WO2007083372A1 - 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置 - Google Patents

歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置 Download PDF

Info

Publication number
WO2007083372A1
WO2007083372A1 PCT/JP2006/300658 JP2006300658W WO2007083372A1 WO 2007083372 A1 WO2007083372 A1 WO 2007083372A1 JP 2006300658 W JP2006300658 W JP 2006300658W WO 2007083372 A1 WO2007083372 A1 WO 2007083372A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
discharge
dental
restoration
dispersion
Prior art date
Application number
PCT/JP2006/300658
Other languages
English (en)
French (fr)
Inventor
Michio Ito
Takamitsu Yoshida
Eiichirou Kidokoro
Takehiro Ochiai
Tomohide Sato
Hiroshi Kuriyama
Kohei Kitahara
Original Assignee
Yoshida Dental Mfg. Co., Ltd
Matsumoto Dental University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Dental Mfg. Co., Ltd, Matsumoto Dental University filed Critical Yoshida Dental Mfg. Co., Ltd
Priority to PCT/JP2006/300658 priority Critical patent/WO2007083372A1/ja
Priority to JP2007554772A priority patent/JP5308032B2/ja
Publication of WO2007083372A1 publication Critical patent/WO2007083372A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/09Composite teeth, e.g. front and back section; Multilayer teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0019Production methods using three dimensional printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • A61C5/77Methods or devices for making crowns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/72Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a method for manufacturing a dental ceramic restoration and a ceramic structure manufacturing apparatus.
  • FIG. 14 and FIG. 15 are flowcharts showing a first method for manufacturing a dental ceramic restoration, among conventional methods for manufacturing a dental ceramic restoration.
  • FIG. 16 is a view for explaining a ceramic structure manufacturing step S122 in the first method for manufacturing a dental ceramic restoration.
  • 16A is a side view showing the abutment tooth model A
  • FIG. 16B is a side view showing the ceramic structure C manufactured on the abutment tooth model A.
  • FIG. In FIG. 16 (b), symbols C to C are the cores after firing.
  • Non-Patent Document 1 for a restoration of dental ceramics consisting of core, cervical, dentin, enamel, and translucent.
  • the first method for manufacturing a dental ceramic restoration is as follows.
  • a dental ceramic restoration product manufacturing process S120 is a source of a ceramic dispersion preparation step S121 for preparing a ceramic dispersion liquid containing ceramic powder and water, and a dental ceramic restoration material.
  • the ceramic dispersion preparation step S121 for example, five types of ceramic dispersions (cores) are prepared so that a dental ceramic restoration consisting of, for example, a core, service strength, dentin, enamel and translucent is obtained after firing.
  • cores ceramic dispersions
  • One-use ceramic dispersion, servicing power A ceramic dispersion for water, a ceramic dispersion for dentin, a ceramic dispersion for enamel and a ceramic dispersion for translucent).
  • the ceramic structure firing step S123 the ceramic structure C produced on the abutment tooth model A is fired, and then separated from the abutment tooth model A to obtain a dental ceramic restoration. Manufacturing.
  • a highly accurate dental ceramics can be obtained by a skilled dental technician carrying out an operation of carefully producing a ceramic structure manually.
  • a restoration can be produced.
  • FIG. 17 and FIG. 18 are flowcharts showing a second method for manufacturing a dental ceramic restoration, among conventional methods for manufacturing a dental ceramic restoration.
  • FIG. 19 is a view for explaining the ceramic blank cutting step S222 in the second method for producing a dental ceramic restoration.
  • Fig. 19 (a) is a perspective view showing a ceramic blank cutting device 800
  • Fig. 19 (b) is a diagram showing a cut ceramic blank E
  • Fig. 19 (c) shows a cut ceramic blank F.
  • FIG. The ceramic blank F shown in Fig. 19 (c) becomes a dental ceramic restoration.
  • the second method for manufacturing a dental ceramic restoration includes a three-dimensional data acquisition step S210 for acquiring three-dimensional data necessary for manufacturing a dental ceramic restoration. And a dental ceramic restoration material production process S220 for producing a dental ceramic restoration material based on the three-dimensional data.
  • the acquisition of three-dimensional data can be performed by measuring the shape of the required part in the patient's mouth in a non-contact manner using a laser measuring device, or by using a plaster modeled on the required part in the patient's mouth. Shape This can be done by non-contact measurement using a laser measurement device, or by using a contact scanner to measure the shape of gypsum in the patient's mouth using a contact scanner. I'll do it.
  • the dental ceramic restoration product manufacturing process S220 includes a ceramic blank manufacturing process S221 for preparing ceramic blanks having the same composition as the dental ceramic restoration, and a ceramic blank cutting device.
  • the ceramic blanks cutting step S222 (Fig. 19 (Fig. 19 (3)) is obtained by cutting the ceramic blanks based on the three-dimensional data acquired in the three-dimensional data acquisition step S210. b)), and the ceramic blank E cut by the cutting tool 810 is cut off from the mounting portion 820 to remove the ceramic blank as a dental ceramic restoration (separated ceramic blank F shown in Fig. 19 (c)).
  • Step S223 is included (see, for example, Patent Documents 1 and 2).
  • the dental ceramic restoration is produced using ceramic blanks having a constant composition as a starting material. There is a problem that it is difficult to produce restorations.
  • FIG. 20 and FIG. 21 show a method for manufacturing such a third dental ceramic restoration. It is a chart.
  • FIG. 22 is a diagram showing a ceramic structure manufacturing apparatus 900 used in the third method for manufacturing a dental ceramic restoration.
  • FIG. 23 is a diagram for explaining the ceramic structure manufacturing step S332 in the third method for manufacturing a dental ceramic restoration.
  • FIG. 23 (a) is a side view showing an abutment tooth model 905, and
  • FIG. 23 (b) is a side view showing a ceramic structure 915 manufactured on the abutment tooth model 905.
  • FIG. 23 (a) is a side view showing an abutment tooth model 905
  • FIG. 23 (b) is a side view showing a ceramic structure 915 manufactured on the abutment tooth model 905.
  • the third method for manufacturing a dental ceramic restoration includes a three-dimensional data acquisition step S310 for acquiring three-dimensional data necessary for manufacturing a dental ceramic restoration. And an abutment tooth model manufacturing process S320 for manufacturing an abutment tooth model 905 which is a base for manufacturing a ceramic structure, and dental ceramics for manufacturing a dental ceramic restoration using the abutment tooth model 905 Including a restoration manufacturing process S330.
  • the acquisition of the three-dimensional data can be performed in the same manner as in the second method for manufacturing a dental ceramic restoration.
  • the abutment tooth model manufacturing step S320 can be performed in the same manner as in the first method for manufacturing a dental ceramic restoration.
  • a dental ceramic restoration product production process S330 is a source of a ceramic dispersion preparation step S331 for preparing a ceramic dispersion liquid containing ceramic powder and water, and a dental ceramic restoration material.
  • a plurality of ceramic dispersions are sequentially discharged and built on the abutment tooth model 905 (see FIG. 23 (a)) to build up on the abutment tooth model 905.
  • a ceramic structure 915 that is the basis for the restoration of dental ceramics is manufactured (see FIG. 23 (b)).
  • O Discharge and build-up operations are performed using a ceramic structure manufacturing apparatus 900 shown in FIG.
  • Ceramic structure firing step S333 the ceramic structure 915 produced on the abutment tooth model 905 is fired. Thereafter, the fired ceramic structure 915 is separated from the abutment tooth model 905 to produce a dental ceramic restoration.
  • Ceramic structure firing step S333 is the same as in the first method for manufacturing a dental ceramic restoration It is.
  • a ceramic structure can be produced using a plurality of types of ceramic dispersions. It becomes possible to do.
  • the third method for manufacturing a dental ceramic restoration since it is a manufacturing method that does not include a ceramic blanks cutting process, it is possible to solve the problem that the material is wasted. Become.
  • the ceramic structure is manufactured by using the abutment tooth model, a portion corresponding to the bottom surface side of the dental ceramic restoration is obtained. Can be formed with high accuracy.
  • Non-Patent Document 1 Edited by Kei Nishiyama et al., Standard Dental Science and Engineering, Revised Edition, Gakken Shoin Co., Ltd., October 1, 2000, pages 306-309
  • Patent Document 1 US Patent Application Publication No. 2005Z0266775 Specification
  • Patent Document 2 Pamphlet of International Publication No. WO2005Z102206
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-340813
  • An object of the present invention is to provide a method for manufacturing a ceramic restoration material for use. It is another object of the present invention to provide a ceramic structure manufacturing apparatus capable of suitably carrying out the method for manufacturing a dental ceramic restoration according to the present invention. Means for solving the problem
  • the inventors of the present invention can accurately and accurately measure the side surface of the ceramic structure in the ceramic structure manufacturing process in the third method for manufacturing a dental ceramic restoration.
  • the cause of this is that when the side surface of the ceramic structure is formed using the conventional ceramic structure manufacturing apparatus 900, the ceramic dispersion liquid It was found that the discharge part force is also to discharge the ceramic dispersion with the discharge direction and the normal direction of the discharge surface of the ceramic structure forming a large angle.
  • the ceramic dispersion liquid that has been applied to the surface to be discharged is projected on the surface to be discharged by projecting the discharge direction of the ceramic dispersion liquid onto the surface to be discharged.
  • the side surface of the ceramic structure cannot be formed with high accuracy because it moves along the “vector direction to be obtained”.
  • the present inventors also discharge the ceramic dispersion with the discharge force in a state where the discharge direction of the ceramic dispersion and the normal direction of the surface to be discharged are at a large angle. Therefore, it is conceived that the above problem can be solved by discharging the ceramic dispersion liquid in a state where the discharge direction of the ceramic dispersion liquid and the normal direction of the surface to be discharged are substantially matched.
  • the present invention has been completed.
  • a method for producing a dental ceramic restoration according to the present invention includes a ceramic dispersion preparation step for preparing a ceramic dispersion containing ceramic powder and water, and a method for producing a dental ceramic restoration.
  • a ceramic structure manufacturing step of manufacturing a ceramic structure by depositing the ceramic powder on the discharge surface by discharging the ceramic dispersion liquid toward the discharge surface based on the three-dimensional data; In the ceramic structure manufacturing process, the ceramic dispersion liquid is discharged in a state in which the discharge direction of the ceramic dispersion liquid and the normal direction of the discharge surface are substantially matched.
  • the ceramic dispersion liquid is discharged in a state where the discharge direction of the ceramic dispersion liquid and the normal direction of the discharge target surface are substantially matched. Therefore, the ceramic dispersion on the surface to be discharged Thus, the movement along the “vector direction obtained by projecting the discharge direction of the ceramic dispersion liquid onto the discharge target surface” is suppressed. As a result, according to the method for producing a dental ceramic restoration of the present invention, the side surface of the ceramic structure can be formed with high accuracy.
  • the dental ceramic restoration is automatically made based on the three-dimensional data.
  • Productivity can be increased by manufacturing a ceramic restoration.
  • a ceramic structure is produced using a plurality of types of ceramic dispersions, as in the case of the third conventional method for producing a ceramic restoration. This makes it possible to produce a dental ceramic restoration with a subtle hue.
  • the manufacturing method does not include the ceramic blank cutting IJ process. Therefore, it is possible to solve the problem of wasteful materials.
  • a ceramic structure is produced using an abutment tooth model as in the case of the third conventional method for producing a ceramic restoration. Therefore, the portion corresponding to the bottom surface side of the dental ceramic restoration can be formed with high accuracy.
  • the state in which the discharge direction of the ceramic dispersion and the normal direction of the discharge target surface substantially coincide with each other means that the discharge direction of the ceramic dispersion and the discharge target A state where the normal direction of the discharge surface is 20 degrees or less.
  • the ceramic dispersion with the discharge direction of the ceramic dispersion and the normal direction of the surface to be discharged being 10 degrees or less, and the discharge direction of the ceramic dispersion and the discharge target. 5 degrees from the normal direction of the surface It is more preferable to discharge the ceramic dispersion liquid in the state described below. It is more preferable to discharge the ceramic dispersion liquid in a state where the discharge direction of the ceramic dispersion liquid and the normal direction of the surface to be discharged are 2 degrees or less. .
  • an industrial inkjet technique can be used as a method for discharging a ceramic dispersion toward a discharge surface.
  • a discharge unit using a piezoelectric method, a discharge unit using a bubble method, or a discharge unit using an electrostatic method can be used.
  • the discharge direction of the ceramic dispersion is a direction in which the discharge unit discharges the ceramic dispersion with a nozzle force.
  • the actual discharge direction of the ceramic dispersion depends on the nozzle structure.
  • the surface of the abutment tooth model becomes a discharge surface, and at the end of the ceramic structure manufacturing process.
  • the surface of the ceramic structure formed on the abutment tooth model is the surface to be discharged.
  • a ceramic dispersion a force using a ceramic powder and water is used. Besides these, a known clay adjusting agent, surfactant, Those containing a dispersant, a colorant, and other components can also be used.
  • the content of the ceramic powder in the ceramic dispersion is preferably 1% to 60% by weight, more preferably 5% to 50% by weight, and more preferably 10% to 40% by weight.
  • the discharge amount of the ceramic dispersion liquid is preferably within the range of 100 ⁇ 1 to 1 ⁇ 1.
  • the ceramic powder includes, for example, silica, alumina, and a flux (for example, K 0, Na 0, CaO, B 2 O, etc.).
  • the alumina silica porcelain which has can be used preferably.
  • the average particle size of the ceramic powder is not particularly limited, but those within the range of 0.1 m to 10 ⁇ m can be preferably used.
  • the ceramic constituting the ceramic dispersion is formed.
  • Lamix powder will be deposited on the surface to be discharged.
  • the ceramic powder can be built up in a predetermined shape by repeating the discharge and deposition process.
  • the method for producing a dental ceramic restoration according to the present invention preferably further includes a ceramic structure firing step for producing a dental ceramic restoration by firing the produced ceramic structure.
  • the ceramic structure firing step is preferably performed at a temperature in the range of 900 ° C to 1200 ° C! /, .
  • the three-dimensional data required for manufacturing the dental ceramic restoration is obtained from a patient. It is preferable to further include a data acquisition process and an abutment tooth model manufacturing process for manufacturing an abutment tooth model that is a base for manufacturing a ceramic structure.
  • the acquisition of the three-dimensional data in the three-dimensional data acquisition step can be performed in the same manner as in the case of the second conventional method for manufacturing a dental ceramic restoration.
  • a well-known method can be used for the manufacturing method of the abutment tooth model in the abutment tooth model manufacturing process.
  • known materials for example, various porcelain materials such as feldspar, quartz and porcelain, alumina, zircoia, titanium oxide, magnesium oxide and the like can be used.
  • the discharge direction of the ceramic dispersion liquid can be obtained by appropriately moving and rotating the abutment tooth model. It is possible to discharge the ceramic dispersion liquid in a state in which the normal direction of the surface to be discharged and the normal direction of the surface to be discharged are always substantially matched.
  • a discharge unit for discharging the ceramic dispersion liquid is appropriately moved and rotated.
  • the ceramic dispersion liquid can be discharged in a state in which the discharge direction of the ceramic dispersion liquid and the normal direction of the surface to be discharged are always substantially matched.
  • the nozzle tip portion in a desired posture can be arranged at a desired position with respect to the surface to be discharged.
  • the ceramic dispersion is approximately lead-free. It is preferable to discharge along the straight direction.
  • the substantially vertical direction means a direction within 10 degrees from the vertical direction.
  • the traces of the ceramic dispersion until reaching the surface to be discharged can be made almost straight. From this viewpoint, it is preferable to discharge the ceramic dispersion along the direction within 5 degrees from the vertical direction, and it is more preferable to discharge the ceramic dispersion along the direction within 2 degrees from the vertical direction. More preferably, the ceramic dispersion liquid is discharged along a direction within 1 degree from the vertical direction.
  • the ceramic dispersion liquid can be discharged downward or the ceramic dispersion liquid is discharged upward as long as it is substantially along the vertical direction. Force that can be discharged Discharge the ceramic dispersion upward More preferably.
  • the surface area of the ceramic powder can be reduced by reducing the rate at which the ceramic dispersion that has been applied spreads on the surface to be discharged, enabling the manufacture of ceramic structures with even higher accuracy. Because it becomes.
  • the ceramic in the method for producing a dental ceramic restoration according to any one of (1) to (4) above, the ceramic is dispersed in the ceramic dispersion. It is preferable to discharge the ceramic dispersion while applying ultrasonic waves to the ceramic dispersion in the discharge unit so that the powder does not settle.
  • the ceramic powder is less likely to settle in the ceramic dispersion liquid, and hence excellent discharge of the ceramic dispersion liquid can be realized.
  • the content of the ceramic powder in the ceramic dispersion can be increased, and the time for manufacturing the ceramic structure can be shortened.
  • the ceramic dispersion liquid is discharged. It is preferable to remove moisture by irradiating the region including the region adhering to the surface with laser light.
  • the ceramic dispersion contains a predetermined amount of water. Therefore, by using the above-described method, it is possible to deposit ceramic powder satisfactorily on the surface to be ejected by evaporating an appropriate amount of water dispersed on the surface to be ejected.
  • the laser beam it is preferable to intermittently irradiate the laser beam in synchronization with the timing at which the ceramic dispersion reaches the surface to be ejected. If the laser beam is continuously irradiated, the surface to be ejected will be overheated more than necessary, and the ceramic dispersion liquid that has landed on the surface to be ejected will splatter and the ceramic powder will be deposited on the surface to be ejected. This is because it may not be possible to deposit well.
  • the ceramic powder is discharged onto the discharge surface.
  • the ceramic powder is preferably pre-fired by irradiating a region including the region deposited on the laser beam.
  • the density of the ceramic structure to be manufactured can be increased.
  • the ceramic structure baking step is performed after the ceramic structure manufacturing step, the shrinkage rate of the ceramic structure is reduced, and a dental ceramic restoration having high dimensional accuracy can be manufactured.
  • the laser light irradiation can be performed at an arbitrary timing.
  • laser light can be irradiated every time the ceramic powder reaches a predetermined layer thickness (for example, 50 m), or laser light can be irradiated every time ceramic structures having different compositions are formed.
  • the laser beam irradiation apparatus for irradiating laser light is not particularly limited, but a YAG laser, A CO laser or the like can be preferably used.
  • a plurality of types of ceramic dispersions are prepared in the ceramic dispersion preparation step.
  • the discharge control of the ceramic dispersion includes control of the discharge portion of the ceramic dispersion, control of the discharge angle of the ceramic dispersion, and control of the discharge amount of the ceramic dispersion.
  • the ceramic structure manufacturing apparatus of the present invention discharges a ceramic dispersion containing ceramic powder and water based on the three-dimensional data for manufacturing a dental ceramic restoration.
  • the ceramic dispersion liquid discharge device includes a ceramic dispersion liquid discharge device that discharges toward the surface, and an abutment tooth model support device that supports an abutment tooth model that serves as a base for manufacturing the ceramic structure. Function for controlling relative positional relationship between discharge unit and discharge target surface, discharge direction of ceramic dispersion and method of discharge target surface And having a function of substantially match the direction.
  • the ceramic dispersion liquid can be discharged in a state where the discharge direction of the ceramic dispersion liquid and the normal direction of the discharge target surface are substantially matched. Therefore, it is possible for the ceramic dispersion liquid that has landed on the surface to be discharged to move along the “vector direction obtained by projecting the discharge direction of the ceramic dispersion liquid onto the surface to be discharged” on the surface to be discharged. It will be suppressed. As a result, the side surface of the ceramic structure can be formed with high accuracy.
  • the abutment tooth model support device has a function of controlling a relative positional relationship between the discharge unit and the discharge target surface. And preferably having a function of making the discharge direction of the ceramic dispersion substantially coincide with the normal direction of the surface to be discharged.
  • the abutment tooth model support device is configured to translate the abutment tooth model along three axes orthogonal to each other. It is preferable to have a model moving function and an abutment tooth model rotating function for rotating the abutment tooth model around two axes orthogonal to each other.
  • the three axes orthogonal to each other (for example, the X axis, the y axis, and the z axis) are used.
  • the discharge direction of the ceramic dispersion liquid and the discharge surface It is possible to discharge the ceramic dispersion liquid in a state where the normal direction is always substantially coincident.
  • the ceramic dispersion liquid discharge device has a function of retracting a nozzle of the ceramic dispersion liquid discharge device.
  • the ceramic dispersion liquid discharge device controls a relative positional relationship between the discharge unit and the discharge target surface, and the It is preferable to have a function of making the discharge direction of the ceramic dispersion substantially coincide with the normal direction of the surface to be discharged.
  • the ceramic dispersion liquid discharge device moves the discharge unit in parallel along three axes orthogonal to each other. It is preferable to have a discharge unit moving function that rotates the discharge unit around two axes orthogonal to each other.
  • the three axes orthogonal to each other (for example, the X axis, the y axis, and the z axis) are used.
  • the discharge direction of the ceramic dispersion and the normal direction of the discharge surface It is possible to discharge the ceramic dispersion liquid in a state in which these are always substantially matched.
  • the ceramic dispersion liquid discharge device includes a plurality of discharge units having different bending angles at the nozzle tip portions.
  • the ceramic structure manufacturing apparatus selects a predetermined discharge unit from the plurality of discharge units, and disposes the discharge unit at a predetermined position with respect to the abutment tooth model support device. It preferably has a function.
  • the ceramic dispersion liquid discharge device is configured such that the ceramic powder is contained in the ceramic dispersion. It is preferable to have a function of discharging the ceramic dispersion while applying ultrasonic waves to the ceramic dispersion in the discharge unit so as not to settle.
  • the ceramic powder is less likely to settle in the ceramic dispersion, and hence excellent discharge of the ceramic dispersion can be realized.
  • the content of the ceramic powder in the ceramic dispersion can be increased, and the time for manufacturing the ceramic structure can be shortened.
  • the ceramic dispersion liquid discharged onto the abutment tooth model or the abutment tooth model It is preferable to further include a laser beam irradiation device that irradiates a predetermined portion of the deposited ceramic powder with a laser beam.
  • a laser beam irradiation device that irradiates a predetermined portion of the deposited ceramic powder with a laser beam.
  • the laser power and irradiation method required for laser light irradiation differ greatly between the case where water is evaporated and the case where ceramic powder is pre-fired. It is also preferable to use different types of laser light irradiation devices for the case of evaporating water and pre-sintering of ceramic powder, and further include a control device for controlling the laser power and irradiation method under optimum conditions. Is also preferable.
  • the abutment tooth model support device is configured such that the ceramic dispersion liquid discharge device discharges the ceramic dispersion liquid. It is preferable to have a function of giving vibration to the surface to be ejected.
  • the ceramic dispersion liquid discharge device includes a plurality of discharge units that discharge different types of ceramic dispersion liquids.
  • the ceramic structure manufacturing apparatus selects a predetermined discharge unit from the plurality of discharge units, and disposes the discharge unit at a predetermined position with respect to the abutment tooth model support device. It preferably has a function.
  • FIG. 1 is a flowchart showing a method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 2 is a flowchart showing a method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 3 is a diagram showing a ceramic structure manufacturing apparatus 100 used in the method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 4 is a view for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 5 is a view for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 6 is a diagram for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 7 is a diagram schematically showing a state in which moisture is removed by irradiating a laser beam L in a ceramic structure manufacturing step S32 in the first embodiment.
  • FIG. 8 The laser beam L is irradiated in the ceramic structure manufacturing process S32 in the first embodiment.
  • FIG. 2 is a diagram schematically showing a state in which ceramic powder is pre-fired by shooting.
  • FIG. 9 is a view for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 1.
  • FIG. 10 is a view for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 2.
  • FIG. 11 is a view for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 3.
  • FIG. 12 shows a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 4.
  • FIG. 13 is a view shown for explaining a ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to Embodiment 5.
  • FIG. 14 is a flowchart showing a method for manufacturing a first dental ceramic restoration.
  • FIG. 15 is a flowchart showing a method for producing a first dental ceramic restoration.
  • FIG. 16 is a view for explaining the ceramic structure manufacturing step S 122 in the first method for manufacturing a dental ceramic restoration.
  • FIG. 17 is a flowchart showing a method for producing a second dental ceramic restoration.
  • FIG. 18 is a flowchart showing a method for manufacturing a second dental ceramic restoration.
  • FIG. 19 is a view for explaining a ceramic blank cutting step S222 in the second method for producing a dental ceramic restoration.
  • FIG. 20 is a flowchart showing a third method for manufacturing a dental ceramic restoration.
  • FIG. 21 is a flowchart showing a third method for manufacturing a dental ceramic restoration.
  • FIG. 22 is a view showing a ceramic structure manufacturing apparatus 900 used in the third method for manufacturing a dental ceramic restoration.
  • FIG. 23 is a view shown for explaining the ceramic structure manufacturing step S332 in the third method for manufacturing a dental ceramic restoration.
  • FIG. 1 and 2 are flowcharts showing a method for producing a dental ceramic restoration according to Embodiment 1.
  • FIG. FIG. 3 is a view showing a ceramic structure manufacturing apparatus 100 used in the method for manufacturing a dental ceramic restoration according to the first embodiment.
  • FIG. 3 is a view showing the discharge unit stocker 136 and the ceramic structure manufacturing apparatus 100 used in the method.
  • each of the discharge units 128b to 128e mounted on the discharge unit stocker 136 is shown with a size of about 1 Z2 of the discharge unit 128a attached to the discharge unit attachment portion 126! / RU
  • FIG. 4 is a view for explaining the ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to the first embodiment.
  • Fig. 4 (a) shows the abutment tooth model A.
  • FIG. 4 (b) is a side view showing a ceramic structure C manufactured on the abutment tooth model A.
  • symbols C to C denote cores after firing, respectively.
  • FIGS. 5 and 6 are views for explaining the ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to the first embodiment.
  • Fig. 5 (a) is a schematic view of the abutment tooth model A when the ceramic dispersion is being discharged to the tip, along the X axis
  • Fig. 5 (b) is the abutment tooth.
  • FIG. 6 is a schematic diagram when the state in which the ceramic dispersion liquid is discharged to the tip of model A is viewed along the y-axis.
  • Fig. 6 (a) is a schematic diagram of the state in which the ceramic dispersion is being discharged on the side surface of the abutment tooth model A along the X axis
  • Fig. 6 (b) is the abutment tooth.
  • FIG. 6 is a schematic diagram when the state in which the ceramic dispersion liquid is discharged to the side surface of the model A is viewed along the y-axis.
  • FIG. 7 is a diagram schematically showing how moisture is removed by irradiating the laser beam L in the ceramic structure manufacturing step S32 in the first embodiment
  • FIG. 8 shows the ceramic in the first embodiment.
  • ceramic powder is irradiated with laser light L
  • FIG. 9 is a view for explaining the ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to the first embodiment.
  • a discharge unit for discharging a predetermined ceramic dispersion liquid from a plurality of discharge units 128a to 128e for discharging ceramic dispersion liquids having different compositions is appropriately selected.
  • the manner in which the ceramic dispersion liquid is discharged is schematically shown.
  • the method for manufacturing a dental ceramic restoration according to Embodiment 1 includes a three-dimensional data acquisition step of acquiring three-dimensional data necessary for manufacturing a dental ceramic restoration.
  • dental ceramic restoration production process S30 the method for manufacturing a dental ceramic restoration according to Embodiment 1 includes a three-dimensional data acquisition step of acquiring three-dimensional data necessary for manufacturing a dental ceramic restoration.
  • the acquisition of three-dimensional data can be performed by measuring the shape of a necessary part in the patient's oral cavity in a non-contact manner using a laser measurement device, or in the patient's oral cavity. It is possible to measure the shape of gypsum that models the necessary part in a non-contact manner using a laser measuring device, or the shape of gypsum that models the necessary part in the patient's oral cavity using a contact scanner. It can also be done by measuring. This is the same as in the case of the second conventional method for manufacturing a dental ceramic restoration.
  • the dental ceramic restoration product manufacturing step S30 is a ceramic dispersion preparation step S31 for preparing a ceramic dispersion containing ceramic powder and water, and a dental ceramic restoration material is manufactured.
  • the ceramic structure firing step S33 the ceramic structure C produced on the abutment tooth model A is fired. Then, the fired ceramic structure C is separated from the abutment tooth model A to produce a dental ceramic restoration.
  • the ceramic structure baking step S33 is the same as in the case of the first conventional method for manufacturing a dental ceramic restoration.
  • the ceramic structure manufacturing apparatus 100 includes a ceramic dispersion liquid discharge apparatus 120 that discharges a ceramic dispersion liquid toward a discharge target surface, and a base for manufacturing the ceramic structure. And an abutment tooth model supporting device 140 for supporting the abutment tooth model A.
  • the ceramic dispersion liquid discharge device 120 includes five discharge units 128a, 128b, 128c, 128d, and 128e, and a discharge channel for mounting these discharge units.
  • the discharge unit 128a includes a tank 130 that stores the ceramic dispersion liquid, a discharge head 132 that applies discharge energy to the ceramic dispersion liquid, and a nozzle 134 that discharges the ceramic dispersion liquid.
  • the ceramic dispersion liquid discharging device 120 has a function of discharging the ceramic dispersion liquid while applying ultrasonic waves to the ceramic dispersion liquid in the discharge units 128a to 128e so that the ceramic powder does not settle in the ceramic dispersion liquid.
  • the ceramic dispersion liquid discharge device 120 has a function of retracting the nozzle 134 along the z-axis direction.
  • the ceramic dispersion liquid discharge device 120 selects a predetermined discharge unit from among the five discharge units 128a to 128e and arranges it at a predetermined position with respect to the abutment tooth model support device 140. It has a function.
  • the abutment tooth model support device 140 includes the X yz moving table 142 that moves the abutment tooth model A along the xyz direction, and the z axis rotation that rotates the abutment tooth model A around the z axis.
  • the abutment tooth model support device 140 has the abutment tooth model moving function that translates the abutment tooth model A along three axes (X axis, y axis, and z axis) that are orthogonal to each other.
  • the abutment model support device 140 has a function to rotate the abutment tooth model A around the two orthogonal axes (X axis and z axis).
  • the function of controlling the relative positional relationship between the ceramic dispersion liquid discharge device 120 and the surface to be discharged and the function of substantially matching the discharge direction of the ceramic dispersion and the normal direction of the surface to be discharged Will have.
  • the ceramic structure manufacturing apparatus 100 is a ceramic dispersion liquid discharged on the abutment tooth model A or a predetermined powder in the ceramic powder deposited on the abutment tooth model A.
  • a laser light irradiation device for irradiating the part with laser light is further provided.
  • the laser beam irradiation apparatus has a light irradiation unit in the discharge unit mounting portion 126.
  • the laser power and the irradiation method required for laser beam irradiation differ greatly depending on whether the water is evaporated or the ceramic powder is calcined. Therefore, a control device for controlling the laser power and the irradiation method in the laser light irradiation device is further provided.
  • the ceramic structure manufacturing apparatus 100 further includes a laser measurement apparatus that measures the three-dimensional shape of the ceramic structure C in the manufacturing process.
  • the method for manufacturing a dental ceramic restoration according to Embodiment 1 includes the ceramic dispersion liquid discharge direction and the normal direction of the discharge surface in the ceramic structure manufacturing step S32. Is characterized by discharging the ceramic dispersion liquid in a state where they are substantially matched (the discharge direction of the ceramic dispersion liquid and the normal direction of the surface to be discharged are 20 degrees or less).
  • the ceramic dispersion liquid is applied in a state where the discharge direction of the ceramic dispersion liquid and the normal direction of the discharge target surface are substantially matched. Since the ceramic dispersion liquid that has landed on the surface to be discharged moves along the “vector direction obtained by projecting the discharge direction of the ceramic dispersion liquid onto the surface to be discharged”. Will be suppressed. As a result, the side surface of the ceramic structure can be formed with high accuracy.
  • a ceramic structure using a plurality of types of ceramic dispersion liquids is used. Since the body can be manufactured, it becomes possible to manufacture dental ceramic restorations with delicate colors.
  • the manufacturing method does not include a ceramic blank cutting process in the first place. Therefore, it is possible to solve the problem that material is wasted.
  • the conventional method As in the case of the third method for producing a dental ceramic restoration, since the ceramic structure C is produced using the abutment tooth model A, the portion corresponding to the bottom surface side of the dental ceramic restoration is removed. It can be formed with high accuracy.
  • the method for manufacturing a dental ceramic restoration according to Embodiment 1 as a method for discharging the ceramic dispersion liquid toward the discharge target surface, it is possible to use industrial inkjet technology.
  • the discharge units 128a to 128e a discharge unit using a piezoelectric method, a discharge unit using a publish method, or a discharge unit using an electrostatic method can be used.
  • the discharge direction of the ceramic dispersion is the direction in which the discharge units 128a to 128e discharge the ceramic dispersion from the nozzle 134.
  • the actual discharge direction of the ceramic dispersion depends on the nozzle structure.
  • the surface of the abutment tooth model A becomes the discharge surface, and the final stage of the ceramic structure manufacturing process.
  • the surface of the ceramic structure formed on the abutment tooth model A becomes the discharge target surface.
  • the force using ceramic powder and water as the ceramic dispersion liquid is preferably 1% to 60% by weight, more preferably 5% to 50% by weight, and even more preferably 10% to 40% by weight.
  • the discharge volume of the ceramic dispersion is preferably in the range of 100 pl to l / z l! /.
  • examples of the ceramic powder include silica, alumina, and a flux (for example, K 0, Na 0, CaO, B 2 O, and the like).
  • alumina silica porcelain can be preferably used.
  • the average particle size of the ceramic powder is not particularly limited, but those within the range of 0 .: L m to 10 m can be preferably used.
  • the ceramic component When an appropriate amount of water evaporates after the sprayed liquid reaches the surface to be ejected, the ceramic powder constituting the ceramic dispersion liquid is deposited on the surface to be ejected.
  • the ceramic powder can be built up in a predetermined shape by repeating this discharging step.
  • Process S33 is included.
  • the ceramic structure firing step S33 is preferably performed at a temperature within the range of 900 ° C to 1200 ° C! /.
  • the three-dimensional necessary for manufacturing a dental ceramic restoration is provided prior to the ceramic structure manufacturing step S32. It includes a three-dimensional data acquisition step S10 for acquiring data on the patient force, and an abutment tooth model manufacturing step S20 for manufacturing the abutment tooth model A which is a base for manufacturing the ceramic structure C.
  • the acquisition of the three-dimensional data in the three-dimensional data acquisition step S10 can be performed in the same manner as in the case of the second conventional method for manufacturing a dental ceramic restoration.
  • a manufacturing method of the abutment tooth model A in the abutment tooth model manufacturing step S20 may be a known method.
  • known materials for example, various porcelain materials such as feldspar, quartz, and porcelain, alumina, zircoia, titanium oxide, magnesium oxide, and the like can be used.
  • the discharge direction of the ceramic dispersion and the normal direction of the discharge surface substantially coincide with each other.
  • the ceramic dispersion is discharged by controlling the orientation of the surface.
  • the abutment tooth model A is appropriately moved and rotated to discharge the ceramic dispersion liquid.
  • the ceramic dispersion liquid can be discharged in a state where the direction and the normal direction of the surface to be discharged are always substantially matched.
  • the ceramic structure In the body manufacturing process S32 the ceramic dispersion liquid is discharged along a substantially vertical direction (a direction within 10 degrees from the vertical direction).
  • the track of the ceramic dispersion liquid until it reaches the surface to be discharged can be made substantially straight.
  • the side surface of the ceramic structure can be formed with higher accuracy.
  • the ceramic dispersion liquid in the discharge units 128a to 128e is added so that the ceramic powder does not settle in the ceramic dispersion liquid.
  • the ceramic dispersion is discharged while applying ultrasonic waves.
  • the laser beam L it is preferable to intermittently irradiate the laser beam L in synchronization with the timing at which the ceramic dispersion reaches the surface to be ejected. If the laser beam L is continuously irradiated, the surface to be ejected will be overheated more than necessary, and the ceramic dispersion liquid that has landed on the surface to be ejected will be scattered instantaneously, resulting in ceramic powder on the surface to be ejected. It is also a force that may not be able to deposit well.
  • a laser beam is applied to a region including a region where the ceramic powder is deposited on the discharge surface.
  • the ceramic powder is temporarily fired by irradiation with L. ing.
  • the density of the ceramic structure C to be manufactured can be increased.
  • the shrinkage rate force S of the ceramic structure C in the next ceramic structure firing step S33 is reduced, and a dental ceramic restoration having high dimensional accuracy can be manufactured.
  • the irradiation with the laser light L can be performed at an arbitrary timing.
  • Sera Sera
  • the ceramic dispersion preparation step S31 in the method for manufacturing a dental ceramic restoration according to Embodiment 1, in the ceramic dispersion preparation step S31, as shown in FIG. 9, a plurality of types of ceramic dispersions are prepared, and the ceramic structure is prepared. In the manufacturing process S32, the ceramic dispersion liquid is discharged while appropriately selecting a predetermined ceramic dispersion liquid from a plurality of types of ceramic dispersion liquids.
  • the ceramic dispersion liquid is monitored while monitoring the shape of the ceramic structure C in the manufacturing process. This is to control the discharge.
  • Control of discharge of the ceramic dispersion includes control of the discharge portion of the ceramic dispersion, control of the discharge angle of the ceramic dispersion, and control of the discharge amount of the ceramic dispersion.
  • FIG. 10 shows a ceramic in the method for producing a dental ceramic restoration according to Embodiment 2. It is a figure shown in order to demonstrate a structure manufacturing process S32.
  • Fig. 10 (a) is a schematic diagram showing the moment when the nozzle 134 force ceramic dispersion liquid is ejected
  • Fig. 10 (b) is a schematic diagram showing the moment when the ceramic dispersion liquid contacts the surface of the abutment tooth model A.
  • the method for producing a dental ceramic restoration according to Embodiment 2 differs from the method for producing a dental ceramic restoration according to Embodiment 1 in the direction of discharging the ceramic dispersion.
  • the ceramic dispersion liquid is discharged upward.
  • the ceramic dispersion liquid that has reached the surface to be discharged spreads on the surface to be discharged, and the ceramic mixture is reduced. Since the area of the portion where the powder is deposited can be reduced, the ceramic structure can be manufactured with higher accuracy.
  • FIG. 11 is a view for explaining the ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to the third embodiment.
  • the method for producing a dental ceramic restoration according to Embodiment 3 is different from the method for producing a dental ceramic restoration according to Embodiment 1 in that the discharge direction of the ceramic dispersion and the normal direction of the surface to be discharged are different.
  • the means for making them approximately match is different. That is, in the method for manufacturing a dental ceramic restoration according to Embodiment 3, as shown in FIG. 11, the discharge direction of the ceramic dispersion liquid is controlled by a ceramic dispersion liquid discharge device 120 (not shown).
  • the discharge direction of the ceramic dispersion liquid and the normal direction of the surface to be discharged are substantially matched.
  • the method for manufacturing a dental ceramic restoration according to Embodiment 3 is different from the method for manufacturing a dental ceramic restoration according to Embodiment 1 in terms of the discharge direction of the ceramic dispersion and the surface to be discharged. Forces that are different in the means to make the normal direction of the two substantially coincide with each other.
  • the discharge units 128a to 128e (only the discharge unit 128a is shown in FIG. 11) for discharging the ceramic dispersion liquid are moved as appropriate. Even when a ceramic structure with a relatively complex shape is manufactured by rotating, the discharge direction of the ceramic dispersion and the normal of the surface to be discharged It is possible to discharge the ceramic dispersion liquid in a state in which the direction is always substantially matched.
  • FIG. 12 is a view for explaining the ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to the fourth embodiment.
  • FIG. 12 (a) is a schematic view showing a state where a discharge unit 128f having a nozzle 134f whose front end portion is not bent is attached to the discharge unit attachment portion 126
  • FIG. Fig. 12 (c) is a schematic diagram showing a state in which a discharge unit 128g having a nozzle 134g bent repeatedly is attached to the discharge unit mounting portion 126
  • Fig. 12 (c) is a discharge having a nozzle 134h having a tip bent at 60 °.
  • FIG. 12 (a) is a schematic view showing a state where a discharge unit 128f having a nozzle 134f whose front end portion is not bent is attached to the discharge unit attachment portion 126
  • FIG. Fig. 12 (c) is a schematic diagram showing a state in which a discharge unit 128g having a nozzle 134g bent repeatedly is
  • FIG. 12D is a schematic diagram showing a state in which the unit 128h is attached to the discharge unit mounting portion 126
  • FIG. 12 (d) shows a discharge unit 128i having a nozzle 134i whose tip is bent by 90 degrees attached to the discharge unit mounting portion 126
  • It is a schematic diagram showing a state of being.
  • the method for manufacturing a dental ceramic restoration according to Embodiment 4 is different from the method for manufacturing a dental ceramic restoration according to Embodiment 1 by appropriately using a plurality of types of nozzles with bent tip portions. It is different in terms of use.
  • the nozzle tip having a desired posture can be arranged at a desired position with respect to the ejection target surface.
  • FIG. 13 is a view for explaining the ceramic structure manufacturing step S32 in the method for manufacturing a dental ceramic restoration according to the fifth embodiment.
  • FIG. 13 (a) is a schematic view showing a state in which a discharge unit 128j having a nozzle 134j whose tip is not bent is attached to the discharge unit attachment 126
  • FIG. Fig. 13 (c) and Fig. 13 (d) are schematic views showing a state where the discharge unit 128k having the nozzle 134k bent repeatedly is attached to the discharge unit mounting portion 126.
  • FIG. 6 is a schematic view showing a state in which the discharge unit 128m having 128 ⁇ is attached to a 128 ⁇ force discharge unit attachment rod 126.
  • the method for producing a dental ceramic restoration according to the fifth embodiment includes the dental method according to the fourth embodiment.
  • the type of dental ceramic restoration to be manufactured is different from the method of manufacturing ceramic restoration for medical use. That is, the method for manufacturing a dental ceramic restoration according to Embodiment 5 is a method for manufacturing a dental ceramic restoration in which an inlay is manufactured as a dental ceramic restoration as shown in FIG.
  • the method for manufacturing a dental ceramic restoration according to Embodiment 5 differs from the dental ceramic restoration according to Embodiment 4 in the type of dental ceramic restoration to be manufactured.
  • the surface to be ejected can be used even when the ceramic dispersion liquid is discharged to the side surface of the ceramic structure or when the ceramic dispersion liquid is discharged to an intricate site.
  • the nozzle tip portion having a desired posture can be arranged at a desired position with respect to.
  • the ceramic dispersion liquid water is removed by irradiating the laser beam L, but the present invention is not limited to this. Is not to be done.
  • the ceramic dispersion liquid force and moisture can be removed by discharging the ceramic dispersion liquid while applying vibration to the surface to be discharged.
  • the crown or inlay as a dental ceramic restoration is produced.
  • the present invention is not limited to this. It is not something.
  • a corving crown, a laminate bay, and other dental ceramic restorations can be manufactured.
  • the power for producing the ceramic structure itself is not limited to this.
  • a ceramic structure that becomes a dental ceramic restoration in the firing process and a dummy ceramic structure that can be separated and removed by crushing it in the firing process It is also possible to produce ceramic structures.
  • the ceramic structure is used for the dummy in the firing process. Since the ceramic structure force can be separated, for example, a floating ceramic structure can be manufactured, and the degree of freedom of shape of the ceramic structure to be manufactured can be increased.
  • Ceramic structure manufacturing device 120 ... Ceramic dispersion liquid discharge device, 122 ... Discharge control device, 124 ... Arm, 126 ... Discharge unit mounting part, 128a, 128b, 128c, 128d, 128e, 128f, 128g, 128h, 128i, 128j, 128k, 128m, 128 ⁇ ... Discharge nut, 130 ... Ceramic dispersion tank, 132 ... Pressure chamber, 134, 134f, 134g, 134h, 134i, 134j, 134k, 134m, 134 ⁇ ⁇ Nozzle, 136 ⁇ Discharge unit thrust force, ⁇ ⁇ Chi-axis rotation part, 148 ...
  • Abutment tooth model attachment part 800 ... Ceramic blank cutting machine, 810 ... Cutting tool, 820 ... Attachment part, 900 ... Ceramic structure manufacturing equipment, 901 ... Ceramic dispersion liquid only Tank, 902 ... Ceramic dispersion liquid transport pump, 903 ... Chi-axis motor, 904 ... Abutment model mounting base, 90 5 ... Ceramics structure, 906 ... Zeta axis, 907 ... Hose for ceramic dispersion, 908 ... Zeta axis motor, 909 ... Syringe, 910 ... Ceramic dispersion discharge part, 911 ...
  • Abutment Dedicated mounting fixture for tooth model 912— ⁇ axis, 913 to y axis, 91 4 ⁇ ⁇ axis, 915... Ceramic structure manufacturing equipment, ⁇ ... Abutment tooth model, C, C, C, C, C,

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dental Prosthetics (AREA)

Abstract

 本発明の歯科用セラミックス修復物の製造方法は、セラミックス分散液を準備するセラミックス分散液準備工程と、三次元データに基づいてセラミックス分散液を被吐出面に向けて吐出することによりセラミックス粉末を被吐出面上に堆積させてセラミックス構造体を製造するセラミックス構造体製造工程とを含み、セラミックス構造体製造工程においては、セラミックス分散液の吐出方向と被吐出面の法線方向とを略一致させた状態でセラミックス分散液を吐出する。  このため、被吐出面に着面したセラミックス分散液は、被吐出面上で「セラミックス分散液の吐出方向を被吐出面に投影して得られるベクトル方向」に沿って移動することが抑制されるようになる。その結果、セラミックス構造体の側面を高い精度で形成することが可能になる。

Description

明 細 書
歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置 技術分野
[0001] 本発明は、歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置 に関する。
背景技術
[0002] 図 14及び図 15は、従来の歯科用セラミックス修復物の製造方法のうち第 1の歯科 用セラミックス修復物の製造方法を示すフローチャートである。図 16は、第 1の歯科 用セラミックス修復物の製造方法におけるセラミックス構造体製造工程 S122を説明 するために示す図である。図 16 (a)は支台歯模型 Aを示す側面図であり、図 16 (b) は支台歯模型 A上に製造されたセラミックス構造体 Cを示す側面図である。なお、図 16 (b)において、符号 C〜Cは、それぞれ焼成後にコア
1 5 一、サービカル、デンチン
、エナメル及びトランスルーセントとなるセラミックス構造体の各部分を示す (コア一、 サービカル、デンチン、エナメル及びトランスルーセントからなる歯科用セラミックス修 復物としては、例えば、非特許文献 1参照。 ) o
[0003] 第 1の歯科用セラミックス修復物の製造方法は、図 14に示すように、セラミックス構 造体を製造する際の基台となる支台歯模型 Aを製造する支台歯模型製造工程 S11 0と、支台歯模型 Aを用いて歯科用セラミックス修復物を製造する歯科用セラミックス 修復物製造工程 S 120とを含む。
[0004] 歯科用セラミックス修復物製造工程 S120は、図 15に示すように、セラミックス粉末 及び水を含有するセラミックス分散液を準備するセラミックス分散液準備工程 S121と 、歯科用セラミックス修復物の元となるセラミックス構造体 Cを製造するセラミックス構 造体製造工程 S122と、セラミックス構造体 Cを焼成して歯科用セラミックス修復物と するセラミックス構造体焼成工程 S123とを含む。
[0005] セラミックス分散液準備工程 S121においては、焼成後に例えばコア一、サービ力 ル、デンチン、エナメル及びトランスルーセントからなる歯科用セラミックス修復物とな るように、例えば 5種類のセラミックス分散液 (コア一用セラミックス分散液、サービ力 ル用セラミックス分散液、デンチン用セラミックス分散液、エナメル用セラミックス分散 液及びトランスルーセント用セラミックス分散液)を準備する。
[0006] セラミックス構造体製造工程 S122においては、支台歯模型 A (図 16 (a)参照。)上 に、準備しておいた 5種類のセラミックス分散液を順次築盛することにより、歯科用セ ラミックス修復物の元となるセラミックス構造体 C (図 16 (b)参照。)を製造する。この築 盛作業は熟練した歯科技工士が手作業で注意深く行う。
[0007] セラミックス構造体焼成工程 S 123においては、支台歯模型 A上に製造されたセラミ ックス構造体 Cを焼成した後、これを支台歯模型 Aから分離して、歯科用セラミックス 修復物を製造する。
[0008] このため、第 1の歯科用セラミックス修復物の製造方法によれば、熟練した歯科技 ェ士が手作業で注意深くセラミックス構造体を製造する作業を行うことにより、高精度 の歯科用セラミックス修復物を製造することが可能となる。
[0009] し力しながら、第 1の歯科用セラミックス修復物の製造方法においては、熟練した歯 科技工士が手作業で注意深くセラミックス構造体を製造する作業を行うため、生産性 が低いという問題がある。
[0010] 図 17及び図 18は、従来の歯科用セラミックス修復物の製造方法のうち第 2の歯科 用セラミックス修復物の製造方法を示すフローチャートである。図 19は、第 2の歯科 用セラミックス修復物の製造方法におけるセラミックスブランクス切削工程 S222を説 明するために示す図である。図 19 (a)はセラミックスブランクス切削装置 800を示す 斜視図であり、図 19 (b)は切削されたセラミックスブランクス Eを示す図であり、図 19 ( c)は切り離されたセラミックスブランクス Fを示す図である。図 19 (c)に示すセラミック スブランクス Fが歯科用セラミックス修復物となる。
[0011] 第 2の歯科用セラミックス修復物の製造方法は、図 17に示すように、歯科用セラミツ タス修復物を製造するために必要な三次元データを患者力 取得する三次元データ 取得工程 S210と、三次元データに基づいて歯科用セラミックス修復物を製造する歯 科用セラミックス修復物製造工程 S220とを含む。三次元データの取得は、患者の口 腔内における必要な部位の形状をレーザ計測装置を用いて非接触で計測すること により行うこともできるし、患者の口腔内における必要な部位をかたどった石膏の形状 をレーザ計測装置を用いて非接触で計測することにより行うこともできるし、患者の口 腔内における必要な部位をかたどった石膏の形状を接触式スキャナーを用いて計測 すること〖こより行うことちでさる。
[0012] 歯科用セラミックス修復物製造工程 S220は、図 18に示すように、歯科用セラミック ス修復物と同じ組成カゝらなるセラミックスブランクスを準備するセラミックスブランクス製 造工程 S221と、セラミックスブランクス切削装置 800 (図 19 (a)参照。)を用いて、三 次元データ取得工程 S210で取得してぉ 、た三次元データに基づ 、てセラミックスブ ランクスを切削するセラミックスブランクス切削工程 S222 (図 19 (b)参照。)と、切削 工具 810によって切削されたセラミックスブランクス Eを取り付け部 820から切り離して 歯科用セラミックス修復物(図 19 (c)に示す切り離されたセラミックスブランクス F)とす るセラミックスブランクス切り離し工程 S223とを含む (例えば、特許文献 1及び 2参照 。)。
[0013] このため、第 2の歯科用セラミックス修復物の製造方法によれば、三次元データに 基づいて自動的に歯科用セラミックス修復物を製造することにより、生産性を高めるこ とが可能となる。
[0014] し力しながら、第 2の歯科用セラミックス修復物の製造方法においては、一定組成の セラミックスブランクスを出発材料として歯科用セラミックス修復物を製造しているため 、微妙な色合いの歯科用セラミックス修復物を製造することが困難であるという問題が ある。
また、セラミックスブランクス切削工程で多量のセラミックスブランクス材料を削り落と すことになるため、材料の無駄が多 ヽと 、う問題がある。
さらにまた、第 2の歯科用セラミックス修復物の製造方法においては、歯科用セラミ ックス修復物の底面側にあたる部分の切削が容易ではなぐそのため高精度の歯科 用セラミックス修復物を製造することが困難であるという問題がある。
[0015] そこで、上記した第 1の歯科用セラミックス修復物の製造方法の問題及び第 2の歯 科用セラミックス修復物の製造方法の問題を解決することのできる第 3の歯科用セラミ ックス修復物の製造方法が提案されている(例えば、特許文献 3参照。 ) 0
[0016] 図 20及び図 21は、このような第 3の歯科用セラミックス修復物の製造方法を示すフ ローチャートである。図 22は、第 3の歯科用セラミックス修復物の製造方法で用いる セラミックス構造体製造装置 900を示す図である。図 23は、第 3の歯科用セラミックス 修復物の製造方法におけるセラミックス構造体製造工程 S332を説明するために示 す図である。図 23 (a)は支台歯模型 905を示す側面図であり、図 23 (b)は支台歯模 型 905上に製造されたセラミックス構造体 915を示す側面図である。
[0017] 第 3の歯科用セラミックス修復物の製造方法は、図 20に示すように、歯科用セラミツ タス修復物を製造するために必要な三次元データを患者力 取得する三次元データ 取得工程 S310と、セラミックス構造体を製造する際の基台となる支台歯模型 905を 製造する支台歯模型製造工程 S320と、支台歯模型 905を用いて歯科用セラミックス 修復物を製造する歯科用セラミックス修復物製造工程 S330とを含む。
なお、三次元データ取得工程 S310において、三次元データの取得は、第 2の歯 科用セラミックス修復物の製造方法の場合と同様にして行うことができる。また、支台 歯模型製造工程 S320は、第 1の歯科用セラミックス修復物の製造方法の場合と同様 にして行うことができる。
[0018] 歯科用セラミックス修復物製造工程 S330は、図 21に示すように、セラミックス粉末 及び水を含有するセラミックス分散液を準備するセラミックス分散液準備工程 S331と 、歯科用セラミックス修復物の元となるセラミックス構造体 915を製造するセラミックス 構造体製造工程 S332と、セラミックス構造体 915を焼成して歯科用セラミックス修復 物とするセラミックス構造体焼成工程 S333とを含む。
[0019] セラミックス構造体製造工程 S332においては、支台歯模型 905 (図 23 (a)参照。) 上に複数のセラミックス分散液を順次吐出して築盛することにより、支台歯模型 905 上に歯科用セラミックス修復物の元となるセラミックス構造体 915を製造する(図 23 (b )参照。 ) o吐出作業及び築盛作業は、図 22に示すセラミックス構造体製造装置 900 を用いて行う。
[0020] セラミックス構造体焼成工程 S333においては、支台歯模型 905上に製造されたセ ラミックス構造体 915を焼成する。そして、その後、焼成されたセラミックス構造体 915 を支台歯模型 905から分離して、歯科用セラミックス修復物を製造する。セラミックス 構造体焼成工程 S333は、第 1の歯科用セラミックス修復物の製造方法の場合と同様 である。
[0021] このため、第 3の歯科用セラミックス修復物の製造方法によれば、三次元データに 基づいて自動的に歯科用セラミックス修復物を製造することにより、生産性を高めるこ とが可能となる。
また、第 3の歯科用セラミックス修復物の製造方法によれば、複数種類のセラミック ス分散液を用いてセラミックス構造体を製造することができるため、微妙な色合 、の 歯科用セラミックス修復物を製造することが可能となる。
また、第 3の歯科用セラミックス修復物の製造方法によれば、そもそもセラミックスブ ランクス切削工程を含まな 、製造方法であるため、材料の無駄が多 、と 、う問題を解 決することが可能となる。
さらにまた、第 3の歯科用セラミックス修復物の製造方法によれば、支台歯模型を用 V、てセラミックス構造体を製造することとして 、るため、歯科用セラミックス修復物の底 面側にあたる部分を高い精度で形成することが可能となる。
[0022] 非特許文献 1 :西山實他編集,スタンダード歯科理工学,改訂版,株式会社学建書 院, 2000年 10月 1日, 306— 309頁
特許文献 1:米国特許出願公開第 2005Z0266775号明細書
特許文献 2:国際公開第 WO2005Z102206号パンフレット
特許文献 3:特開 2003— 340813号公報
発明の開示
発明が解決しょうとする課題
[0023] し力しながら、第 3の歯科用セラミックス修復物の製造方法においては、セラミックス 構造体製造工程にお 、て、セラミックス構造体の側面を高 、精度で形成することが 困難であると!/、う新たな問題が発生する。
[0024] そこで、本発明は上記のような問題を解決するためになされたもので、セラミックス 構造体製造工程にお 、てセラミックス構造体の側面を高 、精度で形成することが可 能な歯科用セラミックス修復物の製造方法を提供することを目的とする。また、本発 明の歯科用セラミックス修復物の製造方法を好適に実施することが可能なセラミック ス構造体製造装置を提供することを目的とする。 課題を解決するための手段
[0025] 本発明の発明者らは、上記目的を達成するため、第 3の歯科用セラミックス修復物 の製造方法におけるセラミックス構造体製造工程にお 、て、セラミックス構造体の側 面を高い精度で形成することが困難である原因を究明すべく鋭意努力を重ねた結果 、この原因は、従来のセラミックス構造体製造装置 900を用いてセラミックス構造体の 側面を形成する際には、セラミックス分散液の吐出方向とセラミックス構造体の被吐 出面の法線方向とが大きい角度をなしている状態で吐出部力もセラミックス分散液を 吐出することにあるという知見を得た。
[0026] すなわち、そのような状態でセラミックス分散液を吐出するとすれば、被吐出面に着 面したセラミックス分散液は被吐出面上で「セラミックス分散液の吐出方向を被吐出 面に投影して得られるベクトル方向」に沿って移動することとなるため、セラミックス構 造体の側面を高い精度で形成することができなくなるのである。
[0027] 本発明者らは、上記知見に基づいて、セラミックス分散液の吐出方向と被吐出面の 法線方向とが大きい角度をなしている状態で吐出部力もセラミックス分散液を吐出す るのではなぐセラミックス分散液の吐出方向と被吐出面の法線方向とを略一致させ た状態でセラミックス分散液を吐出することとすれば、上記の問題を解決することがで きることに想到し、本発明を完成させるに至った。
[0028] (1)本発明の歯科用セラミックス修復物の製造方法は、セラミックス粉末及び水を含 有するセラミックス分散液を準備するセラミックス分散液準備工程と、歯科用セラミック ス修復物を製造するための三次元データに基づ 、て、前記セラミックス分散液を被 吐出面に向けて吐出することにより前記セラミックス粉末を前記被吐出面上に堆積さ せてセラミックス構造体を製造するセラミックス構造体製造工程とを含み、前記セラミ ックス構造体製造工程にお 、ては、前記セラミックス分散液の吐出方向と前記被吐 出面の法線方向とを略一致させた状態で、前記セラミックス分散液を吐出することを 特徴とする。
[0029] このため、本発明の歯科用セラミックス修復物の製造方法によれば、セラミックス分 散液の吐出方向と被吐出面の法線方向とを略一致させた状態でセラミックス分散液 を吐出することとしているため、被吐出面に着面したセラミックス分散液は被吐出面上 で「セラミックス分散液の吐出方向を被吐出面に投影して得られるベクトル方向」に沿 つて移動することが抑制されるようになる。その結果、本発明の歯科用セラミックス修 復物の製造方法によれば、セラミックス構造体の側面を高 、精度で形成することが可 能となる。
[0030] また、本発明の歯科用セラミックス修復物の製造方法によれば、従来の第 3の歯科 用セラミックス修復物の製造方法の場合と同様に、三次元データに基づいて自動的 に歯科用セラミックス修復物を製造することにより、生産性を高めることが可能となる。 また、本発明の歯科用セラミックス修復物の製造方法によれば、従来の第 3の歯科 用セラミックス修復物の製造方法の場合と同様に、複数種類のセラミックス分散液を 用いてセラミックス構造体を製造することができるため、微妙な色合いの歯科用セラミ ックス修復物を製造することが可能となる。
また、本発明の歯科用セラミックス修復物の製造方法によれば、従来の第 3の歯科 用セラミックス修復物の製造方法の場合と同様に、そもそもセラミックスブランクス切肖 IJ 工程を含まない製造方法であるため、材料の無駄が多いという問題を解決することが 可能となる。
さらにまた、本発明の歯科用セラミックス修復物の製造方法によれば、従来の第 3の 歯科用セラミックス修復物の製造方法の場合と同様に、支台歯模型を用いてセラミツ タス構造体を製造することとして 、るため、歯科用セラミックス修復物の底面側にあた る部分を高 、精度で形成することが可能となる。
[0031] なお、本発明の歯科用セラミックス修復物の製造方法において、セラミックス分散液 の吐出方向と被吐出面の法線方向とを略一致させた状態とは、セラミックス分散液の 吐出方向と被吐出面の法線方向とを 20度以下にした状態をいう。セラミックス分散液 の吐出方向と被吐出面の法線方向とを 20度以下にした状態でセラミックス分散液を 吐出することにより、被吐出面に着面したセラミックス分散液は被吐出面上で「セラミ ックス分散液の吐出方向を被吐出面に投影して得られるベタトル方向」に沿って移動 することが効果的に抑制されるようになる。この観点力も言えば、セラミックス分散液の 吐出方向と被吐出面の法線方向とを 10度以下にした状態でセラミックス分散液を吐 出することが好ましぐセラミックス分散液の吐出方向と被吐出面の法線方向とを 5度 以下にした状態でセラミックス分散液を吐出することがより好ましぐセラミックス分散 液の吐出方向と被吐出面の法線方向とを 2度以下にした状態でセラミックス分散液を 吐出することがさらに好ましい。
[0032] 本発明の歯科用セラミックス修復物の製造方法において、セラミックス分散液を被 吐出面に向けて吐出する方法としては、工業用インクジェット技術を用いることができ る。吐出ユニットとしては、圧電方式を用いた吐出ユニット、バブル方式を用いた吐出 ユニット、静電方式を用いた吐出ユニットを用いることができる。
[0033] 本発明の歯科用セラミックス修復物の製造方法において、セラミックス分散液の吐 出方向とは、吐出ユニットがノズル力もセラミックス分散液を吐出する方向のことであ る。セラミックス分散液の実際の吐出方向はノズルの構造に依存する。
[0034] 本発明の歯科用セラミックス修復物の製造方法においては、セラミックス構造体製 造工程の初期には、支台歯模型の表面が被吐出面となり、セラミックス構造体製造ェ 程の終期には、支台歯模型上に形成されているセラミックス構造体の表面が被吐出 面となる。
[0035] 本発明の歯科用セラミックス修復物の製造方法において、セラミックス分散液として は、セラミックス粉末及び水を含有するものを用いている力 これら以外に、公知の粘 土調整剤、界面活性剤、分散剤、着色剤、その他の成分を含有するものを用いること もできる。セラミックス分散液中におけるセラミックス粉末の含有量としては、 1重量% 〜60重量%が好ましぐ 5重量%〜50重量%がより好ましぐ 10重量%〜40重量% 力 Sさらに好ましい。セラミックス分散液の吐出量は、 100ρ1〜1 ^ 1の範囲内のものであ ることが好ましい。
[0036] 本発明の歯科用セラミックス修復物の製造方法において、セラミックス粉末としては 、例えば、シリカ、アルミナ及び融剤(例えば、 K 0、 Na 0、 CaO、 B Oなど。)を含
2 2 2 3
有するアルミナシリカ陶剤を好ましく用いることができる。また、セラミックス粉末の平 均粒径としては、特に限定されないが、 0. 1 m〜10 μ mの範囲内のものを好ましく 用!/、ることができる。
[0037] 本発明の歯科用セラミックス修復物の製造方法においては、セラミックス分散液が 被吐出面に着面した後に適量の水分が蒸発すると、セラミックス分散液を構成するセ ラミックス粉末が被吐出面上に堆積することとなる。この吐出'堆積工程を繰り返すこ とにより、所定形状にセラミックス粉末を築盛することができる。
[0038] 本発明の歯科用セラミックス修復物の製造方法においては、製造されたセラミックス 構造体を焼成して歯科用セラミックス修復物を製造するセラミックス構造体焼成工程 をさらに含むことが好ましい。この場合、セラミックス粉末がアルミナシリカ陶剤カもな るセラミックス粉末である場合には、セラミックス構造体焼成工程は、 900°C〜1200 °Cの範囲内の温度で行うのが好まし!/、。
[0039] また、本発明の歯科用セラミックス修復物の製造方法においては、セラミックス構造 体製造工程に先立って、歯科用セラミックス修復物を製造するために必要な三次元 データを患者から取得する三次元データ取得工程と、セラミックス構造体を製造する 際の基台となる支台歯模型を製造する支台歯模型製造工程とをさらに含むことが好 ましい。
三次元データ取得工程における三次元データの取得は、従来の第 2の歯科用セラ ミックス修復物の製造方法の場合と同様にして行うことができる。
支台歯模型製造工程における支台歯模型の製造方法は、公知の方法を用いること ができる。支台歯模型の材料としては、公知の材料、例えば、長石、石英、陶土など の各種陶材、アルミナ、ジルコユア、酸化チタン、酸ィ匕マグネシウムなどを用いること ができる。
[0040] (2)上記(1)に記載の歯科用セラミックス修復物の製造方法において、前記セラミック ス構造体製造工程においては、前記セラミックス分散液の吐出方向と前記被吐出面 の法線方向とが略一致するように前記被吐出面の向きを制御して、前記セラミックス 分散液を吐出することが好まし 、。
[0041] このような方法とすることにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、支台歯模型を適宜、移動 '回転させることにより、セラミックス分散液 の吐出方向と被吐出面の法線方向とを常に略一致させた状態でセラミックス分散液 を吐出することが可能となる。
[0042] (3)上記(1)に記載の歯科用セラミックス修復物の製造方法において、前記セラミック ス構造体製造工程においては、前記セラミックス分散液の吐出方向と前記被吐出面 の法線方向とが略一致するように吐出方向を制御して、前記セラミックス分散液を吐 出することが好ましい。
[0043] このような方法とすることにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、セラミックス分散液を吐出するための吐出ユニットを適宜、移動-回 転させることにより、セラミックス分散液の吐出方向と被吐出面の法線方向とを常に略 一致させた状態でセラミックス分散液を吐出することが可能となる。
[0044] 上記(2)又は(3)に記載の歯科用セラミックス修復物の製造方法においては、先端 部が曲折した複数種類のノズルを適宜使 、分けて用いることも好ま 、。
このような方法とすることにより、セラミックス構造体の側面にセラミックス分散液を吐 出する場合に、被吐出面に対する所望の位置に所望の姿勢のノズル先端部を配置 することができる。
[0045] (4)上記(1)〜(3)の 、ずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス構造体製造工程においては、前記セラミックス分散液を、略鉛 直方向に沿って吐出することが好ま 、。
[0046] このような方法とすることにより、略鉛直方向に沿ってセラミックス分散液を吐出する ことで、被吐出面に着面するまでのセラミックス分散液の飛跡をほぼ直線にすること ができる。その結果、本発明の歯科用セラミックス修復物の製造方法によれば、セラミ ックス構造体の側面をさらに高い精度で形成することが可能となる。
[0047] なお、本発明の歯科用セラミックス修復物の製造方法において、略鉛直方向とは、 鉛直方向から 10度以内の方向をいう。鉛直方向から 10度以内の方向に沿ってセラミ ックス分散液を吐出することにより、被吐出面に着面するまでのセラミックス分散液の 飛跡をほぼ直線にすることができる。この観点力 言えば、鉛直方向から 5度以内の 方向に沿ってセラミックス分散液を吐出することが好ましぐ鉛直方向から 2度以内の 方向に沿ってセラミックス分散液を吐出することがより好ましぐ鉛直方向から 1度以 内の方向に沿ってセラミックス分散液を吐出することがさらに好ましい。
[0048] 本発明の歯科用セラミックス修復物の製造方法においては、略鉛直方向に沿って いれば、セラミックス分散液を下方に向けて吐出することもできるし、セラミックス分散 液を上方に向けて吐出することもできる力 セラミックス分散液を上方に向けて吐出 することがより好ましい。着面したセラミックス分散液が被吐出面上を拡がっていく速 度を小さくしてセラミックス粉末が堆積する部分の面積を小さくすることができるため、 さらに高い精度でセラミックス構造体を製造することが可能となるからである。
[0049] (5)上記(1)〜 (4)の 、ずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス構造体製造工程においては、前記セラミックス分散液中でセラ ミックス粉末が沈降しないように吐出ユニット中の前記セラミックス分散液に超音波を 与えながら前記セラミックス分散液を吐出することが好ましい。
[0050] このような方法とすることにより、セラミックス分散液中でセラミックス粉末が沈降しに くくなるため、セラミックス分散液の良好な吐出を実現することができる。また、セラミツ タス分散液におけるセラミックス粉末の含有率を高めることが可能になり、セラミックス 構造体を製造する時間を短縮することが可能となる。
[0051] (6)上記(1)〜(5)の 、ずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス構造体製造工程においては、前記セラミックス分散液が前記 被吐出面に付着する領域を含む領域にレーザ光を照射して水分を除去することが好 ましい。
[0052] ところで、本発明の歯科用セラミックス修復物の製造方法においては、セラミックス 分散液は所定量の水を含有している。そこで、上記のような方法を用いることにより、 被吐出面に着面したセラミックス分散液力 適量の水を蒸発させることにより、被吐出 面にセラミックス粉末を良好に堆積することが可能となる。
[0053] この場合、セラミックス分散液が被吐出面に着面するタイミングに同期して、間欠的 にレーザ光の照射を行うことが好ましい。連続的にレーザ光の照射を行うこととすれ ば、被吐出面が必要以上に過熱され、被吐出面に着面したセラミックス分散液が一 瞬にして飛び散ってしまい、被吐出面にセラミックス粉末を良好に堆積することができ なくなる場合があるからである。
[0054] (7)上記(1)〜(5)の 、ずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス構造体製造工程においては、前記被吐出面に振動を与えな 力 前記セラミックス分散液を吐出することが好ましい。
[0055] このような方法とすることにより、被吐出面に着面したセラミックス分散液の表面に水 を移動させることで、セラミックス分散液力 の水の蒸発を促進して、被吐出面にセラ ミックス粉末を良好に堆積することが可能となる。
[0056] (8)上記(1)〜(7)の 、ずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス構造体製造工程においては、前記セラミックス粉末が前記被 吐出面に堆積した領域を含む領域にレーザ光を照射して前記セラミックス粉末の仮 焼成を行うことが好ましい。
[0057] このような方法とすることにより、製造されるセラミックス構造体の密度を高くすること が可能となる。その結果、セラミックス構造体製造工程の次にセラミックス構造体焼成 工程を行う場合において、セラミックス構造体の収縮率が小さくなり、高い寸法精度を 有する歯科用セラミックス修復物を製造することが可能となる。
[0058] この場合、レーザ光の照射は、任意のタイミングで行うことができる。例えば、セラミ ックス粉末が所定の層厚 (例えば 50 m。 )になる毎にレーザ光を照射することもでき るし、互いに異なる組成を有するセラミックス構造体を形成する毎にレーザ光を照射 することちでさる。
[0059] 上記(6)又は(8)に記載の歯科用セラミックス修復物の製造方法においては、レー ザ光を照射するレーザ光照射装置としては、特に限定されるものではないが、 YAG レーザや COレーザなどを好ましく用いることができる。
2
[0060] (9)上記(1)〜(8)の 、ずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス分散液準備工程においては、複数種類のセラミックス分散液 を準備しておき、前記セラミックス構造体製造工程においては、前記複数種類のセラ ミックス分散液の中から所定のセラミックス分散液を適宜選択しながら当該セラミック ス分散液を吐出することが好まし 、。
[0061] このような方法とすることにより、微妙な色合いの歯科用セラミックス修復物を再現性 よく製造することが可能となる。
[0062] (10)上記(1)〜(9)のいずれかに記載の歯科用セラミックス修復物の製造方法にお いて、前記セラミックス構造体製造工程においては、製造過程におけるセラミックス構 造体の形状をモニターしながら、前記セラミックス分散液の吐出を制御することが好ま しい。 [0063] このような方法とすることにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、製造過程中適宜のタイミングでセラミックス構造体の形状をモニター しながらセラミックス分散液の吐出を制御することで、より高 、精度のセラミックス構造 体を製造することが可能となる。
[0064] セラミックス分散液の吐出の制御としては、セラミックス分散液の吐出部位の制御、 セラミックス分散液の吐出角度の制御、セラミックス分散液の吐出量の制御などがあ る。
[0065] (11)本発明のセラミックス構造体製造装置は、歯科用セラミックス修復物を製造する ための三次元データに基づ ヽて、セラミックス粉末及び水を含有するセラミックス分散 液を吐出することにより前記セラミックス粉末を被吐出面上に堆積させて歯科用セラミ ックス修復物の前駆体となるセラミックス構造体を製造するためのセラミックス構造体 製造装置であって、前記セラミックス分散液を前記被吐出面に向けて吐出するセラミ ックス分散液吐出装置と、前記セラミックス構造体を製造する際の基台となる支台歯 模型を支持する支台歯模型支持装置とを備え、前記セラミックス分散液吐出装置に おける吐出ユニットと前記被吐出面との相対的な位置関係を制御する機能及び前記 セラミックス分散液の吐出方向と前記被吐出面の法線方向とを略一致させる機能を 有することを特徴とする。
[0066] このため、本発明のセラミックス構造体製造装置によれば、セラミックス分散液の吐 出方向と被吐出面の法線方向とを略一致させた状態でセラミックス分散液を吐出す ることが可能となるため、被吐出面に着面したセラミックス分散液は被吐出面上で「セ ラミックス分散液の吐出方向を被吐出面に投影して得られるベクトル方向」に沿つて 移動することが抑制されるようになる。その結果、セラミックス構造体の側面を高い精 度で形成することが可能となる。
[0067] (12)上記(11)に記載のセラミックス構造体製造装置においては、前記支台歯模型 支持装置は、前記吐出ユニットと前記被吐出面との相対的な位置関係を制御する機 能及び前記セラミックス分散液の吐出方向と前記被吐出面の法線方向とを略一致さ せる機能を有することが好まし 、。
[0068] このように構成することにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、支台歯模型を適宜、移動 '回転させることにより、セラミックス分散液 の吐出方向と被吐出面の法線方向とを常に略一致させた状態でセラミックス分散液 を吐出することが可能となる。
[0069] (13)上記(12)に記載のセラミックス構造体製造装置においては、前記支台歯模型 支持装置は、互いに直交する 3軸に沿って前記支台歯模型を平行移動させる支台 歯模型移動機能及び互いに直交する 2軸を中心にして前記支台歯模型を回転させ る支台歯模型回転機能を有することが好ま 、。
[0070] このように構成することにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、互いに直交する 3軸 (例えば、 X軸、 y軸及び z軸。 )に沿って支台歯 模型を平行移動させるとともに、互いに直交する 2軸 (例えば、 X軸及び z軸。)を中心 にして支台歯模型を回転させることにより、セラミックス分散液の吐出方向と被吐出面 の法線方向とを常に略一致させた状態でセラミックス分散液を吐出することが可能と なる。
[0071] (14)上記(13)に記載のセラミックス構造体製造装置においては、前記セラミックス 分散液吐出装置は、前記セラミックス分散液吐出装置のノズルを退避させる機能を 有することが好ましい。
[0072] このように構成することにより、支台歯模型支持装置を移動及び Z又は回転させる 過程で支台歯模型がノズルに接触してしまうことを抑制することが可能となる。
[0073] (15)上記(11)に記載のセラミックス構造体製造装置においては、前記セラミックス 分散液吐出装置は、前記吐出ユニットと前記被吐出面との相対的な位置関係を制御 する機能及び前記セラミックス分散液の吐出方向と前記被吐出面の法線方向とを略 一致させる機能を有することが好まし 、。
[0074] このように構成することにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、吐出ユニットを適宜、移動 '回転させることにより、セラミックス分散液 の吐出方向と被吐出面の法線方向とを常に略一致させた状態でセラミックス分散液 を吐出することが可能となる。
[0075] (16)上記(15)に記載のセラミックス構造体製造装置においては、前記セラミックス 分散液吐出装置は、互いに直交する 3軸に沿って前記吐出ユニットを平行移動させ る吐出ユニット移動機能及び互いに直交する 2軸を中心にして前記吐出ユニットを回 転させる吐出ユニット回転機能を有することが好ましい。
[0076] このように構成することにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、互いに直交する 3軸 (例えば、 X軸、 y軸及び z軸。 )に沿って吐出ュ ニットを平行移動させるとともに、互いに直交する 2軸 (例えば、 X軸及び z軸。)を中心 にして吐出ユニットを回転させることにより、セラミックス分散液の吐出方向と被吐出面 の法線方向とを常に略一致させた状態でセラミックス分散液を吐出することが可能と なる。
[0077] (17)上記(11)〜(16)のいずれかに記載のセラミックス構造体製造装置においては 、前記セラミックス分散液吐出装置は、互いにノズル先端部の曲折角度が異なる複 数の吐出ユニットを有し、前記セラミックス構造体製造装置は、前記複数の吐出ュ- ットの中から所定の吐出ユニットを選択して、当該吐出ユニットを前記支台歯模型支 持装置に対する所定位置に配置する機能を有することが好ましい。
[0078] このように構成することにより、入り組んだ部位にセラミックス分散液を吐出する場合 であっても、被吐出面に対する所望の位置に所望の姿勢の吐出ユニットを容易に配 置することができる。
[0079] (18)上記(11)〜(17)のいずれかに記載の歯科用セラミックス構造体製造装置に おいては、前記セラミックス分散液吐出装置は、前記セラミックス分散液中でセラミツ タス粉末が沈降しないように吐出ユニット中の前記セラミックス分散液に超音波を与え ながら前記セラミックス分散液を吐出する機能を有するこが好ましい。
[0080] このように構成することにより、セラミックス分散液中でセラミックス粉末が沈降しにく くなるため、セラミックス分散液の良好な吐出を実現することができる。また、セラミック ス分散液におけるセラミックス粉末の含有率を高めることが可能になり、セラミックス構 造体を製造する時間を短縮することが可能となる。
[0081] (19)上記(11)〜(18)のいずれかに記載のセラミックス構造体製造装置においては 、前記支台歯模型上に吐出された前記セラミックス分散液又は前記支台歯模型上に 堆積した前記セラミックス粉末における所定部位にレーザ光を照射するレーザ光照 射装置をさらに備えることが好ましい。 [0082] このように構成することにより、被吐出面に着面したセラミックス分散液力 適量の水 を蒸発させることで、被吐出面にセラミックス粉末を良好に堆積することが可能となる また、このように構成することにより、セラミックス粉末を適宜仮焼成することで、製造 されるセラミックス構造体の密度を高くすることが可能となる。その結果、この後でセラ ミックス構造体を焼成した場合にぉ 、て、セラミックス構造体の収縮率が小さくなり、 高い寸法精度を有する歯科用セラミックス修復物を製造することが可能となる。
[0083] なお、本発明のセラミックス構造体製造装置においては、水を蒸発させる場合とセ ラミックス粉末を仮焼成する場合とでは、レーザ光照射に必要なレーザパワーや照射 方法が大きく異なるため、水を蒸発させる場合とセラミックス粉末を仮焼成する場合と で、異なる種類のレーザ光照射装置を用いることも好ましいし、レーザパワーや照射 方法を最適な条件で制御するための制御装置をさらに備えることも好ましい。
[0084] (20)上記(11)〜(19)のいずれかに記載のセラミックス構造体製造装置においては 、前記支台歯模型支持装置は、前記セラミックス分散液吐出装置が前記セラミックス 分散液を吐出する際に前記被吐出面に対して振動を与える機能を有することが好ま しい。
[0085] このように構成することにより、被吐出面に着面したセラミックス分散液の表面に水 を移動させることで、セラミックス分散液力 の水の蒸発を促進して、被吐出面にセラ ミックス粉末を良好に堆積することが可能となる。
[0086] (21)上記(11)〜(20)のいずれかに記載のセラミックス構造体製造装置においては 、前記セラミックス分散液吐出装置は、異なる種類のセラミックス分散液を吐出する複 数の吐出ユニットを有し、前記セラミックス構造体製造装置は、前記複数の吐出ュ- ットの中から所定の吐出ユニットを選択して、当該吐出ユニットを前記支台歯模型支 持装置に対する所定位置に配置する機能を有することが好ましい。
[0087] このように構成することにより、微妙な色合いの歯科用セラミックス修復物を再現性 よく製造することが可能となる。
[0088] (22)上記(11)〜(21)の 、ずれかに記載のセラミックス構造体製造装置にぉ ヽては 、製造過程のセラミックス構造体の三次元形状を計測するレーザ計測装置をさらに備 えることが好ましい。
[0089] このように構成することにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、製造過程中適宜のタイミングでセラミックス構造体の形状をモニター しながらセラミックス分散液の吐出を制御することで、より高 、精度のセラミックス構造 体を製造することが可能となる。
図面の簡単な説明
[0090] [図 1]実施形態 1に係る歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 2]実施形態 1に係る歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 3]実施形態 1に係る歯科用セラミックス修復物の製造方法で用いるセラミックス構 造体製造装置 100を示す図。
[図 4]実施形態 1に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 5]実施形態 1に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 6]実施形態 1に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 7]実施形態 1におけるセラミックス構造体製造工程 S32においてレーザ光 Lを照 射して水分を除去する様子を模式的に示す図。
[図 8]実施形態 1におけるセラミックス構造体製造工程 S32においてレーザ光 Lを照
2 射してセラミックス粉末の仮焼成を行う様子を模式的に示す図。
[図 9]実施形態 1に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 10]実施形態 2に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 11]実施形態 3に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 12]実施形態 4に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。 [図 13]実施形態 5に係る歯科用セラミックス修復物の製造方法におけるセラミックス構 造体製造工程 S32を説明するために示す図。
[図 14]第 1の歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 15]第 1の歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 16]第 1の歯科用セラミックス修復物の製造方法におけるセラミックス構造体製造 工程 S 122を説明するために示す図。
[図 17]第 2の歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 18]第 2の歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 19]第 2の歯科用セラミックス修復物の製造方法におけるセラミックスブランクス切 削工程 S222を説明するために示す図。
[図 20]第 3の歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 21]第 3の歯科用セラミックス修復物の製造方法を示すフローチャート。
[図 22]第 3の歯科用セラミックス修復物の製造方法で用いるセラミックス構造体製造 装置 900を示す図。
[図 23]第 3の歯科用セラミックス修復物の製造方法におけるセラミックス構造体製造 工程 S332を説明するために示す図。
発明を実施するための最良の形態
[0091] 以下、図面を用いて、本発明の実施の形態を詳しく説明する。
[0092] [実施形態 1]
図 1及び図 2は、実施形態 1に係る歯科用セラミックス修復物の製造方法を示すフロ 一チャートである。図 3は、実施形態 1に係る歯科用セラミックス修復物の製造方法で 用いるセラミックス構造体製造装置 100を示す図である。なお、図 3においては、吐 出ユニットストッカ 136及び法で用いるセラミックス構造体製造装置 100を示す図であ る。なお、図 3においては、吐出ユニットストッカ 136に載置された各吐出ユニット 128 b〜128eは、吐出ユニット取り付け部 126に取り付けられた吐出ユニット 128aの約 1 Z2の大きさで示されて!/、る。
[0093] 図 4は、実施形態 1に係る歯科用セラミックス修復物の製造方法におけるセラミック ス構造体製造工程 S32を説明するために示す図である。図 4 (a)は支台歯模型 Aを 示す側面図であり、図 4 (b)は支台歯模型 A上に製造されたセラミックス構造体 Cを示 す側面図である。なお、図 4 (b)において、符号 C〜Cは、それぞれ焼成後にコア
1 5 一
、サービカル、デンチン、エナメル及びトランスルーセントとなるセラミックス構造体の 各部分を示す。
[0094] 図 5及び図 6は、実施形態 1に係る歯科用セラミックス修復物の製造方法における セラミックス構造体製造工程 S32を説明するために示す図である。図 5 (a)は支台歯 模型 Aの先端部にセラミックス分散液を吐出しているときの様子を X軸に沿って見たと きの模式図であり、図 5 (b)は支台歯模型 Aの先端部にセラミックス分散液を吐出して いるときの様子を y軸に沿って見たときの模式図である。図 6 (a)は支台歯模型 Aの側 面部にセラミックス分散液を吐出しているときの様子を X軸に沿って見たときの模式図 であり、図 6 (b)は支台歯模型 Aの側面部にセラミックス分散液を吐出しているときの 様子を y軸に沿って見たときの模式図である。
[0095] 図 7は、実施形態 1におけるセラミックス構造体製造工程 S32においてレーザ光 L を照射して水分を除去する様子を模式的に示す図であり、図 8は、実施形態 1におけ るセラミックス構造体製造工程 S32にお 、てレーザ光 Lを照射してセラミックス粉末
2
の仮焼成を行う様子を模式的に示す図である。
[0096] 図 9は、実施形態 1に係る歯科用セラミックス修復物の製造方法におけるセラミック ス構造体製造工程 S32を説明するために示す図である。図 9 (a)〜図 9 (f)において は、それぞれ異なる組成のセラミックス分散液を吐出するための複数の吐出ユニット 1 28a〜128eから所定のセラミックス分散液を吐出するための吐出ユニットを適宜選択 しながらセラミックス分散液を吐出する様子を模式的に示している。
[0097] 実施形態 1に係る歯科用セラミックス修復物の製造方法は、図 1に示すように、歯科 用セラミックス修復物を製造するために必要な三次元データを患者力 取得する三 次元データ取得工程 S10と、セラミックス構造体を製造する際の基台となる支台歯模 型 Aを製造する支台歯模型製造工程 S20と、支台歯模型 Aを用いて歯科用セラミツ タス修復物を製造する歯科用セラミックス修復物製造工程 S30とを含む。
[0098] 三次元データの取得は、患者の口腔内における必要な部位の形状をレーザ計測 装置を用いて非接触で計測することにより行うこともできるし、患者の口腔内における 必要な部位をかたどった石膏の形状をレーザ計測装置を用いて非接触で計測する ことにより行うこともできるし、患者の口腔内における必要な部位をかたどった石膏の 形状を接触式スキャナーを用いて計測することにより行うこともできる。従来の第 2の 歯科用セラミックス修復物の製造方法の場合と同様である。
[0099] 歯科用セラミックス修復物製造工程 S30は、図 2に示すように、セラミックス粉末及 び水を含有するセラミックス分散液を準備するセラミックス分散液準備工程 S31と、歯 科用セラミックス修復物を製造するための三次元データに基づいて、セラミックス分散 液を被吐出面に向けて吐出することによりセラミックス粉末を被吐出面上に堆積させ てセラミックス構造体 Cを製造するセラミックス構造体製造工程 S32と、セラミックス構 造体 Cを焼成して歯科用セラミックス修復物とするセラミックス構造体焼成工程 S33と を含む。
[0100] セラミックス構造体製造工程 S32においては、支台歯模型 A (図 4 (a)参照。)上に 複数のセラミックス分散液を吐出して築盛することにより、支台歯模型 A上に歯科用 セラミックス修復物の元となるセラミックス構造体 Cを製造する(図 4 (b)参照。;)。吐出 作業及び築盛作業は、図 3に示すセラミックス構造体製造装置 100を用いて行う。
[0101] セラミックス構造体焼成工程 S33においては、支台歯模型 A上に製造されたセラミ ックス構造体 Cを焼成する。そして、その後、焼成されたセラミックス構造体 Cを支台 歯模型 Aから分離して、歯科用セラミックス修復物を製造する。セラミックス構造体焼 成工程 S33は、従来の第 1の歯科用セラミックス修復物の製造方法の場合と同様で ある。
[0102] セラミックス構造体製造装置 100は、図 3に示すように、セラミックス分散液を被吐出 面に向けて吐出するセラミックス分散液吐出装置 120と、セラミックス構造体を製造す る際の基台となる支台歯模型 Aを支持する支台歯模型支持装置 140とを備える。
[0103] セラミックス分散液吐出装置 120は、図 3に示すように、 5つの吐出ユニット 128a, 1 28b, 128c, 128d, 128eと、これらの吐出ュ-ッ卜を載置するための吐出ュ-ッ卜ス トツ力 136、 5つの吐出ユニットのうち選択された吐出ユニット(例えば 128a)を取り付 けるための吐出ユニット取り付け部 126と、吐出ユニット取り付け部 126を支持するァ ーム 124と、アーム 124の動作を制御したり吐出ユニットにおける吐出動作を制御し たりする吐出制御装置 122とを有する。吐出ユニット 128aは、セラミックス分散液を貯 蔵するタンク 130と,セラミックス分散液に吐出エネルギーを与える吐出ヘッド 132と、 セラミックス分散液を吐出するノズル 134とを有する。
[0104] セラミックス分散液吐出装置 120は、セラミックス分散液中でセラミックス粉末が沈降 しないように吐出ユニット 128a〜128e中のセラミックス分散液に超音波を与えながら セラミックス分散液を吐出する機能を有する。
[0105] セラミックス分散液吐出装置 120は、 z軸方向に沿ってノズル 134を退避させる機能 を有する。
[0106] セラミックス分散液吐出装置 120は、図 9に示すように、 5つの吐出ユニット 128a〜 128eの中から所定の吐出ユニットを選択して支台歯模型支持装置 140に対する所 定位置に配置する機能を有する。
[0107] 一方、支台歯模型支持装置 140は、支台歯模型 Aを xyz方向に沿って移動させる X yz移動テーブル 142と、支台歯模型 Aを z軸を中心として回転させる z軸回転部 144 と、支台歯模型 Aを X軸を中心として回転させる X軸回転部 146と、支台歯模型を保 持するホルダー部 148とを有する。
[0108] 従って、支台歯模型支持装置 140は、互いに直交する 3軸 (X軸、 y軸及び z軸。 )に 沿って支台歯模型 Aを平行移動させる支台歯模型移動機能及び互いに直交する 2 軸 (X軸及び z軸)を中心にして支台歯模型 Aを回転させる支台歯模型回転機能を有 することとなり、その結果、支台歯模型支持装置 140は、図 5及び図 6に示すように、 セラミックス分散液吐出装置 120と被吐出面との相対的な位置関係を制御する機能 及びセラミックス分散液の吐出方向と被吐出面の法線方向とを略一致させる機能を 有することとなる。
[0109] セラミックス構造体製造装置 100は、図 7又は図 8に示すように、支台歯模型 A上に 吐出されたセラミックス分散液又は支台歯模型 A上に堆積したセラミックス粉末にお ける所定部位にレーザ光を照射するレーザ光照射装置をさらに備えている。レーザ 光照射装置は、吐出ユニット取り付け部 126に光照射部を有する。
[0110] セラミックス構造体製造装置 100は、水を蒸発させる場合とセラミックス粉末を仮焼 成する場合とでは、レーザ光照射に必要なレーザパワーや照射方法は大きく異なる ため、レーザ光照射装置におけるレーザパワーや照射方法を制御するための制御 装置をさらに備えている。
[0111] セラミックス構造体製造装置 100は、図示しないが、製造過程のセラミックス構造体 Cの三次元形状を計測するレーザ計測装置をさらに備えている。
[0112] 実施形態 1に係る歯科用セラミックス修復物の製造方法は、図 5及び図 6に示すよう に、セラミックス構造体製造工程 S32において、セラミックス分散液の吐出方向と被吐 出面の法線方向とを略一致させた状態 (セラミックス分散液の吐出方向と被吐出面の 法線方向とを 20度以下にした状態)で、セラミックス分散液を吐出することを特徴とし ている。
[0113] このため、実施形態 1に係る歯科用セラミックス修復物の製造方法によれば、セラミ ックス分散液の吐出方向と被吐出面の法線方向とを略一致させた状態でセラミックス 分散液を吐出することとしているため、被吐出面に着面したセラミックス分散液は被吐 出面上で「セラミックス分散液の吐出方向を被吐出面に投影して得られるベクトル方 向」に沿って移動することが抑制されるようになる。その結果、セラミックス構造体の側 面を高 、精度で形成することが可能となる。
[0114] また、実施形態 1に係る歯科用セラミックス修復物の製造方法によれば、従来の第 3 の歯科用セラミックス修復物の製造方法の場合と同様に、三次元データに基づ!/、て 自動的に歯科用セラミックス修復物を製造することにより、生産性を高めることが可能 となる。
また、実施形態 1に係る歯科用セラミックス修復物の製造方法によれば、従来の第 3 の歯科用セラミックス修復物の製造方法の場合と同様に、複数種類のセラミックス分 散液を用いてセラミックス構造体を製造することができるため、微妙な色合いの歯科 用セラミックス修復物を製造することが可能となる。
また、実施形態 1に係る歯科用セラミックス修復物の製造方法によれば、従来の第 3 の歯科用セラミックス修復物の製造方法の場合と同様に、そもそもセラミックスブラン タス切削工程を含まな 、製造方法であるため、材料の無駄が多 、と 、う問題を解決 することが可能となる。
さらにまた、実施形態 1に係る歯科用セラミックス修復物の製造方法によれば、従来 の第 3の歯科用セラミックス修復物の製造方法の場合と同様に、支台歯模型 Aを用い てセラミックス構造体 Cを製造することとしているため、歯科用セラミックス修復物の底 面側にあたる部分を高い精度で形成することが可能となる。
[0115] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス分散 液を被吐出面に向けて吐出する方法としては、工業用インクジェット技術を用いること 力 Sできる。吐出ユニット 128a〜128eとしては、圧電方式を用いた吐出ユニット、パブ ル方式を用いた吐出ユニット、静電方式を用いた吐出ユニットを用いることができる。
[0116] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス分散 液の吐出方向とは、吐出ユニット 128a〜128eがノズル 134からセラミックス分散液を 吐出する方向のことである。セラミックス分散液の実際の吐出方向はノズルの構造に 依存する。
[0117] 実施形態 1に係る歯科用セラミックス修復物の製造方法においては、セラミックス構 造体製造工程の初期には、支台歯模型 Aの表面が被吐出面となり、セラミックス構造 体製造工程の終期には、支台歯模型 A上に形成されているセラミックス構造体じの 表面が被吐出面となる。
[0118] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス分散 液としては、セラミックス粉末及び水を含有するものを用いている力 これら以外に、 公知の粘土調整剤、界面活性剤、分散剤、着色剤、その他の成分を含有するものを 用いることもできる。セラミックス分散液中におけるセラミックス粉末の含有量としては 、 1重量%〜60重量%が好ましぐ 5重量%〜50重量%がより好ましぐ 10重量%〜 40重量%がさらに好ましい。セラミックス分散液の吐出量は、 100pl〜l /z lの範囲内 のものであることが好まし!/、。
[0119] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス粉末 としては、例えば、シリカ、アルミナ及び融剤(例えば、 K 0、 Na 0、 CaO、 B Oなど
2 2 2 3
。)を含有するアルミナシリカ陶剤を好ましく用いることができる。また、セラミックス粉 末の平均粒径としては、特に限定されないが、 0.: L m〜 10 mの範囲内のものを 好ましく用いることができる。
[0120] 実施形態 1に係る歯科用セラミックス修復物の製造方法においては、セラミックス分 散液が被吐出面に着面した後に適量の水分が蒸発すると、セラミックス分散液を構 成するセラミックス粉末が被吐出面上に堆積することとなる。この吐出'堆積工程を繰 り返すことにより、所定形状にセラミックス粉末を築盛することができる。
[0121] 実施形態 1に係る歯科用セラミックス修復物の製造方法においては、図 2に示すよ うに、製造されたセラミックス構造体 Cを焼成して歯科用セラミックス修復物を製造す るセラミックス構造体焼成工程 S33を含んでいる。この場合、セラミックス粉末がアルミ ナシリ力陶剤カもなるセラミックス粉末である場合には、セラミックス構造体焼成工程 S 33は、 900°C〜 1200°Cの範囲内の温度で行うのが好まし!/、。
[0122] 実施形態 1に係る歯科用セラミックス修復物の製造方法においては、図 1に示すよ うに、セラミックス構造体製造工程 S32に先立って、歯科用セラミックス修復物を製造 するために必要な三次元データを患者力 取得する三次元データ取得工程 S10と、 セラミックス構造体 Cを製造する際の基台となる支台歯模型 Aを製造する支台歯模型 製造工程 S 20とを含んで 、る。
三次元データ取得工程 S10における三次元データの取得は、従来の第 2の歯科用 セラミックス修復物の製造方法の場合と同様にして行うことができる。
支台歯模型製造工程 S20における支台歯模型 Aの製造方法は、公知の方法を用 いることができる。支台歯模型 Aの材料としては、公知の材料、例えば、長石、石英、 陶土などの各種陶材、アルミナ、ジルコユア、酸化チタン、酸ィ匕マグネシウムなどを用 いることがでさる。
[0123] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス構造 体製造工程 S32においては、セラミックス分散液の吐出方向と被吐出面の法線方向 とが略一致するように被吐出面の向きを制御して、セラミックス分散液を吐出すること としている。
[0124] このような方法とすることにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、支台歯模型 Aを適宜、移動 '回転させることにより、セラミックス分散 液の吐出方向と被吐出面の法線方向とを常に略一致させた状態でセラミックス分散 液を吐出することが可能となる。
[0125] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス構造 体製造工程 S32においては、セラミックス分散液を略鉛直方向(鉛直方向から 10度 以内の方向)に沿って吐出することとしている。
[0126] このような方法とすることにより、略鉛直方向に沿ってセラミックス分散液を吐出する ことで、被吐出面に着面するまでのセラミックス分散液の飛跡をほぼ直線にすること ができる。その結果、セラミックス構造体の側面をさらに高い精度で形成することが可 能となる。
[0127] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス構造 体製造工程 S32においては、セラミックス分散液中でセラミックス粉末が沈降しないよ うに吐出ユニット 128a〜128e中のセラミックス分散液に超音波を与えながらセラミツ タス分散液を吐出することとして 、る。
[0128] このような方法とすることにより、セラミックス分散液中でセラミックス粉末が沈降しに くくなるため、セラミックス分散液の良好な吐出を実現することができる。また、セラミツ タス分散液におけるセラミックス粉末の含有率を高めることが可能になり、セラミックス 構造体 Cを製造する時間を短縮することが可能となる。
[0129] 実施形態 1に係る歯科用セラミックス修復物の製造方法にお!ヽて、セラミックス構造 体製造工程 S32においては、図 7に示すように、セラミックス分散液が被吐出面に付 着する領域を含む領域にレーザ光 Lを照射して水分を除去することとして 、る。
[0130] このような方法とすることにより、被吐出面に着面したセラミックス分散液力 適量の 水を蒸発させることにより、被吐出面にセラミックス粉末を良好に堆積することが可能 となる。
[0131] この場合、セラミックス分散液が被吐出面に着面するタイミングに同期して、間欠的 にレーザ光 Lの照射を行うことが好ましい。連続的にレーザ光 Lの照射を行うことと すれば、被吐出面が必要以上に過熱され、被吐出面に着面したセラミックス分散液 がー瞬にして飛び散ってしまい、被吐出面にセラミックス粉末を良好に堆積すること ができなくなる場合がある力もである。
[0132] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス構造 体製造工程 S32においては、図 8に示すように、セラミックス粉末が被吐出面に堆積 した領域を含む領域にレーザ光 Lを照射してセラミックス粉末の仮焼成を行うこととし ている。
[0133] このような方法とすることにより、製造されるセラミックス構造体 Cの密度を高くするこ とが可能となる。その結果、次のセラミックス構造体焼成工程 S33におけるセラミック ス構造体 Cの収縮率力 S小さくなり、高い寸法精度を有する歯科用セラミックス修復物 を製造することが可能となる。
[0134] この場合、レーザ光 Lの照射は、任意のタイミングで行うことができる。例えば、セラ
2
ミックス粉末が所定の層厚 (例えば 50 m。)になる毎にレーザ光 Lを照射することも
2
できるし、互いに異なる組成を有するセラミックス構造体を形成する毎にレーザ光 L
2 を照射することちできる。
[0135] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス分散 液準備工程 S31においては、図 9に示すように、複数種類のセラミックス分散液を準 備しておき、セラミックス構造体製造工程 S32においては、複数種類のセラミックス分 散液の中から所定のセラミックス分散液を適宜選択しながら当該セラミックス分散液を 吐出することとしている。
[0136] このような方法とすることにより、微妙な色合いの歯科用セラミックス修復物を再現性 よく製造することが可能となる。
[0137] 実施形態 1に係る歯科用セラミックス修復物の製造方法において、セラミックス構造 体製造工程 S32においては、図示を省略したが、製造過程におけるセラミックス構造 体 Cの形状をモニターしながら、セラミックス分散液の吐出を制御することとして 、る。
[0138] このような方法とすることにより、比較的複雑な形状のセラミックス構造体を製造する 場合であっても、製造過程中適宜のタイミングでセラミックス構造体の形状をモニター しながらセラミックス分散液の吐出を制御することで、より高 、精度のセラミックス構造 体を製造することが可能となる。
[0139] セラミックス分散液の吐出の制御としては、セラミックス分散液の吐出部位の制御、 セラミックス分散液の吐出角度の制御、セラミックス分散液の吐出量の制御などがあ る。
[0140] [実施形態 2]
図 10は、実施形態 2に係る歯科用セラミックス修復物の製造方法におけるセラミック ス構造体製造工程 S32を説明するために示す図である。図 10 (a)はノズル 134力 セラミックス分散液が吐出された瞬間を示す模式図であり、図 10 (b)はセラミックス分 散液が支台歯模型 Aの表面に着面した瞬間を示す模式図である。
[0141] 実施形態 2に係る歯科用セラミックス修復物の製造方法は、実施形態 1に係る歯科 用セラミックス修復物の製造方法とは、セラミックス分散液を吐出する方向が異なって いる。
すなわち、実施形態 2に係る歯科用セラミックス修復物の製造方法においては、図 10に示すように、セラミックス分散液を上方に向けて吐出することとしている。
[0142] このため、実施形態 2に係る歯科用セラミックス修復物の製造方法によれば、被吐 出面に着面したセラミックス分散液が被吐出面上を拡がっていく速度を小さくしてセ ラミックス粉末が堆積する部分の面積を小さくすることができるため、さらに高い精度 でセラミックス構造体を製造することが可能となる。
[0143] [実施形態 3]
図 11は、実施形態 3に係る歯科用セラミックス修復物の製造方法におけるセラミック ス構造体製造工程 S32を説明するために示す図である。
[0144] 実施形態 3に係る歯科用セラミックス修復物の製造方法は、実施形態 1に係る歯科 用セラミックス修復物の製造方法とは、セラミックス分散液の吐出方向と被吐出面の 法線方向とが略一致するようにする手段が異なっている。すなわち、実施形態 3に係 る歯科用セラミックス修復物の製造方法においては、図 11に示すように、セラミックス 分散液吐出装置 120 (図示せず。 )力ものセラミックス分散液の吐出方向を制御する ことにより、セラミックス分散液の吐出方向と被吐出面の法線方向とが略一致するよう にしている。
[0145] このように、実施形態 3に係る歯科用セラミックス修復物の製造方法は、実施形態 1 に係る歯科用セラミックス修復物の製造方法の場合とは、セラミックス分散液の吐出 方向と被吐出面の法線方向とが略一致するようにする手段が異なっている力 セラミ ックス分散液を吐出するための吐出ユニット 128a〜128e (図 11には吐出ユニット 12 8aのみ図示。)を適宜、移動 '回転させることにより、比較的複雑な形状のセラミックス 構造体を製造する場合であっても、セラミックス分散液の吐出方向と被吐出面の法線 方向とを常に略一致させた状態でセラミックス分散液を吐出することが可能となる。
[0146] [実施形態 4]
図 12は、実施形態 4に係る歯科用セラミックス修復物の製造方法におけるセラミック ス構造体製造工程 S32を説明するために示す図である。図 12 (a)は先端部が曲折し ていないノズル 134fを有する吐出ユニット 128fが吐出ユニット取り付け部 126に取り 付けられている様子を示す模式図であり、図 12 (b)は先端部が 30度曲折したノズル 134gを有する吐出ユニット 128gが吐出ユニット取り付け部 126に取り付けられて ヽ る様子を示す模式図であり、図 12 (c)は先端部が 60度曲折したノズル 134hを有す る吐出ユニット 128hが吐出ユニット取り付け部 126に取り付けられて 、る様子を示す 模式図であり、図 12 (d)は先端部が 90度曲折したノズル 134iを有する吐出ユニット 128iが吐出ユニット取り付け部 126に取り付けられて 、る様子を示す模式図である。
[0147] 実施形態 4に係る歯科用セラミックス修復物の製造方法は、実施形態 1に係る歯科 用セラミックス修復物の製造方法とは、先端部が曲折した複数種類のノズルを適宜使 V、分けて用いる点で異なって 、る。
[0148] このため、実施形態 4に係る歯科用セラミックス修復物の製造方法によれば、セラミ ックス構造体の側面にセラミックス分散液を吐出する場合や入り組んだ部位にセラミ ックス分散液を吐出する場合にも、被吐出面に対する所望の位置に所望の姿勢のノ ズル先端部を配置することができる。
[0149] [実施形態 5]
図 13は、実施形態 5に係る歯科用セラミックス修復物の製造方法におけるセラミック ス構造体製造工程 S32を説明するために示す図である。図 13 (a)は先端部が曲折し ていないノズル 134jを有する吐出ユニット 128jが吐出ユニット取り付け部 126に取り 付けられている様子を示す模式図であり、図 13 (b)は先端部が 90度曲折したノズル 134kを有する吐出ユニット 128kが吐出ユニット取り付け部 126に取り付けられてい る様子を示す模式図であり、図 13 (c)及び図 13 (d)は先端部が 30度曲折したノズル 134m, 134ηを有する吐出ユニット 128m, 128η力吐出ユニット取り付け咅 126に 取り付けられて 、る様子を示す模式図である。
[0150] 実施形態 5に係る歯科用セラミックス修復物の製造方法は、実施形態 4に係る歯科 用セラミックス修復物の製造方法とは、製造する歯科用セラミックス修復物の種類が 異なっている。すなわち、実施形態 5に係る歯科用セラミックス修復物の製造方法に おいては、図 13に示すように、歯科用セラミックス修復物として、インレーを製造する 歯科用セラミックス修復物の製造方法である。
[0151] このように、実施形態 5に係る歯科用セラミックス修復物の製造方法は、実施形態 4 に係る歯科用セラミックス修復物の場合とは製造する歯科用セラミックス修復物の種 類が異なるが、実施形態 4に係る歯科用セラミックス修復物の製造方法の場合と同様 に、セラミックス構造体の側面にセラミックス分散液を吐出する場合や入り組んだ部位 にセラミックス分散液を吐出する場合にも、被吐出面に対する所望の位置に所望の 姿勢のノズル先端部を配置することができる。
[0152] 以上、本発明の歯科用セラミックス修復物の製造方法及びセラミックス構造体製造 装置を上記の各実施形態に基づいて説明したが、本発明は上記の各実施形態に限 定されるものではなぐその要旨を逸脱しな 、範囲にぉ 、て種々の態様にぉ 、て実 施することが可能であり、例えば次のような変形も可能である。
[0153] (1)実施形態 1に係る歯科用セラミックス修復物の製造方法においては、レーザ光 L を照射することによりセラミックス分散液力 水分を除去することとして 、るが、本発明 はこれに限定されるものではない。例えば、被吐出面に振動を与えながらセラミックス 分散液を吐出することによりセラミックス分散液力も水分を除去することもできる。
[0154] (2)実施形態 1〜5に係る歯科用セラミックス修復物の製造方法においては、歯科用 セラミックス修復物としてのクラウン又はインレーを製造することとして 、るが、本発明 はこれに限定されるものではない。例えば、コービングクラウン、ラミネートべ-ァその 他の歯科用セラミックス修復物を製造することもできる。
[0155] (3)実施形態 1〜5に係る歯科用セラミックス修復物の製造方法においては、セラミツ タス構造体そのものを製造することとしている力 本発明はこれに限定されるものでは ない。例えば、焼成工程で歯科用セラミックス修復物となるセラミックス構造体と、焼 成工程で破砕されるなどしてセラミックス構造体力 分離除去することが可能なダミー 用セラミックス構造体とがー体となった一体ィ匕セラミックス構造体を製造することも可 能である。このような方法とすることにより、焼成工程でセラミックス構造体をダミー用 セラミックス構造体力 分離することが可能となるため、例えば浮 、た形状のセラミック ス構造体を製造することも可能となり、製造しょうとするセラミックス構造体の形状自由 度を高めることができる。
符号の説明
100…セラミックス構造体製造装置、 120…セラミックス分散液吐出装置、 122· ··吐 出制御装置、 124…アーム、 126…吐出ユニット取り付け部、 128a, 128b, 128c, 128d, 128e, 128f, 128g, 128h, 128i, 128j, 128k, 128m, 128η· ··吐出ュ- ット、 130· ··セラミックス分散液専用タンク、 132· ··圧力室、 134, 134f, 134g, 134 h, 134i, 134j, 134k, 134m, 134η· ··ノズル、 136· ··吐出ユニットス卜ッ力、 140· ·· 支台歯模型支持装置、 142〜xyz稼動テーブル、 144· ··ζ軸回転部、 146· ··χ軸回 転部、 148…支台歯模型取り付け部、 800…セラミックスブランクス切削装置、 810· ·· 切削工具、 820…取り付け部、 900…セラミックス構造体製造装置、 901…セラミック ス分散液専用タンク、 902· ··セラミックス分散液輸送ポンプ、 903· ··χ軸モータ、 904 …支台歯模型取り付け台、 905…セラミックス構造体、 906· ··ζ軸、 907…セラミックス 分散液専用ホース、 908· ··ζ軸モータ、 909· ··シリンジ、 910· ··セラミックス分散液吐 出部、 911…支台歯模型取り付け専用台取り付け治具、 912—χ軸、 913〜y軸、 91 4· ··ζ軸、 915…セラミックス構造体製造装置、 Α…支台歯模型、 C, C , C , C , C ,
1 2 3 4
C …セラミックス構造体、 E…セラミックスブランクス、 F…切り離されたセラミックス構
5
造体、 L , L…レーザ光

Claims

請求の範囲
[1] セラミックス粉末及び水を含有するセラミックス分散液を準備するセラミックス分散液 準備工程と、
歯科用セラミックス修復物を製造するための三次元データに基づいて、前記セラミ ックス分散液を被吐出面に向けて吐出することにより前記セラミックス粉末を前記被 吐出面上に堆積させてセラミックス構造体を製造するセラミックス構造体製造工程と を含み、
前記セラミックス構造体製造工程においては、前記セラミックス分散液の吐出方向と 前記被吐出面の法線方向とを略一致させた状態で、前記セラミックス分散液を吐出 することを特徴とする歯科用セラミックス修復物の製造方法。
[2] 請求項 1に記載の歯科用セラミックス修復物の製造方法にぉ 、て、
前記セラミックス構造体製造工程においては、前記セラミックス分散液の吐出方向と 前記被吐出面の法線方向とが略一致するように前記被吐出面の向きを制御して、前 記セラミックス分散液を吐出することを特徴とする歯科用セラミックス修復物の製造方 法。
[3] 請求項 1に記載の歯科用セラミックス修復物の製造方法にぉ 、て、
前記セラミックス構造体製造工程においては、前記セラミックス分散液の吐出方向と 前記被吐出面の法線方向とが略一致するように吐出方向を制御して、前記セラミック ス分散液を吐出することを特徴とする歯科用セラミックス修復物の製造方法。
[4] 請求項 1〜3のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス構造体製造工程においては、前記セラミックス分散液を、略鉛直方 向に沿って吐出することを特徴とする歯科用セラミックス修復物の製造方法。
[5] 請求項 1〜4のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス構造体製造工程にお 、ては、前記セラミックス分散液中でセラミツ タス粉末が沈降しないように吐出ユニット中の前記セラミックス分散液に超音波を与え ながら前記セラミックス分散液を吐出することを特徴とする歯科用セラミックス修復物 の製造方法。
[6] 請求項 1〜5のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス構造体製造工程にお 、ては、前記セラミックス分散液が前記被吐 出面に付着する領域を含む領域にレーザ光を照射して水分を除去することを特徴と する歯科用セラミックス修復物の製造方法。
[7] 請求項 1〜5のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス構造体製造工程においては、前記被吐出面に振動を与えながら 前記セラミックス分散液を吐出することを特徴とする歯科用セラミックス修復物の製造 方法。
[8] 請求項 1〜7のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス構造体製造工程にお 、ては、前記セラミックス粉末が前記被吐出 面に堆積した領域を含む領域にレーザ光を照射して前記セラミックス粉末の仮焼成 を行うことを特徴とする歯科用セラミックス修復物の製造方法。
[9] 請求項 1〜8のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス分散液準備工程にぉ ヽては、複数種類のセラミックス分散液を準 備しておき、
前記セラミックス構造体製造工程にお 、ては、前記複数種類のセラミックス分散液 の中から所定のセラミックス分散液を適宜選択しながら当該セラミックス分散液を吐出 することを特徴とする歯科用セラミックス修復物の製造方法。
[10] 請求項 1〜9のいずれかに記載の歯科用セラミックス修復物の製造方法において、 前記セラミックス構造体製造工程にお ヽては、製造過程におけるセラミックス構造 体の形状をモニターしながら、前記セラミックス分散液の吐出を制御することを特徴と する歯科用セラミックス修復物の製造方法。
[11] 歯科用セラミックス修復物を製造するための三次元データに基づいて、セラミックス 粉末及び水を含有するセラミックス分散液を吐出することにより前記セラミックス粉末 を被吐出面上に堆積させて歯科用セラミックス修復物の前駆体となるセラミックス構 造体を製造するためのセラミックス構造体製造装置であって、
前記セラミックス分散液を前記被吐出面に向けて吐出するセラミックス分散液吐出 装置と、
前記セラミックス構造体を製造する際の基台となる支台歯模型を支持する支台歯模 型支持装置とを備え、
前記セラミックス分散液吐出装置における吐出ユニットと前記被吐出面との相対的 な位置関係を制御する機能及び前記セラミックス分散液の吐出方向と前記被吐出面 の法線方向とを略一致させる機能を有することを特徴とするセラミックス構造体製造 装置。
[12] 請求項 11に記載のセラミックス構造体製造装置にぉ 、て、
前記支台歯模型支持装置は、前記吐出ユニットと前記被吐出面との相対的な位置 関係を制御する機能及び前記セラミックス分散液の吐出方向と前記被吐出面の法線 方向とを略一致させる機能を有することを特徴とするセラミックス構造体製造装置。
[13] 請求項 12に記載のセラミックス構造体製造装置において、
前記支台歯模型支持装置は、互いに直交する 3軸に沿って前記支台歯模型を平 行移動させる支台歯模型移動機能及び互いに直交する 2軸を中心にして前記支台 歯模型を回転させる支台歯模型回転機能を有することを特徴とするセラミックス構造 体製造装置。
[14] 請求項 13に記載のセラミックス構造体製造装置にお 、て、
前記セラミックス分散液吐出装置は、前記セラミックス分散液吐出装置のノズルを退 避させる機能を有することを特徴とするセラミックス構造体製造装置。
[15] 請求項 11に記載のセラミックス構造体製造装置にぉ 、て、
前記セラミックス分散液吐出装置は、前記吐出ユニットと前記被吐出面との相対的 な位置関係を制御する機能及び前記セラミックス分散液の吐出方向と前記被吐出面 の法線方向とを略一致させる機能を有することを特徴とするセラミックス構造体製造 装置。
[16] 請求項 15に記載のセラミックス構造体製造装置において、
前記セラミックス分散液吐出装置は、互いに直交する 3軸に沿って前記吐出ュニッ トを平行移動させる吐出ユニット移動機能及び互いに直交する 2軸を中心にして前 記吐出ユニットを回転させる吐出ユニット回転機能を有することを特徴とするセラミツ タス構造体製造装置。
[17] 請求項 11〜16のいずれかに記載のセラミックス構造体製造装置において、 前記セラミックス分散液吐出装置は、互いにノズル先端部の曲折角度が異なる複 数の吐出ユニットを有し、
前記セラミックス構造体製造装置は、前記複数の吐出ユニットの中から所定の吐出 ユニットを選択して、当該吐出ユニットを前記支台歯模型支持装置に対する所定位 置に配置する機能を有することを特徴とするセラミックス構造体製造装置。
[18] 請求項 11〜17のいずれかに記載の歯科用セラミックス構造体製造装置において、 前記セラミックス分散液吐出装置は、前記セラミックス分散液中でセラミックス粉末 が沈降しないように吐出ユニット中の前記セラミックス分散液に超音波を与えながら 前記セラミックス分散液を吐出する機能を有することを特徴とするセラミックス構造体 製造装置。
[19] 請求項 11〜18のいずれかに記載のセラミックス構造体製造装置において、
前記支台歯模型上に吐出された前記セラミックス分散液又は前記支台歯模型上に 堆積した前記セラミックス粉末における所定部位にレーザ光を照射するレーザ光照 射装置をさらに備えることを特徴とするセラミックス構造体製造装置。
[20] 請求項 11〜 19の 、ずれかに記載のセラミックス構造体製造装置にぉ ヽて、
前記支台歯模型支持装置は、前記セラミックス分散液吐出装置が前記セラミックス 分散液を吐出する際に被吐出面に対して振動を与える機能を有することを特徴とす るセラミックス構造体製造装置。
[21] 請求項 11〜20の 、ずれかに記載のセラミックス構造体製造装置にぉ ヽて、
前記セラミックス分散液吐出装置は、異なる種類のセラミックス分散液を吐出する複 数の吐出ユニットを有し、
前記セラミックス構造体製造装置は、前記複数の吐出ユニットの中から所定の吐出 ユニットを選択して、当該吐出ユニットを前記支台歯模型支持装置に対する所定位 置に配置する機能を有することを特徴とするセラミックス構造体製造装置。
[22] 請求項 11〜 21の 、ずれかに記載のセラミックス構造体製造装置において、
製造過程のセラミックス構造体の三次元形状を計測するレーザ計測装置をさらに備 えることを特徴とするセラミックス構造体製造装置。
PCT/JP2006/300658 2006-01-18 2006-01-18 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置 WO2007083372A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/300658 WO2007083372A1 (ja) 2006-01-18 2006-01-18 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置
JP2007554772A JP5308032B2 (ja) 2006-01-18 2006-01-18 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300658 WO2007083372A1 (ja) 2006-01-18 2006-01-18 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置

Publications (1)

Publication Number Publication Date
WO2007083372A1 true WO2007083372A1 (ja) 2007-07-26

Family

ID=38287334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300658 WO2007083372A1 (ja) 2006-01-18 2006-01-18 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置

Country Status (2)

Country Link
JP (1) JP5308032B2 (ja)
WO (1) WO2007083372A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2222244A1 (en) * 2007-11-28 2010-09-01 3M Innovative Properties Company Digitally-painted dental articles
KR101376128B1 (ko) * 2012-07-09 2014-03-19 조성훈 세라믹 코팅한 소아 보철용 에스에스크라운
EP2860021A1 (de) 2013-10-11 2015-04-15 Arburg GmbH + Co. KG Dreidimensionaler Gegenstand mit wenigstens einer einen Innenraum umgebenden Wandung
EP2860020A1 (de) 2013-10-11 2015-04-15 Arburg GmbH + Co. KG Verfahren zur Herstellung eines dreidimensionalen Gegenstands sowie zugehöriger Gegenstand
EP2862699A1 (de) * 2013-10-15 2015-04-22 Renfert GmbH Dentaldruckvorrichtung
WO2015073322A1 (en) * 2013-11-13 2015-05-21 Abb Technology Ag System for robotic 3d printing
EP2875938A1 (en) * 2013-11-21 2015-05-27 Airbus Operations GmbH Manufacturing method and manufacturing tool for reinforced structural elements
EP3023237A1 (en) * 2014-11-21 2016-05-25 Airbus Operations GmbH Method and system for manufacturing a three-dimensional object by means of additive manufacturing
DE102014224176A1 (de) * 2014-11-26 2016-06-02 Weeke Bohrsysteme Gmbh Vorrichtung zur Ausbildung von Volumenkörpern
JP2017006728A (ja) * 2012-06-01 2017-01-12 スリーエム イノベイティブ プロパティズ カンパニー カスタマイズされた歯科用ブランク製造方法及びシステム
JP2017036506A (ja) * 2011-03-02 2017-02-16 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBEGO Medical GmbH 3次元コンポーネントを造形的に製造するデバイス
WO2017025956A1 (en) * 2015-08-10 2017-02-16 Stratasys Ltd. 3d printing using preformed reuseable support structure
EP2668021A4 (en) * 2011-01-26 2018-01-03 Zydex Pty Ltd A device for making an object
EP3446654A1 (de) * 2017-08-23 2019-02-27 Coltène/Whaledent AG Verfahren zur herstellung einer einzelzahnersatzstruktur mit einem 3d-drucker, 3d-drucker zur herstellung einer einzelzahnersatzstruktur und einzelzahnersatzstruktur

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106614A1 (de) * 2011-06-16 2014-03-06 Arburg Gmbh + Co Kg Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Gegenstandes
EP3210754A4 (en) * 2014-10-20 2018-05-23 Sony Corporation Optical molding apparatus and method for manufacturing molded object
WO2019020345A1 (en) * 2017-07-28 2019-01-31 Straumann Holding Ag SYSTEM AND METHOD FOR MANUFACTURING A DENTAL PIECE

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269921A (en) * 1975-12-09 1977-06-10 Kanebo Ltd Method of production of glass fiber reinforced cement products
JPS61500109A (ja) * 1983-10-12 1986-01-23 バスフ フアルベン ウント フアゼルン アクチエンゲゼルシヤフト 2色以上の塗料の塗工方法及び装置
JPS63239151A (ja) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd 超電導セラミツクスの形成方法
JPH09206320A (ja) * 1996-02-02 1997-08-12 Technol Res Assoc Of Medical & Welfare Apparatus 有床義歯設計支援装置
JPH10218667A (ja) * 1997-02-04 1998-08-18 Seiko Epson Corp セラミックス材料の製造方法
JPH10286271A (ja) * 1997-04-14 1998-10-27 Nissan Syst Kaihatsu:Kk 三次元形状測定装置
JP2000272018A (ja) * 1999-03-25 2000-10-03 Matsushita Electric Works Ltd 三次元形状物製造法
JP2001064075A (ja) * 1999-08-30 2001-03-13 Sumitomo Chem Co Ltd 透光性アルミナ焼結体およびその製造方法
JP2003160374A (ja) * 2001-08-22 2003-06-03 Carl Zeiss Stiftung 低温での光学ガラス及び色ガラスの製造方法
JP2003340813A (ja) * 2002-05-29 2003-12-02 Advance Co Ltd セラミックス成形体の製造方法及び同方法を用いた装置。
JP2004329343A (ja) * 2003-04-30 2004-11-25 Tomii Kk 基材の表面処理方法、表面処理された基材、及び、該基材からなる歯科治療用部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018967A (ja) * 2000-07-11 2002-01-22 Canon Inc 目的物生成装置
WO2005073441A1 (en) * 2004-01-30 2005-08-11 Raisio Chemicals Korea Inc. A bottom-up electrospinning devices, and nanofibers prepared by using the same
KR100672819B1 (ko) * 2004-06-24 2007-01-22 주식회사 케이씨아이 삼차원 스캐닝 시스템용 구동장치 및 이를 이용한 치아컴퓨터 모델링용 삼차원 스캐닝 시스템

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269921A (en) * 1975-12-09 1977-06-10 Kanebo Ltd Method of production of glass fiber reinforced cement products
JPS61500109A (ja) * 1983-10-12 1986-01-23 バスフ フアルベン ウント フアゼルン アクチエンゲゼルシヤフト 2色以上の塗料の塗工方法及び装置
JPS63239151A (ja) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd 超電導セラミツクスの形成方法
JPH09206320A (ja) * 1996-02-02 1997-08-12 Technol Res Assoc Of Medical & Welfare Apparatus 有床義歯設計支援装置
JPH10218667A (ja) * 1997-02-04 1998-08-18 Seiko Epson Corp セラミックス材料の製造方法
JPH10286271A (ja) * 1997-04-14 1998-10-27 Nissan Syst Kaihatsu:Kk 三次元形状測定装置
JP2000272018A (ja) * 1999-03-25 2000-10-03 Matsushita Electric Works Ltd 三次元形状物製造法
JP2001064075A (ja) * 1999-08-30 2001-03-13 Sumitomo Chem Co Ltd 透光性アルミナ焼結体およびその製造方法
JP2003160374A (ja) * 2001-08-22 2003-06-03 Carl Zeiss Stiftung 低温での光学ガラス及び色ガラスの製造方法
JP2003340813A (ja) * 2002-05-29 2003-12-02 Advance Co Ltd セラミックス成形体の製造方法及び同方法を用いた装置。
JP2004329343A (ja) * 2003-04-30 2004-11-25 Tomii Kk 基材の表面処理方法、表面処理された基材、及び、該基材からなる歯科治療用部材

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271813B2 (en) 2007-11-28 2016-03-01 3M Innovative Properties Company Digitally-painted dental articles
JP2011504790A (ja) * 2007-11-28 2011-02-17 スリーエム イノベイティブ プロパティズ カンパニー デジタル塗装された歯科用物品
EP2222244A1 (en) * 2007-11-28 2010-09-01 3M Innovative Properties Company Digitally-painted dental articles
EP2668021A4 (en) * 2011-01-26 2018-01-03 Zydex Pty Ltd A device for making an object
JP2017036506A (ja) * 2011-03-02 2017-02-16 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBEGO Medical GmbH 3次元コンポーネントを造形的に製造するデバイス
JP2019065397A (ja) * 2011-03-02 2019-04-25 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBEGO Medical GmbH 3次元コンポーネントを造形的に製造するデバイス
US12005643B2 (en) 2011-03-02 2024-06-11 Bego Medical Gmbh Device for the generative manufacturing of three-dimensional components
US11440251B2 (en) 2011-03-02 2022-09-13 Bego Medical Gmbh Device for the generative manufacturing of three-dimensional components
US10548695B2 (en) 2011-03-02 2020-02-04 Bego Medical Gmbh Device for the generative manufacturing of three-dimensional components
JP2017006728A (ja) * 2012-06-01 2017-01-12 スリーエム イノベイティブ プロパティズ カンパニー カスタマイズされた歯科用ブランク製造方法及びシステム
KR101376128B1 (ko) * 2012-07-09 2014-03-19 조성훈 세라믹 코팅한 소아 보철용 에스에스크라운
EP2860021A1 (de) 2013-10-11 2015-04-15 Arburg GmbH + Co. KG Dreidimensionaler Gegenstand mit wenigstens einer einen Innenraum umgebenden Wandung
DE102013220578A1 (de) * 2013-10-11 2015-04-16 Arburg Gmbh + Co. Kg Dreidimensionaler Gegenstand mit selbsttragend hergestellter Wandung
DE102013220587A1 (de) * 2013-10-11 2015-04-16 Arburg Gmbh + Co. Kg Dreidimensionaler Gegenstand aus in situ verfestigten Tropfen
EP2860020A1 (de) 2013-10-11 2015-04-15 Arburg GmbH + Co. KG Verfahren zur Herstellung eines dreidimensionalen Gegenstands sowie zugehöriger Gegenstand
EP2862699A1 (de) * 2013-10-15 2015-04-22 Renfert GmbH Dentaldruckvorrichtung
US20190036337A1 (en) * 2013-11-13 2019-01-31 Abb Schweiz Ag System for robotic 3d printing
WO2015073322A1 (en) * 2013-11-13 2015-05-21 Abb Technology Ag System for robotic 3d printing
CN104646668A (zh) * 2013-11-21 2015-05-27 空中客车营运有限公司 用于加强结构组件的制造方法及制造工具
EP2875938A1 (en) * 2013-11-21 2015-05-27 Airbus Operations GmbH Manufacturing method and manufacturing tool for reinforced structural elements
EP3023237A1 (en) * 2014-11-21 2016-05-25 Airbus Operations GmbH Method and system for manufacturing a three-dimensional object by means of additive manufacturing
US10350821B2 (en) 2014-11-21 2019-07-16 Airbus Operations Gmbh Method and system for manufacturing a three-dimensional object by additive manufacturing
EP3023237B1 (en) * 2014-11-21 2020-11-11 Airbus Operations GmbH Method and system for manufacturing a three-dimensional object by means of additive manufacturing
DE102014224176A1 (de) * 2014-11-26 2016-06-02 Weeke Bohrsysteme Gmbh Vorrichtung zur Ausbildung von Volumenkörpern
EP3224022B1 (de) 2014-11-26 2020-03-18 Homag Bohrsysteme GmbH Vorrichtung zur ausbildung von volumenkörpern
US10675813B2 (en) 2014-11-26 2020-06-09 Homag Bohrsysteme Gmbh Device for forming 3D bodies
WO2017025956A1 (en) * 2015-08-10 2017-02-16 Stratasys Ltd. 3d printing using preformed reuseable support structure
EP3446654A1 (de) * 2017-08-23 2019-02-27 Coltène/Whaledent AG Verfahren zur herstellung einer einzelzahnersatzstruktur mit einem 3d-drucker, 3d-drucker zur herstellung einer einzelzahnersatzstruktur und einzelzahnersatzstruktur

Also Published As

Publication number Publication date
JP5308032B2 (ja) 2013-10-09
JPWO2007083372A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
WO2007083372A1 (ja) 歯科用セラミックス修復物の製造方法及びセラミックス構造体製造装置
ES2246882T3 (es) Metodo para la fabricacion de un elemento dental.
US6974323B2 (en) Method for automated production of ceramic dental restorations and prostheses
EP2227172B1 (en) Fabrication of dental articles using digitally-controlled reductive and digitally-controlled additive processes
ES2349023T3 (es) Metodo para la produccion de cuerpos moldeados ceramicos tridimensionales.
US10500020B2 (en) Device for powder based additive material manufacturing of dental appliances
US6495073B2 (en) Method for the manufacture of medical, dental-medical, dental-technical and technical parts from ceramics
JP2002320626A (ja) 歯科医療加工物を製造するための切削/研削機
EP2849674A1 (en) Method of manufacturing an article
KR20170009907A (ko) 치과용 보철물의 부품을 제조하기 위한 인쇄 가능 및 소결 가능 치과용 조성물, 및 이의 제조 방법
EP2422739A1 (de) Verfahren zur Herstellung von Zahnersatz
US20070190493A1 (en) Dental prosthesis, method of designing thereof, and method of producing thereof
CA2815699C (en) Method and device for producing a dental component
US11534276B2 (en) Method and device for functionalising dental restorations
CN109396433A (zh) 通过增材制造技术制造至少一个由至少一种陶瓷和/或金属材料制成的坯件的方法和机器
JP2018042895A (ja) 歯冠補綴物作製システム、歯冠補綴物作製方法および歯冠補綴物作製のためのプログラム
US20210362231A1 (en) Method and machine for manufacturing pieces made of ceramic or metallic material by the technique of additive manufacturing
CN113288481B (zh) 椅旁数字化增材纳米氧化锆全瓷冠及其生产方法
JP2003340813A (ja) セラミックス成形体の製造方法及び同方法を用いた装置。
WO2023285592A2 (en) A method for manufacturing an object, in particular an orthodontic appliance, by a 3d-printing device
WO2016154850A1 (zh) 一种三维打印方法、装置和打印机
KR20130088242A (ko) 인공치아 제작용 드릴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007554772

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711927

Country of ref document: EP

Kind code of ref document: A1