WO2007099794A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/082Other phosphides of boron, aluminium, gallium or indium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Definitions

  • the present invention relates to a method for manufacturing semiconductor nanoparticles and an apparatus for manufacturing the same.
  • the fluorescence peak wavelength of the semiconductor nanoparticles must be adjusted to the green or red region, and the half-value width must be 80 nm or less! / ,.
  • Patent Document 1 fluorescent semiconductor nanoparticles using only a batch reactor are disclosed, but the nucleation and growth of semiconductor nanoparticles proceed in the same reaction vessel. However, since nucleation and growth of semiconductor nanoparticles occur at the same time and it is difficult to control the particle size of the semiconductor nanoparticles, the number of semiconductor species whose particle size can be controlled has been limited.
  • Patent Documents 2 and 3 techniques for separately nucleating and growing semiconductor nanoparticles by controlling the temperature of a reaction tube using only a continuous reactor are disclosed. It was difficult to optimize each reaction condition with the apparatus. In addition, the reaction tube may be clogged with the growth of the semiconductor nanoparticles. Furthermore, when the growth rate of the semiconductor nanoparticles is slow, the reaction tube becomes long, and there is a problem that the energy required for the production increases due to an increase in the resistance of the liquid feeding.
  • Patent Document 4 a technique for protecting semiconductor nanoparticles by forming different types of semiconductor layers (shells) on the surface of semiconductor nanoparticles. It is known that it is effective to gradually drop the shell raw material in order to suppress the formation of only powerful nanoparticles. However, it was difficult to add such raw materials sequentially with only the continuous reactor. Patent Document 1: Special Table 2001—523758
  • Patent Document 2 US Patent 6,179,912 Specification
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-160336
  • Patent Document 4 US Patent 6,322,901 Specification
  • An object of the present invention is to provide a semiconductor nanoparticle production method and production apparatus that can control the particle size with high accuracy.
  • a method for producing semiconductor nanoparticles wherein the reaction for growing the nuclei is performed stepwise.
  • the heating time until the mixture reaches the temperature at which the nuclei are formed is within 1 minute
  • the continuous reaction apparatus is a microreactor. Manufacturing method.
  • a semiconductor nanoparticle production apparatus comprising a continuous reaction apparatus for performing nucleation reaction of semiconductor nanoparticles and a batch reaction apparatus for performing growth reaction of semiconductor nanoparticles.
  • the production method of the present invention can perform nucleation and growth of semiconductor nanoparticles under optimum conditions, it is possible to accurately control the particle size of semiconductor nanoparticles. As a result, semiconductor nanoparticles having a desired emission wavelength can be obtained.
  • FIG. 1 is a schematic view showing a semiconductor nanoparticle production apparatus used in Examples.
  • FIG. 2 is a schematic view showing the internal structure of the microreactor.
  • the method for producing semiconductor nanoparticles of the present invention is characterized in that a reaction for forming nuclei (nucleation reaction) and a reaction for growing nuclei (growth reaction) are performed in stages.
  • stepwise means that once a nucleus is formed, the growth reaction is not continued as it is. That is, after forming the nucleus, the temperature is once lowered to stop the nucleus formation, and then the temperature is raised to grow the nucleus.
  • the nucleation reaction and the growth reaction may be performed in the same place or in different places. The growth reaction may be performed immediately after the nucleation reaction, or the interval may be increased.
  • the nucleation reaction is a reaction that forms nuclei of semiconductor nanoparticles from semiconductor nanoparticle raw materials.
  • reaction solvent and the semiconductor nanoparticle raw material are mixed, and the mixture is heated to form nuclei of the semiconductor nanoparticles, and then cooled in the next stage to grow nuclei and form new nuclei. Suppresses growth.
  • the nuclei of semiconductor nanoparticles are formed by heating, it is preferable to rapidly heat the reaction system.
  • the time for heating the inside of the reaction system to reach the temperature at which the mixture forms nuclei of the semiconductor nanoparticles is preferably within 1 minute, more preferably within 30 seconds. Long time to reach the temperature of nucleation of semiconductor nanoparticles! The straw and the raw material are decomposed! ⁇ The yield of semiconductor nanoparticles may be reduced.
  • the temperature at which the nuclei of the semiconductor nanoparticles are formed varies depending on the type of semiconductor to be produced and the raw materials used, but for example, in the case of InP, it is usually 280 to 350 ° C.
  • the inside of the reaction system is preferably cooled rapidly.
  • the time for cooling to reach below the growth temperature of the semiconductor nanoparticles is preferably within 1 minute, more preferably within 30 seconds. If it takes a long time to reach a temperature that suppresses the formation of nuclei, the nuclei that have already formed will continue to grow, and new nuclei may be formed, increasing the particle size distribution.
  • the cooling temperature below the semiconductor nanoparticle growth temperature depends on the type of semiconductor to be produced, but for example, in the case of InP, it is usually 180 ° C or lower.
  • the particle diameter of the core of the semiconductor nanoparticles made of InP formed by this reaction is preferably Inn! ⁇ 2nm.
  • the particle size of the core of the semiconductor nanoparticles can be controlled by adjusting the heating time.
  • the growth reaction is a reaction for growing the nuclei of semiconductor nanoparticles.
  • the semiconductor nanoparticle raw material may be sequentially obtained. This makes it possible to control the particle size of the semiconductor nanoparticles.
  • the temperature at which the nuclei of the semiconductor nanoparticles grow is different depending on the type of semiconductor to be manufactured. For example, in the case of InP, it is usually 180 to 310 ° C.
  • the particle size of the semiconductor nanoparticles with InP force obtained by this reaction is intended for green light emission. Preferably 4 ⁇ ! ⁇ 4.8 nm.
  • the particle diameter of the semiconductor nanoparticles can be controlled by adjusting the ratio of the semiconductor nanoparticle raw material to the core of the semiconductor nanoparticles and the reaction time.
  • the emission of fluorescent semiconductor nanoparticles becomes sharper and the emission wavelength can be easily controlled.
  • the semiconductor nanoparticle production apparatus of the present invention comprises a continuous reaction apparatus and a batch reaction apparatus.
  • the continuous reactor is a device that continuously supplies raw materials and continuously takes out products from the other.
  • the batch reactor supplies raw materials to the device and proceeds with the reaction.
  • the reaction product is taken out and the raw material for the next reaction is supplied.
  • the nucleation reaction requires rapid temperature increase / decrease in the reaction system. For this reason, the nucleation reaction is preferably carried out in a continuous reactor with temperature control of the reaction system!
  • a microreactor is a generic name for a microreactor having microchannels of several zm to several hundreds / zm.
  • the growth reaction is preferably performed in a batch reaction apparatus in order to stop the reaction after confirming that the particle size of the semiconductor nanoparticles has grown to a target size.
  • the production method of the present invention can be used in the production of nanoparticles of all types of semiconductors. Among them, in the case of producing nanoparticles of II-VI semiconductors and III-V semiconductors, It is particularly effective.
  • II-VI semiconductors examples include ZnTe, ZnSe, and ZnS.
  • III-V semiconductors examples include InP.
  • reaction solvent or raw material a known reaction solvent or raw material can be used.
  • the reaction solvent used is trioctyl chloride.
  • Ruphosphine oxide (TOPO), trioctylphosphine (TOP), 1-octadecene, etc. can be used.
  • the production method of the present invention can also produce so-called core-shell type semiconductor nanoparticles composed of a plurality of semiconductor species.
  • the core-shell type semiconductor nanoparticles are obtained by growing the nuclei of the semiconductor nanoparticles by the method described above, and further adding a different kind of semiconductor nanoparticle raw material from the semiconductor nanoparticle raw material that forms the nuclei and reacting them. Can be manufactured.
  • semiconductor nanoparticles were produced using the apparatus shown in FIG.
  • the semiconductor nanoparticle production apparatus 1 in FIG. 1 includes a raw material container 10 for containing raw materials, a solvent container 20 for containing reaction solvent, a liquid feed pump 31, 32, a microreactor 40, a nozzle 50, 60, and a batch-type reaction container 70. I have.
  • the raw material container 10 and the microreactor 40 are connected by piping through the liquid feed pump 32 and the valve 50 in this order.
  • the solvent container 20 and the microreactor 40 are connected in the order of the liquid feed pump 31 and the valve 50 in this order.
  • the microreactor 40 and the batch reaction vessel 70 are connected to each other through a valve 60 on the way.
  • FIG. 2 is a schematic diagram showing the internal structure of the microreactor 40 of FIG.
  • the microreactor 40 includes a heating unit 41 and a cooling unit 42.
  • Each of the heating unit 41 and the cooling unit 42 includes a temperature adjusting device 44 including a heater and a temperature sensor, a refrigerant circulating unit, and a temperature adjusting device 46 that also has a temperature sensor force, whereby the temperatures of the heating unit 41 and the cooling unit 42 are provided. Adjust.
  • the piping built in the microreactor 40 is as follows. Karo hot section: length 120cm, cross section of one tube 0.009cm 2
  • Cooling section length 40cm, cross section of one tube 0.0009cm 2
  • Trioctyl phosphine oxide (TOPO) 4.3g, trioctyl phosphine (TOP) 3.2g, salt ⁇ indium 0.26g, hexaethyl phosphorous lyamide 0.32g are mixed. Vacuum dried at ° C for 1 hour. The dried mixture was filled into a raw material container 10 kept at 100 ° C. in a nitrogen atmosphere.
  • a reaction solvent in which TOPO and TOP were mixed at the same weight ratio as above was charged into a solvent container 20 kept at 100 ° C. in a nitrogen atmosphere.
  • the reaction solvent was fed into the microreactor 40 with the temperature of the heating unit 41 maintained at 330 ° C in 0.3 mlZ by the liquid feed pump 31, and the inside of the microreactor was kept in a steady state.
  • a medium maintained at 100 ° C. was passed through the cooling section 42 so that the reaction solution could be cooled to 100 ° C.
  • the piping part after the microreactor 40 was kept at 100 ° C.
  • the injected reaction solution had already reached the temperature (330 ° C) at which the nuclei of semiconductor nanoparticles made of InP were formed at a point 5 cm from the entrance of the heating unit 41. It took about 2 seconds for the reaction solution to reach the point 5 cm from the entrance of the heating section 41.
  • the temperature is already below the temperature (180 ° C) at which the nuclei of semiconductor nanoparticles are formed or grown. Had reached.
  • the time required for the reaction solution to reach a point 3 cm from the inlet of the cooling section 42 was about 4.5 seconds.
  • the particle size Inn! ⁇ 1.5nm core of semiconductor nanoparticles formed.
  • the particle size of the nuclei of the semiconductor nanoparticles was measured by TEM observation.
  • TOP016g and TOP8g which had been vacuum-dried in advance, were placed in a batch reaction vessel 70 equipped with a stirrer and heated to 100 ° C in a nitrogen atmosphere.
  • the valve 60 By operating the valve 60 at the tip of the microreactor outlet, the reaction solution containing the nuclei of semiconductor nanoparticles formed inside the microreactor was injected into the batch reaction vessel 70.
  • the raw material solution for semiconductor nanoparticle growth reaction including 4 P of TOP, 0.25 g of indium chloride, and 0.31 g of hexaethyl phosphorous triamide) previously vacuum-dried in a batch reactor 70 added.
  • the reaction temperature was raised to 300 ° C and stirring was continued for 3 hours.
  • reaction solution obtained in (2) was cooled to 60 ° C., 6 ml of 1-butanol was added and cooled to room temperature.
  • the solid separated by the above operation was collected by centrifugation (3, OOOrpm, 10 minutes) and redispersed in toluene to obtain a semiconductor nanoparticle dispersion.
  • a reaction solvent in which TOPO and TOP were mixed at the same weight ratio as the above raw material solution was charged into a solvent container 20 kept at 100 ° C. in a nitrogen atmosphere.
  • the reaction solvent is 0.3 mlZ, and the temperature of the heating unit 41 is kept at 310 ° C and the temperature of the cooling unit 42 is kept at 100 ° C. Maintained steady state.
  • the valve 50 was switched and the raw material was fed into the microreactor 40 at 0.3 mlZ for 40 seconds using the liquid feed pump 32.
  • the injected reaction solution had already reached the temperature (310 ° C) at which the core of semiconductor nanoparticles made of ZnTe was formed at a point 5 cm from the entrance of the heating unit 41.
  • the time for the reaction solution to reach the point 5 cm from the entrance of the heating unit 41 was about 2 seconds.
  • the cooling unit 42 At the point where the entrance force of 3cm is reached, the temperature has already reached the temperature (180 ° C) below which the nuclei of semiconductor nanoparticles form or grow.
  • the time required for the reaction solution to reach a point 3 cm from the inlet of the cooling section 42 was about 4.5 seconds.
  • nuclei of semiconductor nanoparticles having a particle size of 3.3 nm to 3.8 nm were formed.
  • the reaction solution containing the core of semiconductor nanoparticles formed inside the microreactor was injected into the batch reactor 70, and the reaction temperature was raised to 280 ° C. Stirring was continued for 3 hours.
  • semiconductor nanoparticles made of ZnTe grown to a particle size of 6.6 nm to 7.5 nm were obtained.
  • the reaction solution obtained in (2) was cooled to 150 ° C. in a batch reaction vessel 70.
  • Acetonitrile (40 ml) was added and stirred for 30 seconds and allowed to stand. The separated lower layer was collected. In the lower layer collected, 3 ml of 1-butanol and 40 ml of acetonitrile were stirred for 30 seconds and allowed to stand. The separated lower layer was collected. This operation was repeated two more times.
  • the solid separated by the above operation was collected by centrifugation (3, OOOrpm, 10 minutes) and redispersed in hexane to obtain a semiconductor nanoparticle dispersion.
  • Trioctylphosphine oxide Og, trioctylphosphine (TOP) 1.75 g, indium chloride 0.26 g, hexaethyl phosphorous triamide 0.32 g are mixed, and at 140 ° C for 1 hour Vacuum-dried to obtain a raw material solution.
  • TOPO Trioctylphosphine oxide
  • TOP trioctylphosphine
  • the vacuum-dried TOP014g and TOPlOg were charged into a batch reactor and heated to 330 ° C under a nitrogen atmosphere.
  • the above raw material solution was poured into it at once.
  • the reaction temperature was kept at 300 ° C and stirring was continued for 3 hours.
  • the reaction solution obtained in (1) was post-treated in the same manner as in Example 1 to obtain a semiconductor nanoparticle dispersion.
  • the semiconductor nanoparticles produced by the production method of the present invention are used for industrial use and consumer use (portable and vehicle-mounted). , Indoor) for general display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 半導体ナノ粒子の核を形成する反応と、核を成長させる反応を段階的に行う半導体ナノ粒子の製造方法。半導体ナノ粒子の核形成反応を行う連続式反応装置(40)と、半導体ナノ粒子の成長反応を行う回分式反応装置(70)、を備えた半導体ナノ粒子製造装置(1)。

Description

明 細 書
半導体ナノ粒子の製造方法及びその製造装置
技術分野
[0001] 本発明は半導体ナノ粒子の製造方法及びその製造装置に関する。
背景技術
[0002] 高耐久性蛍光材料として半導体ナノ粒子が注目されて 、る。
半導体ナノ粒子を色変換媒体 (CCM)方式のディスプレイに適用する場合、半導 体ナノ粒子の蛍光ピーク波長を緑もしくは赤の領域に合わせるとともに、半値幅を 80 nm以下にしなければならな!/、。
半導体ナノ粒子において蛍光波長を所望の値に合わせるためには、半導体ナノ粒 子の粒径を精密に制御する必要があり、精密かつ効率の良い半導体ナノ粒子の製 造法が求められていた。
[0003] 特許文献 1にお 、て、回分式反応装置のみを用いた蛍光性半導体ナノ粒子が開 示されているが、半導体ナノ粒子の核形成と成長を同一の反応容器で進行させるた め、半導体ナノ粒子の核形成と成長が同時に起こり、半導体ナノ粒子の粒径制御が 難 、ことから、粒径制御可能な半導体種が限られて 、た。
[0004] 特許文献 2及び 3にお 、て、連続式反応装置のみを用い反応管の温度を制御する ことによって半導体ナノ粒子の核形成と成長を別個に行う技術が開示されているが、 連続した装置ではそれぞれの反応条件を最適化することが難しかった。また、半導 体ナノ粒子の成長にともない反応管が閉塞するおそれがあった。さらに、半導体ナノ 粒子の成長速度が遅い場合には反応管が長大となり、送液の抵抗が増して製造に 要するエネルギーが増大してしまう問題があった。
[0005] また、半導体ナノ粒子の表面に異種の半導体層(シェル)を形成して半導体ナノ粒 子を保護する技術が公知(特許文献 4)であるが、シェル合成にお 1ヽてはシェルのみ 力 なるナノ粒子の形成を抑制するためにシェル原料を徐々に滴下することが有効 であることが知られている。しカゝしながら、連続式反応装置のみではこのような逐次的 な原料の追加が難し力つた。 特許文献 1:特表 2001— 523758号公報
特許文献 2 :米国特許 6, 179, 912明細書
特許文献 3 :特開 2003— 160336号公報
特許文献 4:米国特許 6, 322, 901明細書
発明の開示
[0006] 本発明の目的は、粒径を精度よく制御できる半導体ナノ粒子の製造方法及び製造 装置を提供することである。
[0007] 本発明によれば、以下の半導体ナノ粒子の製造方法等が提供される。
1.半導体ナノ粒子の核を形成する反応と、
前記核を成長させる反応を段階的に行う半導体ナノ粒子の製造方法。
2.前記核形成反応において、
反応溶媒及び半導体ナノ粒子原料を混合し、
前記混合物を加熱し、半導体ナノ粒子の核を形成させ、
核形成後、冷却して前記核の成長及び新たな核形成を抑制する 1に記載の半導体 ナノ粒子の製造方法。
3.前記混合物が前記核を形成させる温度に到達するまでの加熱時間が、 1分以内 であり、
前記混合物が前記核の成長及び新たな核形成を抑制する温度に到達するまでの 冷却時間が、 1分以内である、 2に記載の半導体ナノ粒子の製造方法。
4.前記成長反応において、
前記核に半導体ナノ粒子原料を加え、
前記核と半導体ナノ粒子原料を加熱して前記核を成長させる 1〜3のいずれかに 記載の半導体ナノ粒子の製造方法。
5.前記半導体ナノ粒子原料を逐次的に加える 4に記載の半導体ナノ粒子の製造方 法。
6.前記核形成反応を連続式反応装置で行い、前記成長反応を回分式反応装置で 行う 1〜5の 、ずれかに記載の半導体ナノ粒子の製造方法。
7.前記連続式反応装置がマイクロリアクターである 6に記載の半導体ナノ粒子の製 造方法。
8.前記核を成長させた後、さらにシェル原料をカ卩えてシェルを形成する 1〜7のいず れかに記載の半導体ナノ粒子の製造方法。
9.半導体ナノ粒子の核形成反応を行う連続式反応装置と、半導体ナノ粒子の成長 反応を行う回分式反応装置、を備えた半導体ナノ粒子製造装置。
10.前記連続式反応装置が、マイクロリアクターである 9に記載の半導体ナノ粒子製 造装置。
[0008] 本発明によれば、粒径を精度よく制御できる半導体ナノ粒子の製造方法及び製造 装置が提供できる。
本発明の製造方法は、半導体ナノ粒子の核形成と成長をそれぞれ最適条件で行 えるため、半導体ナノ粒子の粒径制御を精度よく行うことができる。その結果、所望の 発光波長の半導体ナノ粒子を得ることができる。
図面の簡単な説明
[0009] [図 1]実施例で使用した半導体ナノ粒子の製造装置を示す概略図である。
[図 2]マイクロリアクターの内部構造を示す概略図である。
発明を実施するための最良の形態
[0010] 本発明の半導体ナノ粒子の製造方法は、核を形成する反応 (核形成反応)と核を 成長させる反応 (成長反応)を段階的に行うことを特徴とする。
ここで、「段階的に」とは、核を形成したら、そのままの状態で成長反応を続けないこ とである。即ち、核を形成した後、一度温度を下げて核の形成を止め、その後に温度 を上げて核を成長させることである。核形成反応と成長反応は同じ場所で実施しても よいし、異なる場所で実施してもよい。核形成反応の後速やかに成長反応を実施し てもよいし、間隔が開いてもよい。
[0011] (1)核形成反応
核形成反応は、半導体ナノ粒子原料から半導体ナノ粒子の核を形成する反応であ る。
この反応は、例えば、反応溶媒及び半導体ナノ粒子原料を混合し、この混合物を 加熱して半導体ナノ粒子の核を形成させ、次!ヽで冷却して核の成長及び新たな核形 成を抑制する。
[0012] 加熱して半導体ナノ粒子の核を形成するときに、反応系内を急速に加熱させること が好ましい。反応系内を加熱して、混合物が半導体ナノ粒子の核を形成する温度に 到達する時間は、好ましくは、 1分以内、より好ましくは 30秒以内である。半導体ナノ 粒子の核を形成する温度に到達する時間が長!ヽと原料物質が分解してしま!ヽ半導 体ナノ粒子の収率が低下する恐れがある。
半導体ナノ粒子の核を形成する温度は、製造する半導体の種類や使用する原料 によって異なるが、例えば、 InPの場合、通常 280〜350°Cである。
[0013] 半導体ナノ粒子の核を形成した後、反応系内を冷却し核の成長及び新たな核形成 を抑制するときは、反応系内を急速に冷却させることが好ましい。冷却して混合物が 半導体ナノ粒子の成長温度以下まで到達する時間は、好ましくは、 1分以内、より好 ましくは 30秒以内である。核の形成を抑制する温度に到達する時間が長いとすでに 形成した核が成長を続けるとともに新たな核が形成され粒径の分布が広がってしまう 恐れがある。
半導体ナノ粒子の成長温度以下の冷却温度は、製造する半導体の種類によって 異なるが、例えば、 InPの場合、通常 180°C以下である。
[0014] この反応によって形成される InPからなる半導体ナノ粒子の核の粒子径は、好ましく は、 Inn!〜 2nmである。また、半導体ナノ粒子の核の粒子径は、加熱時間を調節す ることによって制御することが可能である。
[0015] (2)成長反応
成長反応は、半導体ナノ粒子の核を成長させる反応である。
この反応は、例えば、半導体ナノ粒子原料と上記(1)の反応で製造された半導体 ナノ粒子の核を必要量混合し、加熱して半導体ナノ粒子を成長させる。
粒子の成長状態によっては、逐次的に半導体ナノ粒子原料をカ卩えてもよい。これに より半導体ナノ粒子の粒径が制御できる。
半導体ナノ粒子の核を成長させる温度は、製造する半導体の種類によって異なる 力 例えば、 InPの場合、通常 180〜310°Cである。
この反応により得られる InP力もなる半導体ナノ粒子の粒径は、緑色発光を目的と する場合、好ましくは 4ηπ!〜 4. 8nmである。半導体ナノ粒子の粒子径は、半導体ナ ノ粒子原料と半導体ナノ粒子の核の比率及び反応時間を調節することによって制御 することが可能である。
[0016] このように核形成反応と成長反応を別の反応系で行うことにより、それぞれの反応 条件の最適化が可能となり、半導体ナノ粒子の粒径を制御しやすくなる。
その結果、蛍光性半導体ナノ粒子では発光がシャープになるとともに、発光波長を 制御しやすくなる。
[0017] 本発明の半導体ナノ粒子製造装置は、連続式反応装置と回分式反応装置からな る。ここで、連続式反応装置とは装置の一方力 原料を連続的に供給して他方から 生成物を連続的に取り出す装置であり、回分式反応装置とは装置に原料を供給し反 応を進行させ、その反応物を取り出した後、次回の反応の原料を供給する装置であ る。
核形成反応は、上記のように、反応系内の急速な昇温 ·降温が要求される。このた め核形成反応は、反応系の温度制御がしゃす!/ヽ連続式反応装置で行うことが好まし い。
[0018] 核形成反応を行う連続式反応装置は、具体的には、マイクロリアクター、管状反応 装置が挙げられる。特に好ましくは、マイクロリアクターである。
マイクロリアクターとは、数; z m〜数百/ z mのマイクロ流路を有する微小反応器の総 称である。
[0019] 一方、成長反応は、半導体ナノ粒子の粒径が目的とする大きさに成長したことを確 認して反応を停止させるため、回分式反応装置で行うことが好ましい。
[0020] 本発明の製造方法は、あらゆる半導体種のナノ粒子を製造する場合において使用 できるが、その中でも II— VI族半導体及び III— V族半導体のナノ粒子を製造する場 合にぉ 、て特に有効である。
II— VI族半導体として、例えば、 ZnTe, ZnSe, ZnS等を挙げることができる。
III— V族半導体として、例えば、 InP等を挙げることができる。
[0021] 本発明の製造方法で、使用する反応溶媒又は原料は公知のものを使用できる。例 えば、 InPからなる半導体ナノ粒子を製造する場合、使用する反応溶媒は、トリオクチ ルホスフィンオキサイド(TOPO)、トリオクチルホスフィン (TOP)、 1—ォクタデセン等 を使用できる。
[0022] 本発明の製造方法は、複数の半導体種からなる、いわゆるコアシェル型の半導体 ナノ粒子も製造することができる。
コアシェル型の半導体ナノ粒子は、半導体ナノ粒子の核を上記の方法で成長させ た後、さらに核を形成する半導体ナノ粒子原料と異なる種の半導体ナノ粒子原料を 添加し、反応させること〖こよって製造することができる。
[実施例]
[0023] 実施例において、半導体ナノ粒子は、図 1に示す装置を使用して製造した。
図 1の半導体ナノ粒子製造装置 1は、原料を入れる原料容器 10、反応溶媒を入れ る溶媒容器 20、送液ポンプ 31, 32、マイクロリアクター 40、ノ レブ 50, 60、回分式 反応容器 70を備えている。
原料容器 10とマイクロリアクター 40は、途中、送液ポンプ 32及びバルブ 50をこの 順に介して配管で接続され、溶媒容器 20とマイクロリアクター 40は、途中、送液ボン プ 31及びバルブ 50をこの順に介して配管で接続されている。マイクロリアクター 40と 回分式反応容器 70は、途中、バルブ 60を介して配管で接続されている。
[0024] 図 2は、図 1のマイクロリアクター 40の内部構造を示す概略図である。
マイクロリアクター 40は、加熱部 41及び冷却部 42を備える。加熱部 41と冷却部 42 は、それぞれヒーター及び温度センサーからなる温度調整装置 44,冷媒循環部及 び温度センサー力もなる温度調整装置 46を備えており、これにより加熱部 41と冷却 部 42の温度を調節する。
尚、マイクロリアクター 40に内蔵されている配管は、以下の通りである。 カロ熱部:長さ 120cm、管 1本の断面積 0. 0009cm2
冷却部:長さ 40cm、管 1本の断面積 0. 0009cm2
[0025] 実施例 1
(1)核形成反応
トリオクチルホスフィンオキサイド(TOPO) 4. 3g、トリオクチルホスフィン(TOP) 3. 2g、塩ィ匕インジウム 0. 26g、へキサェチルホスホラス卜リアミド 0. 32gを混合し、 140 °Cにて 1時間真空乾燥した。乾燥した混合物を窒素雰囲気下 100°Cに保温した原料 容器 10に充填した。
TOPO、 TOPを上記と同じ重量比で混合した反応溶媒を窒素雰囲気下 100°Cに 保温した溶媒容器 20に充填した。
送液ポンプ 31にて反応溶媒を 0. 3mlZ分で加熱部 41の温度を 330°Cに保ったマ イク口リアクター 40に送り込み、マイクロリアクター内を定常状態に保った。また、冷却 部 42には 100°Cに保った媒体を流し、反応溶液を 100°Cまで冷却できるようにした。 さらにマイクロリアクター 40以降の配管部分は 100°Cに保温した。
マイクロリアクター内が定常状態になったことを確認した後、バルブ 50を切り替えて 送液ポンプ 32にて原料溶液を 0. 3mlZ分で 75秒間マイクロリアクター 40に送り込 ん 7こ。
注入された反応溶液は、加熱部 41の入り口から 5cmの地点では、すでに InPから なる半導体ナノ粒子の核が形成する温度(330°C)に到達していた。反応溶液が、加 熱部 41の入り口から、この入口から 5cmの地点に到達する時間は約 2秒であった。 加熱部 41を通過した反応溶液が、冷却部 42に導入された後、冷却部 42の入り口 力 3cmの地点では、すでに半導体ナノ粒子の核が形成あるいは成長する温度(18 0°C)以下に到達していた。反応溶液が、冷却部 42の入り口から、この入口から 3cm の地点に到達する時間は約 4. 5秒、であった。
この反応により、粒径 Inn!〜 1. 5nmの半導体ナノ粒子の核が形成された。このとき 半導体ナノ粒子の核の粒径は、 TEM観察にて測定した。
(2)成長反応
あらかじめ真空乾燥した TOP016g、 TOP8gを、撹拌装置を備えた回分式反応容 器 70に入れ、窒素雰囲気で 100°Cに加熱した。マイクロリアクター出口の先にあるバ ルブ 60を操作して、マイクロリアクター内部で形成された半導体ナノ粒子の核を含ん だ反応溶液を、回分式反応容器 70に注入した。
次!、で、あらかじめ真空乾燥した半導体ナノ粒子成長反応のための原料溶液 (TO P4g、塩化インジウム 0. 25g、へキサェチルホスホラストリアミド 0. 31gを含む)を回 分式反応容器 70に加えた。 反応温度を 300°Cに上昇させ、 3時間撹拌を続けた。
この反応により、粒径 4. lnm〜4. 6nmに成長した InPからなる半導体ナノ粒子を 得た。このとき半導体ナノ粒子の粒径は、動的レーザー散乱法にて測定した。
[0027] (3)半導体ナノ粒子の分離
(2)で得られた反応溶液を 60°Cまで冷却し、 1ーブタノール 6mlをカ卩え、室温まで 冷却した。
脱水メタノール 40mlを加え 30秒間撹拌し静置した。分離した下層を集めた。
集めた下層に 1—ブタノール 3mlとァセトニトリル 40mlをカ卩ぇ 30秒間撹拌し静置し た。分離した下層を集めた。この操作をさらに 2回繰り返した。
上記の操作によって分離した固形物を遠心分離 (3, OOOrpm, 10分)により集め、 トルエンに再分散して、半導体ナノ粒子分散液を得た。
得られた半導体ナノ粒子分散液を 450nmの光で励起したところ、ピーク波長 530η m、半値幅 55nmの蛍光を観測した。
[0028] 実施例 2
(1)核形成反応
酢酸亜鉛 0. 06gに TOPI. 6gをカ卩ぇ減圧下に 100°Cに加熱して酢酸亜鉛を溶解 させた。
テルル 0. 039gをへキサプロピルホスホラストリアミド 0. 3gに溶解させた。 あら力じめ真空乾燥した TOP08g、ミリスチン酸 0. 015gを窒素雰囲気下 100°Cに 保温した原料容器 10に充填し、そこに上記の酢酸亜鉛溶液、テルル溶液を加え、原 料溶液とした。
TOPO、 TOPを上記原料溶液と同じ重量比で混合した反応溶媒を窒素雰囲気下 100°Cに保温した溶媒容器 20に充填した。
送液ポンプ 31にて反応溶媒を 0. 3mlZ分で、加熱部 41の温度を 310°Cに保ち、 冷却部 42の温度を 100°Cに保ったマイクロリアクター 40に送り込み、マイクロリアクタ 一 40内を定常状態に保った。
マイクロリアクター内が定常状態になったことを確認した後、バルブ 50を切り替えて 送液ポンプ 32にて原料を 0. 3mlZ分で 40秒間マイクロリアクター 40に送り込んだ。 注入された反応溶液は、加熱部 41の入り口から 5cmの地点では、すでに ZnTeか らなる半導体ナノ粒子の核が形成する温度(310°C)に到達していた。反応溶液が、 加熱部 41の入り口から、この入口から 5cmの地点に到達する時間は約 2秒であった 加熱部 41を通過した反応溶液が、冷却部 42に導入された後、冷却部 42の入り口 力 3cmの地点では、すでに半導体ナノ粒子の核が形成あるいは成長する温度(18 0°C)以下に到達していた。反応溶液が、冷却部 42の入り口から、この入口から 3cm の地点に到達する時間は約 4. 5秒、であった。
この反応により、粒径 3. 3nm〜3. 8nmの半導体ナノ粒子の核が形成された。
[0029] (2)成長反応
(1)と同組成の原料溶液 10gを回分式反応容器 70に入れ、窒素雰囲気で 200°C に加熱した。
マイクロリアクター出口の先にあるバルブ 60を操作してマイクロリアクター内部で形 成された半導体ナノ粒子の核を含んだ反応溶液を、回分式反応容器 70に注入した 反応温度を 280°Cに上昇させ、 3時間撹拌を続けた。
この反応により、粒径 6. 6nm〜7. 5nmに成長した ZnTeからなる半導体ナノ粒子( コア部)を得た。
[0030] (3)シェル形成
(2)で得られた反応溶液を回分式反応容器 70にお ヽて 150°Cに冷却した。
そこに、 TOP2gに lmol/1ジェチル亜鉛/へキサン溶液 0. 22ml,ビストリメチル シリルセレナイド 0. 05gを溶解させたシェル原料溶液を 30分かけて滴下した。
滴下終了後、 150°Cにて 1時間撹拌を続け、さらに 100°Cにて 2時間撹拌を続けた これにより、粒径 8nm〜 9nmのコア部が ZnTeでシェル部力 ¾nS eである半導体ナ ノ粒子を得た。
[0031] (4)半導体ナノ粒子の分離
(3)で得られた反応溶液を 60°Cまで冷却し、 1ーブタノール 6mlをカ卩え、室温まで 冷却した。
ァセトニトリル 40mlを加え 30秒間撹拌し静置した。分離した下層を集めた。 集めた下層に 1—ブタノール 3mlとァセトニトリル 40mlをカ卩ぇ 30秒間撹拌し静置し た。分離した下層を集めた。この操作をさらに 2回繰り返した。
上記の操作によって分離した固形物を遠心分離 (3, OOOrpm, 10分)により集め、 へキサンに再分散して、半導体ナノ粒子分散液を得た。
得られた半導体ナノ粒子分散液を 450nmの光で励起したところ、ピーク波長 522η m、半値幅 65nmの蛍光を観測した。
[0032] 比較例 1
(1)半導体ナノ粒子の合成
トリオクチルホスフィンオキサイド (TOPO) 2. Og、トリオクチルホスフィン(TOP) 1. 75g、塩ィ匕インジウム 0. 26g、へキサェチルホスホラストリアミド 0. 32gを混合し、 140 °Cにて 1時間真空乾燥し原料溶液とした。
あら力じめ真空乾燥した TOP014g、 TOPlOgを回分式反応容器に充填し、窒素 雰囲気下 330°Cに加熱した。そこへ上記の原料溶液を一度に注入した。
この時、反応溶液の温度は 275°Cまで低下し、約 2分を要して 300°Cまで温度上昇 した。
反応温度を 300°Cに保って、 3時間撹拌を続けた。
これにより、粒径 3. 8ηπ!〜 5. 2nmの ΙηΡからなる半導体ナノ粒子を得た。
[0033] (2)半導体ナノ粒子の分離
(1)で得られた反応溶液を実施例 1と同様に後処理し、半導体ナノ粒子分散液を 得た。
得られた半導体ナノ粒子分散液を 450nmの光で励起したところ、ピーク波長 530η m、半値幅 124nmの蛍光を観測した。
[0034] 回分式反応容器のみで連続して半導体ナノ粒子を合成した場合には蛍光の半値 幅が広くなり、そのままディスプレイに用いるとディスプレイの色純度が低下する。 産業上の利用可能性
[0035] 本発明の製造方法で製造された半導体ナノ粒子は、工業用、民生用(携帯、車載 、屋内)のディスプレイ全般に利用される。

Claims

請求の範囲
[1] 半導体ナノ粒子の核を形成する反応と、
前記核を成長させる反応を段階的に行う半導体ナノ粒子の製造方法。
[2] 前記核形成反応において、
反応溶媒及び半導体ナノ粒子原料を混合し、
前記混合物を加熱し、半導体ナノ粒子の核を形成させ、
核形成後、冷却して前記核の成長及び新たな核形成を抑制する請求項 1に記載の 半導体ナノ粒子の製造方法。
[3] 前記混合物が前記核を形成させる温度に到達するまでの加熱時間が、 1分以内で あり、
前記混合物が前記核の成長及び新たな核形成を抑制する温度に到達するまでの 冷却時間が、 1分以内である、請求項 2に記載の半導体ナノ粒子の製造方法。
[4] 前記成長反応において、
前記核に半導体ナノ粒子原料を加え、
前記核と半導体ナノ粒子原料を加熱して前記核を成長させる請求項 1〜3のいず れか一項に記載の半導体ナノ粒子の製造方法。
[5] 前記半導体ナノ粒子原料を逐次的に加える請求項 4に記載の半導体ナノ粒子の 製造方法。
[6] 前記核形成反応を連続式反応装置で行!ヽ、前記成長反応を回分式反応装置で行 う請求項 1〜5のいずれか一項に記載の半導体ナノ粒子の製造方法。
[7] 前記連続式反応装置がマイクロリアクターである請求項 6に記載の半導体ナノ粒子 の製造方法。
[8] 前記核を成長させた後、さらにシェル原料をカ卩えてシェルを形成する請求項 1〜7 の!、ずれか一項に記載の半導体ナノ粒子の製造方法。
[9] 半導体ナノ粒子の核形成反応を行う連続式反応装置と、半導体ナノ粒子の成長反 応を行う回分式反応装置、を備えた半導体ナノ粒子製造装置。
[10] 前記連続式反応装置が、マイクロリアクターである請求項 9に記載の半導体ナノ粒 子製造装置。
PCT/JP2007/052915 2006-02-27 2007-02-19 半導体ナノ粒子の製造方法及びその製造装置 WO2007099794A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/280,174 US20090029563A1 (en) 2006-02-27 2007-02-19 Method and apparatus for manufacturing semiconductor nanoparticles
EP07714441A EP1990311A1 (en) 2006-02-27 2007-02-19 Method and apparatus for manufacturing semiconductor nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-049724 2006-02-27
JP2006049724A JP2007224233A (ja) 2006-02-27 2006-02-27 半導体ナノ粒子の製造方法及びその製造装置

Publications (1)

Publication Number Publication Date
WO2007099794A1 true WO2007099794A1 (ja) 2007-09-07

Family

ID=38458907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052915 WO2007099794A1 (ja) 2006-02-27 2007-02-19 半導体ナノ粒子の製造方法及びその製造装置

Country Status (6)

Country Link
US (1) US20090029563A1 (ja)
EP (1) EP1990311A1 (ja)
JP (1) JP2007224233A (ja)
KR (1) KR20080114697A (ja)
TW (1) TW200745391A (ja)
WO (1) WO2007099794A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037716A (ja) * 2006-08-09 2008-02-21 National Institute Of Advanced Industrial & Technology 半導体微粒子の製造方法
JP2011504445A (ja) * 2007-11-22 2011-02-10 ツェントラム・フューア・アンゲヴァンテ・ナノテヒノロギー(ツェーアーエン)ゲーエムベーハー Iii−vナノ粒子およびその製造方法
JP2011183381A (ja) * 2010-02-12 2011-09-22 National Institute Of Advanced Industrial Science & Technology マイクロリアクター
JP2016516853A (ja) * 2013-03-20 2016-06-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 多孔質粒子内の封止量子ドット
JP2017171927A (ja) * 2013-03-15 2017-09-28 ナノコ テクノロジーズ リミテッド Iii−v族/カルコゲン化亜鉛合金半導体量子ドット
JP2019151513A (ja) * 2018-03-01 2019-09-12 株式会社アルバック コアシェル型量子ドット分散液の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010405A1 (ko) * 2014-07-17 2016-01-21 서강대학교 산학협력단 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법
JP6428089B2 (ja) 2014-09-24 2018-11-28 日亜化学工業株式会社 発光装置
JP6709328B2 (ja) * 2017-03-28 2020-06-10 富士フイルム株式会社 Iii−v族半導体ナノ粒子の製造方法、iii−v族半導体量子ドットの製造方法、及びフロー式反応システム
JP7464893B2 (ja) 2021-12-09 2024-04-10 日亜化学工業株式会社 発光装置
WO2023119960A1 (ja) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 半導体ナノ粒子の製造方法及び半導体ナノ粒子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179912B1 (en) 1999-12-20 2001-01-30 Biocrystal Ltd. Continuous flow process for production of semiconductor nanocrystals
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
JP2003505330A (ja) * 1999-07-26 2003-02-12 マサチューセッツ インスティテュート オブ テクノロジー テルル含有結晶性材料
JP2003160336A (ja) 2001-11-22 2003-06-03 Mitsubishi Chemicals Corp 化合物半導体超微粒子の製造方法
JP2003286292A (ja) * 2002-01-28 2003-10-10 Mitsubishi Chemicals Corp 半導体超微粒子及びそれを含有してなる薄膜状成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
JP2001523758A (ja) 1997-11-13 2001-11-27 マサチューセッツ インスティテュート オブ テクノロジー 高発光の色−選択材料
JP2003505330A (ja) * 1999-07-26 2003-02-12 マサチューセッツ インスティテュート オブ テクノロジー テルル含有結晶性材料
US6179912B1 (en) 1999-12-20 2001-01-30 Biocrystal Ltd. Continuous flow process for production of semiconductor nanocrystals
JP2003160336A (ja) 2001-11-22 2003-06-03 Mitsubishi Chemicals Corp 化合物半導体超微粒子の製造方法
JP2003286292A (ja) * 2002-01-28 2003-10-10 Mitsubishi Chemicals Corp 半導体超微粒子及びそれを含有してなる薄膜状成形体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037716A (ja) * 2006-08-09 2008-02-21 National Institute Of Advanced Industrial & Technology 半導体微粒子の製造方法
JP2011504445A (ja) * 2007-11-22 2011-02-10 ツェントラム・フューア・アンゲヴァンテ・ナノテヒノロギー(ツェーアーエン)ゲーエムベーハー Iii−vナノ粒子およびその製造方法
US8753592B2 (en) 2007-11-22 2014-06-17 Centrum Fur Angewandte Nanotechnologie (Can) Gmbh III-V nanoparticles and method for their manufacture
JP2011183381A (ja) * 2010-02-12 2011-09-22 National Institute Of Advanced Industrial Science & Technology マイクロリアクター
JP2014210265A (ja) * 2010-02-12 2014-11-13 独立行政法人産業技術総合研究所 マイクロリアクターを有する装置
JP2015006669A (ja) * 2010-02-12 2015-01-15 独立行政法人産業技術総合研究所 マイクロリアクター装置
JP2017171927A (ja) * 2013-03-15 2017-09-28 ナノコ テクノロジーズ リミテッド Iii−v族/カルコゲン化亜鉛合金半導体量子ドット
JP2016516853A (ja) * 2013-03-20 2016-06-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 多孔質粒子内の封止量子ドット
US10030851B2 (en) 2013-03-20 2018-07-24 Lumileds Llc Encapsulated quantum dots in porous particles
JP2019151513A (ja) * 2018-03-01 2019-09-12 株式会社アルバック コアシェル型量子ドット分散液の製造方法

Also Published As

Publication number Publication date
TW200745391A (en) 2007-12-16
EP1990311A1 (en) 2008-11-12
KR20080114697A (ko) 2008-12-31
JP2007224233A (ja) 2007-09-06
US20090029563A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2007099794A1 (ja) 半導体ナノ粒子の製造方法及びその製造装置
TWI443236B (zh) 奈米級之含金屬奈米粒子及奈米粒子分散物之合成製程
US8414746B2 (en) Nanoparticle synthesis and associated methods
Yen et al. A continuous‐flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals
US7208133B2 (en) Method for the preparation of IV-VI semiconductor nanoparticles
JP2015533630A (ja) コア/シェルナノ粒子の製造プロセス及びコア/シェルナノ粒子
Liu et al. Synthesis of high quality and stability CdS quantum dots with overlapped nucleation-growth process in large scale
US20090014688A1 (en) Semiconductor Nanoparticles and Manufacturing Method of The Same
US10865109B2 (en) Method for preparation of magic-sized nano-crystalline substance
JP5019052B2 (ja) CdSe量子ドット及びその製造方法
Chakrabarty et al. Cadmium deoxycholate: a new and efficient precursor for highly luminescent CdSe nanocrystals
JP2012167314A (ja) 金属ナノ粒子の製造方法
Xing et al. A novel synthesis of high quality CdTe quantum dots with good thermal stability
Teixeira et al. Photoluminescence properties and synthesis of a PZT mesostructure obtained by the microwave-assisted hydrothermal method
JP5212588B2 (ja) ナノ粒子の製造方法
Wang et al. Synthesis of CdSe magic-sized nanocluster and its effect on nanocrystal preparation in a microfluidic reactor
JP5602808B2 (ja) 狭い発光スペクトルを有するナノ粒子の調製
CN107500279B (zh) 一种批量制备石墨烯的方法及其生产系统
Liao et al. Synthesis of CdSe quantum dots via paraffin liquid and oleic acid
JP6569566B2 (ja) CdSeコロイド粒子の製造方法
Sarigiannidis et al. Vapor-phase synthesis and surface passivation of ZnSe nanocrystals
Krishnadasan et al. Microfluidic reactors for nanomaterial synthesis
Tian et al. Synthesis and evolution of hollow ZnO microspheres assisted by Zn powder precursor
JP6531681B2 (ja) CdSeコロイド粒子の製造方法
Nikolenko et al. Nonisothermal high-temperature colloidal synthesis of CdSe nanocrystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007714441

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12280174

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087020859

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE