WO2010109998A1 - プラスチック光ファイバコード - Google Patents

プラスチック光ファイバコード Download PDF

Info

Publication number
WO2010109998A1
WO2010109998A1 PCT/JP2010/052670 JP2010052670W WO2010109998A1 WO 2010109998 A1 WO2010109998 A1 WO 2010109998A1 JP 2010052670 W JP2010052670 W JP 2010052670W WO 2010109998 A1 WO2010109998 A1 WO 2010109998A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
plastic optical
fiber cord
core
pof
Prior art date
Application number
PCT/JP2010/052670
Other languages
English (en)
French (fr)
Inventor
輝行 谷口
博次 吉田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2011505934A priority Critical patent/JPWO2010109998A1/ja
Publication of WO2010109998A1 publication Critical patent/WO2010109998A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Definitions

  • the present invention relates to a plastic optical fiber cord used in an optical module, and more particularly to a plastic optical fiber cord suitable for a video-related optical link system such as a wiring in a television.
  • the problem is that the wiring work can be easily performed, and the coupling loss tends to increase due to the mounting error of the light emitting element. It needs to be resolved.
  • the plastic optical fiber cord according to the present invention is a plastic optical fiber cord in which a plurality of plastic optical fibers are integrated in a tape shape.
  • Each plastic optical fiber includes a core, a clad surrounding the core, a first protective layer surrounding the clad, and a first protective layer. It consists of the 2nd protective layer surrounding 1 protective layer, and plastic optical fibers are connected through the bridge
  • a plastic optical fiber (hereinafter sometimes referred to as “POF”) is a core made of an organic compound having a polymer matrix and a clad made of a core having a refractive index different from that of the core (generally a polymer having a low refractive index). And one or a plurality of resin protective layers.
  • the POF may be a so-called step index (SI) type composed of a two-layer structure having a material having a high refractive index as a core and a material having a low refractive index as a cladding. It may be a so-called graded index (GI) type having a core having a distribution of the refractive index from the outside to the outside (radial direction). By using the GI type, higher speed communication is possible.
  • the transmission band is inversely proportional to the distance of the optical fiber. However, when the transmission band is considered to be constant, the GI type communication can be performed over a longer distance than the SI type.
  • the protective layer surrounding the cladding may be three or more layers.
  • the outermost layer corresponds to the second protective layer, and the connecting bridge is formed integrally with the outermost protective layer.
  • the first protective layer may be composed of a plurality of layers.
  • the conventional plastic optical fiber cord has a structure in which the POF is solidified with a resin so that the flat state of the horizontal row is maintained, whereas in the plastic optical fiber cord according to the present invention, the POFs are second protected.
  • the layers are connected to each other through a connecting bridge having substantially the same thickness.
  • the connecting bridge since the connecting bridge is flexible, the plastic optical fiber cord can be handled as a flat state, and when it is passed through a circular hole, it is in a full state. Can be deformed.
  • the connecting bridge has a lower strength against tearing than the conventional bridge, the work of separating the plastic optical fiber cord into a single-core POF can be easily performed. Therefore, it is suitable for use in television wiring.
  • the connecting bridge may be provided on the bottom surface (the lowest point) or the top surface (the highest point) when a plurality of POFs are arranged in a horizontal row on a horizontal plane, It may be provided at the same level as the central axis), or may be provided at an arbitrary position between the bottom surface or the top surface and the center just above and below.
  • Each connecting bridge is usually provided at the same position (so that all connecting bridges are located in the same plane), but the present invention is not limited to this.
  • the length of the connecting bridge is appropriately set depending on the position where the connecting bridge is provided so that the connecting bridge can be appropriately transformed into a full state.
  • the number of POF hearts is not limited, but is usually 20 or less in terms of ease of handling.
  • the core diameter of the POF is 100 ⁇ m or more, preferably 150 ⁇ m or more, the coupling loss can be suppressed to a predetermined value or less (for example, 3 dB or less) even if the mounting error of the light emitting element is large to some extent.
  • the core diameter of POF should be 300 ⁇ m or less. Is more preferable, and 250 ⁇ m or less is more preferable. In this way, positioning at the time of connection with the connector may be rough, and labor at the time of connection with the connector can be reduced.
  • the wire diameter of POF is 2 mm or less, preferably 1.5 mm or less. More preferably, it is 750 micrometers or less.
  • the wire diameter of POF means a diameter including a core and a clad and a single resin protective layer (over clad) for protecting them.
  • (meth) acrylic acid ester monomers methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-acrylate -Butyl and the like;
  • examples of the styrene monomer include styrene (St), ⁇ -methylstyrene, chlorostyrene (ClSt), bromostyrene and the like, and copolymers thereof may be used.
  • vinyl esters such as vinyl acetate, vinyl benzoate, vinyl phenyl acetate, vinyl chloroacetate; Nn-butylmaleimide, N-tert-butylmaleimide, N-isopropylmaleimide, N-cyclohexylmaleimide, etc.
  • maleimides examples include maleimides.
  • polycarbonate plastic, cycloolefin plastic, amorphous fluorine plastic, and the like can also be used.
  • the core of at least one plastic optical fiber has a refractive index distribution.
  • the POF having a refractive index profile formed in the core has a radius from the center by adding a few percent of triphenyl phosphate (TPP) to a general SI type core composition (for example, chlorostyrene / methyl methacrylate), for example. It can be obtained by decreasing the TPP concentration in the direction.
  • TPP triphenyl phosphate
  • the configuration in which the POFs are connected via the connecting bridge is not particularly limited.
  • the POFs are arranged in a horizontal row so that the gaps between adjacent POFs are 0 or a slight gap.
  • the connecting bridge is provided so as to connect the points 45 ° above the lowest point to the lowest point of each POF.
  • the “lowest point” means a bottom surface when a plurality of POFs are arranged in a horizontal row on a horizontal plane, and does not mean “lower” in use.
  • the surface formed by the connecting bridge is a surface parallel to the surface passing through the center of each POF.
  • the plastic optical fiber cord when installed along a horizontal plane, a vertical plane, etc., it is arranged in a horizontal row so that a plurality of POFs are in contact with each other or almost in contact with each other, and used in a flat state. Is possible. In this state, even if an attempt is made to deform the POF so that the POFs are placed inside the connecting bridge, the POFs that are in contact with each other or that are substantially in contact with each other obstruct this. Is prevented, and the plastic optical fiber cord can be handled as being always flat, and the operation can be easily performed.
  • this plastic optical fiber cord can be easily deformed into a state in which a plurality of POFs are placed outside the connecting bridge, and by deforming in this way, the plastic optical fiber cord is perforated.
  • the work to pass through can be easily performed.
  • the gap between the adjacent POFs may not be 0 as long as it is within a range in which a plurality of POFs are placed inside the connecting bridge so that they are not easily deformed into a rounded state.
  • a gap of about 15% or less of the maximum diameter of the POF may be between adjacent POFs.
  • the connecting bridge may be provided so as to connect the central portions of the plastic optical fibers.
  • it is easy to transform a plurality of POFs into a full state without distinguishing between the inner side and the outer side (upper side and lower side). That is, as described above, when the connecting bridge is provided so as to connect the points 45 ° above the lowest point to the lowest point of each plastic optical fiber, the upper and lower sides are distinguished. Whereas it is necessary, this is advantageous in that it is not necessary to distinguish the upper and lower sides.
  • the connecting bridge is provided so as to connect the points 45 ° above the lowest point to the lowest point of each plastic optical fiber, the distinction between the upper and lower sides is clear. There is an advantage that it is easy to distinguish the left and right connection directions at the time of connection.
  • the position of the connecting bridge can be set according to the application.
  • the synthetic resin for forming the first protective layer, the second protective layer, and the connecting bridge covering POF is not particularly limited, but the strength, flame retardancy, flexibility, and resistance required for POF and plastic optical fiber cords are not particularly limited. It is preferable to select one that satisfies chemical properties and heat resistance.
  • vinyl chloride resin, chlorinated vinyl chloride resin, low density polyethylene, high density polyethylene, chlorinated polyethylene, ethylene-vinyl acetate copolymer, vinyl chloride-ethylene-vinyl acetate copolymer, acrylic resin examples thereof include a fluorine-based resin, a vinyl acetate-vinyl chloride copolymer, and a resin mainly composed of polycarbonate.
  • the binding force between the POFs is preferably 0.3 to 0.5 kgf.
  • the thickness of the connecting bridge is set so that the binding force between the POFs is within these ranges.
  • This restraining force can be calculated
  • each connecting bridge may be provided with a notch.
  • the notch may be provided in all the connecting bridges, but may be provided in some connecting bridges. The notch can be formed at the time of extrusion molding in manufacturing a plastic optical fiber cord, and can be provided without an additional process.
  • the plastic optical fiber cord can be used for various applications, it is suitable for video signal transmission in an optical transmission device (optical link system) that transmits an optical signal through an optical fiber, and is limited in wiring space. It is particularly suitable for TV wiring that is difficult.
  • the wavelength of POF is preferably 500 to 850 nm, may be 500 to 750 nm (visible light), or may be a light source (infrared light) of 780 to 850 nm. Good.
  • each plastic optical fiber includes a core, a clad surrounding the core, a first protective layer surrounding the clad, and a second protective layer surrounding the first protective layer. Since the connection is made via the connecting bridge formed integrally with the second protective layer, the wiring work in the video related optical link system such as the wiring in the television can be easily performed.
  • the core diameter of each plastic optical fiber 100 ⁇ m or more and 300 ⁇ m or less, the coupling loss can be suppressed to a predetermined value or less even if the mounting error of the light emitting element is large to some extent. Rough positioning is also possible, and the effort can be reduced.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a plastic optical fiber cord according to the present invention.
  • FIG. 2 is a cross-sectional view showing a shape when the plastic optical fiber cord of the first embodiment is deformed.
  • 3A and 3B are diagrams schematically showing a connector and a light source to which a plastic optical fiber cord according to the present invention is connected, wherein FIG. 3A is a front view and FIG. 3B is a plan view.
  • FIG. 4 is a cross-sectional view showing a second embodiment of the plastic optical fiber cord according to the present invention.
  • FIG. 5 is a cross-sectional view showing a shape when the plastic optical fiber cord of the second embodiment is deformed.
  • FIG. 6 is a cross-sectional view showing a third embodiment of the plastic optical fiber cord according to the present invention.
  • FIG. 7 is a cross-sectional view showing a shape when the plastic optical fiber cord of the third embodiment is deformed.
  • Plastic optical fiber cord (2) POF (plastic optical fiber) (3) (4) (5) Connecting bridge (6) Notch (11) Core (12) Clad (13) Overclad (first protective layer) (14) Jacket (second protective layer)
  • top and bottom of the figure are referred to as the top and bottom, and the left and right of the figure are the left and right.
  • FIG. 1 and 2 show a first embodiment of a plastic optical fiber cord according to the present invention.
  • the plurality of POFs (2) are arranged in a flat state in a horizontal row so that the gap between adjacent ones is zero or a slight gap, and the connecting bridge (3) is arranged in this way. It is provided so as to connect the lowest points of each POF (2).
  • a plurality of POFs (2) are arranged in a horizontal row so that adjacent ones are in contact with each other or almost in contact with each other. Can be used.
  • a plurality of POFs (2) are deformed so as to be placed inside the connecting bridge (3) (in FIG. 1, the straight connecting bridge (3) is formed into a U-shape. Even if it is going to be deformed), the POFs (2) that are in contact with each other obstruct this, so that the deformation is prevented and the plastic optical fiber cord (1) is always in a flat state. Can be easily performed.
  • the plastic optical fiber cord (1) is arranged so that a plurality of POFs (2) are located outside the connecting bridge (3) when the connecting bridge (3) is not in contact with a horizontal plane. It is easy to change it into a bent state (in the state shown in FIG. 1, the straight connecting bridge (3) is changed into an inverted U-shape), and as shown in FIG. The operation of passing the plastic optical fiber cord (1) through the hole can be easily performed.
  • Each POF (2) includes a core (11) made of an organic compound having a polymer as a matrix, a clad (12) having a refractive index different from that of the core (generally made of a polymer having a low refractive index), these And an overclad (first protective layer) (13) and a jacket (second protective layer) (14).
  • the connecting bridge (3) is formed integrally with the jacket (14).
  • This plastic optical fiber cord (1) has a four-core tape structure composed of four POFs (2) so that a high transmission speed can be obtained.
  • the conventional four-core cord has a structure in which four wires are hardened with a resin so that the flat state in a horizontal row is maintained, whereas according to this plastic optical fiber cord (1), FIG.
  • the four POFs (2) shown in FIG. 2 are in a flat state, and the four POFs (2) shown in FIG. 2 are arranged in two rows and two layers with the connecting bridge (3) inside (the whole As a round shape of a substantially circular shape or a substantially square shape of the cross section).
  • the plastic optical fiber cord (1) with a four-fiber tape structure may be made into two cores or a single core at the end or appropriate intermediate part, and by tearing each connecting bridge (3), A four-core tape structure can be easily separated into a single core.
  • FIG. 3 shows an optical module (21) as one form of use of the plastic optical fiber cord (1) according to the present invention.
  • an optical module (21) includes a base substrate (22), four square plate light emitting elements (23) arranged on the base substrate (22) at predetermined intervals, and four light emitting elements (23).
  • a POF connector (26) in which a POF insertion hole having a circular cross section is formed.
  • the light emitting element (23) has a mounting error. For this reason, there has conventionally been a problem that the coupling loss in the optical module (21) becomes large.
  • the plastic optical fiber cord (1) according to this embodiment solves the above problem by adopting the following configuration.
  • the core diameter of POF (2) is 100 ⁇ m or more and 300 ⁇ m or less.
  • the coupling loss can be suppressed to a predetermined value or less even when the connection accuracy with the POF connector (26) is rough. For example, by setting the core diameter of POF (2) to 100 ⁇ m, even if the size of the light emitting element (23) is 10 ⁇ m and the mounting error is ⁇ 50 ⁇ m, the coupling loss can be suppressed to 3 dB or less.
  • the plastic optical fiber cord (1) is a multi-core tape type (ribbon type) and the binding force between the POFs (2) (strength of the connecting bridge) is 0.3-0.5kgf, making it easy to bend. Thus, handling becomes easy, and processing at the time of connection with the POF connector (26) becomes easy.
  • the POF connector (26) for connecting the plastic optical fiber cord (1) to the light source is a flat type, a thin structure of the connecting portion of the plastic optical fiber cord (1) becomes possible.
  • the plastic optical fiber cord (1) is not limited to the embodiment shown in FIGS. 1 and 2, and various forms are possible.
  • the gap between adjacent POFs (2) is not limited to 0 or a slight gap
  • the diameter of the second protective layer (14) of the POF (2) is as follows. You may make it enlarge in the range below 3 times.
  • the plastic optical fiber cord (1) is composed of a plurality (four in the figure) of POFs (2) and a connecting bridge (4) that connects the POFs (2).
  • the plastic optical fiber cord (1) of the second embodiment is different from that of the first embodiment in the size of the connecting bridge (4), and the plurality of POFs (2) are gaps between adjacent ones. Are arranged in a flat state in a horizontal row so as to be approximately equal to the maximum diameter of the POF (2), and the connecting bridge (4) is more POF (2 than the connecting bridge (3) of the first embodiment. ) Is increased by the maximum diameter, and is provided so as to connect the lowest points of the POFs (2) arranged in this way.
  • the plurality of POFs (2) are in a state opposite to that shown in FIG. 2, that is, in a state where they are placed inside the connecting bridge (4). (In the state shown in FIG. 4, the linear connecting bridge (4) is deformed into a U shape).
  • the flat state in which the four POFs (2) shown in FIG. 4 are arranged in a horizontal row and the four POFs (2) shown in FIG. Can be transformed into a state in which the connecting bridge (4) is arranged in two rows and two layers with the connecting bridge (4) on the outside (a state in which the overall cross section is substantially circular or the cross section is substantially square), similar to the first embodiment.
  • the size of the gap is set to a predetermined value according to the usage form of the plastic optical fiber cord (1), and the one of the first embodiment and the second embodiment are properly used for a wider range of applications. Can respond.
  • the plastic optical fiber cord (1) is composed of a plurality (four in the drawing) of POFs (2) and a connecting bridge (5) for connecting the POFs (2).
  • the plastic optical fiber cord (1) of this embodiment is the same as that of the first and second embodiments in that the connecting bridge (5) connects the central portions of the POFs (2). It is different. Accordingly, the gap between adjacent POFs (2) is set slightly smaller than the diameter of each POF (2).
  • plastic optical fiber cord (1) of the third embodiment it is necessary to distinguish the upper and lower sides in the first and second ones, but it is not necessary to distinguish the upper and lower sides (from the state shown in FIG. 6). In addition to being able to be deformed into an inverted U-shape as shown in FIG. Can be used.
  • first and second embodiments there is an advantage that the upper and lower sides are clearly distinguished and it is easy to distinguish the left and right connection directions at the time of connection. can do.
  • plastic optical fiber cord (1) shown in the first to third embodiments when installed along a horizontal surface, a vertical surface, etc. in a free state without applying external force to this, Multiple POFs (2) are arranged in a horizontal row and can be used in a flat state, and the connecting bridges (3), (4) and (5) made of synthetic resin are elastically deformed. Can be easily deformed into a round shape with a substantially circular cross-section or a substantially square cross-section, and this deformation facilitates the work of passing the plastic optical fiber cord (1) through holes, pipes, etc.
  • An optical transmission device optical link system
  • the plastic optical fiber cord (1) can be used in combination with various optical modules, and its use is not limited, but there is a height restriction and video-related light such as TV wiring with severe wiring space restrictions. Particularly suitable for link systems.
  • a plastic optical fiber cord using the plastic optical fiber shown in Table 1 was prepared, and transmission evaluation was performed using a CCD camera.
  • the plastic optical fiber cord (1) is the one of the first embodiment shown in FIG. 1, and the diameter of the overclad (first protective layer) (13) is 750 ⁇ m.
  • the core composition examples 1 to 7 are common, and chlorostyrene (ClSt) is 70% and methyl methacrylate (MMA) is 30%.
  • the composition of the core center part is 66% chlorostyrene (ClSt), 28% methyl methacrylate (MMA), and 6% triphenyl phosphate (TPP), and the radius from the center part is A refractive index distribution is formed in the core by decreasing the TPP concentration in the direction.
  • the clad composition was the same as in Examples 1 to 5 and Example 8, with styrene (St) being 40% and methyl methacrylate (MMA) being 60%. To 5 and compared to Example 8, styrene is increased and methyl methacrylate is decreased accordingly.
  • the materials of the first protective layer and the second protective layer are polycarbonate and low density polyethylene, respectively.
  • the cord length is 3 m in the first to seventh embodiments, and 5 m in the eighth embodiment.
  • the numerical aperture (NA) was measured at 820 nm using a far field pattern measuring instrument.
  • the analog signal output from the CCD camera was converted into a digital signal, serialized, and then transmitted using the LVDS method.
  • a commercially available communication board was used for analog conversion, serialization, and LVDS compatible signal conversion.
  • the wiring was provided with 8 or 16 bends at a radius of 10 mm and 90 degrees, and the case where the lens was installed in front of the light receiving element and the case where it was not installed were evaluated.
  • the evaluation was performed based on whether or not the image of the CCD camera can be transmitted in real time and displayed on the display. Table 2 shows the result of connecting the light emitting side to 100 optical modules.
  • The number of connections indicated cannot be displayed on the display.
  • the wiring work can be easily performed and the coupling loss can be suppressed to a predetermined value or less, so that the performance of the video related optical link system such as the wiring in the television is improved. Can contribute.

Abstract

 配線作業を容易に行うことができ、発光素子の実装誤差がある程度大きくても、結合損失を所定値以下に抑えることを可能としたプラスチック光ファイバコードを提供する。 各プラスチック光ファイバ2は、コア11、コア11を囲むクラッド12、クラッドを囲む第1保護層13および第1保護層13を囲む第2保護層14とからなる。プラスチック光ファイバ2同士は、第2保護層14と一体に形成された連接用ブリッジ3を介して接続されている。

Description

プラスチック光ファイバコード
 本発明は、光モジュールで使用されるプラスチック光ファイバコードに関し、特に、テレビ内配線等の映像関連光リンクシステムに適したプラスチック光ファイバコードに関する。
 光ファイバのうちプラスチック光ファイバは、素材が全てプラスチックで構成されているため、伝送損失が石英系光ファイバと比較してやや大きいという短所を有するものの、軽量で加工性が良く、また、低コストで製造可能であるという長所を有しており、光通信の送受を行う各種の光モジュールにおいて、その伝送損失が問題にされない近距離の光伝送路として多用されている。
 特許文献1には、光モジュールで使用される光ファイバコードとして、4本の光ファイバを並べて、合成樹脂製のテープ化材によってテープ状に一括被覆したものが適することが記載されている。
特開2008-10837号公報(特にその図5)
 光ファイバコードをテレビ内配線などに使用するに際しては、配線作業を容易に行えることが課題となっており、また、発光素子の実装誤差の影響を受けて、結合損失が大きくなりやすいという問題も解消する必要がある。
 本発明は、配線作業を容易に行うことができ、発光素子の実装誤差がある程度大きくても、結合損失を所定値以下に抑えることを可能としたプラスチック光ファイバコードを提供することを目的とする。
 この発明によるプラスチック光ファイバコードは、複数本のプラスチック光ファイバをテープ状に一体化したプラスチック光ファイバコードにおいて、各プラスチック光ファイバは、コア、コアを囲むクラッド、クラッドを囲む第1保護層および第1保護層を囲む第2保護層からなり、プラスチック光ファイバ同士は、第2保護層と一体に形成された連接用ブリッジを介して接続されていることを特徴とするものである。
 プラスチック光ファイバ(以下「POF」と称することがある)は、重合体をマトリックスとする有機化合物からなるコアと、コアと屈折率が異なる(一般的には低屈折率の重合体)からなるクラッドと、1層または複数層の樹脂製保護層とからなるものとされる。POFは、高い屈折率を有する材料をコアに、低い屈折率を有する材料をクラッドにもつ2層構造から構成されるステップインデックス(SI)型と称されるものであってもよく、また、中心から外側(半径方向)に向かって屈折率の大きさに分布を有するコアを備えたグレーデッドインデックス(GI)型と称されるものであってもよい。GI型にすることにより、より高速な通信が可能となる。通常、伝送帯域は光ファイバの距離に反比例するが、伝送帯域を一定で考えた場合、SI型よりもGI型の方がより長距離の通信が可能となる。
 クラッドを囲む保護層は、3層以上とされることがあり、この場合、最外層のものが第2保護層に相当し、連接用ブリッジは、この最外層の保護層に一体に形成され、第1保護層は、複数の層からなっていてもよい。
 従来のプラスチック光ファイバコードは、横一列の偏平状態が保持されるようにPOFが樹脂で固められた構造とされているのに対し、この発明によるプラスチック光ファイバコードでは、POF同士が第2保護層と厚みがほぼ等しい連接用ブリッジを介して接続される。このようにすると、連接用ブリッジが可撓性を有していることで、プラスチック光ファイバコードを偏平な状態として扱うことができるだけでなく、円形孔を通す場合などには、まるまった状態に変形させることができる。また、連接用ブリッジは、従来のものに比べて、引き裂きに対する強度が低下するので、プラスチック光ファイバコードを単心のPOFに分離する作業を容易に行うことができる。したがって、テレビ内配線などでの使用に適している。
 連接用ブリッジは、複数のPOFが水平面上に横一列に配置された場合の底面(最下点)または頂面(最上点)に設けられてもよく、また、上下のちょうど中央(各POFの中心軸と同じレベル)に設けられてもよく、底面または頂面と上下のちょうど中央との間の任意の位置に設けられてもよい。各連接用ブリッジは、通常、同じ位置(全ての連接用ブリッジが同じ面内に位置するよう)に設けられるが、これに限定されるものではない。連接用ブリッジの長さは、まるまった状態に適切に変形させることができるように、連接用ブリッジが設けられる位置によって適宜設定される。
 POFの心数は、限定されないが、通常、取扱い易さの点で20心以下である。
 POFのコア径が100μm以上、好ましくは150μm以上とされていることで、発光素子の実装誤差がある程度大きくても、結合損失を所定値以下(例えば3dB以下)に抑えることができる。120μmのサイズの受光素子に対して、コア径が300μmを超えると面積比が144:900となり、光のロスが大きく結合損失が-8dBを超えるので、POFのコア径は、300μm以下とすることが好ましく、より好ましくは250μm以下である。このようにすると、コネクタとの接続に際しての位置決めもラフなものでよく、コネクタとの接続に際しての手間を軽減することができる。
 POFの線径は、2mm以下、好ましくは、1.5mm以下である。さらに好ましくは、750μm以下である。ここで、POFの線径は、コアおよびクラッドとこれらを保護する1層の樹脂製保護層(オーバークラッド)とを含んだ径を意味する。POFのコア径が100μm以上としてかつPOFの線径を2mm以下とすることで、上記効果を有ししかも取扱いが容易なものとなる。
 各プラスチック光ファイバの500~850nmの少なくともいずれか一つの波長における
 NA=(n -n 1/2
(式中、光ファイバコア中心部の屈折率:n、光ファイバクラッド中で最も屈折率の低い部分の屈折率:n
で表される開口数(NA)が0.25以上であることが適しており、0.3以上が好ましい。このようにすると、POFを曲げた状態で使用しても、損失が抑えられるので、例えばテレビ内配線のように、POFを曲げて使用する形態の光モジュールで使用する場合でも、必要な性能を容易に確保することができる。開口数の上限は、特に限定されるものではない。
 コアおよびクラッドとして使用されるプラスチックの種類は、透明性が高く光伝送に用いることができるものであれば限定されない。例えば、(メタ)アクリル酸エステル系モノマーの重合体、スチレン系モノマーの重合体が挙げられる。(メタ)アクリル酸エステル系モノマーとして、メタクリル酸メチル(MMA)、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル等;スチレン系モノマーとして、スチレン(St)、α-メチルスチレン、クロロスチレン(ClSt)、ブロモスチレン等が挙げられ、これらの共重合体でも構わない。その他共重合成分として、ビニルアセテート、ビニルベンゾエート、ビニルフェニルアセテート、ビニルクロロアセテート等のビニルエステル類;N―n-ブチルマレイミド、N―tert-ブチルマレイミド、N―イソプロピルマレイミド、N―シクロヘキシルマレイミド等のマレイミド類等が例示される。その他、ポリカーボネート系プラスチック、シクロオレフィン系プラスチック、非晶フッ素系プラスチックなどを用いることもできる。
 少なくとも1本のプラスチック光ファイバ(POF)のコアが屈折率分布を有することが好ましい。このようにすることで、コード長を長くした場合でも、良好な伝送性能を得ることができる。コアに屈折率分布が形成されているPOFは、例えば、一般的なSI型のコア組成(例えばクロロスチレン/メタクリル酸メチル)にリン酸トリフェニル(TPP)を数%加えて、中心部から半径方向に向かってTPP濃度を減少させることにより得ることができる。
 POF同士が連接用ブリッジを介して接続される構成は、特に限定されるものではないが、例えば、複数のPOFが隣り合うもの同士の隙間が0またはわずかな隙間となるように横一列に配置されるとともに、連接用ブリッジが各POFの最下点~最下点よりも45°上部の点同士をつなぐように設けられているものとされる。ここで、「最下点」は、複数のPOFが水平面上に横一列に配置された場合の底面を意味し、使用時における「下」を意味するものではない。連接用ブリッジによって形成される面は、各POFの中心を通る面に平行な面となる。このようにすると、プラスチック光ファイバコードは、水平面、垂直面などに沿わせて設置した場合、複数のPOFが隣り合うもの同士接触またはほぼ接触するように横一列に配置され、偏平状態での使用が可能となる。この状態において、複数のPOFが連接用ブリッジの内側にくるようにしてまるまった状態に変形させようとしても、隣り合うもの同士接触またはほぼ接触している複数のPOFがこれを妨げるので、変形が防止され、プラスチック光ファイバコードが常時偏平な状態にあるものとして扱うことができ、作業を容易に行うことができる。一方、このプラスチック光ファイバコードは、複数のPOFが連接用ブリッジの外側にくるようにしてまるまった状態に変形させることが容易であり、このように変形させることで、プラスチック光ファイバコードを孔に通す作業を容易に行うことができる。複数のPOFが連接用ブリッジの内側にくるようにしてまるまった状態に変形しにくいようにすることができる範囲であれば、隣り合うPOF間の隙間は、0でなくてもよく、例えば、POFの最大径の15%以下程度の隙間が隣り合うPOF間にあってもよい。
 最下点~最下点よりも45°上部の点という範囲は、プラスチック光ファイバコードが常時偏平な状態にあるものとして扱うことができ、しかも、複数のPOFが連接用ブリッジの外側にくるようにしてまるまった状態に変形させることが容易な範囲となっている。
 複数のPOFが隣り合うもの同士の隙間は、0またはわずかな隙間に限定されるものではなく、POFの第2保護層の径の3倍以下の範囲で大きくするようにしてもよい。この場合、隣り合うPOF同士の隙間は、具体的には、POF径の0.75倍から1.5倍の間隔とすることが好ましい。また、連接用ブリッジのPOFに対して変形可能な部分の長さは、POF径の1.25倍から2倍とすることが好ましい。隣り合うもの同士の隙間が各POFの径と「略同等」とは、複数のPOFを連接用ブリッジの内側にくるようにしてまるまった状態に変形させた場合の隣り合うPOF間の隙間が0またはわずかな隙間となることを意味している。このように隙間を大きくすることにより、複数のPOFが連接用ブリッジの内側にくるようにしてまるまった状態に変形させることができ、使用の形態に応じて隙間の大きさを設定することで、種々の用途に対応することができる。
 また、連接用ブリッジは、各プラスチック光ファイバの中央部同士をつなぐように設けられているようにしてもよい。この場合、内側および外側(上側および下側)を区別することなく、複数のPOFをまるまった状態に変形させることが容易とされる。すなわち、上記のように、連接用ブリッジが各プラスチック光ファイバの最下点~最下点よりも45°上部の点同士をつなぐように設けられているようにした場合には、上下を区別する必要があるのに対し、このようにすることで、上下を区別する必要がなくなるという利点が得られる。逆に、連接用ブリッジが各プラスチック光ファイバの最下点~最下点よりも45°上部の点同士をつなぐように設けられているようにした場合には、上下の区別がはっきりして、接続の際に左右の接続方向を見分けやすいという利点がある。用途に応じた連接用ブリッジの位置設定が可能である。
 POFを被覆する第1保護層、第2保護層および連接用ブリッジを形成する合成樹脂としては、特に限定されないが、POFおよびプラスチック光ファイバコードに必要な、強度、難燃性、柔軟性、耐薬品性、耐熱性等を満足するものを選択することが好ましい。例えば、塩化ビニル系樹脂、塩素化塩化ビニル系樹脂、低密度ポリエチレン、高密度ポリエチレン、塩素化ポリエチレン、エチレン-酢酸ビニル共重合体、塩化ビニル-エチレン-酢酸ビニル共重合体等、アクリル系樹脂、フッ素系樹脂、酢酸ビニル-塩化ビニル共重合体、ポリカーボネート等を主成分とするもの等が挙げられる。
 なお、各POF同士の拘束力(連接用ブリッジの強度)は、0.3~0.5kgfが好ましい。連接用ブリッジの厚みは、各POF同士の拘束力がこれらの範囲に収まるように設定される。この拘束力は、100mm/分の速度で、2心間を引き裂いたときの強度を測定することで求めることができる。拘束力を所定値以下としてPOF同士を分離しやすくするために、各連接用ブリッジに切欠きが設けられているようにしてもよい。切欠きは、全ての連接用ブリッジに設けられてももちろんよいが、一部の連接用ブリッジに設けるようにしてもよい。切欠きは、プラスチック光ファイバコードを製造する際の押出成形時に形成することができ、追加の工程を必要とせずに設けることができる。
 このプラスチック光ファイバコードは、種々の用途に使用することができるが、光ファイバを介して光信号を伝送する光伝送装置(光リンクシステム)における映像信号伝送用に適しており、配線スペースの制約が厳しいテレビ内配線などに特に適している。テレビ内配線で使用される場合、POFの波長としては、500~850nmであることが好ましく、500~750nm(可視光線)であってもよいし、780~850nmの光源(赤外線)であってもよい。
 この発明のプラスチック光ファイバコードによると、各プラスチック光ファイバは、コア、コアを囲むクラッド、クラッドを囲む第1保護層および第1保護層を囲む第2保護層からなり、プラスチック光ファイバ同士は、第2保護層と一体に形成された連接用ブリッジを介して接続されているので、テレビ内配線等の映像関連光リンクシステムにおける配線作業を容易に行うことができる。また、各プラスチック光ファイバのコア径が100μm以上かつ300μm以下とすることで、発光素子の実装誤差がある程度大きくても、結合損失を所定値以下に抑えることができ、したがって、コネクタとの接続に際しての位置決めもラフなものでよく、その手間を軽減することができる。
図1は、本発明によるプラスチック光ファイバコードの第1実施形態を示す断面図である。 図2は、第1実施形態のプラスチック光ファイバコードを変形させた場合の形状を示す断面図である。 図3は、本発明によるプラスチック光ファイバコードが接続されるコネクタおよび光源を模式的に示す図で、(a)は正面図、(b)は平面図である。 図4は、本発明によるプラスチック光ファイバコードの第2実施形態を示す断面図である。 図5は、第2実施形態のプラスチック光ファイバコードを変形させた場合の形状を示す断面図である。 図6は、本発明によるプラスチック光ファイバコードの第3実施形態を示す断面図である。 図7は、第3実施形態のプラスチック光ファイバコードを変形させた場合の形状を示す断面図である。
(1)    プラスチック光ファイバコード
(2)    POF(プラスチック光ファイバ)
(3)(4)(5) 連接用ブリッジ
(6)    切欠き
(11)   コア
(12)   クラッド
(13)   オーバークラッド(第1保護層)
(14)   ジャケット(第2保護層)
 以下、図面を参照して、この発明の実施形態について説明する。以下の説明において、図の上下を上下といい、図の左右を左右というものとする。
 図1および図2は、この発明によるプラスチック光ファイバコードの第1実施形態を示している。
 プラスチック光ファイバコード(1)は、複数(図示は4本)のPOF(プラスチック光ファイバ)(2)と、POF(2)同士を連接する連接用ブリッジ(3)とからなる。
 複数のPOF(2)は、隣り合うもの同士の隙間が0またはわずかな隙間となるように横一列に偏平状態で配置されており、連接用ブリッジ(3)は、このようにして配置された各POF(2)の最下点同士をつなぐように設けられている。
 すべてのPOF(2)は、同じ形状であり、連接用ブリッジ(3)もすべて同じ形状とされている。
 このプラスチック光ファイバコード(1)は、水平面、垂直面などに沿わせて設置した場合、複数のPOF(2)が隣り合うもの同士接触またはほぼ接触するように横一列に配置され、偏平状態での使用が可能となる。この状態において、複数のPOF(2)が連接用ブリッジ(3)の内側にくるようにしてまるまった状態に変形(図1の状態において直線状の連接用ブリッジ(3)をU字状に変形)させようとしても、隣り合うもの同士接触している複数のPOF(2)がこれを妨げるので、変形が防止され、プラスチック光ファイバコード(1)が常時偏平な状態にあるものとして扱うことができ、作業を容易に行うことができる。一方、プラスチック光ファイバコード(1)は、連接用ブリッジ(3)が水平面などに接していないフリーの状態では、複数のPOF(2)が連接用ブリッジ(3)の外側にくるようにしてまるまった状態に変形(図1の状態において直線状の連接用ブリッジ(3)を逆U字状に変形)させて、図2のようにすることが容易であり、このように変形させることで、このプラスチック光ファイバコード(1)を孔に通す作業を容易に行うことができる。
 各POF(2)は、重合体をマトリックスとする有機化合物からなるコア(11)と、コアと屈折率が異なる(一般的には低屈折率の重合体からなる)クラッド(12)と、これらを保護するオーバークラッド(第1保護層)(13)およびジャケット(第2保護層)(14)とからなる。連接用ブリッジ(3)は、ジャケット(14)と一体に形成されている。
 このプラスチック光ファイバコード(1)は、高速の伝送速度を得ることができるように、4本のPOF(2)からなる4心テープ構造とされている。ただし、従来の4心コードは、4本が横一列の偏平状態が保持されるように樹脂で固めた構造とされているのに対し、このプラスチック光ファイバコード(1)によると、図1に示す4本のPOF(2)が横一列に並んだ偏平状態と、図2に示す4本のPOF(2)が連接用ブリッジ(3)を内側にして二列二層に並んだ状態(全体として断面略円形または断面略方形のまるまった状態)とに変形可能となっている。
 テレビ内配線等では、4心テープ構造のプラスチック光ファイバコード(1)を端部または適宜な中間部で2心または単心とすることがあり、各連接用ブリッジ(3)を裂くことで、4心テープ構造を容易に単心に分離することができる。
 なお、複数のPOF(2)の隣り合うもの同士の隙間を実質的に0とすることで、連接用ブリッジ(3)が各POF(2)の最下点~最下点よりも90°上部(好ましくは最下点よりも45°上部)の点同士をつなぐものであっても、上記作用効果を得ることができる。
 図3は、この発明によるプラスチック光ファイバコード(1)の使用の1形態としての光モジュール(21)を示している。図3において、光モジュール(21)は、ベース基板(22)と、ベース基板(22)上に所定間隔で配置された4つの正方形板状発光素子(23)と、4つの発光素子(23)を固定するための透明の樹脂モールド材(24)と、各発光素子(23)を駆動するドライバIC(25)と、プラスチック光ファイバコード(1)の各POF(2)と各発光素子(23)とを位置合わせするための断面円形のPOF挿入孔が形成されたPOFコネクタ(26)とを備えている。
 発光素子(23)には、図3(b)に誇張して示すように、実装誤差があり、このため、従来は、光モジュール(21)における結合損失が大きくなるという問題があり、プラスチック光ファイバコード(1)の各POF(2)とPOFコネクタ(26)との接続に際し、位置のずれを抑える必要があることから、接続に手間を要するという問題もあった。
 そこで、この実施形態によるプラスチック光ファイバコード(1)では、次のような構成とすることで、上記問題を解消している。
1.POF(2)のコア径が100μm以上かつ300μm以下であること。
2.POF(2)の線径が2mm以下であること。
3.POF(2)の開口数が0.25以上であること。
4.プラスチック光ファイバコード(1)は、多心構造でテープ型(リボン型)とし、POF(2)同士の拘束力(連接用ブリッジ(3)の強度)は、0.3~0.5kgfであること。
5.プラスチック光ファイバコード(1)を光源に接続するPOFコネクタ(26)は、フラット型であること。
 なお、上記の開口数は、各プラスチック光ファイバの500~850nmの少なくともいずれか一つの波長におけるNA=(n -n 1/2
(式中、光ファイバコア中心部の屈折率:n、光ファイバクラッド中で最も屈折率の低い部分の屈折率:n)で表される。
 上記1~5の構成により得られる効果は、次のようなものである。
 POF(2)のコア径が100μm以上かつ300μm以下であることにより、POFコネクタ(26)との接続精度をラフなものとしても、結合損失を所定値以下に抑えることができる。例えば、POF(2)のコア径を100μmとすることで、発光素子(23)のサイズが10μmで実装誤差が±50μmであっても、結合損失を3dB以下に抑えることができる。
 POF(2)の線径が2mm以下であることにより、取扱いが容易となる。
 POF(2)の開口数が0.25以上であることにより、後述するように、曲げに対しての損失が抑えられ、配線を統一することが可能となる。
 プラスチック光ファイバコード(1)が多心構造のテープ型(リボン型)で、POF(2)同士の拘束力(連接用ブリッジの強度)が0.3~0.5kgfであることにより、曲げやすくて、取扱いが容易となり、また、POFコネクタ(26)との接続時の加工もしやすいものとなる。
 プラスチック光ファイバコード(1)を光源に接続するPOFコネクタ(26)がフラット型であることより、プラスチック光ファイバコード(1)の接続部分の薄型構造が可能となる。
 テレビ内配線等に使用するに際して、プラスチック光ファイバコード(1)は、図1および図2に示す実施形態に限られるものではなく、種々の形態が可能である。例えば、複数のPOF(2)が隣り合うもの同士の隙間は、0またはわずかな隙間に限定されるものではなく、以下に示すように、POF(2)の第2保護層(14)の径の3倍以下の範囲で大きくするようにしてもよい。
 図4および図5は、この発明によるプラスチック光ファイバコードの第2実施形態を示している。
 プラスチック光ファイバコード(1)は、複数(図示は4本)のPOF(2)と、POF(2)同士を連接する連接用ブリッジ(4)とからなる。
 第2実施形態のプラスチック光ファイバコード(1)は、連接用ブリッジ(4)の大きさが第1実施形態のものと相違するもので、複数のPOF(2)は、隣り合うもの同士の隙間がPOF(2)の最大径にほぼ等しくなるように横一列に偏平状態で配置されており、連接用ブリッジ(4)は、第1実施形態の連接用ブリッジ(3)よりも、POF(2)の最大径分大きくなされて、このようにして配置された各POF(2)の最下点同士をつなぐように設けられている。
 このようにして隙間を大きくすることにより、複数のPOF(2)は、図2に示すのとは逆方向の状態、すなわち、連接用ブリッジ(4)の内側にくるようにしてまるまった状態に変形(図4の状態において直線状の連接用ブリッジ(4)をU字状に変形)させることができる。
 したがって、この第2実施形態のプラスチック光ファイバコード(1)によると、図4に示す4本のPOF(2)が横一列に並んだ偏平状態と、図5に示す4本のPOF(2)が連接用ブリッジ(4)を外側にして二列二層に並んだ状態(全体として断面略円形または断面略方形のまるまった状態)とに変形可能となっており、第1実施形態と同様に、プラスチック光ファイバコード(1)を孔に通す作業を容易に行うことができるという効果が得られている。したがって、プラスチック光ファイバコード(1)の使用の形態に応じて隙間の大きさを所定の値とし、第1実施形態のものと第2実施形態のものとを使い分けることで、より広範囲な用途に対応することができる。
 図6および図7は、この発明によるプラスチック光ファイバコードの第3実施形態を示している。
 プラスチック光ファイバコード(1)は、複数(図示は4本)のPOF(2)と、POF(2)同士を連接する連接用ブリッジ(5)とからなる。
 この実施形態のプラスチック光ファイバコード(1)は、連接用ブリッジ(5)が各POF(2)の中央部同士を連接するようになされている点で、第1および第2実施形態のものと相違している。これに伴って、隣り合うPOF(2)同士の隙間は、各POF(2)の径よりも若干小さく設定されている。
 このプラスチック光ファイバコード(1)によると、図6に示す4本のPOF(2)が横一列に並んだ偏平状態と、図7に示す4本のPOF(2)が二列二層に並んだ状態(全体として断面略円形または断面略方形のまるまった状態)とに変形可能となっており、第1および第2実施形態と同様に、プラスチック光ファイバコード(1)を孔に通す作業を容易に行うことができるという効果が得られている。
 第3実施形態のプラスチック光ファイバコード(1)は、第1および第2のものでは、上下を区別する必要があるのに対し、上下を区別する必要がない(図6に示した状態から図7に示した逆U字状に変形させることができるだけでなく、図示省略したが、U字状に変形させることもできる)という利点を有しており、上下の区別を避けたい用途において好適に使用することができる。第1および第2実施形態のものでは、上下の区別がはっきりして、接続の際に左右の接続方向を見分けやすいという利点があり、これらを用途に応じて使い分けることにより、種々の用途に適用することができる。
 上記の第1から第3までの実施形態に示したプラスチック光ファイバコード(1)によると、これに外部から力を加えることなくフリーの状態で水平面、垂直面などに沿わせて設置した場合、複数のPOF(2)は、横一列に配置されて、偏平状態での使用が可能となり、合成樹脂製とされた連接用ブリッジ(3)(4)(5)が弾性変形することで、全体として断面略円形または断面略方形のまるまった状態に容易に変形させることができ、このように変形させることで、プラスチック光ファイバコード(1)を孔、配管内等に通す作業を容易に行うことができるものとなっており、これに上述した上記1~5の構成およびこれにより得られる効果が付与されることで、光ファイバを介して光信号を伝送する光伝送装置(光リンクシステム)における映像信号伝送用に適したものとなる。上記プラスチック光ファイバコード(1)は、種々の光モジュールと組み合わせて使用することができ、その用途は限定されないが、高さ制限があって配線スペースの制約が厳しいテレビ内配線等の映像関連光リンクシステムに特に適している。
 なお、テレビ内配線に使用される場合、POF(2)の波長としては、500~850nmであることが好ましく、500~750nm(可視光線)であってもよいし、780~850nmの光源(赤外線)であってもよい。
 表1に示すプラスチック光ファイバを用いたプラスチック光ファイバコードを作製し、CCDカメラを使用して伝送評価を行った。プラスチック光ファイバコード(1)は、図1に示した第1実施形態のものとし、オーバークラッド(第1保護層)(13)の直径を750μmとした。コア組成は、実施例1から7までが共通で、クロロスチレン(ClSt)が70%、メタクリル酸メチル(MMA)が30%とされている。実施例8は、コア中心部の組成が、クロロスチレン(ClSt)が66%、メタクリル酸メチル(MMA)が28%、リン酸トリフェニル(TPP)が6%とされており、中心部から半径方向に向かってTPP濃度を減少させることにより、コアに屈折率分布が形成されている。クラッド組成は、実施例1から5までおよび実施例8が同じで、スチレン(St)が40%、メタクリル酸メチル(MMA)が60%とされており、実施例6および7は、実施例1から5までおよび実施例8に比べて、スチレンを増やして、メタクリル酸メチルをその分減らしている。また、第1保護層及び第2保護層の素材は、それぞれポリカーボネート及び低密度ポリエチレンとしている。コード長は、実施例1から7までが同じで3mであり、実施例8は5mである。開口数(NA)は、ファーフィールドパターン測定器を用いて820nmでのものを測定した。
Figure JPOXMLDOC01-appb-T000001
 伝送評価では、CCDカメラから出力されるアナログ信号をデジタル変換し、さらにシリアル化した後、LVDS方式で伝送を行うようにした。アナログ変換、シリアル化、LVDS対応信号変換は、市販の通信用ボードを用いた。それぞれの実施例で、半径10mmで90度曲げを8箇所あるいは16箇所設けた配線とし、受光素子の前にレンズを設置した場合と設置しなかった場合についてそれぞれ評価した。評価は、CCDカメラの映像をリアルタイムで伝送し、ディスプレイに表示できるかどうかで行った。発光側の接続を100個の光モジュールに対して行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、○、△および×は、それぞれ次の内容を意味している。
○:100個の接続全てでディスプレイに表示することができた。
△:示した数字の個数の接続で、ディスプレイに表示することができなかった。
×:ディスプレイに表示することができなかった。
 実施例3の伝送評価結果から、コア径が80μmであると、伝送性能を確保できない可能性があり、コア径は100μm以上とすることが好ましいことが分かる。また、実施例5の伝送評価結果から、コア径が320μmであると、受光レンズがない場合の伝送性能を確保できない可能性が強く、コア径は300μm以下とすることが好ましいことが分かる。また、実施例6および7の伝送評価結果から、開口数が0.22であると、伝送性能を確保できない可能性が強く、開口数を0.28まで大きくすると、完全ではないがほぼ確保できることから、開口数は0.25以上、特に0.30以上とすることが好ましいことが分かる。また、実施例8の伝送評価結果から、コアが屈折率分布を有することが好ましいことが分かる。
 この発明によるプラスチック光ファイバコードを使用することで、配線作業を容易に行うことができるとともに、結合損失を所定値以下に抑えることができるので、テレビ内配線等の映像関連光リンクシステムの性能向上に寄与できる。

Claims (5)

  1.  複数本のプラスチック光ファイバをテープ状に一体化したプラスチック光ファイバコードにおいて、各プラスチック光ファイバは、コア、コアを囲むクラッド、クラッドを囲む第1保護層および第1保護層を囲む第2保護層からなり、プラスチック光ファイバ同士は、第2保護層と一体に形成された連接用ブリッジを介して接続されていることを特徴とするプラスチック光ファイバコード。
  2.  各プラスチック光ファイバのコア径が100μm以上かつ300μm以下であることを特徴とする請求項1のプラスチック光ファイバコード。
  3.  各プラスチック光ファイバの500~850nmの少なくともいずれか一つの波長における
     NA=(n -n 1/2
    (式中、光ファイバコア中心部の屈折率:n、光ファイバクラッド中で最も屈折率の低い部分の屈折率:n
    で表される開口数(NA)が0.25以上であることを特徴とする請求項1または2のプラスチック光ファイバコード。
  4.  少なくとも1本のプラスチック光ファイバのコアが屈折率分布を有することを特徴とする請求項1~3のいずれか1項に記載のプラスチック光ファイバコード。
  5.  映像関連光リンクシステムに使用される請求項1~4のいずれか1項に記載のプラスチック光ファイバコード。
PCT/JP2010/052670 2009-03-25 2010-02-23 プラスチック光ファイバコード WO2010109998A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505934A JPWO2010109998A1 (ja) 2009-03-25 2010-02-23 プラスチック光ファイバコード

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009073938 2009-03-25
JP2009-073938 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010109998A1 true WO2010109998A1 (ja) 2010-09-30

Family

ID=42780693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052670 WO2010109998A1 (ja) 2009-03-25 2010-02-23 プラスチック光ファイバコード

Country Status (3)

Country Link
JP (1) JPWO2010109998A1 (ja)
TW (1) TW201126219A (ja)
WO (1) WO2010109998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121163A (ja) * 2010-12-06 2012-06-28 Seiko Epson Corp 液体噴射装置
JP2013073029A (ja) * 2011-09-28 2013-04-22 Asahi Glass Co Ltd 難燃プラスチック光ファイバリボン
JP2016148709A (ja) * 2015-02-10 2016-08-18 住友電気工業株式会社 光ファイバユニットおよび光ケーブル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218247A (ja) * 2012-04-12 2013-10-24 Shin Etsu Chem Co Ltd 光ファイバ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419747U (ja) * 1977-07-11 1979-02-08
JPS6320113U (ja) * 1986-07-21 1988-02-09
JPS6396518U (ja) * 1987-10-31 1988-06-22
JPH03100609A (ja) * 1989-09-14 1991-04-25 Mitsubishi Rayon Co Ltd フラットケーブル
JPH0667071A (ja) * 1992-08-24 1994-03-11 Hitachi Cable Ltd テープユニット型光ファイバ及び光ケーブル
JPH1195044A (ja) * 1997-09-19 1999-04-09 Asahi Chem Ind Co Ltd 高naプラスチック光ファイバ素線及びケーブル
JP2001051168A (ja) * 1999-08-12 2001-02-23 Furukawa Electric Co Ltd:The プラスチック光ファイバケーブル
JP2006139209A (ja) * 2004-11-15 2006-06-01 Fuji Photo Film Co Ltd 光ファイバコード及び光ファイバコードと光コネクタとの接続方法
JP2006154448A (ja) * 2004-11-30 2006-06-15 Fuji Photo Film Co Ltd 光ファイバコード
WO2007083553A1 (ja) * 2006-01-17 2007-07-26 Fujifilm Corporation プラスチック光ファイバケーブル及びこれを用いた通信システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419747U (ja) * 1977-07-11 1979-02-08
JPS6320113U (ja) * 1986-07-21 1988-02-09
JPS6396518U (ja) * 1987-10-31 1988-06-22
JPH03100609A (ja) * 1989-09-14 1991-04-25 Mitsubishi Rayon Co Ltd フラットケーブル
JPH0667071A (ja) * 1992-08-24 1994-03-11 Hitachi Cable Ltd テープユニット型光ファイバ及び光ケーブル
JPH1195044A (ja) * 1997-09-19 1999-04-09 Asahi Chem Ind Co Ltd 高naプラスチック光ファイバ素線及びケーブル
JP2001051168A (ja) * 1999-08-12 2001-02-23 Furukawa Electric Co Ltd:The プラスチック光ファイバケーブル
JP2006139209A (ja) * 2004-11-15 2006-06-01 Fuji Photo Film Co Ltd 光ファイバコード及び光ファイバコードと光コネクタとの接続方法
JP2006154448A (ja) * 2004-11-30 2006-06-15 Fuji Photo Film Co Ltd 光ファイバコード
WO2007083553A1 (ja) * 2006-01-17 2007-07-26 Fujifilm Corporation プラスチック光ファイバケーブル及びこれを用いた通信システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121163A (ja) * 2010-12-06 2012-06-28 Seiko Epson Corp 液体噴射装置
JP2013073029A (ja) * 2011-09-28 2013-04-22 Asahi Glass Co Ltd 難燃プラスチック光ファイバリボン
JP2016148709A (ja) * 2015-02-10 2016-08-18 住友電気工業株式会社 光ファイバユニットおよび光ケーブル

Also Published As

Publication number Publication date
JPWO2010109998A1 (ja) 2012-09-27
TW201126219A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US9008479B2 (en) Multicore fiber
US9389381B2 (en) Fiber optic ribbon cable
EP2056148B1 (en) Optical fiber cables
US20140363134A1 (en) Optical fiber cable assembly comprising optical tracer fiber
EP3699661A1 (en) Fiber optic cables and methods for forming the same
US20060291787A1 (en) Fiber optic cable having strength component
WO2010109998A1 (ja) プラスチック光ファイバコード
US20130251321A1 (en) Optical Fiber Cables
US6188824B1 (en) Optical signal transmission multicore plastic optical fiber
US7720338B2 (en) Optical fiber cables
JP2012083418A (ja) 光ファイバコード
JP2016148709A (ja) 光ファイバユニットおよび光ケーブル
EP3812815B1 (en) Optical fiber cable
US20080240660A1 (en) Fiber optic structures having an attachment portion
JPH01251005A (ja) 分割型光ファイバテープ
US20220113476A1 (en) Optical connectors and optical ferrules
KR20130106818A (ko) 플라스틱 광파이버 유닛 및 그것을 사용한 플라스틱 광파이버 케이블
JP5095328B2 (ja) 光送信モジュール
JP5323189B2 (ja) プラスチック光ファイバコードユニット
WO2018150867A1 (ja) マルチコアファイバ、及び、これを用いたマルチコアファイバテープ
US20080124032A1 (en) System and Method of Protecting Optical Cables
JP2020194065A (ja) 光ファイバテープ心線および光ファイバケーブル
JP2011253095A (ja) L字型光導波路デバイス
US7043107B2 (en) Flexible optical connecting part
Bickham Optical fibers for high density interconnects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755799

Country of ref document: EP

Kind code of ref document: A1