WO2007080641A1 - 送信波除去装置 - Google Patents
送信波除去装置 Download PDFInfo
- Publication number
- WO2007080641A1 WO2007080641A1 PCT/JP2006/300299 JP2006300299W WO2007080641A1 WO 2007080641 A1 WO2007080641 A1 WO 2007080641A1 JP 2006300299 W JP2006300299 W JP 2006300299W WO 2007080641 A1 WO2007080641 A1 WO 2007080641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- transmission wave
- reception
- component
- directional coupler
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
- H04B1/52—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
- H04B1/525—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
Definitions
- the present invention relates to a transmission wave removing device that removes a transmission wave leakage component from a transmission side to a reception side in a wireless communication device that performs simultaneous transmission and reception operations using a common antenna. .
- FIG. 1 is a block diagram showing a configuration of a conventional wireless communication apparatus that performs simultaneous transmission and reception operations using a common antenna.
- FIG. 1 shows an antenna 201, an antenna duplexer 202, a reception low noise amplifier 203, an interstage band filter 204, a reception mixer 205, and a transmission high output amplifier 206 in the wireless communication apparatus.
- the transmission wave output from the transmission high-power amplifier 206 on the transmission side is transmitted through the antenna duplexer 202 to the air from the antenna 201.
- Some transmission waves are transmitted via the antenna duplexer 202.
- it leaks into the input of the reception low noise amplifier 203 on the receiving side and is input as a transmission wave leakage component.
- This transmission wave leakage component is amplified by the reception low noise amplifier 203 and output to the next stage to deteriorate the characteristics of the reception mixer 205. Therefore, the interstage bandpass filter 204 is connected between the reception low noise amplifier 203 and the reception mixer 205 to attenuate the transmission wave leakage component, thereby preventing the characteristic deterioration of the reception mixer 205.
- the reception low noise amplifier 203 in order to prevent reception sensitivity degradation caused by cross modulation of a transmission wave leakage component and an interference wave outside the reception band and generating an unnecessary wave in the reception band, the reception low noise amplifier 203 Therefore, a high linearity is required, which causes an increase in current consumption of the reception low noise amplifier 203.
- the interstage bandpass filter 204 is required to have a steep attenuation characteristic. This makes it difficult to replace the integrated circuit, causing an increase in the number of components and an increase in mounting area.
- the attenuation characteristic of the interstage bandpass filter 204 for example, in W-CDMA (Wideband and Ode Division Multiple Access) Ssunam, there is a specification of Out of band blocking, which is 20dbm on the transmitter side.
- Out of band blocking With the transmission power output, from 1MHz to 12.75GHz, even if the interfering wave is injected into the receiver while shifting at ⁇ intervals, the received signal level at which the bit error rate becomes 0.1% is the reference sensitivity point + Must be lower than 3dB.
- Patent Document 1 As a technique related to interference wave removal, for example, there is an interference wave removal device disclosed in Patent Document 1.
- a transmission radio wave component is derived between the transmitter and the antenna connected thereto, and at least the phase and level thereof are derived.
- injection between the receiver and the antenna connected to the receiver cancels out the transmission wave leakage component emitted from the transmitting antenna and flowing into the receiver via the receiving antenna. ing.
- Patent Document 1 Japanese Patent Laid-Open No. 7-30459 (paragraph 0008, FIG. 1, FIG. 2)
- the reception low noise amplifier 203 has high linearity. It becomes necessary and there is a problem that the current consumption of the receiving low noise amplifier 203 increases.
- the present invention has been made to solve the above-described problems, and removes a transmission wave leakage component that wraps around on the transmission side power reception side, thereby realizing a small-sized and low power consumption wireless communication apparatus.
- the object is to obtain a wave removal device.
- a transmission wave removal apparatus extracts a first directional coupler that extracts a transmission wave leakage component for removing a transmission wave leakage component that circulates a part of the transmission wave to the reception side, Variable phase shift that adjusts the phase of the transmitted wave rejection component extracted by the first directional coupler And a variable gain amplifier that adjusts the amplitude of the transmission wave removal component extracted by the first directional coupler, the transmission wave leakage component, the phase shifter by the variable phase shifter, and the variable gain amplifier. And a second directional coupler that synthesizes the transmission wave removal component with the amplitude adjusted, and the variable phase shift so that the transmission wave leakage component output from the second directional coupler is minimized.
- FIG. 1 is a block diagram showing a configuration of a conventional wireless communication apparatus.
- FIG. 2 is a block diagram showing a configuration of a wireless communication apparatus to which the transmission wave removing apparatus according to Embodiment 1 of the present invention is applied.
- FIG. 3 is a block diagram showing a configuration of a baseband processing unit of a transmission wave removing apparatus according to Embodiment 1 of the present invention.
- FIG. 4 is a flow chart showing a process flow of the transmission wave removing apparatus according to Embodiment 1 of the present invention.
- FIG. 5 is a diagram for explaining the operation control of the transmission wave removing apparatus when the transmission power changes according to Embodiment 1 of the present invention.
- FIG. 6 is a block diagram showing a configuration of a wireless communication apparatus to which a transmission wave removing apparatus according to Embodiment 2 of the present invention is applied.
- FIG. 7 is a block diagram showing a configuration of a wireless communication apparatus to which a transmission wave removing apparatus according to Embodiment 3 of the present invention is applied.
- FIG. 8 is a block diagram showing a configuration of a baseband processing unit of a transmission wave removing apparatus according to Embodiment 3 of the present invention.
- FIG. 9 is a block diagram showing a configuration of a wireless communication apparatus to which a transmission wave removing apparatus according to Embodiment 4 of the present invention is applied.
- FIG. 10 is a block diagram showing a configuration of a wireless communication apparatus to which a transmission wave removing apparatus according to Embodiment 5 of the present invention is applied.
- FIG. 11 is a block diagram showing a configuration of a baseband processing unit of a transmission wave removing apparatus according to Embodiment 5 of the present invention.
- FIG. 12 is a block diagram showing a configuration of a wireless communication apparatus to which a transmission wave removing apparatus according to Embodiment 6 of the present invention is applied.
- FIG. 2 is a block diagram showing a configuration of a wireless communication apparatus to which the transmission wave removing apparatus according to Embodiment 1 of the present invention is applied.
- This wireless communication apparatus includes an antenna 1, an antenna switch 2, an antenna duplexer 3, a directional coupler 4, a reception low noise amplifier 5, a reception mixer 6, a baseband processing unit 7, a transmission modulator 8, a transmission variable gain amplifier 9 , A transmission high-power amplifier 10, a directional coupler 11, a variable phase shifter 12, a variable gain amplifier 13, a power supply unit 14, a reception local oscillator 15, a transmission local oscillator 16, and a local oscillator switch 17. .
- antenna switch 2 directional coupler 4, baseband processing unit 7, directional coupler 11, variable phase shifter 12, variable gain amplifier 13, power supply unit 14, and local oscillator switch 17 constitutes a transmission wave removing apparatus 101.
- the reception side is constituted by the reception low noise amplifier 5, the reception mixer 6 and the baseband processing unit 7, and the baseband processing unit 7, the transmission modulator 8, the transmission variable gain amplifier 9 and the transmission high output Amplifier 10 constitutes the transmitting side.
- FIG. 3 is a block diagram showing the configuration of the baseband processing unit 7.
- the baseband processing unit 7 includes a received signal processing unit 51, a transmission wave removal signal power control DAC (Digital Analog Converter) 52, a transmission wave removal signal phase control DAC 53, a transmission IQ signal source 54, An inspection signal source 55, an input signal switch 56, a transmission power control DAC 57, and a control unit 58 are provided. Next, the operation will be described.
- DAC Digital Analog Converter
- the reception local oscillator 15 outputs a local oscillation signal for reception used by the reception mixer 6, and the transmission local oscillator 16 outputs a local oscillation signal for transmission signal used by the transmission modulator 8.
- the transmission modulator 8 modulates the transmission signal TX from the baseband processing unit 7 into a transmission wave that can be transmitted to the radio band using the local oscillation signal for transmission from the local oscillator 16 for transmission.
- the transmission variable gain amplifier 9 amplifies the transmission wave from the transmission modulator 8 based on the control voltage Vc from the transmission power control DAC 57 from the control unit 58 of the baseband processing unit 7, and transmits it.
- the high-power amplifier 10 amplifies the transmission wave from the transmission variable gain amplifier 9 and outputs it to the directional coupler 11.
- the directional coupler 11 is a transmission wave removal component for removing a part of the transmission wave output from the transmission high-power amplifier 10 from the transmission wave leakage component that circulates from the antenna duplexer 3 to the receiver. Extract.
- the variable phase shifter 12 is based on the control voltage Vp via the transmission wave removal signal phase control DAC 53 from the control unit 58 of the baseband processing unit 7 and the phase of the transmission wave removal component from the directional coupler 11. Adjust.
- the variable gain amplifier 13 is a transmission whose phase is adjusted by the variable phase shifter 12 based on the control voltage Vg through the transmission wave removal signal power control DAC 52 from the control unit 58 of the baseband processing unit 7. Adjust the amplitude of the wave rejection component.
- the directional coupler 4 synthesizes the transmission wave leakage component that has circulated from the antenna duplexer 3 and the transmission wave removal component whose phase and amplitude are adjusted by the variable phase shifter 12 and the variable gain amplifier 13.
- the antenna switch 2 connects or disconnects the antenna 1 and the antenna duplexer 3 based on the control signal Ant SW from the control unit 58 of the baseband processing unit 7.
- the local oscillator switch 17 is connected to the reception mixer 6 as a local oscillator for reception or a local transmitter for transmission. Switch to 16.
- the power supply unit 14 supplies power to the variable phase shifter 12 and the variable gain amplifier 13 or stops based on the control signal Vr from the control unit 58 of the baseband processing unit 7.
- the reception signal processing unit 51 is connected to the reception mixer 6.
- the reception level of the reception signal RX is detected, and the reception signal RX is demodulated into a digital signal.
- the control unit 58 outputs a control signal LoSW for switching the local oscillator switch 17, and outputs a control signal Vr for controlling the power supply unit 14.
- the control voltage Vc for controlling the gain of the transmission variable gain amplifier 9 is output via the transmission power control DAC 57, the control signal Ant SW for switching the antenna switch 2 is output, and the received signal processing unit 51
- the control voltage Vp, Vg is output via the transmission wave removal signal phase control DAC 53 and the transmission wave removal signal power control DAC 52, and the phase of the variable phase shifter 12 and the variable gain amplifier Set a gain of 13.
- the IQ signal source for transmission 54 converts the digital signal to be transmitted into an analog signal corresponding to a predetermined modulation method, and an in-phase component (I Component) and quadrature (Quadrature) component (Q component) are output.
- TX signal source 55 outputs a test signal.
- Input signal switch 56 is based on instructions from the controller 58. The transmission signal TX or the inspection signal is switched and output to the transmission modulator 8.
- FIG. 4 is a flowchart showing a process flow of the transmission wave removing apparatus 101 according to the first embodiment of the present invention.
- step ST11 the control unit 58 of the baseband processing unit 7 outputs a control signal Vr for operating the variable phase shifter 12 and the variable gain amplifier 13 to the power supply unit 14, and the variable phase shifter 12 and the variable phase shifter 12 The gain amplifier 13 is supplied with power.
- step ST12 the control unit 58 of the baseband processing unit 7 outputs a control signal AntSW for cutting off the antenna 1 to the antenna switch 2, and cuts off the connection between the antenna 1 and the antenna duplexer 3.
- step ST13 the control unit 58 of the baseband processing unit 7 sets the local oscillator switch 17 to the transmission local oscillator 16 side by the control signal LoSW for connecting the transmission local oscillator 16 and transmits it. Connect local oscillator 16 and reception mixer 6, and use reception mixer 6 to enable demodulation of the transmission band.
- step ST14 the control unit 58 of the baseband processing unit 7 sets the input signal switch 56 to the inspection signal source 55 side, and causes the transmission modulator 8 to output the inspection signal from the inspection signal source 55. .
- the transmission modulator 8 modulates the test signal from the input signal switch 56 into a test wave that can be transmitted to the radio band, using the local oscillation signal for transmission from the transmission local oscillator 16. .
- the inspection wave output from the transmission high-power amplifier 10 via the transmission variable gain amplifier 9 is blocked by the antenna switch 2 because it is blocked by the force antenna switch 2 via the directional coupler 11. Is not output, and the inspection wave leakage component is output to the directional coupler 4.
- test wave output from the transmission high-power amplifier 10 is extracted by the directional coupler 11 as a test wave removal component for removing the test wave leakage component that circulates from the antenna duplexer 3 to the receiver.
- the signal is input to the variable gain amplifier 13 through the variable phase shifter 12.
- step ST15 the control unit 58 of the baseband processing unit 7 gradually adjusts the gain of the variable gain amplifier 13 by adjusting the control voltage Vg via the transmission wave removal signal power control DAC 52.
- the gain of the variable gain amplifier 13 is initially set by raising the gain at the start by, for example, about 3 dB.
- the variable gain amplifier 13 adjusts the amplitude of the check wave removal component from the variable phase shifter 12 based on the control voltage Vg from the baseband processing unit 7, and the directional coupler 4 rotates from the antenna duplexer 3.
- the test wave leakage component included and the test wave removal component from the variable gain amplifier 13 are combined.
- the combined inspection wave leakage component and inspection wave removal component are input to the reception signal processing unit 51 of the baseband processing unit 7 via the reception low noise amplifier 5 and the reception mixer 6.
- reception signal processing section 51 confirms the reception level from reception mixer 6.
- the control unit 58 minimizes the check wave leakage component output from the directional coupler 11 and input to the reception low noise amplifier 5.
- the transmitted wave is removed so that the test wave leakage component that has entered from the antenna duplexer 3 that is input to the directional coupler 4 and the detection wave rejection component that is input from the variable gain amplifier 13 are in opposite phases.
- the control voltage Vp is output via the signal phase control DAC 53 and the phase of the variable phase shifter 12 is set.
- control unit 58 stores the phase set in the variable phase shifter 12 and the input reception level in association with each other in an internal memory (not shown), and sets the phase of the variable phase shifter 12. Set multiple times ⁇ , lowest reception level ⁇ ⁇ Set phase as final variable phase shifter 12 phase To do.
- step ST18 based on the reception level confirmation result of the reception signal processing unit 51, the control unit 58 outputs the directional coupler 4 force and minimizes the test wave leakage component input to the reception low noise amplifier 5.
- the transmission is performed so that the inspection wave leakage component circulated from the antenna coupler 3 input to the directional coupler 4 and the inspection wave removal component input from the variable gain amplifier 13 have the same amplitude.
- the control voltage Vg is output via the wave removal signal power control DAC 52 and the gain of the variable gain amplifier 13 is set.
- control unit 58 stores the gain set in the variable gain amplifier 13 and the input reception level in association with each other in an internal memory (not shown), and controls the gain of the variable gain amplifier 13. Setting is performed a plurality of times, and the gain with the lowest reception level is set as the final gain of the variable gain amplifier 13.
- step ST19 the control unit 58 of the baseband processing unit 7 sets the input signal switch 56 to the transmission IQ signal source 54 side, and transmits and modulates the transmission signal TX from the transmission IQ signal source 54. Output to device 8.
- step ST20 the control unit 58 sets the local oscillator switch 17 to the reception local oscillator 15 side based on the control signal LoSW, connects the reception local oscillator 15 and the reception mixer 6, and uses the reception mixer 6.
- the reception band can be demodulated.
- step ST21 the control unit 58 outputs the control signal AntSW for connecting the antenna 1 to the antenna switch 2, and connects the antenna 1 and the antenna duplexer 3.
- the control unit 58 of the baseband processing unit 7 sets the input signal switch 56 to the transmission IQ signal source 54 side, and sets the local oscillator switch 17 to the reception local oscillator 15 side based on the control signal LoSW. Set and output the control signal AntS W for connecting antenna 1 to antenna switch 2.
- FIG. 5 is a diagram for explaining the operation control of the transmission wave removing apparatus when the transmission power changes.
- Sending The signal power varies depending on the control voltage Vc applied from the baseband processing unit 7 to the transmission variable gain amplifier 9, but in FIG. 5, the transmission power (vertical axis) when varied and the transmission variable gain amplifier 9 The relationship with the applied control voltage Vc (horizontal axis) is shown.
- the maximum transmission power is Pl
- the power that does not cause transmission power leakage due to the receiver characteristics is P2
- the control voltages applied to the transmission variable gain amplifier 9 corresponding to each power are Vc 1 and Vc2.
- the control unit 58 controls the variable phase shifter 12 with respect to the power supply unit 14. Then, the control signal Vr for operating the variable gain amplifier 13 is output, and the power is supplied to the variable phase shifter 12 and the variable gain amplifier 13 to set the operating state.
- the control voltage Vc is equal to or lower than Vc2
- the transmission wave elimination operation is not necessary, and therefore the control unit 58 outputs a control signal Vr for stopping the variable phase shifter 12 and the variable gain amplifier 13 to the power supply unit 14. Then, the power supply of the variable phase shifter 12 and the variable gain amplifier 13 is stopped to reduce power consumption.
- the interstage bandpass filter This eliminates the need for high linearity in the reception low-noise amplifier 5, so that it is possible to obtain a wireless communication device that is small and consumes low power.
- control unit 58 controls the variable phase shifter 12 and the variable gain amplifier with respect to the power supply unit 14. By stopping the power supply of 1 to 3, it is possible to reduce power consumption.
- control unit 58 uses the test signal to adjust the optimum phase of the variable phase shifter 12 and the optimum gain of the variable gain amplifier 13, thereby There is an effect that the transmission wave removing apparatus 101 can be set to an optimum state before the communication apparatus is actually used.
- FIG. 6 shows a radio communication apparatus to which the transmission wave removing apparatus according to Embodiment 2 of the present invention is applied. It is a block diagram which shows the structure of these.
- This wireless communication apparatus is obtained by switching the connection order of the directional coupler 4 and the reception low noise amplifier 5 shown in FIG. 2 of the first embodiment, and the other configurations are the same as those in FIG. .
- block diagram showing the configuration of the baseband processing unit 7 in the second embodiment is the same as the baseband processing unit 7 shown in FIG. 3 of the first embodiment.
- the directional coupler 4 is connected to the input side of the reception low noise amplifier 5 to remove the transmission wave leakage component.
- the reception low noise is removed.
- the directional coupler 4 is connected to the output side of the amplifier 5 to remove the transmission wave leakage component.
- reception sensitivity of very low power may be required, and the loss due to connecting the directional coupler 4 to the input side of the reception low noise amplifier 5 cannot be ignored.
- FIG. 6 by connecting the directional coupler 4 to the output side of the reception low noise amplifier 5, the transmission wave leakage component input to the reception mixer 6 can be removed.
- the directional coupler 4 combines the transmission wave leakage component from the reception low noise amplifier 5 with the transmission wave removal component whose phase and amplitude are adjusted by the variable phase shifter 12 and the variable gain amplifier 13.
- the control unit 58 of the baseband processing unit 7 makes the transmission wave leakage component output from the directional coupler 4 and input to the reception mixer 6 minimum, that is, wraps around from the antenna duplexer 3.
- Transmission wave removal signal Phase control DAC 53 and transmission wave removal so that the transmission wave leakage component amplified by reception low noise amplifier 5 and the transmission wave removal component input from variable gain amplifier 13 have the same amplitude and opposite phase.
- Control voltages V p and Vg are output via the signal power control DAC 52 to set the phase of the variable phase shifter 12 and the gain of the variable gain amplifier 13. Other operations are the same as those in the first embodiment.
- variable phase shifter 12 and the variable gain amplifier 13 are output from the directional coupler 4 and input to the reception mixer 6 based on the settings from the force control unit 58. Adjust the phase and amplitude of the transmitted wave rejection component so that the transmitted transmitted wave leakage component is minimized. By removing the transmission wave leakage component that circulates from the transmitter side to the receiver side, no interstage bandpass filter is required, and the receiving low noise amplifier 5 does not require high linearity, so it is compact and has low power consumption. The effect that a communication apparatus can be obtained is acquired.
- FIG. 7 is a block diagram showing a configuration of a wireless communication apparatus to which the transmission wave removing apparatus according to Embodiment 3 of the present invention is applied.
- This wireless communication device includes an antenna 1, an antenna duplexer 3, a directional coupler 4, a reception low noise amplifier 5, a reception mixer 6, a transmission modulator 8, a transmission variable gain amplifier 9, a transmission high output amplifier 10, a variable gain.
- An amplifier 13, a reception local oscillator 15, a transmission local oscillator 16, a baseband processing unit 21, a removal component modulator 22, and an adder 23 are provided.
- the directional coupler 4, the variable gain amplifier 13, the baseband processing unit 21, the removal component modulator 22, and the adder 23 constitute a transmission wave removal device 102.
- FIG. 8 is a block diagram showing the configuration of the baseband processing unit 21.
- the baseband processing unit 21 includes a reception signal processing unit 51, a transmission power control DAC 57, a transmission power offset DAC 61, a transmission IQ signal source 62 with a phase adjustment function, and a control unit 63.
- the processing of the reception signal processing unit 51 is the same as the processing of the reception signal processing unit 51 shown in FIG. 3 of the first embodiment.
- the control unit 63 outputs a control voltage Vc for controlling the gain of the transmission variable gain amplifier 9 via the transmission power control DAC 57, and transmits in accordance with the reception level detected by the reception signal processing unit 51.
- the control voltage Vf is output via the power offset DAC 61 and the transmission IQ signal source 62 with a phase adjustment function is instructed to generate the transmission signal TX ′ whose phase is offset with respect to the transmission signal TX.
- the IQ signal source for transmission 62 with a phase adjustment function converts the digital signal to be transmitted into an analog signal corresponding to a predetermined modulation method, so that the in-phase (In -phase) component (I component) and quadrature (Quadrature) component (Q component) are transmitted, and the transmission signal TX is received based on an instruction from the control unit 63.
- a transmission signal TX ′ having a phase offset is output.
- the local oscillator for reception 15 outputs a local oscillation signal for reception used in the reception mixer 6, and the local oscillator for transmission 16 transmits the transmission signal for use in the transmission modulator 8 and the removal component modulator 22 for TX and phase.
- the local oscillation signal for the transmission signal TX ′ with the offset is output.
- the transmission modulator 8 can transmit the transmission signal TX from the transmission IQ signal source 62 with phase adjustment function to the radio band by using the local oscillation signal for transmission from the transmission local oscillator 16. Modulate to a transmitted wave.
- the transmission variable gain amplifier 9 amplifies the transmission wave from the transmission modulator 8 by adjusting the gain based on the control voltage Vc from the baseband processing unit 21.
- the operations of the transmission high-power amplifier 10, the antenna duplexer 3, and the antenna 1 are the same as those in the first embodiment.
- the removal component modulator 22 uses the transmission signal TX 'whose phase is offset from the transmission IQ signal source 62 with phase adjustment function, and the local oscillation signal for transmission from the local oscillator 16 for transmission. Then, it is modulated into a transmission wave removal component that can be transmitted to the radio band.
- the power unit 23 adds the control voltage Vf from the control unit 63 via the transmission power offset DAC 61 and the control voltage Vc from the control unit 63 via the transmission power control DAC 57.
- the added control voltage Vg is output to the variable gain amplifier 13.
- the variable gain amplifier 13 adjusts the gain based on the control voltage Vg from the adder 23 and amplifies the transmission wave removal component from the removal component modulator 22.
- the directional coupler 4 synthesizes the transmission wave leakage component that wraps around from the antenna duplexer 3 and the transmission wave rejection component whose phase and gain are adjusted by the transmission IQ signal source 62 and variable gain amplifier 13 with phase adjustment function. To do.
- the transmission wave leakage component from the directional coupler 4 is input to the baseband processing unit 21 as a reception signal RX via the reception low noise amplifier 5 and the reception mixer 6.
- the reception signal processing unit 51 detects the reception level of the reception signal RX from the reception mixer 6, and demodulates the reception signal RX into a digital signal.
- control unit 63 Based on the reception level confirmation result detected by reception signal processing unit 51, control unit 63 minimizes the transmission wave leakage component, that is, the signal input to directional coupler 4. Transmission wave leakage component from antenna duplexer 3 and transmission wave rejection component from variable gain amplifier 13 A transmission wave TX ′ having a phase offset is generated in the transmission IQ signal source 62 with a phase adjustment function so that is opposite in phase.
- the control unit 63 minimizes the transmission wave leakage component, that is, the antenna input to the directional coupler 4.
- the control voltage Vf is set via the transmission power offset DAC 61 so that the transmission wave leakage component from the duplexer 3 and the transmission wave removal component from the variable gain amplifier 13 have the same amplitude.
- the adder 23 outputs the control voltage Vg obtained by adding the control voltage Vf and the control voltage Vc from the control unit 63 via the transmission power control DAC 57 to the variable gain amplifier 13.
- the IQ signal source 62 for transmission with phase adjustment function and the variable gain amplifier 13 are output from four directional couplers and received by the low noise amplifier 5.
- the interstage bandpass filter This eliminates the need for high linearity in the reception low-noise amplifier 5, so that it is possible to obtain a small and low-power-consumption radio communication apparatus.
- the temperature is higher than that of the analog variable phase shifter 12 used in the first embodiment. It is less affected by the environment and can achieve the effect.
- FIG. 9 is a block diagram showing a configuration of a wireless communication apparatus to which the transmission wave removing apparatus according to Embodiment 4 of the present invention is applied.
- This wireless communication apparatus is obtained by switching the connection order of the directional coupler 4 and the reception low noise amplifier 5 shown in FIG. 7 of the third embodiment, and the other configurations are the same as those in FIG. is there.
- the block diagram showing the configuration of the baseband processing unit 21 in the fourth embodiment is the same as the baseband processing unit 21 shown in FIG. 8 of the third embodiment.
- the directional coupler 4 is connected to the input side of the reception low noise amplifier 5 to remove the transmission wave leakage component.
- the reception low noise is removed.
- the directional coupler 4 is connected to the output side of the amplifier 5 to remove the transmission wave leakage component.
- reception sensitivity of very low power may be required, and loss due to connecting the directional coupler 4 to the input side of the reception low noise amplifier 5 cannot be ignored.
- FIG. 9 by connecting the directional coupler 4 to the output side of the reception low noise amplifier 5, the transmission wave leakage component input to the reception mixer 6 can be removed.
- the directional coupler 4 combines the transmission wave leakage component from the reception low noise amplifier 5 with the transmission wave removal component whose phase and amplitude are adjusted by the transmission IQ signal source 62 and the variable gain amplifier 13 with a phase adjustment function.
- the control unit 63 of the baseband processing unit 21 is configured so that the transmission wave leakage component output from the directional coupler 4 and input to the reception mixer 6 is minimized, that is, wraparound reception is reduced from the antenna duplexer 3.
- the phase of the transmission IQ signal source 62 with a phase adjustment function is set so that the transmission wave leakage component amplified by the noise amplifier 5 and the transmission wave rejection component input from the variable gain amplifier 13 have the same amplitude and opposite phase.
- the gain of the variable gain amplifier 13 is set.
- the transmission IQ signal source 62 with phase adjustment function and the variable gain amplifier 13 are controlled by the directional coupler 4 based on the setting from the control unit 63.
- the phase and amplitude of the transmission wave rejection component so that the transmission wave leakage component that is output and input to the reception mixer 6 is minimized, by removing the transmission wave leakage component that wraps around from the transmission side to the reception side, An interstage bandpass filter is not required, and high linearity is not required for the reception low-noise amplifier 5, so that an effect that a small-sized and low power consumption wireless communication apparatus can be obtained can be obtained.
- the temperature environment is higher than that of the analog variable phase shifter 12 used in the second embodiment. It is difficult to be affected by this, and the effect is obtained.
- FIG. 10 is a block diagram showing a configuration of a wireless communication apparatus to which the transmission wave removing apparatus according to Embodiment 5 of the present invention is applied.
- This wireless communication device has antenna 1 and antenna sharing 3, directional coupler 4, reception low noise amplifier 5, reception mixer 6, transmission modulator 8, transmission variable gain amplifier 9, transmission high output amplifier 10, variable gain amplifier 13, reception local oscillator 15, removal component modulation 22, an adder 23, a baseband processing unit 31, a synthesizer 32, and a variable phase shifter 33.
- a directional coupler 4 a variable gain amplifier 13, a removal component modulator 22, an adder 23, a baseband processing unit 31 and a variable phase shifter 33 constitute a transmission wave removal device 103. is doing.
- FIG. 11 is a block diagram showing a configuration of the baseband processing unit 31.
- the baseband processing unit 31 includes a reception signal processing unit 51, a transmission IQ signal source 54, a transmission power control DAC 57, a transmission power offset DAC 61, a local oscillation signal phase control DAC 71, and a control unit 72. ing.
- the processing of the reception signal processing unit 51 and the transmission IQ signal source 54 is the same as the processing of the reception signal processing unit 51 and the processing of the transmission IQ signal source 54 shown in FIG. The same.
- the control unit 72 outputs a control voltage Vc for controlling the gain of the transmission variable gain amplifier 9 via the transmission power control DAC 57 and corresponds to the reception level detected by the reception signal processing unit 51.
- the transmission wave leakage component is minimized via the transmission power offset DAC 61, that is, the transmission wave leakage component from the antenna duplexer 3 input to the directional coupler 4 and the transmission from the variable gain amplifier 13 are transmitted.
- the control voltage Vf is output so that the wave rejection component has the same amplitude, and the transmission wave leakage component is minimized via the local oscillation signal phase control DAC 71, that is, input to the directional coupler 4.
- the control voltage Vs is output so that the transmission wave leakage component from the antenna duplexer 3 and the transmission wave cancellation component from the variable gain amplifier 13 have opposite phases.
- the synthesizer 32 outputs a local oscillation signal for the transmission signal TX used in the transmission modulator 8.
- the transmission modulator 8 modulates the transmission signal TX from the transmission IQ signal source 54 into a transmission wave that can be transmitted in the radio band by using the transmission local oscillation signal of 32 synthesizers with the same phase.
- the transmission variable gain amplifier 9 amplifies the transmission wave from the transmission modulator 8 by adjusting the gain based on the control voltage Vc from the baseband processing unit 31.
- the operations of the transmission high-power amplifier 10, the antenna duplexer 3, and the antenna 1 are the same as those in the first embodiment.
- variable phase shifter 33 receives the phase of the local oscillation signal for transmission from the synthesizer 32 based on the control voltage Vs via the local oscillation signal phase control DAC 71 from the control unit 72 of the baseband processing unit 31. Is offset.
- the removal component modulator 22 transmits the transmission signal TX from the transmission IQ signal source 54 to the radio band using the transmission local oscillation signal whose phase is offset by the variable phase shifter 33. Modulate to possible transmit wave rejection component.
- variable gain amplifier 13 variable gain amplifier 13
- directional coupler 4 reception low noise amplifier 5, reception local oscillator 15 and reception mixer 6
- the processing is the same as that of the variable gain amplifier 13, the directional coupler 4, the reception low noise amplifier 5, the reception local oscillator 15, and the reception mixer 6.
- the transmission phase leakage 33 and the variable gain amplifier 13 which are output from the four force directional couplers and input to the reception low noise amplifier 5 are leaked.
- an interstage bandpass filter becomes unnecessary, and the receiving low noise amplifier Since 5 does not require high linearity, it is possible to obtain a wireless communication device with a small size and low power consumption.
- FIG. 12 is a block diagram showing a configuration of a wireless communication apparatus to which the transmission wave removing apparatus according to Embodiment 6 of the present invention is applied.
- This wireless communication apparatus is obtained by switching the connection order of the directional coupler 4 and the reception low noise amplifier 5 shown in FIG. 10 of the fifth embodiment, and the other configurations are the same as those in FIG.
- the block diagram showing the configuration of baseband processing unit 31 in the sixth embodiment is the same as baseband processing unit 31 shown in FIG. 11 of the fifth embodiment.
- the directional coupler 4 is connected to the input side of the reception low noise amplifier 5 to remove the transmission wave leakage component.
- the reception low noise is removed. amplification
- the directional coupler 4 is connected to the output side of the transmitter 5 to remove the transmission wave leakage component.
- reception sensitivity of very low power may be required, and the loss due to connecting the directional coupler 4 to the input side of the reception low noise amplifier 5 cannot be ignored.
- the transmission wave leakage component input to the reception mixer 6 can be removed by connecting the directional coupler 4 to the output side of the reception low noise amplifier 5.
- the directional coupler 4 combines the transmission wave leakage component from the reception low noise amplifier 5 with the transmission wave removal component whose phase and amplitude are adjusted by the variable phase shifter 33 and the variable gain amplifier 13.
- the control unit 72 of the baseband processing unit 31 is configured to minimize the transmission wave leakage component output from the directional coupler 4 and input to the reception mixer 6, that is, from the antenna duplexer 3
- the phase of the variable phase shifter 33 and the phase of the variable gain amplifier 13 are adjusted so that the transmission wave leakage component amplified by the noise amplifier 5 and the transmission wave cancellation component input from the variable gain amplifier 13 have the same amplitude and opposite phase. Set the gain.
- the sixth embodiment based on the settings from the variable phase shifter 33 and the variable gain amplifier 13 force control unit 72, four directional couplers are output and input to the receiving mixer 6.
- the phase and amplitude of the transmitted wave removal component so that the transmitted transmission wave leakage component is minimized, the transmission wave leakage component that wraps around from the transmission side to the reception side is removed, eliminating the need for an interstage bandpass filter.
- high linearity is not required for the reception low noise amplifier 5, an effect that a small-sized and low power consumption wireless communication apparatus can be obtained can be obtained.
- the transmission wave removal apparatus is suitable, for example, for removing transmission wave leakage components that circulate from the transmission side to the reception side.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
送信波除去成分の位相を調整する可変移相器と、送信波除去成分の振幅を調整する可変利得増幅器とを備え、送信波漏洩成分が受信側の特性に影響を与えない場合に、可変移相器及び可変利得増幅器の電源供給を停止させる。
Description
明 細 書
送信波除去装置
技術分野
[0001] この発明は、共通のアンテナで送信及び受信の同時動作を行う無線通信装置にお V、て、送信側から受信側への送信波漏洩成分を除去する送信波除去装置に関する ものである。
背景技術
[0002] 第 1図は共通のアンテナで送信及び受信の同時動作を行う従来の無線通信装置 の構成を示すブロック図である。この第 1図では、無線通信装置におけるアンテナ 20 1、アンテナ共用器 202、受信低雑音増幅器 203、段間帯域フィルタ 204、受信ミキ サ 205及び送信高出力増幅器 206を図示している。
[0003] 次に動作について説明する。
第 1図において、送信側の送信高出力増幅器 206から出力された送信波はアンテ ナ共用器 202を介してアンテナ 201から空中に送信される力 一部の送信波はアン テナ共用器 202を介して受信側の受信低雑音増幅器 203の入力に漏れて送信波漏 洩成分として入力される。この送信波漏洩成分は受信低雑音増幅器 203で増幅され て次段に出力され受信ミキサ 205の特性を劣化させる。そこで、受信低雑音増幅器 2 03と受信ミキサ 205の間に段間帯域フィルタ 204を接続して、送信波漏洩成分を減 衰させることにより、受信ミキサ 205の特性劣化を防いでいる。
[0004] なお、段間帯域フィルタ 204を使用せずに、アンテナ共用器 202で送信機カも受 信機へ回り込む送信波漏洩成分を削減しょうとすると、アンテナ共用器 202の構成が 複雑になり、特に小型 ·軽量ィ匕が要求される無線通信装置の場合には、アンテナ共 用器 202で送信波漏洩成分を削減することは困難である。
[0005] この無線通信装置において、送信波漏洩成分と受信帯域外の妨害波が混変調し て受信帯域に不要波を発生させることにより生じる受信感度劣化を防ぐためには、受 信低雑音増幅器 203に高い線形性が必要になり、受信低雑音増幅器 203の消費電 流が増大する原因となる。また、段間帯域フィルタ 204は急峻な減衰特性を要求され
るために集積回路への置き換えが困難になり、部品点数の増加及び実装面積の増 大の原因となっている。
[0006] なお、段間帯域フィルタ 204の減衰特性に関する仕様として、例えば W— CDMA ( Wideband し ode Division Multiple Access)ンスアムでは、 Out of— band Blockingといつ 仕様があり、これは送信機側が 20dbmの送信電力を出力した状態で、 1MHzから 1 2. 75GHzまで ΙΜζ間隔で、ずらしながら妨害波を受信機に注入しても、ビットエラ 一レートが 0. 1%になる受信信号レベルが基準感度点 + 3dBより低い必要がある。
[0007] また、妨害波除去に関連する技術として、例えば特許文献 1に示す妨害波除去装 置がある。ここでは、複数の送信機と受信機が個別のアンテナに接続され近接配置 された無線装置において、送信機とそれに接続されたアンテナとの間から送信電波 成分を導出し、その位相とレベルの少なくとも一方を調整した後、受信機とそれに接 続されたアンテナとの間に注入することで、送信用アンテナから発射され、受信用ァ ンテナを経て受信機に流入する送信波漏洩成分を相殺除去している。
[0008] 特許文献 1 :特開平 7— 30459号公報 (段落 0008、図 1、図 2)
[0009] 従来の無線通信装置は以上のように構成されているので、受信低雑音増幅器 203 と受信ミキサ 205の間に段間帯域フィルタ 204が必要となり、集積ィ匕が困難で実装面 積の小型化が困難という課題があった。
[0010] また、送信波の漏れと受信帯域外の妨害波が混変調して受信帯域に不要波を発 生させることにより生じる受信感度劣化を防ぐために、受信低雑音増幅器 203に高い 線形性が必要になり、受信低雑音増幅器 203の消費電流が増大するという課題があ つた o
[0011] この発明は上記のような課題を解決するためになされたもので、送信側力 受信側 に回り込む送信波漏洩成分を除去し、小型で低消費電力の無線通信装置を実現で きる送信波除去装置を得ることを目的とする。
発明の開示
[0012] この発明に係る送信波除去装置は、送信波の一部を受信側に回り込む送信波漏 洩成分を除去するための送信波除去成分として抽出する第 1の方向性結合器と、該 第 1の方向性結合器により抽出された送信波除去成分の位相を調整する可変移相
器と、上記第 1の方向性結合器により抽出された送信波除去成分の振幅を調整する 可変利得増幅器と、上記送信波漏洩成分と、上記可変移相器及び上記可変利得増 幅器により位相及び振幅が調整された送信波除去成分を合成する第 2の方向性結 合器と、該第 2の方向性結合器から出力される送信波漏洩成分が最小になるように、 上記可変移相器の位相及び上記可変利得増幅器の利得を設定する制御部とを備 え、送信波漏洩成分が受信側の特性に影響を与えない場合に、上記制御部は上記 可変移相器及び上記可変利得増幅器の電源供給を停止させることを特徴とするもの である。
[0013] この発明により、小型で低消費電力の無線通信装置を得ることができるという効果 が得られる。
図面の簡単な説明
[0014] [図 1]従来の無線通信装置の構成を示すブロック図である。
[図 2]この発明の実施の形態 1による送信波除去装置を適用した無線通信装置の構 成を示すブロック図である。
[図 3]この発明の実施の形態 1による送信波除去装置のベースバンド処理部の構成 を示すブロック図である。
[図 4]この発明の実施の形態 1による送信波除去装置の処理の流れを示すフローチ ヤートである。
[図 5]この発明の実施の形態 1による送信電力変化時の送信波除去装置の動作制御 を説明する図である。
[図 6]この発明の実施の形態 2による送信波除去装置を適用した無線通信装置の構 成を示すブロック図である。
[図 7]この発明の実施の形態 3による送信波除去装置を適用した無線通信装置の構 成を示すブロック図である。
[図 8]この発明の実施の形態 3による送信波除去装置のベースバンド処理部の構成 を示すブロック図である。
[図 9]この発明の実施の形態 4による送信波除去装置を適用した無線通信装置の構 成を示すブロック図である。
[図 10]この発明の実施の形態 5による送信波除去装置を適用した無線通信装置の構 成を示すブロック図である。
[図 11]この発明の実施の形態 5による送信波除去装置のベースバンド処理部の構成 を示すブロック図である。
[図 12]この発明の実施の形態 6による送信波除去装置を適用した無線通信装置の構 成を示すブロック図である。
発明を実施するための最良の形態
[0015] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
実施の形態 1.
第 2図はこの発明の実施の形態 1による送信波除去装置を適用した無線通信装置 の構成を示すブロック図である。
この無線通信装置は、アンテナ 1、アンテナスィッチ 2、アンテナ共用器 3、方向性 結合器 4、受信低雑音増幅器 5、受信ミキサ 6、ベースバンド処理部 7、送信変調器 8 、送信可変利得増幅器 9、送信高出力増幅器 10、方向性結合器 11、可変移相器 1 2、可変利得増幅器 13、電源部 14、受信用局部発振器 15、送信用局部発振器 16 及び局部発振器用スィッチ 17を備えている。
[0016] 第 2図において、アンテナスィッチ 2、方向性結合器 4、ベースバンド処理部 7、方向 性結合器 11、可変移相器 12、可変利得増幅器 13、電源部 14及び局部発振器用ス イッチ 17により送信波除去装置 101を構成している。
なお、第 2図では、受信低雑音増幅器 5、受信ミキサ 6及びベースバンド処理部 7に より受信側を構成し、ベースバンド処理部 7、送信変調器 8、送信可変利得増幅器 9 及び送信高出力増幅器 10により送信側を構成している。
[0017] 第 3図はベースバンド処理部 7の構成を示すブロック図である。第 3図において、ベ ースバンド処理部 7は、受信信号処理部 51、送信波除去信号電力制御用 DAC (Dig ital Analog Converter) 52、送信波除去信号位相制御用 DAC53、送信用 IQ信号源 54、検査用信号源 55、入力信号用スィッチ 56、送信電力制御用 DAC57及び制御 部 58を備えている。
[0018] 次に動作について説明する。
第 2図において、受信用局部発振器 15は受信ミキサ 6で使用する受信用の局部発 振信号を出力し、送信用局部発振器 16は送信変調器 8で使用する送信信号用の局 部発振信号を出力する。送信変調器 8はベースバンド処理部 7からの送信信号 TXを 、送信用局部発振器 16からの送信用の局部発振信号を使用して、無線帯域に送信 可能な送信波に変調する。
[0019] 送信可変利得増幅器 9は、ベースバンド処理部 7の制御部 58からの送信電力制御 用 DAC57を介してからの制御電圧 Vcに基づき、送信変調器 8からの送信波を増幅 し、送信高出力増幅器 10は送信可変利得増幅器 9からの送信波を増幅して方向性 結合器 11に出力する。
[0020] 方向性結合器 11は送信高出力増幅器 10から出力される送信波の一部を、アンテ ナ共用器 3から受信機に回り込む送信波漏洩成分を除去するための送信波除去成 分として抽出する。可変移相器 12は、ベースバンド処理部 7の制御部 58からの送信 波除去信号位相制御用 DAC53を介しての制御電圧 Vpに基づき、方向性結合器 1 1からの送信波除去成分の位相を調整する。
[0021] 可変利得増幅器 13は、ベースバンド処理部 7の制御部 58からの送信波除去信号 電力制御用 DAC52を介しての制御電圧 Vgに基づき、可変移相器 12により位相が 調整された送信波除去成分の振幅を調整する。方向性結合器 4は、アンテナ共用器 3から回り込んだ送信波漏洩成分と、可変移相器 12及び可変利得増幅器 13により 位相及び振幅が調整された送信波除去成分を合成する。
[0022] また、アンテナスィッチ 2は、ベースバンド処理部 7の制御部 58からの制御信号 Ant SWに基づき、アンテナ 1とアンテナ共用器 3を接続又は遮断する。局部発振器用ス イッチ 17は、ベースバンド処理部 7の制御部 58からの制御信号 LoSWに基づき、受 信ミキサ 6に受信接続される局部発信器を受信用局部発振器 15又は送信用局部発 信器 16に切り換える。電源部 14は、ベースバンド処理部 7の制御部 58からの制御信 号 Vrに基づき、可変移相器 12及び可変利得増幅器 13に電源を供給したり停止す る。
[0023] 第 3図のベースバンド処理部 7において、受信信号処理部 51は受信ミキサ 6からの
受信信号 RXの受信レベルを検出すると共に、受信信号 RXをディジタル信号に復調 する。
[0024] また、ベースバンド処理部 7において、制御部 58は、局部発振器用スィッチ 17を切 り換えるための制御信号 LoSWを出力し、電源部 14を制御するための制御信号 Vr を出力し、送信電力制御用 DAC57を介して送信可変利得増幅器 9の利得を制御す るための制御電圧 Vcを出力し、アンテナスィッチ 2を切り換えるための制御信号 Ant SWを出力すると共に、受信信号処理部 51により検出された受信レベルに対応して 、送信波除去信号位相制御用 DAC53及び送信波除去信号電力制御用 DAC52を 介して制御電圧 Vp, Vgを出力し、可変移相器 12の位相及び可変利得増幅器 13の 利得を設定する。
[0025] さらに、ベースバンド処理部 7において、送信用 IQ信号源 54は、送信するディジタ ル信号を所定の変調方式に対応するアナログ信号に変換して、同相(In-phase)成 分 (I成分)と直角位相 (Quadrature)成分 (Q成分)とからなる送信信号 TXを出力し、 検査用信号源 55は検査用信号を出力し、入力信号用スィッチ 56は制御部 58の指 示に基づき送信信号 TX又は検査用信号を切り換えて送信変調器 8に出力する。
[0026] 第 4図はこの発明の実施の形態 1による送信波除去装置 101の処理の流れを示す フローチャートである。
ステップ ST11にお 、て、ベースバンド処理部 7の制御部 58は可変移相器 12及び 可変利得増幅器 13を動作させるための制御信号 Vrを電源部 14に出力し、可変移 相器 12及び可変利得増幅器 13に電源を供給させる。ステップ ST12において、ベ ースバンド処理部 7の制御部 58は、アンテナ 1を遮断させるための制御信号 AntSW をアンテナスィッチ 2に出力し、アンテナ 1とアンテナ共用器 3との接続を遮断する。
[0027] ステップ ST13において、ベースバンド処理部 7の制御部 58は送信用局部発振器 1 6を接続させるための制御信号 LoSWにより局部発振器用スィッチ 17を送信用局部 発振器 16側に設定し、送信用局部発振器 16と受信ミキサ 6を接続し、受信ミキサ 6を 使用して送信帯域の復調が可能な状態にする。ステップ ST14において、ベースバ ンド処理部 7の制御部 58は、入力信号用スィッチ 56を検査用信号源 55側に設定し て、検査用信号源 55からの検査用信号を送信変調器 8に出力させる。
[0028] 送信変調器 8は、入力信号用スィッチ 56からの検査用信号を、送信用局部発振器 16からの送信用の局部発振信号を使用して、無線帯域に送信可能な検査波に変調 する。送信可変利得増幅器 9を介して送信高出力増幅器 10から出力された検査波 は、方向性結合器 11を介してアンテナ共用器 3に入力される力 アンテナスィッチ 2 により遮断されているためアンテナ 1には出力されず、検査波漏洩成分が方向性結 合器 4に出力される。
[0029] また、送信高出力増幅器 10から出力された検査波は、方向性結合器 11によりアン テナ共用器 3から受信機に回り込む検査波漏洩成分を除去するための検査波除去 成分として抽出され、可変移相器 12を介して可変利得増幅器 13に入力される。
[0030] ステップ ST15において、ベースバンド処理部 7の制御部 58は、送信波除去信号 電力制御用 DAC52を介しての制御電圧 Vgにより、可変利得増幅器 13の利得を徐 々に上げてゆき、調整開始時の利得から、例えば 3dB程度上昇させることにより、可 変利得増幅器 13の利得の初期設定を行う。可変利得増幅器 13は、ベースバンド処 理部 7からの制御電圧 Vgに基づき、可変移相器 12からの検査波除去成分の振幅を 調整し、方向性結合器 4は、アンテナ共用器 3から回り込んだ検査波漏洩成分と、可 変利得増幅器 13からの検査波除去成分を合成する。合成された検査波漏洩成分と 検査波除去成分は、受信低雑音増幅器 5及び受信ミキサ 6を介して、ベースバンド処 理部 7の受信信号処理部 51に入力される。
[0031] ステップ ST16において、受信信号処理部 51は受信ミキサ 6からの受信レベルを確 認する。ステップ ST17において、制御部 58は、受信信号処理部 51の受信レベルの 確認結果に基づき、方向性結合器 11から出力され受信低雑音増幅器 5に入力され る検査波漏洩成分が最小になるように、すなわち、方向性結合器 4に入力されるアン テナ共用器 3から回り込んだ検査波漏洩成分と可変利得増幅器 13から入力される検 查波除去成分が逆位相になるように、送信波除去信号位相制御用 DAC53を介して 制御電圧 Vpを出力し、可変移相器 12の位相を設定する。
[0032] このとき、制御部 58は、可変移相器 12に設定する位相と入力される受信レベルを 対応付けて内部のメモリ(図示せず)に記憶し、可変移相器 12の位相の設定を複数 回行 ヽ、最も受信レベルが小さ ヽ位相を最終的な可変移相器 12の位相として設定
する。
[0033] ステップ ST18において、制御部 58は、受信信号処理部 51の受信レベルの確認 結果に基づき、方向性結合器 4力も出力され受信低雑音増幅器 5に入力される検査 波漏洩成分が最小になるように、すなわち、方向性結合器 4に入力されるアンテナ共 用器 3から回り込んだ検査波漏洩成分と可変利得増幅器 13から入力される検査波 除去成分が等振幅になるように、送信波除去信号電力制御用 DAC52を介して制御 電圧 Vgを出力し、可変利得増幅器 13の利得を設定する。
[0034] このとき、制御部 58は、可変利得増幅器 13に設定する利得と入力される受信レべ ルを対応付けて内部のメモリ(図示せず)に記憶し、可変利得増幅器 13の利得の設 定を複数回行って、最も受信レベルが小さい利得を、最終的な可変利得増幅器 13 の利得として設定する。
[0035] ステップ ST19において、ベースバンド処理部 7の制御部 58は、入力信号用スイツ チ 56を送信用 IQ信号源 54側に設定し、送信用 IQ信号源 54からの送信信号 TXを 送信変調器 8に出力する。ステップ ST20において、制御部 58は制御信号 LoSWに 基づき局部発振器用スィッチ 17を受信用局部発振器 15側に設定し、受信用局部発 振器 15と受信ミキサ 6を接続し、受信ミキサ 6を使用して受信帯域の復調が可能な状 態にする。ステップ ST21において、制御部 58はアンテナ 1を接続するための制御信 号 AntSWをアンテナスィッチ 2に出力し、アンテナ 1とアンテナ共用器 3とを接続する
[0036] このように、検査用信号を使用して、送信波除去装置 101における可変移相器 12 の最適な位相と可変利得増幅器 13の最適な利得を調整することができる。
[0037] 実際に、送信信号 TXを使用してアンテナ 1から空中に送信される場合に、送信波 除去装置 101による送信波漏洩成分の低減処理は、検査信号を使用した場合と同 様である。この場合、ベースバンド処理部 7の制御部 58は、入力信号用スィッチ 56を 送信用 IQ信号源 54側に設定し、制御信号 LoSWに基づき局部発振器用スィッチ 1 7を受信用局部発振器 15側に設定し、アンテナ 1を接続するための制御信号 AntS Wをアンテナスィッチ 2に出力する。
[0038] 第 5図は送信電力変化時の送信波除去装置の動作制御を説明する図である。送
信電力はベースバンド処理部 7から送信可変利得増幅器 9に与える制御電圧 Vcによ り変化するが、第 5図では、変化させたときの送信電力(縦軸)と送信可変利得増幅 器 9に与える制御電圧 Vc (横軸)との関係を示している。第 5図において、最大送信 電力を Pl、受信機の特性上送信電力の漏れが問題にならない電力を P2、それぞれ の電力に対応する送信可変利得増幅器 9に与える制御電圧を Vc 1 , Vc2とする。
[0039] 送信電力が受信機の特性に影響を及ぼす制御電圧 Vcが Vclから Vc2の間は送 信波除去動作が必要になるため、制御部 58は電源部 14に対して可変移相器 12及 び可変利得増幅器 13を動作状態にする制御信号 Vrを出力し、可変移相器 12及び 可変利得増幅器 13に電源を供給して動作状態にする。制御電圧 Vcが Vc2以下の 場合は送信波除去動作が不要になるため、制御部 58は電源部 14に対して可変移 相器 12及び可変利得増幅器 13を停止状態にする制御信号 Vrを出力し、可変移相 器 12及び可変利得増幅器 13の電源供給を停止させ電力消費を抑える。
[0040] 以上のように、この実施の形態 1によれば、可変移相器 12及び可変利得増幅器 13 力 制御部 58からの設定に基づき、方向性結合器 4力 出力され受信低雑音増幅 器 5に入力される送信波漏洩成分が最小になるように、送信波除去成分の位相及び 振幅を調整し、送信側から受信側に回り込む送信波漏洩成分を除去することにより、 段間帯域フィルタが不要となり、受信低雑音増幅器 5に高い線形性が不要となるので 、小型で低消費電力の無線通信装置を得ることができるという効果が得られる。
[0041] また、この実施の形態 1によれば、送信波漏洩成分が受信側の特性に影響を与え ない場合に、制御部 58は電源部 14に対して可変移相器 12及び可変利得増幅器 1 3の電源供給を停止させることにより、電力消費を抑えることができるという効果が得ら れる。
[0042] さらに、この実施の形態 1によれば、制御部 58が検査用信号を使用して可変移相 器 12の最適な位相と可変利得増幅器 13の最適な利得を調整することにより、無線 通信装置の実使用状態前に、送信波除去装置 101を最適な状態に設定することが できるという効果が得られる。
[0043] 実施の形態 2.
第 6図はこの発明の実施の形態 2による送信波除去装置を適用した無線通信装置
の構成を示すブロック図である。この無線通信装置は、上記実施の形態 1の第 2図に 示す方向性結合器 4と受信低雑音増幅器 5の接続順序を入れ換えたものであり、そ の他の構成は図 1と同じである。
また、この実施の形態 2におけるベースバンド処理部 7の構成を示すブロック図は上 記実施の形態 1の第 3図に示すベースバンド処理部 7と同じである。
[0044] 上記実施の形態 1では、受信低雑音増幅器 5の入力側に方向性結合器 4を接続し て送信波漏洩成分の除去を行っていたが、この実施の形態 2では、受信低雑音増幅 器 5の出力側に方向性結合器 4を接続して送信波漏洩成分の除去を行うものである
[0045] 無線通信装置によっては非常に低い電力の受信感度を要求される場合があり、受 信低雑音増幅器 5の入力側に方向性結合器 4を接続することによる損失が無視でき ない場合には、第 6図に示すように、受信低雑音増幅器 5の出力側に方向性結合器 4を接続することにより、受信ミキサ 6に入力される送信波漏洩成分を除去することが できる。
[0046] 次に動作について説明する。
方向性結合器 4は受信低雑音増幅器 5からの送信波漏洩成分と、可変移相器 12 及び可変利得増幅器 13により位相及び振幅が調整された送信波除去成分を合成 する。
[0047] ベースバンド処理部 7の制御部 58は、方向性結合器 4から出力され受信ミキサ 6に 入力される送信波漏洩成分が最小になるように、すなわち、アンテナ共用器 3から回 り込み受信低雑音増幅器 5で増幅された送信波漏洩成分と可変利得増幅器 13から 入力される送信波除去成分が等振幅でかつ逆位相になるように、送信波除去信号 位相制御用 DAC53及び送信波除去信号電力制御用 DAC52を介して制御電圧 V p, Vgを出力し、可変移相器 12の位相及び可変利得増幅器 13の利得を設定する。 その他の動作は上記実施の形態 1と同様である。
[0048] 以上のように、この実施の形態 2によれば、可変移相器 12及び可変利得増幅器 13 力 制御部 58からの設定に基づき、方向性結合器 4から出力され受信ミキサ 6に入 力される送信波漏洩成分が最小になるように、送信波除去成分の位相及び振幅を調
整し、送信側から受信側に回り込む送信波漏洩成分を除去することにより、段間帯域 フィルタが不要となり、受信低雑音増幅器 5に高い線形性が不要となるので、小型で 低消費電力の無線通信装置を得ることができるという効果が得られる。
[0049] 実施の形態 3.
第 7図はこの発明の実施の形態 3による送信波除去装置を適用した無線通信装置 の構成を示すブロック図である。この無線通信装置は、アンテナ 1、アンテナ共用器 3 、方向性結合器 4、受信低雑音増幅器 5、受信ミキサ 6、送信変調器 8、送信可変利 得増幅器 9、送信高出力増幅器 10、可変利得増幅器 13、受信用局部発振器 15、 送信用局部発振器 16、ベースバンド処理部 21、除去成分変調器 22及び加算器 23 を備えている。
[0050] 第 7図において、方向性結合器 4、可変利得増幅器 13、ベースバンド処理部 21、 除去成分変調器 22及び加算器 23により送信波除去装置 102を構成している。
[0051] 第 8図はベースバンド処理部 21の構成を示すブロック図である。第 8図において、 ベースバンド処理部 21は、受信信号処理部 51、送信電力制御用 DAC57、送信電 力オフセット DAC61、位相調整機能付送信用 IQ信号源 62及び制御部 63を備えて いる。
[0052] 次に動作について説明する。
ベースバンド処理部 21において、受信信号処理部 51の処理は上記実施の形態 1 の図 3に示す受信信号処理部 51の処理と同じである。制御部 63は、送信電力制御 用 DAC57を介して送信可変利得増幅器 9の利得を制御するための制御電圧 Vcを 出力すると共に、受信信号処理部 51により検出された受信レベルに対応して、送信 電力オフセット DAC61を介して制御電圧 Vfを出力し、送信信号 TXに対して位相を オフセットさせた送信信号 TX'を発生するよう位相調整機能付送信用 IQ信号源 62 に指示する。
[0053] また、ベースバンド処理部 21にお 、て、位相調整機能付送信用 IQ信号源 62は、 送信するディジタル信号を所定の変調方式に対応するアナログ信号に変換して、同 相(In-phase)成分 (I成分)と直角位相 (Quadrature)成分 (Q成分)とからなる送信信 号 TXを出力すると共に、制御部 63からの指示に基づき、送信信号 TXに対して、受
信信号処理部 51により検出された受信レベルに対応して、位相をオフセットさせた送 信信号 TX'を出力する。
[0054] 受信用局部発振器 15は受信ミキサ 6で使用する受信用の局部発振信号を出力し、 送信用局部発振器 16は送信変調器 8及び除去成分変調器 22で使用する送信信号 TX用及び位相をオフセットさせた送信信号 TX'用の局部発振信号を出力する。
[0055] 送信変調器 8は、位相調整機能付送信用 IQ信号源 62からの送信信号 TXを、送 信用局部発振器 16からの送信用の局部発振信号を使用して、無線帯域に送信可 能な送信波に変調する。
[0056] 送信可変利得増幅器 9はベースバンド処理部 21からの制御電圧 Vcに基づき利得 を調整して送信変調器 8からの送信波を増幅する。送信高出力増幅器 10、アンテナ 共用器 3及びアンテナ 1の動作は上記実施の形態 1と同様である。
[0057] 除去成分変調器 22は、位相調整機能付送信用 IQ信号源 62からの位相がオフセ ットされた送信信号 TX'を、送信用局部発振器 16からの送信用の局部発振信号を 使用して、無線帯域に送信可能な送信波除去成分に変調する。
[0058] 力!]算器 23は、制御部 63からの送信電力オフセット DAC61を介しての制御電圧 Vf と、制御部 63からの送信電力制御用 DAC57を介しての制御電圧 Vcとを加算して、 加算した制御電圧 Vgを可変利得増幅器 13に出力する。
[0059] 可変利得増幅器 13は、加算器 23からの制御電圧 Vgに基づき利得を調整し、除去 成分変調器 22からの送信波除去成分を増幅する。方向性結合器 4はアンテナ共用 器 3から回り込んだ送信波漏洩成分と、位相調整機能付送信用 IQ信号源 62及び可 変利得増幅器 13により位相及び利得が調整された送信波除去成分を合成する。
[0060] 方向性結合器 4からの送信波漏洩成分は受信低雑音増幅器 5及び受信ミキサ 6を 介して受信信号 RXとしてベースバンド処理部 21に入力される。ベースバンド処理部 21において、受信信号処理部 51は受信ミキサ 6からの受信信号 RXの受信レベルを 検出すると共に、受信信号 RXをディジタル信号に復調する。
[0061] 制御部 63は、受信信号処理部 51により検出された受信レベルの確認結果に基づ き、送信波漏洩成分が最小になるように、すなわち、方向性結合器 4に入力されるァ ンテナ共用器 3からの送信波漏洩成分と可変利得増幅器 13からの送信波除去成分
が逆位相になるように、位相調整機能付送信用 IQ信号源 62に、位相をオフセットさ せた送信波 TX'を発生させる。
[0062] また、制御部 63は、受信信号処理部 51により検出された受信レベルの確認結果に 基づき、送信波漏洩成分が最小になるように、すなわち、方向性結合器 4に入力され るアンテナ共用器 3からの送信波漏洩成分と可変利得増幅器 13からの送信波除去 成分が等振幅になるよう、送信電力オフセット DAC61を介して制御電圧 Vfを設定す る。加算器 23は制御電圧 Vfと制御部 63からの送信電力制御用 DAC57を介しての 制御電圧 Vcとを加算した制御電圧 Vgを可変利得増幅器 13に出力する。
[0063] 以上のように、この実施の形態 3によれば、位相調整機能付送信用 IQ信号源 62及 び可変利得増幅器 13が、方向性結合器 4カゝら出力され受信低雑音増幅器 5に入力 される送信波漏洩成分が最小になるように、送信波除去成分の位相及び振幅を調整 し、送信側から受信側に回り込む送信波漏洩成分を除去することにより、段間帯域フ ィルタが不要となり、受信低雑音増幅器 5に高い線形性が不要となるので、小型で低 消費電力の無線通信装置を得ることができるという効果が得られる。
[0064] また、この実施の形態 3によれば、位相調整機能付送信用 IQ信号源 62を使用する ことにより、上記実施の形態 1で使用したアナログ型の可変移相器 12に比べて温度 環境の影響を受けにく 、と 、う効果が得られる。
[0065] 実施の形態 4.
第 9図はこの発明の実施の形態 4による送信波除去装置を適用した無線通信装置 の構成を示すブロック図である。この無線通信装置は、上記実施の形態 3の第 7図に 示す方向性結合器 4と受信低雑音増幅器 5の接続順序を入れ換えたものであり、そ の他の構成は第 7図と同じである。
また、この実施の形態 4におけるベースバンド処理部 21の構成を示すブロック図は 上記実施の形態 3の第 8図に示すベースバンド処理部 21と同じである。
[0066] 上記実施の形態 3では、受信低雑音増幅器 5の入力側に方向性結合器 4を接続し て送信波漏洩成分の除去を行っていたが、この実施の形態 4では、受信低雑音増幅 器 5の出力側に方向性結合器 4を接続して送信波漏洩成分の除去を行うものである
[0067] 無線通信装置によっては非常に低い電力の受信感度を要求される場合があり、受 信低雑音増幅器 5の入力側に方向性結合器 4を接続することによる損失が無視でき ない場合には、第 9図に示すように、受信低雑音増幅器 5の出力側に方向性結合器 4を接続することにより、受信ミキサ 6に入力される送信波漏洩成分を除去することが できる。
[0068] 次に動作について説明する。
方向性結合器 4は受信低雑音増幅器 5からの送信波漏洩成分と、位相調整機能付 送信用 IQ信号源 62及び可変利得増幅器 13により位相及び振幅が調整された送信 波除去成分を合成する。
[0069] ベースバンド処理部 21の制御部 63は、方向性結合器 4から出力され受信ミキサ 6 に入力される送信波漏洩成分が最小になるように、すなわち、アンテナ共用器 3から 回り込み受信低雑音増幅器 5で増幅された送信波漏洩成分と可変利得増幅器 13か ら入力される送信波除去成分が等振幅でかつ逆位相になるように、位相調整機能付 送信用 IQ信号源 62の位相及び可変利得増幅器 13の利得を設定する。
その他の動作は上記実施の形態 3と同様である。
[0070] 以上のように、この実施の形態 4によれば、位相調整機能付送信用 IQ信号源 62及 び可変利得増幅器 13が、制御部 63からの設定に基づき、方向性結合器 4から出力 され受信ミキサ 6に入力される送信波漏洩成分が最小になるように、送信波除去成分 の位相及び振幅を調整し、送信側から受信側に回り込む送信波漏洩成分を除去す ることにより、段間帯域フィルタが不要となり、受信低雑音増幅器 5に高い線形性が不 要となるので、小型で低消費電力の無線通信装置を得ることができるという効果が得 られる。
[0071] また、この実施の形態 4によれば、位相調整機能付送信用 IQ信号源 62を使用する ことにより、上記実施の形態 2で使用したアナログ型の可変位相器 12に比べて温度 環境の影響を受けにく 、と 、う効果が得られる。
[0072] 実施の形態 5.
第 10図はこの発明の実施の形態 5による送信波除去装置を適用した無線通信装 置の構成を示すブロック図である。この無線通信装置は、アンテナ 1、アンテナ共用
器 3、方向性結合器 4、受信低雑音増幅器 5、受信ミキサ 6、送信変調器 8、送信可変 利得増幅器 9、送信高出力増幅器 10、可変利得増幅器 13、受信用局部発振器 15 、除去成分変調器 22、加算器 23、ベースバンド処理部 31、シンセサイザ 32及び可 変移相器 33を備えている。
[0073] 第 10図において、方向性結合器 4、可変利得増幅器 13、除去成分変調器 22、加 算器 23、ベースバンド処理部 31及び可変移相器 33により送信波除去装置 103を構 成している。
[0074] 第 11図はベースバンド処理部 31の構成を示すブロック図である。第 11図において 、ベースバンド処理部 31は、受信信号処理部 51、送信用 IQ信号源 54、送信電力制 御用 DAC57、送信電力オフセット DAC61、局部発振信号位相制御用 DAC71及 び制御部 72を備えている。
[0075] 次に動作について説明する。
ベースバンド処理部 31において、受信信号処理部 51及び送信用 IQ信号源 54の 処理は、上記実施の形態 1の図 3に示す受信信号処理部 51の処理及び送信用 IQ 信号源 54の処理と同じである。
[0076] 制御部 72は、送信電力制御用 DAC57を介して送信可変利得増幅器 9の利得を 制御するための制御電圧 Vcを出力すると共に、受信信号処理部 51により検出され た受信レベルに対応して、送信電力オフセット DAC61を介して、送信波漏洩成分が 最小になるように、すなわち、方向性結合器 4に入力されるアンテナ共用器 3からの 送信波漏洩成分と可変利得増幅器 13からの送信波除去成分が等振幅になるように 制御電圧 Vfを出力し、局部発振信号位相制御用 DAC71を介して、送信波漏洩成 分が最小になるように、すなわち、方向性結合器 4に入力されるアンテナ共用器 3か らの送信波漏洩成分と可変利得増幅器 13からの送信波除去成分が逆位相になるよ うに制御電圧 Vsを出力する。
[0077] シンセサイザ 32は送信変調器 8で使用する送信信号 TX用の局部発振信号を出力 する。送信変調器 8は、送信用 IQ信号源 54からの送信信号 TXを、シンセサイザ 32 力もの送信用の局部発振信号をそのままの位相で使用して、無線帯域に送信可能 な送信波に変調する。
[0078] 送信可変利得増幅器 9はベースバンド処理部 31からの制御電圧 Vcに基づき利得 を調整して送信変調器 8からの送信波を増幅する。送信高出力増幅器 10、アンテナ 共用器 3及びアンテナ 1の動作は上記実施の形態 1と同様である。
[0079] 可変移相器 33は、ベースバンド処理部 31の制御部 72からの局部発振信号位相 制御用 DAC71を介して制御電圧 Vsに基づき、シンセサイザ 32からの送信用の局 部発振信号の位相をオフセットさせる。
[0080] 除去成分変調器 22は、送信用 IQ信号源 54からの送信信号 TXを、可変移相器 33 力もの位相がオフセットされた送信用の局部発振信号を使用して、無線帯域に送信 可能な送信波除去成分に変調する。
[0081] 加算器 23、可変利得増幅器 13、方向性結合器 4、受信低雑音増幅器 5、受信用 局部発振器 15及び受信ミキサ 6の処理は、上記実施の形態 3の図 7に示す加算器 2 3、可変利得増幅器 13、方向性結合器 4、受信低雑音増幅器 5、受信用局部発振器 15及び受信ミキサ 6の処理と同じである。
[0082] 以上のように、この実施の形態 5によれば、可変移相器 33及び可変利得増幅器 13 力 方向性結合器 4カゝら出力され受信低雑音増幅器 5に入力される送信波漏洩成分 が最小になるように、送信波除去成分の位相及び振幅を調整し、送信側から受信側 に回り込む送信波漏洩成分を除去することにより、段間帯域フィルタが不要となり、受 信低雑音増幅器 5に高い線形性が不要となるので、小型で低消費電力の無線通信 装置を得ることができるという効果が得られる。
[0083] 実施の形態 6.
第 12図はこの発明の実施の形態 6による送信波除去装置を適用した無線通信装 置の構成を示すブロック図である。この無線通信装置は、上記実施の形態 5の第 10 図に示す方向性結合器 4と受信低雑音増幅器 5の接続順序を入れ換えたものであり 、その他の構成は第 10図と同じである。
また、この実施の形態 6におけるベースバンド処理部 31の構成を示すブロック図は 上記実施の形態 5の第 11図に示すベースバンド処理部 31と同じである。
[0084] 上記実施の形態 5では、受信低雑音増幅器 5の入力側に方向性結合器 4を接続し て送信波漏洩成分の除去を行っていたが、この実施の形態 6では、受信低雑音増幅
器 5の出力側に方向性結合器 4を接続して送信波漏洩成分の除去を行うものである
[0085] 無線通信装置によっては非常に低い電力の受信感度を要求される場合があり、受 信低雑音増幅器 5の入力側に方向性結合器 4を接続することによる損失が無視でき ない場合には、第 12図に示すように、受信低雑音増幅器 5の出力側に方向性結合 器 4を接続することにより、受信ミキサ 6に入力される送信波漏洩成分を除去すること ができる。
[0086] 次に動作について説明する。
方向性結合器 4は受信低雑音増幅器 5からの送信波漏洩成分と、可変移相器 33 及び可変利得増幅器 13により位相及び振幅が調整された送信波除去成分を合成 する。
[0087] ベースバンド処理部 31の制御部 72は、方向性結合器 4から出力され受信ミキサ 6 に入力される送信波漏洩成分が最小になるように、すなわち、アンテナ共用器 3から 回り込み受信低雑音増幅器 5で増幅された送信波漏洩成分と可変利得増幅器 13か ら入力される送信波除去成分が等振幅でかつ逆位相になるように、可変移相器 33 の位相及び可変利得増幅器 13の利得を設定する。
その他の動作は上記実施の形態 5と同様である。
[0088] 以上のように、この実施の形態 6によれば、可変移相器 33及び可変利得増幅器 13 力 制御部 72からの設定に基づき、方向性結合器 4力 出力され受信ミキサ 6に入 力される送信波漏洩成分が最小になるように、送信波除去成分の位相及び振幅を調 整し、送信側から受信側に回り込む送信波漏洩成分を除去することにより、段間帯域 フィルタが不要となり、受信低雑音増幅器 5に高い線形性が不要となるので、小型で 低消費電力の無線通信装置を得ることができるという効果が得られる。
産業上の利用可能性
[0089] 以上のように、この発明に係る送信波除去装置は、例えば、送信側から受信側に回 り込む送信波漏洩成分を除去するものに適している。
Claims
[1] 送信波の一部を受信側に回り込む送信波漏洩成分を除去するための送信波除去 成分として抽出する第 1の方向性結合器と、
該第 1の方向性結合器により抽出された送信波除去成分の位相を調整する可変移 相器と、
上記第 1の方向性結合器により抽出された送信波除去成分の振幅を調整する可変 利得増幅器と、
上記送信波漏洩成分と、上記可変移相器及び上記可変利得増幅器により位相及 び振幅が調整された送信波除去成分を合成する第 2の方向性結合器と、
該第 2の方向性結合器から出力される送信波漏洩成分が最小になるように、上記 可変移相器の位相及び上記可変利得増幅器の利得を設定する制御部とを備え、 送信波漏洩成分が受信側の特性に影響を与えな!/ヽ場合に、上記制御部は上記可 変移相器及び上記可変利得増幅器の電源供給を停止させることを特徴とする送信 波除去装置。
[2] 第 2の方向性結合器を受信側の受信低雑音増幅器の前に接続することを特徴とす る請求項 1記載の送信波除去装置。
[3] 第 2の方向性結合器を受信側の受信低雑音増幅器の後に接続することを特徴とす る請求項 1記載の送信波除去装置。
[4] 送信波の代わりに検査波を使用して、制御部が可変移相器の位相及び可変利得 増幅器の利得を設定することを特徴とする請求項 1記載の送信波除去装置。
[5] 送信信号に対して位相をオフセットさせた送信信号を発生する位相調整機能付 IQ 信号源と、
上記位相がオフセットされた送信信号を無線帯域に送信可能な送信波除去成分に 変調する除去成分変調器と、
該除去成分変調器により変調された送信波除去成分の振幅を調整する可変利得 増幅器と、
受信側に回り込む送信波漏洩成分と上記可変利得増幅器力 の送信波除去成分 を合成する方向性結合器と、
該方向性結合器から出力される送信波漏洩成分が最小になるように、上記位相調 整機能付 IQ信号源の位相及び上記可変利得増幅器の利得を設定する制御部とを 備えた送信波除去装置。
[6] 方向性結合器を受信側の受信低雑音増幅器の前に接続することを特徴とする請 求項 5記載の送信波除去装置。
[7] 方向性結合器を受信側の受信低雑音増幅器の後に接続することを特徴とする請 求項 5記載の送信波除去装置。
[8] 送信用の局部発振信号の位相をオフセットさせる可変移相器と、
該可変位相器により位相がオフセットされた局部発振信号により、送信信号を無線 帯域に送信可能な送信波除去成分に変調する除去成分変調器と、
該除去成分変調器により変調された送信波除去成分の振幅を調整する可変利得 増幅器と、
受信側に回り込む送信波漏洩成分と上記可変利得増幅器力 の送信波除去成分 を合成する方向性結合器と、
該方向性結合器力 出力される送信波漏洩成分が最小になるように、上記可変移 相器の位相及び上記可変利得増幅器の利得を設定する制御部とを備えた送信波除 去装置。
[9] 方向性結合器を受信側の受信低雑音増幅器の前に接続することを特徴とする請 求項 8記載の送信波除去装置。
[10] 方向性結合器を受信側の受信低雑音増幅器の後に接続することを特徴とする請 求項 8記載の送信波除去装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/300299 WO2007080641A1 (ja) | 2006-01-12 | 2006-01-12 | 送信波除去装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/300299 WO2007080641A1 (ja) | 2006-01-12 | 2006-01-12 | 送信波除去装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007080641A1 true WO2007080641A1 (ja) | 2007-07-19 |
Family
ID=38256056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/300299 WO2007080641A1 (ja) | 2006-01-12 | 2006-01-12 | 送信波除去装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007080641A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011120120A (ja) * | 2009-12-07 | 2011-06-16 | Hitachi Ltd | 移動通信端末向けのモジュール及びそれを用いた移動通信端末 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01174018A (ja) * | 1987-12-28 | 1989-07-10 | Nec Corp | 送受信器の送受回り込み除去回路 |
JPH01260932A (ja) * | 1988-04-12 | 1989-10-18 | Fuji Tec Kk | 複信方式無線機 |
JPH09116459A (ja) * | 1995-08-17 | 1997-05-02 | Fujitsu Ltd | 送受信間干渉除去装置 |
JPH09312587A (ja) * | 1996-05-22 | 1997-12-02 | Sony Corp | 無線通信装置 |
JP2002158599A (ja) * | 2000-11-20 | 2002-05-31 | Kenwood Corp | 送受信回路 |
JP2003273770A (ja) * | 2002-03-19 | 2003-09-26 | Matsushita Electric Ind Co Ltd | 妨害波抑圧回路、アンテナ共用器、送受信回路、及び通信装置 |
JP2005341579A (ja) * | 2004-05-25 | 2005-12-08 | Infineon Technologies Ag | 妨害信号抑制のための制御を行う送受信装置 |
-
2006
- 2006-01-12 WO PCT/JP2006/300299 patent/WO2007080641A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01174018A (ja) * | 1987-12-28 | 1989-07-10 | Nec Corp | 送受信器の送受回り込み除去回路 |
JPH01260932A (ja) * | 1988-04-12 | 1989-10-18 | Fuji Tec Kk | 複信方式無線機 |
JPH09116459A (ja) * | 1995-08-17 | 1997-05-02 | Fujitsu Ltd | 送受信間干渉除去装置 |
JPH09312587A (ja) * | 1996-05-22 | 1997-12-02 | Sony Corp | 無線通信装置 |
JP2002158599A (ja) * | 2000-11-20 | 2002-05-31 | Kenwood Corp | 送受信回路 |
JP2003273770A (ja) * | 2002-03-19 | 2003-09-26 | Matsushita Electric Ind Co Ltd | 妨害波抑圧回路、アンテナ共用器、送受信回路、及び通信装置 |
JP2005341579A (ja) * | 2004-05-25 | 2005-12-08 | Infineon Technologies Ag | 妨害信号抑制のための制御を行う送受信装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011120120A (ja) * | 2009-12-07 | 2011-06-16 | Hitachi Ltd | 移動通信端末向けのモジュール及びそれを用いた移動通信端末 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8351889B2 (en) | Frequency agile duplex filter | |
KR101014065B1 (ko) | Rf 신호의 효율적인 변조 | |
US8483314B2 (en) | Wireless apparatus and distortion compensation method used on time division duplex system | |
WO2007089994A2 (en) | Supply voltage control for a power amplifier | |
US10637525B2 (en) | Wireless device and wireless communication method | |
US6700441B1 (en) | Method and apparatus for reduction of distortion in a feed forward amplifier | |
US8175540B2 (en) | Intermodulation distortion control | |
US6710652B2 (en) | Feedforward amplifier | |
WO2001024554A1 (fr) | Unite d'amplification de puissance de transmission | |
KR100472161B1 (ko) | 전송기에서의 왜곡의 감소를 위한 방법 및 장치 | |
US7209715B2 (en) | Power amplifying method, power amplifier, and communication apparatus | |
GB2381162A (en) | Wireless transmitter and device for mobile station | |
GB2359680A (en) | A linear transmitter with stabilization of loop gain under load variation | |
WO2007080641A1 (ja) | 送信波除去装置 | |
JP2004297656A (ja) | フィードフォワード型増幅器とこの増幅器を備えた無線通信機 | |
JPH10303762A (ja) | 送信回路 | |
KR100592588B1 (ko) | 송수신 분리도 개선을 위한 피드포워드 선형증폭기를사용하는 시분할 복신 시스템 | |
US20030162502A1 (en) | Radio frequency (rf) Transceiver | |
KR20100021024A (ko) | 디지털 무선 송수신 시스템에서의 송신장치 및 송신장치의 선형화 방법 | |
JP2007150829A (ja) | 無線装置及び通信制御方法 | |
KR100375314B1 (ko) | 선형 특성을 개선시킨 통신 시스템 및 그 제어 방법 | |
JP2004187153A (ja) | 無線装置 | |
JP2001244751A (ja) | 電力増幅器 | |
JP2003273768A (ja) | 送受信機 | |
JP2000183811A (ja) | 送信機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06711622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |