WO2007086252A1 - 排気ガス浄化方法及び排気ガス浄化システム - Google Patents

排気ガス浄化方法及び排気ガス浄化システム Download PDF

Info

Publication number
WO2007086252A1
WO2007086252A1 PCT/JP2007/050145 JP2007050145W WO2007086252A1 WO 2007086252 A1 WO2007086252 A1 WO 2007086252A1 JP 2007050145 W JP2007050145 W JP 2007050145W WO 2007086252 A1 WO2007086252 A1 WO 2007086252A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
exhaust gas
fuel
upper limit
limit value
Prior art date
Application number
PCT/JP2007/050145
Other languages
English (en)
French (fr)
Inventor
Takashi Haseyama
Takao Onodera
Yoshinobu Watanabe
Tatsuo Mashiko
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Priority to EP07706492.1A priority Critical patent/EP1978219B1/en
Priority to CN2007800029262A priority patent/CN101371015B/zh
Priority to US12/086,997 priority patent/US7934372B2/en
Publication of WO2007086252A1 publication Critical patent/WO2007086252A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/604Engine control mode selected by driver, e.g. to manually start particle filter regeneration or to select driving style
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention oxidizes unburned fuel supplied by post injection or the like in an exhaust gas of an exhaust passage of an internal combustion engine with an oxidation catalyst, and raises the diesel particulate filter using this acid heat.
  • the present invention relates to an exhaust gas purification method and an exhaust gas purification system that are regenerated by heating.
  • PM particulate matter: hereinafter referred to as PM
  • PM Diesel Particulate Filter
  • a technology has been developed to collect this PM with a filter called Diesel Particulate Filter (DPF) and reduce the amount of PM discharged to the outside.
  • DPF Diesel Particulate Filter
  • fuel injection in the cylinder such as multi-injection (multistage delayed injection) or post-injection (post-injection), or direct injection into the exhaust pipe
  • multi-injection is a delayed multi-stage injection in which fuel is injected into a cylinder in multiple stages. This multi-injection increases the amount of fuel that burns without working in the cylinder.
  • post-injection is injection in which in-cylinder injection performs auxiliary injection at a later timing than multi-injection after main injection.
  • This post-injection increases the amount of unburned fuel HC (hydrocarbon) in the exhaust gas from which cylinder power is also discharged, and oxidizes this HC with an oxidation catalyst. Thereby, the temperature of the exhaust gas downstream of the oxidation catalyst is raised.
  • the multi-injection is first performed to reduce the exhaust gas flowing into the oxidation catalyst. Increase the temperature to above the catalytic activity temperature of the acid catalyst. After the oxidation catalyst rises above the catalyst activation temperature, post injection is performed while maintaining the exhaust gas temperature above the catalyst activation temperature, and HC is supplied to the oxidation catalyst. Since this HC is oxidized by the oxidation catalyst and generates heat, the exhaust gas flows into the filter with the temperature further increased. This high-temperature exhaust gas burns and removes the PM accumulated on the filter.
  • the post-injection amount is greater than the amount that can be acidified by the acid catalyst, the unburned fuel will not be oxidized and will flow to the downstream side of the exhaust gas purification system. Smoke is generated. Therefore, in order to prevent the generation of this white smoke, the fuel injection amount in the post injection can be controlled finely so that the post injection amount does not exceed the amount that can be acidified by the acid catalyst. Has been done.
  • an oxidation catalyst in the front stage and a catalyst regeneration type particulate filter in the rear stage An exhaust gas purification device having a structure has been proposed.
  • a temperature sensor for detecting the exhaust gas temperature is disposed between the oxidation catalyst and the catalyst regeneration type particulate filter.
  • the exhaust gas temperature is raised to the target temperature at an early stage by gradually changing control so that the injection amount at the start increases stepwise according to the temperature detected by the temperature sensor.
  • proportional and integral control is executed so that the exhaust gas temperature is stably maintained at the target temperature for a predetermined time, and accurate and precise temperature control is performed.
  • the supply amount of unburned fuel that can be oxidized by the oxidation catalyst is calculated from the exhaust gas temperature related to the temperature of the oxidation catalyst.
  • the amount of combustible fuel that can be acidified with an acid catalyst is also related to the excess air ratio (or air-fuel ratio) related to the amount of oxygen and the atmospheric pressure.
  • the excess air ratio or air-fuel ratio
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-143988
  • the present invention has been made to solve the above-described problem of white smoke generation, and its purpose is to provide unburned fuel to be supplied into exhaust gas by an oxidation catalyst during forced regeneration of DPF.
  • forced regeneration control that oxidizes and raises the temperature of the DPF
  • the unburned fuel supplied into the exhaust gas can be reliably oxidized, regardless of the operating state of the internal combustion engine. It is an object of the present invention to provide an exhaust gas purification method and an exhaust gas purification system that can prevent generation.
  • An exhaust gas purification method for achieving the above-mentioned object is an exhaust gas purification device in which an acid catalyst device supporting an oxidation catalyst and a diesel particulate filter are arranged in order from the upstream side, Alternatively, an exhaust gas purifier having a diesel particulate filter carrying an acid catalyst is provided in the exhaust passage of an internal combustion engine, and when the diesel particulate filter is forcibly regenerated, the acid When the catalyst temperature index temperature indicating the temperature of the catalyst becomes equal to or higher than a predetermined determination temperature, unburned fuel is supplied to the upstream side of the oxidation catalyst, the unburned fuel is oxidized by the oxidation catalyst, and the diesel In an exhaust gas purification system that controls the temperature of the particulate filter, the fuel injection amount for in-cylinder combustion is calculated from the first combustible fuel amount power limited by the air-fuel ratio.
  • the minimum value of the first upper limit value obtained by subtracting and the second upper limit value obtained by subtracting the fuel injection amount for in-cylinder combustion for the second combustible fuel quantity force limited by the atmospheric pressure is the unburned fuel. It is characterized by an upper limit for the amount of supply.
  • the catalyst temperature index temperature indicating the temperature of the acid catalyst
  • the temperature of the oxidation catalyst (bed temperature)
  • this temperature is a substitute for the temperature of the acid catalyst.
  • the catalyst temperature index temperature it is possible to use the temperature of the exhaust gas flowing into the oxidation catalyst, the temperature of the exhaust gas flowing out of the oxidation catalyst, the temperature derived from both of these temperatures (for example, the average temperature, etc.), etc. it can. Furthermore, by using both of these temperatures, the judgment result of both temperatures can be used with AND (OR) or OR (OR) logic. If the temperature of the oxidation catalyst can be measured, the temperature of the oxidation catalyst is included in the catalyst temperature index temperature here.
  • the minimum value of the third upper limit value, which is the amount of combustible fuel, as the upper limit value for the unburned fuel supply amount when calculating the upper limit value of the unburned fuel supply amount, an oxidation catalyst is further used.
  • the amount of third combustible fuel that can be oxidized can be taken into account. Therefore, generation of white smoke can be prevented more reliably.
  • the supply amount of unburned fuel may be increased stepwise or continuously.
  • the rate of increase varies depending on the engine model, the type of acid catalyst, the diameter, length, heat capacity, temperature sensor position, etc. of the equipment that supports the oxidation catalyst.These parameters are fixed. To find the optimal rate of increase experimentally Therefore, it is necessary to obtain the speed of increase in advance by experiments and use it as a playback control device.
  • an exhaust gas purification system for achieving the above-described object includes an oxidation catalyst device and a diesel particulate filter in which an oxidation catalyst is supported in order from the upstream side in an exhaust passage of an internal combustion engine.
  • An exhaust gas purification device having an arrangement, or an exhaust gas purification device having a diesel particulate filter carrying an oxidation catalyst, and a regeneration control device that performs control to forcibly regenerate the diesel particulate filter And when the regeneration control device forcibly regenerates the diesel particulate filter, when the catalyst temperature index temperature indicating the temperature of the oxidation catalyst becomes equal to or higher than a predetermined determination temperature, the oxidation catalyst Control that supplies unburned fuel upstream, oxidizes the unburned fuel with the oxidation catalyst, and raises the temperature of the diesel particulate filter
  • the regeneration control device is limited by the first upper limit value obtained by subtracting the fuel injection amount of the first combustible fuel quantity force in-cylinder combustion limited
  • the first combustible fuel amount and the second combustible fuel amount derived from the air-fuel ratio related to the oxygen amount and the atmospheric pressure pressure are calculated. Since the amount of combustible fuel and the amount of fuel injected for in-cylinder combustion are taken into consideration, the generation of white smoke can be prevented more reliably.
  • the regeneration control device is an oxidation catalyst limited by the first upper limit value, the second upper limit value, the catalyst temperature index temperature, and the engine speed.
  • a minimum value with the third upper limit value which is the third combustible fuel amount capable of being oxidized, is configured to be an upper limit value with respect to the supply amount of the unburned fuel.
  • the regeneration control device reduces the fuel injection amount for in-cylinder combustion and the supply amount of unburned fuel during the forced regeneration, In-cylinder combustion
  • the unburned fuel supply amount is set to the upper limit value or less, and the unburned fuel supply amount is gradually increased to the upper limit value. It is configured to perform annealing control.
  • the exhaust gas is supplied to the exhaust gas by post-injection or the like with the oxidation catalyst.
  • the upper limit value of the unburned fuel supply amount is determined only by the temperature of the oxidation catalyst, the air-fuel ratio (excess air ratio), atmospheric pressure, and Since the calculation is performed in consideration of the amount of fuel injected for in-cylinder combustion, the unburned fuel supplied to the exhaust gas can be reliably oxidized, regardless of the operating state of the internal combustion engine. The generation of white smoke can be prevented.
  • FIG. 1 is a diagram showing an overall configuration of an exhaust gas purification system.
  • FIG. 2 is a diagram showing an example of a forced regeneration control flow.
  • FIG. 3 is a diagram showing another example of forced regeneration control flow.
  • FIG. 4 is a diagram showing an example of a flow for obtaining an upper limit value of a post injection amount.
  • FIG. 5 is a diagram schematically showing the effect of annealing control in post injection.
  • FIG. 6 is a diagram showing the relationship between the filter inlet exhaust gas temperature and the injection permission post injection amount.
  • FIG. 7 is a diagram showing an example of a relationship between an engine speed and a first determination temperature.
  • FIG. 1 shows a configuration of an exhaust gas purification system 1 according to this embodiment.
  • This exhaust gas purification system 1 includes an exhaust gas purification device 12 in an exhaust passage 11 of a diesel engine (internal combustion engine) 10.
  • This exhaust gas purifying device 12 is one of continuous regeneration type DPF (diesel particulate filter) devices.
  • An upstream side is an acid catalyst device 12a, and a downstream side is a catalyst-equipped filter device 12b. Arranged and configured.
  • This acid-catalyst catalyst device 12a is made of platinum on a carrier such as a porous ceramic hard cam structure.
  • the filter device 12b with catalyst is formed of a monolithic ham-wall type wall flow type filter or the like in which the inlet and outlet of a porous ceramic her cam channel are alternately plugged. PM (particulate matter) in the exhaust gas G is collected (trapped) by the porous ceramic wall.
  • a catalyst such as platinum or cerium oxide is supported on the filter.
  • a differential pressure sensor 21 is provided in the conducting pipe connected before and after the exhaust gas purification device 12. Further, an exhaust brake valve (exhaust brake) 18 is provided on the upstream side of the exhaust gas purification device 12, and an exhaust throttle valve (exhaust throttle) 13 is provided on the downstream side.
  • an acid catalyst inlet exhaust temperature sensor (first temperature sensor) 22 is in contact with the acid catalyst device 12a on the upstream side of the oxidation catalyst device 12a.
  • a filter inlet exhaust temperature sensor (second temperature sensor) 23 is provided between the medium-equipped filter device 12b.
  • the oxidation catalyst inlet exhaust temperature sensor 22 detects a first exhaust gas temperature Tgl that is the temperature of the exhaust gas flowing into the oxidation catalyst device 12a.
  • the filter inlet exhaust temperature sensor 23 detects the second exhaust gas temperature Tg2, which is the temperature of the exhaust gas flowing into the filter device 12b with catalyst.
  • the intake passage 14 is provided with an air cleaner 15, a MAF sensor (intake air amount sensor) 19, an intake throttle valve (intake throttle) 16, an intake air temperature sensor 29 for detecting the intake air temperature Ta, and the like.
  • This intake throttle valve 16 adjusts the amount of intake air A that enters the intake manifold.
  • the output values of these sensors are supplied to a control device (ECU: engine control unit) 30 that performs overall control of the operation of the engine 10 and also performs forced regeneration control of the exhaust gas purification device 12. Entered.
  • the control signal output from the control device 30 is installed together with the EGR cooler in the intake throttle valve 16, fuel injection device (injection nozzle) 17, exhaust throttle valve 13, exhaust brake valve 18, and EGR passage (not shown).
  • the EGR valve that adjusts the amount of EGR is controlled.
  • the fuel injection device 17 is connected to a common rail injection system (not shown) that temporarily stores high-pressure fuel boosted by a fuel pump (not shown).
  • a fuel pump not shown
  • information such as the accelerator opening from the accelerator position sensor (APS) 24 and the engine speed from the rotation speed sensor 25 is also input for driving.
  • An energization time signal is output from the control device 30 so as to inject a predetermined amount of fuel from the fuel injection device 17.
  • the forced regeneration is automatically performed during traveling.
  • the driver (driver) arbitrarily stops the vehicle and performs forced regeneration.
  • the flashing lamp (DPF lamp) 26 and the on-error lamp 27 are warning means to alert the driver about clogging, and the manual regeneration button (manual regeneration switch) 28 Is provided.
  • PM is collected in a normal operation. In this normal operation, whether or not it is the forced regeneration time is monitored, and if it is determined that it is the forced regeneration time, forced regeneration is performed.
  • This forced regeneration includes automatic traveling regeneration that performs forced regeneration during traveling, and manual regeneration that is started when the driver stops the vehicle by a warning and presses the force manual regeneration button 28. These forced regenerations are appropriately selected according to the distance traveled and the DPF differential pressure.
  • the regeneration control device that performs these forced regeneration controls is incorporated in the control device 30.
  • the forced regeneration of the manual regeneration or the automatic traveling regeneration is performed as shown in FIG. Or according to a control flow as illustrated in FIG.
  • the second exhaust gas temperature Tg2 detected by the filter inlet exhaust temperature sensor 23 is used as the catalyst temperature index temperature indicating the temperature (bed temperature) of the oxidation catalyst.
  • the second exhaust gas temperature Tg2 becomes equal to or higher than the predetermined first judgment temperature Tel, unburned fuel is supplied to the upstream side of the acid catalyst device 12a by post injection.
  • step SI 1 When the control flow of FIG. 2 starts, it is determined in step SI 1 whether or not forced regeneration is started. If it is not the forced regeneration start, return without performing this forced regeneration. If the forced regeneration is started in step S11, the process goes to step S12.
  • Whether or not the force is the start of forced regeneration is determined as follows. For example, in the case of automatic running regeneration, forced regeneration starts when it is detected that the amount of PM trapped by the force-catalyzed filter device 12b, such as the detected value of the differential pressure sensor 21, exceeds a certain amount. In the case of manual regeneration, forced regeneration is started when the driver who is prompted to perform manual regeneration stops the vehicle and operates the manual regeneration button 28.
  • a first determination temperature Tel is calculated.
  • the first judgment temperature Tel is supplied by post-injection using the oxidation catalyst of the oxidation catalyst device 12a when the second exhaust gas temperature Tg2, which is the exhaust gas temperature detected by the filter inlet exhaust temperature sensor 23, exceeds this temperature. This is the temperature at which HC, the unburned fuel produced, is sufficiently oxidized.
  • the first determination temperature Tel is changed according to the engine speed Ne as shown in FIG. That is, it is set to increase as the engine speed Ne increases. In Fig. 7, post-injection is prohibited below the first judgment temperature Tel, and post-injection is allowed above.
  • An example of the first judgment temperature Tel is as follows.
  • the idle speed Nea is about 200 ° C and the rated speed Neb is about 300 ° C.
  • the relationship between the engine speed Ne and the first determination temperature Tel differs depending on the type of engine, the diameter, length, heat capacity, etc. of the oxidation catalyst 12a, the arrangement of the exhaust gas purification system 1, and the like. However, when these are fixed, the relationship between the engine speed Ne and the first judgment temperature Tel can be grasped in advance through experiments. Therefore, this relationship is stored in the control device 30 as map data or a function, and the first determination temperature Tel is calculated by referring to the map data or the like from the engine speed Ne. [0045] In the next step S13, the second exhaust gas temperature Tg2 is checked.
  • step S14 When the second exhaust gas temperature Tg2 is lower than the first determination temperature Tel calculated in step S12, in step S14, the first exhaust gas temperature increase control for performing multi-injection is performed for a predetermined time (the second time in step S13). Exhaust gas temperature Time related to the check interval of Tg2) During A tl. Then, the process returns to step S12. If it is determined in step S13 that the second exhaust gas temperature Tg2 is equal to or higher than the predetermined first determination temperature Tel, the process goes to step S15.
  • the second exhaust gas temperature Tg2 detected by the filter inlet exhaust temperature sensor 23 and the first exhaust gas temperature sensor 22 detected by the acid catalyst catalyst inlet exhaust temperature sensor 22 are used as the catalyst temperature index temperature indicating the temperature of the oxidation catalyst. 1 Both exhaust gas temperatures Tgl can be used. In this case, the first judgment temperature Tel and the third judgment temperature Tc3 are used as predetermined judgment temperatures for both of them. Then, when the second exhaust gas temperature Tg2 exceeds the first judgment temperature Tel and the first exhaust gas temperature Tgl exceeds the third judgment temperature Tc3, post-injection is performed on the upstream side of the acid catalyst device 12a. Supply unburned fuel.
  • step S12 and step S13 in FIG. 2 are replaced with step S12A and step S13A in FIG.
  • step S12A the third judgment temperature Tc3 is calculated in consideration of the first judgment temperature Tel.
  • the values of the first determination temperature Tel and the third determination temperature Tc3 are changed according to the engine speed Ne. That is, it is set to increase as the engine speed Ne increases.
  • the relationship between the engine speed Ne, the first determination temperature Tel, and the third determination temperature Tc3 depends on the type of engine, the diameter, length, heat capacity, etc. of the acid catalyst 12a and the exhaust gas purification system 1. It depends on the arrangement. However, when these are fixed, the relationship between the engine speed Ne, the first determination temperature Tel, and the third determination temperature Tc3 can be grasped in advance by experiments or the like. Therefore, this relationship is stored in the control device 30 as map data or a function, and the first judgment temperature Tel and the third judgment temperature Tc3 are calculated by referring to the map data etc. from the engine speed Ne. .
  • step S13A whether or not the second exhaust gas temperature Tg2 is equal to or higher than the first determination temperature Tel and whether or not the first exhaust gas temperature Tgl is equal to or higher than the third determination temperature Tc3 are determined. judge .
  • the second exhaust gas temperature Tg2 is equal to or higher than the first determination temperature Tel, and the first exhaust gas Only if the temperature Tg 1 is equal to or higher than the third judgment temperature Tc3, go to step S15, otherwise go to step S14.
  • a second determination temperature Tc2 is calculated.
  • the second determination temperature Tc2 is a target temperature for the second exhaust gas temperature raising control in step S17.
  • the second exhaust gas temperature Tg2 which is the temperature of the exhaust gas detected by the filter inlet exhaust temperature sensor 23, above this temperature, the combustion of PM collected in the filter device 12b with catalyst is in good condition.
  • the second determination temperature Tc2 is normally set to a value higher than the PM combustion start temperature (for example, about 350 ° C.), for example, about 500 ° C. Further, it may be changed in multiple stages according to time.
  • step S16 the second exhaust gas temperature Tg2 is checked.
  • the control goes to the second exhaust gas temperature rise control in step S17, and when the second exhaust gas temperature Tg2 is equal to or higher than the second judgment temperature Tc2, Go to regeneration temperature maintenance control in step S18.
  • step S17 the second exhaust gas temperature rise control for performing the post injection in addition to the multi-injection is performed for a predetermined time (time related to the interval of checking the second exhaust gas temperature Tg2 in step S16) At2. Do it for a while.
  • this second exhaust gas temperature raising control the exhaust gas temperature is raised by multi-injection, and HC (unburned fuel) supplied into the exhaust gas by post-injection is oxidized by the oxidation catalyst and generates heat. Due to this heat generation, the second exhaust gas temperature Tg2 flows into the filter device with catalyst 12b in a state where the second exhaust gas temperature Tg2 is higher than the first exhaust gas temperature Tgl.
  • step S19 the process goes to step S19.
  • step S16 If it is determined in step S16 that the second exhaust gas temperature Tg2 is equal to or higher than the second determination temperature Tc2, regeneration in which multi-injection is performed in the cylinder (in-cylinder) injection of the engine 10 in step S18.
  • the temperature maintenance control is performed for a predetermined time (time related to the interval of checking the duration of the second exhaust gas temperature Tg2 in step S16) ⁇ t3.
  • step S18 the PM combustion accumulation time is counted.
  • step S19 in order to determine whether or not the forced regeneration control has ended, PM combustion accumulation is performed. Do a time ta check. In this check, it is checked whether the PM combustion accumulated time ta exceeds the predetermined judgment time Tac. That is, if it exceeds, the process proceeds to step S20 assuming that the forced regeneration is completed, and if not, the process returns to step S12 because the forced regeneration is not completed. Then, until the PM combustion cumulative time ta exceeds the predetermined judgment time tac, the first exhaust gas temperature rise control force in step S14, the second exhaust gas temperature rise control force in step S17, and the regeneration of step S18 Perform temperature maintenance control.
  • step S20 the forced regeneration control is terminated and the normal injection control is restored. Then return.
  • the filter device 12b with catalyst is forcibly regenerated by the forced regeneration control according to the control flow of FIG. 2 or FIG.
  • Control can be performed to supply unburned fuel (HC) to the flow side, oxidize the unburned fuel with an oxidation catalyst, and raise the temperature of the filter device with catalyst 12b.
  • the first determination that the catalyst temperature index temperature Tg2, which indicates the temperature of the acid catalyst is a predetermined determination temperature that changes according to the engine speed Ne of the internal combustion engine 10 at that time. When the temperature is over Tel. Second, as shown in FIG.
  • the first catalyst temperature index temperature (second exhaust gas temperature) Tg2 which indicates the temperature of the oxidation catalyst, changes according to the engine speed Ne of the internal combustion engine 10 at that time.
  • the engine temperature of the internal combustion engine 10 at that time is a second catalyst temperature index temperature (first exhaust gas temperature) Tgl that is equal to or higher than the first determination temperature Tel, which is a predetermined determination temperature, and also indicates the temperature of the oxidation catalyst. This is when the temperature reaches or exceeds the third judgment temperature Tc3, which is a predetermined judgment temperature that changes according to the rotational speed Ne.
  • an upper limit Qu is provided for the post injection amount Qp in the second exhaust gas temperature raising control in step S17, that is, the unburned fuel supply amount Qp.
  • the third upper limit value Qu3 is an amount related to the activation temperature of the oxidation catalyst, and is a value that can be oxidized with an acid catalyst limited by the exhaust gas temperature Tgl (or Tg2) and the engine speed Ne. 3
  • the first combustible fuel amount Qal and the second combustible fuel amount Qa2 are amounts determined by the intake air amount and the atmospheric pressure, respectively. These quantities Qal and Qa2 are the quantities of fuel that can be combusted or oxidized in the entire system, including the exhaust system as well as combustion in the cylinder of the engine. In other words, it is the amount of fuel that can be consumed by acid in the cylinder and in the acid catalyst. Therefore, by using these for the calculation of the upper limit value, the amount of oxygen within the range in which the unburned fuel supplied in the exhaust gas can also be oxidized can be obtained. Therefore, generation of white smoke can be prevented.
  • the fuel injection amount for in-cylinder combustion such as when the accelerator is released during deceleration and the accelerator is stepped on after a short while after the exhaust gas temperature falls.
  • the configuration is as follows.
  • the post-injection amount Qp is set to the upper limit value Qu or less, and the post-injection amount Qp is gradually increased to the upper limit value Qu as shown in FIG.
  • the injection initial value Qps and the increasing speed ⁇ are determined and increased linearly. Alternatively, it may increase stepwise or increase in a curve. It is preferable to set the amount of white smoke generated by experiments and the like so that the temperature of the oxidation catalyst can be raised quickly so that the control is relatively simple.
  • the initial injection value and the increasing speed of this annealing control are determined optimally depending on the engine model and the exhaust gas purification system, and are set in advance and stored in the control device 30.
  • the upper limit Qu is set for the post injection amount Qp during post injection in forced regeneration control. Operation status of diesel engine (internal combustion engine) 10 during forced regeneration of ruta (DPF) 12b Regardless, the unburned fuel supplied into the exhaust gas can be reliably oxidized. Therefore, it is possible to prevent the generation of white smoke that is the outflow of unburned fuel.
  • the fuel injection is stopped and stopped as when the accelerator is returned and then the accelerator is depressed.
  • the post-injection resumes after the post-injection is stopped. Without gradually approaching the upper limit value Qu, it gradually increases to the upper limit value Qu by smoothing control as shown in C of Fig. 5. Therefore, the generation of white smoke can be suppressed as shown in Fig. 5D. Can solve the problem.
  • the initial injection amount Qps at the time of restart and the subsequent increase speed ⁇ are specified.
  • the exhaust gas purification device of the exhaust gas purification system is exemplified by a combination of an upstream oxidation catalyst device and a downstream filter with catalyst (DPF).
  • a filter (DPF) carrying an acid catalyst may be used.
  • the post-injection method has been described as a method for supplying unburned fuel upstream of the acid catalyst, an unburned fuel supply device is arranged in the exhaust passage 14 and the exhaust gas is directly discharged from the unburned fuel supply device.
  • a direct injection method in the exhaust pipe in which unburned fuel is injected into the passage 14 may be employed.
  • the exhaust gas purification method and exhaust gas purification system of the present invention having the excellent effects described above are provided in an internal combustion engine or the like mounted on an automobile, and supply unburned fuel upstream of an oxidation catalyst. Thus, it can be used extremely effectively for an exhaust gas purification system that controls the temperature rise of the DPF.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 酸化触媒の上流側に未燃燃料を供給し酸化して、DPF(12b)を昇温する制御を行う排気ガス浄化システム(1)において、空燃比によって制限される第1可燃燃料量(Qa1)から筒内燃焼分の燃料噴射量(Qe)を差し引いて求められる第1上限値(Qu1)と、大気圧によって制限される第2可燃燃料量(Qa2)から筒内燃焼分の燃料噴射量(Qe)を差し引いて求められる第2上限値(Qu2)と、触媒温度指標温度(Tg1,Tg2)とエンジン回転数(Ne)によって制限される酸化触媒で酸化可能な第3可燃燃料量(Qa3)である第3上限値(Qu3)との最小値(Qumin)を、前記未燃燃料の供給量(Qp)に対する上限値(Qu)とする。これにより、DPF(12b)の強制再生の際に、内燃機関(10)の運転状態によらず、排気ガス中に供給する未燃燃料を確実に酸化して、白煙の発生を防止する。

Description

明 細 書
排気ガス浄化方法及び排気ガス浄化システム
技術分野
[0001] 本発明は、内燃機関の排気通路の排気ガス中に、ポスト噴射等により供給した未燃 燃料を酸化触媒で酸化し、この酸ィ匕熱を利用してディーゼルパティキュレートフィル タを昇温して再生する排気ガス浄ィ匕方法及び排気ガス浄ィ匕システムに関する。
背景技術
[0002] ディーゼルエンジン力も排出される粒子状物質(PM:パティキュレート ·マター:以 下 PMとする)の排出量は、 NOx、 COそして HC等と共に年々規制が強化されてきて いる。この PMをディーゼルパティキュレートフィルタ(DPF: Diesel Particulate Filter :以下 DPFとする)と呼ばれるフィルタで捕集して、外部へ排出される PMの量を低減 する技術が開発されている。その中に、触媒を担持した連続再生型 DPF装置がある
[0003] この連続再生型 DPF装置では、排気ガス温度が約 350°C以上の時には、フィルタ に捕集された PMは連続的に燃焼して浄ィ匕され、フィルタは自己再生する。しかし、 排気温度が低い場合には、触媒の温度が低下して活性ィ匕しない。そのため、酸ィ匕反 応が促進されず、 PMを酸ィ匕してフィルタを再生することが困難となる。その結果、 P Mのフィルタへの堆積により目詰まりが進行するため、この目詰まりによる排圧上昇の 問題が生じる。
[0004] 力かる問題を解決する手法の一つとして、フィルタの目詰まりが所定の量を超えたと きに、排気ガスを強制的に昇温させて、捕集 PMを強制的に燃焼除去する強制再生 制御を行うものがある。この強制再生制御では、排気ガス昇温制御を行ってフィルタ に流入する排気ガスをフィルタに捕集された PMが燃焼する温度以上に昇温する。
[0005] この排気ガス昇温制御としては、シリンダ内(筒内)における燃料噴射で、マルチ噴 射 (多段遅延噴射)やポスト噴射 (後噴射)等をする方法や、排気管内に直接噴射す る方法等がある。このマルチ噴射は、シリンダ内に燃料を多段階で噴射する遅延多 段噴射である。このマルチ噴射により、シリンダ内で仕事せずに燃焼する燃料量を増 加させ、シリンダから排出される排気ガスの温度を酸化触媒の触媒活性温度以上に 上昇させる。また、ポスト噴射は、シリンダ内噴射において、主噴射後、マルチ噴射よ りもさらに遅いタイミングで補助噴射を行う噴射である。このポスト噴射により、シリンダ 力も排出される排気ガス中に未燃燃料である HC (炭化水素)を増カロして、この HCを 酸化触媒で酸化する。これにより、酸化触媒下流の排気ガスの温度を上昇させる。
[0006] この排気昇温にお!、ては、低速'低負荷運転状態などの排気ガスの温度が低 、場 合には、最初にマルチ噴射を行って、酸化触媒に流入する排気ガスの温度を、酸ィ匕 触媒の触媒活性温度以上まで上昇させる。そして、酸化触媒が触媒活性温度以上 に上昇した後は、排気ガスの温度を触媒活性温度以上に維持しながらポスト噴射を 行って、 HCを酸化触媒に供給する。この HCは酸化触媒で酸化され発熱するので、 排気ガスは更に温度が上昇した状態でフィルタに流入する。この高温の排気ガスに よりフィルタに溜まった PMは燃焼して除去される。
[0007] し力しながら、ポスト噴射量が酸ィ匕触媒で酸ィ匕可能な量より多いと、未燃燃料が酸 化されずに排気ガス浄ィ匕システムの下流側に流出し、白煙が発生する。そのため、こ の白煙の発生防止のために、ポスト噴射量が酸ィ匕触媒で酸ィ匕可能な量を超えないよ うに、ポスト噴射における燃料噴射量をきめ細カゝく制御することが行われている。
[0008] この制御を行う排気ガス浄ィ匕システムの例として、例えば、 日本の特開 2004— 143 988号公報に記載されているような、前段に酸化触媒、後段に触媒再生型パティキュ レートフィルタを配置した排気浄ィ匕装置が提案されている。この装置では、酸化触媒 と触媒再生型パティキュレートフィルタの間で排気温度を検出する温度センサを配設 する。この温度センサの検出温度に応じて開始時の噴射量が段階的に増加するよう に徐変制御して排気ガス温度を目標温度まで早期に上昇する。次いで、排気ガス温 度をその目標温度に安定して所定時間保持されるように、比例積分制御を実行して 、正確で細やかな温度制御を行う。
[0009] これらの排気ガス浄化システムでは、酸化触媒で酸化可能な未燃燃料の供給量を 酸化触媒の温度に関係する排気ガス温度から算出している。しカゝしながら、酸ィ匕触 媒で酸ィ匕可能な可燃燃料量は、酸素量に関係する空気過剰率 (又は空燃比)ゃ大 気圧にも関係するので、単に、酸化触媒温度を指標する触媒温度指標温度で、未燃 燃料の供給量の上限値を算出するだけでは不十分である。そのため、白煙の発生を 完全に防止できない。
特許文献 1 :特開 2004— 143988号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記の白煙発生の問題を解決するためになされたものであり、その目的 は、 DPFの強制再生の際に、酸化触媒で排気ガス中に供給する未燃燃料を酸化し て DPFを昇温する強制再生制御において、内燃機関の運転状態によらず、排気ガ ス中に供給する未燃燃料を確実に酸ィ匕でき、未燃燃料の流出である白煙の発生を 防止できる排気ガス浄ィ匕方法及び排気ガス浄ィ匕システムを提供することにある。 課題を解決するための手段
[0011] 上記のような目的を達成するための排気ガス浄ィ匕方法は、上流側から順に酸化触 媒を担持した酸ィ匕触媒装置とディーゼルパティキュレートフィルタを配置した排気ガ ス浄化装置、又は、酸ィ匕触媒を担持したディーゼルパティキュレートフィルタを配置し た排気ガス浄ィ匕装置を内燃機関の排気通路に備え、前記ディーゼルパティキュレー トフィルタを強制再生する際に、前記酸ィヒ触媒の温度を指標する触媒温度指標温度 が所定の判定温度以上となった時に、前記酸化触媒の上流側に未燃燃料を供給し 、該未燃燃料を前記酸化触媒で酸化して、前記ディーゼルパティキュレートフィルタ を昇温する制御を行う排気ガス浄ィ匕システムにお ヽて、 空燃比によって制限される 第 1可燃燃料量力ゝら筒内燃焼分の燃料噴射量を差し引いて求められる第 1上限値と 、大気圧によって制限される第 2可燃燃料量力も筒内燃焼分の燃料噴射量を差し引 いて求められる第 2上限値との最小値を、前記未燃燃料の供給量に対する上限値と することを特徴とする。
[0012] この酸ィヒ触媒の温度を指標する触媒温度指標温度とは、酸化触媒の温度 (ベッド 温度)を判定用の温度として用いることが好ましい。しかし、直接測定することが困難 であるため、この酸ィ匕触媒の温度の代わりとする温度である。この触媒温度指標温度 としては、酸化触媒に流入する排気ガスの温度や酸化触媒から流出する排気ガスの 温度やこれらの両者の温度から導かれる温度 (例えば平均温度等)等を用いることが できる。更には、これらの両者の温度をそれぞれ用いて、両者の温度の判定結果を アンド (AND)又はオア (OR)の論理で使用することもできる。なお、酸化触媒の温度 を計測できる場合は、この酸化触媒の温度もここで 、う触媒温度指標温度に含むこと とする。
[0013] この排気ガス浄ィ匕方法によれば、未燃燃料の供給量の上限値の算出に際して、空 燃比と大気圧力も導かれる第 1可燃燃料量と第 2可燃燃料量、及び、筒内燃焼分の 燃料噴射量を考慮に入れているので、より確実に白煙の発生を防止することができる
[0014] 上記の排気ガス浄化方法において、前記第 1上限値と、前記第 2上限値と、前記触 媒温度指標温度とエンジン回転数によって制限される酸ィヒ触媒で酸ィヒ可能な第 3可 燃燃料量である第 3上限値との最小値を、前記未燃燃料の供給量に対する上限値と することにより、未燃燃料の供給量の上限値の算出に際して、更に、酸化触媒で酸 化可能な第 3可燃燃料量を考慮に入れることができる。そのため、より確実に白煙の 発生を防止できる。
[0015] 上記の排気ガス浄ィ匕方法において、前記強制再生中において、筒内燃焼分の燃 料噴射量と未燃燃料の供給量を減少した後に、筒内燃焼分の燃料噴射量と未燃燃 料の供給量をそれぞれ増加する場合に、未燃燃料の供給量を前記上限値以下に設 定すると共に、未燃燃料の供給量を前記上限値に徐々に増加するなまし制御を行う と、これにより、以下のような効果を奏することができる。
[0016] この制御によれば、未燃燃料の供給を再開する時に、なまし処理を行い、徐々に供 給量を多くするように制御する。これにより、例えば、再生中の減速後にアクセルを踏 み込んだ時のように、排ガス温度が低ぐ酸ィ匕触媒の温度が低下しているにもかかわ らず、温度センサとの差により、温度が高いと認識してしまうような時においても、未燃 燃料の供給量が過剰となって白煙が出てしまうことを防止できる。
[0017] なお、このなまし制御では、未燃燃料の供給量を連続的に漸増してもよぐ階段状 に増加してもよい。また、この増加の速度は、エンジンの機種や酸ィ匕触媒の種類、酸 化触媒を担持する装置の径、長さ、熱容量、温度センサの位置などによって変化す る、これらのパラメータが固定された時には、実験的に最適な増加速度を求めること ができるので、予め、実験などによってこの増加速度を求めておき、再生制御装置に し "ねく。
[0018] また、上記のような目的を達成するための排気ガス浄ィ匕システムは、内燃機関の排 気通路に、上流側から順に酸化触媒を担持した酸化触媒装置とディーゼルパティキ ュレートフィルタを配置した排気ガス浄ィ匕装置、又は、酸化触媒を担持したディーゼ ルパティキュレートフィルタを配置した排気ガス浄ィ匕装置と、前記ディーゼルパティキ ュレートフィルタを強制再生する制御を行う再生制御装置を備えると共に、前記再生 制御装置が、前記ディーゼルパティキュレートフィルタを強制再生する際に、前記酸 化触媒の温度を指標する触媒温度指標温度が所定の判定温度以上となった時に前 記酸化触媒の上流側に未燃燃料を供給し、該未燃燃料を前記酸化触媒で酸化して 前記ディーゼルパティキュレートフィルタを昇温する制御を行う排気ガス浄ィ匕システム において、前記再生制御装置が、空燃比によって制限される第 1可燃燃料量力 筒 内燃焼分の燃料噴射量を差し引いて求められる第 1上限値と、大気圧によって制限 される第 2可燃燃料量力 筒内燃焼分の燃料噴射量を差し引いて求められる第 2上 限値との最小値を、前記未燃燃料の供給量に対する上限値とするように構成される。
[0019] この排気ガス浄ィ匕システムによれば、未燃燃料の供給量の上限値の算出に際して 、酸素量に関係する空燃比と大気圧カゝら導かれる第 1可燃燃料量と第 2可燃燃料量 、及び、筒内燃焼分の燃料噴射量を考慮に入れているので、より確実に白煙の発生 を防止することができる。
[0020] 上記の排気ガス浄ィ匕システムにおいて、前記再生制御装置が、前記第 1上限値と、 前記第 2上限値と、前記触媒温度指標温度とエンジン回転数によって制限される酸 化触媒で酸ィ匕可能な第 3可燃燃料量である第 3上限値との最小値を、前記未燃燃料 の供給量に対する上限値とするように構成される。
[0021] この排気ガス浄ィ匕システムによれば、未燃燃料の供給量の上限値の算出に際して 、更に、酸ィ匕触媒で酸ィ匕可能な第 3可燃燃料量を考慮に入れているので、より確実 に白煙の発生を防止することができる。
[0022] 上記の排気ガス浄ィ匕システムにお 、て、前記再生制御装置が、前記強制再生中に おいて、筒内燃焼分の燃料噴射量と未燃燃料の供給量を減少した後に、筒内燃焼 分の燃料噴射量と未燃燃料の供給量をそれぞれ増加する場合に、未燃燃料の供給 量を前記上限値以下に設定すると共に、未燃燃料の供給量を前記上限値に徐々に 増加するなまし制御を行うように構成する。
[0023] この排気ガス浄ィ匕システムによれば、強制再生中の減速後にアクセル踏み込む時 のような場合でも、未燃燃料の供給量が過剰になることを回避でき、白煙の発生を防 止することができる。
発明の効果
[0024] 以上説明したように、本発明に係る排気ガス浄ィ匕方法及び排気ガス浄ィ匕システム によれば、 DPFの強制再生の際に、酸化触媒で排気ガス中にポスト噴射等で供給 する未燃燃料を酸ィ匕して DPFを昇温する強制再生制御において、未燃燃料の供給 量の上限値を、酸化触媒の温度だけでなぐ空燃比 (空気過剰率)や大気圧、及び、 筒内燃焼分の燃料噴射量を考慮して算出するので、内燃機関の運転状態によらず、 排気ガス中に供給する未燃燃料を確実に酸ィ匕でき、未燃燃料の流出である白煙の 発生を防止できる。
[0025] 更に、強制再生時に一旦未燃燃料の供給量を減少した後に、未燃燃料の供給量 を増加する時には、上限値に徐々に増加するなまし制御を行うので、排気ガス温度 センサの検出温度から推定した酸化触媒の温度よりも、実際の酸化触媒の温度が低 V、ことによる白煙の発生を防止することができる。
図面の簡単な説明
[0026] [図 1]排気ガス浄ィ匕システムの全体構成を示す図である。
[図 2]強制再生制御フローの一例を示す図である。
[図 3]強制再生制御フローの他の例を示す図である。
[図 4]ポスト噴射量の上限値を求めるためのフローの一例を示す図である。
[図 5]ポスト噴射におけるなまし制御の効果を模式的に示す図である。
[図 6]フィルタ入口排気ガス温度と噴射許可ポスト噴射量との関係を示す図である。
[図 7]エンジン回転数と第 1判定温度との関係の一例を示す図である。 発明を実施するための最良の形態
[0027] 以下、本発明に係る実施の形態の排気ガス浄化システムの制御方法及び排気ガス 浄ィ匕システムについて、図面を参照しながら説明する。
[0028] 図 1に、この実施の形態の排気ガス浄ィ匕システム 1の構成を示す。この排気ガス浄 化システム 1は、ディーゼルエンジン(内燃機関) 10の排気通路 11に、排気ガス浄化 装置 12を備えて構成される。
[0029] この排気ガス浄化装置 12は、連続再生型 DPF (ディーゼルパティキュレートフィル タ)装置の一つであり、上流側に酸ィ匕触媒装置 12aを、下流側に触媒付きフィルタ装 置 12bを配置して構成される。
[0030] この酸ィ匕触媒装置 12aは、多孔質のセラミックのハ-カム構造等の担持体に、白金
(Pt)等の酸化触媒を担持させて形成される。触媒付きフィルタ装置 12bは、多孔質 のセラミックのハ-カムのチャンネルの入口と出口を交互に目封じしたモノリスハ-カ ム型ウォールフロータイプのフィルタ等で形成される。排気ガス G中の PM (粒子状物 質)は、多孔質のセラミックの壁で捕集(トラップ)される。また、このフィルタの部分に 白金や酸化セリウム等の触媒を担持する。
[0031] そして、触媒付きフィルタ装置 12bの PMの堆積量を推定するために、排気ガス浄 化装置 12の前後に接続された導通管に差圧センサ 21が設けられる。また、この排気 ガス浄ィ匕装置 12の上流側に排気ブレーキ弁 (ェキゾーストブレーキ) 18が、下流側 に排気絞り弁 (ェキゾーストスロットル) 13が設けられる。
[0032] 更に、触媒付きフィルタ装置 12bの強制再生制御用に、酸化触媒装置 12aの上流 側に酸ィ匕触媒入口排気温度センサ (第 1温度センサ) 22が、酸ィ匕触媒装置 12aと触 媒付きフィルタ装置 12bの間にフィルタ入口排気温度センサ(第 2温度センサ) 23が それぞれ設けられる。
[0033] この酸化触媒入口排気温度センサ 22は、酸化触媒装置 12aに流入する排気ガス の温度である第 1排気ガス温度 Tglを検出する。また、フィルタ入口排気温度センサ 23は、触媒付きフィルタ装置 12bに流入する排気ガスの温度である第 2排気ガス温 度 Tg2を検出する。
[0034] 吸気通路 14には、エアクリーナ 15、 MAFセンサ(吸入空気量センサ) 19、吸気絞 り弁 (インテークスロットル) 16、吸気温度 Taを検出するための吸気温度センサ 29等 が設けられる。この吸気絞り弁 16は、吸気マ-ホールドへ入る吸気 Aの量を調整する [0035] これらのセンサの出力値は、エンジン 10の運転の全般的な制御を行うと共に、排気 ガス浄ィ匕装置 12の強制再生制御も行う制御装置 (ECU:エンジンコントロールュニッ ト) 30に入力される。この制御装置 30から出力される制御信号により、吸気絞り弁 16 や、燃料噴射装置 (噴射ノズル) 17や、排気絞り弁 13や、排気ブレーキ弁 18や、図 示しない EGR通路に EGRクーラと共に設けられた EGR量を調整する EGRバルブ等 が制御される。
[0036] この燃料噴射装置 17は燃料ポンプ(図示しな 、)で昇圧された高圧の燃料を一時 的に貯えるコモンレール噴射システム(図示しない)に接続されており、制御装置 30 には、エンジンの運転のために、アクセルポジションセンサ(APS) 24からのアクセル 開度、回転数センサ 25からのエンジン回転数等の情報の他、車両速度、冷却水温 度等の情報も入力される。この制御装置 30から、燃料噴射装置 17から所定量の燃 料を噴射するように通電時間信号が出力される。
[0037] また、この排気ガス浄ィ匕装置 12の強制再生制御においては、走行中に自動的に 強制再生する。しかし、それだけでなぐ触媒付きフィルタ装置 12bの PMの捕集量が 一定量を超えて、触媒付きフィルタ装置 12bが目詰まった時に、運転者 (ドライバー) が任意に車両を停止して強制再生を行う。この強制再生ができるように、運転者に、 目詰まりに関する注意を喚起するための警告手段である点滅灯 (DPFランプ) 26及 び異常時点灯ランプ 27と、手動再生ボタン (マニュアル再生スィッチ) 28が設けられ る。
[0038] この排気ガス浄ィ匕システム 1の制御においては、通常の運転で PMを捕集する。こ の通常の運転において、強制再生時期であるか否かを監視し、強制再生時期である と判断されると強制再生を行う。この強制再生には、走行中に強制再生を行う走行自 動再生と、警告によって運転者が車両を停止して力 手動再生ボタン 28を押すこと により開始される手動再生とがある。これらの強制再生は、走行距離や DPF差圧の 値により適宜選択実施される。なお、これらの強制再生制御を行う再生制御装置は、 制御装置 30に組み込まれる。
[0039] そして、この手動再生や走行自動再生の強制再生は、この実施の形態では、図 2 や図 3に例示するような制御フローに従って行われる。この図 2では、酸化触媒の温 度 (ベッド温度)を指標する触媒温度指標温度としては、フィルタ入口排気温度セン サ 23で検出された第 2排気ガス温度 Tg2を用いる。この第 2排気ガス温度 Tg2が所 定の第 1判定温度 Tel以上となった時にポスト噴射により未燃燃料を酸ィ匕触媒装置 1 2aの上流側に供給する。
[0040] この図 2の制御フローがスタートすると、ステップ SI 1で、強制再生開始であるか否 かを判定する。強制再生開始でない場合には、この強制再生を実施することなぐリ ターンする。また、ステップ S11で強制再生開始である場合にはステップ S12に行く。
[0041] この強制再生開始である力否かは、次のように決まる。例えば、走行自動再生であ れば、差圧センサ 21の検出値など力 触媒付きフィルタ装置 12bの PMの捕集量が 一定量を超えたことを検知した時に強制再生開始となる。また、手動再生であれば、 手動再生を行うように促された運転者が車両を停止して手動再生ボタン 28を操作し た時に強制再生開始となる。
[0042] ステップ S12では、第 1判定温度 Telを算出する。この第 1判定温度 Telは、フィル タ入口排気温度センサ 23で検出された排気ガス温度である第 2排気ガス温度 Tg2が この温度以上になると、酸化触媒装置 12aの酸化触媒で、ポスト噴射により供給され る未燃燃料である HCが十分に酸ィ匕される温度である。
[0043] この第 1判定温度 Telは、図 7に示すように、エンジン回転数 Neによって変化させ る。即ち、エンジン回転数 Neの増加と共に、高くなるように設定する。なお、この図 7 では、第 1判定温度 Telより下側ではポスト噴射を禁止し、上側ではポスト噴射を許 可する。また、この第 1判定温度 Telの一例を示せば、アイドル回転数 Neaで 200°C 程度に、定格回転数 Nebで 300°C程度とし、その間では線形補間で求める。
[0044] このエンジン回転数 Neと第 1判定温度 Telとの関係は、エンジンの種類や酸化触 媒 12aの径、長さ、熱容量等や排気ガス浄ィ匕システム 1の配置などによって異なる。 しかし、これらを固定した場合には、エンジン回転数 Neと第 1判定温度 Telとの関係 は、予め実験などにより把握できる。そのため、この関係を、マップデータや関数とし て制御装置 30に記憶しておき、エンジン回転数 Neからマップデータ等を参照してこ の第 1判定温度 Telを算出する。 [0045] 次のステップ S 13では、第 2排気ガス温度 Tg2のチェックを行う。この第 2排気ガス 温度 Tg2が、ステップ S12で算出した第 1判定温度 Telより低いときには、ステップ S 14で、マルチ噴射を行う第 1排気ガス昇温制御を、所定の時間 (ステップ S13の第 2 排気ガス温度 Tg2のチェックのインターバルに関係する時間) A tlの間行う。そして、 ステップ S 12に戻る。また、ステップ S 13の判定で、第 2排気ガス温度 Tg2が所定の 第 1判定温度 Tel以上であると、ステップ S15に行く。
[0046] なお、酸化触媒の温度を指標する触媒温度指標温度として、フィルタ入口排気温 度センサ 23で検出された第 2排気ガス温度 Tg2と酸ィ匕触媒入口排気温度センサ 22 で検出された第 1排気ガス温度 Tglの両方を用いるようにすることもできる。この場合 は、この両方のそれぞれに対しての所定の判定温度として第 1判定温度 Telと第 3判 定温度 Tc3を用いる。そして、第 2排気ガス温度 Tg2が第 1判定温度 Telを超え、か つ、第 1排気ガス温度 Tglが第 3判定温度 Tc3を超えた時に酸ィ匕触媒装置 12aの上 流側にポスト噴射により未燃燃料を供給する。
[0047] この場合は、図 2のステップ S12とステップ S13が、図 3のステップ S12Aとステップ S13Aに置き換わる。ステップ S12Aでは、第 1判定温度 Telにカ卩えて第 3判定温度 Tc3を算出する。この第 1判定温度 Telと第 3判定温度 Tc3の値は、エンジン回転数 Neによって変化させる。即ち、エンジン回転数 Neの増加と共に高くなるように設定す る。
[0048] このエンジン回転数 Neと第 1判定温度 Tel及び第 3判定温度 Tc3との関係は、ェ ンジンの種類や酸ィ匕触媒 12aの径、長さ、熱容量等や排気ガス浄化システム 1の配 置などによって異なる。しかし、これらを固定した場合には、このエンジン回転数 Neと 第 1判定温度 Tel及び第 3判定温度 Tc3との関係は、予め実験などにより把握できる 。そのため、この関係を、マップデータや関数として制御装置 30に記憶しておき、ェ ンジン回転数 Neからマップデータ等を参照して、この第 1判定温度 Tel及び第 3判 定温度 Tc3を算出する。
[0049] また、ステップ S13Aでは、第 2排気ガス温度 Tg2が第 1判定温度 Tel以上である か否かと、第 1排気ガス温度 Tglが第 3判定温度 Tc3以上である力ゝ否カゝとを判定する 。そして、第 2排気ガス温度 Tg2が第 1判定温度 Tel以上であり、かつ、第 1排気ガス 温度 Tg 1が第 3判定温度 Tc3以上である場合のみステップ S 15に行き、その他はス テツプ S14に行く。
[0050] ステップ S 15では、第 2判定温度 Tc2を算出する。この第 2判定温度 Tc2は、ステツ プ S 17の第 2排気ガス昇温制御の目標温度である。フィルタ入口排気温度センサ 23 で検出された排気ガスの温度である第 2排気ガス温度 Tg2をこの温度以上に維持す ることにより、触媒付きフィルタ装置 12bに捕集された PMの燃焼を良好な状態に維 持する。この第 2判定温度 Tc2は、通常は PMの燃焼開始温度 (例えば、 350°C程度 )よりも高い値とし、例えば、 500°C程度とする。また、時間によって多段階に変化させ てもよい。
[0051] 次のステップ S 16では、第 2排気ガス温度 Tg2のチェックを行う。この第 2排気ガス 温度 Tg2が第 2判定温度 Tc2より低 、ときは、ステップ S 17の第 2排気ガス昇温制御 に行き、第 2排気ガス温度 Tg2が第 2判定温度 Tc2以上の時は、ステップ S 18の再 生温度維持制御に行く。
[0052] ステップ S17では、マルチ噴射に加えてポスト噴射を行う第 2排気ガス昇温制御を、 所定の時間 (ステップ S16の第 2排気ガス温度 Tg2のチェックのインターバルに関係 する時間) A t2の間行う。この第 2排気ガス昇温制御では、マルチ噴射により排気ガ ス温度を上昇させると共に、ポスト噴射により排気ガス中に供給された HC (未燃燃料 )は、酸化触媒で酸化され発熱する。この発熱により、第 2排気ガス温度 Tg2が第 1排 気ガス温度 Tglよりも上昇した状態で触媒付きフィルタ装置 12bに流入するようにな る。このステップ S 17の後は、ステップ S 19に行く。
[0053] そして、ステップ S16の判定で、第 2排気ガス温度 Tg2が第 2判定温度 Tc2以上の 場合には、ステップ S18で、エンジン 10のシリンダ内(筒内)噴射においてマルチ噴 射を行う再生温度維持制御を、所定の時間 (ステップ S 16の第 2排気ガス温度 Tg2の 継続時間のチェックのインターバルに関係する時間) Δ t3の間行う。
[0054] また、ステップ S 18では、 PM燃焼累積時間のカウントを行う。このカウントでは、第 2 排気ガス温度 Tg2が所定の第 2判定温度 Tc2以上の場合にのみ、 PM燃焼累積時 間 taをカウントする(ta=ta+ A t3)。このステップ S18の後は、ステップ S19に行く。
[0055] ステップ S 19では、強制再生制御の終了か否かを判定するために、 PM燃焼累積 時間 taのチ ックを行う。このチェックでは PM燃焼累積時間 taが所定の判定時間 Ta cを超えたカゝ否かをチェックする。即ち、超えていれば、強制再生が完了したとして、 ステップ S20に行き、超えてなければ、強制再生は完了していないとして、ステップ S 12に戻る。そして、 PM燃焼累積時間 taが所定の判定時間 tacを超えるまで、ステツ プ S 14の第 1排気ガス昇温制御力、ステップ S 17の第 2排気ガス昇温制御力、ステツ プ S 18の再生温度維持制御を行う。
[0056] そして、ステップ S20では、強制再生制御を終了して通常噴射制御に復帰する。そ の後、リターンする。
[0057] なお、この第 1及び第 2排気ガス昇温制御や再生温度維持制御では、吸気絞り弁 1 6や EGR弁等による吸気絞りや、排気絞り弁 13や排気ブレーキ弁 18等による排気 絞りを併用する。
[0058] この図 2又は図 3の制御フローに従った強制再生制御により、触媒付きフィルタ装置 12bを強制再生する際に、次のようなときに、第 2排気昇温制御により酸化触媒の上 流側に未燃燃料 (HC)を供給し、この未燃燃料を酸化触媒で酸化して触媒付きフィ ルタ装置 12bを昇温する制御を行うことができる。一つ目は、図 2のように酸ィ匕触媒の 温度を指標する触媒温度指標温度 Tg2が、その時の内燃機関 10のエンジン回転数 Neに応じて変化する所定の判定温度である第 1判定温度 Tel以上となった時である 。 2つ目は、図 3のように、酸化触媒の温度を指標する第 1の触媒温度指標温度 (第 2 排気ガス温度) Tg2が、その時の内燃機関 10のエンジン回転数 Neに応じて変化す る所定の判定温度である第 1判定温度 Tel以上で、かつ、同じく酸化触媒の温度を 指標する第 2の触媒温度指標温度 (第 1排気ガス温度) Tglが、その時の内燃機関 1 0のエンジン回転数 Neに応じて変化する所定の判定温度である第 3判定温度 Tc3 以上となった時である。
[0059] そして、本発明においては、ステップ S 17の第 2排気ガス昇温制御におけるポスト 噴射量 Qp、即ち、未燃燃料の供給量 Qpに対して上限値 Quを設ける。そして、この 上限値 Quを、第 1上限値 Quiと第 2上限値 Qu2と第 3上限値 Qu3との最小値 Qumi nとする (Qu=Qumin) o
[0060] この第 1上限値 Quiは、 MAF (マスエアフロー)センサ 19から検出される吸入空気 量によって制限される第 1可燃燃料量 Qalから筒内燃焼分の燃料噴射量 Qeを差し 引いて求める(Qul = Qal— Qe)。
[0061] 第 2上限値 Qu2は、大気圧によって制限される第 2可燃燃料量 Qa2から筒内燃焼 分の燃料噴射量 Qeを差し引いて求める(Qu2 = Qa2— Qe)。また、第 3上限値 Qu3 は、酸化触媒の活性温度に関係する量で、排気ガス温度 Tgl (又は、 Tg2)とェンジ ン回転数 Neによって制限される酸ィ匕触媒で酸ィ匕可能な第 3可燃燃料量 Qa3とする( Qu3 = Qa3)。これらの算出は、図 4に示すようなフローに従って行うことができる。
[0062] この第 1可燃燃料量 Qalと第 2可燃燃料量 Qa2は、吸入空気量と大気圧力 それ ぞれ決まる量である。これらの量 Qal、 Qa2は、エンジンのシリンダ内の燃焼だけで なぐ排気系も含めた系全体で燃焼又は酸ィ匕可能な燃料量である。即ち、シリンダ内 燃焼や酸ィ匕触媒による酸ィ匕で消費可能な燃料量である。そのため、これらを上限値 の算出に用いることにより、酸素量に関して、排気ガス中に供給される未燃燃料も酸 化可能な範囲内の量となる。従って、白煙の発生を防止できる。
[0063] また、更に、強制再生中にぉ 、て、減速時等でアクセルを離し排気温度が下がった 後しばらくしてアクセルを踏み直した場合等のように、筒内燃焼分の燃料噴射量 Qeと ポスト噴射量 Qpを減少した後に、筒内燃焼分の燃料噴射量 Qeとポスト噴射量 Qpを それぞれ増加する場合に、次のように構成する。ポスト噴射量 Qpを上限値 Qu以下 に設定すると共に、ポスト噴射量 Qpを図 5に示すように徐々に上限値 Quに増加する なまし制御を行う。
[0064] このなまし制御では、例えば、図 5に示すように、噴射初期値 Qpsと増加速度 Θを 決めて直線状に増加する。あるいは、段階的に増加したり、曲線的に増加してもよい 。実験などにより、白煙発生が少なぐかつ、酸化触媒の昇温が早ぐし力も、制御が 比較的単純であるように、設定することが好ましい。このなまし制御の噴射初期値や 増加速度は、エンジンの機種や排気ガス浄ィ匕システムによって最適なものが決まる ので、それぞれに合わせて予め設定して、制御装置 30に記憶しておく。
[0065] 上記の排気ガス浄ィ匕方法及び排気ガス浄ィ匕システム 1によれば、強制再生制御に おけるポスト噴射の際に、ポスト噴射量 Qpに上限値 Quを設けたので、触媒付きフィ ルタ(DPF) 12bの強制再生の際に、ディーゼルエンジン(内燃機関) 10の運転状態 によらず、排気ガス中に供給する未燃燃料を確実に酸ィ匕できる。そのため、未燃燃 料の流出である白煙の発生を防止できる。
[0066] また、ポスト噴射を再開し、ポスト噴射量 Qpを増加する時には、なまし制御を行うの で、排気ガス温度センサ 22 (又は 23)の検出温度 Tgl (又は Tg2)から推定した酸ィ匕 触媒の温度よりも、実際の酸ィ匕触媒の温度が低いことによる白煙の発生を防止するこ とがでさる。
[0067] 次に、このなまし制御について、図 5を参照しながら、より詳細に説明する。図 5に示 すように、強制再生中に、減速等でアクセルを離してしばらくして力 踏み直すと、ァ クセルを離したことにより、筒内燃焼分の燃料噴射量 Qeと、この燃料噴射量に連動し ているポスト噴射量 Qpとがゼロとなる。そして、フィルタ入口排気ガス温度センサ 23 で計測した温度である第 2排気ガス温度 Tg2が下がる。しかし、アクセル踏み直し時 は、第 2排気ガス温度 Tg2は中心部の温度より高くなる。
[0068] つまり、外周側よりも中心部の方力排気ガス Gの流速が早 、ので、燃料噴射を停止 した場合には酸ィ匕触媒装置 12aの中心部側が早く温度低下する。そのため、外周側 で測定した第 2排気ガス温度 Tg2と、酸ィ匕触媒装置 12aの中心部の実際の温度 Tea tとの間にズレが生じる。
[0069] 従って、燃料噴射の再開時に、第 2排気ガス温度 Tg2でポスト噴射量 Qpを制御す ると、酸ィ匕触媒装置 12aの中心部の温度 Teatが第 2排気ガス温度 Tg2よりも低下し ているにもかかわらず、酸化触媒の温度が高く酸化能力が高いと認識される。そして 、図 5の Aのように第 2排気ガス温度 Tg2に応じたポスト噴射量 Qpでポスト噴射が実 行されると、過剰な未燃燃料 (HC)が供給されることになる。そのため、酸化触媒で 酸化処理ができず、 Bのように白煙が発生する場合が生じる。
[0070] し力しながら、本発明によれば、強制再生でポスト噴射を行っている最中に、ァクセ ルを戻し、次にアクセルを踏み込んだ時のように燃料噴射がー且停止されて力ゝら再 開された場合には、それまでの経過時間の差に関係なぐー且ポスト噴射を停止した 後のポスト噴射再開時にぉ ヽて、ポスト噴射による未燃燃料の供給量 Qpを急激に上 限値 Quに近づけずに、図 5の Cのように、なまし制御で上限値 Quまで徐々に増加す る。そのため、図 5の Dのように白煙の発生を抑えることができ、再加速時の白煙発生 の問題を解決できる。なお、このなまし制御では、再開時の初期噴射量 Qpsとその後 の増加速度 Θを規定している。
[0071] なお、上記の実施の形態では、排気ガス浄ィ匕システムの排気ガス浄ィ匕装置として は、上流側の酸化触媒装置と下流側の触媒付きフィルタ(DPF)との組み合わせを例 にして説明したが、酸ィ匕触媒を担持したフィルタ(DPF)であってもよい。更に、酸ィ匕 触媒の上流側に未燃燃料を供給する方法としてポスト噴射で説明したが、排気通路 14に未燃燃料供給装置を配置して、この未燃燃料供給装置カゝら直接排気通路 14 内に未燃燃料を噴射する排気管内直接噴射の方法を採用してもよい。
[0072] また、上記の図 2及び図 3の制御フローでは複雑になるのを避けるため、記載しな かったが、通常は、触媒付きフィルタ 12bにおける PMの異常燃焼を避けるために、 第 2排気ガス温度 Tg2を常時監視し、ステップ S 18にお ヽて第 2排気ガス温度 Tg2が 第 2判定値 Tc2よりも高 、所定の判定値 (第 4判定温度 Tc4)を超えた場合には、ポ スト噴射等を中止し、マルチ噴射のみにしてもよい。
産業上の利用可能性
[0073] 上述した優れた効果を有する本発明の排気ガス浄化方法及び排気ガス浄化システ ムは、自動車搭載の内燃機関等に設けられ、酸化触媒の上流側に未燃燃料を供給 し酸ィ匕して、 DPFを昇温する制御を行う排気ガス浄ィ匕システムに対して、極めて有効 に利用することができる。

Claims

請求の範囲
[1] 上流側から順に酸化触媒を担持した酸化触媒装置とディーゼルパティキュレートフ ィルタを配置した排気ガス浄ィ匕装置、又は、酸化触媒を担持したディーゼルパティキ ュレートフィルタを配置した排気ガス浄ィ匕装置を内燃機関の排気通路に備え、前記 ディーゼルパティキュレートフィルタを強制再生する際に、前記酸化触媒の温度を指 標する触媒温度指標温度が所定の判定温度以上となった時に、前記酸化触媒の上 流側に未燃燃料を供給し、該未燃燃料を前記酸化触媒で酸化して、前記ディーゼ ルパティキュレートフィルタを昇温する制御を行う排気ガス浄ィ匕システムにおいて、 空燃比によって制限される第 1可燃燃料量力ゝら筒内燃焼分の燃料噴射量を差し引 いて求められる第 1上限値と、大気圧によって制限される第 2可燃燃料量力 筒内燃 焼分の燃料噴射量を差し引いて求められる第 2上限値との最小値を、前記未燃燃料 の供給量に対する上限値とすることを特徴とする排気ガス浄ィ匕方法。
[2] 前記第 1上限値と、前記第 2上限値と、前記触媒温度指標温度とエンジン回転数に よって制限される酸ィ匕触媒で酸ィ匕可能な第 3可燃燃料量である第 3上限値との最小 値を、前記未燃燃料の供給量に対する上限値とすることを特徴とする請求項 1記載 の排気ガス浄化方法。
[3] 前記強制再生中にお!ヽて、筒内燃焼分の燃料噴射量と未燃燃料の供給量を減少 した後に、筒内燃焼分の燃料噴射量と未燃燃料の供給量をそれぞれ増加する場合 に、未燃燃料の供給量を前記上限値以下に設定すると共に、未燃燃料の供給量を 前記上限値に徐々に増加するなまし制御を行うことを特徴とする請求項 1又は 2に記 載の排気ガス浄化方法。
[4] 内燃機関の排気通路に、上流側から順に酸化触媒を担持した酸化触媒装置とディ ーゼルパティキュレートフィルタを配置した排気ガス浄ィ匕装置、又は、酸化触媒を担 持したディーゼルパティキュレートフィルタを配置した排気ガス浄ィ匕装置と、前記ディ ーゼルパティキュレートフィルタを強制再生する制御を行う再生制御装置を備えると 共に、前記再生制御装置が、前記ディーゼルパティキュレートフィルタを強制再生す る際に、前記酸化触媒の温度を指標する触媒温度指標温度が所定の判定温度以上 となった時に前記酸化触媒の上流側に未燃燃料を供給し、該未燃燃料を前記酸ィ匕 触媒で酸ィ匕して前記ディーゼルパティキュレートフィルタを昇温する制御を行う排気 ガス浄化システムにお 、て、
前記再生制御装置が、空燃比によって制限される第 1可燃燃料量から筒内燃焼分 の燃料噴射量を差し引いて求められる第 1上限値と、大気圧によって制限される第 2 可燃燃料量力ゝら筒内燃焼分の燃料噴射量を差し引いて求められる第 2上限値との最 小値を、前記未燃燃料の供給量に対する上限値とすることを特徴とする排気ガス浄 ィ匕システム。
[5] 前記再生制御装置が、前記第 1上限値と、前記第 2上限値と、前記触媒温度指標 温度とエンジン回転数によって制限される酸ィ匕触媒で酸ィ匕可能な第 3可燃燃料量で ある第 3上限値との最小値を、前記未燃燃料の供給量に対する上限値とすることを 特徴とする請求項 4記載の排気ガス浄ィ匕システム。
[6] 前記再生制御装置が、前記強制再生中において、筒内燃焼分の燃料噴射量と未 燃燃料の供給量を減少した後に、筒内燃焼分の燃料噴射量と未燃燃料の供給量を それぞれ増加する場合に、未燃燃料の供給量を前記上限値以下に設定すると共に 、未燃燃料の供給量を前記上限値に徐々に増加するなまし制御を行うことを特徴と する請求項 4又は 5に記載の排気ガス浄ィ匕システム。
PCT/JP2007/050145 2006-01-27 2007-01-10 排気ガス浄化方法及び排気ガス浄化システム WO2007086252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07706492.1A EP1978219B1 (en) 2006-01-27 2007-01-10 Exhaust gas purification method and exhaust gas purification system
CN2007800029262A CN101371015B (zh) 2006-01-27 2007-01-10 废气净化方法以及废气净化系统
US12/086,997 US7934372B2 (en) 2006-01-27 2007-01-10 Exhaust gas purification method and exhaust gas purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-018681 2006-01-27
JP2006018681A JP3956992B1 (ja) 2006-01-27 2006-01-27 排気ガス浄化方法及び排気ガス浄化システム

Publications (1)

Publication Number Publication Date
WO2007086252A1 true WO2007086252A1 (ja) 2007-08-02

Family

ID=38309051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050145 WO2007086252A1 (ja) 2006-01-27 2007-01-10 排気ガス浄化方法及び排気ガス浄化システム

Country Status (5)

Country Link
US (1) US7934372B2 (ja)
EP (1) EP1978219B1 (ja)
JP (1) JP3956992B1 (ja)
CN (1) CN101371015B (ja)
WO (1) WO2007086252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535929A (zh) * 2020-05-08 2020-08-14 广西玉柴机器股份有限公司 基于燃油消耗量进行dpf再生补偿值的计算方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140036A1 (ja) * 2007-05-09 2008-11-20 Cd-Adapco Japan Co., Ltd. 4サイクルエンジン
JP5266865B2 (ja) * 2008-05-13 2013-08-21 いすゞ自動車株式会社 排気ガス浄化システム及びその制御方法
US8720193B2 (en) * 2010-05-11 2014-05-13 GM Global Technology Operations LLC Hybrid catalyst radiant preheating system
JP5625489B2 (ja) * 2010-05-25 2014-11-19 いすゞ自動車株式会社 高地における排ガス浄化システム
SE536026C2 (sv) * 2010-08-31 2013-04-09 Scania Cv Ab Förfarande och system för avgasrening
US8943803B2 (en) 2010-10-27 2015-02-03 Caterpillar Inc. Power system with cylinder-disabling strategy
FR2972223B1 (fr) * 2011-03-02 2015-07-17 Peugeot Citroen Automobiles Sa Methode de commande d'un moteur a combustion en mode marginal de fonctionnement, pour limiter l'emission de fumees
JPWO2013077130A1 (ja) * 2011-11-22 2015-04-27 日立建機株式会社 建設機械
JP5798533B2 (ja) * 2012-09-05 2015-10-21 株式会社日本自動車部品総合研究所 内燃機関の排気浄化装置
JP6259596B2 (ja) * 2013-07-11 2018-01-10 ヤンマー株式会社 排気ガス浄化装置
EP3012441B1 (en) * 2014-10-23 2018-09-19 Mitsubishi Jidosha Kogyo K.K. Exhaust after treatment apparatus for internal combustion engine
JP6606931B2 (ja) * 2014-10-23 2019-11-20 三菱自動車工業株式会社 内燃機関の排気後処理装置
JP6109983B1 (ja) * 2016-03-04 2017-04-05 三菱重工業株式会社 Egrシステム
GB2550422B (en) * 2016-05-20 2019-12-04 Caterpillar Inc Method of controlling operation of an exhaust gas treatment apparatus
JP7471180B2 (ja) 2020-09-07 2024-04-19 三菱重工エンジン&ターボチャージャ株式会社 再生制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222040A (ja) * 2002-01-29 2003-08-08 Hino Motors Ltd パティキュレートフィルタの再生方法
JP2004143988A (ja) 2002-10-23 2004-05-20 Hino Motors Ltd 排気浄化装置
JP2004293340A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2004346795A (ja) * 2003-05-21 2004-12-09 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584738B2 (ja) * 1998-06-29 2004-11-04 日産自動車株式会社 筒内直噴式火花点火エンジン
JP3225957B2 (ja) * 1999-02-02 2001-11-05 トヨタ自動車株式会社 内燃機関
DE60238235D1 (de) * 2001-09-07 2010-12-23 Mitsubishi Motors Corp Vorrichtung zur Abgasemissionssteuerung eines Motors
JP3929296B2 (ja) * 2001-11-30 2007-06-13 トヨタ自動車株式会社 内燃機関
JP3856118B2 (ja) * 2002-01-31 2006-12-13 日産自動車株式会社 排気浄化装置
JP3969196B2 (ja) * 2002-06-04 2007-09-05 株式会社デンソー 内燃機関の燃料噴射制御装置
DE10258278A1 (de) * 2002-12-13 2004-06-24 Robert Bosch Gmbh Katalysatortemperatur-Modellierung bei exothermem Betrieb
JP4135495B2 (ja) * 2002-12-20 2008-08-20 いすゞ自動車株式会社 燃料噴射制御装置
JP4285141B2 (ja) * 2003-07-31 2009-06-24 日産自動車株式会社 ディーゼルエンジンの燃料噴射制御装置
JP4075755B2 (ja) * 2003-09-22 2008-04-16 トヨタ自動車株式会社 内燃機関のフィルタ過昇温抑制方法
JP4244841B2 (ja) * 2004-03-29 2009-03-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4148178B2 (ja) * 2004-04-08 2008-09-10 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222040A (ja) * 2002-01-29 2003-08-08 Hino Motors Ltd パティキュレートフィルタの再生方法
JP2004143988A (ja) 2002-10-23 2004-05-20 Hino Motors Ltd 排気浄化装置
JP2004293340A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2004346795A (ja) * 2003-05-21 2004-12-09 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535929A (zh) * 2020-05-08 2020-08-14 广西玉柴机器股份有限公司 基于燃油消耗量进行dpf再生补偿值的计算方法
CN111535929B (zh) * 2020-05-08 2022-06-14 广西玉柴机器股份有限公司 基于燃油消耗量进行dpf再生补偿值的计算方法

Also Published As

Publication number Publication date
CN101371015A (zh) 2009-02-18
US20090165445A1 (en) 2009-07-02
EP1978219A4 (en) 2015-04-29
JP3956992B1 (ja) 2007-08-08
CN101371015B (zh) 2011-12-28
EP1978219A1 (en) 2008-10-08
US7934372B2 (en) 2011-05-03
EP1978219B1 (en) 2017-12-27
JP2007198283A (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
JP3956992B1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP3988785B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4673226B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP3979437B1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4169076B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP3933172B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4100451B1 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4017010B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP3824003B2 (ja) 排気ガス浄化システム
JP4161932B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
US8171725B2 (en) Method of controlling exhaust gas purification system, and exhaust gas purification system
US7721534B2 (en) Control method for an exhaust gas purification system and an exhaust gas purification system
US7168244B2 (en) Control method for an exhaust gas purification system and an exhaust gas purification system
JP4140640B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
WO2007049406A1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
AU2007344789A1 (en) Exhaust emission purification method and exhaust emission purification system
WO2011155587A1 (ja) Dpfシステム
WO2007145044A1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4466158B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4352946B2 (ja) 排気ガス浄化システム
JP4438485B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12086997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780002926.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007706492

Country of ref document: EP