WO2007083553A1 - プラスチック光ファイバケーブル及びこれを用いた通信システム - Google Patents

プラスチック光ファイバケーブル及びこれを用いた通信システム Download PDF

Info

Publication number
WO2007083553A1
WO2007083553A1 PCT/JP2007/050206 JP2007050206W WO2007083553A1 WO 2007083553 A1 WO2007083553 A1 WO 2007083553A1 JP 2007050206 W JP2007050206 W JP 2007050206W WO 2007083553 A1 WO2007083553 A1 WO 2007083553A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
plastic optical
core
cable
fiber cable
Prior art date
Application number
PCT/JP2007/050206
Other languages
English (en)
French (fr)
Inventor
Hideyuki Omura
Satoshi Takahashi
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2007083553A1 publication Critical patent/WO2007083553A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide

Definitions

  • the present invention relates to a plastic optical fiber cable and a communication system using the same.
  • Optical communication is known as a communication means for transmitting a large amount of information
  • an optical fiber is known as an optical communication medium.
  • Optical fibers are widely used from short-distance optical communications such as indoors and premises to long-distance optical communications connecting countries and cities.
  • POF plastic optical fiber
  • a plastic optical fiber cable (POF cable) with a coating layer is used.
  • POF has a core and a clad made of plastic (see, for example, Patent Document 1).
  • POF has advantages such as ease of terminal processing, ease of connection with peripheral devices, and low price, although transmission loss is slightly larger than silica glass optical fiber.
  • an optical connector is attached to the end of the POF cable.
  • This optical connector is detachable from other POF cables and optical connectors attached to other devices.
  • Optical connectors include optical plugs that are attached to the end of POF cables, receptacles that connect with transmitter circuits or receiver circuits, and adapters that connect optical plugs together.
  • the POF cable described in Patent Document 2 has an optical fiber having a sufficiently small core diameter with respect to the dimension of the light receiving part of the connected light receiving element, so that the signal light can be transmitted to other than the light receiving part. It is prevented from being transmitted.
  • the core diameter is too large, special or high-precision terminals and jigs are required for optical coupling between the light-emitting element, the light-receiving element and the optical fiber, or between the optical fibers.
  • the terminal coupling operation requires careful attention so as not to cause shaft misalignment, and skill is required.
  • Patent Document 3 Japanese Patent Laid-Open No. 61-130904
  • Patent Document 2 JP 10-170777 A
  • Patent Document 3 JP 2001-124958 A
  • Patent Document 4 JP-A-9-127360
  • An object of the present invention is to provide a plastic optical fiber cable that can be easily optically coupled with other plastic optical fiber cables, light emitting elements, light receiving elements and the like, and a communication system using the same. It is.
  • Another object of the present invention is to provide the necessary tensile strength and transfer by stress increase during installation. It is to provide a low cost plastic optical fiber cable that prevents transmission loss and a communication system using the same.
  • a plastic optical fiber cable of the present invention includes an optical fiber having a core as a light guide section and a clad for sealing light in the core, and the optical fiber element.
  • An outer diameter of the core is 200 / zm or more
  • an outer diameter of the optical fiber is 750 m or more
  • the coating layer includes the plastic optical fiber.
  • the coating layer includes a plastic optical fiber cable of 20 m in an annular shape having an outer diameter of 200 mm, and is wrapped with a band, and the plastic optical fiber cable at a position of 10 Omm is placed outside the annular portion from the band.
  • the holding portion When held horizontally by the holding portion as an end portion, it has a hardness such that the radius of the bending force S generated in the vicinity of the holding portion due to its own weight is 7 mm or more.
  • the outer diameter of the core is 500 ⁇ m or less, and the outer diameter of the optical fiber is 1000 ⁇ m or less. Further, it is preferable that the thickness of the coating layer is 0.2 mm or more and 1.2 mm or less.
  • the communication system of the present invention is characterized in that the plastic optical fiber cable is connected between optical transmission devices.
  • a connector is attached to an end of the plastic optical fiber, and the connector is composed of three or less parts.
  • the connector includes a plugno, a winging, and a plug cover in which a ferrule is integrally formed.
  • the outer diameter of the core is 200 ⁇ m or more
  • the outer diameter of the optical fiber is 750 m or more
  • the covering layer is one end of the plastic optical fiber cable.
  • the outer diameter of the core is set to 200 ⁇ m or more, the tolerance of the axis deviation at the time of optical coupling is increased, and the coupling process is simplified. Further, the axial deviation can be suppressed without using an inclusion such as a light transmitting body or a transparent optical member as in the prior art.
  • the outer diameter of the optical fiber is set to 750 m or more, the tensile strength necessary for long distance laying can be obtained while suppressing the thickness of the coating layer.
  • the outer diameter of the core to 500 ⁇ m or less and the outer diameter of the optical fiber to 1000 ⁇ m or less, it is possible to easily install while suppressing a decrease in optical coupling efficiency with various elements. Can be secured. That is, if the outer diameter of the core exceeds 500 / zm, the coupling efficiency with various elements such as a light-receiving element that responds at high speed is unfavorable. Also, if the outer diameter of the optical fiber exceeds 1000 / zm, the flexibility of the cable is impaired and the construction becomes difficult.
  • the thickness of the coating layer is set to 0.2 mm or more and 1.2 mm or less, a tensile strength wire can be made unnecessary in combination with an increase in strength according to the outer diameter regulation of the strand. That is, if the thickness of the coating layer exceeds 1.2 mm, the cable diameter becomes too large, and it is not preferable because it is difficult to perform coupling with various elements.
  • FIG. 1 is a front view including a partial cross section showing a POF cable of the present invention.
  • FIG. 2 shows an example of the strand of the present invention and its refractive index distribution, where (A) is a sectional view and (B) is an explanatory diagram of the refractive index distribution.
  • FIG. 3 is an explanatory diagram showing an example of a method for measuring an increase in loss caused by the falling weight of the cable extra length generated in the vicinity of the holding portion while holding one end of the POF cable.
  • FIG. 4 is a flowchart showing attachment of a connector.
  • FIG. 5 is a block diagram showing an example of an optical communication system using the POF cable of the present invention. Explanation of symbols
  • the plastic optical fiber cable 10 of the present invention includes at least a plastic optical fiber strand (hereinafter simply referred to as a strand or POF) 11 and a coating layer 12 covering the strand 11. It has a connector 13 for connection at both ends.
  • a plastic optical fiber strand hereinafter simply referred to as a strand or POF
  • a coating layer 12 covering the strand 11. It has a connector 13 for connection at both ends.
  • the strand 11 of the present invention has a core 15 that is a light guide portion, and a clad 16 for sealing light to the core 15. Furthermore, a protective layer for selectively increasing the strength of the wire 11 or protecting the core 15 or the cladding 16 is selectively provided on the outer periphery of the cladding 16 as necessary.
  • the clad 16 may have a protective layer function. In this case, the protective layer may be omitted. Since the strand 11 is made of plastic, it is easy to manufacture a large-diameter core, and thus has a high tolerance for shaft misalignment.
  • the strand 11 has a refractive index distribution type (sometimes referred to as a graded index type or GI type), a step index (SI) type, or a multi-step index (MSI) due to the difference in the refractive index distribution in the radial direction.
  • the wire 11 of the present invention can be constructed regardless of the type.
  • the GI type having a high transmission capacity is preferably used.
  • GI type wire 11 can realize high-speed transmission by suppressing mode dispersion. Mode dispersion is a phenomenon in which two incident optical powers that enter the core simultaneously at different angles of incidence cause a time lag due to propagation in the core.
  • FIG. 2 (B) shows the refractive index distribution of the strand 11.
  • the vertical axis shows the refractive index, and the refractive index increases in the upward direction.
  • the horizontal axis indicates the radial direction of the optical material.
  • the core 15 has a concentric n-layer stacked structure.
  • the first layer 15 a formed in a cylindrical shape is located on the outermost periphery of the core 15.
  • a cylindrical second layer 15b is disposed on the inner periphery of the first layer 15a.
  • another layer is formed one after another as it approaches the center of the core 15, and a cylindrical n-th layer 15 ⁇ is disposed in the center of the core 15.
  • the refractive indexes of the first to ⁇ layers 15a to 15n gradually increase from the outer periphery of the core 15 to the center. With distribution.
  • the refractive index n (r) separated from the center of the core 15 having the radius R1 by the radius r is expressed by the following formulas (1) to (2) where n1 and n2 are the refractive indexes of the central portion and the outer peripheral portion. Satisfy 3).
  • n (r) nl [l-2 A (r / Rl) e ] 1/2
  • the variable g in the expression (1) (hereinafter referred to as a refractive index distribution coefficient g) is controlled to an appropriate value. By doing so, the transmission wire 11 can be made to exhibit a wide transmission band.
  • the band characteristics of the GI-type wire 11 are related to mode dispersion and material dispersion.
  • Material dispersion refers to the wavelength dependence of the refractive index of the wire 11. Therefore, in order to give the strand 11 the widest transmission characteristics, it is necessary to select the refractive index distribution coefficient g in consideration of both mode dispersion and material dispersion.
  • the mode dispersion is reduced and the GI-type wire having high band characteristics. 11 can be manufactured.
  • the core 15 is a copolymer of a specific polymerizable composition, the material dispersion is reduced together with the mode dispersion, and the GI-type wire 11 having excellent band characteristics can be manufactured.
  • the polymerizable composition forming the core 15 will be described later.
  • the refractive index distribution coefficient g is preferably 1.5 to 3.0, more preferably 1.8 to 2.5, and most preferably 2.1 to 2.2. is there.
  • the element 11 having such a core 15 has an lOGbps (light source wavelength 850 nm) t high and can exhibit band characteristics.
  • a raw material having high light transmittance is used.
  • acrylic acid esters fluorine-free (meth) acrylic acid ester (a), fluorine-containing (meth) acrylic acid ester (b)), styrenic compound (c), vinyl esters (d), a fluoropolymer (e) having a cyclic structure in the main chain, a polymer obtained by polymerizing bisphenol A, which is a raw material for polycarbonates, as a polymerizable compound, norbornene-based resin, etc.
  • the core can be formed from these homopolymers, or copolymers of two or more of these monomers, and mixtures of homopolymers and Z or copolymers.
  • a composition containing (meth) acrylic acid esters as a polymerizable monomer can be preferably used.
  • a polymerization reaction is performed using a refractive index adjusting agent and a desired refractive index distribution is provided, it is preferable to select a raw material that is easy for bulk polymerization.
  • an absorption loss due to the C—H bond constituting the polymer of the core 15 occurs, so that it is described in Japanese Patent No. 3332922.
  • Deuterated polymethyl metatalylate PMMA—d8), polytrifluoroethyl metatalylate (P3FMA), polyhexafluoroisopropyl 2-fluoro attalate (HFIP 2-FA), poly perfluorobuta -Ruby ether is a polymer having an alicyclic or heterocyclic ring in the main chain described in JP-A-8-334634, a polymer described in JP-A-2002-021972 and Japanese Patent Application No. 2004-186199, etc.
  • a polymer in which hydrogen atoms (H) of C—H bonds are substituted with deuterium atoms (D) or halogen atoms (especially fluorine (F)) is used.
  • the wavelength region where transmission loss occurs can be lengthened, and loss of transmission signal light can be reduced.
  • the material of the clad 16 it is preferable to use a material having a lower refractive index than that of the core 15 and having excellent adhesion to the core 15 because light transmitted through the core 15 is totally reflected at the interface between them. However, if irregularities are likely to occur at the interface between the core 15 and the clad 16 due to the selection of the material, or if a suitable force is applied for manufacturing suitability, the gap between the core 15 and the clad 16 is Further, a layer may be provided to improve the consistency. As the material of the clad 16, a material having excellent toughness and heat and humidity resistance is preferably used.
  • a suitable material includes a homopolymer or copolymer of a fluorine-containing monomer.
  • the fluorine-containing monomer is preferably a fluorine resin obtained by polymerizing one or more polymerizable monomers containing 10% by mass or more of vinylidene fluoride, which is preferable to vinylidene fluoride (PVDF). Used.
  • the clad 16 may be a multilayer in addition to a single layer.
  • the inner layer can be arranged from an optical viewpoint, and the outer layer can be arranged from other functional viewpoints.
  • Other functions include improving mechanical strength, suppressing moisture permeability, and improving handling properties.
  • the outer layer is sometimes called a protective layer.
  • a refractive index adjusting agent (dopant) can be used.
  • This refractive index adjusting agent is a compound different from the refractive index of the polymer constituting the core 15.
  • the clad polymerizable composition may contain a refractive index adjusting agent.
  • Examples of the refractive index adjusting agent include those described in Japanese Patent No. 3332922 and JP-A-11-142657.
  • Examples of the polymerizable compound include tribromophenyl methacrylate.
  • the refractive index adjusting component the polymerizable monomer and the polymerizable refractive index component are copolymerized when forming the matrix, so that various properties (especially optical properties) can be controlled more effectively. Although difficult, in terms of heat resistance May be advantageous.
  • a compound in which a hydrogen atom present in these compounds is substituted with a deuterium atom, it can be used for the purpose of improving transparency in a wide wavelength region as described above. .
  • Various methods are known for manufacturing the wire 11.
  • An example is described below.
  • a method of spinning a molten polymer by extrusion or the like is well known.
  • various production methods have been proposed, and a method of producing from a monomer and a method of producing from a polymer are known!
  • a method for producing from a monomer a polymerizable composition containing a monomer and a refractive index adjusting agent is placed in a hollow tube and polymerized to obtain a polymer.
  • a method of concentrating a refractive index adjusting agent and a method of producing a polymer by changing the refractive index of the polymerizable composition to be charged by polymerizing the polymerizable composition into a rotating cylinder.
  • concentric discharge loci are also extruded with different refractive indexes or different amounts of refractive index adjusting agents and laminated in a concentric multilayer, or columnar or cylindrical.
  • a method of diffusing a refractive index regulator in a polymer is known.
  • the gradient index strand 11 or a precursor thereof can be obtained.
  • the wire 11 or the precursor can be adjusted to a desired diameter by heating and melting and stretching as necessary.
  • it is also possible to give desired characteristics to the outermost layer by arranging a resin-made tube on the outermost periphery and stretching it at the same time.
  • the core diameter Dl is 200 ⁇ m or more and 500 ⁇ m or less in order to obtain a highly versatile strand 11 that can be used for coupling with various optical elements and transmission bands. It is preferable.
  • the core diameter D1 is less than 200 ⁇ m, the tolerance of the axis deviation is narrowed, and if it exceeds 500 ⁇ m, the coupling efficiency with a light-receiving element that responds at high speed is unfavorable.
  • the outer diameter D2 (see Fig. 1) of the strand 11 is preferably 750 ⁇ m or more and 1000 ⁇ m or less in order to eliminate the need for a tensile body. If the outer diameter D2 is less than 750 ⁇ m It does not have the necessary tensile strength for installation, and if it exceeds 1000 m, the flexibility of the cable is impaired, which is not preferable.
  • the strand 11 obtained by the above manufacturing method is not normally used as it is.
  • further bending of the wire 'Improves weather resistance, suppresses performance degradation due to moisture absorption, improves tensile strength, imparts stepping resistance, imparts flame resistance, protects against damage caused by chemicals, prevents noise from external light Used as a plastic optical fiber cable (hereinafter sometimes referred to as a cable) 10 in which the surface of the wire 11 is coated with one or more coating layers 12 for the purpose of improving commercial value by coloring or the like.
  • the cable 10 may be formed by bundling a cord with a primary coating on the wire 11 and performing a secondary coating, an aggregate cable in which the wires 11 are concentrically arranged,
  • the form can be selected according to the application, such as tapes arranged in a row.
  • the material of the covering layer 12 is different depending on the forming method of the covering layer 12, which will be described later.
  • a highly versatile polymer such as polyethylene, polypropylene, polychlorinated butyl, ethylene acetate butyl copolymer, and nylon is used.
  • Rubber rubber materials such as power, isoprene rubber, butadiene rubber, gen special rubber, olefin rubber, ether rubber, polysulfide rubber, urethane rubber, polygen, polyolefin, polyetherolene, polysulfide Examples include liquid rubbers that exhibit fluidity at room temperature, such as polysiloxanes, that are cured by heating and lose their fluidity, or compositions such as urethane elastomers and ultraviolet curing resins that have self-curing properties. Can do.
  • the material of the coating layer 12 and the method of forming the coating layer 12 on the strand 11 are not particularly specified. Can be done for reference. For example, a method in which a molten thermoplastic resin is extruded and coated, a method in which a curable resin composition is applied and cured by heat or electromagnetic waves, a method in which a heat-shrinkable tube or tape-like material is rubbed are known. .
  • the apparatus used for forming the coating layer 12 is stretched when the precursor is processed into a strand in the stretching process. In the case of performing multi-layer coating that can be performed directly after stretching and directly connected to the apparatus, the coating process may be performed continuously.
  • the cable 10 has a thickness tl (see Fig. 1) of the covering layer 12 applied to each of the strands 11 when covering the wire 10 at the time of covering.
  • tl see Fig. 1
  • the solidified coating layer 12 may shrink depending on the material, and the annealing step may be performed in the coating step in order to avoid this.
  • the cable 10 on which the covering layer 12 as described above is formed has an appropriate rigidity so as not to require a strength member.
  • the rigidity can be adjusted by including an additive or the like in the coating resin, the Young's modulus of the coating resin, the thickness of the coating layer, and the coated resin. As shown in FIG. 3, this rigidity index is generated in the vicinity of the holding part 23 by its own weight corresponding to an extra cable length of 20 m in a state where the end 21 of the POF cable 10 is held horizontally by the holding part 23. Make sure that the radius of curvature is 7mm or more.
  • the PO F cable 10 for 20m is formed in an annular shape with an outer diameter D5 of 200mm and tied with a binding band 24, the section L1 from the binding band 24 to one end 21 is 100mm, and one end 21 is held horizontally by the holding part 23.
  • the radius R2 of the bending force S of the POF cable 10 generated in the vicinity of the holding portion 23 due to the weight of the annular portion 22 is set to be 7 mm or more.
  • Reference numeral 25 denotes an optical plug (connector) fixing jig constituting the holding portion 23.
  • the outer diameter D2 of the element wire 11 that slides within the rigidity index range is set to 750 m or more, and the thickness tl of the coating layer is set to 0.2 mm or more and 1.2 mm or less.
  • the outer diameter D5 is preferably about 100mm to 300mm, but even outside this range, a similar radius R2 is measured. For L1, it has been confirmed that almost the same radius R2 is measured in the range of at least 50mm to 500mm.
  • the tear strength of the covering layer connecting the plurality of strands is 3.5N or more 5. ON or less, although it is easy to separate each strand, it is preferable because it cannot be separated by unintended external force. Good. Furthermore, in order to facilitate tearing, grooves may be formed in the coating layer along the strands.
  • a POF cord with a primary coating and a POF cable with a secondary coating on it are used as shown in Fig. 1 to connect light-emitting elements, light-receiving elements, or optical fibers. It is preferable to use the connection optical connector 13 at the end to securely fix the connection. By using the connector 13, the positional relationship between the cable and other cables and elements connected to the cable can be removed and re-connected. It becomes easy. As connector 13, it is possible to use various commercially available connectors such as F01 type to F16 type (including SC type, PN type, etc.), SMA type, SMI type, etc., but they are assembled in advance.
  • the number of parts is reduced (particularly preferably, the number of parts that have ferrule and plug housing power is 3 or less, the ferrule and plug housing are combined, and the ferrule itself is a plug) It is preferable because the on-site workability is improved.
  • the SMI connector has three parts: plug nosing integrated with two ferrules, metal fittings for fixing the two-core POF cable to the housing, and a plug cover with a lock release mechanism. It is a connector consisting of However, the cable fixing bracket is supplied in a form that is pre-mounted on the plug nosing, so only two parts need to be combined in the terminal work. In addition, the plug housing and the plug cover are inexpensive because they are molded products made of grease.
  • an SC type generally applied to a glass optical fiber is given.
  • the SC type connector has a floating ferrule structure in which the ferrule is not fixed to the plug nosing and pressed by the panel in order to suppress axial misalignment.
  • glass fiber optic cables are generally provided with aramid fibers as a tensile body, a member for holding the terminal is also required. Therefore, the number of parts of the SC connector is 6 to 7, and the on-site workability is reduced accordingly.
  • the strand 11 having a large core diameter has a wider allowable range of misalignment or the like than strict optical coupling such as a single mode fiber. Even if it exists, it can be used sufficiently.
  • connection work for connecting the POF cable 10 and the connector 13 made of an optical plug will be described using the flowchart shown in FIG.
  • the terminal processing of POF cable 10 is first performed.
  • the terminal processing when a plurality of strands 11 are connected, the ends of the POF cable 10 are connected to each other! Isolate.
  • the bow I can be easily cracked.
  • the covering layer 12 can be peeled off by a predetermined length by using a stripper, whereby the end of the strand 11 is partially exposed.
  • the POF cable of the present invention does not have a tensile wire. Since the tensile strength wire also has a material strength that is difficult to cut, cables that do not have a tensile strength wire can be easily cut and can be easily connected.
  • the partially exposed portion of the POF cable 10 subjected to terminal processing is passed through the ferrule so that the tip slightly protrudes from the end of the ferrule.
  • the cable 10 with the ferrule attached to the end is fixed with the plug housing.
  • the plug nosing squeezes or presses the covering layer, the plug force will also be pulled out so that it is preferable. It is still preferred if layer 12 is secured with adhesive or heat shrink tubing.
  • the end face of the POF cable 10 is processed using a hot plate heater.
  • the POF cable 10 is pressed against the heating surface of the hot plate heater vertically along with the optical plug.
  • the end face force of the ferrule A little protruding wire 11 is melted and deformed, and the end face is made smooth.
  • the optical plug is used as an example of the optical connector, but other optical connectors such as a receptacle and an adapter may be used instead of the optical plug.
  • the connection work between the POF cable 10 and the optical connector 13 is completed. If this optical connector 13 is connected to another optical connector, the POF cable 10 can be optically coupled to the optical fiber or optical component in the other optical connector.
  • the POF cable 10 is advantageous when used indoors, on the premises, and particularly in the equipment wiring. For example, when used for LAN wiring installed indoors, the location of equipment and the interval between equipment vary depending on the structure of the house. On the other hand, it is desirable that the cable to be laid can be cut to an arbitrary length on the site, and the connector is easily attached to the cable.
  • the POF cable 10 of the present invention for system construction, it can be easily constructed at an arbitrary length and at an arbitrary length.
  • a simple POF cable with high on-site workability can be obtained with a high tolerance for a short-circuit connection in end face processing.
  • this POF cable it is possible to easily construct an optical communication system that does not deteriorate characteristics due to variations in the installation of connectors.
  • FIG. 5 shows an example of an optical communication system using the POF cable 10 of the present invention.
  • Data such as the Internet is sent to the receiving side through a communication line (WAN line) 50 of a carrier company using a WAN (wide area network).
  • the WAN line 50 is terminated by an ONU (Optical Network Unit) 51.
  • the data is then transmitted to the receiver using LAN 53 built indoor 52.
  • the configuration of the LAN 53 includes power such as the POF cable 10, the UTP cable 54, the switch 55, the HUB 56, the receiver personal computer (PC) 57 of the present invention.
  • a server 58 is installed for indoor data storage. There is a tendency to be placed.
  • a POF cable 10 shown in Fig. 1 was produced.
  • the POF cable 10 has a core diameter D1 (see Fig. 2 (A)), a force of 00 ⁇ m, and the outer diameter D2 of the strand 11 is 800 ⁇ m.
  • the POF cable 10 of Example 1 was cut to 50 m, the connector 13 was attached to both ends, and the transmission loss was measured. The transmission loss was 160 dBZkm at a light source wavelength of 650 nm.
  • 20m which is a part of this POF cable 10, is wound into a bundle of 200mm in diameter, and as shown in Fig.
  • the section position L1 to the cable end is set to 100mm, and the connector 13 is connected to the optical plug fixing jig.
  • the radius R2 of the bend caused by the drooping weight of the cable surplus length that is held by the holding portion 23 and measured in the vicinity of the connector 13 is measured to be 8 mm, and the increase in loss due to this bend is 0.1 dB. Met. Also, when installing the connector, For ease of use, it was determined by measuring the connector installation time by the operator.
  • Example 2 the total processing time for coating removal, plug fixing, extra length cutting, and end surface finishing was 35 seconds.
  • the attachment of the connector was performed by the same operator as in Example 1.
  • Example 1 Manufactured under the same conditions as in Example 1 except that the core diameter D1 was 200 ⁇ m and the outer diameter D2 of the strand 11 was 750 ⁇ m. At this time, the transmission loss was 170 dBZkm at a light source wavelength of 650 nm. Further, when the radius R2 of bending due to its own weight was measured under the same conditions as in Example 1, this POF cable 10 was 8 mm as in Example 1, and the loss increase due to this bending was 0.05 dB. In addition, when measuring the ease of installation when attaching the connector, the working time was 37 seconds, which was substantially the same as in Example 1.
  • Example 2 Manufactured under the same conditions as in Example 1 except that the core diameter D1 was 500 ⁇ m and the outer diameter D2 of the strand 11 was 1000 ⁇ m. At this time, the transmission loss was 150 dBZkm at a light source wavelength of 650 nm. Further, when this POF cable 10 was measured for the radius R 2 of bending due to its own weight under the same conditions as in Example 1, it was 12 mm, and the increase in loss due to this bending force was 0.1 dB. In addition, when the ease of construction when attaching the connector was measured, the working time was 36 seconds, which was almost the same as in Example 1.
  • the coating layer was manufactured under the same conditions as in Example 1 except that the thickness tl was 0.1 mm. At this time, the transmission loss was 160 dBZkm at a light source wavelength of 650 nm. Further, when this POF cable 10 was measured for the radius R2 of bending due to its own weight under the same conditions as in Example 1, it was 5 mm, and the loss increase due to this bending was 0.5 dB. In addition, the wires were damaged in the process of removing the coating with a commercially available wire stripper to attach the connector. After that, the same work was repeated, but the strands were often damaged.
  • the coating layer was manufactured under the same conditions as in Example 3 except that the thickness tl was 1.5 mm. At this time, the transmission loss was 150 dBZkm at a light source wavelength of 650 nm. Further, when the bending radius R2 of this POF cable 10 under its own weight was measured under the same conditions as in Example 1, it was 15 mm, and the loss increase due to this bending force ⁇ was 0. OldB. However, the cable diameter exceeded 3 mm, and it was not possible to attach it to a commercially available POF connector.
  • the coating layer was manufactured under the same conditions as in Example 1 except that the thickness tl was 0.5 mm, and a tensile wire made of aramid fiber of about 6,000 denier was placed in the coating layer. At this time, the transmission loss was 160 dBZkm at a light source wavelength of 650 nm. Further, when the bending radius R2 of this POF cable 10 was measured under the same conditions as in Example 1, it was 6 mm, and the increase in loss due to this bending was 0.3 dB. In addition, when measuring the ease of installation when attaching the connector, the working time was 120 seconds.
  • the plug was attached using a coated glass optical fiber having an outer diameter of 0.25 mm and a coating layer having a tensile strength of 0.875 mm. Removal of coating layer, excision of tensile body, removal of primary coating, removal of coating, extra length cutting, plug assembly • Adhesive, end surface polishing and each processing step are many, and it takes time to remove the tensile body, etc. The time was less than 5 minutes. Also, field-installed plugs are expensive and proved unsuitable for indoor wiring.
  • Plug installation work was performed using a CAT5e cable. There were processes such as stripping of the jacket, untwisting of the paired wires, arranging the paired wires in sequence, cutting the extra length, and attaching the plug, resulting in a work time of 90 seconds. In addition, untwisting was 12.7 mm or less, attention was paid to pin assignment, avoiding parallel laying, and extra work required a lot of attention, such as increasing the length of the extra bundles.
  • the present invention relates to a plastic optical fiber used for optical transmission and the like, in particular, a plastic optical fiber that can be detachably attached to other devices such as V and indoors, and a communication system using this plastic optical fiber. Preferably applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

 POF素線(11)は、導光部としてのコア(15)と、コア(15)に光を封じるためのクラッド(16)とから構成される。POF素線(11)を覆うように被覆層(12)を設けて、POFケーブル(10)を構成する。コア(15)の外径を200μm~500μmの範囲内に、POF素線(11)の外径を750μm~1000μmの範囲内に形成する。長さ20m分のPOFケーブル(10)を外径D5が200mmの環状になるように結束バンド(24)で括り、結束バンド(24)から環状部分(22)の外側に100mmの位置を端部(21)として保持部(23)により水平に保持したとき、環状部分(22)の自重により保持部(23)近傍に発生する曲がりの半径R2が7mm以上となる硬さを持つように、被覆層を形成する。

Description

明 細 書
プラスチック光ファイバケーブル及びこれを用いた通信システム 技術分野
[0001] 本発明は、プラスチック光ファイバケーブル及びこれを用いた通信システムに関す る。
背景技術
[0002] 大容量の情報を伝送するための通信手段として光通信が知られており、光通信の 媒体として光ファイバが知られている。光ファイバは、屋内や構内などの短距離の光 通信から、国間や都市間を結ぶ長距離の光通信まで広く用いられている。
[0003] 屋内や構内などの短距離の光通信には、光ファイバ素線として用いられるプラスチ ック光ファイバ(以下、 POFと称することもある)の周囲に、保護及び機械的強度増加 のための被覆層を設けたプラスチック光ファイバケーブル (POFケーブル)が用いら れる。 POFは、コアとクラッドが共にプラスチックで形成されて 、る(例えば、特許文 献 1参照)。 POFは、石英系のガラス光ファイバと比較して、伝送損失がやや大きいも のの、端末加工容易性、周辺機器との接続容易性、低価格等のメリットを有している
[0004] また、 POFケーブルを光結合するため、 POFケーブルの端部に光コネクタが取り 付けられる。この光コネクタは、他の POFケーブルや他の機器に取り付けられた光コ ネクタに対して着脱自在である。光コネクタには、 POFケーブルの終端に取り付けら れる光プラグ、送信回路または受信回路との接続を行うリセプタクル、光プラグ同士を 接続するアダプタなどがある。
[0005] さらに、ある程度長い距離にわたって光ファイバケーブルを敷設する場合、敷設管 内でケーブルを引っ張るためケーブルには抗張力性が要求される。このため、一般 的には、被覆層内に抗張力線を埋め込むことにより、必要な抗張力性を確保する(例 えば、特許文献 2参照)。
[0006] ところで、特許文献 2記載の POFケーブルは、接続される受光素子の受光部寸法 に対して十分小さいコア径の光ファイバを有することにより、信号光が受光部以外に 伝送されることを防止している。しかし、コア径カ 、さすぎると、発光素子ゃ受光素子 と光ファイバとの間、または光ファイバ同士を光結合する際に、特殊もしくは高精度の 端子や冶具が必要となる。さらには端子の結合操作も軸ずれ等を起こさないように細 心の注意を必要とし、熟練を要する。
[0007] このため、例えば特許文献 3に示されるように、光ファイバと受光半導体装置との間 に柔軟な光透過体を介在させたり、特許文献 4に示されるように、光ファイバの両端 面に錐台形状をした透明な光学素子を配置させたりすることが提案されている。 特許文献 1:特開昭 61— 130904号公報
特許文献 2 :特開平 10— 170777号公報
特許文献 3:特開 2001— 124958号公報
特許文献 4:特開平 9 - 127360号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、発光素子ゃ受光素子と光ファイバとを結合したり、光ファイバ同士を 結合したりする際に、特許文献 3及び 4に示す方法では、光ファイバの結合相手との 間に、光透過体や透明光学部材などの介在物を配置する必要があり、部品点数の 増加や製造コストが上昇するという問題がある。
[0009] また、被覆層の強度を上げるために抗張力線を埋め込んだり、被覆層自体の厚み を過剰に増大させると、架設時の自重の増大により橈みが大きくなる。そうなると、素 線の応力が上昇し、伝送損失が起きるという新たな問題が発生する。
[0010] さらに、抗張力線を被覆層内に埋め込んだ場合には、他の光ファイバや素子と光 結合するために抗張力線を切断する処理が必要になる。抗張力線は強度があり切断 しにくいために、切断に時間及び熟練を要し、結合時の作業性が低下してしまうとい う問題がある。
[0011] 本発明の目的は、他のプラスチック光ファイバケーブルや発光素子、受光素子など の素子類との光結合が容易なプラスチック光ファイバケーブル及びこれを用いた通 信システムを安価に提供することである。
[0012] 本発明の別の目的は、必要な抗張力性を備えつつ、架設時の応力上昇による伝 送損失を防止したプラスチック光ファイバケーブル及びこれを用いた通信システムを 安価に提供することである。
課題を解決するための手段
[0013] 上記目的を達成するために、本発明のプラスチック光ファイバケーブルは、導光部 であるコア、及び前記コア内に光を封じるためのクラッドを有する光ファイバ素線と、 前記光ファイバ素線を覆うように設けられる被覆層とを備えており、前記コアの外径が 200 /z m以上、前記光ファイバ素線の外径が 750 m以上であり、前記被覆層は、 前記プラスチック光ファイバケーブルの一端を保持部により水平に保持した状態で前 記端部から 100mmの位置の前記プラスチック光ファイバケーブルに前記プラスチッ ク光ファイバケーブル 20m分に相当する重量を加えたとき、前記保持部近傍に発生 する曲がりの半径が 7mm以上となる硬さをもち、且つ抗張力線を含まないことを特徴 とする。具体的には、前記被覆層は、前記プラスチック光ファイバケーブル 20m分を 外径 200mmの環状にしてバンドで括り、前記バンドから前記環状部分の外側に 10 Ommの位置の前記プラスチック光ファイバケーブルを前記端部として前記保持部に より水平に保持したとき、前記環状部分の自重により前記保持部近傍に発生する曲 力 Sりの半径が 7mm以上となる硬さを持つ。
[0014] また、前記コアの外径を 500 μ m以下に、前記光ファイバ素線の外径を 1000 μ m 以下に形成することが好ましい。また、前記被覆層の厚みを 0. 2mm以上 1. 2mm以 下に形成することが好ましい。
[0015] 本発明の通信システムは、前記プラスチック光ファイバケーブルを光伝送機器間に 接続したことを特徴とする。また、前記光伝送機器に接続するために、前記プラスチ ック光ファイバの端部にコネクタが取り付けられており、前記コネクタが 3個以下の部 品から構成されていることが好ましい。前記コネクタは、フエルールが一体ィ匕されたプ ラグノ、ウジングとプラグカバーとを含むことが好ましい。
発明の効果
[0016] 本発明のプラスチック光ファイバケーブルによれば、コアの外径が 200 μ m以上、 光ファイバ素線の外径が 750 m以上であり、被覆層が、前記プラスチック光フアイ バケーブルの一端を保持部により水平に保持した状態で前記端部から 100mmの位 置の前記プラスチック光ファイバケーブルに前記プラスチック光ファイバケーブル 20 m分に相当する重量を加えたとき、前記保持部近傍に発生する曲がりの半径が 7m m以上となる硬さを持っため、従来のように抗張力線を被覆層に入れることなぐ光結 合処理作業や敷設に適した剛性が得られるようになる。したがって、光結合処理の際 の端面加工時に、抗張力線を除去する必要もなくなり、光結合作業が容易になる。
[0017] また、コアの外径を 200 μ m以上にしたから、光結合の際の軸ずれの許容度が大き くなり、結合処理が簡単になる。また従来のように、光透過体や透明光学部材などの 介在物を用いなくても、軸ずれを抑えることができる。また、光ファイバ素線の外径を 750 m以上にしたので、被覆層の厚みを抑えつつ長距離の敷設に必要な抗張力 性が得られる。
[0018] コアの外径を 500 μ m以下とし、前記光ファイバ素線の外径を 1000 μ m以下とす ることにより、各種素子等との光結合効率の低下を抑えつつ、施工容易性を確保する ことができる。すなわち、コアの外径が 500 /z mを超えると、高速応答する受光素子な どの各種素子類との結合効率が低くなり、好ましくない。また、光ファイバ素線の外径 が 1000 /z mを超えると、ケーブルの柔軟性を損ね、施工が困難になる。さらに、被覆 層の厚みを 0. 2mm以上 1. 2mm以下とすることにより、素線の外径規定による強度 増加と相まって、抗張力線を不要とすることができる。すなわち、被覆層の厚みが 1. 2mmを超えると、ケーブル径が太くなりすぎ、各種素子類との結合作業が困難にな るため好ましくない。
図面の簡単な説明
[0019] [図 1]本発明の POFケーブルを示す一部断面を含む正面図である。
[図 2]本発明の素線とその屈折率分布の一例を示すもので、(A)は断面図、(B)は屈 折率分布の説明図である。
[図 3]POFケーブルの一端を保持した状態で保持部近傍に発生するケーブル余長 の垂れ下がり自重に起因する損失増加の測定法の一例を示す説明図である。
[図 4]コネクタの取り付けを示すフローチャートである。
[図 5]本発明の POFケーブルを用いた光通信システムの一例を示すブロック図である 符号の説明
[0020] 10 プラスチック光ファイバ(POF)ケーブル
11 素線
12 被覆層
13 コネクタ
15 コア
16 クラッド、
21 一端
22 環状部分
23 保持部
D1 コア径
D2 素線の外径
D5 環状部分の外径
発明を実施するための最良の形態
[0021] 図 1に示すように、本発明のプラスチック光ファイバケーブル 10は、少なくともプラス チック光ファイバ素線 (以下、単に素線または POFという) 11と、この素線 11を被覆 する被覆層 12から構成され、両端部には接続用のコネクタ 13を有する。
[0022] 〔プラスチック光ファイバ素線〕
図 2 (A)に示すように、本発明の素線 11は、導光部であるコア 15と、このコア 15に 光を封じるためのクラッド 16とを有する。さらに、必要に応じて素線 11の強度を増加 したり、コア 15またはクラッド 16を保護したりするための保護層がクラッド 16の外周に 選択的に設けられる。なお、クラッド 16が保護層の機能を有していても良ぐこの場合 には保護層を省略してもよい。素線 11はプラスチック製であるため、大口径のコアを 製造することが容易であり、そのため軸ずれに対して高い許容性を有する。素線 11 は、径方向での屈折率分布の違いにより、屈折率分布型 (グレーテッドインデックス型 、 GI型と称することがある。)、ステップインデックス(SI)型、マルチステップインデック ス (MSI)型と大別でき、いずれのタイプであっても、本発明の素線 11を構成すること ができる。この中でも、高い伝送容量を有する GI型が好ましく用いられる。 GI型素線 11は、モード分散が抑制されることにより、高速伝送を実現することができる。なお、 モード分散とは、異なる入射角でコアに同時に入射した 2つの入射光力 コア内の伝 播により時間的なずれを生じる現象をいう。
[0023] 図 2 (B)に、素線 11の屈折率分布を示す。縦軸は屈折率を示しており、上方に向 力 に従い屈折率が高くなる。また、横軸は、光学材料の半径方向を示している。
[0024] 図 2 (A)に示すように、コア 15は、同心円状の n層積層構造を有する。円筒状に形 成される第 1層 15aは、コア 15の最外周に位置する。また、第 1層 15aの内周には円 筒状の第 2層 15bが配される。こうしてコア 15の中心に近づくに従い次々と別の層が 形成され、コア 15の中心部には、円柱状の第 n層 15ηが配される。更に、図 2 (B)に 示すように、第 1〜第 η層 15a〜15nの屈折率は、コア 15の外周から中心に行くに従 つて、徐々に高くなつており、 GI型の屈折率分布を備える。
[0025] 半径 R1のコア 15の中心から半径 rだけ離れた屈折率 n (r)は、その中心部及び外 周部の屈折率を nl、 n2としたときに、下記式(1)ないし(3)を満足する。
式(1) n (r) =nl[l - 2 A (r/Rl) e] 1/2
式(2) Δ = (η1 -η2) /η1
式(3) 1. 5≤g≤3. 0
[0026] コア 15が式(1)及び式(2)を満足する屈折率分布を備える場合において、式(1) の変数 g (以下、屈折率分布係数 gと称する)を適切な値に制御することにより、素線 1 1に広 、伝送帯域を発揮させることができる。
[0027] GI型素線 11の帯域特性は、モード分散と材料分散とに関係がある。材料分散とは 、素線 11の屈折率の波長依存性をいう。したがって、素線 11に最も広い伝送特性を 与えるためには、モード分散と材料分散の両者を考慮して屈折率分布係数 gを選択 する必要がある。
[0028] 本実施形態のように、式(1)ないし式(3)を満足するような屈折率分布をコア 15に 形成することにより、モード分散が低減され、帯域特性の高い GI型素線 11を製造す ることが可能になる。カロえて、コア 15が特定の重合性組成物の共重合である場合に は、モード分散と共に材料分散が低減され、帯域特性に優れた GI型素線 11を製造 することができる。なお、コア 15を形成する重合性組成物については、後述する。 [0029] 前記屈折率分布係数 gは、 1. 5〜3. 0であることが好ましぐより好ましくは 1. 8〜2 . 5であり、もっとも好ましくは 2. 1以上 2. 2以下である。このようなコア 15を備える素 線 11は、 lOGbps (光源波長 850nm) t ヽつた高!、帯域特性を発揮することができる
[0030] 〔コア〕
コア 15を構成する重合体としては、光透過性が高い原料を用いる。例えば、以下の ような (メタ)アクリル酸エステル類 (フッ素不含 (メタ)アクリル酸エステル (a)、含フッ素 (メタ)アクリル酸エステル (b) )、スチレン系化合物(c)、ビニルエステル類 (d)、主鎖 に環状構造を含むフッ素系ポリマー(e)、ポリカーボネート類の原料であるビスフエノ ール A等を重合性ィ匕合物として用いて重合させたもの、ノルボルネン系榭脂などを例 示することができ、コアはこれらのホモポリマー、あるいはこれらモノマーの 2種以上か らなる共重合体、およびホモポリマー及び Zまたは共重合体の混合物から形成する ことができる。これらのうち、(メタ)アクリル酸エステル類を重合性モノマーとして含む 組成を好ましく用いることができる。また、屈折率調整剤を用いて重合反応を行い、 所望の屈折率分布を持たせる場合には、塊状重合が容易である原料を選択するの が好ましい。さらに、素線 11を近赤外線用途に用いる場合は、コア 15のポリマーを構 成する C—H結合に起因した吸収損失が起こるために、特許第 3332922号公報な どに記載されているような重水素化ポリメチルメタタリレート(PMMA—d8)、ポリトリフ ルォロェチルメタタリレート(P3FMA)、ポリへキサフルォロイソプロピル 2—フルォロ アタリレート(HFIP 2— FA)、ポリパーフルォロブタ-ルビ-ルエーテルゃ特開平 8 — 334634号公報に記載される主鎖に脂肪環または複素環をもつポリマー、特開 20 02— 71972号公報及び特願 2004— 186199号に記載されるもの、などを始めとす る、 C— H結合の水素原子 (H)を重水素原子 (D)やハロゲン原子 (特にフッ素 (F) ) などで置換した重合体を用いる。これにより、伝送損失が生じる波長域を長波長化す ることができ、伝送信号光の損失を軽減することができる。なお、原料モノマーは重合 後の透明性を損なわないためにも、不純物や散乱源となる異物は重合前に十分に 低減することが望ましい。
[0031] 〔クラッド〕 クラッド 16の素材には、コア 15を伝送する光がそれらの界面で全反射するために、 コア 15よりも低屈折率であり、コア 15との密着性に優れるものを用いることが好ましい 。ただし、素材の選択によってコア 15とクラッド 16との界面において不整が起こり易 かったり、もしくは、製造適性上、好ましくな力つたりする場合などでは、コア 15とクラッ ド 16との間〖こ、さらに層を設けて、その整合性を向上させても良い。クラッド 16の素材 としては、タフネス及び耐湿熱性にも優れているものが好ましく用いられる。例えば、 好適な素材としては、フッ素含有モノマーの単独重合体または共重合体が挙げられ る。フッ素含有モノマーとしては、フッ化ビ-リデン (PVDF)が好ましぐフッ化ビ-リ デンを 10質量%以上含有する 1種以上の重合性モノマーを重合させて得られるフッ 素榭脂が好ましく用いられる。
[0032] クラッド 16は単層の他に多層であっても良い。この場合には、内層を光学的観点か ら配置し、外層をその他の機能的観点力 配置することができる。その他の機能とし ては、機械的強度の改善、透湿の抑制、ハンドリング性の改善等である。この場合に は、外層を保護層と呼ぶこともある。
[0033] 〔屈折率調整剤〕
コア 15に屈折率分布を形成する場合には、屈折率調整剤 (ドーパント)を使うことが できる。この屈折率調整剤は、コア 15を構成する重合体の屈折率と異なる化合物で ある。なお、必要に応じて、クラッド重合性組成物に屈折率調整剤を含有させても良 い。屈折率調整剤の濃度に分布を持たせることによって、濃度の分布に基づいて屈 折率分布型のコアを容易に作製することができる。このとき、その屈折率差は 0. 005 以上であるのが好ましい。ただし、屈折率調整剤を用いなくとも、コア 15の形成に屈 折率の異なる 2種以上の重合性モノマーを用いて、コア 15内に共重合比の分布を持 たせること〖こより、屈折率分布構造を導入することもできる。
[0034] 屈折率調整剤としては、特許第 3332922号ゃ特開平 11— 142657号公報に記載 されているもの等が挙げられる。また、重合性化合物として、例えば、トリブロモフエ- ルメタタリレートなどが挙げられる。屈折率調整成分として重合性化合物を用いる場 合は、マトリックスを形成する際に、重合性モノマーと重合性屈折率成分とを共重合さ せるので、種々の特性 (特に光学特性)の制御がより困難となるが、耐熱性の面では 有利となる可能性がある。なお、これらの化合物中に存在する水素原子を重水素原 子に置換したィ匕合物を用いることにより、前述の様に、広い波長域での透明性を向 上させる目的で用いることができる。
[0035] 〔素線の製造方法〕
素線 11の製造方法としては様々な方法が知られている。以下に、一例を述べる。ス テツプインデックス型では溶融した重合体を押出し等によって紡糸する方法が良く知 られている。屈折率分布型では、様々な製造方法が提案されており、単量体から製 造する方法と重合体から製造する方法が知られて!/、る。単量体から製造する方法と しては、特許第 3332922号公報に記載される様に、中空管内に単量体と屈折率調 整剤を含む重合性組成物を入れて重合させて、中央に屈折率調整剤を濃縮する方 法や、回転する円筒体に重合性組成物を投入しながら重合させ、投入する重合性組 成物の屈折率を変化させながら製造する方法がある。重合体から製造する方法とし ては、同心円状の吐出ロカも屈折率の異なる、もしくは屈折率調整剤の配合量の異 なる榭脂を押出して同心多層状に積層させたり、柱状もしくは筒状の重合体内に屈 折率調整剤を拡散させたりする方法などが知られている。
[0036] これらの方法によって屈折率分布型の素線 11もしくはその前駆体を得ることができ る。これら素線 11もしくは前躯体を必要に応じて加熱溶融させて延伸することによつ て、所望の径に調整することができる。このときに、最外周に榭脂製の管を配置して 同時に延伸することによって、最外層に所望の特性を与えることも可能である。
[0037] なお、受光素子との結合においては信号光の導光部位が大きいと出射面積が広が るため、高速な信号伝送においては不利である。このため、用いる発光素子ゃ受光 素子の開口度や使う信号光の伝送周波数に対してコア径を選択することが好ましい 。なお、様々な光学素子との結合や伝送する帯域に対応する汎用性の高い素線 11 とするためには、コア径 Dl (02 (A)参照)が 200 μ m以上 500 μ m以下であることが 好ましい。コア径 D1が 200 μ m未満では軸ずれの許容度が狭まり、 500 μ mを超え ると高速応答する受光素子との結合効率が低くなるため好ましくない。
[0038] また、後述するように、抗張力体を不要とするため、素線 11の外径 D2 (図 1参照)は 750 μ m以上 1000 μ m以下であることが好ましい。外径 D2が 750 μ m未満では敷 設に必要な抗張力を持たず、 1000 mを超えるとケーブルとしての柔軟性を損ねる ため好ましくない。
[0039] 〔ケーブル〕
以上の製造方法によって得られた素線 11は、通常、そのままの状態で使用される ことはない。例えば、更なる素線の曲げ '耐候性の向上、吸湿による性能低下抑制、 引張強度の向上、耐踏付け性付与、難燃性付与、薬品による損傷力ゝらの保護、外部 光線によるノイズ防止、着色などによる商品価値の向上などを目的として素線 11の 表面に 1層以上の被覆層 12を被覆したプラスチック光ファイバケーブル (以降ケープ ルと称することもある) 10として使用する。ケーブル 10の態様としては、使用用途等に よって、素線 11に 1次被覆を施したコードを束ねて 2次被覆を行ったもの、素線 11を 同心円上にまとめた集合ケーブル、これらを横に一列に並べたテープ状のものなど、 用途に応じてその形態を選ぶことができる。
[0040] 〔被覆層素材〕
被覆層 12の材料にっ ヽては、後述する被覆層 12の形成方法によっても異なる力 例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビュル、エチレン酢酸ビュル共重合 体、ナイロンなどの汎用性の高いポリマーのほ力、イソプレン系ゴム、ブタジエン系ゴ ム、ジェン系特殊ゴム、ォレフィン系ゴム、エーテル系ゴム、ポリスルフイド系ゴム、ウレ タン系ゴムなどのゴム系素材、ポリジェン系、ポリオレフイン系、ポリエーテノレ系、ポリ スルフイド系、ポリシロキサン系などの室温で流動性を示して加熱することによりその 流動性が消失して硬化する液状ゴム、または自己硬化性を有するウレタンエラストマ 一や紫外線硬化榭脂等の組成物を挙げることができる。
[0041] 〔ケーブルの製造方法〕
被覆層 12の材料及び素線 11に被覆層 12を形成する方法につ ヽては特に規定は 無ぐ素線 11に各種のダメージを与えない範囲で、電気ケーブルやガラス光ファイバ の被覆方法を参考に行うことができる。例えば、溶融状態の熱可塑性榭脂を押出し 被覆する方法、硬化型榭脂組成物を塗布し熱や電磁波によって硬化させる方法、熱 収縮チューブやテープ状の素材を卷きつける方法などが知られている。なお、被覆 層 12の形成に用いられる装置は、前駆体を延伸工程で素線に加工する場合は延伸 装置に直結して延伸直後に一括して行っても差し支えなぐ多層被覆を行う場合に は、被覆工程を連続して行っても良い。
[0042] 上記ケーブル 10は、後述するように、ケーブル 10の剛性にもよる力 被覆時に素 線 11毎に施される被覆層 12の厚み tl (図 1参照)が 0. 2mm以上 1. 2mm以下とな るよう被覆することで、被覆層 12の目的を果たしつつ架線時の自重による素線 11へ の応力上昇が軽減できる。なお、固化した被覆層 12は、その素材によっては収縮が 生じる場合があり、これを回避するため被覆工程でァニール工程を実施しても良い。
[0043] 上記のような被覆層 12が形成されているケーブル 10は、抗張力体を必要としない 程度の適度な剛性を有する。剛性は、被覆樹脂のヤング率や被覆層の厚み、さらに 、被覆榭脂内に添加物などを含ませることにより調整することができる。この剛性の指 標としては、図 3に示すように、 POFケーブル 10の一端 21を保持部 23により水平に 保持した状態でケーブル余長 20m分に相当する自重により保持部 23の近傍に発生 する曲力^の半径が 7mm以上となる硬さをもつようにする。本件では、 20m分の PO Fケーブル 10を外径 D5が 200mmの環状にして結束バンド 24で括り、結束バンド 2 4から一端 21までの区間 L1を 100mmとして、一端 21を水平に保持部 23により保持 したとき、環状部分 22の自重により保持部 23近傍に発生する POFケーブル 10の曲 力 Sりの半径 R2が 7mm以上となる硬さを持つようにした。なお、符号 25は、保持部 23 を構成する光プラグ (コネクタ)固定治具を示している。このような剛性指標範囲内と すべぐ前記素線 11の外径 D2を 750 m以上に構成し、且つ被覆層の厚み tlを 0 . 2mm以上 1. 2mm以下にする。また、上記剛性指標範囲内とすることにより、コネク タ取付時の被覆除去が容易になる。上記剛性指標範囲外では被覆除去時に素線 1 1を傷つけ易くなる場合がある。なお、外径 D5は 100mm以上 300mm程度が好まし いが、この範囲外であっても、ほぼ同じような半径 R2が測定される。 L1についても、 少なくとも 50mm以上 500mm程度の範囲で、ほぼ同じような半径 R2が測定されるこ とが確認されている。
[0044] なお、図示は省略したが、複数の素線を有するケーブルの場合には、複数の素線 を連結している被覆層の引き裂き強度が 3. 5N以上 5. ON以下であると、各素線の 分離操作が容易でありながら、意図しない外力により分離してしまうこともないので好 ましい。さらに、引き裂きを容易にするために、被覆層に溝を素線に沿って形成しても よい。
[0045] 〔コネクタ〕
一次被覆を施しただけの POFコードや、更にこの上に二次被覆を施した POFケー ブル 10は、発光素子ゃ受光素子または光ファイバ間の接続を行うために、図 1に示 すように、端部に接続用光コネクタ 13を用 、て接続部を確実に固定することが好まし い。コネクタ 13を用いることで、ケーブルと、これに接続された他のケーブルや素子と の位置関係力 取り外し及び再接続したときにずれることがないというメリットが得られ 、また接続、取り外しの作業自体も容易となる。コネクタ 13としては、 F01型〜 F16型 (SC型、 PN型などを含む)、 SMA型、 SMI型のなどの市販の各種コネクタを利用す ることも可能であるが、事前にアッセンプリされて部品点数を減らしたもの(特に好まし くはフェルールとプラグハウジング力もなる部品点数 3点以下のもの、フェルールとプ ラグノヽウジングがー体ィ匕したもの、フエルールそのものがプラグとなるもの)であると、 現場施工性が高くなり、好ましい。
[0046] コネクタの例として、 SMI型につき説明する。 SMI型コネクタは、 2本のフエルールと 共に一体ィ匕されたプラグノヽウジングと、 2心の POFケーブルを当該ハウジングに固定 するための金具、並びにロック解除機構を備えたプラグカバーの 3点の部品から成る コネクタである。但しケーブル固定用の金具は予めプラグノヽウジングに装着された形 で供給されるため、端末作業で組合せが必要な部品点数は 2点のみである。またプ ラグハウジング及びプラグカバーはそれぞれ榭脂による成形品のため安価である。
[0047] 比較例として、一般にガラス光ファイバへ適用される SC型を挙げる。 SC型コネクタ は、結合時の軸ずれを抑制するためにフエルールがプラグノヽウジングに対して固定 されずパネで押えるフローティングフエルール構造をとる。また、ガラス光ファイバケー ブルでは抗張力体としてァラミド繊維が通常は縦添えされているため、その端末を留 める部材も必要となる。従って SCコネクタの部品点数は 6〜7点となり、その分だけ現 場施工性が低くなる。
[0048] 本発明のように、コア径の大きな素線 11であれば、シングルモードファイバのような 厳密な光結合に比べて、軸ずれ等の許容できる範囲が広いので、簡素化した端子で あっても充分使用可能である。
[0049] 〔コネクタの取り付け〕
図 4に示すフローチャートを用いて、 POFケーブル 10と光プラグからなるコネクタ 1 3とを接続する接続作業の一例を説明する。接続作業では、始めに、 POFケーブル 10の端末処理を行う。端末処理では、複数の素線 11が連結している場合には POF ケーブル 10の端部にお 、て、連結させて!/、る被覆層 12を軸方向に引き裂 、て各素 線 11を分離する。ここで、前述したように、被覆層 12に溝が形成されていると容易に 弓 Iき裂くことができる。素線 11につ 、て 、る被覆層 12はストリッパを用いて所定長さ だけ剥ぎ取ることができ、これにより、素線 11の端部を部分的に剥き出しの状態にす る。本発明の POFケーブルは抗張力線を有しない。抗張力線は、切断しにくい素材 力もなつているため、抗張力線を有しないケーブルは切断が容易になり、接続作業を 簡単に行うことができる。
[0050] 次に、端末処理を行った POFケーブル 10の部分的に剥き出しになった部分をフエ ルールに通し、先端がフエルールの端部から少しだけ突き出るようにする。次に、先 端にフェルールを取り付けたケーブル 10をプラグハウジングで固定する。このとき、 プラグノヽウジングでフエルールを固定するほかに、プラグノヽウジングが被覆層を嚙み 込むもしくは力しめる様にしておくと、プラグ力もケーブルが抜けに《なるので好まし ぐさらに、プラグと被覆層 12を接着剤や、熱収縮チューブで固定すると、なお好まし い。
[0051] 次!、で、ホットプレート加熱器を用いて、 POFケーブル 10の端面を処理する。この 端面処理では、 POFケーブル 10を、光プラグごと垂直に、ホットプレート加熱器の加 熱面に押し付ける。フエルールの端面力 少しだけ突出した素線 11は溶融変形し、 端面が平滑な面とされる。この平滑ィ匕によって光ファイバへの光の入射または光ファ イノ から光の出射が正対する光結合対象へ正しく行われる。この時、コア径が 200 m以上であるとホットプレート加工による端面変形に起因する結合損失の増加が少な く好ましい。なお、上記実施形態では、光コネクタに光プラグを例として用いたが、光 プラグの替わりに、リセプタクル、アダプタ等、他の光コネクタを用いてもよい。
[0052] 〔システム〕 以上により、 POFケーブル 10と光コネクタ 13との接続作業が完了する。この光コネ クタ 13を他の光コネクタに接続すれば、 POFケーブル 10と、他の光コネクタ内の光 ファイバや光部品とを光結合させることができる。この POFケーブル 10は、屋内、構 内、特に機器内配線で用いると有利である。例えば、屋内に設置される LAN配線に 用いる場合には、家屋の構造により、機器の設置される場所や機器の間隔は多様で ある。これに対して、敷設されるケーブルは現場で任意の長さに切断でき、且つコネ クタは簡単にケーブルへ取り付けられることが望まれる。本発明の POFケーブル 10 をシステム構築に用いることにより、任意の場所に任意の長さで簡単に施工すること ができる。一方、ガラス光ファイバケーブルを用いた場合には、ケーブル切断の際に 発生するガラス片の処理に十分な注意が必要である。また、敷設状態によっては、過 度の曲げによる破断が生ずる場合があり、その際、通信が遮断されてしまう。また、 U TPケーブル(Unshielded TwistPair cable)を用いてシステムを構築した場合、コ ネクタ付けの際にツイスト線の撚りを戻すが、撚り戻しの量が大きすぎると周波数特性 の劣化を招く。また、過度な曲げにより撚り状態が変化してしまうと、同様に周波数特 性が劣化してしまう。本発明の POFケーブル 10をシステム構築に用いれば、切断片 処理に対する注意をする必要が無ぐまたコネクタ付けのばらつきによる特性劣化が 無い。
[0053] 以上に示した本発明の態様によれば、端面加工がしゃすぐ接続の許容度が高い 、簡便な現場施工性の高い POFケーブルが得られる。また、この POFケーブルを用 いることにより、コネクタ付けの施工ばらつきによる特性劣化の無い光通信システムを 簡単に構築することができる。
[0054] 図 5は本発明の POFケーブル 10を用いた光通信システムの一例を示している。ィ ンターネット等のデータは、 WAN (ワイドエリアネットワーク)を用いたキヤリャ会社の 通信回線 (WAN回線) 50により受信側に送られる。受信側では、 ONU (ォプティカ ルネットワークユニット) 51により WAN回線 50を終端する。その後、データは、屋内 5 2に構築された LAN53を用いて受信者に伝送される。 LAN53の構成は、本発明の POFケーブル 10、 UTPケーブル 54、スィッチ 55、 HUB56、受信者用パソコン(PC ) 57など力も構成される。また、必要に応じて、屋内のデータ蓄積用にサーバ 58が設 置されることちある。
[0055] オフィスやインターネットカフェのように受信者 PC57が多数あり、 WAN回線 50側 あるいは屋内サーバ 58に同時に複数の受信者 PC57がアクセスする場合、スィッチ 55と HUB56との間、あるいは HUBとサーバ 58との間は、通信トラフィックのオーバ 一フローを緩和するために十分高速な伝送路を構築する必要がある。また、屋内施 ェを実施する際、伝送路の余長処理をなるベくコンパクトに収納する必要がある。そ のため、施工現場で任意の長さに線路を加工しコネクタ付けなどを行うことが望まれ る。 UTPケーブル 54を用いた場合には、スィッチ 55と HUB56との間、あるいは HU Bとサーバ 58との間において、ツイストペアの撚り戻しが適切でなかった場合に周波 数特性が劣化し、十分な高速性が損なわれることが危惧される。また、ガラス光フアイ バケーブルを用いた場合には、コネクタ付けを現場で行う工程が複雑であったり、切 断片の処理を十分慎重に扱う必要があり高いスキルが求められたりする。本発明の P OFケーブル 10を用いた場合には、 UTPケーブルやガラス光ファイバに見られる上 述のような危惧が緩和され、安定した高速伝送路を簡便に施工することができる。
[0056] 以下、本発明に関する実施例を示し、本発明を具体的に説明する。ただし、本発明 はこれらに限定されるものではない。
実施例
[0057] 〔実施例 1〕
図 1に示す POFケーブル 10を作製した。 POFケーブル 10は、コア径 D1 (図 2 (A) 参照)力 00 μ m、素線 11の外径 D2が 800 μ mのメタクリル酸メチル系榭脂製の GI 型素線 11と、厚み tlが 0. 8mmの低密度ポリエチレン製の被覆層 12を有している。 この実施例 1の POFケーブル 10を 50mに切断し、その両端にコネクタ 13を取り付け て、伝送損失を測定したところ、光源波長 650nmにて 160dBZkmであった。また、 この POFケーブル 10の一部である 20mを直径 200mmの束状に巻き、図 3に示すよ うに結束位置力もケーブル端部までの区間 L1を 100mmとして、コネクタ 13を光プラ グ固定治具としての保持部 23により保持し、コネクタ 13の近傍に発生するケーブル 余長の垂れ下がり自重に起因する曲がりの半径 R2を測定したところ、 8mmであり、こ の曲がりに起因する損失増加は 0. ldBであった。また、コネクタを取り付ける際の施 ェ容易性については、作業者によるコネクタの取付時間を測定することにより行った
。実施例 1の POFケーブルでは、被覆除去、プラグ固定、余長カット、端面仕上げの 各処理総合時間は 35秒であった。なお、後述する実施例 2から比較例 5まで、コネク タの取付は実施例 1と同一の作業者によって実施された。
[0058] 〔実施例 2〕
コア径 D1を 200 μ m、素線 11の外径 D2が 750 μ mとした以外は実施例 1と同じ条 件で製造した。このときに、伝送損失は、光源波長 650nmにて 170dBZkmであつ た。また、この POFケーブル 10を実施例 1と同じ条件で自重による曲がりの半径 R2 を測定したところ、実施例 1と同じく 8mmであり、この曲がりに起因する損失増加は 0 . 05dBであった。また、コネクタを取り付ける際の施工容易性を測定したところ、作業 時間は実施例 1と略同じの 37秒であった。
[0059] 〔実施例 3〕
コア径 D1を 500 μ m、素線 11の外径 D2が 1000 μ mとした以外は実施例 1と同じ 条件で製造した。このときに、伝送損失は、光源波長 650nmにて 150dBZkmであ つた。また、この POFケーブル 10を実施例 1と同じ条件で自重による曲がりの半径 R 2を測定したところ、 12mmであり、この曲力^に起因する損失増加は 0. ldBであつ た。また、コネクタを取り付ける際の施工容易性を測定したところ、作業時間は実施例 1と略同じの 36秒であった。
[0060] 〔比較例 1〕
被覆層の厚み tlを 0. 1mmとした以外は実施例 1と同じ条件で製造した。このとき に、伝送損失は、光源波長 650nmにて 160dBZkmであった。また、この POFケー ブル 10を実施例 1と同じ条件で自重による曲がりの半径 R2を測定したところ、 5mm であり、この曲がりに起因する損失増加は 0. 5dBであった。また、コネクタを取り付け るために市販のワイヤストリッパにより被覆を除去する工程で、素線に傷を付けてしま つた。その後同様の作業を繰り返したが、やはり素線に傷が付けてしまうことが多かつ た。
[0061] 〔比較例 2〕
被覆層の厚み tlを 1. 5mmとした以外は実施例 3と同じ条件で製造した。このとき に、伝送損失は、光源波長 650nmにて 150dBZkmであった。また、この POFケー ブル 10を実施例 1と同じ条件で自重による曲がりの半径 R2を測定したところ、 15m mであり、この曲力^に起因する損失増加は 0. OldBであった。しかしながら、ケープ ル径が 3mmを超えてしまい、市販の POF用コネクタへの取付けを行うことができなか つた o
[0062] 〔比較例 3〕
被覆層の厚み tlを 0. 5mmとし、約 6, 000デニールのァラミド繊維製抗張力線を 被覆層内に配置した以外は実施例 1と同じ条件で製造した。このときに、伝送損失は 、光源波長 650nmにて 160dBZkmであった。また、この POFケーブル 10を実施例 1と同じ条件で曲がりの半径 R2を測定したところ、 6mmであり、この曲がりに起因す る損失増加は 0. 3dBであった。また、コネクタを取り付ける際の施工容易性を測定し たところ、作業時間は 120秒であった。
[0063] 〔比較例 4〕
コーティングが施されたガラス光ファイバで外径が 0. 25mmで、抗張力体を有する 被覆層の厚みが 0. 875mmのものを用いて、プラグ取付作業を行った。被覆層の除 去、抗張力体の切除、一次被覆除去、コーティング除去、余長切断、プラグ組み付け •接着、端面研磨と各処理工程が多ぐしかも抗張力体の除去等に時間が掛かり、総 合作業時間は、 5分弱となった。また、現場取付型プラグは高価であり、屋内配線な どには不向きであることが判った。
[0064] 〔比較例 5〕
CAT5eのケーブルを用いて、プラグ取付作業を行った。外被除去、対線撚り戻し、 対線を順番に配列、余長切断、プラグ取付などの工程があり、 90秒の作業時間とな つた。また、撚り戻しは 12. 7mm以下、ピンアサインに注意、並行敷設は避ける、余 長束卷き径を大きくするなどの要注意項目が多ぐ熟練を要する作業であった。 産業上の利用可能性
[0065] 本発明は、光伝送などに利用されるプラスチック光フアイノ^特に屋内や構内にお V、て他の機器と着脱自在に設けられるプラスチック光ファイバ及びこのプラスチック光 ファイバを用いた通信システムに好ましく適用される。

Claims

請求の範囲
[1] 導光部であるコア、及び前記コア内に光を封じるためのクラッドを有する光ファイバ素 線と、前記光ファイバ素線を覆うように設けられる被覆層とを備えるプラスチック光ファ ィバケーブルであり、
前記コアの外径が 200 μ m以上、前記光ファイバ素線の外径が 750 μ m以上であ り、前記被覆層は、前記プラスチック光ファイバケーブルの一端を保持部により水平 に保持した状態で前記端部から 100mmの位置の前記プラスチック光ファイバケープ ルに前記プラスチック光ファイバケーブル 20m分に相当する重量を加えたとき、前記 保持部近傍に発生する曲がりの半径が 7mm以上となる硬さをもち、且つ抗張力線を 含まないことを特徴とするプラスチック光ファイバケーブル。
[2] 前記被覆層は、前記プラスチック光ファイバケーブル 20m分を外径 200mmの環状 にしてバンドで括り、前記バンドから前記環状部分の外側に 100mmの位置の前記 プラスチック光ファイバケーブルを前記端部として前記保持部により水平に保持した とき、前記環状部分の自重により前記保持部近傍に発生する曲がりの半径が 7mm 以上となる硬さを持つことを特徴とする請求項 1記載のプラスチック光ファイバケープ ル。
[3] 前記コアの外径が 500 μ m以下、前記光ファイバ素線の外径が 1000 μ m以下で あることを特徴とする請求項 1記載のプラスチック光ファイバケーブル。
[4] 前記被覆層の厚みは 0. 2mn!〜 1. 2mmの範囲であることを特徴とする請求項 1記 載のプラスチック光ファイバケーブル。
[5] 請求項 1から 4 、ずれか 1項に記載のプラスチック光ファイバケーブルを光伝送機 器間に接続したことを特徴とする通信システム。
[6] 前記光伝送機器に接続するために、前記プラスチック光ファイバの端部にコネクタ が取り付けられており、前記コネクタが 3個以下の部品から構成されていることを特徴 とする請求項 5記載の通信システム。
[7] 前記コネクタは、フエルールが一体ィ匕されたプラグノヽウジングとプラグカバーとを含 むことを特徴とする請求項 6記載の通信システム。
PCT/JP2007/050206 2006-01-17 2007-01-11 プラスチック光ファイバケーブル及びこれを用いた通信システム WO2007083553A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006008625 2006-01-17
JP2006-008625 2006-01-17

Publications (1)

Publication Number Publication Date
WO2007083553A1 true WO2007083553A1 (ja) 2007-07-26

Family

ID=38287506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050206 WO2007083553A1 (ja) 2006-01-17 2007-01-11 プラスチック光ファイバケーブル及びこれを用いた通信システム

Country Status (1)

Country Link
WO (1) WO2007083553A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109998A1 (ja) * 2009-03-25 2010-09-30 積水化学工業株式会社 プラスチック光ファイバコード
JP2012145415A (ja) * 2011-01-11 2012-08-02 Advantest Corp 光信号出力装置、電気信号出力装置、および試験装置
JP2016177125A (ja) * 2015-03-20 2016-10-06 三井化学株式会社 プラスチック光ファイバーおよびその製造方法
WO2019177105A1 (ja) * 2018-03-14 2019-09-19 三菱ケミカル株式会社 光ファイバケーブル、ハーネス、及び光ファイバケーブルの製造方法
JP7471937B2 (ja) 2019-07-05 2024-04-22 日東電工株式会社 光ケーブルの敷設施工方法および光ケーブル敷設施工セット
US11982852B2 (en) 2019-07-05 2024-05-14 Nitto Denko Corporation Optical cable laying construction method and optical cable laying construction set

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193110A (ja) * 1987-02-06 1988-08-10 Nippon Telegr & Teleph Corp <Ntt> 光コネクタ
JPH05224092A (ja) * 1992-02-17 1993-09-03 Sumitomo Electric Ind Ltd 光コネクタ
JP2004302373A (ja) * 2003-04-01 2004-10-28 Fuji Photo Film Co Ltd 光ファイバ被覆方法及び被覆装置
WO2004113981A1 (ja) * 2003-06-18 2004-12-29 Asahi Glass Company, Limited 光コネクタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193110A (ja) * 1987-02-06 1988-08-10 Nippon Telegr & Teleph Corp <Ntt> 光コネクタ
JPH05224092A (ja) * 1992-02-17 1993-09-03 Sumitomo Electric Ind Ltd 光コネクタ
JP2004302373A (ja) * 2003-04-01 2004-10-28 Fuji Photo Film Co Ltd 光ファイバ被覆方法及び被覆装置
WO2004113981A1 (ja) * 2003-06-18 2004-12-29 Asahi Glass Company, Limited 光コネクタ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109998A1 (ja) * 2009-03-25 2010-09-30 積水化学工業株式会社 プラスチック光ファイバコード
JPWO2010109998A1 (ja) * 2009-03-25 2012-09-27 積水化学工業株式会社 プラスチック光ファイバコード
JP2012145415A (ja) * 2011-01-11 2012-08-02 Advantest Corp 光信号出力装置、電気信号出力装置、および試験装置
US8712252B2 (en) 2011-01-11 2014-04-29 Advantest Corporation Optical signal output apparatus, electrical signal output apparatus, and test apparatus
JP2016177125A (ja) * 2015-03-20 2016-10-06 三井化学株式会社 プラスチック光ファイバーおよびその製造方法
WO2019177105A1 (ja) * 2018-03-14 2019-09-19 三菱ケミカル株式会社 光ファイバケーブル、ハーネス、及び光ファイバケーブルの製造方法
JPWO2019177105A1 (ja) * 2018-03-14 2020-07-27 三菱ケミカル株式会社 光ファイバケーブル、ハーネス、及び光ファイバケーブルの製造方法
US11346999B2 (en) 2018-03-14 2022-05-31 Mitsubishi Chemical Corporation Optical fiber cable, harness, and method of manufacturing optical fiber cable
JP7471937B2 (ja) 2019-07-05 2024-04-22 日東電工株式会社 光ケーブルの敷設施工方法および光ケーブル敷設施工セット
US11982852B2 (en) 2019-07-05 2024-05-14 Nitto Denko Corporation Optical cable laying construction method and optical cable laying construction set

Similar Documents

Publication Publication Date Title
EP1324091B1 (en) Reinforced tight-buffered optical fiber and cables made with same
US10663683B2 (en) Optical fiber bundle
JP4102448B2 (ja) 光信号伝送用多芯プラスチック光ファイバ
WO2007083553A1 (ja) プラスチック光ファイバケーブル及びこれを用いた通信システム
US11079561B2 (en) Fire retardant and low-smoke optical communications cable
WO2008026912A1 (en) A loose tube optical waveguide fiber assembly
EP3268789A1 (en) Optical fiber bundle
JP2012088356A (ja) 光ファイバ心線及びそれを備えた光電気複合ケーブル
JP2011085854A (ja) プラスチッククラッド光ファイバ心線および光ファイバケーブル
WO2005098498A1 (en) Method and device for coating plastic optical fiber with resin
US9798043B2 (en) Optical fiber, optical fiber cable and communication equipment
JP2011209487A (ja) プラスチック光ファイバコード
KR20040088402A (ko) 플라스틱 광섬유 제조 방법 및 장치
US10962685B2 (en) Plastic optical fiber, plastic optical fiber cable, wire harness and vehicle
JP2021119413A (ja) プラスチック光ファイバ、プラスチック光ファイバケーブル、コネクタ付プラスチック光ファイバケーブル、光通信システム、及びプラスチック光ファイバセンサ
US11428883B2 (en) Multilayer drop cable with optical fiber
WO2012144005A1 (ja) プラスチッククラッド光ファイバ心線および光ファイバケーブル
JP2002372652A (ja) 光ファイバ集合体及び光ファイバケーブル
JP2013205735A (ja) プラスチック光ファイバコードの製造方法
JP2010079273A (ja) プラスチック光ファイバコード
JP2003098408A (ja) 光ファイバケーブル及びプラグ付き光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP