WO2016010405A1 - 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법 - Google Patents

광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법 Download PDF

Info

Publication number
WO2016010405A1
WO2016010405A1 PCT/KR2015/007471 KR2015007471W WO2016010405A1 WO 2016010405 A1 WO2016010405 A1 WO 2016010405A1 KR 2015007471 W KR2015007471 W KR 2015007471W WO 2016010405 A1 WO2016010405 A1 WO 2016010405A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis
temperature
fluorescent nanoparticles
mixed solution
solution
Prior art date
Application number
PCT/KR2015/007471
Other languages
English (en)
French (fr)
Inventor
김상희
최재봉
정옥현
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Priority to CN201580037769.3A priority Critical patent/CN106574180A/zh
Priority claimed from KR1020150101656A external-priority patent/KR101590751B1/ko
Publication of WO2016010405A1 publication Critical patent/WO2016010405A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the present invention relates to a method for manufacturing a semiconductor fluorescent nanoparticles, in particular, the fluorescent emission band is possible to manufacture green fluorescent nanoparticles of 540 nm band, orange fluorescent nanoparticles of 580 nm band, thereby increasing the efficiency of white light
  • the present invention relates to a method for manufacturing semiconductor fluorescent nanoparticles for optical and display applications that can maximize application possibilities for optical and display applications.
  • Quantor fluorescent nanoparticles are called quantum dots or quantum dots, and are materials that control absorption and emission wavelengths by quantum confinement effects. It is widely used for the purpose of increasing the efficiency of photovoltaics, bioimaging, and white light of LEDs.
  • quantum dot which is a semiconductor fluorescent nanoparticle based on cadmium selenide (CdSe), is capable of controlling particle size during chemical synthesis, and thus, there is an advantage of obtaining emission spectra in the visible light region.
  • CdSe cadmium selenide
  • the latter has a disadvantage in that the luminous efficiency is excellent, but the CRI (color rendering index) is low, and it is difficult to obtain white light close to sunlight due to the characteristic that the CRI changes according to the current density.
  • Another way to realize the white light is to use a UV light emitting LED as a light source to excite the three primary phosphors to create a white. This method can be used under high current, and the color is excellent.
  • the conventional semiconductor fluorescent nanoparticles synthesized mainly consist of mainly red, and in the case of green or orange, there is a problem that an appropriate manufacturing method has not been proposed.
  • an object of the present invention is to produce semiconductor fluorescent nanoparticles, in particular, green fluorescent nanoparticles having a fluorescence emission band of 540 nm and orange fluorescent nanoparticles of 580 nm, thereby increasing the efficiency of white light and thereby optical And to provide a method for manufacturing a semiconductor fluorescent nanoparticles for optical and display applications that can maximize the application potential of the display.
  • the object is, according to an embodiment of the present invention, the step of mixing the first precursor material in the first coordinating solvent contained in the reaction vessel and stirring to form a mixed solution; Heating the mixed solution to a synthesis temperature while stirring; Mixing an additive solution obtained by mixing a second precursor material with a second coordinating solvent at the synthesis temperature with the mixed solution to form a nucleus for a synthesis time to form a synthetic solution; After the synthesis time has elapsed, the synthesis solution is quenched to a set temperature at a predetermined cooling rate; is achieved by a method for producing semiconductor fluorescent nanoparticles for optical and display applications, including.
  • the step of heating to the synthesis temperature while stirring the mixed solution may further comprise the step of adding an emulsifier in the range of 180 ⁇ 200 °C.
  • the first precursor material may be made of cadmium oxide
  • the first coordinating solvent may be made of lauryl acid
  • the second precursor material may be made of selenium
  • the second coordinating solvent may be made of TOP (Trioctylphosphine).
  • the step of making the mixed solution may be provided with a stirring speed of 300 ⁇ 310 rpm.
  • the synthesis time may be 5 to 7 seconds.
  • the synthesis temperature may be provided at any one of the ambient temperature (Ambient Temperature) of the reaction vessel is 275 ⁇ 285 °C or the temperature of the mixed solution is 310 ⁇ 320 °C, the stirring speed is 480 ⁇ 520 It may be provided at rpm, the set temperature is provided to 200 °C or less, the cooling rate may be provided to be cooled in the range of 5 to 9 seconds every 10 °C cooled.
  • the synthesis time is provided for 3 to 7 seconds
  • the synthesis temperature is the ambient temperature of the reaction vessel (Ambient Temperature)
  • the temperature of the 275 ⁇ 285 °C or the mixed solution may be provided at any one of 310 ⁇ 320 °C
  • the synthesis rate at the synthesis may be provided at 740 ⁇ 860 rpm.
  • the stirring speed is preferably provided at 745 ⁇ 755 rpm when the contact area between the synthetic solution and the inner surface of the reaction vessel is less than 120 cm 2, and is provided at 845 ⁇ 855 rpm when the contact area is 120 ⁇ 180 cm 2 or less. .
  • the set temperature is provided to 100 °C or less
  • the cooling rate is provided to be cooled in the range of 5 to 9 seconds every 10 °C cooled to the set temperature 170 °C, 10 °C below the set temperature 170 °C It may be provided to cool in the range of 6 to 14 seconds each time it is cooled.
  • the step of quenching the synthetic solution may be a method of injecting one or two or more kinds of mixed gas refrigerant to the outside of the reaction vessel.
  • the method may further include washing the synthetic solution using an organic solvent.
  • the above object to manufacture a semiconductor fluorescent nanoparticle having a wavelength of 570 ⁇ 590 nm orange (Orange-Yellow), the first precursor material cadmium oxide (cadmium oxide) )
  • the first precursor material cadmium oxide (cadmium oxide)
  • the above object to manufacture semiconductor fluorescent nanoparticles having a wavelength of 520 ⁇ 560 nm Green, cadmium oxide powder which is a first precursor material
  • the synthesis stirring speed may be provided at 745 ⁇ 755 rpm when the contact area between the synthetic solution and the inner surface of the reaction vessel is less than 120 cm 2, and may be provided at 845 ⁇ 855 rpm when the contact area is 120 ⁇ 180 cm 2 or less. have.
  • the cooling rate may be provided in the range of 5 to 9 seconds every 10 °C to cool down to the set temperature 170 °C, it may be provided in the range of 6 to 14 seconds every 10 °C cooled below the set temperature 170 °C. .
  • the semiconductor fluorescent nanoparticles in particular, the fluorescence emission band of the green fluorescent nanoparticles of 540 nm and orange fluorescent nanoparticles of 580 nm
  • the semiconductor fluorescent nanoparticles in particular, the fluorescence emission band of the green fluorescent nanoparticles of 540 nm and orange fluorescent nanoparticles of 580 nm
  • FIG. 1 is a flow chart of a method of manufacturing a semiconductor fluorescent nanoparticles for optical and display applications according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method of manufacturing a semiconductor fluorescent nanoparticles for optical and display applications according to another embodiment of the present invention
  • FIG. 3 is a flow chart of a method of manufacturing a semiconductor fluorescent nanoparticles for optical and display applications according to another embodiment of the present invention
  • the first precursor is mixed with a first coordinating solvent contained in a reaction vessel, followed by stirring and a mixed solution.
  • the method may further include adding an emulsifier during heating of the mixed solution (S25) and washing the synthetic solution using an organic solvent (S50).
  • the present embodiment includes a step of preparing a mixed solution by mixing cadmium oxide powder, which is a first precursor material, with lauryl acid, which is a first coordinating solvent (S110); Heating the mixed solution while stirring at a stirring speed of 300 to 350 rpm (S120); Adding an emulsifier at a temperature of the mixed solution in a range of 180 to 200 ° C. (S130); Heating the mixed solution until an ambient temperature of the reaction vessel reaches an synthesis temperature provided at any one of 275 to 285 ° C. or the temperature of the mixed solution is 310 to 320 ° C.
  • a cadmium oxide powder which is a first precursor, is used as a first coordinating solvent.
  • Mixing lauryl acid to form a mixed solution S210; Heating the mixed solution while stirring at a stirring speed of 300 to 350 rpm (S220); Adding an emulsifier at a temperature of the mixed solution in a range of 180 to 200 ° C. (S230); Heating the mixed solution until an ambient temperature of the reaction vessel reaches a synthesis temperature provided at any one of 275 to 285 ° C. or the temperature of the mixed solution is 310 to 320 ° C.
  • the synthesis stirring speed is provided at 745 ⁇ 755 rpm when the contact area of the synthesis solution and the inner surface of the reaction container is less than 120 cm 2, and is provided at 845 ⁇ 855 rpm when the contact area is 120 ⁇ 180 cm 2 or less.
  • the step of quenching the synthetic solution the step of cooling at a cooling rate of 5 to 9 seconds each time the 10 °C to the set temperature 170 °C (S271) and 10 °C below the set temperature 170 °C to be cooled Each time includes a step (S275) of cooling at a cooling rate of 6 to 14 seconds.
  • the first precursor is mixed with a first coordinating solvent contained in a reaction vessel, followed by stirring and a mixed solution.
  • the method may further include adding an emulsifier during heating of the mixed solution (S25) and washing the synthetic solution using an organic solvent (S50).
  • the first precursor is mixed with the first coordinating solvent contained in the reaction vessel, followed by stirring to form a mixed solution.
  • the semiconductor fluorescent nanoparticles according to the present invention can be used in various precursors, for example, may be provided in the form of CdSe consisting of cadmium (Cadmium) and selenide (Selenide).
  • the first precursor material may be provided with cadmium oxide
  • the first coordinating solvent may be provided with lauryl acid
  • the second precursor material may be provided with selenium.
  • the second coordinating solvent may be provided as TOP (Trioctylphosphine).
  • first precursor material and the second precursor material may be provided in a powder (powder) form and mixed with the first coordinating solvent and the second coordinating solvent.
  • cadmium selenide CdSe
  • the application of the present invention is not limited to the above-described precursor, it is possible to manufacture semiconductor fluorescent nanoparticles
  • various kinds of precursors known to be applicable may be applied without limitation.
  • the second step (S20) is heated to the synthesis temperature while stirring the mixed solution.
  • powdered cadmium oxide is first mixed with lauryl acid and then air at about 200 ° C. Is converted to a liquid under blocked conditions (in the reaction vessel). At this time, by slowly increasing the temperature can be a mixed solution has a light brown to light red, too rapid temperature change may cause a problem that interferes with the generation of nuclei.
  • the mixing temperature to liquefy the cadmium oxide (cadmium oxide) of the first precursor in the form of powder 180 ⁇ Determined to 200 °C to allow the generation of nuclei effectively in the later nucleation step (S30).
  • the stirring speed is preferably 300 to 350 rpm, preferably 300 to 310 rpm.
  • the temperature of the mixed solution may be carried out in the 180 ⁇ 200 °C range.
  • the emulsifier treats the surface of the first precursor material to facilitate nucleation with the second precursor material.
  • the second precursor material is mixed with the second coordinating solvent to prepare an additive solution.
  • the powder form selenium (Selenium) is mixed with the coordinating solvent TOP (Trioctylphosphine) and then liquefied, using ultrasonic waves to first decompose selenium particles finely and induce them to be uniformly dispersed in the coordinating solvent can do.
  • the additive solution is mixed with the above-mentioned mixed solution, a nucleus having a uniform size range (about 5%) can be formed.
  • the weight ratio of the first precursor material and the second precursor material may be about 1: 3 to 10.
  • the addition solution obtained by mixing the second precursor material in the second coordinating solvent at the synthesis temperature is mixed with the mixed solution to form a nucleus for the synthesis time to make a synthetic solution.
  • the stirring speed is increased to 500 rpm, and the above-prepared addition solution is added to form a nucleus. That is, when the temperature of the mixed solution (cadmium oxide-lauryl acid) reaches 280 ° C, the addition solution (selenium-Top) is rapidly injected into the reaction vessel under the condition that the air is blocked by using a glass syringe, and then the synthesis time (5 ⁇ 7 seconds or 3 to 7 seconds) to form a nucleus to recover semiconductor fluorescent nanoparticles (quantum dot) of uniform size.
  • the synthesis time, the synthesis temperature, and the stirring speed are related to the size of the crystal during nucleation. As the synthesis time increases, the nucleus size increases, and the manufactured semiconductor fluorescent nanoparticles (quantum dots) are red-shifted. There is this. In addition, the maintenance of synthesis temperature is another decisive issue. At a relatively low temperature of 200 ° C., the size of the nucleus tends to be large, resulting in red fluorescence.
  • the synthesis time, the synthesis temperature and the stirring speed should be set in the optimum range according to the color of the semiconductor fluorescent nanoparticles to be made.
  • the synthesis time may be 5 ⁇ 7 seconds.
  • the synthesis temperature is set to any one of the ambient temperature (Ambient Temperaute) of the reaction vessel is 275 ⁇ 285 °C or the temperature of the mixed solution is 310 ⁇ 320 °C.
  • the synthesis temperature is most preferably to measure the temperature of the mixed solution, it is not easy to measure the temperature of the mixed solution during stirring, and may affect the agitation, so as to assist the reaction vessel Measure and use the air temperature.
  • the stirring speed during the synthesis is preferably provided in the range of 480 ⁇ 520 rpm.
  • the synthesis time may be provided in the range of 3 to 7 seconds.
  • the synthesis temperature may be provided at any one of the atmospheric temperature (Ambient Temperaute) of the reaction vessel is 275 ⁇ 285 °C or the temperature of the mixed solution is 310 ⁇ 320 °C.
  • stirring speed during the synthesis may be provided at 740 ⁇ 860 rpm.
  • the stirring speed during the synthesis depends on the contact area between the synthesis solution and the inner surface of the reaction vessel, because the larger the contact area affects the stirring and the lower the nucleation.
  • the synthesis solution is quenched to a set temperature at a set cooling rate.
  • the semiconductor fluorescent nanoparticles having a uniform size generated through the quenching step increases the fluorescence efficiency, and is also involved in the induction of uniform coating film formation when applied to the LED for future lighting.
  • the set temperature and the cooling rate are set differently according to the color of the semiconductor fluorescent nanoparticles to be made.
  • the set temperature is provided below 200 °C
  • the cooling time is 5 ⁇ 9 seconds every 10 °C cooling It is preferable to provide cooling in the range.
  • the set temperature is provided to 100 °C or less, the cooling time is cooled to 10 °C to the set temperature 170 °C It is preferably provided to be cooled in a range of 5 to 9 seconds every time, and is provided to be cooled in a range of 6 to 14 seconds every 10 ° C cooling below the set temperature of 170 ° C.
  • the method of quenching the synthetic solution may be provided in various kinds, for example, a method of injecting one or two or more mixed gas refrigerant (for example, volatile organic solvent) to the outside of the reaction vessel. This can be used.
  • a method of injecting one or two or more mixed gas refrigerant for example, volatile organic solvent
  • the fifth step (S50) is to wash the synthetic solution using an organic solvent.
  • the method may further include forming a coating film having an appropriate thickness on the surface of the LED so that the formed semiconductor fluorescent nanoparticles may be used for the application of the LED for illumination.
  • the semiconductor fluorescent nanoparticles of uniform size increase the fluorescence efficiency, and are also involved in the induction of uniform coating film formation when applied to the LED for future lighting. Therefore, it is preferable to visually and quantitatively analyze the presence or absence of fluorescence emission of the formed semiconductor fluorescent nanoparticles.
  • solvents for dispersing the semiconductor fluorescent nanoparticles are silicone oil, PDMS (polydimethlysiloxane) or similar viscosity Can be used as a material.
  • silicone oil silicone oil
  • PDMS polydimethlysiloxane
  • similar viscosity Can be used as a material.
  • the semiconductor fluorescent nanoparticles are injected to the viscous material and the colloidal semiconductor fluorescent nanoparticles are infused with fluid control technology to induce the injection using an appropriate pressure. It may be performed to have a range of ⁇ 50 psi.
  • the manufactured semiconductor fluorescent nanoparticles are dispersed in an organic solvent of chloroform and exposed to UV wavelength of 365 nm, respectively, to emit light green and bright orange fluorescence. Fluorescence using UV wavelength may be performed by visually confirming the presence or absence of fluorescence. Accurate fluorescence band can be implemented in the range of identifying the semiconductor fluorescent nanoparticles through the fluorescence spectrum.
  • the organic solvent used for checking the uniform dispersion and fluorescence may be used in addition to toluene or chloroform.
  • the present embodiment includes a step of preparing a mixed solution by mixing cadmium oxide powder, which is a first precursor material, with lauryl acid, which is a first coordinating solvent (S110); Heating the mixed solution while stirring at a stirring speed of 300 to 350 rpm (S120); Adding an emulsifier at a temperature of the mixed solution in a range of 180 to 200 ° C. (S130); Heating the mixed solution until an ambient temperature of the reaction vessel reaches an synthesis temperature provided at any one of 275 to 285 ° C. or the temperature of the mixed solution is 310 to 320 ° C.
  • a cadmium oxide powder which is a first precursor, is used as a first coordinating solvent.
  • Mixing lauryl acid to form a mixed solution S210; Heating the mixed solution while stirring at a stirring speed of 300 to 350 rpm (S220); Adding an emulsifier at a temperature of the mixed solution in a range of 180 to 200 ° C. (S230); Heating the mixed solution until an ambient temperature of the reaction vessel reaches a synthesis temperature provided at any one of 275 to 285 ° C. or the temperature of the mixed solution is 310 to 320 ° C.
  • the synthesis stirring speed is provided at 745 ⁇ 755 rpm when the contact area of the synthesis solution and the inner surface of the reaction container is less than 120 cm 2, and is provided at 845 ⁇ 855 rpm when the contact area is 120 ⁇ 180 cm 2 or less.
  • the step of quenching the synthetic solution the step of cooling at a cooling rate of 5 to 9 seconds each time the 10 °C to the set temperature 170 °C (S271) and 10 °C below the set temperature 170 °C to be cooled Each time includes a step (S275) of cooling at a cooling rate of 6 to 14 seconds.
  • the semiconductor fluorescent nanoparticles in particular, the fluorescence emission band of the green fluorescent nanoparticles of 540 nm and orange fluorescent nanoparticles of 580 nm
  • the semiconductor fluorescent nanoparticles in particular, the fluorescence emission band of the green fluorescent nanoparticles of 540 nm and orange fluorescent nanoparticles of 580 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은, 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 관한 것으로, 보다 상세하게는, 제1전구물질을 반응용기에 담겨진 제1배위용매에 혼합한 후 교반하여 혼합용액을 만드는 단계와; 상기 혼합용액을 교반하면서 합성온도로 가열하는 단계와; 상기 합성온도에서 제2전구물질을 제2배위용매에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성시간동안 핵을 형성하여 합성용액을 만드는 단계와; 상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각속도로 설정온도까지 급냉하는 단계;를 포함하는 것을 요지로 한다. 이에 의해, 형광발광대역이 540 nm 대의 녹색 형광나노입자와, 580 nm 대의 주황색 형광나노입자의 제조가 가능하며, 이를 통해 백색광의 효율을 증가시켜 광학 및 디스플레이에의 응용 가능성을 극대화할 수 있다.

Description

광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법
본 발명은 반도체 형광나노입자의 제조방법에 관한 것으로, 특히, 형광발광대역이 540 nm 대의 녹색 형광나노입자와, 580 nm 대의 주황색 형광나노입자의 제조가 가능하여, 이를 통해 백색광의 효율을 증가시켜 광학 및 디스플레이에의 응용 가능성을 극대화할 수 있는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 관한 것이다.
산업의 발달로 인해 광학분야에 다양한 발전이 이루어지고 있으며, 특히 형광물질의 이용은 디스플레이산업 및 전자 및 의학 분야에 그 사용이 점차 증가되는 추세에 있다.
이러한 실정에도 불구하고 형광물질은 여전히 고가이며, 광탈색 (Photobleaching)에 매우 민감한 단점을 지니고 있어 이를 극복하기 위한 연구가 진행되고 있다. 근래 전기적 및 광학적으로 기존의 형광물질보다 안정한 반도체 형광나노입자가 이를 극복할 수 있는 하나의 방법으로 제시되고 있으며 연구가 활발히 진행 중이다.
반도체 형광나노입자는 퀀텀닷(quantum dots 또는 양자점)이라고 불리고 있으며, 양자 제한 효과(Quamtum confinement effects)에 의해 흡수(Absorption)와 방출(Emission) 파장이 조절되는 물질로서, 각종 디스플레이, 광전 변환 소자(Photovoltaics), 생체 이미지(Bioimaging) 및 LED의 백색광의 효율 증가 목적으로 널리 이용되고 있다.
특히, 카드뮴 셀레나이드(CdSe) 기반의 반도체 형광나노입자인 퀀텀닷은 화학적 합성시 입자크기의 제어가 가능하며, 이를 통하여 가시광선영역에서 발광스펙트럼을 획득할 수 있는 장점이 존재한다.
한편, 기존의 조명용 LED의 단점인 백색광의 효율이 낮은 점을 보완할 목적으로, 최근 반도체 형광나노입자인 퀀텀닷을 LED의 발광물질로 이용하는 사례가 늘고 있다.
조명용 LED의 백색광 구현방법으로는, 빛의 삼원색인 적색, 녹색, 청색을 내는 3개의 LED를 조합하여 백색을 구현하거나, 청색 LED를 광원으로 사용하여 황색 형광체를 여기시킴으로써 백색을 구현하는 방법이 있다.
이 중에서, 후자의 경우, 발광 효율은 우수한 반면, CRI(color rendering index)가 낮으며, 전류 밀도에 따라 CRI가 변하는 특징으로 인해 태양광에 가까운 백색광을 얻기가 어렵다는 단점이 있다.
백색광을 구현하는 다른 방법으로는 자외선 발광 LED를 광원으로 이용하여 삼원색 형광체를 여기 시켜 백색을 만드는 방법이 있다. 이 방법은 고전류하에서의 사용이 가능하며, 색감이 우수하여 가장 활발하게 연구가 진행 중이다.
그런데, 광학 또는 디스플레이 분야 특히, 조명용 LED의 백색광 효율증가와 같은 분야에 응용하기 위해서는 삼원색(적색/녹색/청색)의 형광물질이 필요하며, 형광물질을 반도체 형광나노입자인 퀀텀닷으로 대체할 경우, 적색, 녹색 및 청색 영역의 퀀텀닷의 제조가 필요하다.
그런데, 기존에 합성되는 반도체 형광나노입자는 주로 적색(red)이 주종을 이루고 있을 뿐, 녹색(Green) 또는 주황색(Orange-Yellow)의 경우에는 적절한 제조방법이 제안되지 않은 문제점이 있었다.
참고문헌 (KR 10-1000331)
따라서, 본 발명의 목적은, 반도체 형광나노입자, 특히, 형광발광대역이 540 nm 대의 녹색 형광나노입자와, 580 nm 대의 주황색 형광나노입자의 제조가 가능하여, 이를 통해 백색광의 효율을 증가시켜 광학 및 디스플레이에의 응용 가능성을 극대화할 수 있는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법을 제공하는 데 있다.
상기 목적은, 본 발명의 일 실시예에 따라, 제1전구물질을 반응용기에 담겨진 제1배위용매에 혼합한 후 교반하여 혼합용액을 만드는 단계와; 상기 혼합용액을 교반하면서 합성온도로 가열하는 단계와; 상기 합성온도에서 제2전구물질을 제2배위용매에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성시간동안 핵을 형성하여 합성용액을 만드는 단계와; 상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각속도로 설정온도까지 급냉하는 단계;를 포함하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 의해 달성된다.
여기서, 상기 혼합용액을 교반하면서 합성온도로 가열하는 단계는, 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계를 더 포함할 수 있다.
여기서, 상기 제1전구물질은 카드뮴 옥사이드(cadmium oxide)로 마련되고, 상기 제1배위용매는 라우릴산(lauryl acid)으로 마련될 수 있다.
또한, 상기 제2전구물질은 셀레늄(Selenium)으로 마련되고, 상기 제2배위용매는 TOP(Trioctylphosphine)으로 마련될 수 있다.
한편, 상기 혼합용액을 만드는 단계는 교반속도가 300 ~ 310 rpm 으로 마련될 수 있다.
여기서, 파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자의 제조시에는, 상기 합성시간은 5 ~ 7초로 할 수 있다. 이 경우, 상기 합성온도는 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련될 수 있으며, 상기 합성시 교반속도는 480 ~ 520 rpm으로 마련될 수 있고, 상기 설정온도는 200℃ 이하로 마련되고, 상기 냉각속도는 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각이 되도록 마련될 수 있다.
한편, 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자의 제조시에는, 상기 합성시간은 3 ~ 7초로 마련되고, 상기 합성온도는 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련될 수 있으며, 상기 합성시 교반속도는 740 ~ 860 rpm 으로 마련될 수 있다. 여기서, 상기 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련되는 것이 바람직하다. 한편, 상기 설정온도는 100℃ 이하로 마련되되, 상기 냉각속도는 상기 설정온도 170℃까지는 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각이 되도록 마련되고, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때 마다 6 ~ 14초 범위에서 냉각이 되도록 마련될 수 있다.
한편, 상기 각 실시예에 있어서, 상기 합성용액을 급냉하는 단계는 상기 반응용기의 외부에 1종 또는 2종 이상의 혼합가스 냉매를 분사시키는 방법이 사용될 수 있다.
한편, 상기 각 실시예에 있어서, 상기 합성용액을 유기용매를 이용하여 세척하는 단계를 더 포함할 수 있다.
한편, 상기 목적은, 본 발명의 다른 실시예에 따라, 파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자를 제조하기 위한 것으로서, 제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계와; 상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계와; 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계와; 상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계와; 상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계와; 상기 합성용액을 5 ~ 7초의 합성시간동안 480 ~ 520 rpm의 교반속도로 교반하여 핵을 형성하는 단계와; 상기 합성시간이 경과한 후, 상기 합성용액을 200℃ 이하의 설정온도로 10℃ 냉각될 때 마다 5 ~ 9초 범위의 냉각속도로 급냉하는 단계;를 포함하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 의해서도 달성된다.
또는, 상기 목적은, 본 발명의 다른 실시예에 따라, 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자를 제조하기 위한 것으로서, 제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계와; 상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계와; 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계와; 상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계와; 상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계와; 상기 합성용액을 3 ~ 7초의 합성시간동안 740 ~ 860 rpm의 합성 교반속도로 교반하여 핵을 형성하는 단계와; 상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각속도로 100℃ 이하의 설정온도까지 급냉하는 단계;를 포함하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 의해서도 달성된다.
이 경우, 상기 합성 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련될 수 있다.
또한, 상기 냉각속도는 상기 설정온도 170℃까지는 10℃ 냉각될 때마다 5 ~ 9초의 범위로 마련되고, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때마다 6 ~ 14초의 범위로 마련될 수 있다.
따라서, 본 발명에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 따르면, 반도체 형광나노입자 특히, 형광발광대역이 540 nm 대의 녹색 형광나노입자와, 580 nm 대의 주황색 형광나노입자의 제조가 가능함으로써, 이를 통해 백색광의 효율을 증가시켜 광학 및 디스플레이에의 응용 가능성을 극대화할 수 있다.
도 1은, 본 발명의 일실시예에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법의 흐름도,
도 2는, 본 발명의 다른 실시예에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법의 흐름도,
도 3은, 본 발명의 또다른 실시예에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법의 흐름도,
도 4는, 본 발명에 따라 제조된 반도체 형광나노입자의 형광발광 상태사진이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법은, 제1전구물질을 반응용기에 담겨진 제1배위용매에 혼합한 후 교반하여 혼합용액을 만드는 단계(S10)와; 상기 혼합용액을 교반하면서 합성온도로 가열하는 단계(S20)와; 상기 합성온도에서 제2전구물질을 제2배위용매에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성시간동안 핵을 형성하여 합성용액을 만드는 단계(S30)와; 상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각시간 동안 설정온도로 급냉하는 단계(S40);를 포함한다.
여기서, 상기 혼합용액의 가열 중 유화제를 첨가하는 단계(S25)와, 상기 합성용액을 유기용매를 이용하여 세척하는 단계(S50)을 더 포함할 수 있다.
도 2를 참조하여, 본 발명의 다른 실시예에 따른 파장이 570 ~ 590 nm 의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자를 제조하는 방법을 설명한다.
설명에 앞서, 후술하는 실시예들에서는 전술한 실시예와 중복되는 설명은 생략하고, 각 실시예에서의 차이점을 중점적으로 설명한다.
도 2를 참조하면, 본 실시예는, 제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계(S110)와; 상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계(S120)와; 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계(S130)와; 상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperaurte)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계(S140)와; 상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계(S150)와; 상기 합성용액을 5 ~ 7초의 합성시간동안 480 ~ 520 rpm의 교반속도로 교반하여 핵을 형성하는 단계(S160)와; 상기 합성시간이 경과한 후, 상기 합성용액을 200℃ 이하의 설정온도로 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각되는 냉각속도로 급냉하는 단계(S170);를 포함한다.
한편, 도 3을 참조하여, 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자를 제조하는 방법을 설명하면, 제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계(S210)와; 상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계(S220)와; 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계(S230)와; 상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계(S240)와; 상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계(S250)와; 상기 합성용액을 3 ~ 7초의 합성시간동안 740 ~ 860 rpm의 합성 교반속도로 교반하여 핵을 형성하는 단계(S260)와; 상기 합성시간이 경과한 후, 상기 합성용액을 100℃ 이하의 설정온도로 설정된 냉각시간동안 급냉하는 단계(S27);를 포함한다.
여기서, 상기 합성 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련되는 것이 바람직하다.
한편, 상기 합성용액을 급냉하는 단계는, 상기 설정온도 170℃까지는 10℃ 냉각될 때마다 5 ~ 9초 의 냉각속도로 냉각하는 단계(S271)와, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때마다 6 ~ 14초의 냉각속도로 냉각하는 단계(S275)를포함한다.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법은, 제1전구물질을 반응용기에 담겨진 제1배위용매에 혼합한 후 교반하여 혼합용액을 만드는 단계(S10)와; 상기 혼합용액을 교반하면서 합성온도로 가열하는 단계(S20)와; 상기 합성온도에서 제2전구물질을 제2배위용매에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성시간동안 핵을 형성하여 합성용액을 만드는 단계(S30)와; 상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각시간 동안 설정온도로 급냉하는 단계(S40);를 포함한다.
여기서, 상기 혼합용액의 가열 중 유화제를 첨가하는 단계(S25)와, 상기 합성용액을 유기용매를 이용하여 세척하는 단계(S50)을 더 포함할 수 있다.
이하, 각 단계별로 상세히 설명한다.
제1단계(S10)는 제1전구물질을 반응용기에 담겨진 제1배위 용매에 혼합한 후 교반하여 혼합용액을 만든다.
본 발명에 따른 반도체 형광나노입자는 다양한 전구물질이 사용될 수 있는 바, 예를 들어, 카드뮴(Cadmium)과 셀레나이드(Selenide)로 구성된 CdSe형태로 마련될 수 있다.
이 경우, 상기 제1전구물질은 카드뮴 옥사이드(cadmium oxide)로 마련되고, 상기 제1배위용매는 라우릴산(lauryl acid)으로 마련될 수 있으며, 상기 제2전구물질은 셀레늄(Selenium)으로 마련되고, 상기 제2배위용매는 TOP(Trioctylphosphine)으로 마련될 수 있다.
여기서, 상기 제1전구물질 및 제2전구물질은 분말(파우더) 형태로 마련되어 상기 제1배위용매 및 제2배위용매에 혼합될 수 있다.
이하에서, 본 발명의 실시예에 대한 구체적인 설명에 있어 카드뮴 셀레나이드(CdSe)를 예로 들어 설명하나, 본 발명의 적용이 상기 예시된 전구물질에 한정되는 것은 아니며, 반도체 형광나노입자의 제조에 가능한 것으로 공지된 다양한 종류의 전구물질이 제한없이 적용될 수 있음은 물론이다.
제2단계(S20)는 상기 혼합용액을 교반하면서 합성온도로 가열한다.
상기 제1전구물질과 제1배위용매를 혼합하여 혼합용액을 만드는 단계는, 구체적으로, 파우더 상태인 카드뮴 옥사이드(cadmium oxide)를 먼저 라우릴산(lauryl acid)과 혼합한 후 약 200℃에서 공기와 차단된 조건(반응용기 내)에서 액체로 변환시키는 단계를 거친다. 이때 온도를 서서히 증가시켜 혼합용액이 밝은 갈색에서 연한 적색을 가지도록 할 수 있는 데, 너무 급격한 온도 변화는 핵의 생성을 방해하는 문제점이 발생 될 수 있다.
따라서, 본 발명에서는 카드뮴 셀레나이드(CdSe) 형태의 핵을 형성하기 위한 전단계인 상기 혼합용액 제조단계에서, 분말형태의 상기 제1전구물질인 카드뮴 옥사이드(cadmium oxide)를 액체화시키는 혼합온도로 180~ 200℃로 결정하여 추후 핵 형성단계(S30)에서 효과적으로 핵의 생성되도록 한다. 추가로, 혼합용액의 제조시 교반속도는 300 ~ 350 rpm, 바람직하게는 300 ~ 310 rpm으로 하는 것이 좋다.
상기 유화제를 첨가하는 단계(S25)는, 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 수행될 수 있다. 상기 유화제는 제1전구물질의 표면을 처리하여 제2전구물질과의 핵 형성이 원활하게 이루어질 수 있도록 한다.
여기서, 상기 혼합용액을 제조하는 동안, 상기 제2전구물질을 상기 제2배위용매에 혼합하여 첨가용액을 제조한다.
구체적으로는, 분말 형태의 셀레늄(selenium)을 배위용매인 TOP (Trioctylphosphine)와 혼합한 후 액화시키는 단계로, 초음파를 이용하여 먼저 셀레늄(selenium) 입자를 잘게 분해하고 배위용매에 균일하게 분산되도록 유도할 수 있다. 이 경우, 전술한 상기 혼합용액에 상기 첨가용액을 혼합하였을 때 균일한 크기범위(5%내외)의 핵을 형성할 수 있다.
여기서, 상기 혼합용액에 상기 첨가용액을 혼합할 때, 제1전구물질과 제2전구물질의 중량비가 1 : 3 ~ 10 정도가 되도록 할 수 있다.
제3단계(S30)는 상기 합성온도에서 제2전구물질을 제2배위용매에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성시간 동안 핵을 형성하여 합성용액을 만든다.
구체적으로, 상기 혼합용액이 완전히 액화된 후 온도를 증가시켜 합성온도인 약 280℃에 도달하면, 교반속도를 500 rpm으로 증가시키고, 앞서 준비한 상기 첨가용액을 첨가하여 핵을 형성한다. 즉 상기 혼합용액(cadmium oxide-lauryl acid)의 온도가 280℃에 도달하면 첨가용액(selenium-Top)을 유리주사기를 이용하여 공기가 차단된 조건에서 상기 반응용기 내로 신속히 주사하여 합성시간(5 ~ 7초 또는 3 ~ 7초) 동안 핵의 형성이 되도록 하여 균일한 크기의 반도체 형광나노입자(퀀텀닷)을 회수한다.
상기 합성시간 및 합성온도 그리고 교반속도는 핵 형성시 결정의 크기에 관련된 것으로, 합성 시간이 길어질수록 핵의 크기가 커지고 제조된 반도체 형광나노입자(퀀텀닷)는 적색화(red-shift)하는 현상이 있다. 또한 합성온도의 유지도 하나의 결정적인 이슈인데, 비교적 낮은 온도인 200℃에서는 주로 핵의 크기가 커져 적색 형광을 나타내는 경향이 있다.
따라서, 상기 합성시간, 합성온도 및 교반속도는 만들고자 하는 반도체 형광나노입자의 색깔에 따라 최적의 범위를 설정해야 한다.
먼저, 파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자의 제조시, 상기 합성시간은 5 ~ 7초로 할 수 있다. 이 경우, 상기 합성온도는 상기 반응용기의 대기온도(Ambient Temperaute)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 설정한다.
여기서, 상기 합성온도는 상기 혼합용액의 온도를 측정하는 것이 가장 바람직하나, 교반 중에 상기 혼합용액의 온도를 측정하는 것이 용이하지 않을 뿐 아니라, 교반에 영향을 미칠 수 있으므로, 보조적으로 상기 반응용기의 대기온도를 측정하여 사용한다. 또한, 상기 합성시 교반속도는 480 ~ 520 rpm의 범위에서 마련되는 것이 바람직하다.
한편, 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자의 제조시에는, 상기 합성시간은 3 ~ 7초의 범위에서 마련될 수 있다.
이 경우, 상기 합성온도는 상기 반응용기의 대기온도(Ambient Temperaute)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련될 수 있다.
또한, 상기 합성시 교반속도는 740 ~ 860 rpm 으로 마련될 수 있다.
여기서, 상기 합성시의 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적에 따라 달라지는 데, 이는 접촉면적이 넓을수록 교반에 영향을 주어 핵 형성이 저하되기 때문이다.
따라서, 본원 출원인의 반복적인 실험결과, 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련되는 것이 바람직함을 알 수 있었다.
제4단계(S40)는 상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각속도로 설정온도까지 급냉한다.
본 발명에서는 이러한 급냉단계를 통해 균일한 크기의 반도체 형광나노입자를 회수할 수 있다. 이렇게 급냉단계를 통하여 생성된 균일한 크기의 반도체 형광나노입자는 형광효율이 증가하며, 차후 조명용 LED에 응용할 경우 균일한 코팅막 형성의 유도에도 관여하게 된다.
상기 합성조건과 마찬가지로, 상기 설정온도 및 냉각속도 또한 만들고자 하는 반도체 형광나노입자의 색깔에 따라 다르게 설정한다.
먼저, 파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자의 제조시에는 상기 설정온도는 200℃ 이하로 마련되고, 상기 냉각시간은 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각이 되도록 마련되는 것이 바람직하다.
한편, 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자의 제조시에는, 상기 설정온도는 100℃ 이하로 마련되되, 상기 냉각시간은 상기 설정온도 170℃까지는 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각이 되도록 마련되고, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때 마다 6 ~ 14초 범위에서 냉각이 되도록 마련되는 것이 바람직하다.
여기서, 상기 합성용액을 급냉하는 방법은 다양한 종류로 마련될 수 있으며, 예를 들어, 상기 반응용기의 외부에 1종 또는 2종 이상의 혼합가스 냉매(예를 들어, 휘발성 유기용매)를 분사시키는 방법이 사용될 수 있다.
제5단계(S50)는 합성용액을 유기용매를 이용하여 세척한다.
마지막으로, 상기 형성된 반도체 형광나노입자를 이용하여 조명용 LED의 응용에 이용할 수 있도록 LED의 표면에 적절한 두께의 코팅막을 형성하는 단계를 더 포함할 수 있다.
전술한 바와 같이, 균일한 크기의 반도체 형광나노입자는 형광효율이 증가하며, 차후 조명용 LED에 응용할 경우 균일한 코팅막 형성의 유도에도 관여하게 된다. 따라서, 형성된 반도체 형광나노입자의 형광 발광 유무를 시각적 및 정량적으로 분석하는 것이 바람직하다.
즉, 반도체 형광나노입자를 유기용매에 분산시켜 형광발광의 유무 및 정량적 분석을 수행하는데, 반도체 형광나노입자를 분산시키는 용매의 종류로는 실리콘 오일, PDMS(polydimethlysiloxane) 또는 이와 비슷한 종류의 점성을 가지는 물질로 사용될 수 있다. 이는 점성을 가진 물질에 반도체 형광나노입자가 분사되도록 제어하는 것과, 콜로이드 상태의 반도체 형광나노입자를 유체제어 기술을 접목시켜 적절한 압력을 이용하여 분사를 유도하는 것을 의미하며, 이 때 적절한 압력은 10~50 psi의 범위를 갖도록 수행할 수 있다.
제조된 반도체 형광나노입자는 도 4에 도시된 바와 같이, 클로로포름 유기용매에 분산시키고, 365nm의 UV파장에 노출시켰을 경우 각각, 밝은 녹색과 밝은 주황색의 형광을 발광하게 된다. UV파장을 이용한 형광발광은 가시적으로 형광의 존재 유무를 확인하는 과정으로 수행될 수 있다. 정확한 형광발광 대역은 반도체 형광나노입자를 형광스펙트럼을 통하여 확인하는 범위에서 시행될 수 있다.
상기 균일한 분산 및 형광발광을 확인을 위해 이용되는 유기용매는 톨루엔(toluene)또는 클로로포름(chloroform) 이외에도 다양한 종류가 사용될 수 있음은 물론이다.
도 2를 참조하여, 본 발명의 다른 실시예에 따른 파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자를 제조하기 방법을 설명한다.
설명에 앞서, 후술한 실시예들에서는 전술한 실시예와 중복되는 설명은 생략하고, 각 실시예에서의 차이점을 중점적으로 설명한다.
도 2를 참조하면, 본 실시예는, 제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계(S110)와; 상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계(S120)와; 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계(S130)와; 상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperaurte)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계(S140)와; 상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계(S150)와; 상기 합성용액을 5 ~ 7초의 합성시간동안 480 ~ 520 rpm의 교반속도로 교반하여 핵을 형성하는 단계(S160)와; 상기 합성시간이 경과한 후, 상기 합성용액을 200℃ 이하의 설정온도로 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각되는 냉각속도로 급냉하는 단계(S170);를 포함한다.
한편, 도 3을 참조하여, 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자를 제조하는 방법을 설명하면, 제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계(S210)와; 상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계(S220)와; 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계(S230)와; 상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계(S240)와; 상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계(S250)와; 상기 합성용액을 3 ~ 7초의 합성시간동안 740 ~ 860 rpm의 합성 교반속도로 교반하여 핵을 형성하는 단계(S260)와; 상기 합성시간이 경과한 후, 상기 합성용액을 100℃ 이하의 설정온도로 설정된 냉각시간동안 급냉하는 단계(S27);를 포함한다.
여기서, 상기 합성 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련되는 것이 바람직하다.
한편, 상기 합성용액을 급냉하는 단계는, 상기 설정온도 170℃까지는 10℃ 냉각될 때마다 5 ~ 9초 의 냉각속도로 냉각하는 단계(S271)와, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때마다 6 ~ 14초의 냉각속도로 냉각하는 단계(S275)를포함한다.
따라서, 본 발명에 따른 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법에 따르면, 반도체 형광나노입자 특히, 형광발광대역이 540 nm 대의 녹색 형광나노입자와, 580 nm 대의 주황색 형광나노입자의 제조가 가능함으로써, 이를 통해 백색광의 효율을 증가시켜 광학 및 디스플레이에의 응용 가능성을 극대화할 수 있다.

Claims (20)

  1. 제1전구물질을 반응용기에 담겨진 제1배위용매에 혼합한 후 교반하여 혼합용액을 만드는 단계와;
    상기 혼합용액을 교반하면서 합성온도로 가열하는 단계와;
    상기 합성온도에서 제2전구물질을 제2배위용매에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성시간동안 핵을 형성하여 합성용액을 만드는 단계와;
    상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각속도로 설정온도까지 급냉하는 단계;를 포함하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  2. 제1항에 있어서,
    상기 혼합용액을 교반하면서 합성온도로 가열하는 단계는, 상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계를 더 포함하는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  3. 제1항에 있어서,
    상기 제1전구물질은 카드뮴 옥사이드(cadmium oxide)로 마련되고, 상기 제1배위용매는 라우릴산(lauryl acid)으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  4. 제1항에 있어서,
    상기 제2전구물질은 셀레늄(Selenium)으로 마련되고, 상기 제2배위용매는 TOP(Trioctylphosphine)으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  5. 제1항에 있어서,
    상기 혼합용액을 만드는 단계는 교반속도가 300 ~ 310 rpm 으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  6. 제1항에 있어서,
    파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자의 제조시, 상기 합성시간은 5 ~ 7초인 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  7. 제6항에 있어서,
    상기 합성온도는 상기 반응용기의 대기온도(Ambient Temperaute)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  8. 제6항에 있어서,
    상기 합성시 교반속도는 480 ~ 520 rpm으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  9. 제6항에 있어서,
    상기 설정온도는 200℃ 이하로 마련되고, 상기 냉각속도는 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각이 되도록 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  10. 제1항에 있어서,
    파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자의 제조시, 상기 합성시간은 3 ~ 7초인 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  11. 제10항에 있어서,
    상기 합성온도는 상기 반응용기의 대기온도(Ambient Temperaute)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  12. 제10항에 있어서,
    상기 합성시 교반속도는 740 ~ 860 rpm 으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  13. 제12항에 있어서,
    상기 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  14. 제10항에 있어서,
    상기 설정온도는 100℃ 이하로 마련되되, 상기 냉각속도는 상기 설정온도 170℃까지는 10℃ 냉각될 때 마다 5 ~ 9초 범위에서 냉각이 되도록 마련되고, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때 마다 6 ~ 14초 범위에서 냉각이 되도록 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  15. 제1항에 있어서,
    상기 합성용액을 급냉하는 단계는 상기 반응용기의 외부에 1종 또는 2종 이상의 혼합가스 냉매를 분사시키는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  16. 제1항에 있어서,
    상기 합성용액을 유기용매를 이용하여 세척하는 단계를 더 포함하는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  17. 파장이 570 ~ 590 nm의 주황색(Orange-Yellow)을 갖는 반도체 형광나노입자를 제조하기 위한 것으로서,
    제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계와;
    상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계와;
    상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계와;
    상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계와;
    상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계와;
    상기 합성용액을 5 ~ 7초의 합성시간동안 480 ~ 520 rpm의 교반속도로 교반하여 핵을 형성하는 단계와;
    상기 합성시간이 경과한 후, 상기 합성용액을 200℃ 이하의 설정온도로 10℃ 냉각될 때 마다 5 ~ 9초 범위의 냉각속도로 급냉하는 단계; 를 포함하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  18. 파장이 520 ~ 560 nm의 녹색(Green)을 갖는 반도체 형광나노입자를 제조하기 위한 것으로서,
    제1전구물질인 카드뮴 옥사이드(cadmium oxide) 분말을 제1배위용매인 라우릴산(lauryl acid) 혼합하여 혼합용액을 만드는 단계와;
    상기 혼합용액을 300 ~ 350 rpm의 교반속도로 교반하면서 가열하는 단계와;
    상기 혼합용액의 온도가 180 ~ 200 ℃ 범위에서 유화제를 첨가하는 단계와;
    상기 혼합용액을 상기 반응용기의 대기온도(Ambient Temperature)가 275 ~ 285 ℃ 또는 상기 혼합용액의 온도가 310 ~ 320℃ 중 어느 하나로 마련되는 합성온도에 도달할 때까지 가열하는 단계와;
    상기 합성온도에서 제2전구물질인 셀레늄(Selenium) 분말을 제2배위용매인 TOP (Trioctylphosphine)에 혼합한 첨가용액을 상기 혼합용액과 혼합하여 합성용액을 만드는 단계와;
    상기 합성용액을 3 ~ 7초의 합성시간동안 740 ~ 860 rpm의 합성 교반속도로 교반하여 핵을 형성하는 단계와;
    상기 합성시간이 경과한 후, 상기 합성용액을 설정된 냉각속도로 100℃ 이하의 설정온도까지 급냉하는 단계;를 포함하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  19. 제18항에 있어서,
    상기 합성 교반속도는 상기 합성용액과 상기 반응용기 내면의 접촉면적이 120 ㎠ 미만인 경우 745 ~ 755 rpm으로 마련되고, 상기 접촉면적이 120 ~ 180 ㎠ 이하인 경우 845 ~ 855 rpm으로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
  20. 제18항에 있어서,
    상기 냉각속도는 상기 설정온도 170℃까지는 10℃ 냉각될 때마다 5 ~ 9초의 범위로 마련되고, 상기 설정온도 170℃ 미만에서는 10℃ 냉각될 때마다 6 ~ 14초의 범위로 마련되는 것을 특징으로 하는 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법.
PCT/KR2015/007471 2014-07-17 2015-07-17 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법 WO2016010405A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580037769.3A CN106574180A (zh) 2014-07-17 2015-07-17 应用于光学和显示器的半导体荧光纳米粒子的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0090433 2014-07-17
KR20140090433 2014-07-17
KR10-2015-0101656 2015-07-17
KR1020150101656A KR101590751B1 (ko) 2014-07-17 2015-07-17 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법

Publications (1)

Publication Number Publication Date
WO2016010405A1 true WO2016010405A1 (ko) 2016-01-21

Family

ID=55078808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007471 WO2016010405A1 (ko) 2014-07-17 2015-07-17 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법

Country Status (1)

Country Link
WO (1) WO2016010405A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114697A (ko) * 2006-02-27 2008-12-31 이데미쓰 고산 가부시키가이샤 반도체 나노 입자의 제조 방법 및 그 제조 장치
JP2009161372A (ja) * 2007-12-28 2009-07-23 Natl Inst Of Radiological Sciences CdSe量子ドット及びその製造方法
KR20100040959A (ko) * 2007-08-06 2010-04-21 에이전시 포 사이언스, 테크놀로지 앤드 리서치 카드뮴 및 셀레늄 함유 나노결정질 복합물의 제조 방법 및 이로부터 수득된 나노결정질 복합물
KR20130046849A (ko) * 2011-10-28 2013-05-08 주식회사 큐디솔루션 코어-다중쉘 구조의 양자점 및 이의 제조방법
KR20130050033A (ko) * 2011-11-07 2013-05-15 신언상 형광 나노입자의 제조방법과 형광 나노입자가 코팅된 반사판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080114697A (ko) * 2006-02-27 2008-12-31 이데미쓰 고산 가부시키가이샤 반도체 나노 입자의 제조 방법 및 그 제조 장치
KR20100040959A (ko) * 2007-08-06 2010-04-21 에이전시 포 사이언스, 테크놀로지 앤드 리서치 카드뮴 및 셀레늄 함유 나노결정질 복합물의 제조 방법 및 이로부터 수득된 나노결정질 복합물
JP2009161372A (ja) * 2007-12-28 2009-07-23 Natl Inst Of Radiological Sciences CdSe量子ドット及びその製造方法
KR20130046849A (ko) * 2011-10-28 2013-05-08 주식회사 큐디솔루션 코어-다중쉘 구조의 양자점 및 이의 제조방법
KR20130050033A (ko) * 2011-11-07 2013-05-15 신언상 형광 나노입자의 제조방법과 형광 나노입자가 코팅된 반사판

Similar Documents

Publication Publication Date Title
Wang et al. One‐step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance
Bai et al. Halide perovskite quantum dots: potential candidates for display technology
Yan et al. Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr 3 quantum dots
Zheng et al. A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability
CN104662123B (zh) 制造包括量子点的组分的方法、方法以及产品
Chen et al. Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs
Lee et al. Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters
Yan et al. Room temperature synthesis of Sn 2+ doped highly luminescent CsPbBr 3 quantum dots for high CRI white light-emitting diodes
Cai et al. A facile synthesis of water‐resistant CsPbBr3 perovskite quantum dots loaded poly (methyl methacrylate) composite microspheres based on in situ polymerization
Lin et al. Bi-color phosphor-in-glass films achieve superior color quality laser-driven stage spotlights
Lin et al. Carbon nanodots with intense emission from green to red and their multifunctional applications
Kong et al. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting
WO2016129813A1 (ko) 인화인듐계 양자점 및 그 제조방법
CN108461607A (zh) 发光装置及图像显示装置
CN109298562A (zh) 量子棒薄膜及其制作方法、液晶显示装置
WO2021020705A1 (ko) 양자점을 포함하는 유기 발광 표시 장치
CN107384368A (zh) 一种耐高温量子点荧光材料及其制备方法
Li et al. Mass Transfer Printing of Metal‐Halide Perovskite Films and Nanostructures
Zhang et al. Effects of composition and structure on spectral properties of Eu3+-doped yttrium silicate transparent nanocrystalline films by metallorganic decomposition method
WO2016010405A1 (ko) 광학 및 디스플레이 응용을 위한 반도체 형광나노입자의 제조방법
WO2016006777A1 (ko) 이방성 금속 나노입자-유전체 코어-쉘 나노구조체를 포함하는 발광소자
CN110093159B (zh) 一种零维Mn掺杂核壳结构的单组分CsPb(Cl/Br)3白光量子点制备
Lou et al. In Situ Growth of CsPbBr3 Perovskite Nanocrystals in Lead‐Based Matrix toward Significantly Enhanced Water/Photo Stabilities
Xu et al. Enhanced performance of perovskite light-emitting-diodes based on ionic liquid modified CsPbBr3 nanocrystals
Zhang et al. Efficient and stable white fluorescent carbon dots and CD-based glass thin-films via screen-printing technology for use in W-LEDs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821861

Country of ref document: EP

Kind code of ref document: A1