WO2007088782A1 - 高純度ジオールを工業的に製造する方法 - Google Patents

高純度ジオールを工業的に製造する方法 Download PDF

Info

Publication number
WO2007088782A1
WO2007088782A1 PCT/JP2007/051238 JP2007051238W WO2007088782A1 WO 2007088782 A1 WO2007088782 A1 WO 2007088782A1 JP 2007051238 W JP2007051238 W JP 2007051238W WO 2007088782 A1 WO2007088782 A1 WO 2007088782A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
tray
continuous multistage
multistage distillation
chimney
Prior art date
Application number
PCT/JP2007/051238
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EA200870139A priority Critical patent/EA200870139A1/ru
Priority to EP07707470A priority patent/EP1980548A1/en
Priority to JP2007556835A priority patent/JP4986867B2/ja
Priority to US11/991,387 priority patent/US20090270656A1/en
Priority to CN2007800029313A priority patent/CN101370757B/zh
Priority to BRPI0707221-0A priority patent/BRPI0707221A2/pt
Publication of WO2007088782A1 publication Critical patent/WO2007088782A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention continuously supplies a cyclic carbonate and an aliphatic monohydric alcohol to a reactive distillation column A having a specific structure, performs a reactive distillation method, and continuously from the bottom of the reactive distillation column A.
  • a substance having a boiling point lower than that of the diol is distilled off in a continuous multistage distillation column C having a specific structure, and then the continuous multistage distillation column.
  • This is an industrial production method for high-purity diol, in which the diol is continuously obtained using the bottom component of C as a side-cut component using a continuous multistage distillation column E having a specific structure.
  • the present inventors have disclosed for the first time a reactive distillation method for producing a dialkyl carbonate and a diol from the reaction of a cyclic carbonate and an aliphatic monohydric alcohol (Patent Documents:! To 10).
  • Patent Documents 11 to 15 Applications (Patent Documents 11 to 15) using a reactive distillation method have been filed by other companies.
  • reactive distillation is used for this reaction, it is possible to proceed with a high reaction rate.
  • the reactive distillation method that has been proposed so far relates to the power that is a method for producing a small amount of dialkyl carbonate and diol, and the production method for a short time. It was not related to stable production.
  • H the height (H: cm) and diameter (D) of a reactive distillation column in Examples disclosed for producing dimethyl carbonate (DMC) and ethylene glycol (EG) from ethylene carbonate and methanol.
  • Table 1 shows the maximum values for cm), number of plates (n), ethylene glycol production P (kg / hr), and continuous production time T (hr).
  • Patent Document 14 (paragraph 0060), “This example employs a process flow similar to that of the preferred embodiment shown in FIG. 1 above, and transesterifies by a catalytic conversion reaction between ethylene carbonate and methanol.
  • the numerical values shown below in this example are sufficiently applicable to the operation of the actual apparatus.
  • 2 490 kg / hr of ethylene glycol was specifically produced.
  • This scale described in the examples corresponds to more than 30,000 tons of dimethyl carbonate produced annually.
  • this method was used to operate the world's largest commercial plant. Has been implemented. However, even at the time of filing this application, such a fact is absolutely impossible.
  • Patent Document 14 the production amount of dimethyl carbonate is described as the same as the theoretical calculation value.
  • the yield of ethylene glycol is about 85.6%, and the selectivity is about 88. 4%, and it is difficult to achieve high yields and high selectivity.
  • the low selectivity indicates that this method has a fatal defect as an industrial production method. (Note that Patent Document 14 was deemed to have been withdrawn on July 26, 2005 due to an unclaimed request.)
  • the reactive distillation method includes a composition change caused by a reaction in a distillation column, a composition change caused by distillation, There are many fluctuation factors such as temperature changes and pressure changes, and it is often difficult to continue stable operation for a long period of time, especially when dealing with large quantities.
  • Various measures are taken to produce high-purity diols by maintaining high yields and high selectivity of dialkyl carbonates and diols by reactive distillation while maintaining their mass production stably over a long period of time. It is necessary.
  • Patent Documents 1 and 2 described only 200 to 400 hours in long-term continuous stable production in the reactive distillation methods proposed so far.
  • the present inventors have proposed an industrial reactive distillation method capable of stably continuing large-scale production of dialkyl carbonates and diols for a long period of time with a high yield and a high selectivity. It is necessary to have a method capable of stably separating and purifying high-purity diols in large quantities for a long time from a high-boiling reaction mixture that is continuously extracted in large quantities from the bottom of the tank. There is a need for a method of producing in yield. The present invention has been made to achieve this object.
  • Patent Document 14 As shown in 1, it is a small amount per hour except for Patent Document 14.
  • the description obtained at / hr is a certain force. This is merely a description of the composition of the reaction mixture, and there is no description of the production of high purity diols.
  • a method for obtaining diol from a side cut of the diol purification tower is also known.
  • the high boiling point reaction mixture extracted from the lower part of the reactive distillation column is supplied to the thin film evaporator (III), and the high boiling point substance obtained there is converted into a thin film.
  • the low boiling point evaporate obtained there was supplied to the distillation column (V II), and ethylene glycol was obtained as a side cut component (22) of the concentrating part of the distillation column (VII).
  • Patent Document 12 a refiner for producing a high-purity ethylene glycol power of 255 gZhr. That is, in the method of Patent Document 12, a high-purity ester is not used for the first time from a high boiling point reaction mixture by using four purification apparatuses. Tylene glycol is obtained.
  • the method of Patent Document 12 is a method for producing a small amount of ethylene glycol, and what about a method for stably producing a large amount (for example, 1 ton / hr or more) of diol for a long time (for example, 5000 hours or more). There is no suggestion.
  • Example 1 (Fig. 5) of Patent Document 15
  • the high boiling point reaction mixture extracted from the lower part of the reactive distillation column is supplied to the second distillation column (4) and obtained there.
  • the high boiling point substance was fed to the hydrolysis reactor (7), the reaction mixture was fed to a decarboxylation tank (gas-liquid separator: 8), and the resulting liquid component was fed to the third distillation column (10).
  • ethylene glycol is produced at a production rate of 19 kg / hr.
  • the method of Patent Document 15 the ethylene glycol obtained obtained contains 0.2% by mass of diethylene glycol.
  • the method of Patent Document 15 in order to obtain high-purity ethylene glycol necessary as a raw material for PET fibers and PET resins, an additional purification apparatus of one or more stages is required.
  • the ability to obtain ethylene glycol from the side cut extraction port installed in the recovery section below the supply port to the distillation column is insufficient in purity.
  • the method of Patent Document 15 is a method for producing a small amount of ethylene glycol, and what is the method for stably producing a large amount (for example, 1 ton / hr or more) of diol for a long time (for example, 5000 hours or more)? There is no suggestion.
  • Example 10 Fig. 6 of Patent Document 8 and Example 1 ( Figure 1) of Patent Document 9
  • the concentrating unit located above the supply port to the EG purification tower (41) is used.
  • the installed side-cut extraction loca and the power to obtain high-purity ethylene glycol are both produced in a small amount of less than 200 g / hr, and a large amount (for example, 1 ton / hr or more) of diol for a long time (for example, , More than 500 hours)
  • a method of producing stably There is no suggestion about a method of producing stably.
  • Non-Patent Document 1 states that “EG (ethylene glycol) is produced by EO (ethylene oxide) hydration, and the reaction is usually carried out at 150_200 °
  • MEG monoethylene glycol
  • DEG diethylene glycol
  • TEG triethylene glycol
  • Patent Document 1 Japanese Patent Laid-Open No. 41-1198141
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 4-230243
  • Patent Document 3 Japanese Patent Laid-Open No. 9-176061
  • Patent Document 4 JP-A-9-183744
  • Patent Document 5 Japanese Patent Laid-Open No. 9-194435
  • Patent Document 6 International Publication No. W097Z23445 (European Patent No. 0889025, US Patent No. 5847189)
  • Patent Document 7 International Publication No. W099 / 64382 (European Patent No. 1086940, US Patent No. 6346638)
  • Patent Document 8 International Publication WO00 / 51954 (European Patent No. 1174406, US Patent No. 6479689)
  • Patent Document 9 Japanese Patent Laid-Open No. 2002-308804
  • Patent Document 10 Japanese Unexamined Patent Application Publication No. 2004-131394
  • Patent Document 11 Japanese Patent Laid-Open No. 5-213830 (European Patent No. 0530615, US Patent No. 5231212)
  • Patent Document 12 Japanese Patent Laid-Open No. 6-9507 (European Patent No. 0569812, US Patent No. 5,359,118 Meito)
  • Patent Document 13 Japanese Patent Laid-Open No. 2003-119168 (International Publication WO03 / 006418)
  • Patent Document 14 Japanese Patent Laid-Open No. 2003-300936
  • Patent Document 15 Japanese Unexamined Patent Publication No. 2003-342209
  • Non-Patent Document 1 Petrochemical Society, “Petrochemical Process” 120-125 Kodansha 2001 Disclosure of Invention Problems to be solved by the invention
  • the problem to be solved by the present invention is that a cyclic carbonate and an aliphatic monohydric alcohol are used as raw materials, and this raw material is continuously fed into a continuous multistage distillation column A in which a catalyst is present.
  • the low-boiling reaction mixture (A) containing the dialkyl carbonate and the aliphatic monohydric alcohol produced from the top of the column is continuously withdrawn in the form of a gas,
  • the high boiling point reaction mixture (A) is continuously supplied to the continuous multistage distillation column C, and the high boiling point reaction mixture is supplied.
  • a substance having a boiling point lower than that of the diol contained in the compound (A) is selected from the top component (C) and / or the support.
  • the bottom component (C) obtained by distilling off as the id cut component (C) is continuously multistage steamed.
  • high-purity diol can be stably produced in an amount of 1 ton or more per hour for a long period (eg, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more). It is to provide a specific and inexpensive industrial device and industrial manufacturing method.
  • a high boiling point reaction mixture (A) containing diols generated from the lower part of distillation column A is connected in liquid form.
  • a substance having a boiling point lower than that of the diol contained in the reaction mixture (A) is added to the top component (C) and / or
  • the continuous multistage distillation column A has a length L (cm) satisfying the following formulas (1) to (6), an inner diameter D (cm
  • One or more first inlets at the outlet, below the gas outlet and at the top and Z or in the middle of the tower, 1 above the liquid outlet and in the middle and Z or at the bottom of the tower A distillation column having two or more second inlets,
  • the continuous multistage distillation column C has a length L (cm) satisfying the following formulas (7) to (15), an inner diameter D (c
  • One or more chimneys with mouths are installed,
  • the side cut outlet is connected to the liquid reservoir of the chimney tray of the continuous multistage distillation column C.
  • a continuous multistage distillation column A continuous multistage distillation column,
  • the continuous multistage distillation column E has a length L (cm) satisfying the following formulas (18) to (26), an inner diameter D
  • One or more chimney trays are installed in the concentrating part of the continuous multistage distillation column E as an internal, and the chimney tray has an opening with a cross-sectional area S (cm 2 ) satisfying the equation (27).
  • the side cut outlet is connected to the liquid reservoir of the chimney tray of the continuous multistage distillation column E.
  • a continuous multistage distillation column A continuous multistage distillation column,
  • a method for industrially producing a high-purity diol characterized in that
  • the opening ratio of the perforated plate tray of the continuous multi-stage distillation column A (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is 1 ⁇ 5 to 15%.
  • a plurality of (n stages) trays K are provided at the bottom of the internal part at the bottom of the recovery section at the bottom of the continuous multi-stage distillation column C, and the liquid is partially continuously from the top of the tray K. Extracted
  • the heated liquid is returned to the distillation column C from the supply port provided at the lowermost part of the recovery section and the uppermost tray K, and the rest is left. 9. The method according to any one of 1 to 8 above, wherein the liquid is sequentially supplied to the lower tray.
  • Cl CI CI CI C2 C2 C2 C2 C2 n Force 500 ⁇ L ⁇ 2000, 70 ⁇ D ⁇ 500, 5 ⁇ L / D ⁇ 20, 5 respectively
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2.
  • Opening ratio of the perforated plate tray in the concentrating part of the continuous multistage distillation column C is in the range of 1.5 to 12%. 18. The method according to any one of items 15 to 17 above, wherein
  • the opening ratio of the chimney tray of the continuous multi-stage distillation column C (the ratio of the total opening cross-sectional area of the chimney and the area of the chimney tray including the entire cross-sectional area of the opening) is 10 to 40. 19. The method according to any one of items 1 to 18, wherein the method is in the range of / o,
  • the bottom temperature of the continuous multistage distillation column C is in the range of 150 to 250 ° C.
  • the diol content in the side cut component (C) is supplied to the continuous multistage distillation column C.
  • the perforated plate tray has 150 to 1200 holes per lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2. 29.
  • the aperture ratio of the perforated plate tray in the recovery section of the continuous multi-stage distillation column E (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is in the range of 3 to 25%.
  • Opening ratio of the perforated plate tray in the concentrating part of the continuous multi-stage distillation column E one tray 31.
  • the chimney tray opening ratio of the continuous multi-stage distillation column E (ratio of the total chimney opening cross-sectional area to the chimney tray area including the entire opening cross-sectional area) is 5 to 40. 32.
  • the purity of the diol in the side cut component (E) is 99% or more.
  • the purity of the diol in the side cut component (E) is 99.9% or more.
  • a high boiling point reaction mixture (A) containing diols generated from the lower part of distillation column A is connected in liquid form.
  • Process of continuous extraction (I)
  • a substance having a boiling point lower than that of the diol contained in the reaction mixture (A) is added to the top component (C) and / or
  • An apparatus comprising the continuous multi-stage distillation column A, the continuous multi-stage distillation column C, and the continuous multi-stage distillation column E for producing a high-purity diol by
  • the continuous multistage distillation column A has a length L (cm) satisfying the following formulas (1) to (6), an inner diameter D (cm
  • One or more chimneys with mouths are installed,
  • the side cut outlet is connected to the liquid reservoir of the chimney tray of the continuous multistage distillation column C.
  • a continuous multistage distillation column A continuous multistage distillation column,
  • the continuous multistage distillation column E has a length L (cm) satisfying the following formulas (18) to (26), an inner diameter D
  • the side cut outlet is connected to the liquid reservoir of the chimney tray of the continuous multistage distillation column E.
  • a continuous multistage distillation column A continuous multistage distillation column,
  • An apparatus comprising a continuous multi-stage distillation column A, a continuous multi-stage distillation column C, and a continuous multi-stage distillation column E for producing a high-purity diol characterized by:
  • Item 40 or 40 above characterized in that 4 ⁇ D / d ⁇ 15, 7 ⁇ D / ⁇ 25
  • the aperture ratio of the perforated plate tray of the continuous multistage distillation column A (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is 1.5 to 15%. 45.
  • the heated liquid is returned to the distillation column C from the supply port provided between the lowermost internal of the recovery unit and the uppermost tray tray, and remains. 40.
  • the inner diameter (D) of the continuous multi-stage distillation column C where the tray is located is D ⁇ D
  • L and D of the continuous multistage distillation column C L / D, n, L, D, L / ⁇ , ⁇ ,
  • the apparatus according to item 50 which is an internal tray and / or a regular packing excluding the chimney tray of the concentrating section, which is an internal tray of the recovery section of the continuous multistage distillation column C.
  • the perforated plate tray has 100 to 1000 holes per lm 2 of the perforated plate portion, and has a cross-sectional area of 0.5 to 5 cm 2 per hole.
  • the aperture ratio of the perforated plate tray in the recovery section of the continuous multistage distillation column C (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is in the range of 2 to 15%.
  • the chimney tray opening ratio of the continuous multistage distillation column C (the ratio of the total chimney opening cross-sectional area to the chimney tray area including the entire opening cross-sectional area) is 10 to 40. 56.
  • the continuous multistage distillation column E has L, D, L / D, n, L, D, L / D, n
  • the perforated plate tray has 150 to 1200 holes per area lm 2 of the perforated plate portion, and has a cross-sectional area of 0.5 to 5 cm 2 per hole.
  • the aperture ratio of the perforated plate tray in the recovery section of the continuous multistage distillation column E (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is in the range of 3 to 25%.
  • the aperture ratio of the perforated plate tray in the concentrating part of the continuous multistage distillation column E (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is in the range of 2 to 20%. 63.
  • the chimney tray opening ratio of the continuous multi-stage distillation column E (the ratio of the total opening cross-sectional area of the chimney and the area of the chimney tray including the entire cross-sectional area of the opening) is 5 to 40. 64.
  • the device according to any one of items 39 to 63 above, characterized by being in the range of / o. I will provide a.
  • High-purity diols are stable from industrial alcohols for a long period of time in high yields (for example, usually 97% or more, preferably 98% or more, more preferably 99% or more, based on the cyclic carbonate used). It became clear that it can be manufactured. That is, according to the present invention, for example, a high purity diol having a purity of 99.9% or more required as a raw material for PET fiber or PET resin is 1 ton or more, preferably 2 ton or more, more preferably 1 hour or more.
  • An inexpensive industrial device and an industrial production method that can be stably produced in an amount of 3 tons or more for a long period of time eg, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more are provided.
  • the method of the present invention can produce high-purity ethylene glycol with high yield and high selectivity without using a large amount of water. It has an excellent effect as an industrial manufacturing method that can simultaneously solve the two problems (low selectivity, large energy use) that the existing industrial manufacturing method has long been awaiting.
  • the reaction carried out in the step (I) of the present invention is a reversible and balanced transesterification reaction represented by the following formula, which produces dialkyl carbonate and diol together with cyclic carbonate and aliphatic monohydric alcohol.
  • R represents a divalent group _ (CH) m_ (m is an integer of 2 to 6)
  • m is an integer of 2 to 6
  • the element may be substituted with an alkyl group having 1 to 10 carbon atoms, or a aryl group.
  • R 2 represents a monovalent aliphatic group having 1 to 12 carbon atoms, and one or more hydrogen atoms thereof may be substituted with an alkyl group having 1 to 10 carbon atoms or a aryl group.
  • the cyclic carbonate used as a raw material in the present invention is a compound represented by (A) in the above formula, for example, alkylene carbonates such as ethylene carbonate and propylene carbonate, and 1,3-dioxacyclo Hexa-2-one, 1,3-dioxacyclohepta_2_one and the like are preferably used, ethylene carbonate and propylene carbonate are more preferably used from the viewpoint of easy availability, and ethylene carbonate is particularly preferable. Preferably used.
  • the aliphatic monohydric alcohol as the other raw material is a compound represented by (B) in the above formula, and has a lower boiling point than the diol produced. Therefore, it may vary depending on the type of cyclic carbonate used.
  • alcohols having 1 to 6 carbon atoms are preferably used, and more preferably methanol, ethanol, propanol (each heterogeneous substance), butanol ( Each isomer) is an alcohol having 1 to 4 carbon atoms. This is the preferred rate when using ethylene carbonate or propylene carbonate as the cyclic carbonate.
  • methanol and ethanol are particularly preferred is methanol.
  • a catalyst is present in the reactive distillation column A. Any method can be used to make the catalyst exist. For example, in the case of a homogeneous catalyst that dissolves in the reaction solution under the reaction conditions, the catalyst is continuously supplied to the reactive distillation column A. Thus, the catalyst can be present in the liquid phase in the reactive distillation column, or in the case of a heterogeneous catalyst that does not dissolve in the reaction solution under the reaction conditions, a solid catalyst is placed in the reactive distillation column. Thus, the catalyst can be present in the reaction system, or a method using these in combination may be used.
  • the homogeneous catalyst When the homogeneous catalyst is continuously supplied into the reactive distillation column, it may be supplied simultaneously with the cyclic carbonate and / or the aliphatic monohydric alcohol, or supplied at a position different from the raw material. May be. Since the reaction actually proceeds in the distillation column in a region below the catalyst supply position, it is preferable to supply the catalyst to a region between the column top force raw material supply position.
  • the number of stages in which the catalyst is present needs to be 5 or more, preferably 7 or more, and more preferably 10 or more.
  • the number of stages in which the catalyst exists needs to be 5 or more, preferably 7 or more, and more preferably 10 or more.
  • a solid catalyst that also has an effect as a packing for a distillation column can be used.
  • Alkali metals and alkaline earth metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium;
  • Basic compounds such as alkali metal and alkaline earth metal hydrides, hydroxides, alkoxides, aryl oxydides, amidates;
  • Basic compounds such as alkali metal and alkaline earth metal carbonates, bicarbonates, organic acid salts;
  • Tertiary amines such as trichinoleamine, tribubutenoleamine, trihexenoleamine, benzyljetylamine;
  • Cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN);
  • Thallium compounds such as thallium oxide, thallium halide, thallium hydroxide, thallium carbonate, thallium nitrate, thallium sulfate, organic acid salts of thallium;
  • Zinc compounds such as dimethoxy zinc, diethoxy zinc, ethylene dioxy zinc, dibutoxy zinc;
  • Aluminum compounds such as aluminum trimethoxide, aluminum triisopropoxide, aluminum tributoxide;
  • Titanium compounds such as tetramethoxytitanium, tetraethoxytitanium, tetrabutoxytitanium, dichlorodimethoxytitanium, tetraisopropoxytitanium, titanium acetate, titanium acetylethyltonate;
  • Phosphorus compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tributylmethylphosphonium halide, trioctylbutylphosphonium halide, triphenylmethylphosphonium halide;
  • Zirconium compounds such as zirconium halide, zirconium acetyl cetate, zirconium alkoxide, zirconium acetate;
  • Lead and compounds containing lead for example, lead oxides such as PbO, PbO, PbO;
  • Lead hydroxides such as Pb (OH), PbO (OH), Pb [PbO (OH)], PbO (OH);
  • Namali salts such as Na PbO, K PbO, NaHPbO, KHPbO; Na PbO, Na H PbO, K PbO, K [Pb (OH)], K PbO, Ca PbO, CaPb
  • Lead salts such as 2 3 2 2 4 2 3 2 6 4 4 2 4 o;
  • Lead carbonates such as PbCO, 2PbC0-Pb (OH) and their basic salts;
  • Alkoxyleads such as Pb (OCH), (CH ⁇ ) Pb ( ⁇ Ph), Pb (OPh)
  • Lead alloys such as Pb_Na, Pb_Ca, Pb_Ba, Pb_Sn, Pb_Sb;
  • lead minerals such as howenite and senyanite, and hydrates of these lead compounds.
  • These compounds can be used as a homogeneous catalyst when dissolved in a reaction raw material, a reaction mixture, a reaction byproduct or the like, and can be used as a solid catalyst when not dissolved. it can. Furthermore, it is also preferable to use a mixture obtained by dissolving these compounds in advance using reaction raw materials, reaction mixtures, reaction by-products or the like, or using a mixture obtained by reaction as a homogeneous catalyst. .
  • an anion exchange resin having a tertiary amino group an ion exchange resin having an amide group, an ion exchange resin having at least one of a sulfonic acid group, a carboxylic acid group and a phosphoric acid group
  • Ion exchangers such as solid strongly basic anion exchangers having quaternary ammonium groups as exchange groups; silica, silica alumina, silica-magnesia, aluminosilicates, gallium silicates, various zeolites, various metal exchange zeolites, Solid inorganic compounds such as ammonium exchanged zeolites are used as heterogeneous catalysts.
  • a solid strongly basic anion exchanger having a quaternary ammonium group as an exchange group is particularly preferably used.
  • a heterogeneous catalyst include a quaternary ammonium group.
  • Strongly basic anion exchange resin having an exchange group, cellulose strongly basic anion exchanger having a quaternary ammonium group as an exchange group, and an inorganic carrier-supporting strong base anion having a quaternary ammonium group as an exchange group Such as exchangers It is.
  • a strongly basic anion exchange resin having a quaternary ammonium group as an exchange group for example, a styrenic strongly basic anion exchange resin is preferably used.
  • a styrene-based strongly basic anion exchange resin is a strongly basic anion exchange resin having a quaternary ammonium (type I or type II) as an exchange group based on a copolymer of styrene and divinylbenzene. This is schematically shown by the following formula.
  • X is indicates Anion, usually, the X, F-, Cl _, Br ", ⁇ , HC_ ⁇ -, CO
  • the MR type is particularly preferred because it has a strength S that can be used for either a gel type or a macroreticular type (MR type) and has high resistance to organic solvents.
  • the strong cellulose basic anion exchanger having a quaternary ammonium group as an exchange group can be obtained by, for example, trialkylaminoethylation of a part or all of —OH groups of cellulose.
  • Examples thereof include cellulose having an exchange group of OCH CH NR X.
  • R represents an alkyl group, and usually methylol, ethyl, propyl, butyl, etc. are used, preferably methyl, ethyl is used.
  • X represents an anion as described above.
  • the inorganic carrier-supporting strong basic anion exchanger having a quaternary ammonium group as an exchange group that can be used in the present invention is a modification of a part or all of the surface hydroxyl group-OH of the inorganic carrier. Introduced 4th grade ammonia group 10 (CH) nNR X
  • silica, alumina, silica alumina, titania, zeolite and the like can be used, preferably silica, alumina and silica alumina are used, and silica is particularly preferably used.
  • any method for modifying the surface hydroxyl group of the inorganic carrier any method can be used.
  • solid strongly basic anion exchangers having a quaternary ammonium group as an exchange group can also be used. In that case, it can be used as a transesterification catalyst after ion exchange with a desired anion species in advance as a pretreatment.
  • a solid catalyst is preferably used as a transesterification catalyst. Further, a solid catalyst in which part or all of these nitrogen-containing heterocyclic groups are quaternized is also used. In the present invention, a solid catalyst such as an ion exchanger can also function as a packing.
  • the amount of the catalyst used in the present invention varies depending on the type of catalyst used, but in the case of continuously supplying a homogeneous catalyst that dissolves in the reaction solution under the reaction conditions, and Table Wa as a percentage of the total mass of a cyclic carbonate and an aliphatic monohydric alcohol, usually from 0.0001 to 50 mass 0/0, preferably from 0.005 to 20 mass 0/0, more preferably 0. 01: Used at 10% by weight.
  • a solid catalyst is used in the distillation column, it is used in an amount of 0.01 to 75% by volume, preferably 0.05 to 60% by volume, A catalyst amount of 0.:! To 60% by volume is preferably used.
  • a continuous multi-stage distillation column A which is a reactive distillation column is added to a cyclic carbonate and
  • the method of continuously supplying the aliphatic monohydric alcohol there is no particular limitation in the distillation column A in the region of at least 5 or more, preferably 7 or more, more preferably 10 or more. Any method may be used as long as it can be brought into contact with the catalyst. That is, the cyclic carbonate and the aliphatic monohydric alcohol can be continuously supplied from the necessary number of inlets to the stage satisfying the above-mentioned conditions of the continuous multistage distillation column A. Further, the cyclic carbonate and the aliphatic monohydric alcohol may be introduced into the same stage of the distillation column A or may be introduced into different stages.
  • the raw material is continuously supplied to the distillation column A as a liquid, a gas, or a mixture of a liquid and a gas.
  • the cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state to the upper stage from the stage where the catalyst is present, and the aliphatic monohydric alcohol is gaseous to the lower part of the distillation tower A.
  • a method of supplying continuously in a liquid state is also a preferable method. In this case, it goes without saying that an aliphatic monohydric alcohol is contained in the cyclic force carbonate.
  • the product may contain dialkyl carbonate and / or diol as the product.
  • the content of the dialkyl carbonate is usually 0 to 40% by mass, preferably 0 to 30% by mass, and more preferably 0 when the dialkyl carbonate is represented by mass% of the dialkyl carbonate in the aliphatic monohydric alcohol / dialkyl carbonate mixture. -20% by mass, and the diol is expressed by mass% in the cyclic carbonate / diol mixture, and is usually 0 to: 10% by mass, preferably 0 to 7% by mass, and more preferably 0 to 5% by mass. .
  • the cyclic carbonate recovered in this step and / or other steps It is also preferred that substances based on Z or aliphatic monohydric alcohols can be used as these raw materials.
  • the present invention makes this possible and is an excellent feature of the present invention.
  • the other step includes, for example, a step of producing diaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound, and in this step, an aliphatic monohydric alcohol is by-produced and recovered.
  • Aliphatic monohydric alcohols usually contain dialkyl carbonates, aromatic monohydroxy compounds, alkylaryl ethers, etc., and may contain small amounts of alkylaryl carbonates, diaryl carbonates, etc. is there.
  • the by-product aliphatic monohydric alcohol can be used as it is as a raw material of the present invention, or it can be used as a raw material after reducing the content of substances having a boiling point higher than that of the aliphatic monohydric alcohol by distillation or the like. .
  • the preferred cyclic carbonate used in the present invention is produced by a reaction of alkylene oxide such as ethylene oxide, propylene oxide, styrene oxide and carbon dioxide.
  • alkylene oxide such as ethylene oxide, propylene oxide, styrene oxide and carbon dioxide.
  • a cyclic force carbonate containing a small amount of can also be used as a raw material of the present invention.
  • the amount ratio between the cyclic carbonate and the aliphatic monohydric alcohol supplied to the reactive distillation column A varies depending on the type and amount of the transesterification catalyst and the reaction conditions.
  • the aliphatic monohydric alcohols can be supplied in a molar ratio in the range of 0.01 to 1000 times with respect to the cyclic carbonate to be supplied.
  • S the fat is used to increase the reaction rate of the cyclic carbonate. It is preferable to supply an excess of the group 1 monohydric alcohol in an amount of 2 moles or more. However, if it is used too much, the device needs to be enlarged.
  • the molar ratio of the aliphatic monohydric alcohol to the cyclic carbonate is preferably 2 to 20 forces S, more preferably 3 to 15 and even more preferably 5 to 12. If a large amount of unreacted cyclic carbonate remains, it reacts with the product diols to produce dimers, trimers and other multimers. Cyclic force-It is preferable to reduce the remaining amount of the bonate as much as possible. In the method of the present invention, even when the molar ratio is 10 or less, the reaction rate of the cyclic carbonate is 98% or more, preferably 99. / 0 or more, more preferably 99.9% or more. This is also one of the features of the present invention.
  • a high boiling point reaction mixture (A) containing preferably about 1 ton or more of diols per hour is continuously produced in the reactive distillation column A, and this is converted into a continuous multistage distillation column C.
  • the column bottom component (C) is separated by distillation in a continuous multistage distillation column E and about 1 ton per hour is obtained.
  • High-purity diols that are higher than The minimum amount of carbonate is usually 1.55 P ton / hr, preferably 1 to 5 P ton / hr, more preferably 1 to 45 kg ton / hr, based on the amount of high purity diol to be produced (P ton / hr). hr. If more preferable, it can be less than 1.43 P ton / hr.
  • a high boiling point reaction mixture (A) containing diols generated from the lower part of distillation column A is connected in liquid form.
  • a substance having a boiling point lower than that of the diol contained in the reaction mixture (A) is added to the top component (C) and
  • B T Z or side-cut component (C) is continuously extracted as a bottom component mainly composed of diol
  • high-purity diol of preferably about 1 ton or more per hour can be stably produced for a long period of time.
  • the continuous multi-stage distillation column A used in the step (I) is not limited to the conditions from the simple distillation function, but the conditions necessary for the reaction to proceed stably with high reaction rate and high selectivity. It is necessary to combine them.
  • the continuous multistage distillation column C used in the step (II) is added to the high boiling point reaction mixture (A).
  • a substance having a boiling point lower than that of the diol contained is a top component (C) and a side cut component (C).
  • the continuous multi-stage distillation column E used in step (in) has a high purity diol from a large amount of the bottom component (C).
  • the present invention is an industrial distillation apparatus having a specific structure having these functions. It has been found that the object of the present invention can be achieved by providing a device.
  • the cyclic carbonate is substantially absent.
  • a small amount of water is added to the continuous multi-stage distillation column C, and the unreacted cyclic carbonate is converted into diol by hydrolysis reaction and Z or reacted with diol to convert to dialkylene glycol or the like.
  • measures for achieving the above for example, ensuring the temperature and residence time necessary for the reaction to proceed completely, reducing the back-mixing of the bottom components, etc.
  • substantially free means that its content is 50 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less.
  • Continuous multistage distillation column A, continuous multistage distillation column C, and continuous multistage distillation column used in the present invention are continuous multistage distillation column A, continuous multistage distillation column C, and continuous multistage distillation column used in the present invention
  • the continuous multistage distillation column A has a length L (cm) satisfying the following formulas (1) to (6), an inner diameter D (cm
  • the continuous multistage distillation column C has a length L (cm) satisfying the following formulas (7) to (15), an inner diameter D (c
  • One or more chimneys with mouths are installed,
  • the side cut outlet is connected to the liquid reservoir of the chimney tray of the continuous multistage distillation column C.
  • a continuous multistage distillation column A continuous multistage distillation column,
  • the continuous multistage distillation column E has a length L (cm) satisfying the following formulas (18) to (26), an inner diameter D
  • One or more chimney trays are installed in the concentrating part of the continuous multistage distillation column E as an internal, and the chimney tray has an opening with a cross-sectional area S (cm 2 ) satisfying the equation (27).
  • the side cut outlet is connected to the liquid reservoir of the chimney tray of the continuous multistage distillation column E.
  • a continuous multistage distillation column A continuous multistage distillation column,
  • high-purity diol is 1 ton or more, preferably 2 ton or more, more preferable per hour.
  • L In order to reduce the equipment cost while ensuring the reaction rate that cannot achieve the target production volume and achieve the target production volume, L must be 8000 or less. More preferred L
  • the range of (cm) is 2300 ⁇ L ⁇ 6000, more preferably 2500 ⁇ L ⁇ 5000
  • the preferred range of D (cm) is 200 ⁇ D ⁇ 1000, more preferably 210 ⁇ D
  • L / D is 5 ⁇ L / D ⁇ 30
  • n is less than 10, the reaction rate decreases and the target production volume cannot be achieved.
  • n is not less than 120.
  • n is 30 ⁇ n ⁇ 100, more preferably 40 ⁇ n ⁇ 90.
  • D Zd is 4 ⁇ D / d ⁇ 15, even more preferably 5 ⁇ D
  • the range of 0 02 is 7 ⁇ D / d ⁇ 25, more preferably 9 ⁇ D / d ⁇ 20.
  • L must be 3000 or less in order to reduce the equipment cost while ensuring the target separation efficiency. L is from 3000
  • L (cm) is 500 ⁇ L ⁇ 2000, even more preferable
  • D In order to reduce equipment costs while achieving the above, D must be 700 or less.
  • the preferred range of D (cm) is 70 ⁇ D ⁇ 500, more preferably 190 ⁇ D
  • the preferred L / D range is 4 ⁇ L / D ⁇ 20, more preferably 5 ⁇ L / D
  • n is greater than 30, the pressure difference between the top and bottom of the tower
  • n 5 ⁇ n ⁇
  • L (cm) is smaller than 1000, the separation efficiency of the concentrating part is lowered, so that the desired separation is achieved. In order to reduce the equipment costs while ensuring the desired separation efficiency, L cannot be achieved.
  • C2 must be 5000 or less. Larger than L force 3 ⁇ 4000, the pressure above and below the tower
  • the range of C2 is 1500 ⁇ L ⁇ 4000, more preferably 2000 ⁇ L ⁇ 3500
  • D In order to reduce equipment costs while achieving the above, D must be 500 or less.
  • the preferred range of D (cm) is 70 ⁇ D ⁇ 400, more preferably 90 ⁇ D ⁇
  • the preferred L / D range is 15 ⁇ L / D ⁇ 40, more preferably 20 ⁇ L
  • n force is less than 3 ⁇ 40, the separation efficiency of the concentrating part is lowered, so that the target separation efficiency is achieved.
  • n is not less than 100.
  • n 30 ⁇ n
  • D ⁇ D is preferable.
  • step (II) the high boiling point reaction mixture (A) supplied to the continuous multistage distillation column C
  • a plurality of (n stages) trays K are further provided below the internal part at the bottom of the recovery section at the bottom of the continuous multistage distillation column C.
  • a part of the liquid is continuously withdrawn from the top of the tray K and is required for distillation and reaction with a reboiler. After supplying a sufficient amount of heat, the heated liquid is returned to the distillation column C from a supply port provided between the internal at the bottom of the recovery section and the uppermost tray K, and the remaining liquid is transferred to the lower tray. It is a preferred embodiment of the present invention to be able to power in turn.
  • the residence time of the liquid in the lower part of the continuous multistage distillation column C can be increased, and the column diameter (D) below the stage where the tray K is present is recovered.
  • Time can be increased and sufficient reaction time can be maintained. Furthermore, by making the liquid level of the bottom liquid lower than that of the lowermost tray of tray ⁇ , it is possible to prevent the back mixing of the liquid at the bottom of the tower. Therefore, in the present invention, even when a small amount of unreacted cyclic carbonate is contained, the unreacted cyclic carbonate reacts with the diol present in a large excess in the step (II) to completely convert the high-boiling dialkylene glycol and the like. Can be converted.
  • the perforated plate tray is a baffle tray.
  • a baffle tray is particularly preferable.
  • a weir is provided in the case of a perforated plate tray or baffle tray. It is preferable that the liquid overflowing the weir is continuously dropped from the downcomer portion to the lower tray.
  • the height of the weir is preferably 4 to 30 cm, more preferably 6 to 20 cm, and still more preferably 8 to 15 cm.
  • a simple tray in which this weir is a baffle is particularly preferred.
  • the preferred range of D is 1.2D ⁇ D ⁇ 5D, more preferably 1.5D ⁇
  • n is a force having two or more steps, and a preferable range of n is 3 ⁇ n ⁇ 20,
  • C3 C3 C3 Preferably 4 ⁇ n ⁇ 15, more preferably 5 ⁇ n ⁇ 10.
  • the chimney tray installed in the concentrating part of the continuous multi-stage distillation column C is one or more chimneys (chimney-like objects) having an opening of a cross-sectional area S (cm 2 ) on the plane of the tray. thing
  • a chimney cover is preferably installed in the upper opening of the chimney. This chimney cover helps the gas component rising from the lower stage to flow sideways at the chimney's upper opening (gas outlet), and at the same time falls from the upper stage. This helps to prevent the incoming liquid component from falling directly to the lower stage.
  • the shape of the cross section of the chimney may be any of a triangle, a rectangle, a polygon, a circle, an elliptical system, a star, and the like, but a rectangle and a circle are preferably used.
  • the chimney may have different cross-sectional shapes and areas from the top to the bottom, but the same is preferable because it is easy to manufacture and inexpensive.
  • two or more chimneys may have different shapes, but those having the same shape are preferable.
  • the cross-sectional area S (cm 2 ) force equation (16) of the opening of the chimney connected to the chimney tray (minimum portion in the cross-section of the chimney) is satisfied.
  • the chimney tray used in the present invention is usually provided with a downcomer section for dropping the liquid component to the lower stage and a weir force for holding the liquid component.
  • the height of the weir is a force that depends on h. Usually, it is set to be 5 to 20 cm smaller than h. Therefore h is
  • the amount of liquid retained in the chimney tray will be small, making long-term stable operation difficult. Also, if h is greater than 80, the amount of liquid retained will increase, increasing the strength of the equipment.
  • a more preferred h (cm) is 15 ⁇ h ⁇ 60.
  • the opening ratio of the chimney tray (the ratio of the total cross-sectional area of the chimney opening to the area of the chimney tray including the entire cross-sectional area of the chimney) is in the range of 10 to 40%. Is preferred. If the opening ratio is less than 5%, long-term stable operation becomes difficult. Also greater than 40% In this case, it is necessary to increase the number of chimneys or raise the chimneys. A more preferable opening ratio is in the range of 13 to 35%, and further preferably in the range of 15 to 30%.
  • one or more chimney trays are installed in the concentrating part of the continuous multi-stage distillation column C (the part above the supply port to the tower and the part below the top of the tower), and at the bottom of the liquid reservoir.
  • a fraction mainly composed of an intermediate boiling point substance having a boiling point higher than that of the aliphatic monohydric alcohol having a boiling point lower than that of the diol is continuously extracted from the connected side cut outlet.
  • the number of chimney trays is implemented with a force S, usually one, which can be two or more as required.
  • the stage where the chimney tray is installed may be at any position in the concentrating section, but it is preferably at least the third stage from the bottom of the concentrating section and the tenth stage from the top of the concentrating section.
  • it is at least the fourth stage from the bottom of the stage of the enrichment section, and the stage of the 15th stage or less from the top of the stage of the enrichment section, and more preferably, the fifth stage or more from the bottom of the stage of the enrichment section. Therefore, it is the 24th or lower stage from the top of the stage of the enrichment section.
  • the target separation efficiency cannot be achieved because the separation efficiency of the recovery section is reduced, and L must be 3000 or less in order to reduce the equipment cost while ensuring the target separation efficiency.
  • the more preferable range of L (cm) is 500 ⁇ L ⁇ 2000 V
  • D In order to reduce equipment costs while achieving the above, D must be 700 or less.
  • the preferred range of D (cm) is 100 ⁇ D ⁇ 600, more preferably 120 ⁇ D
  • L / D is 3 ⁇ L / ⁇ 20, more preferably 4 ⁇ L /
  • n force is less than 3 ⁇ 4
  • the separation efficiency of the recovery unit decreases, and the target separation efficiency is achieved. It is not possible to reduce the equipment cost while ensuring the desired separation efficiency.
  • n is greater than 30, the pressure difference between the top and bottom of the tower
  • n 5 ⁇ n ⁇
  • L (cm) is smaller than 600, the separation efficiency of the concentrating part is lowered, so that the desired separation effect is obtained.
  • the range of E2 is 700 ⁇ L ⁇ 3000, more preferably 800 ⁇ L ⁇ 2500
  • a more preferable range of D (cm) is 120 ⁇ D ⁇ 800, and more preferably 150
  • L / D is 3 ⁇ L / ⁇ 20, more preferably 4 ⁇ L /
  • n is greater than 50, the pressure difference between the top and bottom of the tower will be large.
  • n 7 ⁇ n ⁇
  • D ⁇ D is more preferable.
  • the chimney tray installed in the concentrating part of the continuous multistage distillation column E is provided with two or more chimneys (chimney-like objects) having an opening of a cross-sectional area S (cm 2 ) on the plane of the tray.
  • the chimney cover is installed in the upper opening part of those chimneys. This chimney cover helps the gas component rising from the lower stage to flow sideways at the upper opening (gas outlet) of the chimney, and at the same time prevents the liquid component falling from the upper stage from falling directly to the lower stage. Helps to prevent.
  • the cross-sectional shape of the chimney may be any of a triangle, a quadrangle, a polygon, a circle, an elliptical system, a star, and the like, but a quadrangle and a circle are preferably used.
  • the chimney may have different cross-sectional shapes and areas from the top to the bottom, but the same is preferable because it is easy to manufacture and inexpensive.
  • two or more chimneys may have different shapes, but those having the same shape are preferable.
  • the chimney tray used in the present invention is usually provided with a downcomer section for dropping the liquid component to the lower stage and a weir for holding the liquid component.
  • the height of the weir is a force that depends on h. Usually, it is set to be 5 to 20 cm smaller than h. Therefore h is
  • the opening ratio of the chimney tray (the ratio of the total cross-sectional area of the chimney opening to the area of the chimney tray including the entire cross-sectional area of the chimney) is in the range of 5 to 40%. Is preferred. If the opening ratio is less than 5%, long-term stable operation becomes difficult. If it exceeds 40%, it is necessary to increase the number of chimneys or raise the chimneys, which will increase the equipment cost. A more preferred aperture ratio is in the range of 10-30%, and even more preferably in the range of 15-25%.
  • one or more chimney trays are installed in the concentrating part of the multistage distillation column E (above the supply port to the column and below the top of the column), and at the bottom of the liquid reservoir.
  • One feature is that liquid high-purity diol is continuously extracted from the connected side-cut extraction port.
  • the number of chimney trays can be increased to two or more as required, usually one.
  • the chimney tray can be installed at any position in the concentrating section, but it is preferable to use the third or higher stage from the bottom of the concentrating section and the third or lower stage from the top of the concentrating section. .
  • it is the 4th or more stage from the bottom of the stage of the enrichment section, the 4th stage or less from the top of the stage of the enrichment section, and more preferably the 5th stage or more from the bottom of the stage of the enrichment section, It is the fourth and lower stages from the top of the enrichment section.
  • a distillation column having a tray and / or a packed material as an internal of the continuous multistage distillation column A used in the step (I) is preferable. Further, in the continuous multi-stage distillation column C used in the step (II) and the continuous multi-stage distillation column E used in the step (III), each recovery unit and concentrating unit have a tray and Z or packing as an internal. A distillation column is preferred.
  • re-internal means a part where gas-liquid contact is actually performed in a distillation column.
  • trays include foam trays, perforated plate trays, ripple trays, ballast trays, valve trays, countercurrent trays, uniflux trays, super flake trays, max flack trays, duano reflow trays, grids.
  • Preferred fillings such as plate trays, turbo grid plate trays, kittel trays, etc.
  • Irregular packing such as rings, lessing rings, pole rings, Berle saddles, interlock saddles, Dixon packings, McMahon packings, helicacs, etc. Regular packing such as is preferred.
  • a multistage distillation column having both a tray part and a packed part can also be used.
  • the term “internal number of stages n, n, n, n, n” used in the present invention means the number of trays in the case of trays.
  • n, n, n, and n are the number of trays and the theoretical plate.
  • a tray type comprising a tray and / or a packing having n stages of internals
  • each tray weir is preferably in the range of 3-20 cm.
  • the height of this weir affects the liquid residence time in each tray.
  • the reaction usually proceeds in the liquid portion where the catalyst is present, so the liquid residence time in each tray is directly related to the reaction time. When the height of the weir of each tray below the catalyst supply stage is low, the reaction time is short, and when the height of the weir is high, the reaction time is long.
  • reaction and distillation are usually carried out in the stage where the catalyst is present, and distillation purification is carried out in the stage where the catalyst is not present.
  • step (I) if the height of the weir is lower than 3 cm, it will be difficult to achieve the desired high reaction rate, and if the height of the weir is higher than 20 cm, a side reaction will occur.
  • the difference in pressure between the upper and lower parts of the distillation column is just as it becomes difficult to achieve high selectivity by increasing the production of high-boiling by-products due to the reaction of the diols and unreacted cyclic carbonate. Becomes larger and it becomes difficult to perform a stable distillation operation.
  • a more preferable range of the height of the weir of each tray is 3.5 to 15 cm, and a more preferable range is 4 to 13 cm.
  • the height of the weirs on each tray may be the same or different.
  • a multistage distillation column having a weir whose height of the weir in the reaction stage where the catalyst is present is higher than that of the stage where the catalyst is not present is preferably used.
  • the perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It was also found that the perforated plate tray preferably has 100 to 1000 holes per area lm 2 of the perforated plate portion. More preferably, the number of holes is 120 to 900 per lm 2 , and more preferably 150 to 800. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 . The cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and still more preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion and the cross-sectional area per hole is 0.5 to 5 cm 2 , It has been found to be particularly preferred. Further, the number of holes in the perforated plate portion may be the same in all perforated plates, or may be different.
  • the opening ratio of the perforated plate tray of the continuous multistage distillation column A referred to in the present invention is the total area (holes) of the openings of each tray through which gas and liquid can pass in each tray constituting the multistage distillation column A. ) And the area of the tray having the opening. For trays with down force marker parts, the area of the part where bubbling has substantially occurred excluding that part is the area of the tray.
  • the aperture ratio of the perforated plate tray of the continuous multistage distillation column A is preferably in the range of 1.5 to 15%. If the opening ratio is less than 1.5%, the equipment will be larger than the required production volume, and the residence time will be increased as well as the equipment cost will be increased, and side reactions (for example, diols as reaction products) And the reaction of the unreacted cyclic carbonate). The aperture ratio is 15. / If it is greater than 0 , the residence time in each tray will be shortened. In order to achieve this, it is necessary to increase the number of stages, which is inconvenient when n is increased.
  • the preferable range of the aperture ratio is 1.7 to 8.0%, more preferably 1.9 force to 6.0%.
  • the opening ratios of the respective trays of the continuous multistage distillation column A may all be the same or different.
  • a multistage distillation column in which the opening ratio of the upper tray is larger than the opening ratio of the lower tray is preferably used.
  • the reaction time of the transesterification performed in the step (I) is considered to correspond to the average residence time of the reaction liquid in the continuous multistage distillation column A, but this is the internal shape and number of stages of the distillation column, although it varies depending on the amount of raw material supplied, the kind and amount of catalyst, reaction conditions, etc., it is usually 0.1 to 20 hours, preferably 0.5 to 15 hours, more preferably:! To 10 hours.
  • the reaction temperature in step (I) varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 30 to 300 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions tend to occur.
  • the preferred reaction temperature range is 40 to 250 ° C., more preferably 50 to 200 ° C., and even more preferably 60 to: 150 ° C.
  • step (I) it is possible to carry out reactive distillation at a column bottom temperature of 150 ° C or lower, preferably 130 ° C or lower, more preferably 110 ° C or lower, and even more preferably 100 ° C or lower. It is.
  • One of the excellent features of the present invention is that high reaction rate 'high selectivity' and high productivity can be achieved even at such a low column bottom temperature.
  • the reaction pressure in step (I) may be any force S, reduced pressure, normal pressure, or increased pressure depending on the type and composition of the starting compound used, the reaction temperature, etc.
  • X 10 7 Pa preferably 10 3 Pa to 10 7 Pa, more preferably 10 4 to 5 X 10 6 .
  • the internals of the continuous multi-stage distillation column C except for the recovery part and the internal part of the concentrating part are trays and / or packings. Furthermore, it has been found that it is particularly preferable that the internal part of the recovery part is a tray and the internal part excluding the chimney tray of the concentrating part is a tray and Z or regular packing. It was also found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. And it was also found that the perforated plate tray preferably has 100 to 1000 holes per area lm 2 of the perforated plate portion. .
  • the number of holes is more preferably 150 to 900 per lm 2 , and further preferably 200 to 800. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 . The cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and still more preferably 0.9 to 3 cm 2 . Furthermore, when the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion and the cross sectional area per hole is 0.5 to 5 cm 2 , It has been found to be particularly preferred.
  • the aperture ratio of the perforated plate tray in the recovery section of the continuous multi-stage distillation column C (the ratio of the total sectional area of the holes in the first tray and the area of the tray) is in the range of 2 to 15%. More preferably, it is in the range of 2.5 to 12%, and more preferably in the range of 3 to 10%.
  • the aperture ratio of the perforated plate tray in the concentrating part of the continuous multi-stage distillation column C (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is in the range of 1.5 to 12%. More preferably, it is in the range of 2 to 11%, and more preferably in the range of 2.5 to 10%.
  • the chimney tray installed in the concentration section is counted in the number of stages, but the opening ratio is different from the opening ratio of the perforated plate tray as described above.
  • the internal parts of the recovery section and the concentration section of the continuous multistage distillation column E are trays. Furthermore, it has been found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It was also found that it is preferable that the perforated plate tray has 150 to 1200 holes per area lm 2 of the perforated plate portion. The number of pores is more preferably 200 to 1100 per lm 2 , and further preferably 250 to 1000. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 150 to 1200 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2 . In particular, it has been found to be particularly preferred.
  • the aperture ratio of the perforated plate tray in the recovery section of the continuous multi-stage distillation column E (breakage of holes in the first tray)
  • the ratio of the total area to the area of the tray) is preferably in the range of 3-25%, more preferably in the range of 3.5-22%, more preferably in the range of 4-20% Range.
  • the aperture ratio of the perforated plate tray in the concentrating part of the continuous multi-stage distillation column E (the ratio of the total cross-sectional area of the holes in the first tray and the area of the tray) is in the range of 2 to 20%. Is more preferably in the range of 3 to 15%, and still more preferably in the range of 3.5 to 13%.
  • the chimney tray installed in the concentrating section is counted as the number of stages, but the opening ratio is different from the opening ratio of the perforated plate tray as described above.
  • the area of the tray required for obtaining the opening ratio includes the total of the cross-sectional areas of the holes of the tray.
  • the dialkyl carbonate produced by reactive distillation in the continuous multistage distillation column A is usually used in excess, and the low-boiling point reaction mixture (A) with the aliphatic monohydric alcohol remaining unreacted. As shown in FIG. And generate
  • the high boiling point reaction mixture (A) containing the diols to be removed was continuously extracted in liquid form from the bottom of the column
  • diol 10% to 45% by weight of aliphatic monohydric alcohol, a very small amount of dialkyl carbonate, a very small amount (usually 0.2% by weight or less) of unreacted cyclic carbonate, and a small amount (usually 0.4% by weight or less) of diol.
  • low-boiling by-products such as 2-alkoxyethanol
  • small amounts usually 1% by mass or less
  • diols containing catalysts include higher-boiling by-products (such as dialkylene glycol).
  • step (II) a substance having a lower boiling point than the diol in the high boiling point reaction mixture (A) continuously fed into the continuous multistage distillation column C (aliphatic monohydric alcohol, trace amount)
  • the concentration of the diol in the bottom component (C) is usually 95%.
  • % By weight, preferably 97% by weight or more, more preferably 98% by weight or more. is there.
  • a very small amount (usually 0.2% by mass or less) of unreacted cyclic carbonate supplied to the continuous multistage distillation column C is present in a large amount in the distillation column C. Since it is easy to make the amount of unreacted cyclic carbonate substantially zero by reacting with diol, it can be converted to dialkylene glycol.
  • the distillation conditions of the continuous multistage distillation column C performed in the step (II) include the internal shape and number of stages of the distillation column, the type, composition and amount of the high boiling point reaction mixture (A) to be supplied, and the necessity.
  • the tower bottom pressure is a force that varies depending on the composition in the tower and the tower bottom temperature used. Usually, it is in the range of 50000 to 300,000 Pa, preferably in the range of 80 000 to 250000 Pa, more preferably 100000 to 200,000 Pa.
  • the reflux ratio of the continuous multistage distillation column C is preferably in the range of 0.3 to 5, more preferably 0.
  • the diol content in the top component (C 2) of the continuous multistage distillation column C is the diol content in the top component (C 2) of the continuous multistage distillation column C.
  • the diol in the top component (C) is 10 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, and further preferably 5 ppm or less.
  • the diol in the top component (C) is 10 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less, and further preferably 5 ppm or less.
  • the side-cut component (C) of the continuous multistage distillation column C is usually an aliphatic monohydric alcohol, diio
  • the amount is usually a continuous multistage distillation column 4% or less of the high boiling point reaction mixture (A) supplied to C, which is preferred 3% or less, more preferably 2% or less.
  • the content of the diol in the side cut component (C 1) is continuously multi-staged.
  • the diol fed to the distillation column C can be easily reduced to usually 0.5% or less, preferably 0.4% or less, more preferably 0.3% or less.
  • Dialkylene glycol and the like is usually 2% or less, preferably 1.5% or less, more preferably 1% or less, and a diol containing a trace amount of catalyst components can be obtained continuously.
  • the diol obtained as the bottom component (C) is the diol supplied to the continuous multistage distillation column C.
  • diol can be obtained with such a high recovery rate.
  • patent documents are used for the purpose of obtaining an ultra-high purity diol having a very small amount of aldehyde that may be contained in the diol, and an ultra-high purity diol having a high ultraviolet transmittance. According to the method described in 9 or 10, it is also preferable to supply a small amount of water to the lower part of the continuous multistage distillation column E and / or the continuous multistage distillation column C.
  • the distillation conditions of the continuous multistage distillation column E performed in the step (III) include the internal shape and number of stages of the distillation column, the type and composition and amount of the bottom component (C) to be supplied, and the required diol. Net of
  • the bottom temperature is a specific temperature in the range of 110 to 210 ° C.
  • a more preferable temperature range at the bottom of the column is 120 to 190 ° C, and a more preferable temperature range is 130 to 170 ° C.
  • the bottom pressure is a force that varies depending on the composition in the tower and the bottom temperature used. Usually, it is in the range of 8000 to 40000 Pa, preferably in the range of 10000 to 3300 OPa, and more preferably 12000 to 27000 Pa.
  • the reflux ratio of the continuous multistage distillation column E is preferably in the range of 6 to 50, more preferably in the range of 8 to 45, and still more preferably in the range of 10 to 30.
  • the top component (E) of the continuous multistage distillation column E is a small amount of diol (usually
  • the bottom component (E) of the continuous multistage distillation column E is a high-boiling by-product containing a small amount of diol and catalyst formation.
  • the side cut component (E) of the continuous multistage distillation column E is usually 99% or more, preferably 99.9.
  • dialkylene glycol and the like can be easily adjusted to 1% by mass or less, preferably 0.1% by mass or less, more preferably 0.01% by mass or less.
  • the reaction is carried out using a raw material or catalyst that does not contain halogen, so that the diol produced can be completely free of halogen. Therefore, in the present invention, it is easy to produce a diol having a halogen content of 0.1 lppm or less, preferably lppb or less.
  • a high-purity diol having impurities having a boiling point higher than that of a diol such as dialkylene glycol of 200 ppm or less and a halogen content of 0.1 ppm or less Preferably, it is easy to produce a high purity diol having impurities having a boiling point higher than that of a diol such as dialkylene glycol and having a halogen content of 1 ppb or less.
  • the yield is usually 97% or more, preferably 98% or more, more preferably 99% or more based on the cyclic carbonate used. High purity diol can be produced.
  • the materials constituting the continuous multistage distillation columns A, C and E used in the present invention are mainly metal materials such as carbon steel and stainless steel. From the aspect of the quality of dialkyl carbonate and diol produced Stainless steel is preferred.
  • Halogen was measured by ion chromatography.
  • the height of each tray weir above the cyclic carbonate feed stage (55th stage under pressure) was 5 cm, and the height of each tray below the cyclic carbonate feed stage was 6 cm.
  • the opening ratio of each tray was in the range of 2.:! To 4.2%.
  • this section has a downcomer section, and 8 stages of baffle trays K, where weirs (height, 10cm) are baffles.
  • the uppermost tray of this baffle tray K has been devised so that a part of the liquid is continuously extracted from the lower part. The extracted liquid is heated by the reboiler and then the upper part of the upper part of the stage. To be supplied.
  • the upper half is packed with 52 melapacks, the chimney tray is installed in the lower section, and the eight trays are installed in the lower section.
  • a perforated plate tray was used as the internal of the recovery unit, and a perforated plate tray was used as the tray of the concentrating unit.
  • the number of holes in the perforated plate tray in the collection section was in the range of about 250 to 300 holes / m 2 , and the opening ratio was in the range of 3 to 4%. Further, the number of holes in the perforated plate tray in the concentrating portion was in the range of about 150 to 300 holes / m 2 , and the opening ratio was in the range of 2.8 to 3.6%.
  • the aperture ratio was in the range of 18-25%.
  • This chimney tray has a downcomer section, and the height of the weir was 10 cm.
  • a continuous multi-stage distillation column E was used in which the first stage of the chimney tray was installed in the upper stage of the thickening section and the fifth stage.
  • Pore number of sieve trays in the stripping section ranges from about 300 to 370 cells / m 2, range aperture ratio of 4-5% Met.
  • the number of holes of the perforated plate tray in the concentrating part was in the range of about 300 to 450 holes / m 2 , and the opening ratio was in the range of 3 to 4%.
  • This chimney tray has a downcomer section, and the weir is 40 cm high.
  • the reaction was continuously distilled at a temperature of 98 ° C., a pressure at the top of the column of about 1.118 ⁇ 105 Pa, and a reflux ratio of 0.42.
  • the continuous multi-stage distillation column C was continuously supplied from the inlet 1.
  • This inlet 1 is installed between the 10th and 11th trays from the bottom of the continuous multistage distillation column C.
  • the top component of continuous multistage distillation column E 0.155 ton / hr (ethylene glycolol 0.137 ton / hr, 7 0.019 ton) / hr)
  • Continuous multistage distillation column C was operated continuously at a bottom temperature of about 200 ° C, a top pressure of about 11000 Pa, and a reflux ratio of 0.9. Further, the liquid level at the bottom of the column was maintained below the bottom tray of the perforated plate tray K.
  • Ethylene glycol 32 ton / hr, diethylene glycol, catalyst component and high boiling point Organism 0.019 ton / hr was continuously extracted.
  • the concentration of ethylene glycol in the tower bottom component (C) was 99.1% by mass. Also continuous
  • This bottom component (C) 2.339 ton / hr is installed between the 8th and 9th stages from the bottom.
  • Continuous multistage distillation column E It was continuously fed from the inlet 1 to the continuous multistage distillation column E. From the inlet 5 at the bottom of the continuous multistage distillation column E, through the reboiler 7, water with an oxygen concentration of 10 ppm or less was supplied at 0.019 ton / hr. Continuous multistage distillation column E was continuously operated at a bottom temperature of about 149 ° C, a bottom pressure of about 14600 Pa, and a reflux ratio of 11.
  • the top component (E) continuously extracted at 0.155 ton Zhr from the top 2 of the continuous multistage distillation column E was ethylene glycol 0
  • This tower top component (E) is continuous multistage
  • the bottom component (E) continuously extracted at 0.04 tons / hr from the bottom 3 of the continuous multistage distillation column E is 0.02 tons / hr of ethylene glycol.
  • the content of high-boiling impurities such as ru was less than lOppm, and halogen was less than lpp b outside the detection limit.
  • the yield of high-purity ethylene glycol based on ethylene carbonate was 98.6%.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours, the production amount of ethylene glycol per hour is 2.1 62, 2.162, 2.162 tons, 2 It was 162 tons and 2. 162 tons, and was always stable (it was stable.
  • the purity of ethylene glycol was 99.99% or more and the halogen content was less than lppb outside the detection limit.
  • the aldehyde content measured by the method of Patent Document 15 was 0.2 ppm or less, and the ultraviolet transmittance at 220 nm was 90%.
  • Example 2 Using the same continuous multi-stage distillation column A, continuous multi-stage distillation column C, and continuous multi-stage distillation column E as in Example 1, high-purity ethylene glycol was produced in the same manner.
  • Continuous multistage distillation column E was continuously operated at a column bottom temperature of about 162 ° C, a column bottom pressure of about 17300 Pa, and a reflux ratio of 12.
  • the top component (E) continuously extracted at 0.192 ton Zhr from the top 2 of the continuous multistage distillation column E was ethylene glycol 0
  • This top component (E) is a continuous multi-stage steam
  • the bottom component (E) continuously extracted at 0.055 ton / hr from the bottom 3 of the continuous multistage distillation column E was 0.015 ton Zhr of ethylene glycol
  • the content of high-boiling impurities such as ru was less than lOppm, and halogen was less than lpp b outside the detection limit.
  • the yield of high-purity ethylene glycol based on ethylene carbonate is 98.5. It was / 0. A long-term continuous operation was performed under these conditions.
  • the production amount of ethylene glycol per hour after 1000 hours, 2000 hours, 3000 hours, 5000 hours is 2.29 tons, 2.29 tons, 2.29 tons, 2.29 tons It was very stable.
  • the purity of ethylene glycol was 99.99% or more in all cases, and the halogen content was lppb or less outside the detection limit.
  • the aldehyde content was 0.2 ppm or less, and the ultraviolet transmittance at 220 nm was 90%.
  • the height of the weir of each tray above the cyclic carbonate supply stage (55th from the bottom) was 5 cm, and the height of the weir of each tray below the cyclic carbonate supply stage was 10 cm.
  • the opening ratio of each tray was in the range of 3 ⁇ 0 to 5.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 本発明が解決しようとする課題は、環状カーボネートと脂肪族1価アルコールとを原料とし、高純度ジオールを工業的に製造する具体的な装置及び方法を提供することにある。そしてそのことによって、例えば、高純度ジオールを1時間あたり1トン以上、好ましくは2トン以上、より好ましくは3トン以上の量で、長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)安定的に製造できる具体的な安価な工業的装置及び工業的製造方法を提供することにある。本発明によれば、特定の構造を有する連続多段蒸留塔A、連続多段蒸留塔C及び連続多段蒸留塔Eを用い、しかも該連続多段蒸留塔Eの濃縮部に設置された特定の構造を有するチムニートレイの下部に設置されたサイドカット抜き出し口から、液状の成分を抜き出すことによって、上記の課題が達成できる。

Description

明 細 書
高純度ジオールを工業的に製造する方法
技術分野
[0001] 本発明は、環状カーボネートと脂肪族 1価アルコールとを特定の構造を有する反応 蒸留塔 Aに連続的に供給し、反応蒸留法を行い、該反応蒸留塔 Aの塔底部から連 続的に抜き出されるジオール類を主成分とする高沸点反応混合物から、ジオールよ りも低沸点の物質を、特定の構造を有する連続多段蒸留塔 Cで留去したのち、該連 続多段蒸留塔 Cの塔底成分を、特定の構造を有する連続多段蒸留塔 Eを用いてサ イドカット成分として、ジオールを連続的に取得する高純度ジオールの工業的製造方 法である。
背景技術
[0002] 環状カーボネートと脂肪族 1価アルコール類の反応から、ジアルキルカーボネートと ジオール類を製造する反応蒸留法については、本発明者等が初めて開示した(特許 文献:!〜 10)が、その後、他社からも反応蒸留方式を用いる出願(特許文献 11〜: 15 )がなされている。この反応に反応蒸留方式を用いた場合、高い反応率で反応を進 行させることが可能である。し力、しながら、これまで提案されている反応蒸留法は、少 量のジアルキルカーボネートとジオール類を製造する方法である力、、短期間の製造 方法に関するものであり、工業的規模での長期間安定製造に関するものではなかつ た。すなわち、ジオールを連続的に大量 (例えば、 1時間あたり 1トン以上)に、長期間 (例えば 1000時間以上、好ましくは 3000時間以上、より好ましくは 5000時間以上) 安定的に製造するという目的を達成するものではなかった。
[0003] 例えば、エチレンカーボネートとメタノールからジメチルカーボネート (DMC)とェチ レングリコール (EG)を製造するために開示されている実施例における反応蒸留塔の 高さ(H: cm)、直径(D: cm)、段数 (n)、エチレングリコールの生産量 P (kg/hr)、 連続製造時間 T (hr)に関する最大値を示す記述は、表 1のとおりである。
[0004] [表 1]
Figure imgf000004_0001
(¾ 1)オールダ一ショゥ蒸留塔。 (注 2)蒸留塔を規定する記述はまったく無い。 (注 3)蒸留塔を規定する記述は段数のみ。 (注 4)生産置の記逑はまったく無い。 (注 5)長期間の安定製造に関する記述はまったく無い。
[0005] なお、特許文献 14 (第 0060段落)には、「本実施例は上記の図 1に示した好ましい 態様と同様のプロセスフローを採用し、エチレンカーボネートとメタノールの接触転化 反応によりエステル交換させてジメチルカーボネート及びエチレングリコールを製造 する商業的規模装置の操業を目的になされたものである。なお、本実施例で下記す る数値は実装置の操作にも十分適用可能である。」と記載され、その実施例として、 2 490kg/hrのエチレングリコールを具体的に製造したとの記載がなされている。実施 例に記載のこの規模はジメチルカーボネート年産 3万トン以上に相当するので、特許 文献 14の出願当時(2002年 4月 9日)としては、この方法による世界一の大規模商 業プラントの操業が実施されたことになる。し力、しながら、本願出願時でさえ、このよう な事実は全くなレ、。また、特許文献 14の実施例では、ジメチルカーボネートの生産 量は理論計算値と全く同一の値が記載されてレ、る力 エチレングリコールの収率は 約 85. 6%で、選択率は約 88. 4%であり、高収率'高選択率を達成しているとはい い難い。特に選択率が低いことは、この方法が工業的製造法として、致命的な欠点 を有していることを表している。 (なお、特許文献 14は、 2005年 7月 26日、未審查請 求によるみなし取下処分がなされている。 )
[0006] 反応蒸留法は、蒸留塔内での反応による組成変化と蒸留による組成変化と、塔内 の温度変化と圧力変化等の変動要因が非常に多ぐ長期間の安定運転の継続させ ることは困難を伴うことが多ぐ特に大量を扱う場合にはその困難性はさらに増大する 。反応蒸留法によるジアルキルカーボネートとジオール類を高収率 ·高選択率を維持 しつつ、それらの大量生産を長期間安定的に継続させ、高純度ジオールを製造する ためには、種々の工夫をすることが必要である。し力 ながら、これまでに提案されて いる反応蒸留法における、長期間の連続安定製造に関する記述は、特許文献 1及 び 2の 200〜400時間のみであった。
[0007] 本発明者等は、高収率 ·高選択率でジアルキルカーボネートとジオール類の大量 生産を長期間安定的に継続できる工業的な反応蒸留法を提案したが、それに加え て、留塔の下部から連続的に大量に抜き出される高沸点反応混合物から、高純度ジ オールを大量に且つ長時間安定的に分離 ·精製できる方法が必要であり、それによ つて大量の高純度ジオールを高収率で製造する方法が要望されている。本発明はこ の目的を達成するためになされたものである。
[0008] これまでに提案されている反応蒸留法によるジオールの 1時間あたりの生産量は表
1に示されるとおり、特許文献 14以外は 1時間あたり少量である。また、特許文献 14 の方法では、第 4工程の蒸留塔の塔底成分として、未反応エチレンカーボネート約 1 30kg/hr、及びジヒドロキシェチルカーボネー約 226kg/hrを含むエチレングリコ 一ルが約 2490kg/hrで得られた記載はある力 これは単に反応混合物の組成を記 述しているに過ぎず、高純度ジオールの製造については全く記載がない。
[0009] 反応蒸留及びジオール精製塔を用いて、比較的純度の高いジオールを製造する 方法として、そのジオール精製塔のサイドカットからジオールを取得する方法も知ら れている。たとえば、特許文献 12の実施例(図 5)では、反応蒸留塔の下部から抜き 出された高沸点反応混合物が、薄膜蒸発装置 (III)に供給され、そこで得られた高沸 点物質が薄膜蒸発装置 (IV)に供給され、そこで得られた低沸点蒸発物が蒸留塔 (V II)に供給され、その蒸留塔 (VII)の濃縮部のサイドカット成分(22)としてエチレング リコールを得た後、さらに精製装置 (IX)で精製することによって、高純度のエチレン グリコール力 255gZhrの生産量で製造されている。すなわち、特許文献 12の方法 では、高沸点反応混合物から、 4基の精製装置を用いることによって初めて高純度ェ チレングリコールが得られることを示している。し力も、特許文献 12の方法は少量の エチレングリコールの製法であり、大量(たとえば、 1トン/ hr以上)のジオールを長時 間(例えば、 5000時間以上)安定的に製造する方法についての何の示唆もない。
[0010] また、例えば、特許文献 15の実施例 1 (図 5)では、反応蒸留塔の下部から抜き出さ れた高沸点反応混合物が、第 2蒸留塔 (4)に供給され、そこで得られた高沸点物質 が加水分解反応器 (7)に供給され、その反応混合物が脱炭酸タンク (気液分離器: 8 )に供給され、そこで得られた液体成分が第 3蒸留塔(10)に供給され、第 3蒸留塔( 10)の回収部のサイドカット成分として、エチレングリコールが 19kg/hrの生産量で 製造されている。し力、しながら、特許文献 15の方法では、得られたエチレングリコー ノレは、ジエチレングリコールが 0. 2質量%含まれている。したがって、特許文献 15の 方法では PET繊維や PET樹脂の原料として必要な高純度エチレングリコールを得る ためには、さらにもう 1段以上の精製装置が必要である。すなわち、特許文献 15の方 法では、蒸留塔への供給口よりも下部である回収部に設置されたサイドカット抜き出 し口からエチレングリコールを得ている力 その純度は不十分であり、し力も、特許文 献 15の方法は少量のエチレングリコールの製法であり、大量 (例えば、 1トン/ hr以 上)のジオールを長時間(例えば、 5000時間以上)安定的に製造する方法について の何の示唆もない。
[0011] また、例えば、特許文献 8の実施例 10 (図 6)、特許文献 9の実施例 1 (図 1)では、 E G精製塔 (41)への供給口よりも上部である濃縮部に設置されたサイドカット抜き出し ロカ 、高純度エチレングリコールが得られている力 いずれも 200g/hr未満の少 量の生産量であり、大量 (例えば、 1トン/ hr以上)のジオールを長時間(例えば、 50 00時間以上)安定的に製造する方法についての何の示唆もない。
[0012] なお、エチレングリコールは世界で年間約 1600万トン(2004年)製造されているが 、これまではこの全てがエチレンォキシドに水を付加させる水和法であった。しかしな がら、非特許文献 1に「EG (エチレングリコール)の製造は EO (エチレンォキシド)の 水和反応であり、反応は通常 150_ 200°〇· · ·で行われる。このとき、 目的物である MEG (モノエチレングリコール)が生成するば力、りでなぐ DEG (ジエチレングリコー ノレ)や TEG (トリエチレングリコール)が副生する。これらの生成割合は水/ E〇比に 依存し、 MEGを 90%程度の選択性で得るためには、水 /EO比はモル比で 20程度 が必要とされている。このため、 EGの精製工程では多量の水を留去することが必要 となり、ここで多量の熱エネルギーが消費される。 · ' ·Ε〇力ら EG合成についてもエネ ルギー効率という視点から見ると未完成なプロセスといっても過言ではなレ、。」との記 載のとおり、この工業的製造法には、エチレングリコールの収率'選択率の面と、省ェ ネルギ一の面にぉレ、て大きな欠点を有してレ、るのである。
特許文献 1:特開平 4一 198141号公報
特許文献 2:特開平 4一 230243号公報
特許文献 3 :特開平 9一 176061号公報
特許文献 4 :特開平 9一 183744号公報
特許文献 5:特開平 9一 194435号公報
特許文献 6 :国際公開 W097Z23445号公報(欧州特許第 0889025号明細書、 米国特許第 5847189号明細書)
特許文献 7:国際公開 W099/64382号公報(欧州特許第 1086940号明細書、 米国特許第 6346638号明細書)
特許文献 8 :国際公開 WO00/51954号公報(欧州特許第 1174406号明細書、 米国特許第 6479689号明細書)
特許文献 9:特開 2002— 308804号公報
特許文献 10 :特開 2004— 131394号公報
特許文献 11 :特開平 5— 213830号公報 (欧州特許第 0530615号明細書、米国特 許第 5231212号明細書)
特許文献 12 :特開平 6— 9507号公報(欧州特許第 0569812号明細書、米国特許 第 5359118号明糸田書)
特許文献 13 :特開 2003?119168号公報(国際公開 WO03/006418号公報) 特許文献 14 :特開 2003— 300936号公報
特許文献 15 :特開 2003— 342209号公報
非特許文献 1 :石油学会編 「石油化学プロセス」 120— 125頁 講談社 2001年 発明の開示 発明が解決しょうとする課題
[0014] 本発明が解決しょうとする課題は、環状カーボネートと脂肪族 1価アルコールとを原 料とし、この原料を触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該塔 A 内で反応蒸留を行い、塔上部から生成するジアルキルカーボネート及び該脂肪族 1 価アルコールを含む低沸点反応混合物 (A )をガス状で連続的に抜出し、塔下部か
T
ら生成するジオール類を含む高沸点反応混合物 (A )を液状で連続的に抜出し、該
B
高沸点反応混合物 (A )を連続多段蒸留塔 Cに連続的に供給し、該高沸点反応混
B
合物 (A )中に含有するジオールよりも低沸点の物質を塔頂成分(C )及び/又はサ
B T
イドカット成分 (C )として留去することによって得られる塔底成分 (C )を連続多段蒸
S B
留塔 Eに連続的に供給し、該連続多段蒸留塔 Eのサイドカット抜き出しロカ サイド力 ット成分 (E )としてジオールを取得することによって、高純度ジオールを製造する具
S
体的な装置及び方法を提供することにある。そして、そのことによって、例えば、高純 度ジオールを 1時間あたり 1トン以上の量で、長期間(例えば、 1000時間以上、好ま しくは 3000時間以上、より好ましくは 5000時間以上)安定的に製造できる具体的な 安価な工業的装置及び工業的製造方法を提供することにある。
課題を解決するための手段
[0015] すなわち、本発明の第 1の態様では、
1. 環状カーボネートと脂肪族 1価アルコールとを原料として、
(I)この原料を触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該蒸留塔 A 内で反応蒸留を行い、蒸留塔 Aの上部から生成するジアルキルカーボネート及び該 脂肪族 1価アルコールを含む低沸点反応混合物 (A )をガス状で連続的に抜出し、
T
蒸留塔 Aの下部から生成するジオール類を含む高沸点反応混合物 (A )を液状で連
B
続的に抜出す工程 (1)、
(II)該高沸点反応混合物 (A )を連続多段蒸留塔 Cに連続的に供給し、該高沸点反
B
応混合物 (A )中に含有するジオールよりも低沸点の物質を塔頂成分 (C )及び/又
B T
はサイドカット成分 (C )として連続的に抜き出し、ジオールを主成分とする塔底成分
S
(C )を蒸留塔 Cの下部から連続的に抜き出す工程 (11)、
B
(III)該塔底成分 (C )を連続多段蒸留塔 Eに連続的に供給し、該連続多段蒸留塔 E
B のサイドカット抜き出し口からサイドカット成分 (E )として高純度ジオールを連続的に
S
抜き出す工程 (III)
を行うことによって、高純度ジオールを製造するにあたり、
(a)該連続多段蒸留塔 Aが、下記式(1)〜(6)を満足する長さ L (cm)、内径 D (cm
0 0
)、内部に段数 nを持つインターナルを有し、塔頂部又はそれに近い塔の上部に内
0
径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 d (cm)の液
01 02
抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間部に 1つ以上 の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又は下部に 1つ 以上の第 2の導入口を有する蒸留塔であって、
2100 ≤ L ≤ 8000 式 (1)
0
180 ≤ D ≤ 2000 式 (2)
0
4 ≤ L /Ό ≤ 40 式 (3)
0 0
20 ≤ n ≤ 120 式 (4)
0
3 ≤ D /d ≤ 20 式 (5)
0 01
5 ≤ D /d ≤ 30 式 (6)
(b)該連続多段蒸留塔 Cが下記式(7)〜(15)を満足する長さ L (cm)、内径 D (c
C1 C1 m)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D (
Cl C2 C2 cm)、内部に段数 n をもつインターナルを有する濃縮部と、を備え、
300 < L < 3000 式 (7)
C1
50 < D < 700 式 (8)
C1
3 < L / ' ≤ 30 式 (9)
C1 Cl
3 < n < 30 式(10)
Cl
1000 < L < 5000 式 (11)
C2
50 < D < 500 式(12)
C2
10 < L / ≤ 50 式(13)
C2 C2
20 < n < 100 式 (14)
C2
D ≤ D 式(15)
C2 C1
(c)該連続多段蒸留塔 Cの濃縮部には、インターナルとして 1つ以上のチムニ ィが設置されており、該チムニートレイには、式(16)を満足する断面積 S (cm の開
C
口部を有するチムニーが 1個以上設置されており、
200 ≤ S ≤ 1000 式(16)
c
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
C
17)を満足するチムニ一であり、
10 ≤ h ≤ 80 式(17)
c
(d)サイドカット抜き出し口が該連続多段蒸留塔 Cの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔であり、
(e)該連続多段蒸留塔 Eが、下記式(18)〜(26)を満足する長さ L (cm)、内径 D
El E1
(cm)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D
El E2 E
(cm) ,内部に段数 n をもつインターナルを有する濃縮部と、を備え、
400 < L ≤ 3000 式(18)
E1
50 < D ≤ 700 式 (19)
E1
2 < L /D ≤ 50 式(20)
El E1
3 < n ≤ 30 式(21)
El
600 < L ≤ 4000 式(22)
E2
100 < D ≤ 1000 式(23)
E2
2 < L /D ≤ 30 式(24)
E2 E2
5 < n ≤ 50 式(25)
E2
D ≤ D 式(26)
ω該連続多段蒸留塔 Eの濃縮部には、インターナルとして 1つ以上のチムニートレイ が設置されており、該チムニートレイが、式(27)を満足する断面積 S (cm2)の開口
E
部を有するチムニーを 2個以上設置しており、
50 ≤ S ≤ 2000 式(27)
E
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
E
28)を満足するチムニ一であり、
20 ≤ h ≤ 100 式(28) (g)サイドカット抜き出し口が該連続多段蒸留塔 Eの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔である、
ことを特徴とする高純度ジオールを工業的に製造する方法、
2. 製造される高純度ジオールの量力 1時間あたり 1トン以上であることを特徴とす る前項 1に記載の方法、
3. 該 d と該 d が式(29)を満足することを特徴とする前項 1又は 2に記載の方法、
01 02
1 ≤ d /d ≤ 5 式(29)
01 02
4. 該連続多段蒸留塔 Aの L、 D、 L /D、 n、 D
0 0 0 0 0 0 Zd 、 D /d 、それぞれ
01 0 02
、 2300≤L ≤6000, 200≤D ≤1000, 5≤L /Ό ≤30, 30≤η ≤100,
0 0 0 0 0
4≤D /d ≤15, 7≤D /d ≤25であることを特徴とする前項 1ないし 3のうち何
0 01 0 02
れか一項に記載の方法、
5. 該連続多段蒸留塔 Aのインターナルが、多孔板トレイであることを特徴とする前 項 1ないし 4のうち何れか一項に記載の方法、
6. 該連続多段蒸留塔 Aの該多孔板トレイが、多孔板部の面積 lm2あたり 100〜: 10 00個の孔を有するものであることを特徴とする前項 5に記載の方法、
7. 該連続多段蒸留塔 Aの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2 であることを特徴とする前項 5又は 6に記載の方法、
8. 該連続多段蒸留塔 Aの該多孔板トレイの開口比(トレイ 1段の孔の断面積の合 計と該トレイの面積との比)が 1 · 5〜: 15%であることを特徴とする前項 5ないし 7のうち 何れか一項に記載の方法、
9. 該連続多段蒸留塔 Cの塔下部にある回収部最下部のインターナルの下部にさ らに複数 (n 段)のトレイ Kを設け、該トレイ Kの最上段から液を一部連続的に抜き出
C3
し、リボイラーで蒸留に必要な熱量を与えた後、該加熱された液を回収部最下部のィ ンターナルと該最上段トレイ Kとの間に設けられた供給口から蒸留塔 Cに戻し、残りの 液を下部のトレイに順に供給することを特徴とする前項 1ないし 8のうち何れか一項に 記載の方法、
10. 該トレイ Kが、バッフルトレイであることを特徴とする前項 9に記載の方法、 11. 該トレイ Kの存在する場所の該連続多段蒸留塔 Cの内径 (D )が、 D ≤D
C3 CI C3 であることを特徴とする前項 9又は 10に記載の方法、
12. 該連続多段蒸留塔 Cの L 、D 、L /D 、n 、L 、D 、L /Ό 、n 、
Cl CI CI CI CI C2 C2 C2 C2 C2 n 力 それぞれ、 500≤L ≤2000, 70≤D ≤500, 5≤L /D ≤20、 5
C3 Cl Cl Cl Cl
≤n ≤20, 1500≤L ≤4000, 70≤D ≤400, 15≤L /D ≤40, 3
Cl C2 C2 C2 C2
0≤n ≤90、 3≤n ≤20 であることを特徴とする前項 9ないし 11のうち何れか一
C2 C3
項に記載の方法、
13. 該連続多段蒸留塔 Cの回収部のインターナル及び濃縮部のチムニートレイを 除くインターナルが、それぞれトレイ及び/又は充填物であることを特徴とする前項 1 ないし 12のうち何れか一項に記載の方法、
14. 該連続多段蒸留塔 Cの回収部のインターナルカ讣レイであり、濃縮部のチムニ ートレイを除くインターナルが、トレイ及び/又は規則充填物であることを特徴とする 前項 13に記載の方法、
15. 該トレイが、多孔板トレイであることを特徴とする前項 13又は 14に記載の方法
16. 該多孔板トレイが多孔板部の面積 lm2あたり 100〜: 1000個の孔を有しており 、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 15に記載 の方法、
17. 該連続多段蒸留塔 Cの回収部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比) 、 2〜: 15%の範囲であることを特徴とす る前項 15又は 16に記載の方法、
18. 該連続多段蒸留塔 Cの濃縮部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比)が、 1. 5〜: 12%の範囲であることを特徴 とする前項 15ないし 17のうち何れか一項に記載の方法、
19. 該連続多段蒸留塔 Cの該チムニートレイの開口比(チムニ一の開口部断面積 の合計と、該開口部全断面積を含むチムニートレイの面積との比)が、 10〜40。/oの 範囲であることを特徴とする前項 1ないし 18のうち何れか一項に記載の方法、
20. 該連続多段蒸留塔 Cの塔底温度が、 150〜250°Cの範囲であることを特徴と する前項 1ないし 19のうち何れか一項に記載の方法、
21. 該連続多段蒸留塔 Cの塔頂圧力が、 50000〜300000Paの範囲であることを 特徴とする前項 1ないし 20のうち何れか一項に記載の方法、
22. 該連続多段蒸留塔 Cの還流比が、 0. 3〜5の範囲であることを特徴とする前項 1ないし 21のうち何れか一項に記載の方法、
23. 該塔頂成分(C )中のジオールの含有量力 lOOppm以下であることを特徴と
T
する前項 1ないし 22のうち何れか一項に記載の方法、
24. 該サイドカット成分 (C )中のジオールの含有量が、該連続多段蒸留塔 Cに供
S
給されたジオールの 0. 5%以下であることを特徴とする前項 1ないし 23のうち何れか 一項に記載の方法、
25. 該連続多段蒸留塔 Eの L 、D 、L /D 、n 、L 、D 、L /D 、n が
El El El El El E2 E2 E2 E2 E2
、それぞれ、 500≤L ≤2000, 100≤D ≤500, 3≤L /D ≤20, 5≤n
El El El El E
≤20, 700≤L ≤3000, 120≤D ≤800, 3≤L /Ό ≤20, 7≤n
1 E2 E2 E2 E2 E2
≤30、 D < D であることを特徴とする前項 1ないし 24のうち何れか一項に記載
El E2
の方法、
26. 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナ ルが、それぞれトレィ及び/又は充填物であることを特徴とする前項 1なレ、し 25のう ち何れか一項に記載の方法、
27. 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナ ルが、それぞれトレイであることを特徴とする前項 26に記載の方法、
28. 該トレイが、多孔板トレイであることを特徴とする前項 27に記載の方法、
29. 該多孔板トレイが、多孔板部の面積 lm2あたり 150〜: 1200個の孔を有してお り、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 28に記載 の方法、
30. 該連続多段蒸留塔 Eの回収部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比)が、 3〜25%の範囲であることを特徴とす る前項 28又は 29に記載の方法、
31. 該連続多段蒸留塔 Eの濃縮部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比) 、 2〜20%の範囲であることを特徴とす る前項 28ないし 30のうち何れか一項に記載の方法、
32. 該連続多段蒸留塔 Eの該チムニートレイの開口比(チムニ一の開口部断面積 の合計と、該開口部全断面積を含むチムニートレイの面積との比)が、 5〜40。/oの範 囲であることを特徴とする前項 1ないし 31のうち何れか一項に記載の方法、
33. 該連続多段蒸留塔 Eの塔底温度が、 110〜210°Cの範囲であることを特徴と する前項 1ないし 32のうち何れか一項に記載の方法、
34. 該連続多段蒸留塔 Eの還流比が、 6〜100の範囲であることを特徴とする前項 1ないし 33のうち何れか一項に記載の方法、
35. 該サイドカット成分 (E )中のジオールの純度が、 99%以上であることを特徴と
S
する前項 1ないし 34のうち何れか一項に記載の方法、
36. 該サイドカット成分 (E )中のジオールの純度が、 99. 9%以上であることを特
S
徴とする前項 1ないし 35のうち何れか一項に記載の方法、
を提供する。
[0016] また、本発明の第 2の態様では、
37. 前項 1ないし 36のうち何れか一項に記載の方法で製造され、ジアルキレンダリ コール等の高沸点不純物が 200ppm以下であって、ハロゲン含有量が 0. lppm以 下であることを特徴とする高純度ジオール、
38. 前項 1ないし 36のうち何れか一項に記載の方法で製造され、ジアルキレンダリ コール等の高沸点不純物が lOOppm以下であって、ハロゲン含有量が lppb以下で あることを特徴とする高純度ジオール、
を提供する。
[0017] さらに、本発明の第 3の態様では、
39. 環状カーボネートと脂肪族 1価アルコ一ルとを原料として、
(I)この原料を触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該蒸留塔 A 内で反応蒸留を行レ、、蒸留塔 Aの上部から生成するジアルキルカーボネート及び該 脂肪族 1価アルコールを含む低沸点反応混合物 (A )をガス状で連続的に抜出し、
T
蒸留塔 Aの下部から生成するジオール類を含む高沸点反応混合物 (A )を液状で連 続的に抜出す工程 (I)、
(II)該高沸点反応混合物 (A )を連続多段蒸留塔 Cに連続的に供給し、該高沸点反
B
応混合物 (A )中に含有するジオールよりも低沸点の物質を塔頂成分 (C )及び/又
B T
はサイドカット成分 (C )として連続的に抜き出し、ジオールを主成分とする塔底成分
S
(C )を蒸留塔 Cの下部から連続的に抜き出す工程 (11)、
B
(III)該塔底成分 (C )を連続多段蒸留塔 Eに連続的に供給し、該連続多段蒸留塔 E
B
のサイドカット抜き出し口からサイドカット成分 (E )として高純度ジオールを連続的に
S
抜き出す工程 (III)
を行うことによって、高純度ジオールを製造するための該連続多段蒸留塔 Aと該連続 多段蒸留塔 Cと該連続多段蒸留塔 Eと、を備える装置であって、
(a)該連続多段蒸留塔 Aが、下記式(1)〜(6)を満足する長さ L (cm)、内径 D (cm
0 0
)、内部に段数 nを持つインターナルを有し、塔頂部又はそれに近い塔の上部に内
0
径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 d (cm)の液
01 02
抜出し口、該ガス抜出し口より下部であって塔の上部及び/又は中間部に 1つ以上 の第 1の導入口、該液抜出し口より上部であって塔の中間部及び/又は下部に 1つ 以上の第 2の導入口を有する蒸留塔であって、
2100 ≤ L ≤ 8000 式(1)
0
180 ≤ D ≤ 2000 式(2)
0
4 ≤ L /D ≤ 40 式(3)
0 0
20 ≤ n ≤ 120 式(4)
0
3 ≤ D /d ≤ 20 式(5)
0 01
5 ≤ D /d ≤ 30 式(6)
0 02
(b)該連続多段蒸留塔 Cが下記式(7)〜(: 15)を満足する長さ L (cm)、内径 D (c
CI C1 m)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D (
CI C2 C2 cm)、内部に段数 n をもつインターナルを有する濃縮部と、を備え、
C2
300 ≤ L ≤ 3000 式(7)
C1
50 ≤ D ≤ 700 式(8)
C1
3 ≤ L /Ό ≤ 30 式(9) 3 < n < 30 式(10)
Cl
1000 < L < 5000 式 (11)
C2
50 < D < 500 式(12)
C2
10 < L / ≤ 50 式(13)
C2 C2
20 < n < 100 式 (14)
C2
D ≤ D 式(15)
(c)該連続多段蒸留塔 Cの濃縮部には、インターナルとして 1つ以上のチムニートレ ィが設置されており、該チムニートレイには、式(16)を満足する断面積 S (cm2)の開
C
口部を有するチムニーが 1個以上設置されており、
200 ≤ S ≤ 1000 式(16)
c
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
C
17)を満足するチムニ一であり、
10 ≤ h ≤ 80 式(17)
C
(d)サイドカット抜き出し口が該連続多段蒸留塔 Cの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔であり、
(e)該連続多段蒸留塔 Eが、下記式(18)〜(26)を満足する長さ L (cm)、内径 D
El E1
(cm)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D
El E2 E
(cm) ,内部に段数 n をもつインターナルを有する濃縮部と、を備え、
400 < L < 3000 式(18)
E1
50 < D < 700 式 (19)
E1
2 < L / ' ≤ 50 式(20)
E1 El
3 < n < 30 式(21)
El
600 < L < 4000 式(22)
E2
100 < D < 1000 式(23)
E2
2 < L / ' ≤ 30 式(24)
E2 E2
5 < n < 50 式(25)
E2
D ≤ D 式(26) (f)該連続多段蒸留塔 Eの濃縮部には、インターナルとして 1つ以上のチムニートレイ が設置されており、該チムニートレイが、式(27)を満足する断面積 S (cm2)の開口
E
部を有するチムニーを 2個以上設置しており、
50 ≤ S ≤ 2000 式(27)
E
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
E
28)を満足するチムニ一であり、
20 ≤ h ≤ 100 式(28)
E
(g)サイドカット抜き出し口が該連続多段蒸留塔 Eの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔である、
ことを特徴とする高純度ジオールを製造するための連続多段蒸留塔 Aと連続多段蒸 留塔 Cと連続多段蒸留塔 Eと、を備える装置、
40. 該 d と該 d が式(29)を満足することを特徴とする前項 39に記載の装置、
01 02
1 ≤ d /d ≤ 5 式(29)
01 02
41. 該連続多段蒸留塔 Aの L 、 D 、 L /D 、 n 、 D /d 、 D /d がそれぞれ
0 0 0 0 0 0 01 0 02
、 2300≤L ≤6000, 200≤D ≤1000, 5≤L /Ό ≤30, 30≤η ≤100,
0 0 0 0 0
4≤D /d ≤15, 7≤D /ά ≤25であることを特徴とする前項 39又は 40に記載
0 01 0 02
の装置、
42. 該連続多段蒸留塔 Αのインターナルが、多孔板トレイであることを特徴とする前 項 39ないし 41のうち何れか一項に記載の装置、
43. 該連続多段蒸留塔 Aの該多孔板トレイが、多孔板部の面積 lm2あたり 100〜1 000個の孔を有するものであることを特徴とする前項 42に記載の装置、
44. 該連続多段蒸留塔 Aの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2 であることを特徴とする前項 42又は 43に記載の装置、
45. 該連続多段蒸留塔 Aの該多孔板トレイの開口比(トレイ 1段の孔の断面積の合 計と該トレイの面積との比)が、 1. 5〜: 15%であることを特徴とする前項 42ないし 44 のうち何れか一項に記載の装置、
46. 該連続多段蒸留塔 Cの塔下部にある回収部最下部のインターナルの下部にさ らに複数 (n 段)のトレイ Kを設け、該トレイ Κの最上段から液を一部連続的に抜き出
C3
し、リボイラーで蒸留に必要な熱量を与えた後、該加熱された液を回収部最下部のィ ンターナルと該最上段トレイ Κとの間に設けられた供給口から蒸留塔 Cに戻し、残りの 液を下部のトレイに順に供給することができることを特徴とする前項 39に記載の装置
47. 該トレイ Κが、バッフルトレイであることを特徴とする前項 46に記載の装置、
48. 該トレイ Κの存在する場所の該連続多段蒸留塔 Cの内径 (D )が、 D ≤D
C3 CI C3 であることを特徴とする前項 46又は 47に記載の装置、
49. 該連続多段蒸留塔 Cの L 、 D 、: L /D 、n 、L 、 D 、: L /Ό 、η 、
Cl CI CI CI CI C2 C2 C2 C2 C2 η 力 それぞれ、 500≤L ≤2000, 70≤D ≤500, 5≤L /D ≤20、 5
C3 Cl Cl Cl Cl
≤n ≤20, 1500≤L ≤4000, 70≤D ≤400, 15≤L /D ≤40, 3
Cl C2 C2 C2 C2
0≤n ≤90、 3≤n ≤20 であることを特徴とする前項 46ないし 48のうち何れか
C2 C3
一項に記載の装置、
50. 該連続多段蒸留塔 Cの回収部のインターナル及び濃縮部のチムニートレイを 除くインターナルが、それぞれトレィ及び/又は充填物であることを特徴とする前項 3 9ないし 49のうち何れか一項に記載の装置、
51. 該連続多段蒸留塔 Cの回収部のインターナルカ Sトレイであり、濃縮部のチムニ ートレイを除くインターナルカ トレィ及び/又は規則充填物であることを特徴とする 前項 50に記載の装置、
52. 該トレイが、多孔板トレイであることを特徴とする前項 50又は 51に記載の装置
53. 該多孔板トレイが多孔板部の面積 lm2あたり 100〜: 1000個の孔を有しており 、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 52に記載 の装置、
54. 該連続多段蒸留塔 Cの回収部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比)が、 2〜: 15%の範囲であることを特徴とす る前項 52又は 53に記載の装置、
55. 該連続多段蒸留塔 Cの濃縮部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比)が、 1. 5〜: 12%の範囲であることを特徴 とする前項 52ないし 54のうち何れか一項に記載の装置、
56. 該連続多段蒸留塔 Cの該チムニートレイの開口比(チムニ一の開口部断面積 の合計と、該開口部全断面積を含むチムニートレイの面積との比)が、 10〜40。/oの 範囲であることを特徴とする前項 39ないし 55のうち何れか一項に記載の装置、
57. 該連続多段蒸留塔 Eの L 、D 、L /D 、n 、L 、D 、L /D 、n が
El El El El El E2 E2 E2 E2 E2
、それぞれ、 500≤L ≤2000, 100≤D ≤500, 3≤L /D ≤20, 5≤n
El El El El E
≤20, 700≤L ≤3000, 120≤D ≤800, 3≤L /D ≤20, 7≤n
1 E2 E2 E2 E2 E2
≤30、 D < D であることを特徴とする前項 39ないし 56のうち何れか一項に記載
El E2
の装置、
58. 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナ ルが、それぞれトレイ及び/又は充填物であることを特徴とする前項 39なレ、し 57のう ち何れか一項に記載の装置、
59. 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナ ルが、それぞれ、トレイであることを特徴とする前項 58に記載の装置、
60. 該トレイが、多孔板トレイであることを特徴とする前項 59に記載の装置、
61. 該多孔板トレイが多孔板部の面積 lm2あたり 150〜: 1200個の孔を有しており 、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 60に記載 の装置、
62. 該連続多段蒸留塔 Eの回収部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比) 、 3〜25%の範囲であることを特徴とす る前項 60又は 61に記載の装置、
63. 該連続多段蒸留塔 Eの濃縮部における該多孔板トレイの開口比(トレイ 1段の 孔の断面積の合計と該トレイの面積との比)が、 2〜20%の範囲であることを特徴とす る前項 60ないし 62のうち何れか一項に記載の装置、
64. 該連続多段蒸留塔 Eの該チムニートレイの開口比(チムニ一の開口部断面積 の合計と、該開口部全断面積を含むチムニートレイの面積との比)が、 5〜40。/oの範 囲であることを特徴とする前項 39ないし 63のうち何れか一項に記載の装置、 を提供する。
発明の効果
o
[0018] 本発明 /ヽが提供する具体的な装置及び方法によって、環状カーボネートと脂肪族 1 o c R=
価アルコールとから、高収率 (例えば、使用した環状カーボネート基準で、通常、 97 %以上、好ましくは 98%以上、より好ましくは 99%以上)で高純度ジオールを工業的 規模で長期間安定的に製造できることが明らかになった。すなわち、本発明によれば 、例えば、 PET繊維や PET樹脂の原料として必要とされる純度 99. 9%以上の高純 度ジオールを 1時間あたり 1トン以上、好ましくは 2トン以上、より好ましくは 3トン以上 の量で、長期間(例えば、 1000時間以上、好ましくは 3000時間以上、より好ましくは 5000時間以上)安定的に製造できる安価な工業的装置及び工業的製造方法が提 供される。
x tocon
[0019] また、本発明の方法は既存のエチレングリコール製 o造法とは異なり、大量の水を使 用せずに、高収率 ·高選択率で高純度のエチレングリコールを製造することができ、 既存の工業的製造法が永年懸案としている 2つの課題 (低選択率、エネルギー大量 使用)を同時に解決する工業的製造法として優れた効果を有している。
発明を実施するための最良の形態
[0020] 以下、本発明について具体的に説明する。
本発明の工程 (I)で行われる反応は、環状カーボネートと脂肪族 1価アルコール類 と力ら、ジアルキルカーボネートとジオール類が生成する下記式で表わされる可逆平 衡なエステル交換反応である。
[0021] [化 1]
R1
+ 2細
H0 ' ½
(B) (D)
(式中、 Rは 2価の基 _ (CH ) m_ (mは 2〜6の整数)を表わし、その 1個以上の水
2
素は炭素数 1〜: 10のアルキル基ゃァリール基によって置換されていてもよレ、。また、 R2は炭素数 1〜: 12の 1価の脂肪族基を表わし、その 1個以上の水素は炭素数 1〜: 10 のアルキル基ゃァリール基で置換されていてもよレ、。 )
[0023] 本発明で原料として用いられる環状カーボネートとは、上式において (A)で表され る化合物であって、例えば、エチレンカーボネート、プロピレンカーボネート等のアル キレンカーボネート類や、 1, 3—ジォキサシクロへキサ一 2_オン、 1 , 3—ジォキサ シクロへプタ _ 2_オンなどが好ましく用いられ、エチレンカーボネート及びプロピレ ンカーボネートが入手の容易さなどの点からさらに好ましく使用され、エチレンカーボ ネートが特に好ましく使用される。
[0024] また、もう一方の原料である脂肪族 1価アルコール類とは、上式において(B)で表さ れる化合物であって、生成するジオールより沸点が低いものが用いられる。したがつ て、使用する環状カーボネートの種類によっても変わり得るが、例えば、メタノーノレ、 エタノール、プロパノール(各異性体)、ァリルアルコール、ブタノール(各異性体)、 3 ーブテン 1 オール、ァミルアルコール(各異性体)、へキシルアルコール(各異性 体)、ヘプチルアルコール(各異性体)、ォクチルアルコール(各異性体)、ノニルアル コール(各異性体)、デシルアルコール(各異性体)、ゥンデシルアルコール(各異性 体)、ドデシルアルコール(各異性体)、シクロペンタノール、シクロへキサノール、シク 口へプタノール、シクロォクタノール、メチルシクロペンタノール(各異性体)、ェチルシ クロペンタノール(各異性体)、メチルシクロへキサノール(各異性体)、ェチルシクロ へキサノール(各異性体)、ジメチルシクロへキサノール(各異性体)、ジェチルシクロ へキサノール(各異性体)、フエニルシクロへキサノール(各異性体)、ベンジルアルコ ール、フエネチルアルコール(各異性体)、フエニルプロパノール(各異性体)などが 挙げられ、さらにこれらの脂肪族 1価アルコール類において、ハロゲン、低級アルコキ シ基、シァノ基、アルコキシカルボニル基、ァリーロキシカルボニル基、ァシロキシ基、 ニトロ基等の置換基によって置換されていてもよい。
[0025] このような脂肪族 1価アルコール類の中で、好ましく用いられるのは炭素数 1〜6の アルコール類であり、さらに好ましいのはメタノール、エタノール、プロパノール(各異 性体)、ブタノール (各異性体)の炭素数 1〜4のアルコール類である。環状カーボネ ートとしてエチレンカーボネートやプロピレンカーボネートを使用する場合に好ましレヽ のはメタノール、エタノールであり、特に好ましいのはメタノールである。
[0026] 本発明の工程 (I)においては、反応蒸留塔 A内に触媒を存在させる。触媒を存在さ せる方法はどのような方法であってもよいが、例えば、反応条件下で反応液に溶解 するような均一系触媒の場合、反応蒸留塔内 Aに連続的に触媒を供給することにより 、反応蒸留塔内の液相に触媒を存在させることもできるし、あるいは反応条件下で反 応液に溶解しないような不均一系触媒の場合、反応蒸留塔内に固体触媒を配置す ることにより、反応系に触媒を存在させることもできるし、これらを併用した方法であつ てもよい。
[0027] 均一系触媒を反応蒸留塔内に連続的に供給する場合には、環状カーボネート及 び/又は脂肪族 1価アルコールと同時に供給してもよいし、原料とは異なる位置に供 給してもよい。該蒸留塔内で実際に反応が進行するのは触媒供給位置から下の領 域であることから、塔頂力 原料供給位置までの間の領域に該触媒を供給することが 好ましい。そして該触媒が存在する段は 5段以上あることが必要であり、好ましくは 7 段以上であり、さらに好ましくは 10段以上である。
[0028] また、不均一系の固体触媒を用いる場合、該触媒の存在する段の段数が 5段以上 あることが必要であり、好ましくは 7段以上であり、さらに好ましくは 10段以上である。 蒸留塔の充填物としての効果をも併せ持つ固体触媒を用いることもできる。
[0029] 本発明において用いられる触媒としては、これまでに知られている種々のものを使 用すること力 Sできる。例えば、
リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、スト ロンチウム、バリウム等のアルカリ金属及びアルカリ土類金属類;
アルカリ金属及びアルカリ土類金属の水素化物、水酸化物、アルコキシド化物類、 ァリ一口キシド化物類、アミド化物類等の塩基性化合物類;
アルカリ金属及びアルカリ土類金属の炭酸塩類、重炭酸塩類、有機酸塩類等の塩 基性化合物類;
トリエチノレアミン、トリブチノレアミン、トリへキシノレアミン、ベンジルジェチルァミン等の 3級ァミン類;
N_アルキルピロール、 N_アルキルインドール、ォキサゾール、 N_アルキルイミ ダゾール、 N—アルキルピラゾール、ォキサジァゾール、ピリジン、アルキルピリジン、 キノリン、アルキルキノリン、イソキノリン、アルキルイソキノリン、アタリジン、アルキルァ クリジン、フエナント口リン、アルキルフエナント口リン、ピリミジン、アルキルピリミジン、 ピラジン、アルキルビラジン、トリアジン、アルキルトリァジン等の含窒素複素芳香族化 合物類;
ジァザビシクロウンデセン(DBU)、ジァザビシクロノネン(DBN)等の環状アミジン 類;
酸化タリウム、ハロゲン化タリウム、水酸化タリウム、炭酸タリウム、硝酸タリウム、硫酸 タリウム、タリウムの有機酸塩類等のタリウム化合物類;
トリブチルメトキシ錫、トリブチルエトキシ錫、ジブチルジメトキシ錫、ジェチルジェト キシ錫、ジブチルジェトキシ錫、ジブチルフヱノキシ錫、ジフヱニルメトキシ錫、酢酸ジ ブチル錫、塩化トリブチル錫、 2—ェチルへキサン酸錫等の錫化合物類;
ジメトキシ亜鉛、ジエトキシ亜鉛、エチレンジォキシ亜鉛、ジブトキシ亜鉛等の亜鉛 化合物類;
アルミニウムトリメトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシ ド等のアルミニウム化合物類;
テトラメトキシチタン、テトラエトキシチタン、テトラブトキシチタン、ジクロロジメトキシ チタン、テトライソプロポキシチタン、酢酸チタン、チタンァセチルァセトナート等のチ タン化合物類;
トリメチルホスフィン、トリェチルホスフィン、トリブチルホスフィン、トリフエニルホスフィ ン、トリブチルメチルホスホニゥムハライド、トリオクチルブチルホスホニゥムハライド、ト リフエニルメチルホスホニゥムハライド等のリン化合物類;
ハロゲン化ジルコニウム、ジルコニウムァセチルァセトナート、ジルコニウムアルコキ シド、酢酸ジルコニウム等のジルコニウム化合物類;
鉛及び鉛を含む化合物類、例えば、 Pb〇、 PbO、 Pb Oなどの酸化鉛類;
2 3 4
PbS、 Pb S、 PbSなどの硫ィ匕鉛類;
2 3 2
Pb (OH) 、 Pb〇 (OH) 、 Pb [PbO (OH) ]、 Pb O (OH) などの水酸化鉛類;
2 3 2 2 2 2 2 2 2
Na PbO、 K PbO、 NaHPbO、 KHPbOなどの亜ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K Pb〇、 Ca PbO、 CaPb
2 3 2 2 4 2 3 2 6 4 4 2 4 oなどの鉛酸塩類;
3
PbCO、 2PbC〇 - Pb (OH) などの鉛の炭酸塩及びその塩基性塩類;
3 3 2
Pb (OCH ) 、 (CH〇)Pb (〇Ph)、 Pb (OPh) などのアルコキシ鉛類、ァリールォ
3 2 3 2
キシ鉛類;
Pb (OCOCH ) 、 Pb (OCOCH ) 、 Pb (OCOCH ) - PbO - 3H Oなどの有機酸
3 2 3 4 3 2 2
の鉛塩及びその炭酸塩や塩基性塩類;
Bu Pb、 Ph Pb、 Bu PbCL Ph PbBr、 Ph Pb (又 ίま Ph Pb ) , Bu Pb〇H、 Ph P
4 4 3 3 3 6 2 3 2 b〇などの有機鉛化合物類(Buはブチル基、 Phはフヱニル基を示す);
Pb_Na、 Pb_Ca、 Pb_Ba、 Pb_Sn、 Pb_ Sbなどの鉛の合金類;
ホウェン鉱、センァェン鉱などの鉛鉱物類、及びこれらの鉛化合物の水和物類; が挙げられる。
[0030] これらの化合物は、反応原料や、反応混合物、反応副生物などに溶解する場合に は、均一系触媒として用いることができるし、溶解しない場合には固体触媒として用 レ、ることができる。さらには、これらの化合物を反応原料や、反応混合物、反応副生 物などで事前に溶解させたり、あるいは反応させることによって溶解させた混合物を 均一系触媒として用いることも好ましレ、方法である。
[0031] さらに、 3級アミノ基を有する陰イオン交換樹脂、アミド基を有するイオン交換樹脂、 スルホン酸基、カルボン酸基、リン酸基のうちの少なくとも一つの交換基を有するィォ ン交換樹脂、第 4級アンモニゥム基を交換基として有する固体強塩基性ァニオン交 換体等のイオン交換体類;シリカ、シリカ アルミナ、シリカ一マグネシア、アルミノシリ ケート、ガリウムシリケート、各種ゼォライト類、各種金属交換ゼォライト類、アンモニゥ ム交換ゼオライト類などの固体の無機化合物類等が不均一触媒として用レ、られる。
[0032] 不均一触媒として、特に好ましく用いられるのは第 4級アンモニゥム基を交換基とし て有する固体強塩基性ァニオン交換体であり、このようなものとしては、例えば、第 4 級アンモニゥム基を交換基として有する強塩基性ァニオン交換樹脂、第 4級アンモニ ゥム基を交換基として有するセルロース強塩基性ァニオン交換体、第 4級アンモニゥ ム基を交換基として有する無機質担体担持型強塩基性ァニオン交換体などが挙げら れる。第 4級アンモニゥム基を交換基として有する強塩基性ァニオン交換樹脂として は、例えば、スチレン系強塩基性ァニオン交換樹脂などが好ましく用いられる。スチ レン系強塩基性ァニオン交換樹脂は、スチレンとジビニルベンゼンの共重合体を母 体として、交換基に第 4級アンモニゥム (I型あるいは II型)を有する強塩基性ァニオン 交換樹脂であり、例えば、次式で模式的に示される。
[0033] [化 2]
Figure imgf000025_0001
Figure imgf000025_0002
[0034] 上式中、 Xはァニオンを示し、通常、 Xとしては、 F―、 Cl_、 Br", Γ、 HC〇―、 CO
3 3
―、 CH CO―、 HC〇―、 I〇―、 BrO―、 CIO—の中力 選ばれた少なくとも 1種のァ
3 2 2 3 3 3
二オンが使用され、好ましくは Cl_、 Br", HC〇―、 CO 2_の中から選ばれた少なくと
3 3
も 1種のァニオンが使用される。また、樹脂母体の構造としては、ゲル型、マクロレティ キュラー型 (MR型)いずれも使用できる力 S、耐有機溶媒性が高い点から MR型が特 に好ましい。
[0035] 第 4級アンモニゥム基を交換基として有するセルロース強塩基性ァニオン交換体と しては、例えば、セルロースの—〇H基の一部又は全部をトリアルキルアミノエチル化 して得られる、 _ OCH CH NR Xなる交換基を有するセルロースが挙げられる。た だし、 Rはアルキル基を示し、通常、メチノレ、ェチル、プロピル、ブチルなどが用いら れ、好ましくはメチル、ェチルが使用される。また、 Xは前述のとおりのァニオンを示 す。
[0036] 本発明において使用できる、第 4級アンモニゥム基を交換基として有する無機質担 体担持型強塩基性ァニオン交換体とは、無機質担体の表面水酸基一 OHの一部又 は全部を修飾することにより、 4級アンモニゥム基一〇(CH ) nNR Xを導入したもの
2 3
を意味する。ただし、 R、 Xは前述のとおりである。 nは通常 1〜6の整数であり、好まし くは n= 2である。無機質担体としては、シリカ、アルミナ、シリカアルミナ、チタニア、 ゼォライトなどを使用することができ、好ましくはシリカ、アルミナ、シリカアルミナが用 いられ、特に好ましくはシリカが使用される。無機質担体の表面水酸基の修飾方法と しては、任意の方法を用いることができる。
[0037] 第 4級アンモニゥム基を交換基として有する固体強塩基性ァニオン交換体は、市販 のものを使用することもできる。その場合には、前処理として予め所望のァニオン種 でイオン交換を行なった後に、エステル交換触媒として使用することもできる。
[0038] また、少なくとも 1個の窒素原子を含む複素環基が結合している巨大網状及びゲル タイプの有機ポリマー、又は少なくとも 1個の窒素原子を含む複素環基が結合してい る無機質担体からなる固体触媒もエステル交換触媒として好ましく用いられる。さらに 、これらの含窒素複素環基の一部又は全部が 4級塩化された固体触媒も同様に用い られる。なお、イオン交換体などの固体触媒は、本発明においては充填物としての機 能も果たすことができる。
[0039] 本発明で用いられる触媒の量は、使用する触媒の種類によっても異なるが、反応 条件下で反応液に溶解するような均一系触媒を連続的に供給する場合には、供給 原料である環状カーボネートと脂肪族 1価アルコールの合計質量に対する割合で表 わして、通常 0. 0001〜50質量0 /0、好ましくは 0. 005〜20質量0 /0、さらに好ましくは 0. 01〜: 10質量%で使用される。また、固体触媒を該蒸留塔内に設置して使用する 場合には、該蒸留塔の空塔容積に対して、 0. 01〜75容積%、好ましくは 0. 05〜6 0容積%、さらに好ましくは 0. :!〜 60容積%の触媒量が好ましく用いられる。
[0040] 工程 (I)におレ、て反応蒸留塔である連続多段蒸留塔 Aに、環状カーボネート及び 脂肪族 1価アルコールを連続的に供給する方法については、特別な限定はなぐそ れらが該蒸留塔 Aの少なくとも 5段以上、好ましくは 7段以上、より好ましくは 10段以 上の領域において触媒と接触させることができるような供給方法であれば如何なる方 法であってもよい。すなわち、該環状カーボネートと該脂肪族 1価アルコールは、連 続多段蒸留塔 Aの上記の条件を満たす段に必要な数の導入口から連続的に供給す ること力 Sできる。また、該環状カーボネートと該脂肪族 1価アルコールは該蒸留塔 Aの 同じ段に導入されてもよいし、それぞれ別の段に導入してもよい。
[0041] 原料は、液状、ガス状又は液とガスとの混合物として該蒸留塔 Aに連続的に供給さ れる。このようにして原料を該蒸留塔 Aに供給する以外に、付加的にガス状の原料を 該蒸留塔 Aの下部から断続的又は連続的に供給することも好ましい方法である。また 、環状カーボネートを触媒の存在する段よりも上部の段に液状又は気液混合状態で 該蒸留塔に連続的に供給し、該蒸留塔 Aの下部に該脂肪族 1価アルコールをガス状 及び/又は液状で連続的に供給する方法も好ましい方法である。この場合、環状力 ーボネート中に、脂肪族 1価アルコールが含まれていても、もちろん構わない。
[0042] 本発明において、供給原料中に、生成物であるジアルキルカーボネート及び/又 はジオール類が含まれていてもよレ、。その含有量は、ジアルキルカーボネートが、脂 肪族 1価アルコール/ジアルキルカーボネート混合物中のジアルキルカーボネート の質量%で表わして、通常、 0〜40質量%、好ましくは 0〜30質量%、さらに好ましく は 0〜20質量%であり、ジオール類が環状カーボネート/ジオール混合物中の質量 %で表わして、通常、 0〜: 10質量%、好ましくは 0〜7質量%、さらに好ましくは 0〜5 質量%である。
[0043] 本反応を工業的に実施する場合、新規に反応系に導入される環状カーボネート及 び/又は脂肪族 1価アルコールに加え、この工程及び/又は他の工程で回収された 、環状カーボネート及び Z又は脂肪族 1価アルコールを主成分とする物質が、これら の原料として使用できることは好ましいことである。本発明はこのことを可能にするも のであり、これは本発明の優れた特徴である。他の工程とは、例えば、ジアルキル力 ーボネートと芳香族モノヒドロキシィ匕合物からジァリールカーボネートを製造する工程 があり、この工程では、脂肪族 1価アルコールが副生し、回収される。この回収副生脂 肪族 1価アルコールには、通常ジアルキルカーボネート、芳香族モノヒドロキシ化合 物、アルキルァリールエーテルなどが含まれる場合が多ぐさらには少量のアルキル ァリールカーボネート、ジァリールカーボネートなどが含まれる場合がある。副生脂肪 族 1価アルコールはそのままで本願発明の原料とすることもできるし、蒸留等により該 脂肪族 1価アルコールよりも沸点の高い含有物質量を減少させた後に原料とすること あでさる。
[0044] また、本願発明に用いられる好ましい環状カーボネートは、例えば、エチレンォキシ ド、プロピレンォキシド、スチレンォキシドなどのアルキレンォキシドと二酸化炭素との 反応によって製造されたものであるので、これらの原料化合物などを少量含む環状力 ーボネートを、本願発明の原料として用いることもできる。
[0045] 本発明の工程 (I)において、反応蒸留塔 Aに供給する環状カーボネートと脂肪族 1 価アルコール類との量比は、エステル交換触媒の種類や量及び反応条件によっても 異なるが、通常、供給される環状カーボネートに対して、脂肪族 1価アルコール類は モル比で 0. 01〜: 1000倍の範囲で供給することができる力 S、環状カーボネートの反 応率を上げるためには脂肪族 1価アルコール類を 2倍モル以上の過剰量供給するこ とが好ましい。し力 ながら、あまり大過剰に用いると装置を大きくする必要がある。こ のような意味において、環状カーボネートに対する脂肪族 1価アルコール類のモル比 は、 2〜20力 S好ましく、より好ましくは 3〜: 15、さらに好ましくは 5〜: 12である。なお、未 反応環状カーボネートが多く残存していると、生成物であるジオール類と反応して 2 量体、 3量体などの多量体を副生するので、工業的に実施する場合、未反応環状力 ーボネートの残存量をできるだけ減少させることが好ましい。本発明の方法では、こ のモル比が 10以下であっても、環状カーボネートの反応率を 98%以上、好ましくは 9 9。/0以上、さらに好ましくは 99. 9%以上にすることが可能である。このことも本発明の 特徴のひとつである。
[0046] 本発明においては、反応蒸留塔 Aにおいて好ましくは 1時間あたり約 1トン以上のジ オールを含む高沸点反応混合物 (A )を連続的に製造し、これを連続多段蒸留塔 C
B
に供給し、その塔底成分 (C )を連続多段蒸留塔 Eで蒸留分離して 1時間あたり約 1ト
B
ン以上の高純度ジオールを製造するのであるが、そのために連続的に供給される環 状カーボネートの最低量は、製造すべき高純度ジオールの量 (Pトン/ hr)に対して、 通常 1. 55Pトン/ hr、好ましくは 1 · 5Pトン/ hr、より好ましくは 1 · 45Ρトン/ hrであ る。さらに好ましい場合は、 1. 43Pトン/ hrよりも少なくできる。
[0047] 本発明では、環状カーボネートと脂肪族 1価アルコールとを原料として、
(I)この原料を触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該蒸留塔 A 内で反応蒸留を行レ、、蒸留塔 Aの上部から生成するジアルキルカーボネート及び該 脂肪族 1価アルコールを含む低沸点反応混合物 (A )をガス状で連続的に抜出し、
T
蒸留塔 Aの下部から生成するジオール類を含む高沸点反応混合物 (A )を液状で連
B
続的に抜出す工程 (1)、
(II)該高沸点反応混合物 (A )を連続多段蒸留塔 Cに連続的に供給し、該高沸点反
B
応混合物 (A )中に含有するジオールよりも低沸点の物質を塔頂成分 (C )及び
B T Z又 はサイドカット成分 (C )として連続的に抜き出し、ジオールを主成分とする塔底成分
S
(c )を蒸留塔 cの下部から連続的に抜き出す工程 (11)、
B
(III)該塔底成分 (C )を連続多段蒸留塔 Eに連続的に供給し、該連続多段蒸留塔 E
B
のサイドカット抜き出し口からサイドカット成分 (E )として高純度ジオールを連続的に
S
抜き出す工程 (111)、
を行う製造方法によって、 1時間あたり好ましくは約 1トン以上の高純度ジオールを長 期間安定的に製造できる。
[0048] したがって、工程 (I)で用いる該連続多段蒸留塔 Aは、単なる蒸留機能からの条件 だけではなぐ安定的に高反応率でし力も高選択率で反応を進行させるために必要 な条件を複合してレ、ることが必要である。
[0049] また、工程 (II)で用いる該連続多段蒸留塔 Cは、該高沸点反応混合物 (A )中に
B
含有するジオールよりも低沸点の物質を塔頂成分 (C )及びサイドカット成分 (C )と
T S
して効率的に除去できる機能を有していることが必要であり、さらに、工程 (in)で用 いる該連続多段蒸留塔 Eは、大量の塔底成分 (C )から高純度ジオールを高収率で
B
長期間安定的に取得できる機能を有していることが必要である。そのために、該連続 多段蒸留塔 C及び該連続多段蒸留塔 Eは、種々の条件を同時に満足させるものでな ければならない。本発明はこれらの機能を有する特定の構造を有する工業的蒸留装 置を提供し、それらを用いることによって本発明の目的が達成できることを見出したの である。
[0050] なお、該高沸点反応混合物 (A )中には、未反応環状カーボネートが微量〜少量
B
含まれる場合がある。この場合、該連続多段蒸留塔 Cの塔底成分 (C )中に未反応
B
環状カーボネートが実質的に存在しなレ、ようにしておくことが好ましレ、。このためには 、少量の水を該連続多段蒸留塔 Cに加え、該未反応環状カーボネートを加水分解反 応によってジオールに変換させる力 \及び Z又はジオールと反応させてジアルキレン グリコールなどに変換させるための工夫 (例えば、該反応が完全に進行するために必 要な温度と滞留時間を確保されていること、塔底成分の逆混合を少なくすることなど) がなされていることが好ましい。この工夫がなされていることによって、該連続多段蒸 留塔 Cの塔底成分 (C )中には、未反応環状カーボネートが実質的に存在しないよう
B
にすることができ、このことは、本発明を実施する上で好ましいことである。
[0051] なお、本発明でいう「実質的に含まない」とは、その含有量が 50ppm以下、好ましく は lOppm以下、より好ましくは 5ppm以下を意味する。
[0052] 本発明で用いられる連続多段蒸留塔 A、連続多段蒸留塔 C及び連続多段蒸留塔
Eは、上記の目的を達成するためには、種々の条件を同時に満足させるものでなけ ればならない。
具体的には、
(a)該連続多段蒸留塔 Aが、下記式(1)〜(6)を満足する長さ L (cm)、内径 D (cm
0 0
)、内部に段数 nを持つインターナルを有し、塔頂部又はそれに近い塔の上部に内
0
径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 d (cm)の液
01 02 抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間部に 1つ以上 の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又は下部に 1つ 以上の第 2の導入口を有する蒸留塔であって、
2100 ≤ L ≤ 8000 式(1)
0
180 ≤ D ≤ 2000 式(2)
0
4 ≤ L /Ό ≤ 40 式(3)
0 0
20 ≤ n ≤ 120 式(4) 3 ≤ D /d ≤ 20 式(5)
0 01
5 ≤ D /d ≤ 30 式(6)
0 02
(b)該連続多段蒸留塔 Cが下記式(7)〜(15)を満足する長さ L (cm)、内径 D (c
CI CI
m)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D (
CI C2 C2 cm)、内部に段数 n をもつインターナルを有する濃縮部と、を備え、
C2
300 < L < 3000 式 (7)
C1
50 < D < 700 式 (8)
C1
3 < L / ≤ 30 式 (9)
C1 Cl
3 < n < 30 式(10)
C1
1000 < L < 5000 式 (11)
C2
50 < D < 500 式(12)
C2
10 < L / ≤ 50 式(13)
C2 C2
20 < n < 100 式 (14)
C2
D ≤ D 式(15)
(c)該連続多段蒸留塔 Cの濃縮部には、インターナルとして 1つ以上のチムニートレ ィが設置されており、該チムニートレイには、式(16)を満足する断面積 S (cm2)の開
C
口部を有するチムニーが 1個以上設置されており、
200 ≤ S ≤ 1000 式(16)
c
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
c
17)を満足するチムニ一であり、
10 ≤ h ≤ 80 式(17)
c
(d)サイドカット抜き出し口が該連続多段蒸留塔 Cの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔であり、
(e)該連続多段蒸留塔 Eが、下記式(18)〜(26)を満足する長さ L (cm)、内径 D
El E1
(cm)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D
El E2 E
(cm) ,内部に段数 n をもつインターナルを有する濃縮部と、を備え、
2 E2
400 ≤ L ≤ 3000 式(18) 50 < D ≤ 700 式 (19)
El
2 < L /D ≤ 50 式(20)
El El
3 < n ≤ 30 式(21)
El
600 < L ≤ 4000 式(22)
E2
100 < D ≤ 1000 式(23)
E2
2 < L /D ≤ 30 式(24)
E2 E2
5 < n ≤ 50 式(25)
E2
D ≤ D 式(26)
ω該連続多段蒸留塔 Eの濃縮部には、インターナルとして 1つ以上のチムニートレイ が設置されており、該チムニートレイが、式(27)を満足する断面積 S (cm2)の開口
E
部を有するチムニーを 2個以上設置しており、
50 ≤ S ≤ 2000 式(27)
E
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
E
28)を満足するチムニ一であり、
20 ≤ h ≤ 100 式(28)
E
(g)サイドカット抜き出し口が該連続多段蒸留塔 Eの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔である、
ことが必要である。
このような連続多段蒸留塔 A、連続多段蒸留塔 C及び連続多段蒸留塔 Eを組み合 わせた装置を用いて、工程 (I)〜工程 (III)を実施することによって、環状カーボネー トと脂肪族 1価アルコール類との反応蒸留法で製造された大量の高沸点反応混合物 (A )から、高純度ジオールが、 1時間あたり 1トン以上、好ましくは 2トン以上、より好
B
ましくは 3トン以上の工業的規模で、例えば、 1000時間以上、好ましくは 3000時間 以上、さらに好ましくは 5000時間以上の長期間、安定的に製造できることが見出さ れたのである。本発明の方法を実施することによって、このような優れた効果を有する 工業的規模での高純度ジオールの製造が可能になった理由は明らかではないが、 式(1)〜(28)の条件が組み合わさった時にもたらされる複合効果のためであると推 定される。
なお、各々の要因の好ましい範囲は下記に示される。
[0054] 連続多段蒸留塔 Aにおいて、 L (cm)が 2100より小さいと、反応率が低下するため
0
目的とする生産量を達成できないし、 目的の生産量を達成できる反応率を確保しつ つ設備費を低下させるには、 Lを 8000以下にすることが必要である。より好ましい L
0 0
(cm)の範囲は、 2300≤L ≤6000 であり、さらに好ましくは、 2500≤L ≤5000
0 0 である。
[0055] D (cm)が 180よりも小さいと、 目的とする生産量を達成できないし、 目的の生産量
0
を達成しつつ設備費を低下させるには、 Dを 2000以下にすることが必要である。よ
0
り好ましい D (cm)の範囲は、 200≤D ≤1000 であり、さらに好ましくは、 210≤D
0 0
≤800 である。
0
[0056] L /Ό力 S4より小さい時や 40より大きい時は安定運転が困難となり、特に 40より大
0 0
きいと塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難となる だけでなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくな り選択率の低下をもたらす。より好ましい L /Dの範囲は、 5≤L /D ≤30 であり
0 0 0 0
、さらに好ましくは、 7≤L /D ≤20 である。
0 0
[0057] nが 10より小さいと反応率が低下するため目的とする生産量を達成できないし、 目
0
的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 nを 120以
0 下にすることが必要である。さらに、 n力 よりも大きいと塔の上下における圧力差
0
が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を 高くしなければならないため、副反応が起こりやすくなり選択率の低下をもたらす。よ り好ましい nの範囲は、 30≤n ≤100 であり、さらに好ましくは、 40≤n ≤90 であ
0 0 0 る。
[0058] D /d 力 S3より小さいと設備費が高くなるだけでなく大量のガス成分が系外に出や
0 01
すくなるため、安定運転が困難になり、 20よりも大きいとガス成分の抜出し量が相対 的に小さくなり、安定運転が困難になるだけでなぐ反応率の低下をもたらす。より好 ましい D Zd の範囲は、 4≤D /d ≤15 であり、さらに好ましくは、 5≤D
0 01 0 01 0 Zd 01
≤13 である。 [0059] D /d が 5より小さいと設備費が高くなるだけでなく液抜出し量が相対的に多くな
0 02
り、安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が急激に速 くなりエロージョンを起こしやすくなり装置の腐食をもたらす。より好ましい D /d の
0 02 範囲は、 7≤D /d ≤25 であり、さらに好ましくは、 9≤D /d ≤20 である。
0 02 0 02
[0060] さらに、本発明では、該 d と該 d が式(29)を満足する場合、さらに好ましいことが
01 02
わかった。
1 ≤ d /d ≤ 5 式(29)
01 02
[0061] 連続多段蒸留塔 Cにおレ、て、 L (cm)が 300より小さいと、回収部の分離効率が
C1
低下するため目的とする分離効率を達成できないし、 目的の分離効率を確保しつつ 設備費を低下させるには、 L を 3000以下にすることが必要である。 L が 3000より
CI C1
も大きいと塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難と なるだけでなぐ塔下部での温度を高くしなければならないため、副反応が起こりや すくなる。より好ましい L (cm)の範囲は、 500≤L ≤2000 であり、さらに好ましく
Cl C1
は、 600≤L ≤1500 である。
C1
[0062] D (cm)が 50よりも小さいと、 目的とする蒸留量を達成できないし、 目的の蒸留量
C1
を達成しつつ設備費を低下させるには、 D を 700以下にすることが必要である。より
C1
好ましい D (cm)の範囲は、 70≤D ≤500 であり、さらに好ましくは、 190≤D
Cl Cl Cl
≤400 である。
[0063] L /D 力 ¾より小さい時や 30より大きい時は長期安定運転が困難となる。より好
Cl C1
ましい L /D の範囲は、 4≤L /D ≤20 であり、さらに好ましくは、 5≤L /
Cl Cl Cl Cl Cl
D ≤15 である。
Cl
n 力 ¾より小さいと回収部の分離効率が低下するため目的とする分離効率を達成
C1
できないし、 目的の分離効率を確保しつつ設備費を低下させるには、 n を 30以下
C1
にすることが必要である。 n が 30よりも大きいと塔の上下における圧力差が大きくな
C1
りすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなけ ればならないため、副反応が起こりやすくなる。より好ましい n の範囲は、 5≤n ≤
20 であり、さらに好ましくは、 6≤n ≤15 である。
C1
[0065] L (cm)が 1000より小さいと、濃縮部の分離効率が低下するため目的とする分離 効率を達成できないし、 目的の分離効率を確保しつつ設備費を低下させるには、 L
C2 を 5000以下にすることが必要である。 L 力 ¾000よりも大きいと塔の上下における圧
C2
力差が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温 度を高くしなければならないため、副反応が起こりやすくなる。より好ましい L (cm)
C2 の範囲は、 1500≤L ≤4000 であり、さらに好ましくは、 2000≤L ≤3500 で
C2 C2
ある。
[0066] D (cm)が 50よりも小さいと、 目的とする蒸留量を達成できないし、 目的の蒸留量
C2
を達成しつつ設備費を低下させるには、 D を 500以下にすることが必要である。より
C2
好ましい D (cm)の範囲は、 70≤D ≤400 であり、さらに好ましくは、 90≤D ≤
C2 C2 C2
350 である。
[0067] L /Ό が 10より小さい時や 50より大きい時は長期安定運転が困難となる。より好
C2 C2
ましい L /D の範囲は、 15≤L /D ≤40 であり、さらに好ましくは、 20≤L
/D ≤35 である。
C2
[0068] n 力 ¾0より小さいと濃縮部の分離効率が低下するため目的とする分離効率を達
C2
成できないし、 目的の分離効率を確保しつつ設備費を低下させるには、 n を 100以
C2 下にすることが必要である。 n 力 S 100よりも大きいと塔の上下における圧力差が大き
C2
くなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高くしな ければならないため、副反応が起こりやすくなる。より好ましい n の範囲は、 30≤n
C2 C2
≤90 であり、さらに好ましくは、 40≤n ≤80 である。なお、本発明においては、
C2
濃縮部に 1つ以上のチムニートレイが設置されることが必要である力 その段数は、 上記の n に含まれるものとする。
C2
[0069] また、本発明の連続多段蒸留塔 Cにおいては、 D ≤D が好ましい。
C2 C1
[0070] なお、工程 (II)において、連続多段蒸留塔 Cに供給される高沸点反応混合物 (A )
B
中に、少量の未反応環状カーボネートを含む場合は、塔下部において該未反応環 状カーボネートを反応させて、塔底成分 (C )中には実質的にそれが含有しないよう
B
にするための工夫を行うことが好ましい。したがって、該連続多段蒸留塔 Cの塔下部 にある回収部最下部のインターナルの下部にさらに複数 (n 段)のトレイ Kを設け、
C3
該トレイ Kの最上段から液を一部連続的に抜き出し、リボイラーで蒸留と反応に必要 な熱量を与えた後、該加熱された液を回収部最下部のインターナルと該最上段トレイ Kとの間に設けられた供給口から蒸留塔 Cに戻し、残りの液を下部のトレイに順に供 給すること力できるようにすることは、本発明の好ましい実施態様である。
[0071] このような工夫を行うことによって、連続多段蒸留塔 Cの塔下部における液の滞留 時間を増加させることができ、また、該トレイ Kの存在する段以下の塔径(D )を回収
C3 部の塔径 (D )より大きくする(D < D )ことによって液体の滞留量を増加させ滞留
CI CI C3
時間を増加させることができ、充分な反応時間を維持することができる。さらには、塔 底液の液面レベルをトレイ κの最下段のトレイよりも低くすることによって、塔下部にお ける液体の逆混合を防止することができる。したがって、本発明では、少量の未反応 環状カーボネートを含む場合においても、未反応環状カーボネートは、工程 (II)で 大過剰に存在するジオールと反応して、高沸点のジアルキレングリコール等に完全 に変換することができる。
[0072] このようなトレイ Kとしては、上記の機能を有している限り、どのような種類のトレイで あってもよいが、機能と設備費との関係からみて、多孔板トレイゃバッフルトレイが好 ましぐなかでもバッフルトレイが特に好ましい。多孔板トレイゃバッフルトレイの場合、 堰が設けられていることが好ましぐその堰をオーバーフローした液は、ダウンカマー 部から下段のトレイに連続的に落下するようにすることが好ましい。この場合、堰の高 さは、 4〜30cm力 S好ましく、より好ましくは、 6〜20cmで、さらに好ましくは 8〜: 15cm である。バッフルトレイの場合、この堰がバッフルである単純なトレイが特に好ましい。
[0073] 好ましい D の範囲は、 1. 2D < D ≤5D であり、より好ましくは 1. 5D <
C3 CI C3 CI C1
D ≤4D 、さらに好ましくは、 1. 7D < D ≤3D である。
C3 CI CI C3 C1
[0074] また、 n は、 2段以上である力、好ましい n の範囲は、 3≤n ≤20 であり、より
C3 C3 C3 好ましくは、 4≤n ≤15 であり、さらに好ましくは、 5≤n ≤10 である。
C3 C3
[0075] 連続多段蒸留塔 Cの濃縮部に設置されるチムニートレイとは、トレイの平面に断面 積 S (cm2)の開口部を有するチムニー (煙突状の物体)が 1つ以上設けられたもの
C
である。そして、それらのチムニーの上部開口部には、チムニーカバーが設置されて レ、ることが好ましい。このチムニーカバーは、下段から上昇してくるガス成分がチムニ 一の上部開口部(ガス出口)で横向きに流れることに役立つと同時に、上段から落下 してくる液体成分が直接、下段に落下するのを防ぐのに役立っている。
[0076] このチムニーの横断面の形状は、 3角形、四角形、多角形、円形、楕円系、星型等 、いずれでもよいが、四角形、円形が好ましく用いられる。また、このチムニ一は上部 力 下部までその横断面の形や面積が異なるものでもよいが、同じものが製作上容 易で安価になるので好ましい。また、 2つ以上のチムニーが異なる形状を有するもの であってもよいが、同じ形状を有するものが好ましい。
[0077] 本発明では、このチムニートレイに接続されたチムニ一の開口部(該チムニ一の横 断面における最小部分)の断面積 S (cm2)力 式(16)を満足していることが必要で
C
ある。
200 ≤ S ≤ 1000 式(16)
c
[0078] S 力 ¾00より小さいと所定の生産量を達成するためには多くのチムニーが必要とな
C
り設備費が高くなる。また、 S が 1000より大きいとチムニートレイの段におけるガスの c
流れが不均一になりやすく長期安定運転が困難になる。より好ましい S (cm2)は、 3
C
00≤S ≤800 であり、さらに好ましくは、 400≤S ≤700 である。
C C
また、該チムニ一の該開口部から該チムニ一のガス出口(チムニ一の上部開口部 下端)までの高さ h (cm)力 式(17)を満足してレ、ることが必要である。
10 ≤ h ≤ 80 式(17)
c
[0079] 本発明で用いられるチムニートレイには、下段へ液成分を落下させるためのダウン カマー部と液成分を保持するための堰力 通常、設置されている。この堰の高さは、 h に依存する力 通常、 hより 5〜20cm程度小さく設定されている。したがって、 hが
C C C
10より小さいとチムニートレイに保持される液量が少なくなり、長期安定運転が困難 になる。また、 hが 80よりも大きいと保持される液量が増大するため設備の強度を高
C
める必要があるので設備費が高くなるだけでなぐ精製されたジオールの塔内での滞 留時間が増えるので好ましくなレ、。より好ましい h (cm)は、 15≤h ≤60 であり、さ
C C
らに好ましくは、 20≤h ≤50 である。
C
[0080] また、該チムニートレイの開口比(チムニ一の開口部断面積の合計と、該開口部全 断面積を含むチムニートレイの面積との比)は、 10〜40%の範囲であることが好まし レ、。該開口比が 5%より小さいと長期安定運転が困難になる。また、 40%より大きくす るとチムニーの数を増やすか、チムニーを高くする必要があり、いずれも設備費が高 くなる。より好ましい開口比は、 13〜35%の範囲であり、さらに好ましくは、 15-30 %の範囲である。
[0081] 本発明では、 1つ以上のチムニートレイが連続多段蒸留塔 Cの濃縮部(塔への供給 口よりも上部で塔頂より下部の部分)に設置され、その液溜り部の底部に接続された サイドカット抜き出し口からジオールよりも沸点が低ぐ脂肪族 1価アルコールよりも沸 点の高い中間沸点物質を主成分とする留分が連続的に抜き出される。チムニートレ ィの数は必要に応じて 2つ以上とすることもできる力 S、通常は 1つで実施される。この チムニートレイの設置される段は、濃縮部のどの位置でもよいが、濃縮部の段の下か ら 3段目以上で、濃縮部の段の上から 10段目以下の段が好ましい。より好ましくは、 濃縮部の段の下から 4段目以上で、濃縮部の段の上から 15段目以下の段であり、さ らに好ましくは、濃縮部の段の下から 5段目以上で、濃縮部の段の上から 24段目以 下の段である。
[0082] 工程 (III)で用いられる連続多段蒸留塔 Eにおいて、 L (cm)が 400より小さいと、
E1
回収部の分離効率が低下するため目的とする分離効率を達成できないし、 目的の分 離効率を確保しつつ設備費を低下させるには、 L を 3000以下にすることが必要で
E1
ある。 L が 3000よりも大きいと塔の上下における圧力差が大きくなりすぎるため、長
E1
期安定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため 、副反応が起こりやすくなる。より好ましい L (cm)の範囲は、 500≤L ≤2000 V
El E1
あり、さらに好ましくは、 600≤L ≤1500 である。
E1
[0083] D (cm)が 50よりも小さいと、 目的とする蒸留量を達成できないし、 目的の蒸留量
E1
を達成しつつ設備費を低下させるには、 D を 700以下にすることが必要である。より
E1
好ましい D (cm)の範囲は、 100≤D ≤600 であり、さらに好ましくは、 120≤D
El El E
≤500 である。
[0084] L /D 力 ¾より小さい時や 50より大きい時は長期安定運転が困難となる。より好
El E1
ましい L /D の範囲は、 3≤L /Ό ≤20 であり、さらに好ましくは、 4≤L /
El El El El El
D ≤15 である。
El
[0085] n 力 ¾より小さいと回収部の分離効率が低下するため目的とする分離効率を達成 できないし、 目的の分離効率を確保しつつ設備費を低下させるには、 n を 30以下
E1
にすることが必要である。 n が 30よりも大きいと塔の上下における圧力差が大きくな
E1
りすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなけ ればならないため、副反応が起こりやすくなる。より好ましい n の範囲は、 5≤n ≤
El El
20 であり、さらに好ましくは、 6≤n ≤15 である。
E1
[0086] L (cm)が 600より小さいと、濃縮部の分離効率が低下するため目的とする分離効
E2
率を達成できないし、 目的の分離効率を確保しつつ設備費を低下させるには、 L を
E2
4000以下にすることが必要である。 L 力 S4000よりも大きいと塔の上下における圧
E2
力差が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温 度を高くしなければならないため、副反応が起こりやすくなる。より好ましい L (cm)
E2 の範囲は、 700≤L ≤3000 であり、さらに好ましくは、 800≤L ≤2500 である
D (cm)が 100よりも小さいと、 目的とする蒸留量を達成できないし、 目的の蒸留
E2
量を達成しつつ設備費を低下させるには、 D を 1000以下にすることが必要である
E2
。より好ましい D (cm)の範囲は、 120≤D ≤800 であり、さらに好ましくは、 150
≤D ≤600 である。
E2
[0088] L /Ό 力^より小さい時や 30より大きい時は長期安定運転が困難となる。より好
E2 E2
ましい L /D の範囲は、 3≤L /Ό ≤20 であり、さらに好ましくは、 4≤L /
E2 E2 E2 E2 E2
D ≤15 である。
E2
[0089] n 力 より小さいと濃縮部の分離効率が低下するため目的とする分離効率を達成
E2
できないし、 目的の分離効率を確保しつつ設備費を低下させるには、 n を 50以下
E2
にすることが必要である。 n が 50よりも大きいと塔の上下における圧力差が大きくな
E2
りすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなけ ればならないため、副反応が起こりやすくなる。より好ましい n の範囲は、 7≤n ≤
E2 E2
30 であり、さらに好ましくは、 8≤n ≤25 である。なお、本発明においては、濃縮
E2
部に 1つ以上のチムニートレイが設置されることが必要である力 s、その段数は、上記 の n に含まれるものとする。
E2
[0090] また、本発明の連続多段蒸留塔 Eにおいては、 D ≤D が好ましぐさらに好まし
El E2 くは、 D < D である。
El E2
[0091] 連続多段蒸留塔 Eの濃縮部に設置されるチムニートレイとは、トレイの平面に断面 積 S (cm2)の開口部を有するチムニー (煙突状の物体)が 2つ以上設けられたもので
E
ある。そして、それらのチムニーの上部開口部には、チムニーカバーが設置されてい ることが好ましい。このチムニーカバーは、下段から上昇してくるガス成分がチムニー の上部開口部(ガス出口)で横向きに流れることに役立つと同時に、上段から落下し てくる液体成分が直接、下段に落下するのを防ぐのに役立っている。
[0092] このチムニーの横断面の形状は、 3角形、四角形、多角形、円形、楕円系、星型等 、いずれでもよいが、四角形、円形が好ましく用いられる。また、このチムニ一は上部 力 下部までその横断面の形や面積が異なるものでもよいが、同じものが製作上容 易で安価になるので好ましい。また、 2つ以上のチムニーが異なる形状を有するもの であってもよいが、同じ形状を有するものが好ましい。
[0093] 本発明では、このチムニートレイに接続されたチムニ一の開口部(該チムニ一の横 断面における最小部分)の断面積 S (cm2)力 式(27)を満足していることが必要で
E
ある。
50 ≤ S ≤ 2000 式(27)
E
[0094] S が 50より小さいと所定の生産量を達成するためには多くのチムニーが必要となり
E
設備費が高くなる。また、 S が 2000より大きいとチムニートレイの段におけるガスの
E
流れが不均一になりやすく長期安定運転が困難になる。より好ましい S (cm2)は、 1
E
00≤S ≤1500 であり、さらに好ましくは、 200≤S ≤1000 である。
E E
[0095] また、該チムニ一の該開口部から該チムニ一のガス出口(チムニ一の上部開口部 下端)までの高さ h (cm)力 式(28)を満足していることが必要である。
E
20 ≤ h ≤ 100 式(28)
E
[0096] 本発明で用いられるチムニートレイには、下段へ液成分を落下させるためのダウン カマー部と液成分を保持するための堰が、通常、設置されている。この堰の高さは、 h に依存する力 通常、 hより 5〜20cm程度小さく設定されている。したがって、 hが
E E E
20より小さいとチムニートレイに保持される液量が少なくなり、長期安定運転が困難 になる。また、 h力 S100よりも大きいと保持される液量が増大するため設備の強度を 高める必要があるので設備費が高くなるだけでなぐ精製されたジオールの塔内での 滞留時間が増えるので好ましくない。より好ましい h (cm)は、 30≤h ≤80 であり、
E E
さらに好ましくは、 40≤h ≤70 である。
E
[0097] また、該チムニートレイの開口比(チムニ一の開口部断面積の合計と、該開口部全 断面積を含むチムニートレイの面積との比)は、 5〜40%の範囲であることが好ましい 。該開口比が 5%より小さいと長期安定運転が困難になる。また、 40%より大きくする とチムニ一の数を増やすか、チムニーを高くする必要があり、いずれも設備費が高く なる。より好ましい開口比は、 10〜30%の範囲であり、さらに好ましくは、 15-25% の範囲である。
[0098] 本発明では、 1つ以上のチムニートレイが多段蒸留塔 Eの濃縮部(塔への供給口よ りも上部で塔頂より下部の部分)に設置され、その液溜り部の底部に接続されたサイ ドカット抜き出し口から液状の高純度ジオールが連続的に抜きだされることを 1つの 特徴としている。チムニートレイの数は必要に応じて 2つ以上とすることもできる力 通 常は 1つで実施される。このチムニートレイの設置される段は、濃縮部のどの位置でも よいが、濃縮部の段の下から 3段目以上で、濃縮部の段の上から 3段目以下の段が 好ましレ、。より好ましくは、濃縮部の段の下から 4段目以上で、濃縮部の段の上から 4 段目以下の段であり、さらに好ましくは、濃縮部の段の下から 5段目以上で、濃縮部 の段の上から 4段目以下の段である。
[0099] 工程 (I)で用いられる連続多段蒸留塔 Aのインターナルとしてトレイ及び/又は充 填物を有する蒸留塔であることが好ましい。また、工程 (II)で用いられる連続多段蒸 留塔 Cと工程 (III)で用いられる連続多段蒸留塔 Eにおいて、それぞれの回収部及び 濃縮部は、インターナルとしてトレイ及び Z又は充填物を有する蒸留塔であることが 好ましい。
[0100] 本発明でレ、うインターナルとは、蒸留塔において実際に気液の接触を行わせる部 分のことを意味する。このようなトレイとしては、例えば、泡鍾トレイ、多孔板トレイ、リツ プルトレイ、バラストトレイ、バルブトレイ、向流トレイ、ュニフラックストレイ、スーパーフ ラックトレイ、マックスフラックトレイ、デュアノレフロートレイ、グリッドプレートトレイ、ター ボグリッドプレートトレイ、キッテルトレイ等が好ましぐ充填物としては、例えば、ラシヒ リング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソ ンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェ ムパック、テクノパック、フレキシパック、スルザ一パッキング、グッドロールパッキング、 グリッチグリッド等の規則充填物が好ましい。トレイ部と充填物の充填された部分とを 合わせ持つ多段蒸留塔も用いることができる。なお、本発明で用いる用語「インター ナルの段数 n、 n 、 n 、 n 、 n 」とは、トレイの場合は、トレイの数を意味し、充填
0 CI C2 El E2
物の場合は、理論段数を意味する。したがって、トレイ部と充填物の充填された部分 とを合わせ持つ連続多段蒸留塔の場合、 n 、n 、n 、n はトレイの数と、理論段
CI C2 El E2
数の合計である。
[0101] 環状カーボネートと脂肪族 1価アルコール類との反応蒸留を行う連続多段蒸留塔 A において、インターナルが nの段数を有するトレイ及び/又は充填物からなる棚段式
0
連続多段蒸留塔及び/又は充填塔式連続多段蒸留塔のいずれを用いても、高反 応率 ·高選択率 ·高生産性を達成することができるが、インターナルカ Sトレイである棚 段式蒸留塔がより好ましいことが見出された。そして各トレイは、液を保持するために 堰を設けていることが好ましい。
[0102] したがって、定常状態では、各トレイにおいて堰で保持された液体力 トレイに設け られた開口部から上昇してくるガスと気液接触し、パブリングしながら反応と蒸留が行 われている。トレイに連続的に供給された液体は、その堰の上部からオーバーフロー して一段下のトレイに供給されていくのである。
[0103] 各トレイの堰の高さは、 3〜20cmの範囲であることが好ましレ、。この堰の高さは各ト レイにおける液の滞留時間に影響を与えるものである。工程 (I)では、通常、反応は 触媒の存在する液部で進行するので、各トレイでの液の滞留時間は反応時間に直 接関連する。触媒供給段より下部の各トレイの堰の高さが低い場合は反応時間が短 くなり、堰の高さが高い場合は反応時間が長くなることになる。工程 (I)では、通常、 触媒の存在する段では反応と蒸留が行われ、触媒の存在しなレ、段では蒸留精製が 行われている。
[0104] 工程 (I)においては、堰の高さが 3cmより低い場合は目的とする高反応率を達成す ることが困難になり、また、堰の高さが 20cmより高い場合は副反応(例えば、反応生 成物であるジオール類と未反応環状カーボネートの反応)による高沸点副生物の生 成が増え高選択率を達成することが困難になってくるだけでなぐ蒸留塔の上部と下 部の差圧が大きくなり安定な蒸留操作が困難になってくる。
[0105] この意味で各トレイの堰の高さのより好ましい範囲は、 3. 5〜15cmであり、さらに好 ましい範囲は 4〜13cmである。なお、連続多段蒸留塔 Aにおいては各トレイの堰の 高さはすべて同じであってもよいし、異なっていてもよレ、。本発明では、触媒の存在 する反応段の堰の高さが触媒の存在しない段よりも高い堰をもつ多段蒸留塔が好ま しく用いられる。
[0106] さらに、該トレイが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費 との関係で特に優れていることが見出された。そして、該多孔板トレイが該多孔板部 の面積 lm2あたり 100〜1000個の孔を有していることが好ましいことも見出された。 より好ましい孔数は該面積 lm2あたり 120〜900個であり、さらに好ましくは、 150〜8 00個である。また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であること が好ましいことも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であ り、さらに好ましくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面 積 lm2あたり 100〜1000個の孔を有しており、かつ、孔 1個あたりの断面積が 0. 5〜 5cm2である場合、特に好ましいことが見出された。また、該多孔板部の孔数は、全て の多孔板において同じであってもよいし、異なるものであってもよい。
[0107] 本発明でいう連続多段蒸留塔 Aの多孔板トレイの開口比とは、多段蒸留塔 Aを構 成する各トレイにおいて、ガス及び液体が通過できる各トレイの開口部の全面積(孔 の全断面積)と、その開口部を有するトレイの面積との比を意味する。なお、ダウン力 マー部のあるトレイについては、その部分を除いた実質的にバブリングの起こってい る部分の面積をトレイの面積とする。
[0108] 連続多段蒸留塔 Aの多孔板トレイの開口比は、 1. 5〜: 15%の範囲であることが好 ましいことがわかった。開口比が 1. 5%より小さいと、必要とする生産量に対して装置 が大きくなり、設備費が高くなるだけでなぐ滞留時間が長くなり副反応 (たとえば、反 応生成物であるジオール類と未反応環状カーボネートの反応)が起こりやすくなる。 また、開口比が 15。/0より大きいと各トレイでの滞留時間が短くなるので、高反応率を 達成するためには段数を増加させる必要があり、上記の nを大きくしたときの不都合
0
が生じる。このような意味で、好ましい開口比の範囲は、 1. 7〜8. 0%であり、さらに 好ましくは 1. 9力ら 6. 0%の範囲である。
[0109] なお、連続多段蒸留塔 Aの各トレイの開口比は全て同じであってもよいし、異なって いてもよい。本発明においては、通常、上部のトレイの開口比が下部のトレイの開口 比より大きい多段蒸留塔が好ましく用レ、られる。
[0110] 工程 (I)で行われるエステル交換反応の反応時間は連続多段蒸留塔 A内での反応 液の平均滞留時間に相当すると考えられるが、これは蒸留塔のインターナルの形状 や段数、原料供給量、触媒の種類や量、反応条件などによって異なるが、通常 0. 1 〜20時間、好ましくは 0. 5〜: 15時間、より好ましくは:!〜 10時間である。
[0111] 工程 (I)での反応温度は、用いる原料化合物の種類や触媒の種類や量によって異 なるが、通常、 30〜300°Cの範囲である。反応速度を高めるためには反応温度を高 くすることが好ましいが、反応温度が高いと副反応も起こりやすくなる。好ましい反応 温度範囲は 40〜250°C、より好ましくは 50〜200oC、さらに好ましくは 60〜: 150oCで ある。工程 (I)においては、塔底温度として 150°C以下、好ましくは 130°C以下、より 好ましくは 110°C以下、さらにより好ましくは 100°C以下にして反応蒸留を実施するこ とが可能である。このような低い塔底温度であっても高反応率'高選択率'高生産性 を達成できることは、本発明の優れた特徴のひとつである。
[0112] また、工程 (I)での反応圧力は、用いる原料化合物の種類や組成、反応温度など により異なる力 S、減圧、常圧、加圧のいずれであってもよぐ通常 lPa〜2 X 107Pa、 好ましくは 103Pa〜107Pa、より好ましくは 104〜5 X 106の範囲で行われる。
[0113] 本発明においては連続多段蒸留塔 Cの回収部のインターナル及び濃縮部のチム ニートレイを除くインターナルが、それぞれトレイ及び/又は充填物である場合が好 ましレ、。さらに回収部のインターナルがトレイであり、濃縮部のチムニートレイを除くィ ンターナルが、トレイ及び Z又は規則充填物である場合が特に好ましいことが見出さ れた。また、該トレイが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備 費との関係で特に優れていることが見出された。そして、該多孔板トレイが該多孔板 部の面積 lm2あたり 100〜1000個の孔を有していることが好ましいことも見出された 。より好ましい孔数は該面積 lm2あたり 150〜900個であり、さらに好ましくは 200〜8 00個である。また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であること が好ましいことも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であ り、さらに好ましくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面 積 lm2あたり 100〜1000個の孔を有しており、且つ、孔 1個あたりの断面積が 0. 5〜 5cm2である場合、特に好ましいことが見出された。
[0114] 連続多段蒸留塔 Cの回収部における該多孔板トレイの開口比(トレイ 1段の孔の断 面積の合計と該トレイの面積との比)は、 2〜: 15%の範囲であることが好ましぐより好 ましくは、 2. 5〜: 12%の範囲であり、さらに好ましくは 3〜: 10%の範囲である。また、 連続多段蒸留塔 Cの濃縮部における該多孔板トレイの開口比(トレイ 1段の孔の断面 積の合計と該トレイの面積との比)は、 1. 5〜: 12%の範囲であることが好ましぐより 好ましくは、 2〜: 11 %の範囲であり、さらに好ましくは 2. 5〜: 10%の範囲である。なお 、本発明においては、濃縮部に設置されているチムニートレイは、段数には数えるが 、その開口比は前記のとおり、多孔板トレイの開口比とは異なるものである。
[0115] 連続多段蒸留塔 Cに上記の条件を付加することによって、本発明の課題が、より容 易に達成されることが判明したのである。
[0116] 本発明においては、連続多段蒸留塔 Eの回収部及び濃縮部のインターナルが、そ れぞれトレイである場合が特に好ましい。さらに該トレイが多孔板部とダウンカマー部 を有する多孔板トレイが機能と設備費との関係で特に優れていることが見出された。 そして、該多孔板トレイが該多孔板部の面積 lm2あたり 150〜: 1200個の孔を有して レ、ることが好ましいことも見出された。より好ましい孔数は該面積 lm2あたり 200〜11 00個であり、さらに好ましくは、 250〜1000個である。また、該多孔板トレイの孔 1個 あたりの断面積が 0. 5〜5cm2であることが好ましいことも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好ましくは 0. 9〜3cm2である。さら には、該多孔板トレイが該多孔板部の面積 lm2あたり 150〜: 1200個の孔を有してお り、且つ、孔 1個あたりの断面積が 0. 5〜5cm2である場合、特に好ましいことが見出 された。
[0117] 連続多段蒸留塔 Eの回収部における該多孔板トレイの開口比(トレイ 1段の孔の断 面積の合計と該トレイの面積との比)は、 3〜25%の範囲であることが好ましぐより好 ましくは 3. 5〜22%の範囲であり、さらに好ましくは 4〜20%の範囲である。また、連 続多段蒸留塔 Eの濃縮部における該多孔板トレイの開口比(トレイ 1段の孔の断面積 の合計と該トレイの面積との比)は、 2〜20%の範囲であることが好ましぐより好まし くは、 3〜: 15%の範囲であり、さらに好ましくは 3. 5〜: 13%の範囲である。なお、本発 明においては、濃縮部に設置されているチムニートレイは、段数には数えるが、その 開口比は前記のとおり、多孔板トレイの開口比とは異なるものである。
[0118] 連続多段蒸留塔 Eに上記の条件を付加することによって、本発明の課題が、より容 易に達成されることが判明したのである。なお、本発明において、開口比を求めるの に必要なトレイの面積とは、該トレイの孔ゃ開口部の断面積の合計を含むものである
[0119] 本発明では、連続多段蒸留塔 A内での反応蒸留によって生成するジアルキルカー ボネートは、通常過剰に用いられ未反応で残っている脂肪族 1価アルコールとの低 沸点反応混合物 (A )として、塔上部よりガス状で連続的に抜出される。そして、生成
T
するジオール類を含む高沸点反応混合物 (A )は塔下部より液状で連続的に抜きだ
B
される。ジオールを主成分とするこの高沸点反応混合物 (A )中には、通常、残存す
B
る脂肪族 1価アルコールが 10〜45質量%、微量のジアルキルカーボネート、非常に 少量 (通常 0. 2質量%以下)の未反応環状カーボネート、少量 (通常 0. 4質量%以 下)のジオールよりも低沸点の副生物(2—アルコキシエタノール等)及び触媒を含む 少量 (通常 1質量%以下)のジオールよりも高沸点の副生物(ジアルキレングリコール 等)が含まれている。
[0120] したがって、工程 (II)では、連続多段蒸留塔 C内に連続的に供給された該高沸点 反応混合物 (A )中のジオールよりも低沸点の物質 (脂肪族 1価アルコール、微量の
B
ジアルキルカーボネート及び副生 C〇、低沸点副生物)と少量のジオール力 塔頂
2
成分 (C )及び/又はサイドカット成分 (C )として連続的に抜き出され、触媒と少量
T S
の高沸点副生物を含むジオール類が塔底成分(C )として連続的に抜き出されること
B
になる。本発明においては、この塔底成分 (C )中のジオールの濃度は通常、 95質
B
量%以上であり、好ましくは 97質量%以上であり、さらに好ましくは 98質量%以上で ある。
[0121] また、本発明の方法では、連続多段蒸留塔 Cに供給された非常に少量 (通常 0. 2 質量%以下)の未反応環状カーボネートは、この蒸留塔 C内で大量に存在するジォ ールとの反応させてジアルキレングリコールとすることができ、未反応環状カーボネー トの存在量を実質的に 0にすることは容易であるので、本発明においては、通常、未 反応環状カーボネートが実質的に存在しない塔底成分 (C )が、連続的に得られるこ
B
とになる。
[0122] なお、通常、ジオール中に含まれる可能性のある極微量のアルデヒド含有量をさら に減少させた超高純度ジオールや、紫外線透過率の高い超高純度ジオールを得る 目的で、特許文献 9又は 10に記載の方法に従って、連続多段蒸留塔 Cの下部に少 量の水を供給することも好ましレ、方法である。
[0123] 工程 (II)で行われる連続多段蒸留塔 Cの蒸留条件は、蒸留塔のインターナルの形 状や段数、供給される高沸点反応混合物 (A )の種類と組成と量、必要とするジォー
B
ルの純度などによって異なる力 通常、塔底温度が 150〜250°Cの範囲の特定の温 度で行うことが好ましい。より好ましい塔底の温度範囲は、 170〜230°Cであり、さら に好ましい温度範囲は、 190〜210°Cである。塔底圧力は、塔内組成と使用する塔 底温度によって異なる力 通常、 50000〜300000Paの範囲であり、好ましく ίま、 80 000〜250000Paの範囲であり、より好ましくは、 100000〜200000Paである。
[0124] また、連続多段蒸留塔 Cの還流比は、 0. 3〜5の範囲が好ましぐより好ましくは 0.
5〜3の範囲であり、さらに好ましくは 0. 8〜2の範囲である。
[0125] 本発明においては、連続多段蒸留塔 Cの塔頂成分(C )中のジオールの含有量は
T
、通常、 lOOppm以下であり、好ましくは 50ppm以下であり、より好ましくは lOppm以 下であり、さらに好ましくは 5ppm以下である。本発明では、塔頂成分 (C )中のジォ
T
ールの含有量をゼロにすることも可能である。
[0126] 連続多段蒸留塔 Cのサイドカット成分(C )は、通常、脂肪族 1価アルコール、ジォ
s
ールよりも低沸点の副生物(2_アルコキシエタノール等)、ジオール、少量のジォー ルよりも高沸点の不純物(ジアルキレングリコール等)から成っている力 その量は通 常、連続多段蒸留塔 Cに供給された高沸点反応混合物 (A )の 4%以下であり、好ま しくは 3%以下、より好ましくは 2%以下である。
[0127] また、本発明においては、サイドカット成分(C )中のジオールの含有量を連続多段
S
蒸留塔 Cに供給されたジオールの通常、 0. 5%以下、好ましくは 0. 4%以下、より好 ましくは 0. 3%以下に容易にすることができる。
[0128] そして、連続多段蒸留塔 Cの塔底成分(C )として、ジオールよりも高沸点の副生物
B
(ジアルキレングリコール等)を、通常、 2%以下、好ましくは 1. 5%以下、より好ましく は 1%以下と、微量の触媒成分を含むジオールが連続的に取得できることになる。塔 底成分 (C )として取得されるジオールは、連続多段蒸留塔 Cに供給されたジオール
B
の通常、 99. 5%以上、好ましくは 99. 6%以上、より好ましくは 99. 7%以上である。 このように高い回収率でジオールが取得できるのが、本発明のひとつの特徴である。
[0129] なお、通常、ジオール中に含まれる可能性のある極微量のアルデヒド含有量をさら に減少させた超高純度ジオールや、紫外線透過率の高い超高純度ジオールを得る 目的で、特許文献 9又は 10に記載の方法に従って、連続多段蒸留塔 E及び/又は 連続多段蒸留塔 Cの下部に少量の水を供給することも好ましい方法である。
[0130] 工程 (III)で行われる連続多段蒸留塔 Eの蒸留条件は、蒸留塔のインターナルの 形状や段数、供給される塔底成分 (C )の種類と組成と量、必要とするジオールの純
B
度などによって異なる力 通常、塔底温度が 110〜210°Cの範囲の特定の温度で行 うことが好ましい。より好ましい塔底の温度範囲は、 120〜190°Cであり、さらに好まし い温度範囲は、 130〜: 170°Cである。塔底圧力は、塔内組成と使用する塔底温度に よって異なる力 通常、 8000〜40000Paの範囲であり、好ましくは、 10000〜3300 OPaの範囲であり、より好ましくは、 12000〜27000Paである。
[0131] また、連続多段蒸留塔 Eの還流比は、 6〜50の範囲が好ましぐより好ましくは 8〜4 5の範囲であり、さらに好ましくは 10〜30の範囲である。
[0132] 本発明においては、連続多段蒸留塔 Eの塔頂成分 (E )は少量のジオール (通常、
T
供給されたジオールの 10質量%以下)であり、水を連続多段蒸留塔 Eに供給してい る場合には、供給された水のほとんど全部が塔頂成分として抜き出される。この塔頂 成分 )は、通常、連続多段蒸留塔 Cにリサイクルされ、その塔底成分 (C )の一部
T B
として再度連続多段蒸留塔 Eに供給され高純度ジオールとして回収される。また、連 続多段蒸留塔 Eの塔底成分 (E )は少量のジオールを含む高沸点副生物と触媒成
B
分からなつている。
[0133] 連続多段蒸留塔 Eのサイドカット成分 (E )は、通常、 99%以上、好ましくは 99. 9
S
%以上、より好ましくは 99. 99%以上の高純度ジオール力、ら成っている。すなわち、 本発明においては、このサイドカット成分(E )中のジオールよりも高沸点の不純物( s
ジアルキレングリコール等)を、通常、 1質量%以下、好ましくは 0. 1質量%以下、より 好ましくは 0. 01質量%以下とすることが容易にできるからである。また、本発明の好 ましい実施態様では、ハロゲンを含まない原料や触媒を用いて反応が実施されるの で、製造するジオールには、まったくハロゲンを含まないようにすることができる。した がって、本発明ではハロゲン含有量が 0. lppm以下、好ましくは、 lppb以下のジォ ールを製造することは容易である。
[0134] すなわち、本発明においては、ジアルキレングリコール等のジオールよりも高沸点 の不純物が 200ppm以下であって、ハロゲン含有量が 0. lppm以下である高純度 ジオールを製造することは容易に達成でき、好ましくは、ジアルキレングリコール等の ジオールよりも高沸点の不純物が lOOppm以下であって、ハロゲン含有量が lppb以 下である高純度ジオールを製造することは容易に達成できるのである。
[0135] したがって、本発明では、反応収率及び精製収率が高いので、使用した環状カー ボネート基準で、通常、 97%以上、好ましくは 98%以上、より好ましくは 99%以上の 高収率で高純度ジオールが製造することが可能である。
[0136] 本発明で用いられる連続多段蒸留塔 A、 C及び Eを構成する材料は、主に炭素鋼、 ステンレススチールなどの金属材料である力 製造されるジアルキルカーボネートと ジオールの品質の面からは、ステンレススチールが好ましい。
[0137] 実施例
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではなレ、。なお、ハロゲンはイオンクロマトグラフィーで測定した。
[0138] 実施例 1
連続多段蒸留塔 Aとして、図 1に示されるような L = 3300cm、 D = 300cm, L /
0 0 0
D = 11、 n =60、 D /d = 7. 5、 D /d = 12 である連続多段蒸留塔を用いた 。この蒸留塔のトレィは多孔板トレイであり、多孔板部の孔 1個あたりの断面積 =約 1 . 3cm2,孔数 =約 180〜320個/ m2を有していた。環状カーボネートの供給段(下 力 55段目)より上の段の各トレイの堰の高さは 5cmで、環状カーボネートの供給段 以下の段の各トレイの堰の高さは 6cmであった。また各トレイの開口比は、 2.:!〜 4. 2%の範囲であった。
[0139] 連続多段蒸留塔 Cとして、図 2に示されるような L = 1100cm、 D = 110cm, L
Cl CI CI
/D = 10、 n = 10、 L = 3000cm、 D = 110cm、L /D = 27. 3、 n = 6
Cl Cl C2 C2 C2 C2 C2
0からなる連続多段蒸留塔を用いた。なお、塔底部から約 500cmの間は、内径(D
C3
)を 200cmと大きくしてあり、この部分にはダウンカマー部を有し、堰(高さ、 10cm)が バッフルであるバッフルトレイ Kが 8段設置されてレ、る。このバッフルトレイ Kの最上段 のトレイはその下部から、液の一部が連続的に抜き出されるように工夫されており、抜 き出された液はリボイラーによって加熱された後、その段の上部に供給される。また、 濃縮部においては上部に理論段数 52段のメラパックが充填されており、その下部に チムニートレイ 1段が設置され、さらにその下部に 8段のトレイが設けられている。この 実施例では、回収部のインターナルとして多孔板トレイを用い、濃縮部のトレイとして 多孔板トレイを用いた。これらの多孔板トレイは、孔 1個あたりの断面積 =約 1. 3cm2 であった。回収部での多孔板トレイの孔数は約 250〜300個/ m2の範囲であり、開口 比は 3〜4%の範囲であった。また、濃縮部での多孔板トレイの孔数は約 150〜300 個/ m2の範囲であり、開口比は 2. 8〜3. 6%の範囲であった。チムニートレイは、 4 個のチムニーを有しており、各チムニ一の S =約 500cm2、h = 25cmであり、その
c c
開口比は 18〜25%の範囲であった。このチムニートレイはダウンカマー部を有して おり、堰の高さは 10cmであった。
[0140] また、連続多段蒸留塔 Eとして、図 3に示されるような L = 850cm、 D = 160cm
El El
、: L /Ό = 5. 3、n = 8、L = 1000cm, D = 200cm, L /D = 5、 n = 1
El El El E2 E2 E2 E2 E2
1であり、チムニートレイ 1段が濃縮部の段の上力 5段目に設置された連続多段蒸 留塔 Eを用いた。この実施例では、チムニートレイを除くインターナルとして回収部、 濃縮部ともに多孔板トレイ(孔 1個あたりの断面積 =約 1. 3cm2)を用いた。回収部で の多孔板トレイの孔数は約 300〜370個/ m2の範囲であり、開口比は 4〜5%の範囲 であった。また、濃縮部での多孔板トレイの孔数は約 300〜450個/ m2の範囲であり 、開口比は 3〜4%の範囲であった。チムニートレイは、 12個のチムニーを有しており 、各チムニ一の S =約 500cm2、 h = 55cmであり、その開口比は 15〜20%の範囲
E E
であった。このチムニートレイはダウンカマー部を有しており、堰の高さは 40cmであ つた。
エチレンカーボネート(EC)とメタノール(Me〇H)力、らなる原料(モル比: Me〇H/ EC = 8. 4)と触媒(K〇Hをエチレングリコール中で加熱脱水処理したもの: K濃度と して ECに対して 0. 1質量%)を連続多段蒸留塔 Aに連続的に供給し、反応蒸留を 行うことによって、塔底成分 (A ) 3. 205トン Zhrが連続的に抜き出された。塔底部
B
の温度が 98°Cで、塔頂部の圧力が約 1. 118 X 105Pa、還流比が 0. 42の条件下で 連続的に反応蒸留が行われた。
エチレンカーボネートの反応率は 100%で、エチレングリコールの選択率は 99. 8 %であった。メタノーノレ 0. 99トン/ hr、ジメチルカーボネート 0· 001トン/ hr、 2—メ トキシエタノール 0· 009トン/ hr、エチレングリコール 2· 186トン/ hr、ジエチレング リコール及び触媒成分 0. 019トン/ hr力 成るこの塔底成分 (A )が、図 3に示され
B
るように、連続多段蒸留塔 Cに導入口 1から連続的に供給された。この導入口 1は、 連続多段蒸留塔 Cの下から 10段目と 11段目のトレイの間に設置されている。これと は別に、連続多段蒸留塔 Cの塔底部のリボイラーを経て、連続多段蒸留塔 Eの塔頂 成分 ) 0. 155トン/ hr (エチレングリコーノレ 0. 137トン/ hr、 7 0. 019トン/ hr)
T
が連続的に供給された。
連続多段蒸留塔 Cは、塔底温度約 200°C、塔頂圧力約 11000Pa、還流比 0. 9で 連続的に運転された。また、塔底液面レベルは、該多孔板トレイ Kの最下段のトレィ よりも下に維持されていた。
連続多段蒸留塔 Cの塔頂成分(C )として、メタノーノレ 0. 968トン/ hr、ジメチルカ
T
ーボネート 0. 001トン Zhr、水 0. 019トン/ hrが連続的に抜き出され、サイドカット 成分(C )として、メタノーノレ 0. 022トン/ hr、 2_メ卜キシエタノーノレ 0. 0093卜ン /h
S
r、エチレングリコール o. 003トン/ hrが連続的に抜き出され、塔底成分 (C )として、
B
エチレングリコール 2. 32トン/ hr、ジエチレングリコール、触媒成分及び高沸点副 生物 0. 019トン/ hrが連続的に抜き出された。
塔底成分 (C )中のエチレングリコールの濃度は 99. 1質量%であった。また、連続
B
多段蒸留塔 Cに供給されたエチレングリコールの 99. 82%が塔底成分 (C )として回
B
収された。
この塔底成分 (C ) 2. 339トン /hrが、下から 8段目と 9段目の間に設置された導
B
入口 1から連続多段蒸留塔 Eに連続的に供給された。連続多段蒸留塔 Eの塔底部の 導入口 5からリボイラー 7を経て、酸素濃度が lOppm以下の水 0. 019トン/ hrが供 給された。連続多段蒸留塔 Eは、塔底温度約 149°C、塔底圧力約 14600Pa、還流 比 11で連続的に運転された。
24時間後には安定的な定常運転が達成できた。連続多段蒸留塔 Eの塔頂部 2か ら、 0. 155トン Zhrで連続的に抜き出された塔頂成分 (E )は、エチレングリコール 0
T
. 136トン/ hr、水 0. 019トン Zhrから成っていた。この塔頂成分(E )は連続多段
T
蒸留塔 Cにリサイクルされた。連続多段蒸留塔 Eの塔底部 3から、 0. 04トン/ hrで連 続的に抜き出された塔底成分 (E )は、エチレングリコール 0. 02トン/ hr、ジェチレ
B
ングリコール、触媒成分及び高沸点副生物 0. 02トン/ hrから成っていた。連続多段 蒸留塔 Eのサイドカット部 4から、 2. 164トン/ hrで連続的に抜き出されたサイドカット 成分 )中のエチレングリコールの純度は 99. 99%以上であり、ジエチレングリコー s
ル等の高沸点不純物の含有量は lOppm以下であり、ハロゲンは検出限界外の lpp b以下であった。
エチレンカーボネート基準の高純度エチレングリコールの収率は 98. 6%であった この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりのエチレングリコールの製造量は、 2. 1 62卜ン、 2. 162卜ン、 2. 162トン、 2. 162トン、 2. 162トンであり、 常 (こ安定してレヽ た。エチレングリコールの純度は、いずれも 99. 99%以上であり、ハロゲン含有量は 検出限界外の lppb以下であった。また、特許文献 15の方法で測定したアルデヒド 含有量は 0. 2ppm以下であり、 220nmの紫外線透過率は 90%であった。
実施例 2 実施例 1と同じ連続多段蒸留塔 A、連続多段蒸留塔 C及び連続多段蒸留塔 Eを用 いて、同様な方法で高純度エチレングリコールの製造を行った。
エチレンカーボネート(3· 565トン/ hr)とメタノール(モル比 MeOH/EC = 8)力 らなる原料と触媒 (KOHをエチレングリコール中で加熱脱水処理したもの: K濃度と して ECに対して 0. 1質量%)を連続多段蒸留塔 Aに連続的に供給し、反応蒸留を 行うことによって、実施例 1と同様な反応成績でジメチルカーボネートとエチレングリコ ールが製造され、エチレングリコールを主成分とする塔底成分 (A )が連続的に抜き
B
出された。塔底部の温度は 93°Cで、塔頂部の圧力は約 1. 046 X 105Pa、還流比は 0. 48であった。実施例 1と同じ連続多段蒸留塔 Cを用いて、同様な方法でエチレン グリコールの蒸留分離を行った。連続多段蒸留塔 Cから 2. 472トン/ hrで連続的に 抜き出された塔底成分(C )は、エチレングリコール 2. 439トン/ hr、ジエチレンダリ
B
コール、触媒成分及び高沸点副生物 0. 033トン Zhrから成っていた。塔底成分(C
B
)中のエチレングリコールの濃度は 99. 1質量%であった。また、連続多段蒸留塔 C に供給されたエチレングリコールの 99. 8%が塔底成分 (C )として回収された。
B
連続多段蒸留塔 Cから連続的に抜き出された塔底成分 (C ) 2. 472トン/ hr (ェチ
B
レンダリコール 2. 439トン/ hr、ジエチレングリコール、触媒成分及び高沸点副生物 0. 033トン/ hr)が、図 3に示されるように導入口 1から連続多段蒸留塔 Eに連続的 に供給された。
連続多段蒸留塔 Eの塔底部の導入口 5からリボイラー 7を経て、酸素濃度が lOppm 以下の水 0. 022トン/ hrが供給された。連続多段蒸留塔 Eは、塔底温度約 162°C、 塔底圧力約 17300Pa、還流比 12で連続的に運転された。
24時間後には安定的な定常運転が達成できた。連続多段蒸留塔 Eの塔頂部 2か ら、 0. 192トン Zhrで連続的に抜き出された塔頂成分 (E )は、エチレングリコール 0
T
. 17トン/ hr、水 0. 022トン Zhrから成っていた。この塔頂成分 (E )は連続多段蒸
T
留塔 Cにリサイクルされた。連続多段蒸留塔 Eの塔底部 3から、 0. 055トン/ hrで連 続的に抜き出された塔底成分 (E )は、エチレングリコール 0. 015トン Zhr、ジェチレ
B
ングリコール、触媒成分及び高沸点副生物 0. 04トン Zhrから成っていた。連続多段 蒸留塔 Eのサイドカット部 4から、 2. 29トン/ hrで連続的に抜き出されたサイドカット 成分 )中のエチレングリコールの純度は 99. 99%以上であり、ジエチレングリコー s
ル等の高沸点不純物の含有量は lOppm以下であり、ハロゲンは検出限界外の lpp b以下であった。
エチレンカーボネート基準の高純度エチレングリコールの収率は 98. 5。/0であった この条件で長期間の連続運転を行った。 1000時間後、 2000時間後、 3000時間 後、 5000時間後の 1時間あたりのエチレングリコーノレの製造量は、 2. 29卜ン、 2. 29 トン、 2. 29トン、 2. 29トンであり、非常に安定していた。エチレングリコールの純度は 、いずれも 99. 99%以上であり、ハロゲン含有量は検出限界外の lppb以下であつ た。また、アルデヒド含有量は 0. 2ppm以下であり、 220nmの紫外線透過率は 90% であった。
実施例 3
連続多段蒸留塔 Aとして、実施例 1とほぼ同じ蒸留塔を用いた。ただし、多孔板トレ ィは、多孔板部の孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 240〜360個/ m2 を有していた。環状カーボネートの供給段(下から 55段目)より上の段の各トレイの堰 の高さは 5cmで、環状カーボネートの供給段以下の段の各トレイの堰の高さは 10cm であった。また各トレイの開口比は、 3· 0〜5. 0%の範囲であった。
連続多段蒸留塔 Cとして、実施例 1とほぼ同じ蒸留塔を用いた。ただし、回収部及 び濃縮部の多孔板トレイの孔数は約 550〜650個/ m2の範囲であり、開口比は 6. 5 〜8. 5%の範囲であった。また、連続多段蒸留塔 Eとして、実施例 1とほぼ同じ蒸留 塔を用いた。ただし、回収部の多孔板トレイの孔数は約 650〜750個/ m2の範囲で あり、開口比は 8〜: 10%の範囲で、濃縮部の多孔板トレイの孔数は約 500〜650個/ m2の範囲であり、開口比は 6〜8。/。の範囲であった。
エチレンカーボネート(8. 20トン Zhr)とメタノール(モル比 MeOHZEC = 9)から なる原料と触媒 (KOHをエチレングリコール中で加熱脱水処理したもの: K濃度とし て ECに対して 0. 1質量%)を連続多段蒸留塔 Aに連続的に供給し、反応蒸留を行う ことによって、実施例 1と同様な反応成績でジメチルカーボネートとエチレングリコー ルが製造され、エチレングリコールを主成分とする塔底成分 (A )が連続的に抜き出 された。連続多段蒸留塔 cを用いて、実施例 1と同様な方法でエチレングリコールの 蒸留分離を行った。連続多段蒸留塔 Cから 5. 852トン /hrで連続的に抜き出された 塔底成分(C )は、エチレングリコール 5· 754トン/ hr、ジエチレングリコール、触媒
B
成分及び高沸点副生物 0. 098トン/ hr力 成っていた。塔底成分(C )中のェチレ
B
ングリコールの濃度は 98. 3質量%であった。また、連続多段蒸留塔 Cに供給された エチレングリコールの 99. 8%が塔底成分(C )として回収された。エチレンカーボネ
B
ート基準のエチレングリコールの収率は 99. 6%であった。
連続多段蒸留塔 Cから連続的に抜き出された塔底成分 (C ) 5. 852トン Zhr (ェチ
B
レンダリコール 5. 754トン/ hr、ジエチレングリコール、触媒成分及び高沸点副生物 0. 098トン/ hr)が、図 3に示されるように導入口 1から連続多段蒸留塔 Eに連続的 に供給された。
連続多段蒸留塔 Eの塔底部の導入口 5からリボイラー 7を経て、酸素濃度が lOppm 以下の水 0. 05トン/ hrが供給された。連続多段蒸留塔 Eは、塔底温度約 160°C、 塔底圧力約 21300Pa、還流比 13で連続的に運転された。
24時間後には安定的な定常運転が達成できた。連続多段蒸留塔 Eの塔頂部 2か ら、 0. 45トン/ hrで連続的に抜き出された塔頂成分 (E )は、エチレングリコール 0.
T
4トン/ hr、水 0. 05トン/ hrから成っていた。この塔頂成分 (E )は連続多段蒸留塔
T
Cにリサイクルされた。連続多段蒸留塔 Eの塔底部 3から、 0. 2トン/ hrで連続的に 抜き出された塔底成分 (E )は、エチレングリコール 0· 1トン/ hr、ジエチレングリコー
B
ル、触媒成分及び高沸点副生物 0. 1トン/ hrから成っていた。連続多段蒸留塔 Eの サイドカット部 4力 、 5. 202トン/ hrで連続的に抜き出されたサイドカット成分 (E ) s 中のエチレングリコールの純度は 99. 99%以上であり、ジエチレングリコール等の高 沸点不純物の含有量は lOppm以下であり、ハロゲンは検出限界外の lppb以下であ つた。
エチレンカーボネート基準の高純度エチレングリコールの収率は 97. 6。/0であった この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 1500時間後 の 1日寺 あたりのエチレングリコーノレの製造量 ίま、 5. 202トン、 5. 202トン、 5. 202ト ンであり、非常に安定していた。エチレングリコールの純度は、 99. 99%以上であり、 ハロゲン含有量は検出限界外の lppb以下であった。また、アルデヒド含有量は 0. 2 ppm以下であり、 220nmの紫外線透過率は 90%であった。
産業上の利用可能性
[0144] 本発明によれば、環状カーボネートと脂肪族 1価アルコールとから、反応蒸留方式 で製造されるジアルキルカーボネートとジオール類のうち、純度が 97%以上、好まし くは 99%以上、さらに好ましくは 99. 9%以上であり、ジアルキレングリコールを含む 高沸点不純物が好ましくは 200ppm以下、より好ましくは lOOppm以下、さらに好ま しくは lOppm以下で、ハロゲン含有量が好ましくは 0. Ippm以下、より好ましくは lp pb以下である高純度ジオールが、 1時間あたり 1トン以上、好ましくは 1時間あたり 2ト ン以上、さらに好ましくは 1時間あたり 3トン以上の工業的規模で、 1000時間以上、 好ましくは 3000時間以上、さらに好ましくは 5000時間以上の長期間、安定的に高 収率で取得できることが見出された。この高純度ジオール、例えば、高純度エチレン グリコールは、既存の製法(エチレンォキシドの水和法)で工業的に製造されたェチ レンダリコールよりも純度が高ぐ高品質のポリエステル(たとえば、 PET繊維、 PET 樹脂)の原料として有用である。
図面の簡単な説明
[0145] [図 1]本発明を実施するのに好ましい連続多段蒸留塔 Aの例を示す概略図である。
内部には ηθ段のトレイ (本図では、トレィを模式的に表す)が設置されている。
[図 2]本発明を実施するのに好ましい連続多段蒸留塔 Cの例を示す概略図である。 胴部内部にはインターナルとして回収部には n 段のトレイが、また濃縮部には下部
C1
にトレイと上部に規則充填物 (合計段数 n 段)が設置されており、導入口 1よりも上部
C2
にある濃縮部にはチムニートレイ 1段が設置されている(本図では、チムニートレイ以 外の回収部及び濃縮部のトレィは省略されている)。なお、塔下部の塔径(D )は回
C3 収部の塔径 (D )よりも大きくしてあり、内部にはトレイ K (n 段)が設けられている。
CI C3
[図 3]本発明を実施するのに好ましい連続多段蒸留塔 Εの例を示す概略図である。 胴部内部にはインターナルとして回収部、濃縮部のそれぞれ η 段及び η 段のトレ
El Ε2
ィ (本図では、チムニートレイ以外のトレィは省略されている)が設置されており、導入 口 1よりも上部にある濃縮部にはチムニートレイ 1段が設置されている。
[図 4]本発明を実施するのに好ましい、連続多段蒸留塔 Aと連続多段蒸留塔 Cと連続 多段蒸留塔 Eを組み合わせた装置の例を示す概略図である。 各図に使用した符号 の説明は、以下のとおりである:(図 1) ; 1 :ガス抜出し口、 2 :液抜出し口、 3_aか ら 3_e :導入口、 4_aから 4_b :導入口、 5 :鏡板部、 6 :インターナル、 7 :胴 体部分、 10 :連続多段蒸留塔、 L :胴部長さ(cm)、 D :胴部内径 (cm)、 d :ガ
0 0 01 ス抜出し口の内径(cm)、 d :液抜出し口の内径(cm)、(図 2) ; 1 : 導入口、 2 :
02
塔頂成分 (C )抜出し口、 3 : 塔底成分 (C )抜出し口、 4 : サイドカット成分 (C
T B
)抜出し口、 5 : インターナル (充填物)、 6 : 熱交換器、 7 : リボイラー、 8 :
S
還流液導入口、 9 : チムニートレイ、 h : チムニートレイの開口部からチムニーの
C
ガス出口までの高さ(cm)、L : 連続多段蒸留塔 Cの回収部の長さ(cm)、L :
CI C2 連続多段蒸留塔 Cの濃縮部の長さ(cm)、 D : 連続多段蒸留塔 Cの回収部の
C1
内径(cm)、 D : 連続多段蒸留塔 Cの濃縮部の内径(cm)、 D : 連続多段蒸
C2 C3 留塔 Cの塔下部の内径 (cm)、K : トレイ、(図 3) ; 1 : 導入口、 2 : 塔頂成分( Ε )抜出し口、 3 : 塔底成分 (Ε )抜出し口、 4 : サイドカット成分 (Ε )抜出し口、
T B S
5 : 導入口、 6 : 熱交換器、 7 : リボイラー、 8 : 還流液導入口、 9 : チムニ ートレイ、 h : チムニートレイの開口部力らチムニ一のガス出口までの高さ(cm)、 L
E
: 連続多段蒸留塔 Eの回収部の長さ(cm)、L : 連続多段蒸留塔 Eの濃縮
El E2
部の長さ(cm)、 D : 連続多段蒸留塔 Eの回収部の内径(cm)、 D : 連続多
El E2
段蒸留塔 Eの濃縮部の内径 (cm)。

Claims

請求の範囲
環状カーボネートと脂肪族 1価アルコールとを原料として、
(I)この原料を触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該蒸留塔 A 内で反応蒸留を行レ、、蒸留塔 Aの上部から生成するジアルキルカーボネート及び該 脂肪族 1価アルコールを含む低沸点反応混合物 (A )をガス状で連続的に抜出し、
T
蒸留塔 Aの下部から生成するジオール類を含む高沸点反応混合物 (A )を液状で連
B
続的に抜出す工程 (1)、
(II)該高沸点反応混合物 (A )を連続多段蒸留塔 Cに連続的に供給し、該高沸点反
B
応混合物 (A )中に含有するジオールよりも低沸点の物質を塔頂成分 (C )及び/又
B T
はサイドカット成分 (C )として連続的に抜き出し、ジオールを主成分とする塔底成分
S
(C )を蒸留塔 Cの下部から連続的に抜き出す工程 (11)、
B
(III)該塔底成分 (C )を連続多段蒸留塔 Eに連続的に供給し、該連続多段蒸留塔 E
B
のサイドカット抜き出し口からサイドカット成分 (E )として高純度ジオールを連続的に
S
抜き出す工程 (III)
を行うことによって、高純度ジオールを製造するにあたり、
(a)該連続多段蒸留塔 Aが、下記式(1)〜(6)を満足する長さ L (cm)、内径 D (cm
0 0
)、内部に段数 nを持つインターナルを有し、塔頂部又はそれに近い塔の上部に内
0
径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 d (cm)の液
01 02 抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間部に 1つ以上 の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又は下部に 1つ 以上の第 2の導入口を有する蒸留塔であって、
2100 ≤ L ≤ 8000 式(1)
0
180 ≤ D ≤ 2000 式(2)
0
4 ≤ L /Ό ≤ 40 式(3)
0 0
20 ≤ n ≤ 120 式(4)
0
3 ≤ D /d ≤ 20 式(5)
0 01
5 ≤ D /d ≤ 30 式(6)
(b)該連続多段蒸留塔 Cが下記式(7)〜(15)を満足する長さ L (cm)、内径 D (c m)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D (
CI C2 C2 cm)、内部に段数 n をもつインターナルを有する濃縮部と、を備え、
300 < L < 3000 式 (7)
C1
50 < D < 700 式 (8)
C1
3 < L / ≤ 30 式 (9)
C1 Cl
3 < n < 30 式(10)
C1
1000 < L < 5000 式 (11)
C2
50 < D < 500 式(12)
C2
10 < L / ≤ 50 式(13)
C2 C2
20 < n < 100 式 (14)
C2
D ≤ D 式(15)
(c)該連続多段蒸留塔 Cの濃縮部には、インターナルとして 1つ以上のチムニートレ ィが設置されており、該チムニートレイには、式(16)を満足する断面積 S (cm2)の開
C
口部を有するチムニーが 1個以上設置されており、
200 ≤ S ≤ 1000 式(16)
c
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
c
17)を満足するチムニ一であり、
10 ≤ h ≤ 80 式(17)
c
(d)サイドカット抜き出し口が該連続多段蒸留塔 Cの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔であり、
(e)該連続多段蒸留塔 Eが、下記式(18)〜(26)を満足する長さ L (cm)、内径 D
El E1
(cm)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D
El E2 E
(cm) ,内部に段数 n をもつインターナルを有する濃縮部と、を備え、
2 E2
400 ≤ L ≤ 3000 式(18)
E1
50 ≤ D ≤ 700 式(19)
E1
2 ≤ L /D ≤ 50 式(20)
El E1
3 ≤ n ≤ 30 式(21) 600 < L ≤ 4000 式(22)
E2
100 < D ≤ 1000 式(23)
E2
2 < L /D ≤ 30 式(24)
E2 E2
5 < n ≤ 50 式(25)
E2
D ≤ D 式(26)
ω該連続多段蒸留塔 Eの濃縮部には、インターナルとして 1つ以上のチムニートレイ が設置されており、該チムニートレイが、式(27)を満足する断面積 S (cm2)の開口
E
部を有するチムニーを 2個以上設置しており、
50 ≤ S ≤ 2000 式(27)
E
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
E
28)を満足するチムニ一であり、
20 ≤ h ≤ 100 式(28)
E
(g)サイドカット抜き出し口が該連続多段蒸留塔 Eの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔である、
ことを特徴とする高純度ジオールを工業的に製造する方法。
製造される高純度ジオールの量が、 1時間あたり 1トン以上であることを特徴とする 請求項 1に記載の方法。
該 d と該 d が式(29)を満足することを特徴とする請求項 1又は 2に記載の方法。
01 02
1 ≤ d /d ≤ 5 式(29)
01 02
該連続多段蒸留塔 Aの L、 D、 L /D、 n、 D /d 、 D /d 、それぞれ、 2
0 0 0 0 0 0 01 0 02
300≤L ≤6000, 200≤D ≤1000, 5≤L /Ό ≤30, 30≤η ≤100, 4
0 0 0 0 0
≤D /d ≤15, 7≤D /d ≤25であることを特徴とする請求項 1ないし 3のうち
0 01 0 02
何れか一項に記載の方法。
該連続多段蒸留塔 Aのインターナルが、多孔板トレイであることを特徴とする請求 項 1ないし 4のうち何れか一項に記載の方法。
該連続多段蒸留塔 Aの該多孔板トレイが、多孔板部の面積 lm2あたり 100〜: 1000 個の孔を有するものであることを特徴とする請求項 5に記載の方法。 該連続多段蒸留塔 Aの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であ ることを特徴とする請求項 5又は 6に記載の方法。
[8] 該連続多段蒸留塔 Aの該多孔板トレイの開口比(トレイ 1段の孔の断面積の合計と 該トレイの面積との比)が 1. 5〜: 15%であることを特徴とする請求項 5ないし 7のうち 何れか一項に記載の方法。
[9] 該連続多段蒸留塔 Cの塔下部にある回収部最下部のインターナルの下部にさらに 複数 (n 段)のトレイ Kを設け、該トレイ Kの最上段から液を一部連続的に抜き出し、
C3
リボイラーで蒸留に必要な熱量を与えた後、該加熱された液を回収部最下部のイン ターナルと該最上段トレイ Kとの間に設けられた供給ロカ 蒸留塔 Cに戻し、残りの 液を下部のトレイに順に供給することを特徴とする請求項 1ないし 8のうち何れか一項 に記載の方法。
[10] 該トレイ Kが、バッフルトレイであることを特徴とする請求項 9に記載の方法。
[11] 該トレイ Kの存在する場所の該連続多段蒸留塔 Cの内径(D )が、 D ≤D であ
C3 CI C3 ることを特徴とする請求項 9又は 10に記載の方法。
[12] 該連続多段蒸留塔 Cの L 、 D 、 L /Ό 、n 、L 、 D 、L /D 、n 、n
Cl CI CI CI CI C2 C2 C2 C2 C2 C3 力 それぞれ、 500≤L ≤2000, 70≤D ≤500, 5≤L /D ≤20、 5≤n
Cl Cl Cl Cl
≤20, 1500≤L ≤4000, 70≤D ≤400, 15≤L /Ό ≤40, 30≤
Cl C2 C2 C2 C2
n ≤90, 3≤n ≤20 であることを特徴とする請求項 9ないし 11のうち何れか一
C2 C3
項に記載の方法。
[13] 該連続多段蒸留塔 cの回収部のインターナル及び濃縮部のチムニートレイを除くィ ンターナルが、それぞれトレィ及び/又は充填物であることを特徴とする請求項 1な いし 12のうち何れか一項に記載の方法。
[14] 該連続多段蒸留塔 Cの回収部のインターナルカ讣レイであり、濃縮部のチムニート レイを除くインターナルが、トレイ及び Z又は規則充填物であることを特徴とする請求 項 13に記載の方法。
[15] 該トレイが、多孔板トレイであることを特徴とする請求項 13又は 14に記載の方法。
[16] 該多孔板トレイが多孔板部の面積 lm2あたり 100〜: 1000個の孔を有しており、且 つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求項 15に記載の 方法。
[17] 該連続多段蒸留塔 Cの回収部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)力 2〜: 15%の範囲であることを特徴とする請 求項 15又は 16に記載の方法。
[18] 該連続多段蒸留塔 Cの濃縮部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)が、 1. 5〜: 12%の範囲であることを特徴とす る請求項 15ないし 17のうち何れか一項に記載の方法。
[19] 該連続多段蒸留塔 Cの該チムニートレイの開口比 (チムニ一の開口部断面積の合 計と、該開口部全断面積を含むチムニートレイの面積との比)が、 10〜40%の範囲 であることを特徴とする請求項 1ないし 18のうち何れか一項に記載の方法。
[20] 該連続多段蒸留塔 Cの塔底温度が、 150〜250°Cの範囲であることを特徴とする 請求項 1ないし 19のうち何れか一項に記載の方法。
[21] 該連続多段蒸留塔 Cの塔頂圧力が、 50000〜300000Paの範囲であることを特徴 とする請求項 1ないし 20のうち何れか一項に記載の方法。
[22] 該連続多段蒸留塔 Cの還流比が、 0. 3〜5の範囲であることを特徴とする請求項 1 ないし 21のうち何れか一項に記載の方法。
[23] 該塔頂成分 (C )中のジオールの含有量力 lOOppm以下であることを特徴とする
T
請求項 1ないし 22のうち何れか一項に記載の方法。
[24] 該サイドカット成分 (C )中のジオールの含有量が、該連続多段蒸留塔 Cに供給さ
s
れたジオールの 0· 5%以下であることを特徴とする請求項 1なレ、し 23のうち何れか一 項に記載の方法。
[25] 該連続多段蒸留塔 Eの L 、D 、L /Ό 、n 、L 、D 、L /D 、n 力 そ
El El El El El E2 E2 E2 E2 E2 れぞれ、 500≤L ≤2000, 100≤D ≤500, 3≤L /D ≤20, 5≤n ≤
El El El El El
20、 700≤L ≤3000, 120≤D ≤800, 3≤L /D ≤20, 7≤n ≤30
E2 E2 E2 E2 E2
、 D < D であることを特徴とする請求項 1ないし 24のうち何れか一項に記載の方
El E2
法。
[26] 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナルが、 それぞれトレイ及び/又は充填物であることを特徴とする請求項 1ないし 25のうち何 れか一項に記載の方法。
[27] 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナルが、 それぞれトレイであることを特徴とする請求項 26に記載の方法。
[28] 該トレイが、多孔板トレイであることを特徴とする請求項 27に記載の方法。
[29] 該多孔板トレイが、多孔板部の面積 lm2あたり 150〜: 1200個の孔を有しており、且 つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求項 28に記載の 方法。
[30] 該連続多段蒸留塔 Eの回収部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)力 3〜25。/0の範囲であることを特徴とする請 求項 28又は 29に記載の方法。
[31] 該連続多段蒸留塔 Eの濃縮部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)力 2〜20%の範囲であることを特徴とする請 求項 28ないし 30のうち何れか一項に記載の方法。
[32] 該連続多段蒸留塔 Eの該チムニートレイの開口比(チムニ一の開口部断面積の合 計と、該開口部全断面積を含むチムニートレイの面積との比)が、 5〜40%の範囲で あることを特徴とする請求項 1ないし 31のうち何れか一項に記載の方法。
[33] 該連続多段蒸留塔 Eの塔底温度が、 110〜210°Cの範囲であることを特徴とする 請求項 1ないし 32のうち何れか一項に記載の方法。
[34] 該連続多段蒸留塔 Eの還流比が、 6〜100の範囲であることを特徴とする請求項 1 ないし 33のうち何れか一項に記載の方法。
[35] 該サイドカット成分 (E )中のジオールの純度が、 99%以上であることを特徴とする
S
請求項 1ないし 34のうち何れか一項に記載の方法。
[36] 該サイドカット成分 (E )中のジオールの純度が、 99. 9。/0以上であることを特徴とす
S
る請求項 1ないし 35のうち何れか一項に記載の方法。
[37] 請求項 1ないし 36のうち何れか一項に記載の方法で製造され、ジアルキレングリコ ール等の高沸点不純物が 200ppm以下であって、ハロゲン含有量が 0. Ippm以下 であることを特徴とする高純度ジオール。
[38] 請求項 1ないし 36のうち何れか一項に記載の方法で製造され、ジアルキレングリコ ール等の高沸点不純物が lOOppm以下であって、ハロゲン含有量が lppb以下であ ることを特徴とする高純度ジオール。
環状カーボネートと脂肪族 1価アルコールとを原料として、
(I)この原料を触媒が存在する連続多段蒸留塔 A内に連続的に供給し、該蒸留塔 A 内で反応蒸留を行レ、、蒸留塔 Aの上部から生成するジアルキルカーボネート及び該 脂肪族 1価アルコールを含む低沸点反応混合物 (A )をガス状で連続的に抜出し、
T
蒸留塔 Aの下部から生成するジオール類を含む高沸点反応混合物 (A )を液状で連
B
続的に抜出す工程 (1)、
(II)該高沸点反応混合物 (A )を連続多段蒸留塔 Cに連続的に供給し、該高沸点反
B
応混合物 (A )中に含有するジオールよりも低沸点の物質を塔頂成分 (C )及び Z又
B T
はサイドカット成分 (C )として連続的に抜き出し、ジオールを主成分とする塔底成分
S
(c )を蒸留塔 cの下部から連続的に抜き出す工程 (11)、
B
(III)該塔底成分 (C )を連続多段蒸留塔 Eに連続的に供給し、該連続多段蒸留塔 E
B
のサイドカット抜き出し口からサイドカット成分 (E )として高純度ジオールを連続的に
S
抜き出す工程 (III)
を行うことによって、高純度ジオールを製造するための該連続多段蒸留塔 Aと該連続 多段蒸留塔 Cと該連続多段蒸留塔 Eと、を備える装置であって、
(a)該連続多段蒸留塔 Aが、下記式(1)〜(6)を満足する長さ L (cm)、内径 D (cm
0 0
)、内部に段数 nを持つインターナルを有し、塔頂部又はそれに近い塔の上部に内
0
径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 d (cm)の液
01 02 抜出し口、該ガス抜出し口より下部であって塔の上部及び/又は中間部に 1つ以上 の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又は下部に 1つ 以上の第 2の導入口を有する蒸留塔であって、
2100 ≤ L ≤ 8000 式 (1)
0
180 ≤ D ≤ 2000 式 (2)
0
4 ≤ L /Ό ≤ 40 式 (3)
0 0
20 ≤ n ≤ 120 式 (4)
0
3 ≤ D /d ≤ 20 式 (5) 5 ≤ D /d ≤ 30 式(6)
0 02
(b)該連続多段蒸留塔 Cが下記式(7)〜(15)を満足する長さ L (cm)、内径 D (c
CI CI
m)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D (
Cl C2 C2 cm)、内部に段数 n をもつインターナルを有する濃縮部と、を備え、
300 < L < 3000 式 (7)
C1
50 < D < 700 式 (8)
C1
3 < L / ≤ 30 式 (9)
C1 Cl
3 < n < 30 式(10)
Cl
1000 < L < 5000 式 (11)
C2
50 < D < 500 式(12)
C2
10 < L / ≤ 50 式(13)
C2 C2
20 < n < 100 式 (14)
C2
D ≤ D 式(15)
(c)該連続多段蒸留塔 Cの濃縮部には、インターナルとして 1つ以上のチムニートレ ィが設置されており、該チムニートレイには、式(16)を満足する断面積 S (cm2)の開
C
口部を有するチムニーが 1個以上設置されており、
200 ≤ S ≤ 1000 式(16)
c
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
c
17)を満足するチムニ一であり、
10 ≤ h ≤ 80 式(17)
c
(d)サイドカット抜き出し口が該連続多段蒸留塔 Cの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔であり、
(e)該連続多段蒸留塔 Eが、下記式(18)〜(26)を満足する長さ L (cm)、内径 D
El E1
(cm)、内部に段数 n をもつインターナルを有する回収部と、長さ L (cm)、内径 D
El E2 E
(cm) ,内部に段数 n をもつインターナルを有する濃縮部と、を備え、
2 E2
400 ≤ L ≤ 3000 式(18)
E1
50 ≤ D ≤ 700 式(19) 2 < L /D ≤ 50 式(20)
El El
3 < n ≤ 30 式(21)
El
600 < L ≤ 4000 式(22)
E2
100 < D ≤ 1000 式(23)
E2
2 < L /D ≤ 30 式(24)
E2 E2
5 < n ≤ 50 式(25)
E2
D ≤ D 式(26)
ω該連続多段蒸留塔 Eの濃縮部には、インターナルとして 1つ以上のチムニートレイ が設置されており、該チムニートレイが、式(27)を満足する断面積 S (cm2)の開口
E
部を有するチムニーを 2個以上設置しており、
50 ≤ S ≤ 2000 式(27)
E
且つ、該チムニ一の該開口部から該チムニ一のガス出口までの高さ h (cm)が、式(
E
28)を満足するチムニ一であり、
20 ≤ h ≤ 100 式(28)
E
(g)サイドカット抜き出し口が該連続多段蒸留塔 Eの該チムニートレイの液溜り部に接 続されている、
連続多段蒸留塔である、
ことを特徴とする高純度ジオールを製造するための連続多段蒸留塔 Aと連続多段蒸 留塔 Cと連続多段蒸留塔 Eと、を備える装置。
該 d と該 d が式 (29)を満足することを特徴とする請求項 39に記載の装置。
01 02
1 ≤ d /d ≤ 5 式(29)
01 02
該連続多段蒸留塔 Aの L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 23
0 0 0 0 0 0 01 0 02
00≤L ≤6000, 200≤D ≤1000, 5≤L /Ό ≤30, 30≤η ≤100, 4≤
0 0 0 0 0
D /d ≤15、 7≤D /d ≤ 25であることを特徴とする請求項 39又は 40に記載
0 01 0 02
の装置。
該連続多段蒸留塔 Aのインターナルが、多孔板トレイであることを特徴とする請求 項 39ないし 41のうち何れか一項に記載の装置。
該連続多段蒸留塔 Aの該多孔板トレイが、多孔板部の面積 lm2あたり 100〜: 1000 個の孔を有するものであることを特徴とする請求項 42に記載の装置。
[44] 該連続多段蒸留塔 Aの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であ ることを特徴とする請求項 42又は 43に記載の装置。
[45] 該連続多段蒸留塔 Aの該多孔板トレイの開口比(トレイ 1段の孔の断面積の合計と 該トレイの面積との比)が、 1. 5〜: 15%であることを特徴とする請求項 42ないし 44の うち何れか一項に記載の装置。
[46] 該連続多段蒸留塔 Cの塔下部にある回収部最下部のインターナルの下部にさらに 複数 (n 段)のトレイ Kを設け、該トレイ Kの最上段から液を一部連続的に抜き出し、
C3
リボイラーで蒸留に必要な熱量を与えた後、該加熱された液を回収部最下部のイン ターナルと該最上段トレイ Kとの間に設けられた供給ロカ 蒸留塔 Cに戻し、残りの 液を下部のトレイに順に供給することができることを特徴とする請求項 39に記載の装 置。
[47] 該トレイ Kが、バッフルトレイであることを特徴とする請求項 46に記載の装置。
[48] 該トレイ Kの存在する場所の該連続多段蒸留塔 Cの内径(D )が、 D ≤D であ
C3 CI C3 ることを特徴とする請求項 46又は 47に記載の装置。
[49] 該連続多段蒸留塔 Cの L 、 D 、 L /Ό 、n 、L 、 D 、L /D 、n 、n
CI CI CI CI CI C2 C2 C2 C2 C2 C3 力 それぞれ、 500≤L ≤2000, 70≤D ≤500, 5≤L /D ≤20, 5≤n
Cl CI CI CI
≤20, 1500≤L ≤4000, 70≤D ≤400, 15≤L /D ≤40, 30≤
Cl C2 C2 C2 C2
n ≤90, 3≤n ≤20 であることを特徴とする請求項 46ないし 48のうち何れか一
C2 C3
項に記載の装置。
[50] 該連続多段蒸留塔 Cの回収部のインターナル及び濃縮部のチムニートレイを除くィ ンターナルが、それぞれトレイ及び/又は充填物であることを特徴とする請求項 39な いし 49のうち何れか一項に記載の装置。
[51] 該連続多段蒸留塔 Cの回収部のインターナルカ讣レイであり、濃縮部のチムニート レイを除くインターナルが、トレイ及び Z又は規則充填物であることを特徴とする請求 項 50に記載の装置。
[52] 該トレイが、多孔板トレイであることを特徴とする請求項 50又は 51に記載の装置。
[53] 該多孔板トレイが多孔板部の面積 lm2あたり 100〜: 1000個の孔を有しており、且 つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求項 52に記載の
[54] 該連続多段蒸留塔 Cの回収部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)力 2〜: 15。/0の範囲であることを特徴とする請 求項 52又は 53に記載の装置。
[55] 該連続多段蒸留塔 Cの濃縮部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)が、 1. 5〜: 12%の範囲であることを特徴とす る請求項 52ないし 54のうち何れか一項に記載の装置。
[56] 該連続多段蒸留塔 Cの該チムニートレイの開口比 (チムニ一の開口部断面積の合 計と、該開口部全断面積を含むチムニートレイの面積との比)が、 10〜40%の範囲 であることを特徴とする請求項 39ないし 55のうち何れか一項に記載の装置。
[57] 該連続多段蒸留塔 Eの L 、 D 、 L /Ό 、 n 、 L 、 D 、 L /D 、 n 力 そ
El El El El El E2 E2 E2 E2 E2 れぞれ、 500≤L ≤2000, 100≤D ≤500, 3≤L /D ≤20, 5≤n ≤
El El El El El
20、 700≤L ≤3000, 120≤D ≤800, 3≤L /D ≤20, 7≤n ≤30
E2 E2 E2 E2 E2
、 D < D であることを特徴とする請求項 39ないし 56のうち何れか一項に記載の
[58] 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナルが、 それぞれトレイ及び/又は充填物であることを特徴とする請求項 39ないし 57のうち 何れか一項に記載の装置。
[59] 該連続多段蒸留塔 Eの回収部及び濃縮部のチムニートレイを除くインターナルが、 それぞれ、トレイであることを特徴とする請求項 58に記載の装置。
[60] 該トレイが、多孔板トレイであることを特徴とする請求項 59に記載の装置。
[61] 該多孔板トレイが多孔板部の面積 lm2あたり 150〜: 1200個の孔を有しており、且 つ、孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求項 60に記載の
[62] 該連続多段蒸留塔 Eの回収部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)力 3〜25。/0の範囲であることを特徴とする請 求項 60又は 61に記載の装置。 [63] 該連続多段蒸留塔 Eの濃縮部における該多孔板トレイの開口比(トレイ 1段の孔の 断面積の合計と該トレイの面積との比)力 2〜20%の範囲であることを特徴とする請 求項 60ないし 62のうち何れか一項に記載の装置。
[64] 該連続多段蒸留塔 Eの該チムニートレイの開口比 (チムニ一の開口部断面積の合 計と、該開口部全断面積を含むチムニートレイの面積との比)が、 5〜40%の範囲で あることを特徴とする請求項 39ないし 63のうち何れか一項に記載の装置。
PCT/JP2007/051238 2006-02-01 2007-01-26 高純度ジオールを工業的に製造する方法 WO2007088782A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EA200870139A EA200870139A1 (ru) 2006-02-01 2007-01-26 Промышленный способ получения высокочистого диола
EP07707470A EP1980548A1 (en) 2006-02-01 2007-01-26 Process for industrial production of highly pure diol
JP2007556835A JP4986867B2 (ja) 2006-02-01 2007-01-26 高純度ジオールを工業的に製造する方法
US11/991,387 US20090270656A1 (en) 2006-02-01 2007-01-26 Industrial Process for Producing High-Purity Diol
CN2007800029313A CN101370757B (zh) 2006-02-01 2007-01-26 高纯度二醇的工业制备方法
BRPI0707221-0A BRPI0707221A2 (pt) 2006-02-01 2007-01-26 processo industrial para a produção de um diol de pureza elevada, diol de pureza elevada, e, aparelho

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006024955 2006-02-01
JP2006-024955 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007088782A1 true WO2007088782A1 (ja) 2007-08-09

Family

ID=38327359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051238 WO2007088782A1 (ja) 2006-02-01 2007-01-26 高純度ジオールを工業的に製造する方法

Country Status (9)

Country Link
US (1) US20090270656A1 (ja)
EP (1) EP1980548A1 (ja)
JP (1) JP4986867B2 (ja)
KR (1) KR20080083049A (ja)
CN (1) CN101370757B (ja)
BR (1) BRPI0707221A2 (ja)
EA (1) EA200870139A1 (ja)
TW (1) TW200738602A (ja)
WO (1) WO2007088782A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505976A (ja) * 2009-09-29 2013-02-21 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー アルカンジオール及びジアルキルカーボネートの製造方法
WO2013094224A1 (ja) * 2011-12-21 2013-06-27 株式会社クレハ 蒸留塔システム及びそれを用いた塩化ビニリデンモノマーの蒸留方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100901675B1 (ko) * 2005-11-25 2009-06-08 아사히 가세이 케미칼즈 가부시키가이샤 디알킬카보네이트와 디올류의 공업적 제조 방법
TWI314549B (en) 2005-12-26 2009-09-11 Asahi Kasei Chemicals Corp Industrial process for separating out dialkyl carbonate
EP2234952A1 (en) * 2007-12-20 2010-10-06 DSM IP Assets B.V. Cyclohexanone production process with modified post-distillation
BRPI0805556A2 (pt) 2008-12-10 2010-08-24 Ademar Luis Corradi sistema de moagem por compressço de duas secÇÕes de discos em rotaÇço e suas aplicaÇÕes
CN102188831B (zh) * 2010-03-03 2013-12-25 中国石油化工股份有限公司 反应蒸馏的方法
CN102188833B (zh) * 2010-03-03 2013-12-04 中国石油化工股份有限公司 反应蒸馏塔塔体
CN102188830B (zh) * 2010-03-03 2013-12-25 中国石油化工股份有限公司 反应蒸馏的方法
CN102188832B (zh) * 2010-03-03 2014-01-22 中国石油化工股份有限公司 反应蒸馏分隔塔塔体
WO2012009102A2 (en) * 2010-07-12 2012-01-19 Exxonmobil Chemical Patents Inc. System for alcohol production
KR101364705B1 (ko) * 2012-01-09 2014-02-20 아주대학교산학협력단 무선 네트워크 상의 혼잡을 줄이는 네트워크 관리 방법 및 시스템
GB201710508D0 (en) * 2017-06-30 2017-08-16 Johnson Matthey Davy Technologies Ltd Process
WO2019016126A1 (en) 2017-07-18 2019-01-24 Shell Internationale Research Maatschappij B.V. PROCESS FOR THE PREPARATION OF ALKANEDIOL AND DIALKYL CARBONATE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183744A (ja) * 1995-10-31 1997-07-15 Asahi Chem Ind Co Ltd ジアルキルカーボネートおよびジオールの連続的製造法
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2004131394A (ja) * 2002-10-08 2004-04-30 Asahi Kasei Chemicals Corp ジアルキルカーボネートおよびジオールを製造する方法
WO2005123638A1 (ja) * 2004-06-17 2005-12-29 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオールの製造方法
WO2006030724A1 (ja) * 2004-09-17 2006-03-23 Asahi Kasei Chemicals Corporation 副生アルコール類の工業的分離方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129316A1 (de) * 1991-09-03 1993-03-04 Bayer Ag Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten
DE4216121A1 (de) * 1992-05-15 1993-11-18 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Dialkylcarbonaten
ES2174126T3 (es) * 1995-12-22 2002-11-01 Asahi Chemical Ind Metodo para la produccion en continuo de dialquil carbonato y dioles.
JP4565742B2 (ja) * 1998-06-10 2010-10-20 旭化成ケミカルズ株式会社 ジアルキルカーボネートとジオールを連続的に製造する方法
JP3963357B2 (ja) * 2002-05-23 2007-08-22 三菱化学株式会社 ジメチルカーボネート及びエチレングリコールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183744A (ja) * 1995-10-31 1997-07-15 Asahi Chem Ind Co Ltd ジアルキルカーボネートおよびジオールの連続的製造法
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2004131394A (ja) * 2002-10-08 2004-04-30 Asahi Kasei Chemicals Corp ジアルキルカーボネートおよびジオールを製造する方法
WO2005123638A1 (ja) * 2004-06-17 2005-12-29 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオールの製造方法
WO2006030724A1 (ja) * 2004-09-17 2006-03-23 Asahi Kasei Chemicals Corporation 副生アルコール類の工業的分離方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505976A (ja) * 2009-09-29 2013-02-21 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー アルカンジオール及びジアルキルカーボネートの製造方法
WO2013094224A1 (ja) * 2011-12-21 2013-06-27 株式会社クレハ 蒸留塔システム及びそれを用いた塩化ビニリデンモノマーの蒸留方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Also Published As

Publication number Publication date
BRPI0707221A2 (pt) 2011-04-26
EP1980548A1 (en) 2008-10-15
KR20080083049A (ko) 2008-09-12
TW200738602A (en) 2007-10-16
JP4986867B2 (ja) 2012-07-25
JPWO2007088782A1 (ja) 2009-06-25
CN101370757A (zh) 2009-02-18
CN101370757B (zh) 2012-03-28
US20090270656A1 (en) 2009-10-29
EA200870139A1 (ru) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2007088782A1 (ja) 高純度ジオールを工業的に製造する方法
WO2006022294A1 (ja) 高純度ジフェニルカーボネートの工業的製造方法
KR101002863B1 (ko) 디알킬카르보네이트의 공업적 분리 방법
JP4937140B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
WO2007072705A1 (ja) 高純度ジフェニルカーボネートを工業的規模で製造する方法
JP5074213B2 (ja) ジオールの工業的製造方法
JP4986866B2 (ja) 高純度ジオールの工業的製造法
JP4936556B2 (ja) 芳香族カーボネートの工業的製造法
KR20080069263A (ko) 디알킬카르보네이트와 디올류의 공업적 제조 방법
JP4236207B2 (ja) ジアルキルカーボネートとジオール類の工業的製造法
JP2004131394A (ja) ジアルキルカーボネートおよびジオールを製造する方法
WO2007060893A1 (ja) ジアルキルカーボネートとジオール類を工業的に製造する方法
JP2002308804A (ja) ジアルキルカーボネートおよびジオールの製造方法
JP5088954B2 (ja) 高純度ジオールの工業的製造方法
WO2022230776A1 (ja) ジアルキルカーボネートの製造方法、及びジアルキルカーボネートの製造装置
TWI843094B (zh) 碳酸二烷酯的製造方法及碳酸二烷酯的製造裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556835

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007707470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 954/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780002931.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087018959

Country of ref document: KR

Ref document number: 200870139

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991387

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0707221

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080724