WO2007098708A1 - Couches à absorption sélective de lumière et leur procédé de fabrication - Google Patents

Couches à absorption sélective de lumière et leur procédé de fabrication Download PDF

Info

Publication number
WO2007098708A1
WO2007098708A1 PCT/CN2007/000668 CN2007000668W WO2007098708A1 WO 2007098708 A1 WO2007098708 A1 WO 2007098708A1 CN 2007000668 W CN2007000668 W CN 2007000668W WO 2007098708 A1 WO2007098708 A1 WO 2007098708A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
film
gas
solar
Prior art date
Application number
PCT/CN2007/000668
Other languages
English (en)
French (fr)
Inventor
Zhiqiang Yin
Original Assignee
Shenzhen Commonpraise Solar Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Commonpraise Solar Co., Ltd filed Critical Shenzhen Commonpraise Solar Co., Ltd
Priority to EP07720303.2A priority Critical patent/EP1992716B1/en
Priority to US12/281,558 priority patent/US20100035034A1/en
Priority to CN2007800065061A priority patent/CN101389783B/zh
Priority to DK07720303.2T priority patent/DK1992716T3/da
Priority to ES07720303T priority patent/ES2411711T3/es
Publication of WO2007098708A1 publication Critical patent/WO2007098708A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the invention relates to a light selective absorbing layer composed of a composite material film formed by reactive deposition of an iron-chromium alloy and a non-metal gas under vacuum coating technology, and the non-metal gas preferably contains nitrogen. And oxygen gas.
  • the present invention also relates to a solar heat collecting element or a solar selective absorbing coating system comprising the light selective absorbing layer and a method of preparing the same, and the composite material film as a solar heat collecting element or a solar selective absorbing coating system The use of a light selective absorbing layer. Background technique
  • the light selective absorbing layer is a core functional part of the light absorbing system for absorbing light energy and is commonly used in solar heat collecting elements or solar selective absorbing coating systems.
  • the solar collector element is comprised of a substrate and a solar selective absorbing coating system deposited on the substrate.
  • the solar selective absorbing coating system is a set of film systems having a multilayer structure, as shown in FIG. 1, comprising an infrared highly reflective underlayer attached to the surface of the substrate 5, an optional isolation layer 2, and a light selective An absorbing layer 3 (abbreviated as an absorbing layer herein) and an anti-reflecting film layer 4 (referred to herein as an anti-reflective layer).
  • the solar selective absorbing coating system converts solar energy into heat energy, and the temperature of the coating system and the substrate is thereby increased.
  • the coating system has energy loss due to its own temperature radiating energy to the environment in the form of infrared heat waves. It is therefore desirable that the solar selective absorbing coating system be capable of absorbing the concentrated portion of the energy in the large-yang spectrum received on the ground and less radiating infrared heat waves into the environment.
  • the term “selective” in the terms “solar selective absorbing coating system” and “light selective absorbing layer” means in the context of the present application that the light absorbing properties of the coating system are spectrally selective, ie in solar energy
  • the optical wavelength is in the range of 0.3 to 3. 0 micrometers. It has a high solar absorption ratio of ⁇ , and at the same time has a low infrared emission ratio ⁇ value in the infrared spectral range.
  • the solar absorption ratio ⁇ and the infrared emission ratio ⁇ are two important photothermal performance indexes of the solar selective absorption coating system.
  • the solar absorption ratio ⁇ depends on the selection of the absorption layer and the anti-reflection layer, and the infrared emission ratio ⁇ mainly depends on The material of the infrared high-reflection underlayer is selected and affected by the absorption layer.
  • the substrate or its surface is part of a solar selective absorbing coating system that employs materials that meet the requirements for infrared high reflective substrates.
  • metal refers to a metallic elemental, alloy or metallic interstitial phase.
  • intermediate in the context of this application, refers to a dielectric, and more particularly to a more fully reactive metal compound deposited by vacuum coating techniques.
  • metal-dielectric composite film also known as ceramic (phase) film
  • ceramic (phase) film is a homogeneous composite of metal particles and dielectric particles.
  • the metal element in the metal-dielectric composite is present not only in the form of a metal phase but also in the medium. Taking metal oxides as an example, the oxygen flow rate is adjusted from small to large in the vacuum coating process, and the obtained film transitions from a metal composition to an oxide medium composition. This intermediate transition state is called a metal-dielectric composite film.
  • the commercially available solar thermal collecting elements or solar selective absorbing coating systems prepared by vacuum coating technology have generally achieved satisfactory actual solar absorption for the solar spectrum in the wavelength range of 0.3 to 3.0 micrometers. oc P ratio of about 0.93, ⁇ infrared emission ratio reaches 0.10 or less.
  • the actual solar absorption ratio of the solar selective absorbing coating system is between 0.25 P and the highest solar absorption ratio of the theoretical value ⁇ ⁇ of about 0.96, the absorption efficiency has been difficult to make a practical change.
  • the method of manufacturing a solar heat collecting element or a solar selective absorbing coating system by vacuum coating technology generally includes the following steps:
  • infrared high-reflective metal or material with infrared high-reflection metal surface As a substrate, or an infrared high-reflection metal as a thin film of metal material deposited on a substrate such as stainless steel to form an infrared high-reflection underlayer;
  • Vacuum coating techniques include arc discharge, vacuum evaporation, and magnetron sputtering.
  • a solar thermal collecting element or a solar selective absorbing coating system is prepared by vacuum evaporation and magnetron sputtering techniques. Compared with the vacuum evaporation technique, the compactness of the film produced by the magnetron sputtering technique, the film and the substrate, and the adhesion between the film and the film are both high.
  • the vacuum evaporation technique is carried out in a vacuum chamber, and the metal in the evaporation boat or crucible is vaporized and deposited on the substrate by resistance heating or electron beam bombardment. If a non-metallic reaction gas such as oxygen is passed through the reaction vacuum evaporation, a dielectric film or metal can be obtained. A composite film of phase and oxide.
  • the magnetron sputtering technique is carried out, for example, in a vacuum chamber as shown in Fig. 2, in which the magnetic field intersects the electric field perpendicularly, so that the electrons move in a spiral helical motion to the anode (i.e., the substrate 5).
  • the collision of electrons with argon atoms on the way causes the argon atoms to split into argon ions and another free electron.
  • Argon cations bombard the cathode (ie, the metal material target) under the action of an electromagnetic field.
  • the sputtered cathode metal particles are deposited on the anode substrate 5; the sputtered secondary electrons are added to the electrons to form a self-sustaining glow discharge.
  • the power supply for magnetron sputtering can be used with a DC power supply, a pulse power supply, an intermediate frequency AC power supply, an RF power supply, or a combination of the above.
  • a variety of thin films of metal materials can be obtained by non-reactive vacuum evaporation or non-reactive magnetron sputtering techniques, and the non-reactive gas in the magnetron sputtering technique is argon.
  • Diverse dielectric films or metal-dielectric composite films can be obtained by reactive vacuum evaporation and reactive magnetron sputtering techniques, which are formed by selected metal and non-metal reactive gas elements.
  • the non-reactive gas and/or the reaction gas may be injected into the vacuum chamber separately or via a mixture, for example, via the intake pipe 3, while maintaining a vacuum with a vacuum pump.
  • the gas injection flow rate is calculated in sccm, that is, the gas injection amount per minute is calculated as the gas volume in cubic centimeters under standard conditions.
  • the standard condition refers to an atmospheric pressure of 25 °C.
  • the technician In the practice of vacuum coating technology, the technician must debug the process parameters according to the volume and shape of the vacuum chamber of the specific equipment, as well as the pumping efficiency and vacuum coating power of the vacuum pump, to prepare the film material that meets the requirements.
  • the process parameters refer to the injection flow rate, vacuum degree, vacuum coating power, and sputtering time of various gases. The higher the vacuum coating power, the faster the metal particles are deposited; the sputtering time is essentially only related to the thickness of the deposit.
  • increasing the vacuum coating power it is necessary to increase the injection flow rate of the reaction gas to obtain a specific ratio of metal particles to the medium.
  • the reaction is unstable, so that a homogeneous film material cannot be obtained.
  • the same specifications of raw materials require that the films deposited under the same process parameters have the same physicochemical properties.
  • the debugging of the process parameters is a conventional technique in the art, and thus the commercially available solar selective absorption coating system prepared by the vacuum coating technology can achieve an actual solar absorption ratio of 0.93, and the infrared emission ratio ⁇ reaches 0. 10 or less.
  • composition and thickness of the optical coating prepared by vacuum coating technology are experimentally OK OK.
  • the value R, and the thickness Th of the film is measured by, for example, an o - s tep step meter.
  • the refractive index n and the extinction coefficient k of the film material are determined by computer inversion optimization according to the Hadley equation.
  • the refractive index n and the extinction coefficient k are intrinsic optical properties of an optical film material having a specific distribution ratio, and are called optical constants, and n-ik is called a complex refractive index (i is an imaginary number).
  • the n and k values determined by the inversion optimization are multi-solutions.
  • the T Hadley equation is described in LN Hadley and DM Dennison, J. Opt. Soc. Am., 37 (1947) 451.
  • optical constants n, k of the metal-dielectric composite film are between the metal and the optical constant of the medium.
  • the electromagnetic layer is used to calculate the sub-layers and the inversion of the absorption layer in the solar selective absorption coating system by computer.
  • the reflection ratio of the layer under different thicknesses is the theoretical value.
  • the calculation method is based on IS09845-1, and the average reflectance R TA in the solar light transmission range is calculated according to the amount of atmospheric shield 1.5.
  • the minimum value is the solar energy selective absorption coating system can achieve in the solar light the best theoretical reflection ratio in the range of "Further Zan optimum value of R T solar absorption of the coating system than the theoretical value o T -.
  • 1-R T IS09845-1 described in detail in the solar absorption ratio ⁇ is calculated and Means, the disclosure of which is hereby incorporated by reference in its entirety in its entirety in the the the the the the the the the the the the the the the the the the the the the the the
  • a solar selective absorbing coating system is prepared according to the thickness of each sub-layer and the anti-reflection layer of the absorbing layer when the theoretical value of the best reflectance is obtained, by ultraviolet-visible-near-infrared spectroscopy
  • the photometer measures the actual reflectance ratio RP of the coating system, and then the actual solar absorption ratio oc P can be calculated according to IS09845-1.
  • a P ⁇ ot T it means that the deposition thickness of the absorption layer and the anti-reflection layer in the coating system and/or the flow rate of the reaction gas in the preparation can be changed in a small range, so that the ap of the coating system is closer to a ⁇ .
  • the commissioning is a general process commissioning for the specific use of the equipment.
  • the light selective absorbing layer may be composed of a metal-dielectric composite film, wherein the total amount of metal generally accounts for 40 to 75 mol% of the metal-intermediate composite film.
  • the absorbing layer is composed of a single-layer or multi-layer metal-dielectric composite film each having a uniform optical constant. As the total thickness of the absorbing layer or the number of sub-layers increases, the metal content in the metal-dielectric composite film preferably decreases along the direction away from the substrate, and its optical constant is correspondingly gradual.
  • the absorption performance of the single layer is poor, and it is preferred that the absorption layer consists of two or three absorption layer sublayers having a uniform optical constant.
  • each sub-layer of the absorbing layer needs to have a high transmittance for infrared rays, which internally absorbs energy in the range of solar light and has a destructive interference effect between the interfaces of the sub-layers of the absorbing layer.
  • each sublayer has a thickness of 20 to 100 nm, and the total thickness of the absorption layer is 50 nm to 200 nm, preferably 60 n
  • the proportion of metal elements in the metal-dielectric composite can vary over a wide range depending on the desired number of sublayers of the absorbing layer. Taking two absorption sublayers as an example, the total amount of metal elements of the first absorption sublayer adjacent to the infrared high reflection layer is preferably 60 to 70 mol% of the first absorption sublayer composite film, and the metal elements of the second absorption sublayer are The total amount is preferably from 46 to 53 mol% of the second absorbent sub-layer composite film.
  • Metal-Metal Composites The ratio of metal and non-metal content in the film is regulated by the flow rate of the non-metallic reactant gas injected into the device.
  • the optical constants n and k of the absorbing layer must be changed gently so that an absorbing layer having a uniform optical constant can be accurately prepared by regulating the change in the flow rate of the reaction gas in the production equipment.
  • the reaction gas is usually oxygen, nitrogen, ammonia, carbon monoxide, carbon dioxide, hydrocarbon gas or the like or a combination thereof. Different metals and different ruthenium gases produce a large number of combination possibilities. Due to the lack of theoretical explanation for the composition of the successful absorbing layer materials and their related principles in practice, the field performs random screening in the process of finding new absorbing layer materials. .
  • CN 85100142 A describes an aluminum-nitrogen/aluminum solar selective absorbing coating system made by magnetron sputtering.
  • the process uses a single-target aluminum cathode to deposit and deposit an aluminum film in an argon gas as an infrared high-reflectivity underlayer, and then reacts in a mixed gas of argon gas and reactive gas nitrogen to recombine a combination of a gradient of aluminum and aluminum nitride.
  • the material film is used as an absorbing layer, and finally aluminum nitride is deposited as an anti-reflection layer.
  • This coating system is only suitable for use in a vacuum environment.
  • DE 3522427 A1 discloses a titanium oxynitride TiNO film material prepared by magnetron sputtering as an absorbing layer of a solar selective absorbing coating system.
  • the electrical properties of the film material and other physicochemical properties including adhesion, corrosion resistance, heat resistance, hardness and the like are adjusted during the preparation by adjusting the flow rate of nitrogen and oxygen, thereby being suitable for different uses.
  • the Group IV A metal fine particles have poor corrosion resistance and oxidation resistance.
  • 0 01/10552 discloses a Ti- 0-N film formed on a substrate by arc discharge as a photocatalytic material under visible light, wherein the Ti- 0-N film is considered to be a spacer phase, nitrogen The atoms are dispersed in the interstitial spaces of the titanium oxide crystal structure. Summary of the invention
  • An object of the present invention is to provide a light-selective absorption layer which is easy to adjust in a preparation process, and which is preferably suitable for use in a vacuum or air at a high temperature, and a light selective absorption layer composed of the same.
  • the solar absorption ratio ct is greater than 0.92.
  • the object of the present invention is achieved by a metal-dielectric composite film formed of an iron-chromium alloy and a nitrogen oxide element deposited by a vacuum deposition technique, preferably a vacuum evaporation or magnetron sputtering technique.
  • the composite film is typically represented by substoichiometry, such as the formula MeNO or MeNxOy, where X and y are the stoichiometry of N and 0 with a single metal element Me. Matching.
  • the alloy is involved in the present application, the FeCrM-N-0 is used to represent a metal-dielectric composite formed of an iron-chromium alloy and a nitrogen-oxygen element; the tin-nitride medium is represented by the formula SnMN, and the tin-metal oxynitride medium is represented by the formula SnMNO. Wherein M is missing or is one or more alloying elements.
  • the present invention provides a novel light selective absorbing layer which is formed by reactive deposition of iron-gold FeCrM and non-metal gas under vacuum coating technology.
  • Membrane composition wherein the vacuum coating technology is preferably vacuum evaporation technology or magnetron sputtering technology, particularly preferably magnetron sputtering technology, based on the total weight of the alloy, iron accounts for about 60-87 wt%, and chromium accounts for 13-25 wt. %, M is missing or is one or more alloying elements, and the total amount of the metal is 40 to 75 moles of the metal-dielectric composite film. /. .
  • the thickness of the absorbing layer is 50 to 200 nm, preferably 6 Onra to 15 Onm.
  • the non-metal gas comprises a mixed gas of oxygen and a nitrogen-containing gas
  • the nitrogen-containing gas is nitrogen and/or ammonia, preferably nitrogen. Since nitrogen is a relatively inert gas, the injection flow rate is usually oxygen. 5 ⁇ 20 times.
  • the hydrogen element in the ammonia gas forms a hydrogen bond in the composite, and the thus prepared film slowly releases hydrogen gas while operating in a vacuum environment to lower the degree of vacuum.
  • the product is a FeCrM-N-0 film.
  • the iron-chromium alloy is preferably an iron-chromium-nickel alloy, an iron-chromium-nickel-molybdenum alloy, an iron-chromium-aluminum alloy or an iron-chromium-aluminum-niobium alloy, and particularly preferably an austenitic stainless steel such as AISI 304 (0Crl8Ni9) and AISI 316L (00Crl7Ni). 14Mo2 ) 0
  • iron-chromium alloy refers to the commonly known “stainless steel”, denoted herein by FeCrM, based on the total weight of the alloy, of which iron is about 60 to 87% by weight and chromium is about 13%. ⁇ 25% by weight, M is missing or is one or more alloying elements.
  • Stainless steels are all iron-chromium alloys and can be classified according to their structure at room temperature, including martensitic, austenitic, ferritic and duplex stainless steels. Due to its excellent corrosion resistance, formability, compatibility and toughness over a wide temperature range, stainless steel is widely used in the heavy industry, light industry, household goods industry and architectural decoration industries.
  • the iron-gold material is represented by the steel number of the American Steel Union AISI and the Chinese National Standard (GB1220-92, GB3280-92).
  • AISI 304 0Crl8Ni9
  • AISI 316L 00Crl7Nil4Mo2
  • AISI 304 0Crl8Ni9
  • Cr is 17. 0 ⁇ 19.
  • Ni is 8. 00 - 11. 00 3 ⁇ 4 Quantity 0 /. , ⁇ 2.
  • AISI 316L ( 00Crl7Nil4Mo2 ) has a chemical composition of (0.03% by weight, Cr of 16.0 to 18.0% by weight, Ni of 12.00 to 15.00% by weight, ⁇ ⁇ 2 ⁇ 00% by weight, Mo is 2. 00 ⁇ 3. 00 weight 0 / 0 .
  • the rust resistance and corrosion resistance of the iron-chromium alloy material are attributed to a chromium-rich oxide film (passivation film) formed on the surface thereof.
  • the dense structure of chromium oxide prevents the diffusion of oxygen, thereby preventing the oxidation of iron in the alloy cell, and greatly improving the high temperature and oxidation resistance of the iron alloy.
  • the alloying elements impart further advantages to the prepared absorbent layer. For example, nickel and aluminum also have similar effects for slowing the diffusion of iron ions and oxygen ions, and higher amounts of nickel and iron chromium constitute austenitic stainless steel. Austenitic stainless steels without magnetic properties are suitable for use in magnetron sputtering techniques.
  • a small amount of a rare earth metal oxide such as a fine particle of Y 2 O 3 can further strengthen the alloy and effectively prevent the growth of high-temperature crystal grains, thereby preventing embrittlement of the film.
  • the alloying element is preferably selected from one or more of the group consisting of nickel, aluminum, molybdenum, and 4B.
  • the preparation process of the deposited metal-dielectric composite film is easy to operate and control, thereby A composite film having a uniform optical constant uniform can be obtained by finely adjusting the flow rate of the reaction gas.
  • the composite film has not only excellent high temperature resistance, oxidation resistance, and when it is used as a light absorbing layer selectively, the selective light absorbing constituted actual solar absorptance of the coating system readily accessible ct P 0 93 or more. Therefore, the metal-dielectric composite film of iron metal can be an option for the material of the light selective absorption layer.
  • the more prominent feature is that the film can work at high temperatures in a vacuum or air environment, and stainless steel materials, which are widely used as industrial raw materials on the market, can be stainless steel plates and pipes of various specifications which are conventionally commercially available. No special order is required.
  • the present invention substantially reduces the raw material cost of a solar selective absorbing coating system as compared to other metal materials used in the prior art for preparing a photoselective absorbing layer. Such as the price of stainless steel It is only one tenth to one-twentieth of the chromium-nickel alloy commonly used in current flat solar selective absorption coating systems.
  • the reaction gas is a mixed gas comprising nitrogen and oxygen.
  • the injection flow rate of nitrogen is constant
  • the oxygen injection flow rate by increasing the oxygen injection flow rate, as the thickness or the number of layers of the absorption layer increases, the metal component in the metal-dielectric composite film of the absorption layer is along the direction away from the substrate. cut back.
  • the absorbing layer of the present invention may be a single layer or a plurality of absorbing sublayers, preferably consisting of two or three layers of absorbing sublayers having uniform optical constants.
  • the absorbing layer is composed of two sub-layers, preferably a 30-90 nm FeCrM-N-0 film is deposited as a first absorbing sub-layer close to the substrate, and deposited in a range of 20-6 Onm.
  • the FeCrM-N-0 film acts as a second absorption sub-layer away from the substrate, and the metal content in the second absorption sub-layer is lower than that of the first absorption sub-layer.
  • the invention also provides a preparation method of the light selective absorbing layer of the invention, which adopts a vacuum coating technology, uses iron filling and FeCrM as a metal material for preparing an absorbing layer, and deposits with a non-metal gas as a reaction gas.
  • Light selective absorption layer is preferably a vacuum evaporation technique or a magnetron sputtering technique, and particularly preferably a magnetron sputtering technique.
  • the non-metal gas contains a mixed gas of oxygen and a nitrogen-containing gas, and the nitrogen-containing gas is nitrogen and/or ammonia, preferably nitrogen.
  • the stainless steel is preferably an austenitic stainless steel, such as AISI 304 (0Crl8Ni9) and AISI 316L (00Crl7Ni l4Mo2) 0
  • the present invention also provides a composite by reactive deposition type iron Shu-Ming Harkin FeCrM gas and non-metallic coating technology in vacuo Use of a material film for the preparation of a solar collector element or a light selective absorbing layer of a solar selective absorbing coating system.
  • the present invention further provides a solar heat collecting element or a solar selective absorbing coating system comprising the light selective absorbing layer of the present invention, particularly preferably a FeCrM-N-0 film as an absorbing layer.
  • the light-selective absorbing layer of the present invention is composed of a metal-media composite material having stable physicochemical properties, it can be arbitrarily combined with other functional layers of the prior art solar selective absorbing coating system.
  • any form of infrared highly reflective underlayer can be employed in the present invention which is composed of a thin metal film having high reflectivity for infrared heat waves, and a high reflection characteristic corresponding to a low infrared emission ratio ⁇ .
  • the metal may be selected from the group consisting of gold, silver, copper, aluminum, molybdenum, nickel, or alloys thereof.
  • the infrared high-reflection underlayer has a thickness that is not transparent to light, that is, generally greater than 100 nm.
  • the deposition thickness is preferably from 100 nm to 500 nm, particularly preferably from 150 nm to 300 nm.
  • the invention optionally employs a barrier layer comprised of a metallic material, preferably a copper based or molybdenum based alloy.
  • the spacer layer serves to prevent interdiffusion of metal atoms and migration of particles between the infrared highly reflective underlayer and the absorber layer.
  • the thickness of the spacer layer is approximately 20 nm.
  • the anti-reflection layer is typically placed on the surface layer of the light absorbing system, which counteracts the light reflection of the covered layer by destructive interference effects to increase the light absorption ratio of the light absorbing system.
  • the anti-reflection layer is usually composed of a thin film of transparent dielectric material, and the optical refractive index ⁇ ⁇ 2 ⁇ 1, the thickness is in the range of ⁇ ⁇ /4 ⁇ (m is an odd number), wherein ⁇ is the spectral wavelength, ⁇ is the refractive index, and the thickness is usually 30. ⁇ between 100nra.
  • the commonly used anti-reflection layer is selected from the group consisting of silicon oxide, tin oxide, aluminum oxide ( ⁇ 10), aluminum oxynitride ( ⁇ 1 ⁇ 0), aluminum nitride (A1N) or MF, MCF film, wherein M is Mg, Al, or nickel gold, C For carbon, F is fluorine.
  • the metal content in the outer layer of the absorbent layer can be further reduced to form a film consisting essentially of the medium as the antireflective layer without the need for a special antireflective layer dielectric film.
  • the anti-reflection layer in the present invention preferably uses a tin-based nitride SnMN, a SnMNO film. Or A10, A1N, A1N0 and their mixed material films, which have the advantages of cost-effective materials and preparation processes.
  • the substrate is a carrier of a solar selective absorbing coating system, which may be any solid material in the shape of a strip, a plate or a tube, including a metal element, an alloy, an inorganic material, a polymer material, etc., wherein the alloy is galvanized and low carbon. Steel, galvanized aluminum low carbon steel, stainless steel or heat resistant steel, inorganic materials such as glass.
  • the substrate is preferably copper, aluminum or stainless steel.
  • the substrate 5 itself is the infrared highly reflective metal or has a surface made of the infrared highly reflective metal, the surface itself can be used as the infrared highly reflective underlayer of the solar selective absorbing coating system.
  • the substrate is composed of copper or a stainless steel sheet on which a copper film is deposited. When the substrate is a transparent glass carrier, it can be used to test the optical characteristics and the like of the film deposited thereon.
  • a novel solar selective absorbing coating system which is deposited on a substrate by magnetron sputtering or vacuum evaporation techniques, comprising:
  • an absorbing layer comprising one to three layers of FeCrM-N-0 film, the metal component in the metal-dielectric composite film of the absorbing layer being in a direction away from the substrate as the thickness or the number of layers of the absorbing layer is increased And reducing, wherein the total amount of metal accounts for 40 to 75 mol% of the metal-dielectric composite film, and the deposition thickness is between 50 nm and 200 nm, preferably between 60 nm and 150;
  • a reactive magnetron sputtering technique is used to deposit an absorber layer and an anti-reflection layer directly on a substrate having an infrared highly reflective metal surface, preferably the surface of the substrate is copper.
  • a solar heat collecting element is prepared, wherein The material has an infrared highly reflective metal surface, such as a gold, silver, copper, aluminum, molybdenum or nickel surface, which serves as an alternative to the infrared highly reflective underlayer of the solar selective absorbing coating system, thereby becoming a solar selective absorbing coating. Part of the layer system.
  • an infrared highly reflective metal surface such as a gold, silver, copper, aluminum, molybdenum or nickel surface
  • a magnetron sputtering technique in the presence of a non-reactive gas argon, using metallic copper as a cathode (target), depositing metallic copper on the substrate as an infrared highly reflective underlayer;
  • a conventional commercially available austenitic stainless steel such as AISI 304 (0Crl8Ni9) or AISI 316L (00Crl7Nil4Mo2) is used as a cathode (target), and a FeCrM-N-0 film is deposited on the copper surface as a ⁇ -absorption sub-layer.
  • the oxygen injection flow rate is increased to deposit the FeCrM-N-0 film as the second absorption sub-layer, so that the second absorption sub-layer has a lower content of the iron-chromium alloy than the antimony-absorbing sub-layer; the nitrogen and oxygen injection amount is adjusted to Metal tin is used as a cathode (target) to deposit a film of tin metal nitride SnN, tin metal oxynitride SnNO and a mixed material thereof on the absorption layer, or to deposit A10, A1N A1N0 and a mixed material film thereof with metal aluminum as a cathode (target).
  • the deposition thickness is 30 ⁇ 100nm.
  • the reactive gas nitrogen and oxygen are directly injected using magnetron sputtering techniques to AISI 304 (0Crl8Ni 9 ) or AISI 316L.
  • a 30-90 nm FeCrM-N- 0 (1) film is deposited as a first absorption sub-layer on a substrate having a copper surface, followed by deposition of 20-60 nm FeCrM-N- 0 (2) The film acts as the second absorption sub-layer, and finally the metal tin is used as the cathode.
  • the atomic ratio of each element in a single layer of thin film material can be determined by Auger electron spectroscopy (AES) analysis.
  • AES Auger electron spectroscopy
  • Auger Electron Spectroscopy (AES) analysis is a micro-area surface analysis technique widely used in surface physics, chemistry, metallurgy, semiconductors, etc. involving surface and interface problems. science field.
  • the simple principle of this method is: Place the surface of the sample to be analyzed
  • compositional description of the alloy materials is provided in weight percent.
  • Auger Electron Spectroscopy (AES) analysis provides a percentage of moles (atoms) directly.
  • a solar selective absorbing coating system which is a multilayer structure, for example, a strip-shaped or round-tube-shaped substrate 5, which in turn is an infrared high-reflecting underlayer 1, an isolation layer 2, an absorbing layer 3, and an anti-reflection layer. 4.
  • FIG. 2 is a schematic view of a vacuum chamber of a planar magnetron sputtering coating machine.
  • Figure 3a shows the optical constants n, k of the first absorption sub-layer material FeCrl7Nil4Mo2-N-0 (1), with a deposition thickness of 20 nm and an abscissa of the spectral wavelength.
  • Figure 3b is the optical constant n, k spectrum of the second absorption sub-layer material FeCrl7Nil4Mo2-N-0 (2), the deposition thickness is 72nm, wherein the metal content is lower than FeCrl7Ni l4Mo2-N-0 (l), the abscissa is Spectral wavelength.
  • Figure 4a shows the Auger analysis of FeCrl7Ni l4Mo2- N-0 (1).
  • Figure 4b shows the Auger analysis of FeCrl7Ni l4Mo2-N-0 (l).
  • Figure 5 shows Cu/FeCrl7Nil4Mo2-N-0 (l) /FeCrl7Ni l4Mo2- N-0 (2)
  • R T is indicated by a solid line
  • R P is indicated by a broken line
  • the abscissa is a spectral wavelength.
  • Figure 6a shows the optical constants n and k of the first absorption sub-layer material FeCrl8Ni9-N-0(1) with a deposition thickness of 21 nra and an abscissa of the spectral wavelength.
  • Figure 6b is the optical constant n, k spectrum of the second absorption sub-layer material FeCrl8Ni9-N-0(2), the deposition thickness is 66nm, wherein the metal content is lower than FeCrl8Ni9-N- 0 (1), and the abscissa is the spectrum wavelength.
  • Figure 7a shows the Auger analysis of FeCrl8Ni9-N-0(l).
  • Figure 7b shows the full spectrum of the Auger analysis of FeCrl8Ni9-N-0 (2).
  • Figure 8 is the actual measured value R P of the reflectance of the light-selective absorption layer of the Cu/FeCrl8Ni9-N-0(l)/FeCrl8M9-N-0(2)/SnN0 coating system, and the abscissa is the spectral wavelength.
  • Example 1 Measurement and calculation of NOx oxide composite film of AISI 316L ( 00Crl7Nil4Mo2 ) by magnetron sputtering at a lower power and its optical constant
  • the volume of the magnetron sputtering chamber is about 0.1 m 3 , and the upper part of the AISI 316L ( 00Crl7Nil4Mo2 ) iron-chromium alloy target 1 is placed with the target facing down.
  • the glass substrate 5 having a size of 25 mm x 38 mm ⁇ 1 mm is mounted on the substrate holder 4, and the distance between the target and the substrate is 70 legs; the inlet pipe 3 is placed around the target, and gas or mixed gas is injected respectively; Grounding with the substrate as the anode equipotential; the two planar targets use a permanent magnet loop to generate a magnetic field perpendicular to the electric field on the surface of the target cathode, the electrical and magnetic conditions of the magnetron sputtering, and the cooling liquid in the magnet circuit. Softened water is preferred.
  • a mechanical pump is used to draw a low vacuum into the magnetron sputtering chamber, and then a high vacuum is applied to 10 - 3 Pa.
  • the throttle valve is adjusted to reduce the conductance between the sputtering chamber and the high vacuum pump.
  • the argon gas having a flow rate of 0 Osccm is injected into the sputtering chamber through the inlet pipe 3, the pressure of the sputtering chamber is at 0.4 Pa, and the flow rate of nitrogen gas is 10 sccm, and the oxygen flow rate is 1. Osccra, and the DC sputtering power is 100 W, sputtering for 2 minutes, the thickness of the film was measured by a ct-step step meter to obtain a FeCrl7Nil4Mo2-NO(l) film having a thickness of 20 nm.
  • the vertical transmittance and reflectance value R (15. incident) of the film obtained in the range of 0.35 - 2. 5 ⁇ m were measured using a PE Lambda 9 spectrophotometer. According to the Hadley equation, the optical constants n and k of the FeCrl7Ni l4Mo2-N-0 (1) film and the FeCrl7Nil4Mo2-N-0 (2) film were determined by computer inversion. The results are shown in Fig. 3a and Fig. 3b.
  • Example 2 Measurement and calculation of NOx oxide composite film of AISI 316L ( 00Crl7Nil4Mo2 ) by magnetron sputtering at higher power and its optical constant
  • the DC sputtering power was set to about 5 kW, and an attempt was made to increase the injection flow rate of the gas. After several conventional adjustments, a composite film having the closest optical constant to Example 1 was obtained under the following process parameters.
  • the argon sputtering power is 5. 17Pa
  • the pressure of the sputtering chamber is 0. 4Pa
  • the flow rate is 150sccm of nitrogen gas and the injection flow rate is 15sccm of oxygen.
  • the DC sputtering power is 5.17.
  • the oxygen injection flow rate was adjusted to 19 sccm, the DC sputtering power was 5.09 kW, and the sputtering was performed for 3 minutes.
  • the thickness of the film was measured by an a-step step meter to obtain FeCrl7Nil4Mo2-N- deposited to a thickness of 72 nm. 0 (2) film.
  • the optical constants n and k of the FeCrl7Nil4Mo2-N-0 (1) film and the FeCrl7Nil4Mo2-N-0 (2) film were determined by computer inversion. The results were not substantially different from those in Example 1.
  • FeCrl7Nil4Mo2-N-0 (1) and FeCrl7Nil4Mo2-N-0 (2) prepared in Example 2 were analyzed using Auger nanoprobe.
  • the copper sheet is placed as a substrate 5 on the substrate holder of the planar magnetron sputtering coating machine of FIG. 2 as described above, and the volume of the magnetron sputtering chamber is 0.1 m 3 , wherein the upper portion is placed AISI 316L (00Crl7Ni). l4Mo2) alloy target 1 and Sn target 2, the target face down, the distance between the target and the substrate is 70 legs.
  • a mechanical pump is used to pump a low vacuum into the magnetron sputtering chamber, and then a high vacuum is applied to 10 - 3 Pa to adjust the throttle valve to reduce the conductance between the sputtering chamber and the high vacuum pump.
  • the pulsating power is 5. 17 kW.
  • the argon sputtering power is 5. 17 kW.
  • the argon sputtering power is 5. 17 kW.
  • a FeCrl7Ni l4Mo2-N-0 (1) film having a thickness of 50 nm was deposited as a ⁇ -absorption sub-layer by sputtering for 1 minute and 40 seconds.
  • the injection flow rate of oxygen was adjusted to 19 sccm, the DC sputtering power was 5.09 kW, and sputtering was performed for 1 minute and 20 seconds to prepare a FeCrl7Nil 4Mo2-N-0 (2) film having a thickness of 32 nm as a second absorption sublayer.
  • the nitrogen gas flow rate was adjusted to 66 sccm and the oxygen flow rate was 34 sccm (no argon gas), and the DC sputtering power was 1.26 kW.
  • the Sn target film was deposited to a thickness of 45 nm by sputtering for 3 minutes using a Sn target.
  • the reflectance ratio R of the prepared solar selective absorbing coating system in the infrared spectrum of 2. 5 ⁇ 25 ⁇ : meters was measured, and the infrared emission ratio ⁇ of the coating system was calculated. 0. 07.
  • Example 4 Measurement and calculation of composite materials of AISI 304 ( 0Crl8Ni 9 ) oxynitride by magnetron sputtering and their optical constants
  • the glass substrate 5 having a size of 25 legs x 38 mm X 1 mm is placed on the substrate holder 4 of the planar magnetron sputtering coating machine of Fig. 2 as described above, and the volume of the magnetron sputtering chamber is about 0. Ira 3 , wherein the upper part of the AISI 304 (0Crl8Ni9) iron 4 ⁇ gold target 1 is placed with the target facing down, and the distance between the target and the substrate is 70mra.
  • a mechanical pump is used to draw a low vacuum into the magnetron sputtering chamber, and then a high vacuum is applied to 10 - 3 Pa.
  • the throttle valve is adjusted to reduce the conductance between the sputtering chamber and the high vacuum pump.
  • An argon gas having a flow rate of 35 sccm was injected into the sputtering chamber through the intake pipe 3, and the pressure in the sputtering chamber was 0.4 dB, and a flow rate of 120 sccm of nitrogen gas and an injection flow rate of 8 sccm of oxygen were injected.
  • the DC sputtering power was 5.15 kW
  • sputtering was performed for 45 seconds
  • the thickness of the film was measured by an oc-step step meter to obtain a FeCrl 8Ni9-N-0 (l) film having a deposition thickness of 21 nm.
  • the vertical transmittance and reflectance error R (15. incident) of the film obtained in the range of 0.35 - 2. 5 ⁇ m were measured using a PE Lambda 9 spectrophotometer. According to the Hadley equation, the optical constant nk of the FeCrl8Ni9-N-0 (1) film and the FeCrl8Ni9-N-0 (2) film was determined by computer inversion. The results were very similar to those of the film material prepared in Example 1, see Figure 6a. And Figure 6b
  • the composition of FeCrl8Ni9-N- 0 (1) and FeCrl8Ni9-N-0 (2) was analyzed using Auger nanoprobe.
  • Example 5 Preparation of a solar thermal collecting element by depositing a FeCrl8Ni9-N-0/SnNO solar selective absorbing coating system on a copper substrate
  • the copper sheet is placed as a substrate 5 on the substrate holder of the planar magnetron sputtering coating machine of FIG. 2 as described above, and the volume of the magnetron sputtering chamber is Q.lm 3 , wherein the upper portion is placed with the FeCrl8Ni9 alloy target 1 (AISI 304 (0Crl8Ni9)) and Sn target 2, the target face down, the distance between the target and the substrate 70.
  • Use a mechanical pump to pump a low vacuum into the magnetron sputtering chamber, and then pump a high vacuum up to 10 - 3 Pa to adjust the throttling.
  • the valve reduces the conductance between the sputtering chamber and the high vacuum pump.
  • An argon gas having a flow rate of 35 sccm was injected into the sputtering chamber through the intake pipe 3, and the pressure in the sputtering chamber was 0.4 dB, and a flow rate of 120 sccm of nitrogen gas and an injection flow rate of 8 sccm of oxygen were injected.
  • the DC sputtering power was 5.15 kW and sputtering was performed for 2 minutes to prepare a FeCrl8Ni9-N-0 (1) film having a thickness of 56 nm as the first absorption sublayer.
  • the oxygen injection flow rate was adjusted to 12sccra, sputtering for 1 minute and 45 seconds, A FeCrl8Ni9-N-0 (2) film having a thickness of 39 nm was deposited as a second absorption sublayer.
  • the nitrogen gas flow rate was adjusted to 66 sccm and the oxygen flow rate was 34 sccm (no argon gas), and the DC sputtering power was 1.26 kW.
  • the Sn target film was deposited to a thickness of 45 nm by sputtering for 3 minutes using a Sn target.
  • the reflectance spectral value R (15. incident) of the prepared solar selective absorbing coating system in the 0. 35 - 2. 5 micron solar spectrum was measured. See Figure 8.
  • the solar absorption ratio o P of the coating system was calculated to be 0.93.
  • the reflectance ratio R of the prepared solar selective absorbing coating system in the infrared spectrum range of 2.5 to 25 ⁇ m was measured using a Perkin Elmer 580B spectrophotometer, and the infrared emission ratio ⁇ of the coating system was calculated to be 0. 06.
  • the sample of the solar selective absorbing coating of SnNO/FeCrl8Ni9- ⁇ - 0/copper substrate was heated to 250 ° C in air, and after 50 hours, the solar absorption ratio and infrared emission ratio of the coating did not change significantly.
  • the solar selective absorption coating system composed of FeCrM-N- 0 composite film as the absorption layer can achieve the solar absorption ratio a of high shield similar products, thus providing a new optional solar collector element. .

Description

光选择性吸收层及其制备方法 技术领域
本发明涉及光选择性吸收层及其制备方法, 该光选择性吸收层 由在真空镀膜技术下铁铬合金与非金属气体反应沉积形成的复合材 料薄膜构成, 所述非金属气体优选为包含氮和氧元素的气体。 本发 明还涉及包含所述光选择性吸收层的太阳能集热元件或太阳能选择 性吸收涂层体系及其制备方法, 以及所述复合材料薄膜作为太阳能 集热元件或太阳能选择性吸收涂层体系的光选择性吸收层的用途。 背景技术
光选择性吸收层是光吸收体系中用于吸收光能的核心功能部 分, 通常用于太阳能集热元件或太阳能选择性吸收涂层体系中。
太阳能集热元件由基材和沉积于基材上的太阳能选择性吸收涂 层体系构成。 太阳能选择性吸收涂层体系是一組具有多层结构的薄 膜体系, 如图 1所示, 其包含附着于基材 5表面上的红外高反射底 层 1、 任选的隔离层 2、 光选择性吸收层 3 (本文中简称吸收层)和 减反射薄膜层 4 (本文中简称减反层)。
。 太阳能选择性吸收涂层体系将太阳光能转化成热能, 涂层体系 与基材的温度由此升高。 涂层体系由于自身温度以红外热波形式向 环境輻射能量而存在能量损失。 因此要求太阳能选择性吸收涂层体 系能够吸收地面上接收到的大阳光谱中能量集中的部分并且较少地 向环境辐射红外热波。
术语 "太阳能选择性吸收涂层体系" 和 "光选择性吸收层" 中 所谓的 "选择性" 在本申请的上下文中是指该涂层体系的光吸收特 性对光谱具有选择性,即在太阳能光借波长 0. 3 ~ 3. 0微米范围内具 有高的太阳吸收比 α值, 并同时在红外光谱范围内具有低的红外发 射比 ε值。
太阳吸收比 α与红外发射比 ε是太阳能选择性吸收涂层体系整 体的两项重要光热性能指标, 其中太阳吸收比 α取决于吸收层和减 反层的选择,红外发射比 ε主要取决于红外高反射底层的材料选择, 并受到吸收层的影响。 通常, 基材或其表面采用满足针对红外高反 射底层的要求的材料而成为太阳能选择性吸收涂层体系的一部分。
术语 "金属" 在本申请的上下文中若非特别地指明, 是指金属 单质、 合金或金属间隙相。
术语 "介质,, 在本申请的上下文中是指电介质, 特别涉及利用 真空镀膜技术沉积的反应较充分的金属化合物。
术语 "金属-介质复合材料薄膜", 也被称为陶瓷(相) 薄膜, 是金属微粒与介质微粒形成的均质复合材料。 金属-介质复合材料 中的金属元素不仅以金属相的形式存在, 而且存在于介质中。 以金 属氧化物为例, 在真空镀膜工艺中从小到大调整氧流量, 所获得的 薄膜从金属组成过渡到其氧化物介质组成, 这种中间过渡状态称为 金属-介质复合材料薄膜。
迄今为止, 采用真空镀膜技术制备的市售的太阳能集热元件或 太阳能选择性吸收涂层体系对于 0. 3 ~ 3. 0微米波长范围内的太阳 能光谱一般已经能够达到令人满意的实际太阳吸收比 oc P为 0. 93左 右, 红外发射比 ε达到 0. 10以下。 实践中, 当太阳能选择性吸收涂 层体系的实际太阳吸收比 ct P在 0. 92至最高太阳吸收比理论值 α τ约 0. 96之间时, 吸收效率已难以具有实际意义的变化。
利用真空镀膜技术制造太阳能集热元件或太阳能选择性吸收涂 层体系的方法依序一般包括以下步骤:
( 1 ) 采用红外高反射金属或具有红外高反射金属表面的材 料作为基材, 或将红外高反射金属作为金属材料薄膜沉积在基材如 不锈钢上, 形成红外高反射底层;
( 2 ) 任选地在红外高反射底层上沉积隔离层;
( 3 ) 在红外高反射底层或任选地存在的隔离层上沉积吸收 层, 任选地通过改变反应气体注入流量产生不同的吸收层亚层;
( 4 ) 在吸收层上沉积减反层。
真空镀膜技术包括弧光放电、 真空蒸发和磁控溅射技术。 优选 采用真空蒸发和磁控溅射技术制备太阳能集热元件或太阳能选择性 吸收涂层体系。 相对于真空蒸发技术, 磁控溅射技术所制得的薄膜 的致密性、 薄膜与基材以及薄膜与薄膜之间的粘附性均较高。
真空蒸发技术是在真空室内进行, 使用电阻加热或电子束轰击 将蒸发舟或坩埚中的金属汽化沉积到基材上, 如果通入非金属反应 气体例如氧气构成反应真空蒸发可以获得介质薄膜或金属相与其氧 化物的复合材料薄膜。
磁控溅射技术是例如在图 2所示的真空室内进行的, 其中磁场 与电场垂直相交, 使得电子在空间做螺旋摆线运动移至阳极(即基 材 5 )。 经典理论中, 电子在途中撞击氩原子导致氩原子分裂成氩正 离子和另一个自由电子。 氩正离子在电磁场的作用下轰击阴极(即 金属材料靶)。 溅射出的阴极金属粒子沉积到阳极基材 5上; 溅射出 的二次电子加入电子运动形成了自持的辉光放电。 磁控溅射的电源 可使用直流电源、 脉冲电源、 中频交流电源、 射频电源或组合使用 上述几种电源。
通过非反应真空蒸发或非反应磁控溅射技术可以获得多样化的 金属材料薄膜, 磁控溅射技术中的非反应气体为氩气。 通过反应真 空蒸发和反应磁控溅射技术可以获得多样化的介质薄膜或金属 -介 质复合材料薄膜, 所述介质是由所选金属与非金属反应气体元素形 成的。非反应气体和 /或反应气体可以分开地或经 '混合地例如经进气 管 3注入真空室, 并同时用真空泵维持真空。 气体注入流量以 sccm 为单位, 即每分钟的气体注入量以在标准状况下立方厘米为单位的 气体体积计算。 标准状况指一个大气压、 25 °C。
在真空镀膜技术实践中, 技术人员必须根据具体设备的真空室 体积和形状等以及可达到的真空泵的抽气效率和真空镀膜功率等因 素调试工艺参数, 以制备符合要求的薄膜材料。 所述工艺参数指各 种气体的注入流量、 真空度、 真空镀膜功率和溅射时间。 真空镀膜 功率越大, 金属粒子沉积越快; 溅射时间基本上仅与沉积厚度相关。 在沉积金属-介质复合材料或介盾材料薄膜时, 提高真空镀膜功率, 则需要相应地提高反应气体的注入流量以获得特定的金属颗粒与介 质的比例。 然而, 功率过大时反应不稳定, 从而不能获得均质的薄 膜材料。 就同一个真空镀膜设备而言, 用同一规格的原材料, 要求 在相同的工艺参数下所沉积的薄膜具有相同的物化特性。 工艺参数 的调试在本领域中属于常规技术, 由此由真空镀膜技术制备的市售 的太阳能选择性吸收涂层体系均能够达到 0. 93 的实际太阳吸收比 Ρ,红外发射比 ε达到 0. 10以下。相关的文献有: YIN Zhiqiang and G. L. Harding 等人, " Sput tered aluminum-ni trogen solar absorbing select ive surfaces for al l-g lass evacuated col lectors" , Third Internat iona l Sympos ium on Opt ical and Optoelectronic Appl ied Sciences and Engineer ing, Innsbruck, Austria (1986) , pp. 248; YIN Zhiqiang , " Single Cathode Sput tered Select ive Solar Absorbing Surfaces" , Paper Number 1148 Presented at ISES 2005 Solar Wor ld Congress in Or lando, USA。 本申请在此引用这些文献的全部内容作为本申请的一部分。
通过真空镀膜技术制备的光学涂层的組成和厚度是通过实验进 行确定的。 通过紫外 -可见-近红外分光光度计测量在透明基材, 例如在玻璃或 CaF上溅射沉积的单层薄膜材料在太阳能光谱范围内 的垂直透射比傳值 T 与近于垂直的反射比谱值 R, 并通过例如 o - s tep台阶仪测量该薄膜的厚度 Th。 利用所测得所述三个参数 T、 R 和 Th, 根据 Hadley方程, 用计算机反演寻优确定该薄膜材料的折 射率 n和消光系数 k。 折射率 n和消光系数 k是具有特定成分配比 的光学薄膜材料的固有光学特性, 被称为光学常数, n- ik称为复折 射率(i为虚数)。反演寻优所确定的 n、k值是多解的。在 L. N. Hadley and D. M. Denni son, J. Opt. Soc. Am., 37 (1947) 451 中描述 T Hadley 方程。 YIN Zhiqiang and G. L. Harding 的 "Opt ical proper t ies of D. C. React ively sput tered thin f i lms" , Thin sol id Fi lms, 120 (1984) 81-108中对于光学常数的测量和计算均 具有详细的描述, 本申请在此引用这些文献的全部内容作为本申请 的一部分。 金属-介质复合材料薄膜的光学常数 n、 k值在金属与介 质的光学常数之间。
当计算获得涂层体系中各均质薄膜层在不同波长下的光学常数 n、 k值后, 运用电磁方程, 通过计算机大量计算该太阳能选择性吸 收涂层体系中吸收层各亚层和减反层在不同厚度搭配下的反射比理 论语值。 计算方法根据 IS09845- 1, 于大气盾量 1. 5计算得出太阳 能光傳范围内的平均反射比 RTA, 其极小值为该太阳能选择性吸收涂 层体系所能达到的在太阳能光讲范围内的最佳反射比理论 "昝值 RT。 进而得到该涂层体系的最佳太阳吸收比理论值 o T - 1-RT。 IS09845-1 中详细描述了太阳吸收比 α及其计算方式, 本申请在此引用 IS09845-1中的相关内容作为本申请的一部分。
根据获得最佳反射比理论谱值时的吸收层各亚层和减反层的厚 度制备太阳能选择性吸收涂层体系, 通过紫外 -可见-近红外分光 光度计测得该涂层体系的实际反射比谱值 RP, 随后根据 IS09845-1 可以计算获得实际太阳吸收比 oc P。 当 a P < ot T时, 说明在小范围内 可以通过变化涂层体系中吸收层和减反层的沉积厚度和 /或制备中 的反应气体流量, 以使得该涂层体系的 a p更接近于 a τ。所述调试属 于针对具体使用设备的常规工艺调试。
光选择性吸收层可由金属 -介质复合材料薄膜构成, 其中金属 的总量通常占金属 -介盾复合材料薄膜的 40 ~ 75摩尔%。吸收层由 分别具有均一的光学常数的单层或多层金属-介质复合材料薄膜构 成。 随着吸收层总厚度或亚层数目的增加, 金属-介质复合材料薄 膜中的金属含量优选沿着远离基材的方向而减少, 其光学常数也相 应地是渐变的。 单层的吸收性能较差, 优选吸收层由两个或三个具 有均一光学常数的吸收层亚层组成。 吸收层各亚层的厚度需要对于 红外线具有较高的透射比, 其内部吸收太阳能光讲范围内的能量, 并且使吸收层各亚层的界面之间具有相消干涉的效应。 美国专利申 请 US005523132A针对吸收层层数与折射率和相消干涉的关系有详 尽的分析计算, 本申请在此引用该专利说明书关于吸收层层数的内 容作为本申请的一部分。 优选各亚层厚度为 20 ~ 100nm, 吸收层总 厚度为 50mn ~ 200mn, 优选为 60nm ~ 150mn。
根据所希望的吸收层亚层层数变化,金属元素在金属-介质复合 材料中的比例可以在大范围内变化。 以两层吸收亚层为例, 邻近红 外高反射层的第一吸收亚层的金属元素总量优选为第一吸收亚层复 合材料薄膜的 60 ~ 70摩尔% ,笫二吸收亚层的金属元素总量优选为 第二吸收亚层复合材料薄膜的 46 ~ 53摩尔%。金属―介质复合材料 薄膜中金属元素以及非金属含量的比例由注入设备的非金属反应气 体流量进行调控。
由于制备工艺的要求, 相对于制备过程中反应气体流量的较为 明显的变化, 吸收层的光学常数 n、 k值的变化必须平緩, 以便通过 调控生产设备中的反应气体流量的变化能够精确制备出具有均一光 学常数的吸收层。 多年来, 人们不断尝试着将不同金属或合金与不 同反应气体进行組合以寻求制备工艺操作方面易于调控且优选具有 良好的物化稳定性的吸收层材料。 反应气体通常采用氧气、 氮气、 氨气、 一氧化碳、 二氧化碳、 碳氢气体等或它们的组合。 不同金属 与不同反庶气体产生大量的组合可能性, 由于对于实践中成功的吸 收层材料的组成及其相关原理缺乏理论解释, 本领域在寻找新的吸 收层材料的过程中进行着随机的筛选。
现有技术中用于制备吸收层所应用的金属单质例如钛、 铬等或 合金例如镍铬合金等材料均需要特别定制, 其使得原料成本高昂。
CN 85100142A描述了一种采用磁控溅射技术制造的铝-氮 /铝 太阳能选择性吸收涂层体系。 该工艺使用单靶铝阴极在氩气中溅射 沉积铝薄膜作为红外高反射率底层, 随后在氩气与活性气体氮的混 合气体中反应磁控溅射沉积含量渐变的铝与氮化铝复合材料薄膜作 为吸收层, 最后沉积氮化铝作为减反层。 该涂层体系仅适宜在真空 环境下使用。
DE 3522427 A1揭示了一种采用磁控溅射制备的钛氮氧 TiNO薄 膜材料作为太阳能选择性吸收涂层体系的吸收层。 在制备过程中通 过调控氮与氧气的流量来调节该薄膜材料的电学性能以及包括粘附 性、 耐蚀性、 耐热性、 硬度等其它物化性能, 从而适用于不同用途。
W0 9517533进一步揭示了一种利用真空蒸发沉积产生的转换光 学能量的涂层, 该涂层采用式 MNxOy表示, 其中 M为一种 IV A族金 属, 优选钛或锆, x、 y = 0. 1至 1. 7。 然而 IV A族金属细微粒子的 耐蚀和抗氧化性较差。
黄岩彬、殷志强和史月艳在《太阳能学报》, 第十六卷,第 2期, "太阳能光讲选择性吸收表面光学性能计算", 1995年 4月, 描述 了 S i02/Mo-N-0/Mo选择性吸收表面的计算结果与实测结果,其中采 用磁控溅射技术制备的 Mo- N- 0作为太阳能选择性吸收涂层体系的 吸收层。
曹韫真和胡行方, 在《太阳能学报》, 第二十卷, 笫 3期, "磁 控溅射 Ni-Cr选择性吸收薄膜", 1999年 7月, 描述了用磁控溅射 制备的 NiCrNO作为太阳能选择性吸收涂层体系的吸收层。
0 01/10552揭示了一种通过弧光放电在基材上形成的 Ti- 0-N 薄膜, 其作为可见光下的光催化材料, 其中所述 Ti- 0- N薄膜被认为 是间隙物相, 氮原子分散在氧化钛晶体结构间隙中。 发明内容
本发明的目的是提供一种光选择性吸收层及其制备方法, 该吸 收层在制备工艺方面易于调控, 优选适用于在真空或空气中高温工 作, 并且由其构成的光选择性吸收层的太阳吸收比 ct大于 0. 92。
令人惊奇的是, 本发明的目的是通过利用真空镀膜技术, 优选 真空蒸发或磁控溅射技术沉积的铁铬合金与氮氧元素形成的金属- 介质复合材料薄膜而实现的。
在真空镀膜技术制备金属 -介质复合材料薄膜的领域中, 所述 复合材料薄膜通常以亚化学计量表示, 例如式 MeNO或 MeNxOy, 其 中 X和 y为 N和 0与单一金属元素 Me的化学计量学配比。由于本申 请中涉及合金, 采用式 FeCrM- N- 0表示铁铬合金与氮氧元素形成的 金属-介质复合材料; 用式 SnMN表示锡金属氮化物介质, 式 SnMNO 表示锡金属氮氧化物介质,其中 M缺失或为一种或多种合金化元素。
由此, 本发明提供一种新型的光选择性吸收层, 其在真空镀膜 技术下由铁 金 FeCrM与非金属气体反应沉积形成的复合材料薄 膜构成,其中所述真空镀膜技术优选真空蒸发技术或磁控溅射技术 , 特别优选磁控溅射技术,基于合金的总重量,铁约占 60 ~ 87重量% , 铬约占 13 ~ 25重量%, M缺失或为一种或多种合金化元素, 所述金 属的总量占金属 -介质复合材料薄膜的 40 ~ 75摩尔。 /。。所述吸收层 的厚度为 50 ~ 200nm, 优选为 6 Onra ~ 15 Onm。
在本发明中所述非金属气体包含氧气与含氮气体的混合气体, 所述含氮气体为氮气和 /或氨气, 优选氮气, 由于氮气是相对惰性的 气体, 其注入流量通常是氧气的 5 ~ 20倍。 氨气中的氢元素在复合 材料中可形成氢键, 由此制备的薄膜在真空环境下工作时会緩慢释 放氢气而降低真空度。 当仅采用氧气与氮气的混合气体作为反应气 体时, 产物是 FeCrM-N-0薄膜。
在本发明中所述铁铬合金优选铁铬镍合金、 铁铬镍钼合金、 铁 铬铝合金或铁铬铝钇合金, 特别优选奥氏体不锈钢, 例如 AISI 304 ( 0Crl8Ni9 )和 AISI 316L ( 00Crl7Ni 14Mo2 )0
术语 "铁铬合金" 在本申请的上下文中若非特别地指明, 指俗 称的 "不锈钢", 在此用 FeCrM表示, 基于合金的总重量, 其中铁约 占 60 ~ 87重量%, 铬约占 13 ~ 25重量%, M缺失或为一种或多种 合金化元素。
不锈钢均为铁铬合金, 可按室温下的組织结构分类, 包括马氏 体型、 奥氏体型、 铁素体和双相不锈钢。 由于不锈钢材具有优异的 耐蚀性、 成型性、 相容性以及在很宽温度范围内的强韧性等系列特 点, 在重工业、 轻工业、 生活用品行业以及建筑装饰等行业中获取 得广泛的应用。
本申请中, 铁 金材料采用美国钢铁联盟 AISI 和中国国标 ( GB1220-92 , GB3280-92 )的钢号表示。例如 AISI 304 ( 0Crl8Ni9 ), AISI 316L ( 00Crl7Nil4Mo2 )0 AISI 304 ( 0Crl8Ni9 )的化学成分为 C < 0. 07重量%, Cr为 17. 0 ~ 19. 0重量%, Ni为 8. 00 - 11. 00 ¾ 量0 /。, Μι 2. 00重量%; AISI 316L ( 00Crl7Nil4Mo2 ) 的化学成分 为( 0. 03重量%, Cr为 16. 0 ~ 18. 0重量%, Ni为 12. 00 ~ 15. 00 重量%, Μη < 2· 00重量%, Mo为 2. 00 ~ 3. 00重量0 /0
铁铬合金材料的不锈性和耐蚀性归功于在其表面形成的富铬氧 化膜(钝化膜)。 结构致密的氧化铬阻止氧的扩散, 从而阻止合金晶 胞中铁的氧化, 大幅提高了铁合金的耐高温和抗氧化的能力。 合金 化元素赋予了所制备的吸收层进一步的优点, 例如镍、 铝也具有用 于減緩铁离子和氧离子扩散的类似作用 , 较高含量的镍与铁铬构成 奥氏体不锈钢。 不具有磁性的奥氏体不锈钢适合在磁控溅射技术中 应用。 少量的稀土金属氧化物如 Y203的细微质点, 可以进一步强化 合金、 有效阻止高温晶粒的生长, 从而防止薄膜的脆化。 所述合金 化元素优选选自镍、 铝、 钼及 4乙中的一种或多种。
令人惊奇的是, 通过在真空镀膜技术下, 采用铁铬合金作为金 属原料、 氧气与含氮气体的混合气体作为反应气体, 在沉积金属- 介质复合材料薄膜的制备工艺上易于操作调控, 从而在细微调节反 应气体流量的情况下能够获得随之变化的光学常数均一的复合材料 薄膜。 另外, 所述复合材料薄膜不仅具有优良的耐高温、 抗氧化性 能, 而且当其用作为光选择性吸收层时, 所构成的光选择性吸收涂 层体系的实际太阳吸收比 ct P易于达到 0. 93 以上。 因此铁^ ^金的 金属 -介质复合材料薄膜可以成为光选择性吸收层材料的一种选 择。 然而, 更为突出的特点在于, 该薄膜可在真空或空气环境下高 温工作, 而且不锈钢材料作为市场上广泛应用的工业原料可以是常 规商购可得的各种规格的不锈钢板、 管材等, 无需特别订制。 与现 有技术中制备光选择性吸收层的其它金属原料相比, 本发明大幅降 低了太阳能选择性吸收涂层体系的原料成本。 例如不锈钢材料的价 格仅为目前平板太阳能选择性吸收涂层体系中通常使用的铬镍合金 的十分之一至二十分之一。
在本发明的一个具体实施方案中, 反应气体为包含氮气和氧气 的混合气体。 在氮气的注入流量恒定的情况下, 通过增加氧气注入 流量, 随着吸收层的厚度或层数的增加, 使吸收层的金属-介质复 合材料薄膜中的金属成分沿着远离基材的方向而减少。 本发明的吸 收层可为单层或多层吸收亚层, 优选由两三层光学常数均一的吸收 亚层组成。
在本发明优选的具体实施方案中,所述吸收层由两个亚层组成, 优选沉积 30 ~ 90nm的 FeCrM- N-0薄膜作为靠近基材的第一吸收亚 层,沉积 20 ~ 6 Onm的 FeCrM- N-0薄膜作为远离基材的第二吸收亚层 , 笫二吸收亚层中的金属含量低于第一吸收亚层。
本发明还提供本发明的光选择性吸收层的制备方法, 该方法采 用真空镀膜技术, 以铁餡洽金 FeCrM作为制备吸收层的金属材料, 在与非金属气体作为反应气体的条件下, 沉积光选择性吸收层。 所 述真空镀膜技术优选真空蒸发技术或磁控溅射技术, 特别优选磁控 溅射技术,基于合金的总重量,铁约占 60 ~ 87重量%,铬约占 13 ~ 25重量%, M缺失或为一种或多种合金化元素。 所述非金属气体包 含氧气与含氮气体的混合气体, 所述含氮气体为氮气和 /或氨气, 优 选氮气。
本发明中特别优选釆用常规的不锈钢作为在真空镀膜技术下制 备本发明的光选择性吸收层的金属原料。 所述不锈钢优选为奥氏体 不锈钢,例如 AISI 304 ( 0Crl8Ni9 )和 AISI 316L ( 00Crl7Ni l4Mo2 )0 本发明还提供将在真空镀膜技术下由铁铭哈金 FeCrM与非金属 气体反应沉积形戍的复合材料薄膜用于制备太阳能集热元件或太阳 能选择性吸收涂层体系的光选择性吸收层的用途。 本发明进一步提供一种太阳能集热元件或太阳能选择性吸收涂 层体系, 其包含本发明的光选择性吸收层, 特别优选 FeCrM-N- 0薄 膜作为吸收层。
由于本发明的光选择性吸收层由物化性能稳定的金属 -介质复 合材料构成, 其可以与现有技术中的太阳能选择性吸收涂层体系的 其它各功能层任意地相组合。
本发明中可采用任意形式的红外高反射底层, 其由对红外热波 具有高反射能力的金属薄膜构成, 高反射特性相应于具有低的红外 发射比 ε。 所述金属可选自金、 银、 铜、 铝、 钼、 镍或它们的合金。 红外高反射底层具有光线所透不过的厚度, 即一般大于 100nm。 优 选沉积厚度为 100nm ~ 500nm, 特别优选 150nm ~ 300nm。
本发明任选地釆用隔离层, 其由金属材料构成, 优选为铜基或 钼基合金。 隔离层用于阻止红外高反射底层与吸收层之间金属原子 的相互扩散及粒子的迁移。 隔离层的厚度约为 20nm。
本发明可采用任意形式的减反层。 减反层通常被置于光吸收体 系的表层, 其通过相消干涉效应抵消被覆盖层的光反射以提高光吸 收体系的光吸收比。 减反层通常由透明介质材料薄膜构成, 光学折 射率 η < 2· 1, 厚度在 ιη λ /4η ( m为奇数)的范围内, 其中 λ为光谱 波长, η为折射率, 通常厚度在 30 ~ 100nra之间。 由此光在减反层 界面上的反射与在被覆盖层界面上的反射发生接近于 λ /2η 的相消 干涉效应,其相互抵消反射而使被抵消的反射能量进入被覆盖层中。 常用的减反层选自氧化硅、氧化锡、氧化铝(Α10 )、铝氮氧(Α1Ν0 )、 氮化铝(A1N )或 MF、 MCF薄膜, 其中 M为 Mg、 Al、 或镍 金, C 为碳, F 为氟。 实践中可以将吸收层外层中的金属含量进一步减少 以形成基本由介质构成的薄膜作为减反层, 而无需特别的减反层介 质薄膜。 本发明中的减反层优选采用锡基氮化物 SnMN、 SnMNO薄膜 或者 A10、 A1N、 A1N0及其混合材料薄膜, 它们具有材料和制备工艺 成本经济的优点。
基材是太阳能选择性吸收涂层体系的载体, 其可以是条带、 板 块或圆管形状的任何固体材料, 包括金属单质、 合金、 无机材料、 高分子材料等, 其中合金如镀锌低碳钢、 镀锌铝低碳钢、 不锈钢或 耐热钢等, 无机材料如玻璃等。 基材优选为铜、 铝或不锈钢。 当基 材 5本身为所述红外高反射金属或具有由所述红外高反射金属制成 的表面时, 则其表面本身就可以用作为所述太阳能选择性吸收涂层 体系的红外高反射底层。优选基材由铜或沉积铜膜的不锈钢片构成。 当基材是透明的玻璃载体时, 可以用于测试沉积于其上的薄膜的光 学特性等。
在本发明的一个具体实施方案中, 提供一种新颖的太阳能选择 性吸收涂层体系, 其通过磁控溅射技术或真空蒸发技术在基材上沉 积制备, 包含:
1 ) 红外高反射金属底层;
2 ) 任选的隔离层;
3 ) 吸收层, 其包含一至三层 FeCrM-N-0薄膜, 随着吸收层的 厚度或层数的增加, 使吸收层的金属 -介质复合材料薄膜中的金属 成分沿着远离基材的方向而减少, 其中金属的总量占金属-介质复 合材料薄膜的 40 ~ 75摩尔% ,沉积厚度在 50nm ~ 200nm之间,优选 60nm ~ 150謂之间;
4 ) 减反层。
在本发明的优选具体实施方案中, 使用反应磁控溅射技术直接 在具有红外高反射金属表面的基材上沉积吸收层和减反层, 优选基 材表面为铜。
在本发明的一个具体实施方案中制备太阳能集热元件, 其中基 材具有红外高反射金属表面, 例如金、 银、 铜、 铝、 鉬或镍表面, 该表面用作为或替代所述太阳能选择性吸收涂层体系的红外高反射 底层, 从而成为太阳能选择性吸收涂层体系的一部分。
在本发明优选的具体实施方案中, 利用磁控溅射技术, 在非反 应气体氩气的存在下, 以金属铜作为阴极(靶), 将金属铜沉积在基 材上作为红外高反射底层; 注入反应气体氮和氧, 以常规市售的奥 氏体不锈钢如 AISI 304 ( 0Crl8Ni9 )或 AISI 316L ( 00Crl7Nil4Mo2 ) 作为阴极(靶), 在铜表面沉积 FeCrM- N-0薄膜作为笫一吸收亚层, 随后提高氧气注入流量沉积 FeCrM-N-0薄膜作为第二吸收亚层, 由 此使笫二吸收亚层比笫一吸收亚层的铁铬合金含量低; 调控氮气和 氧气的注入量, 以金属锡作为阴极(靶)在吸收层上沉积锡金属氮 化物 SnN、 锡金属氮氧化物 SnNO及其混合材料薄膜, 或者以金属铝 作为阴极(靶)沉积 A10、 A1N A1N0及其混合材料薄膜, 沉积厚度 为 30 ~ 100nm。
在本发明特别优选的具体实施方案中, 利用磁控溅射技术, 直 接注入反应气体氮气和氧气, 以 AISI 304 ( 0Crl8Ni 9 )或 AISI 316L
( 00Crl7Ni l4Mo2 )作为阴极(靶),在具有铜表面的基材上沉积 30 ~ 90nm的 FeCrM-N- 0 (1)薄膜作为第一吸收亚层, 随后沉积 20 ~ 60nm 的 FeCrM- N- 0 (2)薄膜作为笫二吸收亚层, 最后以金属锡作为阴极
(靶)沉积 30 ~ lOOnm的 SnNO或 SnN薄膜作为减反层。 成分分析
单层薄膜材料中各元素的原子比例可通过俄歇电子能谱 ( AES ) 分析加以确定。
俄歇电子能谱( AES )分析是一种微区表面分析技术, 广泛的应 用于涉及表面和界面问题的表面物理、 化学、 治金、 半导体等许多 科学领域。 这一方法的简单原理是: 将待分析的样品表面置于
10"9Torr 的超高真空室内, 用具有能量为几百至几千电子伏特的电 子束进行轰击, 使表面层的原子电离。 在受激原子弛豫平衡过程中, 除可以辐射具有元素特征波长的 X射线以外, 还可以发射出一种具 有元素特征能量的俄歇(Auger )电子, 记录样品表面发射的相对电 子数量随能量变化的分布, 即 N (E) - E曲线, 或者记录相对电子数对 能量的啟商随能量变化的分布, 即 dN (E) /dE-E曲线, 然后从这样的 能谱曲线上分析俄歇电子特征能量峰值的位置、形状及强弱等特征, 即可得到表面层原子的成份与含量。 本申请采用 PH1 700扫描俄歇 纳米探针。
合金材料的成分说明均以重量百分比提供。俄歇电子能谱( AES ) 分析直接提供的是摩尔 (原子数) 百分比。 附图说明
图 1为太阳能选择性吸收涂层体系, 其为多层结构, 在例如条 带形或圆管形基材 5上, 依次为红外高反射底层 1、 隔离层 2、 吸收 层 3和减反层 4。
图 2为平面磁控溅射镀膜机的真空室示意图。
图 3a为第一吸收亚层材料 FeCrl7Nil4Mo2-N- 0 (1)的光学常数 n、 k讲值, 沉积厚度为 20nm, 横坐标为光谱波长。
图 3b为第二吸收亚层材料 FeCrl7Nil4Mo2-N-0 (2)的光学常数 n、 k 谱值, 沉积厚度为 72nm, 其中金属的含量低于 FeCrl7Ni l4Mo2-N-0 (l) , 横坐标为光谱波长。
图 4a为 FeCrl7Ni l4Mo2- N-0 (1)的俄歇分析全讲。
图 4b为 FeCrl7Ni l4Mo2-N-0 (l)的俄歇分析全讲。
图 5 为 Cu/FeCrl7Nil4Mo2-N-0 (l) /FeCrl7Ni l4Mo2- N-0 (2) /SnNO涂层体系的光选择性吸收层反射比谱值的理论值 RT和实际测 量值 RP的对比(RT以实线表示、 RP以虛线表示),横坐标为光谱波长。
6a为第一吸收亚层材料 FeCrl8Ni9- N-0(1)的光学常数 n、 k 傳值, 沉积厚度为 21nra, 横坐标为光谱波长。
图 6b为第二吸收亚层材料 FeCrl8Ni9-N-0(2)的光学常数 n、 k 谱值, 沉积厚度为 66nm, 其中金属的含量低于 FeCrl8Ni9- N- 0 (1) , 横坐标为光谱波长。
图 7a为 FeCrl8Ni9-N-0(l)的俄歇分析全语。
图 7b为 FeCrl8Ni9-N- 0(2)的俄歇分析全谱。
图 8为 Cu/FeCrl8Ni9-N-0(l)/FeCrl8M9-N-0(2)/SnN0涂层体 系的光选择性吸收层反射比傳值的实际测量值 RP, 横坐标为光谱波 长。 具体实施方式
实施例 1 : 在较小功率下磁控溅射沉积 AISI 316L ( 00Crl7Nil4Mo2 )的氮氧化物复合材料薄膜及其光学常数的测量与 计算
在如图 2所示的平面磁控溅射镀膜机的真空室中, 磁控溅射腔 室的容积约为 0.1m3, 其中上部安置 AISI 316L ( 00Crl7Nil4Mo2 ) 铁铬合金靶 1,靶面向下, 将尺寸为 25mmx 38mm χ 1mm的玻璃基材 5 安装在基材架 4上, 靶与基材的距离 70腿; 靶周围安置进气管 3, 分别注入气体或经混合的气体; 溅射腔壁与基材作为阳极等电位而 接地; 两个平面靶采用永久磁铁回路, 在靶阴极表面产生和电场垂 直的磁场, 构成的磁控溅射的电与磁的条件, 磁铁回路内有冷却液 体, 优选软化水。 用机械泵对磁控溅射室内抽低真空, 再抽高真空 达 10— 3Pa, 调节节流阀以降低溅射室与高真空泵之间的流导。 通过进气管 3向溅射室内注入流量为 l Osccm的氩气,使溅射室 的压强在 0. 4Pa,再注入流量为 lOsccm的氮气和注入流量为 1. Osccra 的氧气, 直流溅射功率为 100W, 溅射 2分钟, 用 ct -Step台阶仪测 薄膜的厚度, 获得沉积厚度为 20nm的 FeCrl7Nil4Mo2- N-O (l)薄膜。
在上述设备条件下, 仅将氧气注入流量调节为 2. Osccm, 溅射 12分钟, 用 o - Step台阶仪测薄膜的厚度, 获得沉积厚度为 72nm的 FeCrl7Nil 4Mo2-N-0 (2)薄膜。
使用 PE Lambda 9分光光度计, 测量在 0. 35 - 2. 5微米范围内 所获薄膜的垂直透射比与反射比谱值 R ( 15。入射)。 根据 Hadley方 程, 用计算机反演寻优确定 FeCrl7Ni l4Mo2-N- 0 (1)薄膜和 FeCrl7Nil4Mo2-N- 0 (2)薄膜的光学常数 n、 k, 结果见图 3a和图 3b。 实施例 2 : 在较大功率下磁控溅射沉积 AISI 316L ( 00Crl7Nil4Mo2 )的氮氧化物复合材料薄膜及其光学常数的测量与 计算
在与实施例 1中相同的如图 2所示的设备条件下, 将直流溅射 功率设置为 5kW左右, 尝试增大气体的注入流量。 在若干常规调试 后, 在以下工艺参数下获得与实施例 1具有最接近光学常数的复合 材料薄膜。
通过进气管 3向溅射室内注入流量为 35sccm的氩气,使溅射室 的压强在 0. 4Pa,再注入流量为 150sccm的氮气和注入流量为 15sccm 的氧气, 直流溅射功率为 5. 17 , 溅射 40秒, 用 a _Step台阶仪测 薄膜的厚度, 获得沉积厚度为 20nm的 FeCrl7Nil4Mo2-N-0 (l)薄膜。
在上述设备条件下, 仅将氧气注入流量调节为 19sccm, 直流溅 射功率为 5. 09kW, 溅射 3分钟, 用 a -Step台阶仪测薄膜的厚度, 获得沉积厚度为 72nm的 FeCrl7Nil4Mo2-N- 0 (2)薄膜。 使用 PE Lambda 9分光光度计, 测量在 0. 35 ~ 2. 5微米范围内 所获薄膜的垂直透射比与反射比谱值 R ( 15。入射)。 根据 Hadley方 程, 用计算机反演寻优确定 FeCrl7Nil4Mo2- N-0 (1)薄膜和 FeCrl7Nil4Mo2-N-0 (2)薄膜的光学常数 n、 k, 结果与实施例 1无实 质性区别。
使用俄歇纳米探针分析实施例 2制备的 FeCrl7Nil4Mo2- N-0 (1) 和 FeCrl7Nil4Mo2- N-0 (2)的成分。
表 1: 吸收层的原子摩尔百分比(图 4a和图 4b )
Figure imgf000019_0001
实施例 3: 在基材上沉积 FeCrl7Nil4Mo2- N- 0/SnNO太阳能选择 性吸收涂层体系制备太阳能集热元件
将铜片作为基材 5安放在如上所述的图 2的平面磁控溅射镀膜 机的基材架上, 磁控溅射腔室的容积为 0. 1m3, 其中上部安置 AISI 316L ( 00Crl7Ni l4Mo2 )合金靶 1和 Sn靶 2, 靶面向下, 靶与基材 的距离 70腿。 用机械泵对磁控溅射腔内抽低真空, 再抽高真空达 10— 3Pa, 调节节流阀, 降低溅射室与高真空泵之间的流导。
通过进气管 3向溅射室内注入流量为 35sccm的氩气,使溅射室 的压强在 0. 4Pa,再注入流量为 150sccm的氮气和注入流量为 15sccra 的氧气, 直流溅射功率为 5. 17kW, 溅射 1分钟 40秒, 制得沉积厚 度为 50nm的 FeCrl7Ni l4Mo2- N-0 (1)薄膜作为笫一吸收亚层。
随后将氧气的注入流量调节为 19sccm, 直流溅射功率为 5. 09kW , 溅射 1 分钟 20 秒, 制得沉积厚度为 32nm 的 FeCrl7Nil 4Mo2-N-0 (2)薄膜作为第二吸收亚层。 调节氮气流量为 66sccm和氧气流量为 34sccm (无氩气), 直流 溅射功率为 1. 26kW, 使用 Sn靶溅射 3分钟, 制得沉积厚度为 45nm 的 SnNO介质薄膜。
使用有积分球的 Beckman ACTA MVII分光光度计, 测量所制备 的太阳能选择性吸收涂层体系在 0. 35 - 2. 5微米太阳能光谱范围内 的反射比谱值 R (15。入射), 结果见图 5。 经计算得到该涂层体系的 太阳吸收比 O P为 0. 93。 使用 Perkin Elmer 580B分光光度计, 测量 所制备的太阳能选择性吸收涂层体系在 2. 5 ~ 25 ^:米红外光谱范围 内的反射比谱值 R, 计算得到涂层体系的红外发射比 ε为 0. 07。
SnN0/FeCrl7Ni l4Mo2-N- 0/铜基材的太阳能选择性吸收涂层样 品在空气中加热至 250°C, 保持 50小时后, 该涂层的太阳吸收比与 红外发射比未见明显变化。 实施例 4: 利用磁控溅射沉积 AISI 304 ( 0Crl8Ni 9 ) 的氮氧化 物的复合材料及其光学常数的测量和计算
将尺寸为 25腿 X 38mm X 1mm的玻璃基材 5安放在如上所述的图 2的平面磁控溅射镀膜机的基材架 4上, 磁控溅射腔室的容积约为 0. Ira3, 其中上部安置 AISI 304 ( 0Crl8Ni9 )铁 4^金靶 1, 靶面向 下, 靶与基材的距离 70mra。 用机械泵对磁控溅射室内抽低真空, 再 抽高真空达 10— 3Pa, 调节节流阀以降低溅射室与高真空泵之间的流 导。
通过进气管 3向溅射室内注入流量为 35sccm的氩气,使溅射室 的压强在 0. 4Pa,再注入流量为 120sccm的氮气和注入流量为 8sccm 的氧气。 直流溅射功率为 5. 15kW, 溅射 45秒, 用 oc -Step台阶仪测 薄膜的厚度, 获得沉积厚度为 21nm的 FeCrl 8Ni9-N-0 (l)薄膜。
在上述设备条件下, 仅将氧气注入流量调节为 12sccm, 溅射 3 分钟, 用 oc - Step 台阶仪测薄膜的厚度, 获得沉积厚度为 66nm 的 FeCrl8Ni9-N-0 (2)薄膜。
使用 PE Lambda 9分光光度计, 测量在 0. 35 - 2. 5微米范围内 所获薄膜的垂直透射比与反射比錯值 R ( 15。入射)。 根据 Hadley方 程, 用 计算机反演寻优确定 FeCrl8Ni9- N-0 (1) 薄膜及 FeCrl8Ni9-N-0 (2)薄膜的光学常数 n k, 结果与实施例 1制备的薄 膜材料极其相近, 见图 6a和图 6b
使用俄歇纳米探针分析 FeCrl8Ni9- N- 0 (1)和 FeCrl8Ni9-N-0 (2) 的成分。
表 2: 吸收层的原子摩尔百分比(图 7a和图 7b )
Figure imgf000021_0001
实施例 5: 在铜基材上沉积 FeCrl8Ni9-N-0/SnNO太阳能选择性 吸收涂层体系制备太阳能集热元件
将铜片作为基材 5安放在如上所述的图 2的平面磁控溅射镀膜 机的基材架上, 磁控溅射腔室的容积为 Q. lm3 , 其中上部安置 FeCrl8Ni9合金靶 1 ( AISI 304 ( 0Crl8Ni9 ) )和 Sn靶 2, 靶面向下, 靶与基材的距离 70 用机械泵对磁控溅射腔内抽低真空, 再抽高 真空达 10—3Pa, 调节节流阀, 降低溅射室与高真空泵之间的流导。
通过进气管 3向溅射室内注入流量为 35sccm的氩气,使溅射室 的压强在 0. 4Pa,再注入流量为 120sccm的氮气和注入流量为 8sccm 的氧气。直流溅射功率为 5. 15kW,溅射 2分钟,制得沉积厚度为 56nm 的 FeCrl8Ni9-N-0 (l)薄膜作为第一吸收亚层。
随后将氧气的注入流量调节为 12sccra, 溅射 1分钟 45秒, 获 得沉积厚度为 39nm的 FeCrl8Ni9-N-0 (2)薄膜作为笫二吸收亚层。 调节氮气流量为 66sccm和氧气流量为 34sccm (无氩气), 直流 溅射功率为 1. 26kW, 使用 Sn靶溅射 3分钟, 制得沉积厚度为 45nm 的 SnNO介质薄膜。
使用有积分球的 Beckman ACTA MVI I分光光度计, 测量所制备 的太阳能选择性吸收涂层体系在 0. 35 - 2. 5微米太阳能光谱范围内 的反射比谱值 R (15。入射), 结果见图 8。 经计算得到该涂层体系的 太阳吸收比 o P为 0. 93。 使用 Perkin Elmer 580B分光光度计, 测量 所制备的太阳能选择性吸收涂层体系在 2. 5 ~ 25微米红外光谱范围 内的反射比谱值 R, 计算得到涂层体系的红外发射比 ε为 0. 06。
SnNO/FeCrl8Ni9- Ν- 0/铜基材的太阳能选择性吸收涂层样品在 空气中加热至 250°C, 保持 50小时后, 该涂层的太阳吸收比与红外 发射比未见明显变化。 结论: FeCrM-N- 0 复合材料薄膜作为吸收层构成的太阳能选择 性吸收涂层体系能达到高盾量同类产品的太阳吸收比 a, 由此提供 了一种新的可选的太阳能集热元件。

Claims

1. 光选择性吸收层, 其在真空镀膜技术下由铁铬合金 FeCrM与 非金属气体反应沉积形成的复合材料薄膜构成, 其中所述真空镀膜 技术优选真空蒸发技术或磁控溅射技术, 特别优选磁控溅射技术, 基于合金的总重量, 铁约占 60 ~ 87重量%,铬约占 13 ~ 25重量%, M缺失或为一种或多种合金化元素, 所述金属的总量占金属-介质 复合材料薄膜的 40 ~ 75摩尔% ,所述非金属气体包含氧气与含氮气 体的混合气体, 所述含氮气体为氮气和 /或氨气, 优选氮气, 任选地 混合气体中可含有氢气和 /或碳氢气体。
2. 根据权利要求 1的光选择性吸收层, 所述铁 金为奥氏体 不锈钢,优选 AISI 304 ( 0Crl8M9 )或 AISI 316L ( 00Crl7Nil4Mo2 )0
3. 根据权利要求 1的光选择性吸收层, 所述吸收层的总厚度为 50 - 200nm, 优选 6 Onm ~ 15 Onm。
4. 根据权利要求 3的光选择性吸收层, 其特征在于, 随着吸收 层厚度或层数的增加, 使吸收层的金属 -介质复合材料薄膜中的金 属成分沿着远离基材的方向而减少。
5. 根据权利要求 4的吸收层, 其特征在于, 所述吸收层由两个 亚层组成,优选沉积 30 - 9 Onm的 FeCrM- N-0薄膜作为靠近基材的笫 一吸收亚层,沉积 20 ~ 6 Onm的 FeCrM- N-0薄膜作为远离基材的笫二 吸收亚层, 第二吸收亚层中的金属含量低于笫一吸收亚层。
6. 太阳能集热元件或太阳能选择性吸收涂层体系, 其包含根据 权利要求 1 ~ 5任一项的光选择性吸收层。
7. 根据权利要求 6的太阳能集热元件或太阳能选择性吸收涂层 体系, 其中还包含沉积于基材 ( 5 )表面的红外高反射底层( 1 )、 任 选的隔离层(2 )和减反层 (4 ), 其中优选所述基材 ( 5 )表面或红 外高反射层由铜、 铝、 钼、 镍或它们的合金构成, 所述减反层优选 由 40 ~ 60nra锡基氮化物 SnMN、 SnMNO薄膜或者 A10、 A1N、 A1N0及 其混合材料薄膜构成, 其中 M缺失或为一种或多种合金化元素。
8. 居权利要求 6的太阳能集热元件或太阳能选择性吸收涂层 体系, 其中所述基材 ( 5 )为铜材或沉积铜膜的不锈钢材料。
9. 铁铬合金材料作为金属原料制备权利要求 1至 5任一项的光 选择性吸收层的方法, 其中采用真空镀膜技术, 以非金属气体作为 反应气体沉积光选择性吸收层, 所述铁铬合金用 FeCrM表示, 基于 合金的总重量, 其中铁约占 60 ~ 87重量%,铬约占 13 ~ 25重量%, M缺失或为一种或多种合金化元素, 优选选自镍、 铝、 钼及钇中的 一种或多种,所述真空镀膜技术优选磁控溅射技术或真空蒸发技术, 特别优选磁控溅射技术, 所迷非金属气体包含氧气与含氮气体的混 合气体, 所述含氮气体为氮气和 /或氨气, 优选氮气。
10. 根据权利要求 9所述的方法, 其特征在于, 在氮气的注入流 量恒定的情况下, 通过调控氧气的分压来制备具有特定光学常数的 复合材料薄膜。
PCT/CN2007/000668 2006-03-03 2007-03-02 Couches à absorption sélective de lumière et leur procédé de fabrication WO2007098708A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07720303.2A EP1992716B1 (en) 2006-03-03 2007-03-02 Light selectively absorbing layers and method for making the same
US12/281,558 US20100035034A1 (en) 2006-03-03 2007-03-02 Light selective absorbing coating and its process
CN2007800065061A CN101389783B (zh) 2006-03-03 2007-03-02 光选择性吸收层及其制备方法
DK07720303.2T DK1992716T3 (da) 2006-03-03 2007-03-02 Lysselektive absorberende lag og fremgangsmåde til fremstilling af samme
ES07720303T ES2411711T3 (es) 2006-03-03 2007-03-02 Capas con absorción selectiva de la luz y procedimiento de fabricación

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200610058732.1 2006-03-03
CN200610058732 2006-03-03
CN200610058731.7 2006-03-03
CN200610058731 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007098708A1 true WO2007098708A1 (fr) 2007-09-07

Family

ID=38458675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000668 WO2007098708A1 (fr) 2006-03-03 2007-03-02 Couches à absorption sélective de lumière et leur procédé de fabrication

Country Status (6)

Country Link
US (1) US20100035034A1 (zh)
EP (1) EP1992716B1 (zh)
CN (1) CN101389783B (zh)
DK (1) DK1992716T3 (zh)
ES (1) ES2411711T3 (zh)
WO (1) WO2007098708A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724812A (zh) * 2008-10-24 2010-06-09 山东力诺新材料有限公司 一种涂层及其制造方法
CN102809232A (zh) * 2012-08-29 2012-12-05 北京天普太阳能工业有限公司 一种太阳能选择性吸收涂层

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818328B (zh) * 2010-04-22 2012-05-16 常州博士新能源科技有限公司 多层复合太阳能选择性吸收镀层的制备方法
DE102010017155B4 (de) * 2010-05-31 2012-01-26 Q-Cells Se Solarzelle
KR101314411B1 (ko) * 2010-10-19 2013-10-04 주식회사 엘지화학 도전성 패턴을 포함하는 터치패널 및 이의 제조방법
FR2976349B1 (fr) * 2011-06-09 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un element absorbeur de rayonnements solaires pour centrale solaire thermique a concentration.
CN102277555A (zh) * 2011-08-23 2011-12-14 北京天瑞星真空技术开发有限公司 一种具有TiN和AlN的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
CN103162452B (zh) * 2013-03-05 2015-04-15 日出东方太阳能股份有限公司 抗氧化性太阳光谱选择性吸收涂层及其制备方法
CN103115448B (zh) * 2013-03-07 2015-07-08 日出东方太阳能股份有限公司 全玻璃太阳能真空集热管及其制备方法
DE102013103679A1 (de) * 2013-04-11 2014-10-30 Heraeus Materials Technology Gmbh & Co. Kg Licht absorbierende Schicht und die Schicht enthaltendes Schichtsystem, Verfahren zur dessen Herstellung und dafür geeignetes Sputtertarget
CN103215556B (zh) * 2013-05-13 2015-11-18 日出东方太阳能股份有限公司 一种组合式光谱选择性吸收膜层快速沉积工艺
WO2014204671A1 (en) * 2013-06-20 2014-12-24 University Of Houston System GRADIENT SiNO ANTI-REFLECTIVE LAYERS IN SOLAR SELECTIVE COATINGS
ES2541878B1 (es) * 2013-12-27 2016-05-03 Abengoa Solar New Technologies S.A. Recubrimientos absorbentes para receptores solares centrales y procedimiento para la preparación in situ de dichos recubrimientos
FI127237B (en) * 2014-02-17 2018-02-15 Savo Solar Oy Solvärmeabsorbatorelement
EP2977202A1 (fr) * 2014-07-25 2016-01-27 AGC Glass Europe Vitrage chauffant
US10550034B2 (en) * 2014-07-25 2020-02-04 Agc Glass Europe Decorative glass panel
US10752985B2 (en) * 2014-10-29 2020-08-25 Sumitomo Metal Mining Co., Ltd. Laminate film and electrode substrate film, and method of manufacturing the same
WO2016129937A1 (ko) * 2015-02-10 2016-08-18 주식회사 엘지화학 전도성 구조체 및 이의 제조방법
US10324235B2 (en) * 2017-06-08 2019-06-18 Valeo North America, Inc. Partial coating of lenses
TWI659118B (zh) * 2018-06-06 2019-05-11 國立中興大學 Solar absorption device
CN110257773B (zh) * 2019-07-24 2021-08-31 常州瞻驰光电科技股份有限公司 一种用于蒸镀高吸收膜层的蒸镀材料及其制备方法
CN113093317B (zh) * 2019-12-23 2023-04-18 株式会社Lms 近红外线吸收基板及包括其的光学装置
CN113865125B (zh) * 2021-09-30 2023-09-08 太原理工大学 一种不锈钢基太阳能选择性吸收涂层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339484A (en) * 1977-05-17 1982-07-13 University Of Sydney Solar collector
US5523132A (en) * 1991-07-19 1996-06-04 The University Of Sydney Thin film solar selective surface coating
CN1159553A (zh) * 1995-06-19 1997-09-17 澳大利亚悉尼大学 太阳能选择性吸收表面涂层
CN1584445A (zh) * 2003-08-20 2005-02-23 中国科学院广州能源研究所 NiCrOXNY太阳光谱选择性吸收薄膜及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252790A (en) * 1956-06-27 1966-05-24 Union Carbide Corp Preparation of metals and alloys
JPS6014275B2 (ja) * 1975-09-22 1985-04-12 矢崎総業株式会社 太陽熱利用集熱器の選択吸収面およびその製法
SE500018C2 (sv) * 1992-05-27 1994-03-21 Hoeganaes Ab Pulverkomposition för ytbeläggning samt ytbeläggningsförfarande
JP3211986B2 (ja) * 1992-08-13 2001-09-25 セントラル硝子株式会社 グレー色電波透過型熱線遮蔽ガラス
TW200724699A (en) * 2005-12-30 2007-07-01 Advanced Int Multitech Co Ltd Nonmetal compound and surface coating of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339484A (en) * 1977-05-17 1982-07-13 University Of Sydney Solar collector
US5523132A (en) * 1991-07-19 1996-06-04 The University Of Sydney Thin film solar selective surface coating
CN1159553A (zh) * 1995-06-19 1997-09-17 澳大利亚悉尼大学 太阳能选择性吸收表面涂层
CN1584445A (zh) * 2003-08-20 2005-02-23 中国科学院广州能源研究所 NiCrOXNY太阳光谱选择性吸收薄膜及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1992716A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724812A (zh) * 2008-10-24 2010-06-09 山东力诺新材料有限公司 一种涂层及其制造方法
CN102809232A (zh) * 2012-08-29 2012-12-05 北京天普太阳能工业有限公司 一种太阳能选择性吸收涂层

Also Published As

Publication number Publication date
EP1992716A4 (en) 2010-12-22
CN101389783B (zh) 2011-06-29
DK1992716T3 (da) 2013-07-29
EP1992716A1 (en) 2008-11-19
US20100035034A1 (en) 2010-02-11
CN101389783A (zh) 2009-03-18
ES2411711T3 (es) 2013-07-08
EP1992716B1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2007098708A1 (fr) Couches à absorption sélective de lumière et leur procédé de fabrication
US10126020B2 (en) Selective solar absorbing coating and manufacturing method
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN101737983B (zh) 一种太阳光谱选择性吸收涂层的制备方法
EP2722612A1 (en) Covering that selectively absorbs visible and infrared radiation, and method for the production thereof
CN101724812A (zh) 一种涂层及其制造方法
CN102122006B (zh) 太阳光谱选择性吸收涂层及其制备方法
US20140144426A1 (en) Covering that selectively absorbs visible and infrared radiation, and method for the production thereof
CN101660117B (zh) 一种太阳能选择性吸收涂层及其制备方法
JP2012533514A (ja) 低放射ガラス及びその製造方法
CN104006560A (zh) 一种WOx/ZrOx高温太阳能选择性吸收涂层及其制备方法
CN102328475A (zh) 一种具有SiO2和TiO2的双陶瓷结构高温太阳能选择性吸收涂层及其制备方法
CN104947054A (zh) 一种太阳光谱选择性吸收涂层的制备方法
CN101012544B (zh) 镍铬铝钇氮氧材料薄膜
US11149987B2 (en) Solar heat collector tube and production method thereof
EP3433546B1 (en) Solar selective coating
CN104279780A (zh) 一种过渡金属氮化物吸热涂层
CN102954611A (zh) 中高温光谱选择性吸收涂层
US11009264B2 (en) Solar heat collector tube
EP3410031B1 (en) Solar heat collection tube
US20210172654A1 (en) Solar heat-collecting pipe
JP2019143245A (ja) 酸化物膜、酸化物膜の製造方法、及び、窒素含有酸化物スパッタリングターゲット
Zhiqiang et al. Sputtered Aluminium Composite Selective Absorbing Surfaces
Thornton Development of selective surfaces. Semiannual technical progress report, September 11, 1978-April 30, 1979.[Multilayer coatings]

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200780006506.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007720303

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12281558

Country of ref document: US

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)