WO2007080646A1 - 極低温用鋼 - Google Patents

極低温用鋼 Download PDF

Info

Publication number
WO2007080646A1
WO2007080646A1 PCT/JP2006/300342 JP2006300342W WO2007080646A1 WO 2007080646 A1 WO2007080646 A1 WO 2007080646A1 JP 2006300342 W JP2006300342 W JP 2006300342W WO 2007080646 A1 WO2007080646 A1 WO 2007080646A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
content
seconds
toughness
Prior art date
Application number
PCT/JP2006/300342
Other languages
English (en)
French (fr)
Inventor
Tomoya Kawabata
Kazuki Fujiwara
Shuji Okaguchi
Kazushige Arimochi
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2007553805A priority Critical patent/JP4957556B2/ja
Priority to PCT/JP2006/300342 priority patent/WO2007080646A1/ja
Publication of WO2007080646A1 publication Critical patent/WO2007080646A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Definitions

  • the present invention relates to a steel premised on use at an extremely low temperature. More specifically, the present invention relates to steel that contributes to the improvement of fracture safety of the entire structure when welding is performed in the manufacture of cryogenic storage tanks and the like.
  • cryogenic temperature means the temperature range of liquids such as LPG and LNG, that is, temperatures below 60 ° C.
  • the present invention is mainly targeted at steels used at LNG temperatures of 165 ° C.
  • Patent Document 1 includes a plate manufactured by a three-stage heat treatment method (QLT) or a direct quenching / two-phase quenching method (DQ—LT) method with Mo: 0.04-0.5% added. 9Ni steel with thickness Omm or more is disclosed.
  • Patent Document 2 discloses a method for producing 9Ni steel having a thickness of 40 mm or more by a quenching-tempering method (QT) or a direct quenching-tempering method (DQ-T) method.
  • QT quenching-tempering method
  • DQ-T direct quenching-tempering method
  • Patent Document 3 discloses a cryogenic steel containing 4.0 to 7.5% Ni and having an Ms point of 370 ° C. or lower.
  • Patent Document 4 discloses a steel containing 5.5 to 10% Ni and its continuous forging method!
  • Patent Document 5 and Patent Document 6 include 1.5 to 9.5% Ni and 0.02 to 0.08%.
  • Patent Document 1 Japanese Patent Laid-Open No. 4 371520
  • Patent Document 2 JP-A-6-184630
  • Patent Document 3 Japanese Patent Laid-Open No. 6-36483
  • Patent Document 4 JP-A-7-90504
  • Patent Document 5 Japanese Patent Laid-Open No. 9 302445
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-129280
  • Patent Document 3 discloses a method for improving the toughness of the weld heat affected zone (HAZ), but does not describe the CTOD characteristics of HAZ! /.
  • Patent Document 4 only discloses the invention of the continuous forging method, and does not disclose the design of chemical components and the manufacturing method for obtaining the base material characteristics like 9% Ni steel.
  • the characteristics of the base material itself are not disclosed.
  • the minimum value of the Ni content specifically shown is 9.08%, and no means for obtaining a base material performance equivalent to 9% Ni steel with low Ni is disclosed.
  • Patent Document 5 and Patent Document 6 describe CTOD characteristics of welded joints.
  • this CTOD characteristic shows the limit CTOD value in the fusion line (FL) part, and does not consider the limit CTOD value in the weld toe part (Toe part).
  • An object of the present invention is a cryogenic steel (hereinafter referred to as low Ni steel and V), which has a lower Ni content than 9% Ni steel, and has a weld heat-affected zone including the Toe zone.
  • the aim is to provide a cryogenic steel with excellent CTOD characteristics.
  • the present inventors conducted various experiments on the weldability of low Ni steel.
  • the weld When evaluating, it is common practice to perform a Charpy test using a specimen taken from the center of the plate thickness or lZ4t (1Z4 of the plate thickness) or a CTOD test by forming a notch in the fusion line. .
  • the Toe part is where the decrease in fracture toughness is most problematic, and it has been found that these tests are not sufficient.
  • Non-Patent Document 1 Sato et al .: “Plastic deformation behavior and crack opening displacement of a material with a notch in a sudden change in mechanical properties” (Journal of the Japan Welding Society, No. 52, No. 2, pp.86-93, ( (1983))
  • the Toe part cannot obtain the help of plastic deformation of the weld metal, and cannot improve the CTOD value. Therefore, it is important to increase the toughness of the Toe part in low-Ni steel welded joints.
  • the heat-affected zone of the Toe portion has a substantially entire martensite structure.
  • the HAZ structure at the Toe position to be overcome in the present invention is a part that has been affected by heat due to the final pass, refinement and temper effect due to the subsequent pass cannot be expected. That is, after welding The progress of the autotempering effect during cooling of the steel is the decisive factor for toughness. Similar to the tempering effect by reheating, the tempering effect by autotemper can be evaluated by the amount of cementite. In other words, high CTOD characteristics can be obtained if the cementite content in the heat-affected zone of the Toe portion becomes more than a certain value. However, the amount of cementite after welding cannot be confirmed unless welding is actually performed.
  • the present inventors simulated the thermal cycle that assumed the thermal effects of actual welding by adjusting the Si, A1 and N contents, and obtained it in a reproducible thermal cycle test under certain conditions. It was found that if the Fe content in the extracted residue of micro yarns and weaves is 0.002% or more, a steel with excellent CTOD characteristics in the weld heat affected zone including the Toe zone can be obtained.
  • the gist of the present invention based on the above findings is the following steels for cryogenic temperatures from (1) to (5).
  • "%" about the component content of steel is “mass%”.
  • C contributes to securing the strength of the base material. If its content is less than 0.01%, not only the required strength cannot be secured, but also lath formation in FL becomes insufficient, and the toughness of HAZ near FL also decreases. On the other hand, if its content exceeds 0.12%, the toughness of HAZ, especially HAZ in the vicinity of FL, deteriorates significantly. Therefore, the C content is set to 0.01 to 0.12%.
  • Mn is added as a deoxidizer and to ensure the strength and toughness of the base metal and the hardenability of HAZ. If its content is less than 0.4%, these effects cannot be obtained. In addition, ferrite side plates are formed in HAZ, resulting in inadequate lath formation and reduced toughness of the weld. On the other hand, excessive Mn exceeding 2% causes non-uniform base metal properties in the thickness direction due to center segregation. Therefore, the Mn content is 0.4-2%. More preferred is 0.4-1%.
  • Ni more than 5% and less than 7.5%
  • Ni is the most basic element added to ensure toughness as a cryogenic steel.
  • the higher the content the higher the low-temperature toughness can be obtained.
  • the higher the content the more economical. Therefore, in the present invention, the Ni content is more than 5% and less than 7.5%. From the viewpoint of securing low temperature toughness, a more preferable lower limit is 5.7%. [0032] A1: 0.002 to 0.05%
  • Al acts as a deoxidizer, but, like Si, it delays the martensite autotemper, so it is desirable that the content be low. However, if the A1 content is less than 0.002%, a sufficient deoxidation effect cannot be obtained. In addition, when the A1 content exceeds 0.05%, as in the case of Si described above, the decomposition and precipitation reaction from martensite, which is supersaturated with C in the form of supersaturation, to cementite is suppressed in the welding cooling process. The toughness of the steel decreases. Therefore, the A1 content is set to 0.002 to 0.05%.
  • N 0.0015 to 0.0045%
  • N in steel causes deterioration of HAZ toughness through the formation of precipitates. Therefore, unless N is 0.0045% or less, it is inevitable that HAZ toughness deteriorates. On the other hand, the content of 0.0015% or more is necessary because the formation of A1N has an effect on the refinement of the HAZ structure. Therefore, the N content is 0.0015 to 0.0045%.
  • One of the steels of the present invention is one in which the balance consists of Fe and impurities in addition to the above components.
  • Si, P and S in impurities must be regulated as follows.
  • Si is unavoidably present in steel as an impurity, but if it is contained, it acts as a deoxidizer.
  • the Si content exceeds 0.1%, the autotemper is delayed to suppress the decomposition and precipitation reaction to cementite from martensite that is supersaturated with C in the welding cooling process, or Increases the amount of martensite and reduces the toughness of the weld. Therefore, the Si content is 0.1% or less.
  • P is unavoidably present in steel as an impurity. If its content exceeds 0.05%, not only does it pray to the grain boundaries to reduce toughness, but also causes hot cracking during welding. Therefore, the P content needs to be 0.05% or less.
  • Another steel of the present invention is a steel containing at least one component selected from at least one of the following first group to third group in addition to the components described so far. .
  • the first group of components mainly contributes to the improvement of steel strength
  • the second group of components mainly contributes to the improvement of steel toughness
  • the third group of components mainly contains S and O (oxygen). ) Is a component that contributes to refinement of crystal grains.
  • Cu is an element effective for securing the strength of the base material. To obtain this effect, a content of 0.1% or more is desirable. However, when the Cu content exceeds 2.0%, it is heated below the Ac transformation point.
  • the upper limit of Cu content is 2.0%.
  • Cr is an element effective for enhancing the carbon dioxide gas corrosion resistance and enhancing the hardenability. In order to obtain this effect, a content of 0.2% or more is desirable. However, if the Cr content exceeds 1.5%, it becomes difficult to suppress the hardening of HAZ, and the effect of improving the carbon dioxide corrosion resistance is saturated. Therefore, the upper limit of Cr content is 1.5%.
  • Mo is an element effective for improving the strength and toughness of the base material. To obtain this effect, a content of 0.02% or more is desirable. However, if the Mo content exceeds 0.5%, the hardness of HAZ increases, and the toughness and SSC resistance are impaired. Therefore, the upper limit of Mo content is 0.5%.
  • V is an effective element for improving the strength of the base metal mainly by carbonitride precipitation during tempering. To obtain this effect, a content of 0.005% or more is desirable. However, if the V content exceeds 0.1%, the effect of improving the strength of the base metal is saturated and the toughness is deteriorated. Shi Therefore, the upper limit of V content is 0.1%.
  • B is an element effective for securing the strength of the base material. To obtain this effect, a content of 0.0003% or more is desirable. However, if the B content exceeds 0.005%, coarse boride precipitates and the toughness deteriorates. Therefore, the upper limit for the B content is 0.005%.
  • Nb 0.1% or less
  • Nb is an element effective for refining the structure of steel and improving low temperature toughness. To obtain this effect, a content of 0.005% or more is desirable. However, if the Nb content exceeds 0.1%, coarse carbides and nitrides are formed, and the toughness decreases. Therefore, the upper limit of Nb content is 0.1%.
  • Ti is an element effective as a deoxidizer.
  • an oxide phase composed of Al, Ti, and Mn is formed, resulting in pinning particles that contribute to the refinement of the structure.
  • a content of 0.005% or more is desirable.
  • the oxide formed will be Ti oxide or Ti-Al oxide, and the dispersion density will decrease, especially in small heat input welds. The ability to refine the structure in the heat affected zone is lost. Therefore, the upper limit of Ti content is 0.1%.
  • Ca reacts with S in the steel to form an acid sulfide in the molten steel.
  • this acid / sulfuric acid does not extend in the rolling direction during rolling and maintains a spherical shape after rolling.
  • the content is preferably 0.002% or more.
  • the Ca content is set to 0.004% or less.
  • Mg 0.005% or less
  • Mg is an element that produces fine Mg-containing oxides and is effective in refining austenite grains. To obtain this effect, a content of 0.0002% or more is desirable. However, if the Mg content exceeds 0.005%, the amount of oxide increases and ductility is reduced. Gatsutsu Therefore, the upper limit of Mg content is 0.005%.
  • REM is an effective element for refining the structure of the heat affected zone and fixing S. To obtain this effect, a content of 0.0005% or more is desirable. Inclusions formed by the REM adjuncts have a relatively small effect on toughness degradation, so if the content is 0.002% or less, a reduction in the toughness of the base material can be tolerated. Therefore, the upper limit of the REM content is 0.002%.
  • REM means 17 elements with Sc and Y added to the lanthanoid elements.
  • Si and A1 have the same function as described above for the reason of limiting the content of each element. Therefore, the reason why the formula (a) includes a term for 3 times the amount of Si and 5 times the amount of A1 is the same as the reason for limiting the contents of Si and A1.
  • Si and A1 deteriorate the toughness of the weld by suppressing the partial analysis reaction of cementite from the martensite that is supersaturated with C in the cooling process after welding. Therefore, by reducing the total content of these, the above-described cementite decomposition and precipitation reaction is promoted, and the martensite toughness of the weld zone is improved.
  • the N content is regulated mainly to avoid toughness deterioration of the HAZ structure due to solute N.
  • the effects of the restrictions of Si and A1 and N can be supplemented by the effect of the other regulation when the effect of one regulation is small.
  • the coefficient of each element in equation (a) and the upper limit of 0.65% in equation (a) were recursively determined from numerous experimental results. Specifically, the result of organizing the relationship between the value on the left side of this equation (a) and the limit CTOD value of the Toe part of the TIG welded joint using steel within the limited range of the chemical composition specified in the present invention.
  • the Fe content in the residue extracted by the extraction residue method is 0.002% or more after the reproducible heat cycle test, the CTOD characteristics of the heat affected zone including the Toe when welding steel will be good. . If the Fe content in the residue is less than 0.002%, precipitation of cementite does not proceed sufficiently and high CTOD characteristics cannot be obtained.
  • the upper limit of Fe content in the residue is not determined, but if the content exceeds 0.05%, brittle fracture is promoted by strain concentration at the cementite / matrix interface. Therefore, the Fe content in the residue is preferably 0.05% or less.
  • test piece is treated with the following heat pattern.
  • the test piece has a size of 1 lmm x 1 lmm x 60 mm.
  • the residue is extracted by the extraction residue method, and the Fe content in the residue is measured.
  • the following procedure is used. That is, first, a sample is taken from the soaking part of the test piece to which the above reproducible heat cycle is added. Then, all scales are removed from the surface. After the sample is washed with petroleum benzine, the weight of the sample (referred to as VI) is measured. Tetramethylammonium as an electrolytic solution - Umukuroraido (TMAC) 1%, using a methanol solution containing 10% ⁇ cetyl acetone, by applying a current of surface area lcm 2 per 20mA in the sample, electrolysis of the sample. The electrolyzed sample (residue) is filtered through a 0.2 m coarse filter and weighed again (referred to as V2).
  • TMAC electrolytic solution - Umukuroraido
  • the sample (residue) is decomposed with an acid composed of 10 ml of nitric acid, 5 ml of perchloric acid and 15 ml of mixed acid (5 ml of water + 5 ml of sulfuric acid + 5 ml of phosphoric acid). Treat the sample with white smoke to remove organic matter Apply. Add 10 ml of tartaric acid (20%) and 5 ml of yttrium solution (lmgZml) to make the total volume of the solution containing the sample 100 ml. Finally, the amount of Fe element (Xn) in the residual solution is measured by high frequency inductively coupled plasma optical emission spectrometry (ICP). Next, by calculating Xn / (VI-V2), the Fe content in the residue (ratio of the total weight including dissolved iron) can be determined.
  • ICP inductively coupled plasma optical emission spectrometry
  • the steel of the present invention needs to have a fine grain structure in order to ensure the amount of cementite after the reproducible thermal cycle test.
  • the slab having the chemical composition defined in the present invention is manufactured by the ingot-making and continuous forging method, followed by the steps shown below to manufacture the steel of the present invention. Can do.
  • the fine structure of the steel structure promotes the tempering effect of martensite in the heat-affected structure of the Toe part through the inheritance of the structure.
  • rolling is performed at a cumulative reduction of 50% or more in the non-recrystallized area of austenite.
  • fine subgrains can be formed in austenite, and the structure after martensitic transformation can be refined.
  • the cooling after the end of rolling may be either air cooling or water cooling.
  • cooling is performed at a cooling rate of 10 ° CZs or higher from the start of cooling to at least 600 ° C, more lattice defects (dislocations) introduced in finish rolling can be maintained, and the final structure is Refine. [0061] (4) Tempering
  • tempering may be performed at a temperature of 700 ° C or less. As a result, the strength can be adjusted and the toughness can be improved. If tempering is performed at a temperature exceeding 700 ° C, the strength decreases.
  • the base metal structure In order to further refine the base metal structure, it is desirable to heat the two-phase region of ferrite and austenite before tempering.
  • the two-phase heat treatment is performed at 680 to 800 ° C, and then cooled to 200 ° C or less at a cooling rate of 5 ° CZs.
  • Steels No. 1 to No. 31 having chemical compositions shown in Table 1 were melted to form slabs having a thickness of 300 mm. From N 0.1 to No. 29, the slab was heated to 1050 ° C and then rolled to a finish temperature of 800 ° C. Thereafter, it was cooled to room temperature by water cooling, reheated and tempered at 740 ° C, and further tempered at 580 ° C to obtain a thick steel plate having a thickness of 25 mm.
  • each steel plate was subjected to a reproducible thermal cycle test, and the residue was extracted by the extraction residue method described above, and the Fe content in the residue was measured.
  • Table 2 shows the above results.
  • the limit CTOD value of the notch in contact with FL is
  • the chemical composition is within the range specified in the present invention, satisfies the formula (a), and the Fe content in the residue after the reproducible thermal cycle test is 0.002% or more.
  • Thick steel plates made from No. l to No. 25 show good base metal properties. Both the welding force, the CTOD value of the weld zone, and the FL L Toe show good characteristics that greatly exceed the target of 0.15 mm.
  • the thick steel plate with No. 26 steel strength also satisfies the formula (a), and the amount of Fe in the residue after the repeated thermal cycle test is 0.002% or more. Although there is no problem with the base material properties, the limit CTOD value is low at both FL and Toe positions.
  • the thick steel plate made of No. 27 steel has a Si content that falls outside the range of the Si content specified in the present invention, and the formula (a) is not satisfied. Also, the Fe content in the residue is low. For this reason, the limit CTOD values at both the FL and Toe positions are low.
  • the thick steel plate of No. 28 has a Mn content that is lower than the lower limit of the Mn content defined in the present invention. For this reason, the toughness of the base material cannot be secured and the absorbed energy is small. Power! ]
  • the limit CTOD value at both FL and Toe is low.
  • the thick steel plate made of No. 29 steel does not satisfy the formula (a) in which the A1 content falls within the range of the A1 content specified in the present invention. Also, the amount of Fe in the residue is low. For this reason, the limit CT OD values at both the FL and Toe positions are low.
  • the thick steel plate of No. 30 does not satisfy the formula (a) although it satisfies the chemical composition defined in the present invention. As described above, the manufacturing method deviates from the preferred range, and the miniaturization of the base material has not been achieved. As a result, the Fe content in the residue after the reproducible thermal cycle is less than 0.002%, and the limit CTOD values at both the FL and Toe positions are low!
  • the thick steel plate having the steel strength of No. 31 has the chemical composition defined in the present invention and satisfies the formula (a). However, the manufacturing method deviates from the preferred range as described above, and the miniaturization of the base material has not been achieved. As a result, the Fe content in the residue after the reproduction heat cycle was less than 0.002%. Compared to No.26 to No.30 thick steel plates, the limit CTOD value of FL and Toe positions is slightly higher, but the steel content of Fe content is 0.002% or more (No.l to No.25) Compared to the limit CTOD value is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 低温下で使用することを目的とした鋼に関するものであって、Toe部を含めた溶接熱影響部のCTOD特性に優れた特性を有する鋼である。その鋼は、質量%で、C:0.01~0.12%、Si:0.1%以下、Mn:0.4~2%、P:0.05%以下、S:0.008%以下、Ni:5%を超えて7.5%未満、Al:0.002~0.05%、N:0.0015~0.0045%を含有し、残部はFeおよび不純物からなる鋼であって、3Si+5Al+50N≦0.65を満足することを特徴とする極低温用鋼である。この鋼は、さらにCu、Cr、Mo、V、Nb、Ti、B、Ca、MgおよびREMの1種以上を含んでもよい。

Description

明 細 書
極低温用鋼
技術分野
[0001] 本発明は、極低温下で使用することを前提とした鋼に関する。より具体的には、極 低温貯槽タンク等の製作にぉ ヽて、溶接を実施した場合の構造物全体の破壊安全 性向上に寄与する鋼に関する。
背景技術
[0002] LPG、 LNGなどを貯蔵する極低温貯槽タンクを製造するための鋼には、安全性確 保の面力 優れた破壊靱性が要求される。その要求に応える鋼として、 9%Ni鋼 (本 明細書では、成分含有量についての「%」は「質量%」を意味する)がある。ここで、極 低温とは、 LPG、 LNGなどの液体の温度域、すなわち 60°C以下の温度を意味す る。本発明は、特に— 165°Cの LNG温度で使用される鋼を主なターゲットとしている。
[0003] 従来、 P、 Sをはじめとする不純物の低減や Cの低減、さらには 3段熱処理法、即ち 、「焼入れぬ)、二相域焼入れ (L)および焼戻し (T)」という熱処理 (QLT)、などの種々 の改善が 9%Ni鋼に対して行われてきた。また、含 Ni鋼の強度および靱性向上に有 効な合金元素として Moの添加が検討されてきた。
[0004] 上記の QLTや Mo添加は、靱性改善の根幹となる残留オーステナイト量を増加さ せるためである。このような技術が記載された文献として下記の特許文献がある。
[0005] 特許文献 1には、 Mo: 0. 04-0. 5%を添加した 3段熱処理法 (QLT)または直接 焼入一二相焼入法 (DQ—LT)法によって製造した、板厚力 Omm以上の 9Ni鋼が 開示されている。
[0006] 特許文献 2公報には、焼入れ-焼戻し法 (QT)または直接焼入れ-焼戻し法 (DQ-T )法による板厚 40mm以上の 9Ni鋼の製造方法が開示されている。
[0007] 近年、合金元素価格の高騰などで鋼材の価格が急騰して ヽる。 Niなど高価な合金 元素を多量に添カ卩しなければならない 9%Ni鋼においては、合金元素の価格上昇 は、より一層の鋼材価格の上昇をもたらす。そこで、鋼材価格の抑制のために、コスト 低減の少ない Ni含有量で 9%Ni鋼と同等以上の性能、例えば優れた靱性、を有す る鋼材の開発が必要となってきている。このような低 Ni型の極低温用鋼に関する従 来技術としては下記のものがある。
[0008] 特許文献 3には 4. 0〜7. 5%の Niを含有し、 Ms点が 370°C以下となる極低温用 鋼が開示されている。また、特許文献 4には、 5. 5〜10%の Niを含有する鋼および その連続铸造法が示されて!/ヽる。
[0009] さらに、特許文献 5および特許文献 6には 1. 5〜9. 5%の Niと 0. 02〜0. 08%の
Moを含有する鋼が開示されて ヽる。
特許文献 1:特開平 4 371520号公報
特許文献 2:特開平 6— 184630号公報
特許文献 3:特開平 6— 36483号公報
特許文献 4:特開平 7— 90504号公報
特許文献 5:特開平 9 302445号公報
特許文献 6:特開 2002— 129280号公報
[0010] しカゝしながら、特許文献 3には、溶接熱影響部 (HAZ)の靱性の改善方法は開示さ れて ヽるが、 HAZの CTOD特性につ!ヽての記載はな!/、。
特許文献 4には、連続铸造方法の発明が開示されているにとどまり、 9%Ni鋼なみ の母材特性を得るための化学成分の設計や製造方法については開示されておらず
、母材特性そのものも開示されていない。また、具体的に示されている Ni量の最少値 は 9. 08%であり、低 Niで 9%Ni鋼と同等の母材性能を得る手段は開示されていな い。
[0011] 一方、特許文献 5および特許文献 6には溶接継手の CTOD特性の記載がある。しか し、この CTOD特性は、フュージョンライン(FL)部における限界 CTOD値を示すもの であり、溶接止端部 (Toe部)における限界 CTOD値を考慮したものではない。
発明の開示
[0012] 本発明の目的は、 9%Ni鋼よりも Ni含有量が少な 、極低温用鋼(以下、低 Ni鋼と V、う)であって、 Toe部を含めた溶接熱影響部の CTOD特性に優れた極低温用鋼を 提供することにある。
[0013] 本発明者らは、低 Ni鋼の溶接性について、様々な実験を行った。通常、溶接部を 評価する際には、板厚中心部や lZ4t部 (板厚の 1Z4の部分)から採取した試料片 によるシャルピー試験やフュージョンライン部にノッチを形成して CTOD試験を行うこ とが一般的である。しかし、低 Ni鋼では、最も破壊靭性の低下が問題となる箇所は T oe部であり、これらの試験を行っただけでは不十分であることが判明した。
[0014] 一般に、低 M鋼の溶接継手の作製には、高 、低温靭性を有するオーステナイト系 の溶接材料を用いる。したがって、フュージョンラインの CTOD特性は、荷重負荷時 の亀裂先端領域においては溶金組織中で塑性変形が先行し、 CTOD値が向上する という現象が見られる。これについては、例えば、下記の非特許文献 1にも一般的な アンダーマッチ継手の問題として、解析的に明らかにされている。
非特許文献 1 :佐藤ら:「力学的性質の急変部に切欠きをもつ材の塑性変形挙動とき 裂開口変位」(溶接学会誌、第 52卷、第 2号、 pp.86— 93、 (1983))
[0015] し力しながら、 Toe部は、溶接金属の塑性変形の助けを得ることができず、 CTOD値 の向上が期待できない。したがって、低 Ni鋼の溶接継手では、 Toe部の高靭性化を 図ることが重要である。
[0016] 本発明者らは、 Ni含有量が 5%超〜 7. 5%未満である極低温用鋼について、 Toe 部の熱影響部組織を冶金学的に検討をした結果、以下の知見を得た。
[0017] 溶接継手を作製した場合、 Toe部の熱影響部はほぼ全面マルテンサイト組織となる 。 Toe部の熱影響部の靭性を向上させるためには、マルテンサイト組織の改良が必 要である。
[0018] 通常、低温貯蔵タンクを製造する際には、厚み 10mm以上の鋼材が用いられるた め、多数パスによる溶接が必須となる。よって、溶接によって溶融点近傍まで加熱さ れた母材組織も後続パスにより、母材は相対的に低温での加熱とそれに引き続く冷 却の履歴を受け、細粒ィ匕ゃ焼戻しされることとなる。この後、後続パスによる熱履歴の 際、組織の微細化、テンパー効果により CTOD特性は向上する。テンパー効果の進 行は過飽和に Cを固溶した焼入れのままのマルテンサイトからのセメンタイトの析出 量を測定することで評価することが可能である。
[0019] 本発明で克服すべき Toe位置の HAZ組織は最終パスによる熱影響を受けた箇所 であるため、後続パスによる微細化やテンパー効果が期待できない。つまり、溶接後 の冷却中のオートテンパー効果の進行が靭性良否の決め手となる。オートテンパー による焼戻し効果も再加熱によるテンパー効果と同様、テンパー効果の進行はセメン タイト量により評価可能である。つまり、 Toe部の熱影響部におけるセメンタイト量が一 定以上になれば、高い CTOD特性を得ることができる。しかし、溶接後のセメンタイト 量については、溶接を実際に行わないと、その量を確認することができない。
[0020] 一方、冶金学的に、オートテンパーによる焼戻しを加速させるためには、 Si含有量 を低減すること、および A1含有量を低減することを合わせて行う必要がある。また、 N (窒素)含有量の増加は、硬質介在物の増加を招き、 Toe部の熱影響部の靭性劣化 をもたらす。そのため、基本的には N含有量を低減する必要がある。しカゝしながら、 N は A1Nの形成を通じて HAZ組織の微細化にも効果を示すため、最小限の含有は必 要である。
[0021] よって、本発明者らは、 Si、 A1および N含有量を調整すること、および、実際の溶接 による熱影響を想定した熱サイクルを模擬し、一定条件の再現熱サイクル試験で得ら れたミクロ糸且織の抽出残さ中の Fe含有量が 0. 002%以上であれば、 Toe部を含めた 溶接熱影響部の CTOD特性の優れた鋼が得られることを知得した。
[0022] 以上の知見に基づいてなされた本発明は、下記の(1)から(5)までの極低温用鋼 を要旨とする。なお、鋼の成分含有量についての「%」は「質量%」である。
[0023] (1) C : 0. 01〜0. 12%、 Mn: 0. 4〜2%、 Ni: 5%を超えて 7. 5%未満、 A1: 0. 0 02〜0. 05%、N : 0. 0015〜0. 0045%を含有し、残部は Feおよび不純物力もな る鋼であって、不純物のうちの Siが 0. 1%以下、 Pが 0. 05%以下、 S : 0. 008%以 下であり、かつ、下記の (a)式を満足することを特徴とする極低温用鋼。ただし、(a)式 中の元素記号はその元素の含有量 (質量%)を示す。
3Si+ 5Al+ 50N≤0. 65 · · · ·(&)
[0024] (2) Feの一部に代えてさらに、 Cu: 2.0%以下、 Cr: l. 5%以下、 Mo : 0. 5%以下 、 V: 0. 1%以下および B: 0. 005%以下のうちの 1種または 2種以上を含有すること を特徴とする上記(1)の極低温用鋼。
[0025] (3) Feの一部に代えてさらに、 Nb : 0. 1%以下および Ti: 0. 1%以下のうち 1種ま たは 2種を含有することを特徴とする上記(1)または(2)の極低温用鋼。 [0026] (4) Feの一部に代えてさらに、 Ca: 0. 004%以下、 Mg : 0. 005%以下および RE M: 0. 002%以下のうち 1種または 2種以上を含有することを特徴とする上記(1)から (3)までの!/、ずれかの極低温用鋼。
[0027] (5)常温から 1400°Cまで 40秒で等速昇温し、 1400°Cで 5秒間保持した後、 1000 。Cまでを 23秒で、 800。Cまでを 28秒で、 600。Cまでを 60秒で、 400。Cまでを 130秒 で、 150°Cまでを 250秒で冷却し、その後放冷する再現熱サイクル試験後に、抽出 残さ法により抽出した残さ中の Fe含有量が 0. 002%以上であることを特徴とする上 記(1)から (4)の 、ずれかの極低温用鋼。
発明を実施するための最良の形態
[0028] 本発明にお ヽて鋼の化学組成および再現熱サイクル試験後の抽出残さ量を上述 のように規定した理由について、以下に詳述する。
[0029] C : 0. 01〜0. 12%
Cは、母材の強度確保に寄与する。その含有量が 0. 01%未満では必要な強度が 確保できな 、だけでなく、 FLでのラス形成が不十分になって FL近傍の HAZの靭性 も低下する。一方、その含有量が 0. 12%を超えると、 HAZ、なかでも FL近傍の HA Zの靭性劣化が著しくなる。よって、 C含有量は 0. 01〜0. 12%とする。
[0030] Mn: 0. 4〜2%
Mnは、脱酸剤として、また母材の強度と靭性の確保および HAZの焼入性確保の ために添加する。その含有量が 0. 4%未満ではこれらの効果が得られないだけでな ぐ HAZにフェライトサイドプレートが生成してラス形成が不十分になり、溶接部の靭 性が低下する。一方、 2%を超える過剰な Mnは、中心偏析による板厚方向での母材 特性の不均一をもたらす。よって、 Mn含有量は 0. 4〜2%とする。より好ましいのは 0 . 4-1. 1%である
[0031] Ni: 5%を超えて 7. 5%未満
Niは極低温用鋼としての靭性確保のために添加する最も基本的な元素である。含 有量が多いほど高い低温靭性が得られる力 含有量が多いと経済性を損なう。した がって、本発明では Ni含有量を、 5%を超えて 7. 5%未満とした。低温靭性の確保 から、より好ましい下限は 5. 7%である。 [0032] A1: 0. 002〜0. 05%
Alは、脱酸剤として作用するが、 Siと同様に、マルテンサイトのオートテンパーを遅 延させるため、含有量は少ない方が望ましい。しかし、 A1含有量が 0. 002%未満で は充分な脱酸効果が得られない。また、 A1含有量が 0. 05%を超えると、前述した Si と同様に、溶接冷却過程において過飽和に Cを固溶したマルテンサイトからのセメン タイトへの分解析出反応を抑制し、溶接部の靭性が低下する。よって、 A1含有量は 0 . 002〜0. 05%とする。
[0033] N: 0. 0015〜0. 0045%
鋼中の Nは、析出物の生成を通して HAZ靭性の悪化原因となる。したがって、 Nは 0. 0045%以下でなければ HAZの靱性が劣化するのを避けることができない。一方 、 A1Nの形成を通じて HAZ組織の微細化にも効果があるため、 0. 0015%以上の含 有は必要である。よって N含有量は 0. 0015〜0. 0045%とする。
[0034] 本発明の鋼の一つは、上記の成分のほか、残部が Feと不純物とからなるものである 。ただし、不純物の中の Si、 Pおよび Sは、下記のように規制する必要がある。
[0035] Si: 0. 1%以下
Siは、不純物として鋼中に不可避的に存在するが、含有されれば、脱酸剤として作 用する。 Si含有量が 0. 1%を超えた場合には、オートテンパーを遅延させ、溶接冷 却過程において過飽和に Cを固溶したマルテンサイト中からのセメンタイトへの分解 析出反応を抑制する、または島状マルテンサイトを増カロさせ、溶接部の靭性を低下さ せる。よって、 Si含有量は 0. 1%以下とする。
[0036] P : 0. 05%以下
Pは、不純物として鋼中に不可避的に存在する。その含有量が 0. 05%を超えると 、粒界に偏祈して靭性を低下させるのみならず、溶接時に高温割れを招く。よって、 P 含有量は 0. 05%以下とする必要がある。
[0037] S : 0. 008%以下
Sも不純物として鋼中に不可避的に存在する。その含有量が 0. 008%を超えると、 中心偏析を助長し、延伸した MnSが多量に生成し、母材および HAZの機械的性質 が劣化する。よって、 S含有量は 0. 008%とする必要がある。 [0038] 本発明鋼の他の一つは、これまでに述べた成分に加えて、下記の第 1群から第 3群 までの少なくとも 1群から選んだ少なくとも 1種の成分を含む鋼である。
第 1群 " '01: 2. 0%以下、 Cr: l. 5%以下、 Mo : 0. 5%以下、 V: 0. 1%以下お よび B: 0. 005%以下
第 2群•••ΝΙ Ο. 1%以下および Ti: 0. 1%以下
第 3群 004%以下、 Mg : 0. 005%以下および REM : 0. 002%以下。
[0039] 以下、これらの成分の作用効果と含有量の限定理由を述べる。なお、第 1群の成分 は主に鋼の強度向上に寄与する成分、第 2群の成分は主に鋼の靱性向上に寄与す る成分、第 3群の成分は主に Sや O (酸素)の固定によって結晶粒の微細化等に寄与 する成分である。
[0040] Cu: 2.0%以下
Cuは、母材の強度確保に有効な元素である。この効果を得るには 0. 1%以上の含 有が望ましい。し力しながら、 Cu含有量が 2. 0%を超えると Ac変態点以下に加熱
3
すると、 HAZの靭性が劣化する。したがって、 Cu含有量の上限は 2. 0%とする。
[0041] Cr: l. 5%以下
Crは、耐炭酸ガス腐食性を高め、また焼入性を高めるのに有効な元素である。この 効果を得るには 0. 2%以上の含有が望ましい。し力しながら、 Cr含有量が 1. 5%を 超えると、 HAZの硬化の抑制が難しくなり、かつ、耐炭酸ガス腐食性を向上させる効 果も飽和する。したがって、 Cr含有量の上限は 1. 5%とする。
[0042] Mo : 0. 5%以下
Moは、母材の強度と靱性を向上させるのに有効な元素である。この効果を得るに は 0. 02%以上の含有が望ましい。し力しながら、 Mo含有量が 0. 5%を超えると、特 に HAZの硬度が高まり、靱性と耐 SSC性を損なう。したがって、 Mo含有量の上限は 0. 5%とする。
[0043] V: 0. 1%以下
Vは、主に焼戻し時の炭窒化物析出により母材の強度を向上させるのに有効な元 素である。この効果を得るには 0. 005%以上の含有が望ましい。し力しながら、 V含 有量が 0. 1%を超えると、母材強度を向上させる効果が飽和し、靱性劣化を招く。し たがって、 V含有量の上限は 0. 1%とする。
[0044] B: 0. 005%以下
Bは、母材の強度確保に有効な元素である。この効果を得るには 0. 0003%以上 の含有が望ましい。し力しながら、 B含有量が 0. 005%を超えると、粗大な硼化物の 析出を招いて靭性が劣化する。したがって、 B含有量の上限は 0. 005%とする。
[0045] Nb : 0. 1%以下
Nbは、鋼の組織を微細化して低温靭性を向上させるのに有効な元素である。この 効果を得るには 0. 005%以上の含有が望ましい。し力しながら、 Nbの含有量が 0. 1 %を超えると、粗大な炭化物および窒化物を形成し、靭性が低下する。したがって、 Nb含有量の上限は 0. 1%とする。
[0046] Ti: 0. 1%以下
Tiは、脱酸剤として有効な元素である。 Tiが含有されていると、 Al、 Tiおよび Mnか らなる酸化物相が形成し、組織の微細化に寄与するピンユング粒子となる。この効果 を得るには 0. 005%以上の含有が望ましい。し力しながら、 Ti含有量が 0. 1%を超 えると、形成される酸化物が Ti酸化物、あるいは Ti—Al酸化物となって分散密度が 低下し、特に小入熱溶接部の熱影響部における組織を微細化する能力が失われる 。したがって、 Ti含有量の上限は 0. 1%とする。
[0047] Ca: 0. 004%以下
Caは、鋼中の Sと反応して溶鋼中で酸'硫ィ匕物 (ォキシサルファイド)を形成する。こ の酸 ·硫ィ匕物は、 MnSなどと異なり、圧延加工で圧延方向に伸びることがなく圧延後 も球状を維持する。この球状介在物により、延伸した介在物の先端などを割れの起 点とする溶接割れや水素誘起割れを抑制することができる。この効果を得るには 0. 0 002%以上の含有が望ましい。しかしながら、 Ca含有量が 0. 004%を超えると、靱 性の劣化を招く。したがって、 Caの含有量を 0. 004%以下とした。
[0048] Mg : 0. 005%以下
Mgは、微細な Mg含有酸化物を生成し、オーステナイト粒の微細化に有効な元素 である。この効果を得るには 0. 0002%以上の含有が望ましい。し力しながら、 Mg含 有量が 0. 005%を超えると、酸化物が多くなりすぎて延性低下をもたらす。したがつ て、 Mg含有量の上限は 0. 005%とする。
[0049] REM : 0. 002%以下
REMは、溶接熱影響部の組織の微細化や、 Sの固定に有効な元素である。この効 果を得るには 0. 0005%以上の含有が望ましい。 REMの添カ卩によって形成される介 在物は、比較的、靱性劣化への影響が小さいため、 0. 002%以下であれば含有さ せても母材の靱性の低下は許容できる。したがって、 REM含有量の上限は 0. 002 %とする。なお、 REMとはランタノイド元素に Scおよび Yをカ卩えた 17種の元素を意味 する。
[0050] 本発明の極低温用鋼では、 Si含有量の 3倍と A1含有量の 5倍と N含有量の 50倍の 和が 0. 65%以下であることを満足することが必要である。即ち、下記の (a)式を満た す必要がある。
3Si+ 5Al+ 50N≤0. 65 · · · ·(&)
[0051] Siと A1は、それぞれの元素の含有量の限定理由で述べたとおり、同様の働きを有 する。したがって、(a)式に Si量の 3倍と A1量の 5倍に関する項が含まれる理由も前記 の Siおよび A1の含有量の限定理由と同じである。即ち、 Siと A1は、溶接後の冷却過 程において過飽和に Cを固溶しているマルテンサイト中からのセメンタイトの分解析 出反応を抑制して溶接部の靱性を劣化させる。したがって、これらの合計含有量を少 なくして上記のセメンタイトの分解析出反応を促し、溶接部のマルテンサイトの靭性を 改善するのである。
[0052] Nの含有量を規制するのは、主に固溶 Nによる HAZ組織の靭性劣化を回避するた めである。上記の Siと A1の規制および Nの規制の効果は、片方の規制の効果が少な い時には、他方の規制の効果により補うことが可能であるから、両者を同時にパラメ ータ表示することができる。なお、(a)式の各元素の係数および (a)式の 0. 65%という 上限値は、多数の実験結果から回帰的に求めた。詳しくは、この (a)式の左辺の値と、 本発明で明らかにしている化学成分の限定範囲内の鋼を用いた TIG溶接継手の To e部の限界 CTOD値との関係を整理した結果、(a)式の左辺の値が 0. 65%を上回ると 、破壊力学的に設定した目標値である限界 CTOD値 (0. 15mm)に到達できず、 0. 65%以下であれば、目標を満足することができることが判り、 0. 65%という値に臨界 性があることを見出すに到った。
[0053] 再現熱サイクル試験後の残さ中の Fe含有量
再現熱サイクル試験後に、抽出残さ法により抽出した残さ中の Fe含有量が 0. 002 %以上であれば、鋼を溶接した場合の Toe部を含めた溶接熱影響部の CTOD特性 は良好となる。残さ中の Fe含有量が 0. 002%未満では、十分にセメンタイトの析出 が進行せず、高い CTOD特性を得ることができない。残さ中の Fe含有量の上限は定 めないが、その含有量が 0. 05%を超えると、セメンタイトとマトリックスの界面での歪 集中により脆性破壊が助長される。このため、残さ中の Fe含有量は 0. 05%以下とす ることが好ましい。
[0054] 再現熱サイクル試験では、試験片を下記のヒートパターンで処理する。なお、試験 片は 1 lmm X 1 lmm X 60mmのサイズである。
(1)常温から 1400°Cまで 40秒で等速昇温、
(2) 1400°Cで 5秒間保持、
(3) 1000°Cまでを 23秒で冷却、
(4) 800°Cまでを 28秒で冷却、
(5) 600°Cまでを 60秒で冷却、
(6) 400°Cまでを 130秒で冷却、
(7) 150°Cまでを 250秒で冷却し、その後は放冷する。
[0055] この後、抽出残さ法により残さを抽出し、残さ中の Fe含有量を測定する。具体的に は、以下の手順で行う。即ち、まず、上記再現熱サイクルを付加した試験片の均熱部 分からサンプルを採取する。そして、表面から全てのスケールを除去する。このサン プルを石油ベンジンにより洗浄した後、サンプルの重量 (これを VIとする)を測定する 。電解液としてテトラメチルアンモ -ゥムクロライド (TMAC) 1%、ァセチルアセトン 10 %を含有するメタノール溶液を用い、同サンプルに表面積 lcm2当たり 20mAの電流 を通電することにより、サンプルを電気分解する。電気分解後のサンプル (残さ)を粗 さ 0. 2 mのフィルターを通してろ過し、再び重量 (これを V2とする)を測定する。
[0056] 硝酸 10ml、過塩素酸 5mlおよび混酸(水 5ml+硫酸 5ml+リン酸 5ml) 15mlから なる酸によりサンプル (残さ)を分解する。有機物を除くためにサンプルに白煙処理を 施す。さらに酒石酸(20%) 10ml、イットリウム溶液(lmgZml) 5mlを添カ卩し、サンプ ルを含む溶液の全量を 100mlとする。最後に、高周波誘導結合プラズマ発光分光 分析 (ICP)法により残さ溶液に含まれる Fe元素の量 (Xn)を測定する。次いで、 Xn / (VI -V2)を計算することにより残さ中の Fe含有量 (溶解させた鉄も含めた全重 量中の割合)を求めることができる。
[0057] 本発明の鋼は、再現熱サイクル試験後のセメンタイト量を確保するため、鋼の組織 が細粒化されている必要がある。具体的には、本発明で規定する化学組成を有する スラブを造塊分塊法や連続铸造法により製造し、以下に示すような工程を経ること〖こ より、本発明の鋼を製造することができる。
[0058] (1)スラブの加熱
鋼の組織の細粒ィ匕は、組織の受け継ぎを通じて Toe部の熱影響組織中のマルテン サイトのテンパー効果を促進する働きを持つ。組織が微細化されて 、ると 、うことは、 セメンタイトの析出サイトである旧オーステナイト粒界やパケット境界などが多く含まれ ることを意味する。したがって、組織の微細化は、セメンタイトの析出を促進する働き を有する。加熱温度を低温化することで顕著な微細化傾向が示されるが、低温にし すぎると所望の板厚までの圧延が困難になるだけでなぐ析出物の固溶 析出の挙 動が滞ることにより強度不足が生じる。つまり、 900°C未満では所望の板厚までの圧 延が困難で、かつ強度不足が顕著化する。一方、 1100°Cを超える温度での加熱で は、組織の微細化が進まない。このため、スラブは 900から 1100°Cまでの温度でカロ 熱する。
[0059] (2)圧延
組織微細化のためには、オーステナイトの未再結晶域で累積圧下率 50%以上の 圧延を行う。このような圧延を行うことで、オーステナイト中に微細なサブグレインを形 成させることができ、マルテンサイト変態後の組織を微細化することができる。
[0060] (3)冷却
圧延終了後の冷却は空冷、水冷いずれであってもよい。ここで、冷却開始から少な くとも 600°Cまで 10°CZs以上の冷却速度で冷却すれば、仕上げ圧延で導入された 格子欠陥 (転位)をより多く維持させることができ、最終的な組織は微細化する。 [0061] (4)焼戻し
加速冷却後は、場合により 700°C以下の温度で焼戻しを行つててもよい。これによ り、強度を調整するとともに、靱性を改善することができる。 700°Cを超える温度で焼 戻しを行うと強度が低下する。
[0062] (5)二相域加熱
母材組織をさらに微細化させるためには、焼戻しの前にフェライトとオーステナイト の二相域に加熱するのが望ましい。その二相域熱処理は 680〜800°Cで加熱し、そ の後、 200°C以下まで 5°CZsの冷却速度で冷却すればょ 、。
実施例
[0063] 表 1に示す化学組成の No. l〜No.31の鋼を溶製し、厚さ 300mmのスラブとした。 N 0.1から No.29までは、上記のスラブを 1050°Cに加熱した後、仕上温度が 800°Cとな るように圧延を行った。その後水冷により常温まで冷却し、再加熱して 740°C力 焼 入れし、さらに 580°Cで焼戻しして、板厚 25mmの厚鋼板とした。
[0064] 表 1の No.30および No.31では、上記の厚鋼板の製造方法とは異なり、スラブを 12 50°Cに加熱後、仕上温度 950°Cの再結晶域圧延で圧延を行った。その後、 810°C 力も水冷を開始し、常温まで冷却した。さらに、再加熱して 580°Cで焼戻しを行い、 板厚 25mmの厚鋼板とした。
[0065] 得られた各厚鋼板からは、 JISZ2201に規定される 10号試験片 ^JISZ2202に規 定される Vノッチ試験片を採取し、常温での引張り試験と— 196°Cにおけるシャルビ 一衝撃試験を行 、、引張強さ (TS: MPa)、降伏強さ (YS: MPa)および吸収エネル ギー (vE : Joただし、 3本の試験片による試験結果の平均値)を測定した。
-196
[0066] また、同じ厚鋼板同士を、最大入熱量 30kjZcmの条件で TIG溶接にて接合し、そ の溶接部から、 BS7448-1991に規定される B X B試験片を採取して— 165°Cの環境 下にて CTOD試験を実施した。試験片は、ノッチ部が FLに接するものと、 HAZ外層 線に位置するものとの 2種類とし、各々 3本ずつ採取し、これら 3本の試験片の測定値 の平均値で限界 CTOD値を評価した。
[0067] なお、シャルピー衝撃試験は、測定可能な吸収エネルギー (vE )の最大値が 29
-196
Jの試験機を用いて実施した。また、 FLおよび HAZ外層線は、いずれもナイタルェ ツチにより確認した。
さらに、各厚鋼板に再現熱サイクル試験を施し、上述した抽出残さ法により残さを抽 出して、残さ中の Fe含有量を測定した。
[0068] 表 2に以上の結果を示す。表 2では、ノッチ部が FLに接するものの限界 CTOD値は
「限界 CTOD (FL)」の欄に、ノッチ部が Toeに位置するものの限界 CTOD値は「限界
CTOD (Toe)」の欄に、それぞれ示した。
[0069] [表 1]
Figure imgf000015_0001
[0070] [表 2]
Figure imgf000016_0001
[0071] 表 2に示すとおり、化学組成が本発明で規定する範囲内であって、(a)式を満たし、 再現熱サイクル試験後の残さ中の Fe含有量が 0. 002%以上である No. lから No.25 までの鋼カゝらなる厚鋼板は、良好な母材特性を示す。し力も、溶接部の CTOD値も F L Toeのいずれの位置においても目標である 0. 15mmを大きく上回る良好な特性 を示している。
[0072] No.26の鋼力もなる厚鋼板は、(a)式を満足し、かつ再現熱サイクル試験後の残さ中 の Fe量が 0. 002%以上である力 C含有量が高いため、母材特性には問題ないも のの、 FLおよび Toeいずれの位置でも限界 CTOD値が低い。 No.27の鋼からなる厚 鋼板は、 Si含有量が本発明で規定する Si含有量の範囲ないになぐかつ (a)式も満 足しない。また、残さ中の Fe含有量も低い。このため、 FLおよび Toeの双方の位置で の限界 CTOD値が低い。
[0073] No.28の鋼力 なる厚鋼板は、 Mn含有量が本発明で規定する Mn含有量の下限 値よりも少ない。このため、母材の靭性確保ができず、吸収エネルギーが小さい。力!] えて、 FLおよび Toeの双方の位置での限界 CTOD値が低い。 No.29の鋼からなる厚 鋼板は、 A1含有量が本発明で規定する A1含有量の範囲内になぐ(a)式も満足しな い。また、残さ中の Fe量も低い。このため、 FLおよび Toeの双方の位置での限界 CT OD値が低い。
[0074] No.30の鋼力 なる厚鋼板は、本発明で規定する化学成分を満足するものの、(a) 式を満足しない。製造方法が、前述のとおり好適範囲を逸脱しており、母材の微細化 が達成されていない。その結果、再現熱サイクル後の残さ中の Fe含有量が 0. 002 %未満であり、 FLおよび Toeの双方の位置での限界 CTOD値が低!、。
[0075] No.31の鋼力もなる厚鋼板は、本発明で規定する化学組成を有し、かつ (a)式を満 足する。し力しながら、製造方法が、前述のとおり好適範囲を逸脱しており、母材の微 細化が達成されていない。その結果、再現熱サイクル後の残さ中の Fe含有量が 0. 0 02%未満となった。 No.26から No.30までの厚鋼板と比較すると FLおよび Toeの位 置の限界 CTOD値は若干高いものの、 Fe含有量が 0. 002%以上の厚鋼板 (No.l〜 No.25)に比較して、限界 CTOD値は低い。
産業上の利用可能性
[0076] 本発明によれば、母材として溶接を行って使用しても、 Toe部を含めた溶接熱影響 部の CTOD特性に優れた特性を有する鋼が得られる。この鋼は 9%Ni鋼よりも Ni含 有量が少な 、ため安価でありながら低温靱性に優れて 、るので、 LNGのような低温 物質の貯蔵タンク等の構造材料として好適である。

Claims

請求の範囲
[1] 質量0 /0で、 C:0.01〜0. 12%、 Mn:0.4〜2%、 Ni: 5%を超えて 7.5%未満、 A 1:0.002〜0.05%、N:0.0015〜0.0045%を含有し、残部は Feおよび不純物 からなり、不純物のうちの Siが 0.1%以下、 Pが 0.05%以下、 S力^).008%以下で 、かつ、下記の (a)式を満足することを特徴とする極低温用鋼。ただし、(a)式中の元素 記号はその元素の含有量 (質量%)を示す。
3Si+5Al+50N≤0.65 ····(&)
[2] Feの一部に代えて、さらに質量0 /0で、 Cu:2.0%以下、 Cr:l.5%以下、 Mo:0.5
%以下、 V:0.1%以下および B:0.005%以下のうちの 1種または 2種以上を含有 することを特徴とする請求項 1に記載の極低温用鋼。
[3] Feの一部に代えて、さらに、 Nb:0.1%以下および Ti:0.1%以下のうちの 1種ま たは 2種を含有することを特徴とする請求項 1または請求項 2に記載の極低温用鋼。
[4] Feの一部に代えて、さらに、 Ca:0.004%以下、 Mg:0.005%以下および REM:
0.002%以下のうち 1種または 2種以上を含有することを特徴とする請求項 1から請 求項 3までの 、ずれかに記載の極低温用鋼。
[5] 常温から 1400°Cまで 40秒で等速昇温し、 1400°Cで 5秒間保持した後、 1000°Cま でを 23秒で、 800。Cまでを 28秒で、 600。Cまでを 60秒で、 400。Cまでを 130秒で、 1 50°Cまでを 250秒で冷却し、その後放冷する再現熱サイクル試験後に、抽出残さ法 により抽出した残さ中の Fe含有量が 0.002%以上であることを特徴とする請求項 1 力 請求項 4までのいずれかに記載の極低温用鋼。
PCT/JP2006/300342 2006-01-13 2006-01-13 極低温用鋼 WO2007080646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007553805A JP4957556B2 (ja) 2006-01-13 2006-01-13 極低温用鋼
PCT/JP2006/300342 WO2007080646A1 (ja) 2006-01-13 2006-01-13 極低温用鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300342 WO2007080646A1 (ja) 2006-01-13 2006-01-13 極低温用鋼

Publications (1)

Publication Number Publication Date
WO2007080646A1 true WO2007080646A1 (ja) 2007-07-19

Family

ID=38256062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300342 WO2007080646A1 (ja) 2006-01-13 2006-01-13 極低温用鋼

Country Status (2)

Country Link
JP (1) JP4957556B2 (ja)
WO (1) WO2007080646A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219849A (ja) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd 極低温用厚鋼板およびその製造方法
JP2011219848A (ja) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd 極低温用厚鋼板およびその製造方法
EP2592166A1 (en) * 2010-07-09 2013-05-15 Nippon Steel & Sumitomo Metal Corporation Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
WO2013100614A1 (ko) 2011-12-27 2013-07-04 주식회사 포스코 피삭성 및 용접 열영향부 극저온 인성이 우수한 오스테나이트계 강재 및 그의 제조방법
WO2014092129A1 (ja) * 2012-12-13 2014-06-19 株式会社神戸製鋼所 極低温靭性に優れた厚鋼板
JP2014118579A (ja) * 2012-12-13 2014-06-30 Kobe Steel Ltd 極低温靭性に優れた厚鋼板
JP2014125678A (ja) * 2012-12-27 2014-07-07 Kobe Steel Ltd 極低温靱性に優れた厚鋼板
CN104278210A (zh) * 2013-07-08 2015-01-14 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
WO2015099363A1 (ko) 2013-12-25 2015-07-02 주식회사 포스코 표면 가공 품질이 우수한 저온용강
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
KR20160078825A (ko) 2014-12-24 2016-07-05 주식회사 포스코 절삭 가공성 및 표면가공품질이 우수한 저온용강 및 그 제조방법
CN111440990A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
WO2020184162A1 (ja) 2019-03-13 2020-09-17 Jfeスチール株式会社 厚鋼板およびその製造方法
WO2020237975A1 (zh) * 2019-05-27 2020-12-03 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺
WO2021036272A1 (zh) * 2019-08-24 2021-03-04 江阴兴澄特种钢铁有限公司 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
KR20220048031A (ko) 2019-12-12 2022-04-19 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393845A (ja) * 1986-10-08 1988-04-25 Nippon Steel Corp 溶接部のcod特性の優れた高張力鋼
JPH0920922A (ja) * 1995-06-30 1997-01-21 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH0941077A (ja) * 1995-08-04 1997-02-10 Sumitomo Metal Ind Ltd 亀裂伝播停止特性に優れた高張力鋼板およびその製造方法
JP2002060890A (ja) * 2000-08-09 2002-02-28 Nippon Steel Corp 応力除去焼鈍後の溶接部靱性に優れたNi含有鋼
JP2004148383A (ja) * 2002-10-31 2004-05-27 Nippon Steel Corp Haz靭性に優れたuoe鋼管の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230713A (ja) * 1988-03-08 1989-09-14 Nippon Steel Corp 耐応力腐食割れ性の優れた高強度高靭性鋼の製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393845A (ja) * 1986-10-08 1988-04-25 Nippon Steel Corp 溶接部のcod特性の優れた高張力鋼
JPH0920922A (ja) * 1995-06-30 1997-01-21 Kawasaki Steel Corp 高靱性低温用鋼板の製造方法
JPH0941077A (ja) * 1995-08-04 1997-02-10 Sumitomo Metal Ind Ltd 亀裂伝播停止特性に優れた高張力鋼板およびその製造方法
JP2002060890A (ja) * 2000-08-09 2002-02-28 Nippon Steel Corp 応力除去焼鈍後の溶接部靱性に優れたNi含有鋼
JP2004148383A (ja) * 2002-10-31 2004-05-27 Nippon Steel Corp Haz靭性に優れたuoe鋼管の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219848A (ja) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd 極低温用厚鋼板およびその製造方法
JP2011219849A (ja) * 2010-04-14 2011-11-04 Sumitomo Metal Ind Ltd 極低温用厚鋼板およびその製造方法
EP2592166A1 (en) * 2010-07-09 2013-05-15 Nippon Steel & Sumitomo Metal Corporation Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
EP2592166A4 (en) * 2010-07-09 2014-03-12 Nippon Steel & Sumitomo Metal Corp NI-CONTAINING STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF
US8882942B2 (en) 2010-07-09 2014-11-11 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
US10655196B2 (en) 2011-12-27 2020-05-19 Posco Austenitic steel having excellent machinability and ultra-low temperature toughness in weld heat-affected zone, and method of manufacturing the same
WO2013100614A1 (ko) 2011-12-27 2013-07-04 주식회사 포스코 피삭성 및 용접 열영향부 극저온 인성이 우수한 오스테나이트계 강재 및 그의 제조방법
WO2014092129A1 (ja) * 2012-12-13 2014-06-19 株式会社神戸製鋼所 極低温靭性に優れた厚鋼板
JP2014118579A (ja) * 2012-12-13 2014-06-30 Kobe Steel Ltd 極低温靭性に優れた厚鋼板
JP2014125678A (ja) * 2012-12-27 2014-07-07 Kobe Steel Ltd 極低温靱性に優れた厚鋼板
CN104278210A (zh) * 2013-07-08 2015-01-14 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
WO2015099363A1 (ko) 2013-12-25 2015-07-02 주식회사 포스코 표면 가공 품질이 우수한 저온용강
KR20160078825A (ko) 2014-12-24 2016-07-05 주식회사 포스코 절삭 가공성 및 표면가공품질이 우수한 저온용강 및 그 제조방법
WO2020184162A1 (ja) 2019-03-13 2020-09-17 Jfeスチール株式会社 厚鋼板およびその製造方法
KR20210125057A (ko) 2019-03-13 2021-10-15 제이에프이 스틸 가부시키가이샤 후강판 및 그 제조 방법
WO2020237975A1 (zh) * 2019-05-27 2020-12-03 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺
WO2021036272A1 (zh) * 2019-08-24 2021-03-04 江阴兴澄特种钢铁有限公司 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
KR20220048031A (ko) 2019-12-12 2022-04-19 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
CN111440990A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
CN111440990B (zh) * 2020-03-30 2022-07-15 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法

Also Published As

Publication number Publication date
JPWO2007080646A1 (ja) 2009-06-11
JP4957556B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4957556B2 (ja) 極低温用鋼
JP5353256B2 (ja) 中空部材およびその製造方法
EP2832889A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP6149368B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板の製造方法
JP5439973B2 (ja) 優れた生産性と溶接性を兼ね備えた、pwht後の落重特性に優れた高強度厚鋼板およびその製造方法
JP4848966B2 (ja) 厚肉高張力鋼板およびその製造方法
EP2813596A1 (en) High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP5034290B2 (ja) 低降伏比高強度厚鋼板およびその製造方法
KR20150088320A (ko) 인장 강도 540 ㎫ 이상의 고강도 라인 파이프용 열연 강판
JP6492862B2 (ja) 低温用厚鋼板及びその製造方法
JP4207334B2 (ja) 溶接性と耐応力腐食割れ性に優れた高強度鋼板およびその製造方法
JP2019199649A (ja) 非調質低降伏比高張力厚鋼板およびその製造方法
JP6056235B2 (ja) 溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法
JP4547944B2 (ja) 高強度高靭性厚鋼板の製造方法
JP5126780B2 (ja) 溶接熱影響部のctod特性に優れた極低温用鋼
JP2005264217A (ja) 耐hic性に優れた厚手熱延鋼板とその製造方法
JP5082475B2 (ja) 強度−伸びバランスに優れた高靭性高張力鋼板の製造方法
CN115210400B (zh) 钢材及其制造方法、以及罐
JP5028761B2 (ja) 高強度溶接鋼管の製造方法
JP5176847B2 (ja) 低降伏比低温用鋼、およびその製造方法
JP6277679B2 (ja) 耐ガス切断割れ性および大入熱溶接部靭性が優れた高張力鋼板
JP6051735B2 (ja) 溶接性および耐遅れ破壊特性に優れた高張力鋼板の製造方法
CN113737103A (zh) 钢板及其制造方法
JP3858647B2 (ja) 低温継手靱性と耐ssc性に優れた高張力鋼とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007553805

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711627

Country of ref document: EP

Kind code of ref document: A1