WO2007080260A1 - Procede et dispositif de test d'integrite de membranes de filtration. - Google Patents

Procede et dispositif de test d'integrite de membranes de filtration. Download PDF

Info

Publication number
WO2007080260A1
WO2007080260A1 PCT/FR2006/002720 FR2006002720W WO2007080260A1 WO 2007080260 A1 WO2007080260 A1 WO 2007080260A1 FR 2006002720 W FR2006002720 W FR 2006002720W WO 2007080260 A1 WO2007080260 A1 WO 2007080260A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
permeate
pressure
membrane
membranes
Prior art date
Application number
PCT/FR2006/002720
Other languages
English (en)
Inventor
Marc Petry
Original Assignee
Degremont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degremont filed Critical Degremont
Priority to EP06841924A priority Critical patent/EP1971846A1/fr
Publication of WO2007080260A1 publication Critical patent/WO2007080260A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/90Additional auxiliary systems integrated with the module or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/90Additional auxiliary systems integrated with the module or apparatus
    • B01D2313/903Integrated control or detection device
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Definitions

  • the invention relates to a method for testing the integrity of filtration membranes, namely ultrafiltration, microfiltration, nanofiltration or hyperfiltration membranes, of tubular geometry, implemented in a module composed of a casing grouping a set of hollow fibers.
  • a lack of integrity of the membrane can nevertheless lead to pollution of the filtered water circuit which then becomes re-contaminated.
  • the need to control the integrity of the physical barrier constituted by the membrane has therefore naturally imposed itself.
  • Another method known as the "pressure decay test" provides an answer by isolating a face of the previously pressurized membrane at a gas pressure lower than its bubbling pressure. The procedure then consists in measuring the evolution of the pressure on the side of the pressurized side for a determined duration, generally from 5 to 15 minutes. The diffusion of gas within the liquid generates a slight decrease in pressure, which is defined as a loss of pressure maximum acceptable for a specified period of time. A decrease in pressure above this reference value means a gas leak interpreted as a lack of integrity.
  • WO 2005/077499 applies "pressure decay test" to hollow fiber type filtration membranes subjected to backwashing under gas pressure.
  • the test is conducted after a backwash which is usually the phase where damage can be caused to the membranes.
  • the inner portion of the hollow fibers is pressurized with gas and isolated, and the pressure decrease in the inner portion of the hollow fibers is measured and analyzed.
  • the sensitivity of the test remains very dependent on the duration of the test and, when this duration is of the order of one minute as announced in this document, the sensitivity needs to be improved.
  • this static test requiring the isolation of the inner parts of the membranes is very sensitive to valve leakage, which disrupts the results.
  • the object of the invention is, above all, to provide a filtration membrane integrity test method which, using a gas pressure, takes place in a reduced time of the order of a few minutes or less, while giving reliable results, insensitive to valve leaks.
  • the sequencing of the process is as follows:
  • an integrity test method applied to hollow fiber type filtration membranes mounted inside a liquid filtration assembly, with compartment delineation.
  • concentrate where the retained materials accumulate, both in suspension and on the membranes, and a permeate compartment collecting the filtered liquid comprises a step of pressurizing with a gas, in particular air, the inner part of the hollow fibers of the membranes under a pressure lower than the bubbling pressure of the membrane and greater than the pressure of the part outside the fibers, and is characterized in that - the test is carried out on membranes of the internal skin type, the compartment being concentrated constituted by the inner part of the hollow fibers, the permeate compartment consisting of the part outside the hollow fibers, the pressurized gas is circulated in the concentrated compartment for the emptying of the hollow fibers which are open at their ends,
  • the permeate compartment is left in the atmosphere to allow the liquid on the membrane surface to migrate through the membrane;
  • the pressure increase in the permeate compartment caused by the circulation of gas in the concentrated compartment and the passage of gas towards the permeate compartment are measured; and after a definite time, the pressure increase is compared to that observed when using an intact membrane.
  • an integrity test method applied to hollow fiber type filtration membranes, mounted inside a liquid filtration assembly, with compartment delineation. concentrate where the retained materials accumulate, both in suspension and on the membranes, and a permeate compartment collecting the filtered liquid comprises a step of pressurizing with a gas, in particular air, the inner part of the hollow fibers of the membranes under a pressure lower than the bubbling pressure of the membrane and greater than the pressure of the part outside the fibers, and is characterized in that:
  • the test is carried out on membranes of the internal skin type, the concentrate compartment being constituted by the inner part of the hollow fibers, the permeate compartment being constituted by the outer part of the hollow fibers, the gas under pressure being circulated in the concentrated compartment for the emptying of hollow fibers which are open at their ends,
  • the permeate compartment is left in the atmosphere, in particular with a purge of gas at a high point of this compartment, to allow the liquid on the membrane surface to migrate through the membrane;
  • the liquid quality of the permeate compartment in particular that present at the purge of gas at the high point of the permeate compartment, is compared with that observed during the use of an integral membrane.
  • the presence of a diphasic gas / water mixture demonstrates a non-integral membrane.
  • the test of the invention is dynamic since the gas flows continuously through the compartment concentrate during the test.
  • the measurement of the pressure increase in the permeate compartment is insensitive to possible leakage of an isolation valve due to a continuous supply of circulating pressurized gas.
  • the quality of the liquid present in the permeate compartment, in particular the purge of gas is almost independent of an undesirable liquid flow.
  • the present invention makes it possible to associate the measurement of integrity with a two-phase air-plus-water wash by reducing the test duration to less than a few minutes; it also makes it possible to apply tests during the filtration and then allows the localization of the faulty modules.
  • the concentrate compartment can be filled with backwashing or filtration.
  • the integrity test can take place during each backwash, or cyclically after a number of backwashes, or cyclically during filtration.
  • the detection of the water quality can be carried out by a conductimetric measurement, or by a passage detection measurement, or by a visual measurement (video image analyzer). ).
  • the invention also relates to an integrity test device applied to hollow fiber type filtration membranes, mounted inside a liquid filtration assembly, with delimitation of a concentrated compartment where accumulate the retained materials, both in suspension and on the membranes, and a permeate compartment collecting the filtered liquid, comprising means for pressurizing by a gas, in particular air, the inner part of the hollow fibers of the membranes under a lower pressure at the bubbling pressure of the membrane and greater than the pressure of the part outside the fibers, this device being characterized in that it comprises a booster, in particular a blower, means for connecting the outlet of the fan to the compartment concentrate formed by the internal parts of hollow-skin type membranes with internal skin, means for isolating the permeate compartment, draining means compartment concentrat to allow a flow of gas delivered by the booster, and means for measuring
  • the measuring means may comprise a pressure gauge, sensitive to the pressure of the permeate compartment, and / or a bubble detector at the top of the permeate, and / or a conductivity meter for measuring the conductivity of the permeate, and / or a pass detector, and / or a video image analyzer.
  • the booster is advantageously constituted by a fan with a high air flow at a pressure of the order of 0.5 bar.
  • the flow rate of the blower is in particular provided to ensure at the top of the module (reduced to the free section of the hollow fibers) an air flow rate of the order of 0.4 to 1.5 m / s.
  • Fig. 1 is a diagram of a filtration installation implementing a method according to the invention.
  • Fig. 2 is a schematic of a hollow fiber type membrane module with internal skin.
  • Fig. 3 is a large scale schematic axial vertical section of an integrated filtration membrane subjected to the test according to the first aspect of the method.
  • Fig. 4 is a schematic axial section on a large scale of a damaged, unhealthy filtration membrane subjected to the test according to the first aspect of the process.
  • Fig. 5 is a diagram illustrating the evolution of the pressure in the permeate, expressed in bars and range on the ordinate, as a function of time in seconds, carried on the abscissa, in the case of an intact membrane and a damaged membrane, according to the first aspect of the process.
  • Fig. 6 is a schematic diagram of implementing the second aspect of the method with measurement of the liquid quality of the permeate compartment of a module.
  • Fig. 7 is a schematic large-scale axial section of a damaged filtration membrane, with air bleed at the high point of the permeate compartment, for a test according to the second aspect of the process, and
  • FIG. 8 is a diagram illustrating the evolution of the conductivity in the permeate, plotted on the ordinate, as a function of time in seconds, carried on the abscissa, in the case of an intact membrane and a damaged membrane.
  • FIG. 1 can be seen a filtration installation of the type described in the application FR 2 867 394 (04 02492) in the name of the same applicant company, implementing the method of the invention.
  • a module composed of a casing C shown schematically, groups together a set M (FIG. 2) of hollow fiber filtration membranes F with internal skin.
  • Each module M comprises several thousand hollow fibers F, arranged in parallel between two ramps G, H distribution or collection in the direction of flow.
  • the casing C has two orifices E1, E2, respectively low and high, which can serve as outputs and / or inputs.
  • the orifices E1, E2 are connected to the concentrate compartment J formed by the interior space of the hollow fibers. Inside the housing, the space around the membranes, and between them, forms the permeate compartment K which has an output A.
  • the installation comprises a feed pump 1 of the liquid to be filtered, the discharge of which is connected, via a supply valve 2, to the orifice E1.
  • a drain connection between the valve 2 and the orifice E1 is provided with a drain valve 3.
  • the pipe located downstream of the valve 3 opens into a device B discharge discharges.
  • a head-up backwash rejection valve 4 is connected to the orifice E2 of the casing C.
  • a duct downstream of the valve 4 opens into the evacuation device B.
  • a valve 5 is mounted on a pipe connecting a booster 6 of gas, in particular air, to the orifice E2.
  • the booster 6 is advantageously constituted by a fan S giving a high air flow, under a pressure of the order of 0.5 bar.
  • the flow rate of the blower is provided to ensure at the top of the module (reduced to the free section of the hollow fibers) an air flow rate of the order of 0.4 to 1.5 m / s.
  • a leak created by one or more non-intact membranes causes virtually no pressure drop of the air flowing in the hollow fibers.
  • a backwashing valve 7 is disposed on a pipe connecting the outlet of a backwashing pump 8 to the orifice A.
  • the suction of the pump 8 is connected to a reservoir 9 of filtered liquid.
  • Another pump 10 has its suction connected to a tank 11 containing an adjuvant, for example a disinfectant, oxidizing solution (for example, hypochlorite, di-oxide, etc.), or an acidic or even basic chemical compound.
  • the discharge of the pump 10 is connected to a portion of pipe located between the valve 7 and the inlet A, with the interposition of a valve 10a.
  • a manometer 12 is disposed on a pipe connected to the orifice A. The manometer 12 thus measures the pressure in the permeate compartment K.
  • a detector 13 of the permeate quality is disposed on a gas purge pipe 14 connected to the part high compartment permeate.
  • the outlet A is located in the upper part of the permeate, and the pipe 14 is connected to the outlet A.
  • a valve 15 is disposed on the pipe 14 upstream of the detector 13.
  • This detector can be for example, a bubble detector 16 (FIG. 6) or a conductivity meter measuring the conductivity of the permeate.
  • a pipe 17 provided with a valve 18 connects the outputs of the valves 2 and 4.
  • pump 1 In filtration mode, pump 1 is in action and valves 2 and 7 are open while all other valves are closed.
  • the liquid to be treated enters the orifice E1 and the filtered liquid (permeate) leaves through the orifice A to be directed towards the reservoir 9.
  • valves 2 and 4 are closed, while valve 3 is open for emptying.
  • the valve 5 of the booster 6 is open and the booster is turned on to send air under pressure in the inner part of the hollow fibers and accelerate the emptying. The air circulates continuously and escapes through the open ends of the fibers and the valve 3 open.
  • the valve 7 is open and the pump 8 is turned on to send, through the inlet A, the backwashing liquid. Thanks to two-phase backwashes (air and water), as described in patent FR 0402492, it is possible to implement an integrity test according to the invention when using backwashing phases with gas alone.
  • the permeate side K previously purged is filled with water, and the concentrated side J of the membrane is pressurized by a gas below the bubbling pressure.
  • the permeate side K first left to the atmosphere to allow the membrane surface liquid to migrate through the membrane.
  • the permeate side K is then closed, ie isolated, by closing the various valves 7, 15, 10a connected to the outlet A (Fig.1).
  • Fig.3 the compartment K is shown closed schematically.
  • the concentrate side J of the membrane is pressurized by a gas below the bubbling pressure.
  • the valve 4 is closed while the valve 5 is open and the fan 6 is turned on.
  • the gas the air in the example considered, while circulating continuously in the concentrate compartment J will migrate in part by diffusion through the membrane F and cause a slow increase in the pressure of the permeate compartment K.
  • the increase in pressure will be faster.
  • the pressure value is read and compared to the value expected when the equipment was intact.
  • FIG. 5 illustrates the evolution of the pressure of the permeate compartment plotted on the ordinate, and expressed in bars, as a function of the time plotted on the abscissa and expressed in seconds in the case of an integral module (curve 19) and in the case of a module with a broken fiber (curve 20). It appears that the difference can be detected very quickly, in a few seconds.
  • the implementation, according to this first aspect, is therefore the following:
  • the permeate compartment K remains open to the atmosphere, for example by a gas purge 21 (Figs 6 and 7) in the upper part of the permeate, equipped with a bubble detector 16.
  • An air purge of the permeate portion K is carried out by filtration or backwashing, then stopping filtration or backwashing, while leaving the permeate compartment in the atmosphere.
  • Pressurization is provided in dynamics of the concentrate J portion of the membranes obtained by circulating a gas under pressure less than the bubbling pressure, in particular a pressure of about 0.1 bar. If a fiber Fd is not integral with a tear R as illustrated in FIG. 7, air passes into the permeate compartment K in the form of bubbles, detected for example by a bubble detector 16.
  • the quality of the liquid present at the air purge at the high point of the module is compared with that observed during the use of integral membrane.
  • Fig. 8 illustrates the conductivity variations plotted on the ordinate, as a function of time, in seconds, plotted on the abscissa in the case of an integral module (curve 22), a module with a broken fiber (curve 23) and a module with five broken fibers (curve 24).
  • the concentrate can be filled with backwash or filtration.
  • the integrity control method according to the present invention has many advantages: the measurement of the integrity detection can be done online, associated with the backwashing or the filtration, at a frequency such that it can appear as continuous, with minimal production interruptions; the accuracy of the measurement is adjustable by modifying the thresholds and test times; the technology and the setting device. described by the present invention are particularly simple. The result is an economical device, both in investment costs and in operation, which can be multiplied to refine the identification of non-intact membranes.
  • the method of the invention can be applied simultaneously to the modules of the block and makes it easy to locate the module (s) defective among the 10 to 50 modules present on a filtration unit.
  • a brief integrity test can thus be performed dynamically during the short backwashing sequence or during filtration.
  • the duration of the integrity test procedure is significantly shortened compared to the usual tests.
  • Integrity tests can then be initiated very frequently, during backwashing or even during filtration with minimal water loss and non-production times. They can be managed at the request of an operator or an operator.
  • An integrity test according to the invention is rapid thanks to the use of a circulation of gas under pressure, preferably coming from an external booster, to accelerate the emptying phase, to accelerate the equilibrium phase of the compressed air allowing the test.
  • the gain in duration also results from the integration of the test with backwashing.
  • the phases of production stoppage, filling and return to production would have been performed anyway during a two-phase backwashing (air + water).
  • An industrial example concerns a water production unit of 24 modules each containing 35,000 fibers of internal diameter of 0.93 mm. The total section at the top of the module is 0.59 m 2 (24 x 35000 x internal section of a fiber).
  • the blower then provides an air flow of 1050 Nm 3 / h (for an air speed of 0.5 m / s) or 3150 Nm 3 / h (for an air velocity of 1, 5 m / s).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Procédé de test d'intégrité appliqué à des membranes de filtration à fibre creuse, dy type à peau interne, le compartiment concentrat (J) étant constitué par la partie intérieure des fibres creuses, le compartiment perméat (K) étant constitué par la partie extérieure aux fibres creuses ; on fait circuler un gaz sous pression dans le compartiment concentrat (J) pour la vidante des fibres creuses qui sont ouvertes à leurs extrémités ; on commence par laisser le compartiment perméat (K) à l'atmosphère pour permettre au liquide en surface de membrane de migrer à travers la membrane ; puis on isole le compartiment perméat (K); on mesure l'augmentation de pression dans le compartiment perméat (K) causée par la circulation de gaz dans le compartiment concentrat (J) et le passage de gaz vers le compartiment perméat ; et on compare, après un temps défini, l'augmentation de pression à celle observée lors de l'utilisation d'une membrane intègre.

Description

PROCÉDÉ ET DISPOSITIF DE TEST D'INTÉGRITÉ DE MEMBRANES DE FILTRATION.
L'invention concerne un procédé de test d'intégrité de membranes de filtration, à savoir membranes d'ultrafiltration, de microfiltration, de nanofiltration ou d'hyperfiltration, de géométrie tubulaire, mises en œuvre dans un module composé d'un carter regroupant un ensemble de fibres creuses.
Véritables barrières physiques pour l'élimination des bactéries de type coliforme, les kystes de Giardia et de Cryptosporidium, les membranes d'ultrafiltration et de microfiltration se sont imposées dans le domaine du traitement de l'eau tant pour la production d'eau potable que pour le traitement des eaux résiduaires comme une alternative viable aux procédés classiques de désinfection.
Un défaut d'intégrité de la membrane peut néanmoins entraîner une pollution du circuit d'eau filtrée qui devient alors re-contaminée. La nécessité de contrôler l'intégrité de la barrière physique que constitue la membrane s'est donc naturellement imposée.
Des méthodes de test d'intégrité connues exploitent le principe de la pression de bullage. En - deçà d'une pression d'air donnée, la membrane est très peu perméable à l'air, le flux d'air passant étant très faible, uniquement régi par la diffusion de l'air au sein du liquide contenu dans la membrane. Au-delà d'une pression d'air nécessaire et suffisante pour évacuer l'eau des pores et permettre le passage de l'air, la membrane devient perméable à l'air. Cette pression est définie comme la pression de bullage. La mesure de cette pression de bullage, ou point de bullage, de la membrane est une méthode de laboratoire communément employée par l'homme de l'art pour déterminer tout défaut d'intégrité d'une membrane poreuse. Ces mesures impliquent de soumettre régulièrement la membrane à une pression d'air supérieure à sa pression de bullage, ce qui peut être dommageable dans le temps et, potentiellement, au-delà de la pression maximale acceptable pour une membrane dite "basse pression".
Une autre méthode, connue sous le terme de « test de perte de pression » (pressure decay test), apporte une réponse en isolant une face de la membrane préalablement pressurisée à une pression de gaz inférieure à sa pression de bullage. La procédure consiste alors à mesurer l'évolution de la pression du côté de la face pressurisée pendant une durée déterminée, généralement de 5 à 15 min. La diffusion de gaz au sein du liquide génère une faible diminution de la pression, qui est définie comme une perte de pression maximale acceptable pour une période de temps déterminée. Une diminution de la pression supérieure à cette valeur de référence signifie une fuite de gaz interprétée comme un défaut d'intégrité.
WO 2005/077499 applique le « test de perte de pression » (pressure decay test) à des membranes de filtration du type à fibre creuse, soumises à un rétrolavage sous pression de gaz. Le test est conduit après un rétrolavage qui constitue généralement la phase où un dommage peut être causé aux membranes. Pendant le test, la partie intérieure des fibres creuses est mise sous pression de gaz et isolée, et la diminution de pression dans la partie intérieure des fibres creuses est mesurée et analysée. La sensibilité du test reste très dépendante de la durée du test et, lorsque cette durée est de l'ordre d'une minute comme annoncé dans ce document, la sensibilité demande à être améliorée. En outre, en milieu industriel, ce test statique nécessitant l'isolement des parties intérieures des membranes est très sensible aux fuites des vannes, ce qui perturbe les résultats.
L'invention a pour but, surtout, de fournir un procédé de test d'intégrité de membrane de filtration qui, en utilisant une pression de gaz, se déroule en un temps réduit de l'ordre de quelques minutes ou moins, tout en donnant des résultats fiables, peu sensibles à des fuites de vannes. Le séquençage du procédé est le suivant :
- vidange du concentrât par utilisation d'un flux d'air,
- compartiment perméat mis à l'atmosphère pour que le liquide en surface migre à travers la membrane,
- test d'intégrité par isolation du compartiment perméat ou analyse de la qualité du perméat.
Selon un premier aspect de l'invention, un procédé de test d'intégrité appliqué à des membranes de filtration du type à fibre creuse, montées à l'intérieur d'un ensemble de filtration d'un liquide, avec délimitation d'un compartiment concentrât où s'accumulent les matières retenues, tant en suspension que sur les membranes, et d'un compartiment perméat collectant le liquide filtré, comprend une étape consistant à pressuriser par un gaz, notamment l'air, la partie intérieure des fibres creuses des membranes sous une pression inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie extérieure aux fibres , et est caractérisé en ce que, - on effectue le test sur des membranes du type à peau interne, le compartiment concentrât étant constitué par la partie intérieure des fibres creuses, le compartiment perméat étant constitué par la partie extérieure aux fibres creuses, - on fait circuler le gaz sous pression dans le compartiment concentrât pour la vidange des fibres creuses qui sont ouvertes à leurs extrémités,
- on laisse le compartiment perméat à l'atmosphère pour permettre au liquide en surface de membrane de migrer à travers la membrane ;
- puis on isole le compartiment perméat,
- on mesure l'augmentation de pression dans le compartiment perméat causée par la circulation de gaz dans le compartiment concentrât et le passage de gaz vers le compartiment perméat ; - et on compare, après un temps défini, l'augmentation de pression à celle observée lors de l'utilisation d'une membrane intègre.
Selon un autre aspect de l'invention, un procédé de test d'intégrité appliqué à des membranes de filtration du type à fibre creuse, montées à l'intérieur d'un ensemble de filtration d'un liquide, avec délimitation d'un compartiment concentrât où s'accumulent les matières retenues, tant en suspension que sur les membranes, et d'un compartiment perméat collectant le liquide filtré, comprend une étape consistant à pressuriser par un gaz, notamment l'air, la partie intérieure des fibres creuses des membranes sous une pression inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie extérieure aux fibres , et est caractérisé en ce que :
- on effectue le test sur des membranes du type à peau interne, le compartiment concentrât étant constitué par la partie intérieure des fibres creuses, le compartiment perméat étant constitué par la partie extérieure des fibres creuses, - on fait circuler le gaz sous pression dans le compartiment concentrât pour la vidange des fibres creuses qui sont ouvertes à leurs extrémités,
- on laisse le compartiment perméat à l'atmosphère, notamment avec une purge de gaz en un point haut de ce compartiment, pour permettre au liquide en surface de membrane de migrer à travers la membrane ;
- et on compare après un temps défini la qualité du liquide du compartiment perméat, notamment celui présent à la purge de gaz au point haut du compartiment perméat, avec celle observée lors de l'utilisation d' une membrane intègre. La présence d'un mélange diphasique gaz/eau démontre une membrane non intègre.
Le test de l'invention est dynamique puisque le gaz s'écoule en permanence à travers le compartiment concentrât lors du test. Selon le premier aspect de l'invention, la mesure de l'augmentation de pression dans le compartiment perméat est peu sensible à une éventuelle fuite d'une vanne d'isolement en raison d'une réalimentation continue en gaz sous pression qui circule. Selon le deuxième aspect de l'invention, la qualité du liquide présent dans le compartiment perméat, notamment à la purge de gaz, est quasiment indépendante d'un écoulement indésirable de liquide.
La présente invention permet d'associer la mesure d'intégrité à un lavage diphasique air-plus-eau en réduisant la durée du test à moins de quelques minutes ; elle permet aussi d'appliquer des tests lors de la filtration et autorise ensuite la localisation des modules défaillants.
On peut remplir le compartiment concentrât en rétrolavage ou en filtration.
Le test d'intégrité peut avoir lieu pendant chaque rétrolavage, ou cycliquement après un certain nombre de rétrolavages, ou cycliquement pendant la filtration.
La détection de la qualité de l'eau, selon le deuxième aspect du procédé de l'invention, peut être effectuée par une mesure conductimétrique, ou par une mesure de détection de passage, ou par une mesure visuelle (analyseur d'image par vidéo). L'invention concerne également un dispositif de test d'intégrité appliqué à des membranes de filtration du type à fibre creuse, montées à l'intérieur d'un ensemble de filtration d'un liquide, avec délimitation d'un compartiment concentrât où s'accumulent les matières retenues, tant en suspension que sur les membranes, et d'un compartiment perméat collectant le liquide filtré, comprenant un moyen pour pressuriser par un gaz, notamment l'air, la partie intérieure des fibres creuses des membranes sous une pression inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie extérieure aux fibres , ce dispositif étant caractérisé en ce qu'il comprend un surpresseur , en particulier une soufflante , des moyens de liaison de la sortie de la soufflante au compartiment concentrât formé par les parties intérieures de membranes du type fibres creuses à peau interne, des moyens pour isoler le compartiment perméat, des moyens de vidange du compartiment concentrât pour permettre une circulation du gaz débité par le surpresseur , et des moyens de mesure d'un paramètre du compartiment perméat sensible à une entrée de gaz dans le perméat due à au moins une membrane non intègre. Les moyens de mesure peuvent comprendre un manomètre, sensible à la pression du compartiment perméat , et/ou un détecteur de bulles en tête du perméat, et/ou un conductimètre pour mesurer la conductivité du perméat, et / ou un détecteur de passage, et/ou un analyseur d'image par vidéo.
Le surpresseur est avantageusement constitué par une soufflante à fort débit d'air sous une pression de l'ordre de 0.5 bar. Le débit de la soufflante est notamment prévu pour assurer en tête de module (ramené à la section libre des fibres creuses) une vitesse d'écoulement de l'air de l'ordre de 0,4 à 1 ,5 m/s.
L'invention consiste, mises à part les dispositions exposées ci- dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrits avec référence aux dessins annexés, mais qui ne sont nullement limitatifs. Sur ces dessins :
Fig. 1 est un schéma d'une installation de filtration mettant en œuvre un procédé selon l'invention.
Fig. 2 est un schéma d'un module de filtration à membranes du type à fibre creuse à peau interne.
Fig. 3 est une coupe verticale axiale schématique à grande échelle d'une membrane de filtration intègre soumise au test selon le premier aspect du procédé.
Fig. 4 est une coupe axiale schématique à grande échelle d'une membrane de filtration endommagée, non intègre, soumise au test selon le premier aspect du procédé.
Fig. 5 est un diagramme illustrant l'évolution de la pression dans le perméat, exprimée en bars et portée en ordonnée, en fonction du temps en secondes, porté en abscisse, dans le cas d'une membrane intègre et d'une membrane endommagée, selon le premier aspect du procédé.
Fig.6 est un schéma de mise* en œuvre du second aspect du procédé avec mesure de la qualité du liquide du compartiment perméat d'un module.
Fig. 7 est une coupe axiale schématique à grande échelle d'une membrane de filtration endommagée, avec purge d'air au point haut du compartiment perméat, pour un test selon le second aspect du procédé, et
Fig.8 est un diagramme illustrant l'évolution de la conductivité dans le perméat, portée en ordonnée, en fonction du temps en secondes, porté en abscisse, dans le cas d'une membrane intègre et d'une membrane endommagée.
En se reportant à Fig. 1 on peut voir une installation de filtration du type de celle décrite dans la demande FR 2 867 394 (04 02492) au nom de la même société déposante, mettant en œuvre le procédé de l'invention. Un module composé d'un carter C, représenté schématiquement, regroupe un ensemble M (Fig.2) de membranes de filtration en fibres creuses F à peau interne. Chaque module M comprend plusieurs milliers de fibres creuses F, disposées en parallèle entre deux rampes G, H de distribution ou de collecte selon le sens d'écoulement.
Le carter C comporte deux orifices E1 , E2, respectivement bas et haut, pouvant servir de sorties et/ou entrées. Les orifices E1 , E2 sont connectés au compartiment concentrât J formé par l'espace intérieur des fibres creuses. A l'intérieur du carter, l'espace situé autour des membranes, et entre elles, forme le compartiment perméat K qui comporte une sortie A.
L'installation comporte une pompe d'alimentation 1 du liquide à filtrer dont le refoulement est relié , par l'intermédiaire d'une vanne d'alimentation 2, à l'orifice E1. Un branchement de vidange entre la vanne 2 et l'orifice E1 est muni d'une vanne de vidange 3. La canalisation située en aval de la vanne 3 débouche dans un dispositif B d'évacuation des rejets.
Une vanne 4 de rejet de rétrolavage tête haute est reliée à l'orifice E2 du carter C. Une canalisation en aval de la vanne 4 débouche dans le dispositif d'évacuation B.
Une vanne 5 est montée sur une canalisation reliant un surpresseur 6 de gaz, notamment d'air, à l'orifice E2. Le surpresseur 6 est avantageusement constitué par une soufflante S donnant un débit d'air élevé, sous une pression de l'ordre de 0.5 bar. Le débit de la soufflante est prévu pour assurer en tête de module (ramené à la section libre des fibres creuses) une vitesse d'écoulement de l'air de l'ordre de 0,4 à 1 ,5 m/s. Une fuite créée par une ou plusieurs membranes non intègres n'entraîne pratiquement pas de baisse de pression de l'air circulant dans les fibres creuses.
Une vanne de rétrolavage 7 est disposée sur une canalisation reliant la sortie d'une pompe de rétrolavage 8 à l'orifice A. L'aspiration de la pompe 8 est reliée à un réservoir 9 de liquide filtré. Une autre pompe 10 a son aspiration reliée à un bac 11 contenant un adjuvant, par exemple une solution désinfectante, oxydante (par exemple, hypochlorite, di-oxyde...), ou encore un composé chimique acide, voire basique. Le refoulement de la pompe 10 est relié à une partie de canalisation située entre la vanne 7 et l'entrée A, avec interposition d'une vanne 10a. Un manomètre 12 est disposé sur une canalisation branchée sur l'orifice A. Le manomètre 12 mesure ainsi la pression dans le compartiment perméat K. Un détecteur 13 de la qualité du perméat est disposé sur une canalisation de purge de gaz 14 reliée à la partie haute du compartiment perméat. Dans l'exemple de Fig.1 , la sortie A est située en partie haute du perméat, et la canalisation 14 est reliée à la sortie A. Une vanne 15 est disposée sur la canalisation 14 en amont du détecteur 13. Ce détecteur peut être, par exemple, un détecteur de bulles 16 (Fig.6) ou un conductimètre mesurant la conductivité du perméat.
Une canalisation 17 munie d'une vanne 18 relie les sorties des vannes 2 et 4.
En mode filtration, la pompe 1 est en action et les vannes 2 et 7 sont ouvertes tandis que toutes les autres vannes sont fermées. Le liquide à traiter entre par l'orifice E1 et le liquide filtré (perméat) sort par l'orifice A pour être dirigé vers le réservoir 9.
Pour une opération de nettoyage par rétrolavage des fibres creuses, les vannes 2 et 4 sont fermées, tandis que la vanne 3 est ouverte pour la vidange. La vanne 5 du surpresseur 6 est ouverte et le surpresseur est mis en marche pour envoyer de l'air sous pression dans la partie intérieure des fibres creuses et accélérer la vidange. L'air circule en permanence et s 'échappe par les extrémités ouvertes des fibres et la vanne 3 ouverte. La vanne 7 est ouverte et la pompe 8 est mise en marche pour envoyer, par l'entrée A, le liquide de rétrolavage. Grâce à des rétrolavages diphasiques (air et eau), tels que décrits dans le brevet FR 0402492, il est possible de mettre en œuvre un test d'intégrité selon l'invention lors de l'utilisation des phases du rétrolavage avec gaz seul.
Le premier aspect du procédé est expliqué avec référence aux Fig. 1 , 2,4 et 5.
Le côté perméat K préalablement purgé est rempli d'eau, et le côté concentrât J de la membrane est pressurisé par un gaz en dessous de la pression de bullage. Le côté perméat K d'abord laissé à l'atmosphère pour permettre au liquide en surface de membrane de migrer à travers la membrane. Le côté perméat K est ensuite fermé, c'est à dire isolé, par fermeture des différentes vannes 7, 15, 10a reliées à la sortie A (Fig.1). Sur Fig.3 le compartiment K est représenté fermé schématiquement.
Le côté concentrât J de la membrane est pressurisé par un gaz en dessous de la pression de bullage. Selon Fig.1 , la vanne 4 est fermée alors que la vanne 5 est ouverte et la soufflante 6 est mise en marche. Le gaz, l'air dans l'exemple considéré, tout en circulant en continu dans le compartiment concentrât J va migrer en partie par diffusion à travers la membrane F et provoquer une lente augmentation de la pression du compartiment perméat K. Dans le cadre d'une non-intégrité, illustrée sur Fig.4 par une fibre Fd endommagée comportant une déchirure L, l'augmentation de pression sera plus rapide .
Après un certain temps, la valeur de pression est relevée et comparée à la valeur attendue lorsque l'équipement était intègre.
Fig.5 illustre l'évolution de la pression du compartiment perméat portée en ordonnée, et exprimée en bars, en fonction du temps porté en abscisse et exprimé en secondes dans le cas d'un module intègre (courbe 19) et dans le cas d'un module avec une fibre cassée (courbe 20). Il apparaît que la différence peut être détectée très rapidement, en quelques secondes.
La mise en œuvre, selon ce premier aspect, est donc la suivante :
- purge d'air de la partie perméat K en filtration ou en rétrolavage ;
- arrêt de la filtration ou du rétrolavage ;
- pressurisation en dynamique de la partie concentrât J des membranes obtenue en faisant circuler un gaz sous pression inférieure à la pression de bullage.
La pression sera stabilisée à une valeur inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie perméat. Cette pressurisation permettra de vidanger le concentrât quasi instantanément. Selon le deuxième aspect du procédé de l'invention (Fig.6, 7 et 8), le compartiment perméat K reste ouvert à l'atmosphère, par exemple par une purge de gaz 21 ( Fig. 6 et 7) en partie haute du perméat, équipée d'un détecteur de bulles 16.
On effectue une purge d'air de la partie perméat K en filtration ou en rétrolavage , puis arrêt de la filtration ou du rétrolavage , tout en laissant le compartiment perméat à l'atmosphère.
On assure une pressurisation en dynamique de la partie concentrât J des membranes obtenue en faisant circuler un gaz sous pression inférieure à la pression de bullage, notamment une pression d'environ O.δbar. Si une fibre Fd est non intègre avec une déchirure R comme illustré sur Fig.7, de l'air passe dans le compartiment perméat K sous forme de bulles, détectées par exemple par un détecteur de bulles 16.
On compare après un temps défini la qualité du liquide présent à la purge d'air en point haut du module avec celle observée lors de l'utilisation de membrane intègre.
La présence d'un mélange diphasique gaz/eau est démonstrative d'une membrane non intègre.
En variante, la qualité du liquide peut être appréciée par une mesure de conductivité à l'aide d'un conductimètre qui remplacerait le détecteur de bulles. Fig. 8 illustre les variations de conductivité portée en ordonnée, en fonction du temps, en secondes, porté en abscisse dans le cas d'un module intègre (courbe 22), d'un module avec une fibre cassée (courbe 23) et d'un module avec cinq fibres cassées (courbe 24).
Il apparaît aussi que la différence entre module intègre et non-intègre peut être détectée très rapidement, en quelques secondes.
On peut effectuer un remplissage du concentrât en rétrolavage ou en filtration. La méthode de contrôle d'intégrité selon la présente invention présente de nombreux avantages : la mesure de la détection d'intégrité peut se faire en ligne, associée au rétrolavage ou à la filtration, à une fréquence telle qu'elle peut apparaître comme continue, avec des interruptions de production minimes ; la précision de la mesure est ajustable par modifications des seuils et des durées de tests ; la technologie et le dispositif de mise en . œuvre décrits par la présente invention sont particulièrement simples. Il en résulte un dispositif économique, tant en coûts d'investissement qu'en exploitation, qui pourra être multiplié afin d'affiner l'identification des membranes non intègres.
Le procédé de l'invention peut être appliqué simultanément aux modules du bloc et permet facilement de localiser le(s) module(s) défectueux parmi les 10 à 50 modules présents sur un bloc de filtration.
De façon surprenante pour l'homme de l'art, un bref test d'intégrité peut ainsi être effectué en dynamique pendant la courte séquence de rétrolavage ou pendant la filtration. La durée de la procédure de test d'intégrité s'en trouve notablement raccourcie par rapport aux tests habituels.
Les tests d'intégrité peuvent alors être initiés très fréquemment, pendant les rétrolavages ou bien même pendant la filtration avec des pertes d'eau et des durées de non-production minimes. Ils peuvent être gérés à la demande d'un automatisme ou d'un opérateur.
Un test d'intégrité selon l'invention est rapide grâce à l'utilisation d'une circulation de gaz sous pression, provenant de préférence d'un surpresseur extérieur, pour accélérer la phase de vidange, accélérer la phase d'équilibre de l'air compressé permettant le test. Le gain en durée résulte aussi de l'intégration du test au rétrolavage. Les phases d'arrêt production, de remplissage et de remise en production se seraient de toute façon effectuées pendant un rétrolavage diphasique (air + eau). Un exemple industriel concerne une unité de production d'eau de 24 modules contenant chacun 35 000 fibres de diamètre interne de 0,93 mm. La section totale en tête de module est de 0,59 m2 (soit 24 x 35000 x section interne d'une fibre). Le surpresseur fournit alors un débit d'air de 1050 Nm3/h (pour une vitesse de l'air de 0,5 m/s) ou de 3150 Nm3/h (pour une vitesse de l'air de 1 ,5 m/s).

Claims

REVENDICATIONS
1. Procédé de test d'intégrité appliqué à des membranes de filtration du type à fibre creuse, montées à l'intérieur d'un ensemble de filtration d'un liquide, avec délimitation d'un compartiment concentrât où s'accumulent les matières retenues, tant en suspension que sur les membranes, et d'un compartiment perméat collectant le liquide filtré, comprenant une étape consistant à pressuriser par un gaz, notamment l'air, la partie intérieure des fibres creuses des membranes sous une pression inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie extérieure aux fibres , caractérisé en ce que :
- on effectue le test sur des membranes (F, Fd) du type à peau interne, le compartiment concentrât (J) étant constitué par la partie intérieure des fibres creuses, le compartiment perméat (K) étant constitué par la partie extérieure aux fibres creuses,
- on fait circuler le gaz sous pression dans le compartiment concentrât (J) pour la vidange des fibres creuses qui sont ouvertes à leurs extrémités,
- on laisse le compartiment perméat (K) à l'atmosphère pour permettre au liquide en surface de membrane de migrer à travers la membrane ;
- puis on isole le compartiment perméat (K),
- on mesure l'augmentation de pression dans le compartiment perméat (K) causée par la circulation de gaz dans le compartiment concentrât (J) et le passage de gaz vers le compartiment perméat (K) ;
- et on compare, après un temps défini, l'augmentation de pression à celle observée lors de l'utilisation d'une membrane intègre.
2. Procédé de test d'intégrité appliqué à des membranes de filtration du type à fibre creuse, montées à l'intérieur d'un ensemble de filtration d'un liquide, avec délimitation d'un compartiment concentrât où s'accumulent les matières retenues, tant en suspension que sur les membranes, et d'un compartiment perméat collectant le liquide filtré, comprenant une étape consistant à pressuriser par un gaz, notamment l'air, la partie intérieure des fibres creuses des membranes sous une pression inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie extérieure aux fibres , caractérisé en ce que : - on effectue le test sur des membranes (F1Fd) du type à peau interne, le compartiment concentrât (J) étant constitué par la partie intérieure des fibres creuses, le compartiment perméat (K) étant constitué par la partie extérieure des fibres creuses, - on fait circuler le gaz sous pression dans le compartiment concentrât pour la vidange des fibres creuses (F1Fd) qui sont ouvertes à leurs extrémités,
- on laisse le compartiment perméat (K) à l'atmosphère, pour permettre au liquide en surface de membrane de migrer à travers la membrane ;
- et on compare après un temps défini la qualité du liquide du compartiment perméat, avec celle observée lors de l'utilisation d'une membrane intègre.
3. Procédé de test d'intégrité selon la revendication 2, caractérisé en ce qu' on prévoit une purge de gaz (21) en un point haut du compartiment perméat et que l'on évalue la qualité du liquide au niveau de cette purge de gaz (21).
4. Procédé de test d'intégrité selon l'une des revendications 1 à 3, caractérisé en ce qu'on remplit le compartiment concentrât (J) en rétrolavage ou en filtration.
5. Procédé de test d'intégrité selon l'une des revendications précédentes, caractérisé en ce que le test d'intégrité a lieu pendant chaque rétrolavage.
6. Procédé de test d'intégrité selon l'une des revendications 1 à 4, caractérisé en ce que le test d'intégrité a lieu cycliquement après un certain nombre de rétrolavages.
7. Procédé de test d'intégrité selon l'une des revendications 1 à 4, caractérisé en ce que le test d'intégrité a lieu cycliquement pendant la filtration.
8. Procédé de test d'intégrité selon la revendication 2, caractérisé en ce que la détection est effectuée par une mesure conductimétrique.
9. Procédé de test d'intégrité selon la revendication 2, caractérisé en ce que la détection est effectuée par une mesure de détection de passage.
10. Procédé de test d'intégrité selon la revendication 2, caractérisé en ce que la détection est effectuée par une mesure visuelle (analyseur d'image par vidéo).
11. Dispositif de test d'intégrité appliqué à des membranes de filtration du type à fibre creuse, montées à l'intérieur d'un ensemble de filtration d'un liquide, avec délimitation d'un compartiment concentrât où s'accumulent les matières retenues, tant en suspension que sur les membranes, et d'un compartiment perméat collectant le liquide filtré, comprenant un moyen pour pressuriser par un gaz, notamment l'air, la partie intérieure des fibres creuses des membranes sous une pression inférieure à la pression de bullage de la membrane et supérieure à la pression de la partie extérieure aux fibres , caractérisé en ce qu'il comprend un surpresseur (6), en particulier une soufflante (S) , des moyens de liaison de la sortie de la soufflante au compartiment concentrât (J) formé par les parties intérieures de membranes (F1Fd) du type fibres creuses à peau interne, des moyens (7, 10a, 15) pour isoler le compartiment perméat, des moyens de vidange (3,B) du compartiment concentrât pour permettre une circulation du gaz débité par le surpresseur , et des moyens de mesure (12 ;13) d'un paramètre du compartiment perméat (K) sensible à une entrée de gaz dans le perméat due à au moins une membrane non intègre.
12. Dispositif selon la revendication 11 , caractérisé en ce que les moyens de mesure comprennent un manomètre (12) , sensible à la pression du compartiment perméat (K), et/ou un détecteur de bulles (16) en tête du perméat, et/ou un conductimètre pour mesurer la conductivité du perméat.
PCT/FR2006/002720 2005-12-20 2006-12-13 Procede et dispositif de test d'integrite de membranes de filtration. WO2007080260A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06841924A EP1971846A1 (fr) 2005-12-20 2006-12-13 Procede et dispositif de test d'integrite de membranes de filtration.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512954 2005-12-20
FR0512954A FR2894843B1 (fr) 2005-12-20 2005-12-20 Procede et dispositif de test d'integrite de membranes de filtration

Publications (1)

Publication Number Publication Date
WO2007080260A1 true WO2007080260A1 (fr) 2007-07-19

Family

ID=36942374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002720 WO2007080260A1 (fr) 2005-12-20 2006-12-13 Procede et dispositif de test d'integrite de membranes de filtration.

Country Status (4)

Country Link
EP (1) EP1971846A1 (fr)
CN (1) CN101341389A (fr)
FR (1) FR2894843B1 (fr)
WO (1) WO2007080260A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949937A (zh) * 2011-08-16 2013-03-06 上海一鸣过滤技术有限公司 一种用于微滤膜过滤器的完整性检测仪
WO2014105946A1 (fr) * 2012-12-27 2014-07-03 Medi-Physics, Inc. Ensemble de test à double filtre, double intégrité
TWI503160B (zh) * 2013-06-21 2015-10-11 Inst Nuclear Energy Res An automated testing device for the risk and integrity of a drug filter and its method
CN110917889A (zh) * 2019-11-20 2020-03-27 湖南欧威爱特新材料科技有限公司 一种超滤膜的检测装置
JP2021106670A (ja) * 2019-12-27 2021-07-29 旭化成メディカル株式会社 濾過器の試験装置及び試験方法
CN114235657A (zh) * 2020-09-09 2022-03-25 帕尔公司 测试过滤介质完整性的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423184B2 (ja) * 2009-07-03 2014-02-19 株式会社明電舎 濾過膜モジュール洗浄方法および洗浄装置
CN102049199B (zh) * 2009-10-30 2013-03-27 中国石油化工股份有限公司 一种膜性能测试装置及其应用
CN101762561B (zh) * 2009-11-10 2012-06-06 浙江天元生物药业有限公司 一种采用紫外监测法在线检测超滤膜完整性的方法
EP2418012A1 (fr) * 2010-08-11 2012-02-15 Gambro Lundia AB Dispositif et procédé pour tester des filtres
CN102500239B (zh) * 2011-10-24 2014-01-01 北京工业大学 一种利用颗粒指数变化率推算超滤膜丝破损率的方法
CN102430340B (zh) * 2011-11-15 2013-09-18 天津瑞普生物技术股份有限公司 一种超滤膜膜包的完整性检测方法
CN102580547B (zh) * 2011-12-29 2014-05-14 新奥科技发展有限公司 膜组件测试方法
FR3014330B1 (fr) 2013-12-05 2017-03-24 Abc Membranes Procede de controle de l'integrite de membranes de filtration durant leur fonctionnement
CN107305181A (zh) * 2016-04-18 2017-10-31 重庆大学 一种研究经皮给药溶剂渗透的方法
EP3560577A1 (fr) 2018-04-25 2019-10-30 Gambro Lundia AB Appareil et procédé pour tester l'intégrité d'une membrane d'ultrafiltration
CN114252361A (zh) * 2020-09-25 2022-03-29 三达膜科技(厦门)有限公司 一种膜层耐磨性测试方法
CN114307662B (zh) * 2021-12-30 2022-11-11 江苏汉邦科技股份有限公司 一种滤芯滤膜完整性测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188817A (en) * 1978-10-04 1980-02-19 Standard Oil Company (Indiana) Method for detecting membrane leakage
US5918264A (en) * 1992-11-02 1999-06-29 Usf Filtration And Separations Group Inc. Fiber monitoring system
JP2001190938A (ja) * 2000-01-11 2001-07-17 Miura Co Ltd 水処理膜の破損検出方法
US6324898B1 (en) * 1999-12-21 2001-12-04 Zenon Environmental Inc. Method and apparatus for testing the integrity of filtering membranes
NL1020491C2 (nl) * 2002-04-26 2003-10-28 Norit Membraan Tech Bv Membraan integriteitstest.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188817A (en) * 1978-10-04 1980-02-19 Standard Oil Company (Indiana) Method for detecting membrane leakage
US5918264A (en) * 1992-11-02 1999-06-29 Usf Filtration And Separations Group Inc. Fiber monitoring system
US6324898B1 (en) * 1999-12-21 2001-12-04 Zenon Environmental Inc. Method and apparatus for testing the integrity of filtering membranes
JP2001190938A (ja) * 2000-01-11 2001-07-17 Miura Co Ltd 水処理膜の破損検出方法
NL1020491C2 (nl) * 2002-04-26 2003-10-28 Norit Membraan Tech Bv Membraan integriteitstest.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 24 11 May 2001 (2001-05-11) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949937A (zh) * 2011-08-16 2013-03-06 上海一鸣过滤技术有限公司 一种用于微滤膜过滤器的完整性检测仪
WO2014105946A1 (fr) * 2012-12-27 2014-07-03 Medi-Physics, Inc. Ensemble de test à double filtre, double intégrité
US9726591B2 (en) 2012-12-27 2017-08-08 General Electric Company Dual-filter dual-integrity test assembly
TWI503160B (zh) * 2013-06-21 2015-10-11 Inst Nuclear Energy Res An automated testing device for the risk and integrity of a drug filter and its method
CN110917889A (zh) * 2019-11-20 2020-03-27 湖南欧威爱特新材料科技有限公司 一种超滤膜的检测装置
JP2021106670A (ja) * 2019-12-27 2021-07-29 旭化成メディカル株式会社 濾過器の試験装置及び試験方法
JP7335161B2 (ja) 2019-12-27 2023-08-29 旭化成メディカル株式会社 濾過器の試験装置及び試験方法
CN114235657A (zh) * 2020-09-09 2022-03-25 帕尔公司 测试过滤介质完整性的方法

Also Published As

Publication number Publication date
CN101341389A (zh) 2009-01-07
FR2894843A1 (fr) 2007-06-22
EP1971846A1 (fr) 2008-09-24
FR2894843B1 (fr) 2008-02-22

Similar Documents

Publication Publication Date Title
EP1971846A1 (fr) Procede et dispositif de test d'integrite de membranes de filtration.
CA2257151C (fr) Procede et installation pour tester in situ l'integrite des membranes de filtration
JP5101284B2 (ja) 分離モジュールをテストする方法
JP5079372B2 (ja) 膜分離方法および膜分離装置
JP3111101B2 (ja) 膜分離装置の漏洩検査方法
JPH01307409A (ja) 中空糸限外瀘過膜モジュールの自動リーク検出・警報装置
WO2015082855A1 (fr) Procede de controle de l'integrite de membranes de filtration durant leur fonctionnement
US20090299651A1 (en) Filtration testing system
EP1060006B1 (fr) Procede de controle de l'integrite des modules de filtration a fibres creuses
FR2909904A1 (fr) Procede de controle de l'integrite de membranes de filtration et dispositif pour la mise en oeuvre de ce procede.
EP1289634A1 (fr) Procede de contr le de l'integrite d'un module, ou d'un systeme de modules, de nanofiltration ou d'osmose inverse
JP2012148218A (ja) 中空糸膜モジュールのリーク検査方法
KR101753453B1 (ko) 중공사막 여과장치 및 그의 여과막 손상 감지방법
JP2007007539A (ja) 膜分離装置のリーク検出方法
JP3826041B2 (ja) 膜ろ過装置の膜破損検出装置及び検出方法
JP2000342936A (ja) 中空糸膜ろ過装置の膜損傷検知方法及び膜損傷検知装置
KR102259093B1 (ko) 여과막 손상 판단 방법 및 이를 이용한 이동형 여과막 손상 판단 장치
JP2008253888A (ja) 膜損傷検知方法
JP2004237281A (ja) 膜分離装置およびその装置における状態検知方法
FR2931146A1 (fr) Procede de controle de l'integrite de membranes de filtration a plaques ou tubes ou de moules membranaires de filtration a plaques ou tubes dans une installation de traitement d'eaux usees
JP2002320829A (ja) 膜モジュールの完全性検査方法
JP4461288B2 (ja) ろ過膜異常検知方法およびその装置
JP2000093765A (ja) 膜濾過装置
JP2004188252A (ja) 膜ろ過装置およびその運転方法
JP2006184189A (ja) 中空糸膜の欠陥検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680047966.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006841924

Country of ref document: EP