WO2007099775A1 - 血圧測定装置 - Google Patents

血圧測定装置 Download PDF

Info

Publication number
WO2007099775A1
WO2007099775A1 PCT/JP2007/052714 JP2007052714W WO2007099775A1 WO 2007099775 A1 WO2007099775 A1 WO 2007099775A1 JP 2007052714 W JP2007052714 W JP 2007052714W WO 2007099775 A1 WO2007099775 A1 WO 2007099775A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
level
sleep
subject
pressure measurement
Prior art date
Application number
PCT/JP2007/052714
Other languages
English (en)
French (fr)
Inventor
Akihisa Takahashi
Yukiya Sawanoi
Osamu Shirasaki
Kazuomi Kario
Original Assignee
Omron Healthcare Co., Ltd.
Jichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co., Ltd., Jichi Medical University filed Critical Omron Healthcare Co., Ltd.
Priority to EP07714244.6A priority Critical patent/EP1992280B1/en
Priority to US12/280,967 priority patent/US8251913B2/en
Priority to CN2007800071645A priority patent/CN101394784B/zh
Publication of WO2007099775A1 publication Critical patent/WO2007099775A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02422Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation within occluders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles

Definitions

  • the present invention relates to a blood pressure measurement device, and more particularly to a blood pressure measurement device for measuring blood pressure during sleep.
  • the blood pressure value is considered to be one of the most important indicators for health management, and the management has been regarded as important.
  • recent studies have shown that blood pressure measured at night is an important indicator in managing cardiovascular risk.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-70260 discloses a technique in which a blood pressure measurement time is set in advance in an electronic sphygmomanometer, and blood pressure is measured at the set time. .
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-131408 discloses a technique for measuring blood pressure using a subject as a trigger when the subject enters a sleep state.
  • the presence or absence of body movement is determined based on a signal obtained from a vibration sensor attached to the bedding, and the body movement is not recognized for a certain period of time.
  • a technique is disclosed in which blood pressure is measured by using a trigger when the subject is determined to be in a sleep state and the subject is determined to be in a sleep state.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-70260
  • Patent Document 2 JP-A-8-131408
  • Patent Document 1 it is necessary to change the time to be set in accordance with the bedtime of the subject, and there is a problem that the operation is complicated.
  • FIG. 18 shows typical fluctuations of the systolic blood pressure value and the diastolic blood pressure value in a human day.
  • the hatched area in Fig. 18 means the time zone during sleep.
  • the blood pressure value is measured based on the sleep state of the subject.
  • the present invention has been conceived in light of the actual situation, and an object thereof is to provide a blood pressure measurement device that measures a blood pressure value based on the depth of sleep of a subject.
  • a blood pressure measurement device includes a blood pressure measurement unit that measures a blood pressure value of a subject, a level determination unit that determines a sleep level of the subject, and information that specifies conditions regarding the determined sleep level.
  • the memory unit to be stored, whether the determined sleep level satisfies the condition specified by the information stored in the memory unit, the determination unit to determine whether the sleep level determined by the determination unit, and the sleep level determined by the determination unit.
  • a blood pressure measurement start unit that causes the blood pressure measurement unit to start measuring blood pressure when it is determined that the blood pressure measurement unit is satisfied, and a blood pressure value storage that stores the blood pressure value of the subject measured by the blood pressure measurement unit according to an instruction from the blood pressure measurement start unit Part.
  • the blood pressure measurement device of the present invention is connected to a biological information measuring unit that measures biological information of the subject, and the level determining unit determines the sleep level of the subject based on the measurement result of the biological information measuring unit. It is preferable.
  • the biological information measuring unit measures the pulse of the subject, and the level determining unit is based on the change in the pulse wave cycle measured by the biological information measuring unit. Les, preferably to decide the bell.
  • the biological information measurement unit measures the body temperature of the subject, and the level determination unit determines the sleep level of the subject based on a change in body temperature measured by the biological information measurement unit. Is preferred.
  • the determination unit determines that the condition is satisfied when the depth of the determined sleep level reaches the deepest level among the levels that can be determined by the level determination unit. It is preferable to judge.
  • the determination unit starts from a level one level deeper than the shallowest level, with the depth of the determined sleep level being the shallowest level that can be determined by the level determination unit. When it is changed, it is preferable to determine that the condition is satisfied.
  • the level determination unit determines the sleep level at regular intervals, and the determination unit sleeps the sleep level force determined by the level determination unit last time determined by the level determination unit. It is preferable to judge that the condition is satisfied when the level changes more than a specific amount of change.
  • the sleep level of the subject is determined, and the blood pressure value when the determined sleep level satisfies a predetermined condition is stored.
  • the blood pressure value stored as the measurement value is the value when the sleep depth of the subject satisfies the predetermined condition.
  • non_REM non Rapid Eye Movement
  • FIG. 1 is an overview diagram of a blood pressure measurement device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a hardware configuration of the blood pressure measurement device in FIG. 1.
  • 3 An example of the time variation of the pulse measured based on the data output from the pressure sensor of the blood pressure measurement device in FIG.
  • FIG. 5 is a diagram for explaining the timing at which blood pressure values are measured and stored in the process shown in FIG.
  • FIG. 7 is a diagram for explaining the timing at which blood pressure values are measured and stored in the process shown in FIG.
  • FIG. 8 is a flowchart of processing executed to measure the blood pressure value of the subject in the blood pressure measurement device according to the third embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the timing when blood pressure values are measured and stored in the process shown in FIG. 8.
  • FIG. 10 A flowchart of processing executed to measure a blood pressure value of a subject in the blood pressure measurement device according to the fourth embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the timing at which blood pressure values are measured and stored in the process shown in FIG.
  • FIG. 12 An overview of a blood pressure measurement device according to a fifth embodiment of the present invention.
  • FIG. 13 is a diagram schematically showing a hardware configuration of the blood pressure measurement device in FIG.
  • FIG. 14 is a diagram showing an example of a change in the body temperature of a subject measured with the blood pressure measurement device in FIG. 12 with the passage of sleep time.
  • FIG. 15 is an overview of a blood pressure measurement device according to a sixth embodiment of the present invention.
  • FIG. 16 is an enlarged view of the eye mask of FIG.
  • FIG. 17 A diagram schematically illustrating a hardware configuration of the blood pressure measurement device 1 of FIG.
  • FIG. 18 is a diagram showing changes in general systolic blood pressure values and diastolic blood pressure values in a human day.
  • FIG. 1 is an overview of a blood pressure measurement device according to the first embodiment of the present invention.
  • the blood pressure measurement device 1 includes a cuff 2, and measures the blood pressure of the subject while the cuff 2 is held against the arm A of the subject.
  • the blood pressure measurement device 1 includes an operation unit 5 including a display 4 and a plurality of operation buttons on the front surface thereof.
  • the blood pressure measurement device 1 includes a built-in pump (a pump 32 described later) and a cuff.
  • the cuff 2 includes an air bag as will be described later.
  • FIG. 2 is a diagram schematically showing a hardware configuration of the blood pressure measurement device 1.
  • the blood pressure measurement device 1 includes a CPU (Central Processing Unit) 10 that controls the overall operation of the blood pressure measurement device 1, a memory 11 that stores various information, a timer 6 and the biological information measuring unit 30 are included.
  • a CPU Central Processing Unit
  • the biological information measuring unit 30 holds the cuff 2 and the tube 3 as described above, and inputs the pressure sensor 31 for measuring the pressure of the air bag 20, the amplifier 13 connected to the pressure sensor 31, and the amplifier 13
  • the analog data from the pressure sensor 31 is converted into digital data and output to the CPU 10 AZD (Analog / Digital) converter 12, pump 20 that sends air to the air bag 20, pump
  • the CPU 10 receives data output from the pressure sensor 31 via the AZD converter 12, controls the operation of the pump 32 via the pump drive circuit 14, and also operates the valve drive circuit. 15 controls the opening and closing of the valve 33.
  • the blood pressure measurement device 1 fills the air bag 20 with air at a low pressure of, for example, about 20 to 30 mmHg, thereby outputting data output from the pressure sensor 31.
  • the pulse of the subject can be measured based on the data.
  • FIG. 3 shows an example of the pulse measured based on the data output from the pressure sensor 31. Note that the data shown in FIG. 3 corresponds to data output from the AZD converter 12 in a state where air of an appropriate pressure is filled in the air bag 20 as described above.
  • the peak of the pulse is indicated by peaks PA to PD.
  • the CPU 10 detects a plurality of peaks by measuring the pulse continuously to some extent, and calculates the average value of the time intervals of adjacent peaks, thereby obtaining a predetermined period (continuous to the extent described above). The pulse wave period of the time when the pulse was measured) is calculated. The number of peaks used to calculate the average value is considered to be set as appropriate.
  • the blood pressure measurement device 1 measures the pulse of the subject while sleeping, calculates the pulse wave cycle based on the measurement result of the pulse, and changes the pulse wave cycle (for example, the calculated pulse wave frequency).
  • the blood pressure value of the subject is measured when the ratio of the period to the pulse wave cycle immediately after going to bed meets a predetermined condition.
  • the process shown in FIG. 4 is performed to measure the blood pressure value of the subject after the pulse wave period immediately after the subject's sleep is calculated when the subject goes to sleep. It is done.
  • the pulse wave cycle immediately after going to bed is, for example, by providing a predetermined switch in the blood pressure measurement device 1, the subject pressing the switch at the start of going to bed, and operating the switch for a predetermined time (for example, 5 ⁇ : 10 minutes).
  • the calculated pulse wave cycle immediately after going to bed is stored in the memory 11.
  • CPU 10 first measures the sleep depth (sleep level) of the subject in step SA 10 and advances the process to step SA 20.
  • the measurement of sleep depth at step SA10 includes the following processing.
  • the sleep depth is determined by the REM (Rapid Eye Movement), Non-REM I, Non-REM II, Non-REM III, and Non-REM IV according to the value of CP.
  • the five stages are defined. In this specification, it is assumed that non-rem I is higher than rem, non-rem II is higher than non-rem I, non-rem III is higher than non-rem II, and non-rem IV is higher than non-rem III.
  • step SA20 CPU 10 determines whether or not the sleep depth measured (determined) in step SA10 executed immediately before is sleep depth IV, and if so, proceeds to step SA40. If not, the process proceeds to step SA30.
  • step SA30 CPU 10 waits for one minute and then returns to step SA10.
  • step SA40 since the sleep depth is sleep depth IV, the CPU 10 moves to a routine for starting blood pressure measurement, starts measuring the blood pressure value of the subject, and stores the measurement result in the memory 11. The process proceeds to step SA50.
  • the air bag 20 is filled with air at a pressure higher than that during pulse measurement, and a pressure change in the pressure sensor 31 is detected.
  • the sleep depth and the measurement time at the time of measurement are preferably stored in the memory 11 in association with the measurement result.
  • step SA50 CPU 10 waits 30 minutes, and then returns the process to step SA10.
  • step SA50 Wait for 30 minutes at step SA50 to reach the peak sleep depth (the deepest sleep depth After the blood pressure measurement is performed in the state), the blood pressure measurement can be avoided until the next peak in sleep depth comes. In other words, it is possible to avoid multiple blood pressure measurements at the same sleep depth peak.
  • the sleep depth is determined based on the change in the pulse wave cycle of the subject, and the sleep depth is the highest (the sleep is the deepest, that is, the deepest, When the peak is reached, measurement of the subject's blood pressure is started, and the measured blood pressure is recorded. This makes it possible to measure the blood pressure value when the subject is considered to be most mentally calm.
  • step SA20 the CPU 10 determines whether or not the sleep depth at that time actually applies to the condition stored in the corresponding area of the memory 11, and if it is determined, the process proceeds to step SA40. Proceed with the process, and if it does not apply, proceed to step SA30.
  • FIG. 5 shows a general aspect of changes in sleep depth.
  • FIG. 5 is a diagram for explaining the timing at which the blood pressure value is measured and stored in step SA40 in the processing shown in FIG.
  • the vertical axis is the sleep depth (non-REM is abbreviated as “N”)
  • the horizontal axis is the elapsed time from the start of sleep.
  • the measured sleep depth is indicated by a bold line.
  • the depth of sleep changes from REM to non-REM IV and then returns to REM, and such changes are seen almost periodically.
  • the sleep depth cycle is generally 60 to 90 minutes.
  • blood pressure measurement is started on the condition that the sleep depth becomes non-REM IV, and the blood pressure value is recorded. It can be said that the blood pressure value is measured at the timing when the measurement value (bold) of the sleep depth shown in FIG. 5 is within the circle P1 and the circle P2.
  • the blood pressure measurement device 1 according to the second embodiment of the present invention has the same hardware configuration as the blood pressure measurement device 1 according to the first embodiment.
  • the blood pressure measurement device 1 according to the present embodiment differs from the blood pressure measurement device 1 according to the first embodiment in the content of processing executed for measuring the blood pressure of the subject. Therefore, hereinafter, a process executed for measuring a blood pressure value in the blood pressure measurement device 1 of the present embodiment will be described with reference to FIG. 6 which is a flowchart of the process.
  • step SB10 the CPU 10 measures the sleep depth of the subject as in step SA10 described above, and proceeds to step SB20.
  • step SB20 the CPU 10 determines the rate of change of the sleep depth measured (determined) in the immediately preceding step SB10 with respect to the sleep depth measured (determined) in the previous step SB10. It is determined whether or not ⁇ ) is a positive value. ⁇ is a positive value when the sleep depth force, which is the measurement result of the immediately preceding step SB10, is shifted to a shallower depth of sleep than the previous sleep depth. If the CPU 10 determines that ⁇ is positive, the process proceeds to step SB40, and if not, the process proceeds to step SB30.
  • step SB30 CPU 10 waits for one minute and then returns to step SB10.
  • step SB40 the CPU 10 measures the blood pressure value of the subject, stores the measurement result in the memory 11, and advances the process to step SB50. At this time, for example, it is preferable that the sleep depth and the measurement time at the time of measurement are also stored in association with the measurement result.
  • step SB50 CPU 10 waits for 30 minutes and then returns to step SB10.
  • the sleep depth is determined based on the change in the pulse wave cycle of the subject, and the determined sleep depth is set to be shallower than the previously determined sleep depth.
  • the subject's blood pressure is measured.
  • step SB20 the CPU 10 actually compares the rate of change ( ⁇ ) at that time with the value stored in the area, and changes the rate of change ( ⁇ ) at that time. If it is determined that the change rate is large, the process proceeds to step SB40. If it is determined that the rate of change (() at that time is equal to or less than the value stored in the area, the process proceeds to step SB30.
  • FIG. 7 is a diagram for explaining the timing at which the blood pressure value is measured and stored in step SB40 in the processing shown in FIG.
  • the vertical axis is the sleep depth
  • the horizontal axis is the elapsed time of sleep initiation force
  • the measured sleep depth is indicated by a bold line.
  • the depth of sleep changes from REM to non-REM IV and then back to REM, and such changes are seen almost periodically.
  • the sleep depth cycle is generally 60 to 90 minutes.
  • the blood pressure value is measured on the condition that the determined sleep depth has changed to a shallower sleep than the previously determined sleep depth.
  • the time when the sleep depth changes to a shallower one is regarded as the time when the sleep depth takes the maximum value, the measurement of the blood pressure value is started, and the measured blood pressure value is recorded.
  • the blood pressure measurement device 1 according to the third embodiment of the present invention has the same hardware configuration as the blood pressure measurement device 1 according to the first embodiment.
  • the blood pressure measurement device 1 of the present embodiment differs from the blood pressure measurement device 1 of the first embodiment in the content of processing executed for measuring the blood pressure of the subject. Therefore, the following is a description of the processing executed for blood pressure measurement by the blood pressure measurement device 1 of the present embodiment. The process will be described with reference to FIG.
  • step SC10 CPU 10 measures the sleep depth of the subject in the same manner as in step SA10 described above, and proceeds to step SC20.
  • step SC20 the CPU 10 determines that the sleep depth measured (determined) in the immediately preceding step SC10 is REM and the sleep measured (determined) in step SC10 executed the previous time. Determine whether the depth was non-REM I. Then, the CPU 10 advances the process to step SC40 if it makes a half-IJ decision, and to step SC30 if it does not.
  • step SC30 CPU 10 waits for one minute and then returns to step SC10.
  • step SC40 CPU 10 measures the blood pressure value of the subject, stores the measurement result in memory 11, and proceeds to step SC50. At this time, for example, it is preferable that the sleep depth and the measurement time at the time of measurement are stored in association with the measurement result.
  • step SC50 CPU 10 waits for 30 minutes and then returns to step SC10.
  • the sleep depth is determined based on a change in the pulse wave cycle of the subject, and when the determined sleep depth is a REM that has changed from non-REM I, Blood pressure is measured.
  • step SC20 the CPU 10 actually has a pattern of changes in sleep depth at that time (the sleep depth determined in step SC10 executed immediately before and the previous step).
  • the pattern of sleep depth determined in SC10) is compared with the pattern stored in the relevant area. If it is determined that they match, the process proceeds to step SC40, and if not, the process proceeds to step SC30.
  • FIG. 9 is a diagram for explaining the timing at which the blood pressure value is measured and stored in step SC40 in the process shown in FIG.
  • the axis is the sleep depth
  • the horizontal axis is the elapsed time from the start of sleep
  • the measured sleep depth is shown by a bold line.
  • the sleep depth changes from REM to non-REM IV and then returns to REM, and such changes are seen almost periodically.
  • the sleep depth cycle is generally 60 to 90 minutes.
  • the blood pressure measurement device 1 according to the fourth embodiment of the present invention has the same hardware configuration as the blood pressure measurement device 1 according to the first embodiment.
  • the blood pressure measurement device 1 of the present embodiment differs from the blood pressure measurement device 1 of the first embodiment in the content of processing executed for measuring the blood pressure of the subject. Therefore, hereinafter, a process executed for measuring a blood pressure value in the blood pressure measurement device 1 of the present embodiment will be described with reference to FIG. 10 which is a flowchart of the process.
  • step SD10 the CPU 10 measures the sleep depth of the subject as in step SA10 described above, and proceeds to step SD20.
  • step SD20 CPU 10 determines whether or not the sleep depth measured (determined) in immediately preceding step SD10 is non-REM IV. Then, the CPU 10 proceeds to step SD30 when determining that it is, and proceeds to step SD50 when determining that it is not.
  • step SD30 the CPU 10 measures the blood pressure value of the subject, stores it in the memory 11, and advances the process to step SD40, as in step SA40.
  • step SD40 the CPU 10 waits for 30 minutes and then returns to step SD10.
  • step SD50 the CPU 10 causes the sleep depth measured in the immediately preceding step SD10 to be shallower by two or more steps than the sleep depth measured in the previous round, that is, for example, non-REM. Judge whether it has changed from II to REM or from non-REM ⁇ ⁇ to non-REM I. If so, proceed to step SD30. If not, proceed to step SD60.
  • step SD60 the CPU 10 waits for one minute and then returns to step SD10.
  • the sleep depth is determined based on the change in the pulse wave cycle of the subject, and when the determined sleep depth is non-REM IV, or suddenly shallower If it changes (to the shallower level than the previous measurement), the subject's blood pressure measurement is started and the measured blood pressure value is recorded.
  • step SD20 and step SD30 the CPU 10 actually determines whether or not the state relating to the sleep depth at that time satisfies the condition defined by the information stored in the area. If it is determined that the condition is satisfied, the process proceeds to step SD40. If it is determined that the condition is not satisfied, the process proceeds to step SD60.
  • FIG. 11 is a diagram for explaining the timing at which the blood pressure value is measured and stored in step SD30 in the process shown in FIG.
  • the vertical axis is the sleep depth
  • the horizontal axis is the elapsed time of sleep initiation force
  • the measured sleep depth is indicated by a bold line.
  • the sleep depth changes from REM to non-REM IV and then returns to REM, and such changes are seen almost periodically.
  • the sleep depth cycle is generally 60 to 90 minutes.
  • step SD40 since the process waits for 30 minutes in step SD40, it was determined that the shift was shallower by two or more steps than the previously determined sleep depth in step SD50. In this case, it is considered that the sleep depth has shifted to a shallower depth within 30 minutes.
  • the sleep depth changes rapidly toward a shallower depth for example, a case where the subject is in an apnea state can be considered.
  • the processing shown in FIG. 10 may be configured to detect a blood pressure value when the sleep depth is shifted to a deeper level than a predetermined level.
  • FIG. 12 is an overview of a blood pressure measurement device according to the fifth embodiment of the present invention.
  • the biological information of the subject to be measured for determining the sleep depth is changed with respect to the first to fourth embodiments.
  • changes to these embodiments will be mainly described.
  • blood pressure measurement device 1 further measures body temperature, which is biological information of a subject, with respect to blood pressure measurement device 1 according to the first to fourth embodiments. It is equipped with a body temperature sensor 6.
  • the body temperature sensor 6 is installed on the side of the cuff 2 that comes into contact with the arm A of the subject.
  • the body temperature sensor 6 may be configured separately from the cuff 2.
  • FIG. 13 is a diagram schematically showing a hardware configuration of the blood pressure measurement device 1 of FIG.
  • the blood pressure measurement device 1 compared with the blood pressure measurement device 1 according to the first to fourth embodiments, digitally stores the body temperature sensor 6 and data on the body temperature of the subject detected by the body temperature sensor 6.
  • An A / D converter 61 that converts the data and sends it to the CPU 10 is included.
  • the memory 11 stores information (for example, a table) associating the change in the body temperature value of the subject with the sleep depth as shown in Table 2, for example.
  • information for example, a table
  • the range power s of the body temperature value ⁇ to be measured is defined for five stages from rem to non-rem IV.
  • FIG. 14 is a diagram showing an example of a change in the body temperature of the subject measured by the blood pressure measurement device 1 of the present embodiment as the sleep time elapses.
  • the body temperature decreases as a whole as the sleep time elapses, it locally rises and falls at a predetermined cycle.
  • the region strength S of body temperature, where the sleep depth is non-REM IV is shown as a hatched region.
  • FIG. 15 is an overview of a blood pressure measurement device according to the sixth embodiment of the present invention.
  • the biological information of the subject to be measured to determine the sleep depth is changed with respect to the first to fourth embodiments.
  • changes to these embodiments will be mainly described.
  • blood pressure measurement device 1 according to the present embodiment is further compared to blood pressure measurement device 1 according to the first to fourth embodiments, and the movement of the eyeball, which is the biological information of the subject. Equipped with eye mask 8 for measuring The eye mask 8 is worn on the head H of the subject.
  • FIG. 16 shows an enlarged view of the eye mask 8.
  • the eye mask 8 includes a belt 80 to be fixed to the head H of the subject and a plate-like portion 81.
  • the plate-like portion 81 is provided with a right-eye infrared sensor 80A and a left-eye infrared sensor 80B, which are infrared ray sensors corresponding to the subject's right eye and left eye, respectively.
  • a converter 82 is included for converting the output of the sensor into digital data.
  • FIG. 17 is a diagram schematically showing a hardware configuration of the blood pressure measurement device 1 of FIG.
  • the blood pressure measurement device 1 of the present embodiment is a blood pressure measurement device according to the first to fourth embodiments.
  • a / D converters 801 and 802 for converting these outputs to digital, together with the above-described right-eye infrared sensor 80A and left-eye infrared sensor 80B.
  • a / D converters 801 and 802 are included in converter 82.
  • the movement mode of the eyeball is detected by the right-eye infrared sensor 80A and the left-eye infrared sensor 80B, and the sleep depth of the subject is determined based on the detected movement mode. .
  • the sleep depth may be determined by a method different from the method described above.
  • Examples of other methods include electroencephalogram, electrocardiogram, myoelectricity, body movement, respiratory cycle and the like as the biological information of the subject.
  • the blood pressure value of the subject was measured when the sleep depth satisfied a predetermined condition.
  • the blood pressure measurement device 1 was provided with a predetermined switch, The subject operated the switch immediately before going to bed, and in the blood pressure measurement device 1, a predetermined time (for example, 1 hour, 1 hour 30 minutes, 2 hours, etc.) has elapsed since the switch was operated. If the blood pressure measurement is performed on condition of Even if blood pressure is measured in this way, it is considered that blood pressure can be measured every day when the subject is in the same sleep state.
  • the blood pressure value stored as the measured value is the subject.
  • the depth of sleep is when a predetermined condition is satisfied. This makes it possible to measure blood pressure based on the depth of sleep of the subject, such as during non-REM sleep or waking up, which is considered suitable for measuring blood pressure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 制御部(10)は、生体情報計測部(30)において計測された生体情報に基づいて、被験者の睡眠レベルを決定し、決定した睡眠レベルが、所定の条件を満たしていると判断すると、被験者の血圧の測定を開始する。また、制御部(10)は、血圧の測定結果をメモリ(11)に記憶する。

Description

明 細 書
血圧測定装置
技術分野
[0001] 本発明は、血圧測定装置に関し、特に、睡眠時の血圧を測定するための血圧測定 装置に関する。
背景技術
[0002] 従来から、健康管理を行なう上で、血圧値が最も重要な指標の一つであると考えら れ、その管理が重要視されてきた。さらに、近年の研究によって、夜間に測定する血 圧が心血管のリスクを管理する上で重要な指標となることが明らかにされてきた。
[0003] このような観点から、夜間の血圧測定を行なうための技術が種々開示されてきた。
たとえば、特許文献 1 (特開 2001— 70260号公報)では、電子血圧計において、 予め血圧についての測定時刻を設定しておき、そして、設定された時刻に血圧測定 を行なう技術が開示されている。
[0004] また、特に、被験者が眠りの状態となったことをトリガとして血圧測定を行なう技術が 特許文献 2 (特開平 8— 131408号公報)に開示されている。具体的には、特許文献 2には、睡眠健康管理システムにおいて、寝具に取付けられた振動センサから得られ る信号に基づいて体動の有無を判断し、体動が一定時間認められなかった場合に 被験者が睡眠状態にあると判断し、そして、被験者が睡眠状態にあると判断されたこ とをトリガとして血圧測定を行なう技術が開示されている。
特許文献 1:特開 2001— 70260号公報
特許文献 2:特開平 8— 131408号公報
発明の開示
発明が解決しょうとする課題
[0005] し力、しながら、特許文献 1に開示された技術では、被験者の就寝時刻に合わせて 設定する時刻を変更する必要が生じ、操作が煩雑であるという問題が生じると考えら れる。
[0006] また、測定される血圧値は、同じ被験者であっても、図 18に示されるように、測定時 の肉体の状態および/または精神状態により血圧値は大きく変動する。それと同様 に、血圧測定時の当該被験者の睡眠の状態(睡眠の深さ)によっても変動が生じると 考えられる。なお、図 18には、人間の一日における一般的な最高血圧値および最低 血圧値の変動が示されている。図 18中のハッチングを示された領域は、睡眠中の時 間帯を意味する。
[0007] そして、このこと力、ら、血圧値が被験者の睡眠の状態に基づいて測定されることは、 重要なことであると考えられる。
[0008] 特許文献 2に開示された技術では、被験者の体動が一定時間見られなければ睡眠 状態に入ったと認識して血圧測定が行なわれるため、被験者が睡眠時刻に合わせて 設定する測定時刻を変更する必要はないものの、測定時の被験者の睡眠の状態が 一定ではないという問題が生じると考えられる。つまり、特許文献 2に開示された技術 では、被験者が眠っていれば、その睡眠の深さに関係無く血圧値が測定されることが 考えられる。
[0009] 本発明は力かる実情に鑑み考え出されたものであり、その目的は、被験者の睡眠 の深さに基づいて血圧値を測定する血圧測定装置を提供することである。
課題を解決するための手段
[0010] 本発明に従った血圧測定装置は、被験者の血圧値を測定する血圧測定部と、被 験者の睡眠レベルを決定するレベル決定部と、決定された睡眠レベルに関する条件 を特定する情報を記憶する記憶部と、決定された睡眠レベルが記憶部に記憶される 情報によって特定される条件を満たしているか否力 ^判断する判断部と、判断部によ つて決定された睡眠レベルが条件を満たしていると判断されたときに血圧測定部に 血圧測定を開始させる血圧測定開始部と、血圧測定開始部による指示に応じて血圧 測定部によって測定された被験者の血圧値を記憶する血圧値記憶部とを含む。
[0011] 本発明の血圧測定装置は、被験者の生体情報を計測する生体情報計測部に接続 され、レベル決定部は、生体情報計測部の計測結果に基づいて被験者の睡眠レべ ルを決定することが好ましい。
[0012] 本発明の血圧測定装置では、生体情報計測部は、被験者の脈拍を計測し、レベル 決定部は、生体情報計測部が計測する脈波周期の変化に基づいて被験者の睡眠レ ベルを決定することが好ましレ、。
[0013] 本発明の血圧測定装置では、生体情報計測部は、被験者の体温を計測し、レベル 決定部は、生体情報計測部が計測する体温の変化に基づいて被験者の睡眠レベル を決定することが好ましい。
[0014] 本発明の血圧測定装置では、判断部は、決定された睡眠レベルの深さがレベル決 定部の決定できるレベルの中の最も深いレベルに達した場合に、条件が満たされた と判断することが好ましい。
[0015] 本発明の血圧測定装置では、判断部は、決定された睡眠レベルの深さがレベル決 定部の決定できるレベルの中の最も浅いレベルに、当該最も浅いレベルの 1つ深い レベルから、変更された場合に、条件が満たされたと判断することが好ましい。
[0016] 本発明の血圧測定装置では、レベル決定部は、一定時間ごとに睡眠レベルの決定 を行ない、判断部は、レベル決定部によって決定された睡眠レベル力 レベル決定 部によって前回決定された睡眠レベルに対して、特定の変化量よりも大きく変化した 場合に、条件が満たされたと判断することが好ましレ、。
発明の効果
[0017] 本発明によれば、被験者の睡眠レベルが決定され、そして、決定された睡眠レベル が所定の条件を満たしているときの血圧値が記憶される。
[0018] これにより、測定値として記憶される血圧値が被験者の睡眠の深さが所定の条件を 満たしたときのものとされる。
[0019] このため、血圧値の測定に適していると考えられるノンレム睡眠(non_REM : non Ra pid Eye Movement)時や起床時等、被験者の睡眠の深さに基づいた血圧値の測 定が可能となる。なお、ノンレム睡眠時は、最も被験者が精神的に落ち着いているた めに、被験者の健康状態が顕著に現れることが期待される。また、起床時は、図 18 にも示されるように一般的に被験者の血圧値が急激に上昇するため、健康管理上の リスクを推定するために、血圧値の測定に適していると考えられる。
図面の簡単な説明
[0020] [図 1]本発明の第 1の実施の形態である血圧測定装置の概観図である。
[図 2]図 1の血圧測定装置のハードウェア構成を模式的に示す図である。 園 3]図 1の血圧測定装置の圧力センサが出力するデータに基づいて計測された脈 柏の時間変化の一例を示す。
園 4]図 1の血圧測定装置において、被験者の血圧値を測定するために実行される 処理のフローチャートである。
園 5]図 4に示された処理において血圧値の測定および記憶がなされるタイミングを 説明するための図である。
園 6]本発明の第 2の実施の形態の血圧測定装置において、被験者の血圧値を測定 するために実行される処理のフローチャートである。
園 7]図 6に示された処理において血圧値の測定および記憶がなされるタイミングを 説明するための図である。
園 8]本発明の第 3の実施の形態の血圧測定装置において、被験者の血圧値を測定 するために実行される処理のフローチャートである。
[図 9]図 8に示された処理において血圧値の測定および記憶がなされるタイミングを 説明するための図である。
園 10]本発明の第 4の実施の形態の血圧測定装置において、被験者の血圧値を測 定するために実行される処理のフローチャートである。
[図 11]図 10に示された処理において血圧値の測定および記憶がなされるタイミング を説明するための図である。
園 12]本発明の第 5の実施の形態である血圧測定装置の概観図である。
園 13]図 12の血圧測定装置のハードウェア構成を模式的に示す図である。
[図 14]図 12の血圧測定装置において測定される被験者の体温の、睡眠時間の経過 に伴った変化の一例を示す図である。
園 15]本発明の第 6の実施の形態である血圧測定装置の概観図である。
[図 16]図 15のアイマスクの拡大図である。
園 17]図 15の血圧測定装置 1のハードウェア構成を模式的に示す図である。
[図 18]人間の一日における一般的な最高血圧値および最低血圧値の変動を示す図 である。
符号の説明 [0021] 1 血圧測定装置、 2 カフ、 3 管、 4 表示器、 5 操作部、 6 タイマ、 10 CPU、 11 メモリ、 12 A/D、 13 増幅器、 14 ポンプ駆動回路、 15 弁駆動回路、 20 空気袋、 30 生体情報計測部、 31 圧力センサ、 32 ポンプ、 33 弁。
発明を実施するための最良の形態
[0022] 以下、図面を参照しつつ、本発明に係る血圧測定装置の実施の形態を説明する
[第 1の実施の形態]
図 1は、本発明の第 1の実施の形態である血圧測定装置の概観図である。
[0023] 血圧測定装置 1は、カフ 2を備え、当該カフ 2を被験者の腕 Aに卷きつけられた状態 で、被験者の血圧を測定する。
[0024] 血圧測定装置 1は、その前面に表示器 4および複数の操作ボタンを含む操作部 5 を備えている。また、血圧測定装置 1は、内蔵するポンプ (後述するポンプ 32)とカフ
2を接続する管 3を含む。また、カフ 2は、後述するように空気袋を内包している。
[0025] 図 2は、血圧測定装置 1のハードウェア構成を模式的に示す図である。
血圧測定装置 1は、上記した表示器 4および操作部 5に加え、血圧測定装置 1の動 作を全体的に制御する CPU (Central Processing Unit) 10、種々の情報を記憶す るメモリ 11、タイマ 6、および、生体情報計測部 30を含む。
[0026] 生体情報計測部 30は、上記したカフ 2および管 3にカ卩え、空気袋 20の圧力を計測 する圧力センサ 31、圧力センサ 31に接続された増幅器 13、増幅器 13を介して入力 される圧力センサ 31からのアナログデータをデジタルデータに変換して CPU10に出 力する AZD (Analog/Digital)変換部 12、空気袋 20に空気を送るポンプ 32、ポンプ
32を駆動させるポンプ駆動回路 14、管 3とポンプ 32との接続部分を開閉する弁 33、 および、弁 33を駆動させる弁駆動回路 15を含む。
[0027] 血圧測定装置 1では、 CPU10は、 AZD変換器 12を介して圧力センサ 31が出力 するデータを入力され、ポンプ駆動回路 14を介してポンプ 32の動作を制御し、また、 弁駆動回路 15を介して弁 33の開閉を制御する。
[0028] 血圧測定装置 1は、被験者の血圧値の測定に加え、空気袋 20にたとえば 20〜30 mmHg程度の低レ、圧力で空気を充填させることにより、圧力センサ 31の出力するデ ータに基づいて、被験者の脈拍を測定できる。
[0029] 図 3に、圧力センサ 31が出力するデータに基づいて測定された脈拍の一例を示す 。なお、図 3に示されるデータは、上記したように空気袋 20に適度の圧力の空気が充 填された状態で AZD変換器 12が出力するデータに相当する。
[0030] 図 3を参照して、脈拍のピークはピーク PA〜PDで示されている。血圧測定装置 1 では、 CPU10は、ある程度継続して脈拍を測定することによって複数のピークを検 出し、隣接するピークの時間間隔の平均値を算出することにより、所定期間(上記し たある程度継続して脈拍を測定した時間)の脈波周期を算出する。平均値の算出に 利用するピークの数は、適宜設定されるものと考えられる。
[0031] 血圧測定装置 1では、被験者の就寝中の脈拍が測定され、脈拍の測定結果に基 づいて脈波周期が算出され、そして、脈波周期の変化 (たとえば、算出された脈波周 期の、就寝直後の脈波周期に対する比)が所定の条件を満たした時点で被験者の 血圧値が測定される。
[0032] 具体的には、血圧測定装置 1では、被験者の就寝時に、被験者の就寝直後の脈波 周期が算出された後、被験者の血圧値を測定するために、図 4に示す処理が実行さ れる。なお、就寝直後の脈波周期とは、たとえば、血圧測定装置 1において所定のス イッチを設けておき、被験者が就寝開始時に当該スィッチを押し、そして、当該スイツ チが操作されて力も所定時間(たとえば 5〜: 10分)経過後に算出された脈波周期で ある。また、算出された就寝直後の脈波周期は、メモリ 11に記憶される。
[0033] 図 4を参照して、 CPU10は、まずステップ SA10で、被験者の睡眠深度(睡眠レべ ノレ)を測定し、ステップ SA20に処理を進める。なお、ステップ SA10での睡眠深度の 測定には、以下の処理が含まれる。
[0034] ·所定期間、被験者の脈拍を測定する
•当該所定期間中の被験者の脈拍の測定結果に基づいて、脈波周期を算出する •算出された脈波周期を利用した脈波周期の変化により睡眠深度を決定する なお、脈波周期の変化に基づいて睡眠深度が決定される際には、以下の表 1に示 されるような脈波周期と睡眠深度との対応関係が参照される。表 1において、メモリ 11 に記憶された CAは就寝直後の脈波周期であり、 CPはその時点で算出された脈波 周期である。表 1に示されたような対応関係は、たとえばメモリ 11に予め記憶されてい る。
[0035] [表 1]
Figure imgf000009_0001
[0036] 表 1から理解されるように、本実施の形態では、睡眠深度は、 CPの値に応じて、レ ム(Rapid Eye Movement)、ノンレム I、ノンレム II、ノンレム III、および、ノンレム IVの 五段階が定義されている。本明細書では、レムよりノンレム Iが、ノンレム Iよりノンレム II 、ノンレム IIよりノンレム IIIが、そして、ノンレム IIIよりノンレム IVが、睡眠深度が深いと する。
[0037] ステップ SA20では、 CPU10は、直前で実行されたステップ SA10において測定( 決定)された睡眠深度が睡眠深度 IVであるか否力 判断し、そうであると判断すれば ステップ SA40に、そうではないと判断するとステップ SA30に処理を進める。
[0038] ステップ SA30では、 CPU10は、 1分間待機した後、ステップ SA10に処理を戻す
[0039] 一方、ステップ SA40では、睡眠深度が睡眠深度 IVであるので、 CPU10は、血圧 測定を開始するルーチンに移り、被験者の血圧値の測定を開始し、メモリ 11に測定 結果を記憶して、ステップ SA50に処理を進める。血圧値が測定される際には、血圧 測定装置 1では、空気袋 20に脈拍測定時よりも高い圧力で空気を充填させ、圧力セ ンサ 31における圧力変化が検出される。なお、ステップ SA40では、たとえば、測定 結果に関連付けられて、測定時の睡眠深度および測定時刻もメモリ 11に記憶される ことが好ましい。
[0040] ステップ SA50では、 CPU10は、 30分待機した後、ステップ SA10に処理を戻す。
ステップ SA50で 30分待機することにより、睡眠深度のピーク(睡眠深度が最も深い 状態)で血圧測定が行なわれた後、次の睡眠深度のピークが来るまで血圧の測定が 行なわれることを回避できる。つまり、同じ睡眠深度のピーク時に複数回血圧測定が 行なわれることを回避できる。
[0041] 以上説明した本実施の形態では、被験者の脈波周期の変化に基づいて睡眠深度 が決定され、そして、睡眠深度が最高の深度(最も眠りが深レ、もの、すなわち最も深 レ、ピーク)となった時点で、当該被験者の血圧の測定を開始し、測定された血圧が記 録される。これにより、最も被験者が精神的に落ち着いていると考えられるときの血圧 値を測定できる。
[0042] なお、どの睡眠深度で血圧の測定を開始するかについての条件は、メモリ 11に記 憶されているものとする。つまり、本実施の形態では、メモリ 11の所定の領域に、「睡 眠深度 IV」という情報が記憶されている。そして、 CPU10は、上記したステップ SA2 0では、実際には、その時点での睡眠深度がメモリ 11の当該領域に記憶されていた 条件に当てはまるか否かを判断し、当てはまると判断するとステップ SA40へ処理を 進め、当てはまらないと判断するとステップ SA30へ処理を進める。
[0043] 図 5に、睡眠深度の変化の一般的な態様を示す。なお、図 5は、図 4に示された処 理の中でステップ SA40における血圧値の測定および記憶がなされるタイミングを説 明するための図である。また、図 5では、縦軸が睡眠深度(ノンレムが「N」と略されて いる)であり横軸が睡眠開始からの経過時間である。また、図 5中、測定された睡眠深 度は、太線で示されている。
[0044] 睡眠深度は、レムからノンレム IVまで深くなつた後レムに戻るように変化し、そして、 このような変化はほぼ周期的に見られている。なお、睡眠深度の周期は、一般的に は 60分間から 90分間である。
[0045] 図 4に示された処理では、睡眠深度がノンレム IVとなったことを条件として血圧測定 が開始され、血圧値が記録される。これは、図 5に示された睡眠深度の測定値 (太字 )が円 P1および円 P2内に入っているタイミングで、血圧値が測定されると言える。
[0046] また、図 4に示された処理では、睡眠深度が極大値(深さについての極大、つまり、 局部的に睡眠が最も深いピーク)を取ったときに血圧値を測定するために、睡眠深度 力 Sノンレム IVとなったことを条件として血圧値が測定される。つまり、睡眠深度がノンレ ム IVに達した時点が、睡眠深度が最も深いピークになった時点とみなされて、血圧値 の測定が行なわれる。
[0047] [第 2の実施の形態]
本発明の第 2の実施の形態の血圧測定装置 1は、第 1の実施の形態の血圧測定装 置 1と同様のハードウェア構成を有する。
[0048] なお、本実施の形態の血圧測定装置 1は、第 1の実施の形態の血圧測定装置 1に 対して、被験者の血圧測定のために実行する処理の内容が異なる。そこで、以下に 、本実施の形態の血圧測定装置 1で血圧値の測定のために実行される処理につい て、当該処理のフローチャートである図 6を参照して説明する。
[0049] CPU10は、まずステップ SB10で、上記したステップ SA10と同様に、被験者の睡 眠深度を測定し、ステップ SB20に処理を進める。
[0050] ステップ SB20では、 CPU10は、直前のステップ SB10において測定(決定)された 睡眠深度の、その 1つ前の回に実行されたステップ SB10で測定(決定)された睡眠 深度に対する変化率(α )が正の値であるか否力を判断する。なお、 αは、直前のス テツプ SB10の測定結果である睡眠深度力 その 1つ前の回での睡眠深度よりも眠り の浅い方にシフトした場合に、正の値となる。そして、 CPU10は、 αが正であると判 断するとステップ SB40へ、そうではないと判断するとステップ SB30へ、それぞれ処 理を進める。
[0051] ステップ SB30では、 CPU10は、 1分間待機した後、ステップ SB10に処理を戻す。
[0052] 一方、ステップ SB40では、 CPU10は、被験者の血圧値を測定し、メモリ 11に測定 結果を記憶して、ステップ SB50に処理を進める。このとき、たとえば、測定結果に関 連付けられて、測定時の睡眠深度および測定時刻も記憶されることが好ましい。
[0053] ステップ SB50では、 CPU10は、 30分待機した後、ステップ SB10に処理を戻す。
[0054] 以上説明した本実施の形態では、被験者の脈波周期の変化に基づいて睡眠深度 が決定され、そして、決定された睡眠深度が、前回決定された睡眠深度よりも眠りの 浅い方に変化したときに、被験者の血圧が測定される。
[0055] なお、睡眠深度に関する条件であって血圧の測定を開始するかについての条件は
、メモリ 11に記憶されているものとする。つまり、本実施の形態では、たとえばメモリ 11 の所定の領域に「0」という値が記憶されている。そして、 CPU10は、上記したステツ プ SB20では、実際には、その時点での変化率(α )と当該領域に記憶されている値 とを比較し、その時点での変化率( α )の方が大きいと判断するとステップ SB40へ処 理を進め、その時点での変化率(ひ )が当該領域に記憶されている値以下であると判 断するとステップ SB30へ処理を進める。
[0056] 図 7は、図 6に示された処理の中でステップ SB40における血圧値の測定および記 憶がなされるタイミングを説明するための図である。また、図 7では、図 5と同様に、縦 軸が睡眠深度であり横軸が睡眠開始力 の経過時間であり、また、測定された睡眠 深度は、太線で示されている。
[0057] 睡眠深度は、レムからノンレム IVまで深くなつた後レムに戻るように変化し、そして、 このような変化はほぼ周期的に見られている。なお、睡眠深度の周期は、一般的に は 60分間から 90分間である。
[0058] 図 6に示された処理では、睡眠深度が決定されたとき、それが前回決定された睡眠 深度よりも眠りの浅い方に変化してときに、つまり、図 7に示された睡眠深度の測定値 (太字)が円 Ρ3および円 Ρ4内に入っているタイミングで、血圧値が測定されると言え る。
[0059] また、図 6に示された処理では、睡眠深度が極大値(深さについての極大、つまり、 局部的に睡眠が最も深いピーク)を取ったときに血圧値を測定するために、決定され た睡眠深度が前回決定された睡眠深度よりも眠りの浅い方に変化したことを条件とし て血圧値が測定される。つまり、睡眠深度が眠りの浅い方に変化した時点が、睡眠深 度が極大値を取った時点とみなされて、血圧値の測定を開始し、測定された血圧値 が記録される。
[0060] [第 3の実施の形態]
本発明の第 3の実施の形態の血圧測定装置 1は、第 1の実施の形態の血圧測定装 置 1と同様のハードウェア構成を有する。
[0061] なお、本実施の形態の血圧測定装置 1は、第 1の実施の形態の血圧測定装置 1に 対して、被験者の血圧測定のために実行する処理の内容が異なる。そこで、以下に 、本実施の形態の血圧測定装置 1で血圧値の測定のために実行される処理につい て、当該処理のフローチャートである図 8を参照して説明する。
[0062] CPU10は、まずステップ SC10で、上記したステップ SA10と同様に、被験者の睡 眠深度を測定し、ステップ SC20に処理を進める。
[0063] ステップ SC20では、 CPU10は、直前のステップ SC10において測定(決定)され た睡眠深度がレムであり、かつ、その 1つ前の回に実行されたステップ SC10で測定( 決定)された睡眠深度がノンレム Iであったか否かを判断する。そして、 CPU10は、そ うであると半 IJ断するとステップ SC40へ、そうではないと判断するとステップ SC30へ、 それぞれ処理を進める。
[0064] ステップ SC30では、 CPU10は、 1分間待機した後、ステップ SC10に処理を戻す
[0065] 一方、ステップ SC40では、 CPU10は、被験者の血圧値を測定し、メモリ 11に測定 結果を記憶して、ステップ SC50に処理を進める。このとき、たとえば、測定結果に関 連付けられて、測定時の睡眠深度および測定時刻も記憶されることが好ましレ、。
[0066] ステップ SC50では、 CPU10は、 30分待機した後、ステップ SC10に処理を戻す。
[0067] 以上説明した本実施の形態では、被験者の脈波周期の変化に基づいて睡眠深度 が決定され、そして、決定された睡眠深度が、ノンレム Iから変化したレムであるときに 、被験者の血圧が測定される。
[0068] なお、睡眠深度に関する条件であって血圧の測定を開始するかについての条件は 、メモリ 11に記憶されているものとする。つまり、本実施の形態では、たとえばメモリ 11 の所定の領域に、睡眠深度の変化のパターンを示す情報、具体的には、ノンレム Iか らレムに変化する睡眠深度のパターンについての情報が記憶されている。そして、 C PU10は、上記したステップ SC20では、実際には、その時点での睡眠深度の変化 のパターン(直前に実行されたステップ SC10で決定された睡眠深度と、その 1つ前 の回のステップ SC10で決定された睡眠深度とのパターン)と当該領域に記憶されて レ、るパターンとを比較し、一致すると判断するとステップ SC40へ処理を進め、異なる と判断するとステップ SC30へ処理を進める。
[0069] 図 9は、図 8に示された処理の中でステップ SC40における血圧値の測定および記 憶がなされるタイミングを説明するための図である。また、図 9では、図 5と同様に、縦 軸が睡眠深度であり横軸が睡眠開始からの経過時間であり、また、測定された睡眠 深度は、太線で示されている。また、図 9において、睡眠深度は、レムからノンレム IV まで深くなつた後レムに戻るように変化し、そして、このような変化はほぼ周期的に見 られている。なお、睡眠深度の周期は、一般的には 60分間から 90分間である。
[0070] 図 8に示された処理では、前回決定された睡眠深度がノンレム Iであり、そして、今 回決定された睡眠深度がレムであるときに、つまり、図 9に示された睡眠深度の測定 値 (太字)が円 P5内に入っているタイミングで、血圧値が測定されると言える。
[0071] また、図 8に示された処理では、睡眠深度が極小値(深さについての極小、つまり、 局部的に睡眠が最も浅いピーク)を取ったときに血圧値を測定するために、睡眠深度 力 Sノンレム Iからレムに変化したことを条件として血圧測定が開始され、測定された血 圧値が記録される。つまり、睡眠深度がノンレム Iからレムに変化した時点力 睡眠深 度が極小値を取った時点とみなされて、血圧値の測定が行なわれる。
[0072] [第 4の実施の形態]
本発明の第 4の実施の形態の血圧測定装置 1は、第 1の実施の形態の血圧測定装 置 1と同様のハードウェア構成を有する。
[0073] なお、本実施の形態の血圧測定装置 1は、第 1の実施の形態の血圧測定装置 1に 対して、被験者の血圧測定のために実行する処理の内容が異なる。そこで、以下に 、本実施の形態の血圧測定装置 1で血圧値の測定のために実行される処理につい て、当該処理のフローチャートである図 10を参照して説明する。
[0074] CPU10は、まずステップ SD10で、上記したステップ SA10と同様に、被験者の睡 眠深度を測定し、ステップ SD20に処理を進める。
[0075] ステップ SD20では、 CPU10は、直前のステップ SD10において測定(決定)され た睡眠深度がノンレム IVであるか否かを判断する。そして、 CPU10は、そうであると 判断するとステップ SD30へ、そうではないと判断するとステップ SD50へ、それぞれ 処理を進める。
[0076] ステップ SD30では、 CPU10は、ステップ SA40と同様に、被験者の血圧値の測定 し、そして、それをメモリ 11への記憶させ、ステップ SD40に処理を進める。
[0077] ステップ SD40では、 CPU10は、 30分間待機した後、ステップ SD10に処理を戻 す。
[0078] 一方、ステップ SD50では、 CPU10は、直前のステップ SD10で測定された睡眠深 度が、その前の回に測定された睡眠深度に対して 2段階以上浅い方へ、つまり、たと えばノンレム IIからレムへ、または、ノンレム ΠΙからノンレム Iへ、変化したか否かを判断 する。そして、そうであると判断するとステップ SD30へ、そうではないと判断するとス テツプ SD60へ処理を進める。
[0079] ステップ SD60では、 CPU10は、 1分待機した後、ステップ SD10に処理を戻す。
[0080] 以上説明した本実施の形態では、被験者の脈波周期の変化に基づいて睡眠深度 が決定され、そして、決定された睡眠深度が、ノンレム IVである場合、または、急激に 浅い方へ (前回測定時から 2段階以上浅い方へ)変化した場合に、被験者の血圧測 定が開始され、測定された血圧値が記録される。
[0081] なお、睡眠深度に関する条件であって血圧の測定を開始するかについての条件は 、メモリ 11に記憶されているものとする。つまり、本実施の形態では、たとえばメモリ 11 の所定の領域に、決定された睡眠深度がノンレム IVである力または前回測定時から 2 段階以上浅い方へ変化したということに対応する情報が記憶されている。そして、 CP U10は、上記したステップ SD20およびステップ SD30では、実際には、その時点で の睡眠深度に関する状態が当該領域に記憶されている情報で定義される条件を満 たすか否かを判断し、条件を満たすと判断するとステップ SD40へ処理を進め、条件 を満たさないと判断するとステップ SD60へ処理を進める。
[0082] 図 11は、図 10に示された処理の中でステップ SD30における血圧値の測定および 記憶がなされるタイミングを説明するための図である。また、図 11では、図 5と同様に 、縦軸が睡眠深度であり横軸が睡眠開始力 の経過時間であり、また、測定された睡 眠深度は、太線で示されている。また、図 11において、睡眠深度は、レムからノンレ ム IVまで深くなつた後レムに戻るように変化し、そして、このような変化はほぼ周期的 に見られている。なお、睡眠深度の周期は、一般的には 60分間から 90分間である。
[0083] 図 10に示された処理では、睡眠深度がノンレム IVであるとき、および、今回決定さ れた睡眠深度が前回決定された睡眠深度から 2段階以上浅い方にシフトしたときに、 つまり、図 11に示された睡眠深度の測定値(太字)が円 P6〜P9内に入っているタイ ミングで、血圧値が測定されると言える。
[0084] なお、図 10に示された処理では、ステップ SD40において 30分処理が待機するこ とから、ステップ SD50において前回決定された睡眠深度から 2段階以上浅い方にシ フトしたと判断された場合は、睡眠深度が、 30分のうちに 2段階以上浅い方にシフト した場合と考えられる。睡眠深度が浅い方に急激に変化する場合の具体例としては 、たとえば、被験者が無呼吸状態にある場合が考えられる。
[0085] また、図 10に示された処理は、睡眠深度が、所定の段階以上深い方にシフトした 場合に血圧値を検出するように構成されても良レ、。
[0086] [第 5の実施の形態]
図 12は、本発明の第 5の実施の形態である血圧測定装置の概観図である。
[0087] 本実施の形態は、第 1〜第 4の実施の形態に対して、睡眠深度を決定するために 測定する被験者の生体情報を変更されたものである。以下、これらの実施の形態に 対して変更点について主に説明を行なう。
[0088] 図 12を参照して、本実施の形態の血圧測定装置 1は、第 1〜第 4の実施の形態に 係る血圧測定装置 1に対し、さらに、被験者の生体情報である体温を計測するための 体温センサ 6を備えている。体温センサ 6は、カフ 2の、被験者の腕 Aに当接される側 に設置されている。なお、体温センサ 6は、カフ 2とは別体で構成されても良い。
[0089] 図 13は、図 12の血圧測定装置 1のハードウェア構成を模式的に示す図である。
本実施の形態の血圧測定装置 1は、第 1〜第 4の実施の形態に係る血圧測定装置 1に対して、体温センサ 6と、体温センサ 6が検出する被験者の体温についてのデー タをデジタルデータに変換して CPU 10に送る A/D変換器 61を含む。
[0090] そして、本実施の形態では、メモリ 11において、たとえば表 2に示されるような、被験 者の体温の値の変化と睡眠深度を関連付ける情報 (たとえばテーブル)が記憶され ている。具体的には、当該情報では、測定される体温の値 τの範囲力 s、レム〜ノンレ ム IVの 5段階に対して定められている。
[0091] [表 2] 睡眠深度 体温 Tについての条件
レム 就寝直後の体温- 0. 3°C≤T
ノンレム I 就寝直後の体温- 0. 6°Cく T≤就寝直後の体温- 0. 3°C ノンレム Π 就寝直後の体温- 0. 9°Cく T≤就寝直後の体温" 0. 6°C ノンレム ΠΙ 就寝直後の体温- 1. 2°Cく T≤就寝直後の体温- 0. 9°C ノンレム IV 就寝直後の体温- 1. 5°Cく T≤就寝直後の体温- 1. 2¾
[0092] 図 14は、本実施の形態の血圧測定装置 1において測定される被験者の体温の、睡 眠時間の経過に伴った変化の一例を示す図である。
[0093] 図 14から理解されるように、体温は、睡眠時間が経過するにつれて、全体としては 下がっているものの、局部的には所定の周期で上下を繰り返している。図 14では、 睡眠深度をノンレム IVとされる体温の領域力 S、ハッチングを施された領域として示され ている。
[0094] 本実施の形態では、第 1〜第 4の実施の形態に対して、睡眠深度を決定するため に測定される生体情報が変更されただけである。つまり、決定された睡眠深度を利用 した制御内容については、第 1〜第 4の実施の形態と同様である。
[0095] [第 6の実施の形態]
図 15は、本発明の第 6の実施の形態である血圧測定装置の概観図である。
[0096] 本実施の形態は、第 1〜第 4の実施の形態に対して、睡眠深度を決定するために 測定する被験者の生体情報を変更されたものである。以下、これらの実施の形態に 対して変更点について主に説明を行なう。
[0097] 図 15を参照して、本実施の形態の血圧測定装置 1は、第 1〜第 4の実施の形態に 係る血圧測定装置 1に対し、さらに、被験者の生体情報である眼球の運動を計測す るためのアイマスク 8を備えている。アイマスク 8は、被験者の頭部 Hに装着される。
[0098] 図 16に、アイマスク 8の拡大図を示す。
アイマスク 8は、被験者の頭部 Hに固定されるためのベルト 80と、板状部 81とを備 えている。板状部 81には、被験者の右目および左目にそれぞれ対応するような赤外 線センサである右目用赤外線センサ 80Aおよび左目用赤外線センサ 80Bが設置さ れている。また、アイマスク 8と血圧測定装置 1の本体との間には、これらの赤外線セ ンサの出力をデジタルデータに変換する変換器 82が含まれる。
[0099] 図 17は、図 15の血圧測定装置 1のハードウェア構成を模式的に示す図である。
本実施の形態の血圧測定装置 1は、第 1〜第 4の実施の形態に係る血圧測定装置
1に対して、上記した右目用赤外線センサ 80Aおよび左目用赤外線センサ 80Bとと もに、これらの出力をデジタルに変換する A/D変換器 801 , 802を含む。 A/D変 換器 801 , 802は、変換器 82に含まれる。
[0100] 本実施の本実施の形態では、眼球の運動態様を右目用赤外線センサ 80Aおよび 左目用赤外線センサ 80Bで検出し、検出された運動態様に基づいて、被験者の睡 眠深度が決定される。
[0101] 本実施の形態では、第 1〜第 4の実施の形態に対して、睡眠深度を決定するため に測定される生体情報が変更されただけである。つまり、決定された睡眠深度を利用 した制御内容については、第 1〜第 4の実施の形態と同様である。
[0102] [その他の変形例等]
以上説明した本発明の各実施の形態では、睡眠深度を決定するための方法がいく つか示された。なお、本発明は、上記した方法とは異なる方法で睡眠深度を決定さ れても良い。
[0103] その他の方法としては、たとえば、被験者の生体情報として脳波、心電、筋電、体 動、呼吸周期等が挙げられる。
[0104] また、上記した各実施の形態では、睡眠深度が所定の条件を満たした場合に被験 者の血圧値が測定されたが、この他に、血圧測定装置 1に所定のスィッチを設け、被 験者に就寝直前に当該スィッチを操作させ、そして、血圧測定装置 1では、当該スィ ツチが操作されてから所定の時間(たとえば、 1時間、 1時間 30分、 2時間等)が経過 したことを条件として、血圧測定が行なわれても良レ、。このように血圧測定が行なわれ ることによつても、毎日、被験者が同じ睡眠状態にあるときに、血圧測定ができると考 られる。
[0105] 今回開示された各実施の形態はすべての点で例示であって制限的なものではな レ、と考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によ つて示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれるこ とが意図される。また、上記した各実施の形態は、可能な限り組み合わされて実現さ れることが意図される。
産業上の利用可能性
本発明によれば、被験者の睡眠レベルが決定され、そして、決定された睡眠レベル が所定の条件を満たしているときの血圧値が記憶されることから、測定値として記憶 される血圧値が被験者の睡眠の深さが所定の条件を満たしたときのものとなる。この ため、血圧値の測定に適していると考えられるノンレム睡眠時や起床時等、被験者の 睡眠の深さに基づいた血圧値の測定が可能となる。

Claims

請求の範囲
[1] 被験者の血圧値を測定する血圧測定部(10, 20, 31, 13, 12)と、
前記被験者の睡眠レベルを決定するレベル決定部(10)と、
前記決定された睡眠レベルに関する条件を特定する情報を記憶する記憶部(11) と、
前記決定された睡眠レベルが前記記憶部に記憶される情報によって特定される前 記条件を満たしているか否力を判断する判断部(10)と、
前記判断部によって前記決定された睡眠レベルが前記条件を満たしていると判断 されたときに前記血圧測定部に血圧測定を開始させる血圧測定開始部(10)と、 前記血圧測定開始部による指示に応じて前記血圧測定部によって測定された前記 被験者の血圧値を記憶する血圧値記憶部(11)とを含む、血圧測定装置。
[2] 前記被験者の生体情報を計測する生体情報計測部(30)に接続され、
前記レベル決定部は、前記生体情報計測部の計測結果に基づレ、て前記被験者の 睡眠レベルを決定する、請求の範囲第 1項に記載の血圧測定装置。
[3] 前記生体情報計測部は、前記被験者の脈拍を計測し、
前記レベル決定部は、前記生体情報計測部が計測する脈波周期の変化に基づい て前記被験者の睡眠レベルを決定する、請求の範囲第 2項に記載の血圧測定装置
[4] 前記生体情報計測部は、前記被験者の体温を計測し、
前記レベル決定部は、前記生体情報計測部が計測する体温の変化に基づいて前 記被験者の睡眠レベルを決定する、請求の範囲第 2項に記載の血圧測定装置。
[5] 前記判断部は、前記決定された睡眠レベルの深さが前記レベル決定部の決定でき るレベルの中の最も深いレベルに達した場合に、前記条件が満たされたと判断する、 請求の範囲第 1項〜請求の範囲第 4項のいずれかに記載の血圧測定装置。
[6] 前記判断部は、前記決定された睡眠レベルの深さが前記レベル決定部の決定でき るレベルの中の最も浅いレベルに、当該最も浅いレベルの 1つ深いレベルから、変更 された場合に、前記条件が満たされたと判断する、請求の範囲第 1項〜請求の範囲 第 4項のレ、ずれかに記載の血圧測定装置。 前記レベル決定部は、一定時間ごとに睡眠レベルの決定を行ない、
前記判断部は、前記レベル決定部によって決定された睡眠レベル力 前記レベル 決定部によって前回決定された睡眠レベルに対して、特定の変化量よりも大きく変化 した場合に、前記条件が満たされたと判断する、請求の範囲第 1項〜請求の範囲第 4項のレ、ずれかに記載の血圧測定装置。
PCT/JP2007/052714 2006-03-01 2007-02-15 血圧測定装置 WO2007099775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07714244.6A EP1992280B1 (en) 2006-03-01 2007-02-15 Blood pressure measuring apparatus
US12/280,967 US8251913B2 (en) 2006-03-01 2007-02-15 Blood pressure measuring apparatus
CN2007800071645A CN101394784B (zh) 2006-03-01 2007-02-15 血压测定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006054916A JP4659646B2 (ja) 2006-03-01 2006-03-01 血圧測定装置
JP2006-054916 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007099775A1 true WO2007099775A1 (ja) 2007-09-07

Family

ID=38458889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052714 WO2007099775A1 (ja) 2006-03-01 2007-02-15 血圧測定装置

Country Status (8)

Country Link
US (1) US8251913B2 (ja)
EP (1) EP1992280B1 (ja)
JP (1) JP4659646B2 (ja)
KR (1) KR101065817B1 (ja)
CN (2) CN101394784B (ja)
RU (1) RU2395230C2 (ja)
TW (1) TWI425932B (ja)
WO (1) WO2007099775A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229238A (ja) * 2006-03-01 2007-09-13 Jichi Medical Univ 血圧測定装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952688B2 (ja) 2008-09-01 2012-06-13 トヨタ自動車株式会社 睡眠判定装置及び睡眠判定方法
JP2012139286A (ja) * 2010-12-28 2012-07-26 Omron Healthcare Co Ltd 血圧測定装置
US20130194066A1 (en) * 2011-06-10 2013-08-01 Aliphcom Motion profile templates and movement languages for wearable devices
JP5613922B2 (ja) * 2012-02-23 2014-10-29 株式会社タニタ 血圧測定装置および血圧測定方法
JP5991100B2 (ja) 2012-09-13 2016-09-14 オムロンヘルスケア株式会社 脈拍測定装置、脈拍測定方法、および脈拍測定プログラム
JP6202485B2 (ja) * 2013-01-11 2017-09-27 株式会社タニタ 生体情報管理モジュール、睡眠計、およびシステム
RS20140390A1 (en) * 2014-07-24 2016-04-28 Fiorenzo Tassotti A DIGITAL COMMUNICATION SYSTEM PRIMARY WITH A UNCONSCIOUS SUBJECT WITH THE CREATION OF PULSUUDITIVE SYNESESIA
EP3266485B1 (en) 2015-04-14 2019-06-26 Huawei Technologies Co. Ltd. Alarm clock with blood pressure monitoring
TWI670046B (zh) * 2016-03-29 2019-09-01 豪展醫療科技股份有限公司 兼具情緒壓力指數檢測與血壓檢測之量測裝置與方法
JP6800759B2 (ja) * 2017-01-04 2020-12-16 オムロン株式会社 ユーザ端末
US11687800B2 (en) * 2017-08-30 2023-06-27 P Tech, Llc Artificial intelligence and/or virtual reality for activity optimization/personalization
WO2019151195A1 (ja) * 2018-01-30 2019-08-08 京セラ株式会社 電子機器、推定システム、制御方法及び制御プログラム
JP7293758B2 (ja) * 2019-03-15 2023-06-20 オムロンヘルスケア株式会社 血圧測定装置及び血圧測定方法
KR20220080972A (ko) * 2020-12-08 2022-06-15 삼성전자주식회사 수면 무호흡을 검출하기 위한 방법 및 이를 지원하는 전자 장치
US20220175311A1 (en) * 2020-12-08 2022-06-09 Samsung Electronics Co., Ltd. Method for detecting sleep apnea and electronic device for supporting the same
WO2024181691A1 (ko) * 2023-02-27 2024-09-06 삼성전자 주식회사 생체 정보를 제공하는 방법 및 이를 지원하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284611A (ja) * 1987-05-15 1988-11-21 Matsushita Electric Works Ltd 環境温度制御装置
JPH08131408A (ja) 1994-11-11 1996-05-28 Matsushita Electric Ind Co Ltd 睡眠健康管理システム
JP2000000215A (ja) * 1998-06-15 2000-01-07 Arata Nemoto 睡眠深さ判定方法および判定装置
JP2001070260A (ja) 1999-09-08 2001-03-21 Omron Corp 電子血圧計
JP2005237472A (ja) * 2004-02-24 2005-09-08 七臣 ▲苅▼尾 血圧測定装置
JP2006102260A (ja) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 耳式血圧計

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522382A (en) * 1987-06-26 1996-06-04 Rescare Limited Device and method for treating obstructed breathing having a delay/ramp feature
DE50013170D1 (de) * 1999-11-20 2006-08-24 Hans-Juergen Urbscheit Vorrichtung zum wecken einer schlafenden person
CN1430484A (zh) 2000-03-02 2003-07-16 伊塔马医疗有限公司 通过监控外周血管系统非侵入性地探测特定的睡眠状态情况的方法和装置
US20040049132A1 (en) * 2000-06-15 2004-03-11 The Procter & Gamble Company Device for body activity detection and processing
US20050054940A1 (en) * 2003-04-23 2005-03-10 Almen Adam J. Apparatus and method for monitoring heart rate variability
US20040230398A1 (en) 2003-05-15 2004-11-18 Sanyo Electric Co., Ltd. Sleep analyzer and program product for giving sleep analysis function to computer
WO2005018737A1 (en) 2003-08-18 2005-03-03 Cardiac Pacemakers, Inc. Disordered breathing management systems and methods
WO2005084538A1 (en) * 2004-02-27 2005-09-15 Axon Sleep Research Laboratories, Inc. Device for and method of predicting a user’s sleep state
JP3987053B2 (ja) * 2004-03-30 2007-10-03 株式会社東芝 睡眠状態判定装置および睡眠状態判定方法
JP4659646B2 (ja) * 2006-03-01 2011-03-30 学校法人自治医科大学 血圧測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284611A (ja) * 1987-05-15 1988-11-21 Matsushita Electric Works Ltd 環境温度制御装置
JPH08131408A (ja) 1994-11-11 1996-05-28 Matsushita Electric Ind Co Ltd 睡眠健康管理システム
JP2000000215A (ja) * 1998-06-15 2000-01-07 Arata Nemoto 睡眠深さ判定方法および判定装置
JP2001070260A (ja) 1999-09-08 2001-03-21 Omron Corp 電子血圧計
JP2005237472A (ja) * 2004-02-24 2005-09-08 七臣 ▲苅▼尾 血圧測定装置
JP2006102260A (ja) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 耳式血圧計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1992280A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229238A (ja) * 2006-03-01 2007-09-13 Jichi Medical Univ 血圧測定装置

Also Published As

Publication number Publication date
RU2008138861A (ru) 2010-04-10
TWI425932B (zh) 2014-02-11
KR20080099339A (ko) 2008-11-12
JP2007229238A (ja) 2007-09-13
KR101065817B1 (ko) 2011-09-20
JP4659646B2 (ja) 2011-03-30
EP1992280A4 (en) 2010-12-29
CN102151129A (zh) 2011-08-17
CN102151129B (zh) 2015-01-07
TW200744530A (en) 2007-12-16
US8251913B2 (en) 2012-08-28
CN101394784A (zh) 2009-03-25
RU2395230C2 (ru) 2010-07-27
EP1992280B1 (en) 2014-12-10
EP1992280A1 (en) 2008-11-19
US20090234199A1 (en) 2009-09-17
CN101394784B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2007099775A1 (ja) 血圧測定装置
JP4714194B2 (ja) 血圧測定装置
EP1893082B1 (en) A blood pressure measuring device and a method for operating a blood pressure measuring device
CN106793964B (zh) 无创血压监测器、操作无创血压监测器的方法和计算机程序产品
JP5017501B1 (ja) 血管脈波測定システム
JP5613922B2 (ja) 血圧測定装置および血圧測定方法
US9289139B2 (en) Blood pressure monitor
US7458937B2 (en) Method and system for assessing breathing effectiveness via assessment of the dynamic arterial pressure wave using the oscillometric measurement technique
JP4978483B2 (ja) 血圧測定装置および血圧測定データの処理方法
US20130030310A1 (en) Blood pressure measurement device
JP2005237472A (ja) 血圧測定装置
KR102025571B1 (ko) 호흡 조절에 의한 혈압 변화를 측정하기 위한 장치 및 방법
WO2021213071A1 (zh) 一种血压检测方法及可穿戴设备
MX2011004913A (es) Esfigmomanometro electronico.
JP6202485B2 (ja) 生体情報管理モジュール、睡眠計、およびシステム
JP2009082175A (ja) 呼吸訓練器およびコンピュータプログラム
WO2009093514A1 (ja) 環境変動の影響を抑えた測定結果を得ることのできる血圧測定装置
EP3513717A1 (en) Blood pressure monitoring
JP2011152307A (ja) 電子血圧計およびその制御方法
JPH06142086A (ja) 運動モニタ装置
JP2005237531A (ja) 脈波伝播速度評価装置
CN101380229A (zh) 医疗辅助器的测量参数值正确性的判断方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007714244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12280967

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780007164.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023776

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008138861

Country of ref document: RU

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)