WO2007077630A1 - Laser material processing system, program creating device and laser material processing method - Google Patents

Laser material processing system, program creating device and laser material processing method Download PDF

Info

Publication number
WO2007077630A1
WO2007077630A1 PCT/JP2006/300094 JP2006300094W WO2007077630A1 WO 2007077630 A1 WO2007077630 A1 WO 2007077630A1 JP 2006300094 W JP2006300094 W JP 2006300094W WO 2007077630 A1 WO2007077630 A1 WO 2007077630A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
laser beam
laser
irradiation position
drilling
Prior art date
Application number
PCT/JP2006/300094
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Hokodate
Atsuhiro Kaneda
Shigeo Kawano
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CN2006800000378A priority Critical patent/CN101142052B/en
Priority to JP2006520436A priority patent/JP4800939B2/en
Priority to PCT/JP2006/300094 priority patent/WO2007077630A1/en
Priority to TW095102772A priority patent/TWI296219B/en
Publication of WO2007077630A1 publication Critical patent/WO2007077630A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation

Definitions

  • Laser processing apparatus program creation apparatus, and laser processing method
  • the present invention relates to a laser processing apparatus, a program creation apparatus, and a laser processing method for performing laser processing on a workpiece with pulsed laser light.
  • a pulse oscillation type laser processing apparatus that uses a pulse laser beam focused by a lens is used.
  • a workpiece such as a printed circuit board by this laser carriage device.
  • a plurality of times of laser irradiation are performed on the same machining position in order to shorten the machining time.
  • the laser beam is continuously irradiated to the same processing position, the laser beam is irradiated after the workpiece has been melted by the previous laser beam irradiation, depending on the material used.
  • the fluidity of the work piece increased, and it was difficult to obtain a work piece having a precise machining shape. For this reason, when performing laser irradiation a plurality of times on the same processing position, the next laser irradiation must be performed after the melted portion is solidified by the previous laser irradiation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 192571 Disclosure of the invention
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser cache device, a program creation device, and a laser processing method that can accurately process a processed shape of a workpiece. To do.
  • the present invention irradiates one to a plurality of shots of laser light to a plurality of processing positions of a workpiece while changing the irradiation position of the laser light.
  • a laser processing apparatus that performs a plurality of drilling calories on the workpiece in a processing mode in which a cycle is repeated a plurality of times
  • a laser light oscillation unit that oscillates laser light
  • An irradiation position moving unit that moves the irradiation position of the object
  • a control unit that controls the oscillation timing of the laser beam oscillated by the laser beam oscillation unit and the irradiation position of the laser beam moved by the irradiation position moving unit.
  • the control unit moves the irradiation position movement path that the irradiation position moving unit moves to the drilling position of the first hole when the first hole is irradiated with the laser beam in the first cycle.
  • the irradiation position moving path that the irradiation position moving unit moves to the drilling position of the first hole is the same path.
  • the irradiation position moving unit is controlled as described above.
  • the laser carriage apparatus includes a positional deviation amount of the laser light irradiation position of the first hole in the first cycle and an irradiation position of the laser light in the first hole after the second cycle. Since the difference between the positional deviation amount and the positional deviation amount can be reduced, the machining shape of the workpiece can be machined with high accuracy.
  • FIG. 1 is a perspective view showing an internal configuration of a laser processing apparatus according to the present invention.
  • FIG. 2 is a functional block diagram showing a configuration of a laser processing apparatus according to the present invention.
  • FIG. 3 is a flowchart showing an operation procedure of the laser processing apparatus according to the first embodiment.
  • FIG. 4 is a diagram for explaining the order of laser irradiation positions according to the first embodiment.
  • FIG. 5 is a diagram for explaining a relationship between a galvano position command and a laser output.
  • FIG. 6 is a diagram for explaining the relationship between the galvano position command and the machining position error.
  • FIG. 7 is a functional block diagram showing another configuration example of the laser cafe apparatus.
  • FIG. 8 is a diagram showing an example of a machining program.
  • FIG. 9 is a flowchart showing an operation procedure of the laser processing apparatus according to the second embodiment.
  • FIG. 10 is a diagram for explaining the order of laser irradiation positions according to the second embodiment.
  • FIG. 11 is a functional block diagram showing a configuration of a laser processing apparatus according to Embodiment 3.
  • FIG. 12 is a diagram for explaining a galvano area for the object to be covered.
  • FIG. 13 is a diagram showing an example of a conventional machining program used by the laser carriage device of the third embodiment.
  • FIG. 1 is a perspective view showing an internal configuration of a laser processing apparatus according to the present invention.
  • Laser processing The device 1 is configured so that fine holes can be drilled in the workpiece 37 by irradiation with laser light (pulse laser light) (cycle pulse mode).
  • the laser oscillator 21 that oscillates the laser light
  • the laser An image transfer optical mechanism 22 that shapes light and adjusts it to a desired beam shape and beam energy
  • a laser processing unit 30 that performs laser processing of a workpiece
  • a processing control device 10 are provided. Note that in this cycle pulse mode, a plurality of drilling positions set on the workpiece are sequentially scanned, and laser processing is performed for each hole in multiple cycles (laser light is irradiated one shot at a time). This is a Caloe process that repeats the cycle to perform multiple times.
  • the laser oscillator 21 oscillates laser light and sends it to the image transfer optical mechanism 22.
  • the image transfer optical mechanism 22 includes a collimation lens 23 and a mask 24.
  • the collimation lens 23 irradiates the laser beam from the laser oscillator 21 to adjust (parallelize) the optical axis, and the mask 24 shapes the beam shape of the laser beam.
  • the laser processing unit 30 includes a galvanometer mirror 35X, 35Y, a galvanometer scanner 36 mm, 36Y, f—
  • It has a ⁇ lens 34, a to-be-powered object (work) 37, an X-— table 38, and an observation optical mechanism (vision sensor) 39.
  • the galvano scanners 36 and 36 have a function of moving the irradiation position of the object 37 by changing the trajectory of the laser beam, in order to scan the laser beam in the X- ⁇ direction.
  • the galvanometer mirrors 35 and 35 reflect the laser light (light beam) emitted from the mask 24 of the image transfer optical mechanism 22 and deflect it at an arbitrary angle.
  • the galvanometer mirror 35 ⁇ deflects the laser beam in the X direction, and the galvanometer mirror 35 ⁇ deflects the laser beam in the ⁇ direction.
  • the f- ⁇ lens 34 deflects the laser light in a direction perpendicular to the surface of the object 37 and condenses (irradiates) the laser light on the processing position (surface) of the object 37.
  • the to-be-powered object 37 is a printed circuit board or the like, and is subjected to a plurality of drilling forces.
  • the X—Y table 38 is used to mount the object 37 to be moved, and freely moves in a two-dimensional plane of the X and Y axes by driving an X axis motor and a Y axis motor (not shown).
  • the observation optical mechanism 39 detects the height of the workpiece 37 in the Z-axis direction.
  • the height (information) of the workpiece 37 detected by the observation optical mechanism 39 in the Z-axis direction is sent to the machining controller 10. Then, the machining control device 10 controls the height direction of the workpiece 37 based on this information.
  • the processing control device 10 is configured by a computer device such as a personal computer, and controls the laser oscillator 21, the image transfer optical mechanism 22, and the laser force feeding unit 30 by NC (Numerical Control) control or the like.
  • NC Numerical Control
  • the laser processing apparatus 1 shapes the laser light emitted from the laser oscillator 21 by the image transfer optical mechanism 22 and adjusts it to a desired beam shape and beam energy.
  • the beam is deflected to an angle, and is imaged and irradiated at a predetermined position of the object 37 through the f- ⁇ lens 34.
  • a hole (concave portion) having an opening diameter corresponding to the beam diameter of the laser beam is processed at a predetermined irradiation position of the workpiece 37.
  • laser irradiation is performed a plurality of times for the processing position of one hole.
  • FIG. 2 is a functional block diagram showing the configuration of the laser cache device according to the present invention.
  • the laser processing device 1 includes a processing control device 10 and a processing drive device 20.
  • the processing drive device 20 is a means for performing laser processing, and corresponds to the laser oscillator 21, the image transfer optical mechanism 22, and the laser processing unit 30 shown in FIG.
  • the machining control device 10 is a device that controls the machining drive device 20, and includes a main control unit 11, a laser control unit 12, an XY table control unit 13, a machining program storage unit 14, and a galvano scanner control. Come with part 15.
  • the laser control unit 12 performs control related to laser light (laser light oscillation, optical axis adjustment, etc.).
  • the laser control unit 12 controls the laser oscillator 21 to control the oscillation (timing, power, etc.) of the laser beam, and controls the collimation lens 23 and the mask 24 to adjust the optical axis of the laser beam and adjust the beam shape.
  • the laser controller 12 controls the position of the f ⁇ lens 34 to deflect the laser beam in a direction perpendicular to the surface of the workpiece 37.
  • the XY table control unit 13 controls the XY table 38 to move the object 37 on the XY table 38 in the XY direction.
  • the galvano scanner control unit 15 controls the galvano scanners 36X and 36Y to rotate the galvano mirrors 35X and 35Y to a predetermined angle to scan the laser light in the XY directions.
  • the X—Y table control unit 13 causes the X—Y table 38 to be covered.
  • the workpiece 37 is moved in the X—Y direction, and the laser light is scanned in the X— ⁇ direction by the galvano scanner control unit 15 to irradiate a predetermined machining position of the workpiece 37 with laser irradiation.
  • X— ⁇ table control unit 13 and galvano scanner control unit 15 control the position of 38— ⁇ table 38 and control the laser beam based on the machining program and NC program described later! Scan in the direction.
  • the machining program storage unit 14 stores various programs and the like for performing the laser force measurement of the workpiece 37.
  • the machining program storage unit 14 stores, for example, a machining program related to a machining procedure of the force object 37, an NC program, and the like.
  • the machining program includes information on the order of galvano areas to be machined, information on the order of machining positions (holes) of the object 37, information on the timing of laser beam irradiation, information on the number of times of laser beam irradiation, etc. .
  • the main control unit 11 includes a laser control unit 12, a ⁇ — 13 table control unit 13, and power! ] Controls the program storage unit 14 and the galvano scanner control unit 15.
  • FIG. 3 is a flowchart showing an operation procedure of the laser processing apparatus according to the first embodiment
  • FIG. 4 is a diagram for explaining the order of the laser irradiation positions according to the first embodiment.
  • the laser processing apparatus 1 uses a laser pulse in a cycle pulse mode from the first processing hole HI to the ⁇ th ( ⁇ is a natural number of 2 or more) th processing hole ⁇ .
  • is a natural number of 2 or more
  • is a natural number of 2 or more
  • is a natural number of 2 or more
  • the table controller 13 is based on the machining program and the NC program in the machining program storage unit 14.
  • the position of the ⁇ — ⁇ table 38 is controlled.
  • the target object 37 on the table 38 is moved so that the laser beam is irradiated to a predetermined gallon area (area where the processing position is controlled by the galvano scanners 36 and 36) 51. Move in the direction.
  • the galvano scanner control unit 15 controls the galvano scanners 36 ⁇ and 36 ⁇ ⁇ so that the irradiation position of the laser light becomes the default coordinates of the galvano area 51 (for example, the origin (the center point of the galvano area)).
  • the galvano scanner control unit 15 performs the ⁇ -th machining position based on the machining program. Command the galvano position to the galvano scanners 36X, 36Y so that the position (force hole Hn) is the laser beam irradiation position.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the nth processing position (processing hole Hn) becomes the irradiation position of the laser light (step S110).
  • the laser control unit 12 does not oscillate the laser beam from the laser oscillator 21.
  • the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to make a galvano position command so that the first machining position (force hole HI) becomes the irradiation position of the laser beam based on the machining program. To do.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first machining position (machining hole HI) becomes the irradiation position of the laser beam (step S120) (l) o
  • the laser control unit 12 oscillates laser light from the laser oscillator 21.
  • the laser beam is shaped by the image transfer optical mechanism 22 and adjusted to a desired beam shape and beam energy.
  • the laser light emitted from the mask 24 is reflected and deflected by the galvanometer mirrors 35X and 35Y, and is imaged and irradiated on the processing hole HI of the object 37 through the f- ⁇ lens 34.
  • the first shot of the processing hole HI (first hole) is processed (step S130).
  • the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to send a galvano position command so that the second machining position (force hole H2) becomes the laser beam irradiation position based on the machining program.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the second processing position (processing hole H2) becomes the irradiation position of the laser beam (step S140) (2).
  • the laser control unit 12 oscillates laser light from the laser oscillator 21.
  • the first shot is processed in the processing hole H2 (second hole) (step S150).
  • the galvano scanner control unit 15 determines that the third and subsequent (up to (n ⁇ 2)) machining positions of the laser beam are based on the machining program.
  • a galvano position command is issued to the galvano scanners 36X and 36Y so that the irradiation position is reached, and the first shot is processed in the third and subsequent (up to (n ⁇ 2)) holes.
  • the galvano scanner control unit 15 determines the (n-1) th based on the machining program.
  • a galvano position command is issued to the galvano scanners 36X and 36Y so that the machining position (the machining hole H (n-1)) is the laser beam irradiation position.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the (n ⁇ l) -th processing position (calorie hole H2) becomes the irradiation position of the laser beam (step S160) (n) .
  • the laser control unit 12 oscillates laser light from the laser oscillator 21.
  • the first shot of the processing hole H (n-1) ((n-1)) hole is processed (step S170).
  • the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to provide a galvano position command so that the nth machining position (force hole Hn) becomes the laser beam irradiation position based on the machining program.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the n-th processing position (processing hole H2) becomes the irradiation position of the laser beam (step S 180) (n + 1).
  • the laser control unit 12 oscillates laser light from the laser oscillator 21.
  • the first shot of the processing hole Hn (nth hole) is processed (step S190).
  • the main control unit 11 determines whether or not the laser cache processing in the galvano area 51 has been completed (step S200). Since the first embodiment is a laser calorie in the cycle pulse mode, the main control unit 11 determines that the laser caulking process in the galvano area 51 has not ended (No in step S200). Then, the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y so that the first machining position (machining hole HI) becomes the irradiation position of the laser beam based on the machining program.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first processing position (processing hole HI) becomes the irradiation position of the laser beam (step S120).
  • the laser controller 12 oscillates the laser beam from the laser oscillator 21.
  • the second shot of the processing hole HI (first hole) is processed (step S130).
  • the galvano scanner control unit 15 sets the galvano scanner so that the second to n-th machining positions (force holes H2 to Hn) become the laser beam irradiation positions based on the machining program.
  • the galvano position command is issued to 36X and 36Y, and the laser control unit 12 oscillates the laser beam from the laser oscillator 21 at each processing position.
  • the 2nd to nth The galvano scanners 36 X and 36Y control the galvanometer mirrors 35X and 35Y so that the machining position (force hole HI to Hn) is the laser beam irradiation position, and machining holes Hl to Hn (1st hole to nth hole) )
  • the second shot's processing power is performed (Steps S140 to S190)
  • the main control unit 11 determines whether or not the laser cache process in the galvano area 51 has been completed (step S200). The processes in steps S120 to S200 are repeated until the main control unit 11 determines that the laser cache process in the galvano area 51 has been completed.
  • step S200 determines that the laser cache processing in the galvano area 51 has been completed (step S200, Yes)
  • the galvano scanner control unit 15 and the laser control unit 12 operate in the galvano area 51.
  • the position of the XY table 38 is controlled so that the laser-caching process is finished and the next galvano area 51 can be processed. Then, the next galvano area 51 is processed.
  • FIG. 5 is a diagram for explaining the relationship between the galvano position command and the laser output.
  • the galvano scanner control unit 15 issues a galvano position command to the position of the nth hole with respect to the galvano scanners 36X and 36Y. At this time, laser output (oscillation) by the laser oscillator 21 is not performed.
  • the galvano scanner control unit 15 issues a galvano position command to the position of the first hole to the galvano scanners 36X and 36Y. At this time, the laser oscillator 21 performs laser output at the position of the first hole.
  • the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y, and the laser oscillator 21 performs laser output at each hole (position).
  • the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y from the first hole to the nth hole, and laser output (second shot) is performed by the laser oscillator 21 in each hole.
  • FIG. 6 is a diagram for explaining the relationship between the galvano position command and the machining position error.
  • Galvanski When the channel controller 15 issues a galvano position command to the galvano scanners 36X and 36Y so that the predetermined processing position becomes the laser beam irradiation position, the galvano scanner 36X is set so that the processing position becomes the laser beam irradiation position. , 36Y controls the Galvano mirrors 35X, 35Y.
  • the laser beam irradiation position causes a predetermined positioning error (deviation amount) according to the movement path (distance, direction) of the previous irradiation position force.
  • the galvano position command and the actual galvano position (irradiation position) deviation will occur.
  • the galvano position when processing the first shot of the first hole moves to the default coordinate force, such as the origin, to the processing position of the first hole.
  • the galvano position when machining the second shot of the first hole moves the machining position force of the nth hole to the machining position of the first hole.
  • the actual positional deviation of the galvano position differs between the first shot and the second shot.
  • the first hole has an elliptical shape or a dharma shape by looking at the machining surface force of the workpiece 37, so that the machining shape of the workpiece can not be machined with high accuracy.
  • Embodiment 1 when processing the first shot of the first hole, a galvano position command is issued to the position of the nth hole to move the galvano position, and then the nth hole A galvano position command is issued from the position to the first hole machining position to move the galvano position.
  • the machining program storage unit 14 of the machining control device 10 stores the machining program in advance, and the laser force check is performed based on the machining program.
  • the program may be configured to receive and use the external device force of the machining control device 10 as well.
  • FIG. 7 is a functional block diagram showing another configuration example of the laser processing apparatus according to the first embodiment, and achieves the same function as the laser processing apparatus 1 shown in FIG. 2 among the components in FIG. The same numbers are assigned to the constituent elements, and duplicate descriptions are omitted.
  • the laser processing apparatus 1 here is a program creation apparatus 60 that creates a machining program to be stored in the machining program storage unit 14 in addition to the machining control apparatus 10 and the cache drive apparatus 20. It has.
  • the program creation device 60 is configured by a device such as a personal computer, and includes a user program input unit 41 and a CAD (Computer Aided Design) conversion unit 62.
  • the user program input unit 41 inputs a user program (gerber type coordinate program) indicating a drilling position (coordinates) on the workpiece 37.
  • the CAD conversion unit 62 converts the user program from the user program input unit 41 into a processing program having an appropriate format suitable for the laser processing apparatus 1.
  • the CAD converter 62 has a configuration that allows the user to specify the galvano area range, conversion format, etc. (main movement in the X direction, main movement in the Y direction, and the movement path with the shortest distance) according to the processing purpose. .
  • the CAD conversion unit 62 adds a parameter for commanding on / off of the laser beam (laser beam) to the cache program converted by the user program force.
  • the CAD conversion unit 62 adds, for example, “1” to the machining program as a parameter for instructing laser light to be turned on, and adds “0” to the cache program as a parameter for instructing laser light to be turned off.
  • the CAD conversion unit 62 first issues a galvano position command to “X300 Y300”, which is the machining position of the nth hole, and does not irradiate the laser beam. "0") is added to the cache program.
  • the machining program storage unit 14 stores the Caloe program created by the CAD conversion unit 62.
  • the processing program is created in a format that can specify only the positioning position based on, for example, information indicating beam off, and is converted into a format that can be read by the laser processing apparatus 1.
  • FIG. 8 is a diagram showing an example of a machining program.
  • the machining point of the ⁇ -th hole is, for example, ⁇ 300 ⁇ 300, and the default coordinate force such as the origin is also in the ⁇ -th hole. It shows that the galvano position is moved to the eye processing position.
  • the laser power of the first shot is not performed.
  • the laser power of each hole in the galvano area N1 is performed by moving the galvano position to the machining point of the first hole and the machining point of the second hole in order.
  • the machining program here indicates that the machine then moves to the galvano area N2.
  • the machining point of the M-th hole (M is a natural number) is, for example, “X300 Y300”, and from the default coordinates such as the origin, It shows that the galvano position is moved to the processing position. It also shows that the laser power of the first shot is not performed when the galvano position moves to this first hole.
  • the laser caloring of each hole in the galvano area ⁇ 2 is performed by moving the galvano position to the machining point of the first hole and the machining point of the second hole in order.
  • the carriage control device 10 controls the laser force of the laser caloe device 1 based on the machining program.
  • the laser cage apparatus 1 includes the program creation device 60.
  • the force laser cache device 1 and the program creation device 60 are configured independently of each other, and the program created by the program creation device 60 is used.
  • the laser carriage device 1 may perform the laser force check using the program.
  • the machined program can be input to the laser machine 1 via a portable external storage medium!
  • the laser check apparatus 1 changes the irradiation position of the laser beam.
  • the laser force of the workpiece 37 may be measured by a caulking process that repeats a cycle of irradiating one to a plurality of shots of laser light to a plurality of machining positions of the workpiece several times. ⁇ .
  • the galvano position when the first shot of the first hole is processed, the galvano position is moved to the position of the ⁇ -th hole, and then the position force of the ⁇ -th hole Set the galvano position to the hole processing position.
  • m is a natural number smaller than (n ⁇ l)
  • Embodiment 1 when processing the first shot of the first hole, after moving the galvano position to the position of the nth hole, the first hole is moved from the position of the nth hole.
  • the intermediate position force may be moved to the machining position of the first hole and the first shot of the first hole may be checked.
  • the nth hole is made to the first hole. It may be set to a close hole (for example, the hole having the shortest distance between holes). If the galvano movement distance when moving from the nth hole to the 1st hole is short, the amount of displacement of the galvano position decreases. It is possible to reduce the amount of positional deviation. In addition, it is possible to shorten the movement time when the galvano position is moved from the nth hole to the first hole.
  • the origin force when machining the first shot of the 1st hole is also a hole close to the origin of the nth hole (for example, the distance between holes) to reduce the movement distance of the galvano position to the nth hole. May be set to the shortest hole). This makes it possible to shorten the movement time when the galvano position is moved to the nth hole in the origin force.
  • the origin force when machining the first shot of the first hole The movement distance of the galvano position from the nth hole to the movement distance of the galvano position from the nth hole to the first hole
  • the nth hole and the first hole may be set to reduce the total distance (for example, the shortest distance).
  • the total distance for example, the shortest distance
  • the laser carriage device 1 stops the XY table 38 for each scanning area, so that the galvanometer is stopped. It may be stage stop processing that scans the laser beam by rotating only the mirrors 35X and 35Y, or the stage that does not stop scanning the laser beam by moving the galvano mirrors 35X and 35Y while moving the X—Y table 38. Even processing.
  • the positional deviation amount of the actual galvano position in the first shot of the first hole and the positional deviation of the actual galvano position in the second and subsequent shots of the first hole can be machined into a substantially circular shape when viewed from the machining surface of the work piece 37, and the work shape of the work piece 37 can be machined with high accuracy. It becomes possible to do.
  • the galvano position command is issued to the position of the nth hole to move the galvano position, and then the position of the nth hole is changed. Since a machining program is created to move the galvano position by issuing a galvano position command to the machining position of the 1st hole, the laser carriage device 1 has a positional shift amount of the actual galvano position of the first shot of the 1st hole, The displacement amount of the actual galvano position after the second shot of the 1st hole can be made to be approximately the same displacement amount.
  • a galvano position command is issued to a predetermined default coordinate at the end of each cycle in the cycle pulse mode, and galvano position movement when machining the first hole is performed in all cycles (all the first shot including the first shot).
  • Galvanometer mirrors 35X and 35Y are controlled so that the same path is obtained in the shot. Since the laser processing apparatus 1 of the second embodiment also has the same configuration as the laser processing apparatus 1 described in FIGS. 1 and 2 of the first embodiment, the description thereof is omitted here.
  • FIG. 9 is a flowchart showing an operation procedure of the laser processing apparatus according to the second embodiment
  • FIG. 10 is a diagram for explaining the order of the laser irradiation positions according to the second embodiment.
  • the laser carriage apparatus 1 performs laser processing in the cycle pulse mode from the first processing hole HI to the nth (n is a natural number of 2 or more) processing hole Hn.
  • n is a natural number of 2 or more
  • processing hole Hn is a natural number of 2 or more
  • the XY table control unit 13 is based on the processing program and the NC program in the processing program storage unit 14. Then, the position of the X—Y table 38 is controlled. As a result, the target object 37 on the X—Y table 38 is moved to the X—Y so that the laser beam is irradiated to a predetermined gal non area (area where the processing position is controlled by the galvano scanner 36X, 36Y) 51. Move in the direction.
  • the galvano scanner control unit 15 controls the galvano scanners 36X and 36Y so that the irradiation position of the laser light becomes the default coordinates (for example, the origin) of the galvano area 51 (step S310).
  • the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to make a galvano position command so that the first machining position (force hole HI) becomes the laser beam irradiation position based on the machining program. To do.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first machining position (machining hole HI) becomes the irradiation position of the laser beam (step S320) (l) o
  • the laser control unit 12 oscillates the laser beam from the laser oscillator 21.
  • the laser beam is shaped by the image transfer optical mechanism 22 and adjusted to a desired beam shape and beam energy.
  • the laser light emitted from the mask 24 is reflected and deflected by the galvanometer mirrors 35X and 35Y, and is imaged and irradiated on the processing hole HI of the object 37 through the f- ⁇ lens 34.
  • the first shot of the processing hole HI (first hole) is processed (step S330).
  • the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to provide a galvano position command so that the second machining position (force hole H2) becomes the laser beam irradiation position based on the machining program.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the second processing position (processing hole H2) becomes the irradiation position of the laser beam (step S340) (2).
  • the laser control unit 12 oscillates laser light from the laser oscillator 21.
  • the first shot of the machining hole H2 (second hole) is processed (step S350).
  • the galvano scanner control unit 15 adds the machining program. Based on this, a galvano position command is issued to the galvano scanners 36X and 36Y so that the third and subsequent machining positions (up to the (n ⁇ 2) th) position become the laser beam irradiation position, and the third and subsequent processes are performed.
  • the first shot is processed in the (n-2) th hole.
  • the galvano scanner control unit 15 sets the (n-1) -th processing position (processing hole H (n-1)) based on the processing program so as to be the irradiation position of the laser beam.
  • 3 Command galvano position to 6X and 36Y.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the (n ⁇ l) -th processing position (calorie hole H (n ⁇ 1)) becomes the irradiation position of the laser beam (step S360).
  • the laser controller 12 oscillates the laser beam from the laser oscillator 21.
  • the first shot of the processing hole H (n ⁇ l) ((n ⁇ l) hole) is processed (step S370).
  • the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to execute a galvano position command so that the nth machining position (force hole Hn) becomes the laser beam irradiation position based on the machining program.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the n-th processing position (processing hole Hn) becomes the irradiation position of the laser beam (step S380).
  • the laser controller 12 oscillates laser light from the laser oscillator 21. As a result, the first shot of the processing hole Hn (nth hole) is processed (step S390).
  • the main control unit 11 determines whether or not the laser cache processing in the galvano area 51 has been completed (step S400). Since the first embodiment is a laser calorie in the cycle pulse mode, the main control unit 11 determines that the laser caulking process in the galvano area 51 should be finished (step S400, No). .
  • the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y so that the default coordinates (origin) of the galvano area 51 become the laser light irradiation position.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the origin is the irradiation position of the laser beam (step S310).
  • the laser control unit 12 does not oscillate the laser beam from the laser oscillator 21.
  • the galvano scanner control unit 15 controls the galvano scanners 36X and 36Y so that the first machining position (force hole HI) becomes the irradiation position of the laser beam based on the machining program. Command the galvo position.
  • the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first processing position (processing hole HI) becomes the irradiation position of the laser beam (step S320).
  • the laser controller 12 oscillates laser light from the laser oscillator 21.
  • the second shot of the processing hole HI (first hole) is processed (step S330).
  • the galvano scanner control unit 15 sets the galvano scanner so that the second to n-th machining positions (force hole H2 to Hn) become the laser beam irradiation positions based on the machining program.
  • the galvano position command is issued to 36X and 36Y, and the laser control unit 12 oscillates the laser beam from the laser oscillator 21 at each processing position.
  • the galvano scanners 36 X and 36Y control the galvanometer mirrors 35X and 35Y so that the 2nd to nth machining positions (force hole HI to Hn) are the irradiation positions of the laser beam, and the machining holes Hl to Hn (1st hole to nth hole) are subjected to the second shot's processing power (steps S340 to S390)
  • the main control unit 11 determines whether or not the laser cache process in the galvano area 51 has been completed (step S400).
  • the processing power of steps S320 to S400 is repeated until the main control unit 11 determines that the laser cache processing in the galvano area 51 has been completed. That is, in the second embodiment, when machining the hole HI after machining the machining hole Hn, the galvano position command to the machining hole HI is issued after the galvano position command to the origin, which is the process of step S310. Go ahead and take care of HI.
  • step S400 determines that the laser cache processing in the galvano area 51 has been completed (step S400, Yes)
  • the galvano scanner control unit 15 and the laser control unit 12 operate in this galvano area 51.
  • the position of the XY table 38 is controlled so that the laser-caching process is finished and the next galvano area 51 can be processed. Then, the next galvano area 51 is processed.
  • the origin force is also a hole close to the origin in the first hole (for example, the hole having the shortest distance between holes) in order to reduce the movement distance of the galvano position to the first hole. It may be set to. Also, the n-th hole force may be set to a hole close to the origin (for example, a hole having the shortest distance between holes) in order to reduce the movement distance of the galvano position to the origin. Furthermore, origin force when machining the first shot of the first hole Movement of the galvano position to the first hole The nth and 1st holes may be set so as to reduce the total distance of the distance and the movement distance of the galvano position from the nth hole to the origin (for example, the shortest distance). This makes it possible to shorten the movement time when moving the galvano position to the origin for the nth hole force, the movement time when moving the galvano position to the first hole, and the total time of these movement times. It becomes ability.
  • the machining program storage unit 14 of the machining control device 10 is not limited to the configuration in which the machining program is stored in advance and the laser calorie is performed based on the machining program.
  • the machining program may be configured to receive the external device force of the machining control device 10 and use it.
  • the galvano position command is issued to the origin to move the galvano position, and then the origin force is changed to the machining position of the first hole.
  • Move the galvo position by issuing a galvo position command.
  • the positional deviation of the actual galvano position in the first shot of the first hole and the positional deviation of the actual galvano position after the second shot of the first hole can be machined into a substantially circular shape when viewed from the machining surface of the work piece 37, and the work shape of the work piece 37 can be machined with high accuracy. It becomes possible to do.
  • Embodiment 3 of the present invention will be described with reference to FIGS.
  • the machining program that has been used in the past moving the galvano position when machining the first shot of the first hole to the machining position of the first hole directly from the default coordinates such as the origin
  • Machining procedure moving the galvano position when machining the first shot of the first hole to the machining position of the first hole directly from the default coordinates such as the origin
  • a predetermined control device machining procedure control device to be described later
  • the same machining procedure as in the first and second embodiments galvano position moving procedure and laser beam irradiation timing
  • the laser carriage device 1 is controlled so that the laser force is fed at.
  • a galvano position command is issued to the position of the nth hole and the galvano position is After moving, the galvano position is moved by issuing a galvano position command to the machining position of the first hole based on the position force of the nth hole. Then, in the subsequent processing procedure, the conventional force is also used, and the laser cache process is performed using the V and the cache program (the processing procedure corresponding to the first embodiment).
  • FIG. 11 is a functional block diagram showing the configuration of the laser processing apparatus according to Embodiment 3.
  • the laser cafe apparatus 1 includes a processing procedure control device 40 in addition to the processing control device 10 and the carriage drive device 20.
  • the processing procedure control device 40 is configured by a device such as a personal computer, and includes a user program input unit 41, a CAD (Computer
  • the user program input unit 41 inputs a user program (gerber type coordinate program) indicating a drilling position (coordinates) on the workpiece 37.
  • the CAD conversion unit 42 has a function of converting the user program from the user program input unit 41 into a processing program 43 having an appropriate format suitable for the laser processing apparatus 1.
  • the CAD conversion unit 42 is configured to allow the user to specify the galvano area range and conversion format (main movement in the X direction, main movement in the Y direction, and the shortest distance movement path) according to the machining purpose.
  • the machining program 43 is a program obtained by converting the user program by the CAD conversion unit 42, and has been converted into a format that can be read by the laser machining apparatus 1.
  • the machining program 43 here is the conventional machining program (when machining the 1st shot of the 1st hole, move directly to the machining position of the 1st hole from the default coordinates such as the origin. This corresponds to a program that includes a machining procedure that starts machining the first shot of the first hole.
  • the machining program 43 is stored in the machining program storage unit 14.
  • the procedure control unit 44 when checking the first shot of the first hole in each galvano area with respect to the conventional machining program 43 stored in the machining program storage unit 14, Instruction information is sent to the machining control device 10 (main control unit 11) so as to give a galvano position command to the eye position, and instruction information is given to the machining control device 10 so that the laser beam is not irradiated at the position of the nth hole. put out. Furthermore, the procedure control unit 44 issues instruction information to the machining control device 10 to issue a galvano position command to the position of the first hole, and moves the galvano position from the position of the nth hole to the machining position of the first hole. Then, the processing by the conventional processing program (laser light is irradiated to the first shot of the first hole) is performed.
  • the user of the laser processing device 1 uses the drilling position area (for example, 500mm X 500mm) on the target workpiece 37 coordinate ( A user program for designating the size 37 of the workpiece 37 and the drilling position is input to the user program input unit 41 of the carpenter procedure control device 40.
  • the drilling position area for example, 500mm X 500mm
  • a user program for designating the size 37 of the workpiece 37 and the drilling position is input to the user program input unit 41 of the carpenter procedure control device 40.
  • FIG. 12 is a diagram for explaining a galvano area in the object.
  • the size of the force object 37 which is the area where the hole is drilled on the mark, is composed of a size of 500mm x 500mm, for example! RU
  • the drilling position area of the force object 37 is, for example, 50 mm X by the CAD conversion unit 42.
  • galvano areas N1 to N3, etc. that are information areas that contain information about hole coordinates
  • the CAD conversion unit 42 calculates the machining position and the optimum machining path in each galvano area based on the user program, and creates a cafe program 43.
  • the machining program 43 is stored in the machining program storage unit 45 (machining program storage unit 14).
  • the galvo areas N1 to N3 isotropic force correspond to the galvo areas 51 shown in FIG.
  • FIG. 13 is a diagram showing an example of a conventional machining program used by the laser carriage device of the third embodiment.
  • the machining point (machining position) of the first hole is, for example, “X300 Y400”, and the first hole directly from the default coordinates such as the origin
  • the galvano position is moved to the first machining position, and the first shot of laser machining is performed. Thereafter, the galvano position is moved to the machining position in order of the machining point of the second hole and the machining point of the third hole, and the laser power of each hole in the galvano area N1 is performed.
  • the procedure control unit 44 when checking the first shot of the first hole in each galvano area (for example, galvano area N1), uses the machining program force 1 shot of the first hole.
  • the instruction information is sent to the processing control device 10 so as to issue a galvano position command to the position of the ⁇ -th hole, and the processing control device is configured not to irradiate the laser beam at the position of the ⁇ -th hole.
  • Instruction information is sent to 10.
  • the procedure control unit 44 causes the calorie control device 10 to perform processing by the cache program 43 (giving a galvano position command to the position of the first hole and starting laser processing).
  • the laser processing apparatus 1 first performs laser processing (first shot) at the first processing point, and then performs laser caching (first shot) at the second processing point. )I do.
  • the processing of the load 37 is performed by the same processing procedure as that described in the first embodiment.
  • the procedure control unit 44 causes the same processing as in the galvano area N1 to be performed in the galvano area ⁇ 2, which is the next galvano area. In the same manner, the procedure control unit 44 causes the machining control device 10 to perform machining processing after the galvano area ⁇ 2. Also in the subsequent processing, when the procedure control unit 44 recognizes an instruction to process the first shot of the Caloe program force first hole, the processing control device 10 issues a galvano position command to the position of the ⁇ hole. The instruction information is output to the processing control apparatus 10 so that the laser beam is not irradiated at the position of the ⁇ -th hole. Then, the procedure control unit 44 causes the machining control device 10 to perform a machining process (a galvano position command is issued at the position of the first hole to start the laser force measurement) by the cache program 43.
  • a galvano position command is issued at the position of the first hole to start the laser force measurement
  • the procedure control unit 44 when the procedure control unit 44 processes the first hole of the first hole in each galvano area, the processing is started in accordance with the processing procedure corresponding to the first embodiment.
  • the force procedure control unit 44 described above makes each shot of the ⁇ -th hole through each galvano area.
  • the machining control device 10 is controlled to continue machining in accordance with the machining procedure corresponding to the second embodiment, and the force applied using the conventional machining program 43 is controlled. You can do it.
  • the laser processing device 1 is configured to include the processing procedure control device 40 has been described.
  • the laser processing device 1 and the processing procedure control device 40 are configured to be independent and different from each other. It can also be configured to operate each connected.
  • the force galvano scanner control unit 15 described above has the function of the procedure control unit 44 when the galvano scanner control unit 15 and the carpenter procedure control device 40 have different configurations. It is good also as a structure provided.
  • the galvano scanner control unit 15 having the function of the procedure control unit 44 performs the laser power check based on the conventional processing program 43 stored in the processing program storage unit 14.
  • the force machining procedure control device 40 configured to include the machining program storage unit 45 may be omitted as long as the machining procedure control device 40 includes the machining program storage unit 45.
  • the cache program 43 created by the CAD conversion unit 42 is configured to be directly input to the Caloe program storage unit 14.
  • the same laser force as in the first and second embodiments is performed using the conventional machining program 43, so that each time the workpiece 37 is processed, This makes it possible to easily machine the workpiece 37 with high accuracy without creating a new force program.
  • the laser cache device, the program creation device, and the laser processing method that are useful in the present invention are suitable for laser force checks that drill a target object with a pulsed laser beam! /

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser material processing system (1) for boring a plurality of holes in a workpiece in a machining mode for repeating a plurality of times such a cycle as irradiating the workpiece, at a plurality of machining positions thereof, with a laser beam by one to a plurality of shots while changing the irradiating position, comprising irradiating position shifting sections (35X, 35Y) for shifting the irradiating position of the workpice (37) with a laser beam oscillated at a laser oscillating section (21), and a section (10) for controlling the oscillation timing of a laser beam oscillated at the laser oscillating section (21) and the irradiating position of laser beam shifted by the irradiating position shifting sections (35X, 35Y). The control section (10) controls the irradiating position shifting sections (35X, 35Y) such that the shift path of irradiating position shifted by the irradiating position shifting section to the boring position of a first hole when the first hole is irradiated with a laser beam in the first cycle is aligned with the shift path of irradiating position shifted by the irradiating position shifting section to the boring position of a first hole when the first hole is irradiated with a laser beam in the second and subsequent cycles.

Description

明 細 書  Specification
レーザ加工装置、プログラム作成装置およびレーザ加工方法  Laser processing apparatus, program creation apparatus, and laser processing method
技術分野  Technical field
[0001] 本発明は、パルスレーザ光で被加工物のレーザ加工を行うレーザ加工装置、プロ グラム作成装置およびレーザ加工方法に関するものである。  The present invention relates to a laser processing apparatus, a program creation apparatus, and a laser processing method for performing laser processing on a workpiece with pulsed laser light.
背景技術  Background art
[0002] 近年、電子機器の高密度実装化に伴って、電子機器の配線層を形成するプリント 配線基板を小型化することが求められて ヽる。プリント配線基板を小型化するために は、基板同士を導電層で接続するためのスルーホール (ビアホール)を精度良く形成 (穴あけ)しておく必要がある。  [0002] In recent years, with the high density mounting of electronic devices, there is a demand for downsizing printed wiring boards that form wiring layers of electronic devices. In order to reduce the size of a printed wiring board, it is necessary to accurately form (drill) through holes (via holes) for connecting the boards with a conductive layer.
[0003] このようなスルーホールの穴を精度良く形成するため、例えばレンズで集束された パルスレーザビームで穴あけを行なうパルス発振型のレーザ加工装置が用いられて いる。このレーザカ卩ェ装置によるプリント基板等の被カ卩ェ物の穴あけカ卩ェでは、加工 時間を短縮する為、同一の加工位置に対して複数回のレーザ照射を行っている。と ころが、同一の加工位置に対して連続してレーザ照射を行なうと、先のレーザ照射に よって被加工物が溶融した状態のところに続いてレーザ照射されることになり、使用 する材質によっては被加工物の流動性が増して精度の良い加工形状を有した被カロ ェ物を得ることができな力つた。このため、同一の加工位置に複数回のレーザ照射を 行う場合、先のレーザ照射によって溶融した部分が凝固した後、次のレーザ照射を 行わなければならない。  [0003] In order to form such a through-hole with high accuracy, for example, a pulse oscillation type laser processing apparatus that uses a pulse laser beam focused by a lens is used. In the drilling of a workpiece such as a printed circuit board by this laser carriage device, a plurality of times of laser irradiation are performed on the same machining position in order to shorten the machining time. However, if the laser beam is continuously irradiated to the same processing position, the laser beam is irradiated after the workpiece has been melted by the previous laser beam irradiation, depending on the material used. However, the fluidity of the work piece increased, and it was difficult to obtain a work piece having a precise machining shape. For this reason, when performing laser irradiation a plurality of times on the same processing position, the next laser irradiation must be performed after the melted portion is solidified by the previous laser irradiation.
[0004] 特許文献 1に記載のレーザ加工方法は、被加工物に設定された複数の穴あけ加工 位置に対して順次走査しつつ各穴に対してレーザ照射を行なっている。すなわち、 1 つ目の穴あけ位置に対して 1回目のレーザ照射をした後、 2つ目以降の穴あけ位置 に対して 1回目のレーザ照射を行い、再び 1つ目の穴あけ位置に戻って 2回目のレー ザ照射を行ない、その後 2つ目以降の穴あけ位置に対して 2回目のレーザ照射を行 うと!/、つた処理を繰り返して 、る。  [0004] In the laser processing method described in Patent Document 1, laser irradiation is performed on each hole while sequentially scanning a plurality of drilling positions set on the workpiece. In other words, after the first laser irradiation is performed for the first drilling position, the first laser irradiation is performed for the second and subsequent drilling positions, and the second drilling position is returned to the first drilling position again. When the second laser irradiation is performed for the second and subsequent drilling positions, the above process is repeated.
[0005] 特許文献 1 :特開平 11 192571号公報 発明の開示 Patent Document 1: Japanese Patent Application Laid-Open No. 11 192571 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記従来技術では、各穴あけ位置上をレーザ照射位置が移動して 各穴あけ位置に複数回のレーザ照射を行なうため、 1つの穴あけ位置に対してレー ザ照射毎の位置ズレが生じやすい。このため、被加工物の加工形状を精度良く加工 することができな!/、と!/、つた問題があった。  [0006] However, in the above prior art, the laser irradiation position moves on each drilling position and the laser irradiation is performed a plurality of times at each drilling position. Misalignment is likely to occur. For this reason, the machined shape of the workpiece cannot be machined with high accuracy! There was a problem with /! And! /.
[0007] 本発明は、上記に鑑みてなされたものであって、被加工物の加工形状を精度良く 加工することができるレーザカ卩ェ装置、プログラム作成装置およびレーザ加工方法を 得ることを目的とする。  [0007] The present invention has been made in view of the above, and an object of the present invention is to obtain a laser cache device, a program creation device, and a laser processing method that can accurately process a processed shape of a workpiece. To do.
課題を解決するための手段  Means for solving the problem
[0008] 上述した課題を解決し、目的を達成するために、本発明は、レーザ光の照射位置 を変化させながら被加工物の複数の加工位置に対しレーザ光を 1〜複数ショットずつ 照射するサイクルを複数回繰り返す加工モードで前記被加工物に複数の穴あけカロ ェを行なうレーザ加工装置において、レーザ光を発振するレーザ光発振部と、前記 レーザ光発振部が発振したレーザ光の前記被加工物への照射位置を移動させる照 射位置移動部と、前記レーザ光発振部が発振するレーザ光の発振タイミングおよび 前記照射位置移動部が移動させるレーザ光の照射位置を制御する制御部と、を備 え、前記制御部は、最初のサイクルに第 1穴に前記レーザ光を照射する際に前記照 射位置移動部が前記第 1穴の穴あけ加工位置に移動させる照射位置の移動経路と 、第 2番目のサイクル以降に第 1穴に前記レーザ光を照射する際に前記照射位置移 動部が前記第 1穴の穴あけ加工位置に移動させる照射位置の移動経路とが同一経 路となるよう、前記照射位置移動部を制御することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention irradiates one to a plurality of shots of laser light to a plurality of processing positions of a workpiece while changing the irradiation position of the laser light. In a laser processing apparatus that performs a plurality of drilling calories on the workpiece in a processing mode in which a cycle is repeated a plurality of times, a laser light oscillation unit that oscillates laser light, and the processing of the laser light that is oscillated by the laser light oscillation unit An irradiation position moving unit that moves the irradiation position of the object, and a control unit that controls the oscillation timing of the laser beam oscillated by the laser beam oscillation unit and the irradiation position of the laser beam moved by the irradiation position moving unit. The control unit moves the irradiation position movement path that the irradiation position moving unit moves to the drilling position of the first hole when the first hole is irradiated with the laser beam in the first cycle. When the laser beam is irradiated onto the first hole after the second cycle, the irradiation position moving path that the irradiation position moving unit moves to the drilling position of the first hole is the same path. The irradiation position moving unit is controlled as described above.
発明の効果  The invention's effect
[0009] 本発明に力かるレーザカ卩ェ装置は、最初のサイクルの第 1穴のレーザ光の照射位 置の位置ズレ量と、第 2番目のサイクル以降の第 1穴のレーザ光の照射位置の位置 ズレ量とのズレ量差を小さくできるので、被カ卩ェ物の加工形状を精度良く加工するこ とが可能になるという効果を奏する。 図面の簡単な説明 [0009] The laser carriage apparatus according to the present invention includes a positional deviation amount of the laser light irradiation position of the first hole in the first cycle and an irradiation position of the laser light in the first hole after the second cycle. Since the difference between the positional deviation amount and the positional deviation amount can be reduced, the machining shape of the workpiece can be machined with high accuracy. Brief Description of Drawings
[0010] [図 1]図 1は、本発明に係るレーザ加工装置の内部構成を示す斜視図である。  FIG. 1 is a perspective view showing an internal configuration of a laser processing apparatus according to the present invention.
[図 2]図 2は、本発明に係るレーザ加工装置の構成を示す機能ブロック図である。  FIG. 2 is a functional block diagram showing a configuration of a laser processing apparatus according to the present invention.
[図 3]図 3は、実施の形態 1に係るレーザ加工装置の動作手順を示すフローチャート である。  FIG. 3 is a flowchart showing an operation procedure of the laser processing apparatus according to the first embodiment.
[図 4]図 4は、実施の形態 1に係るレーザ照射位置の順番を説明するための図である  FIG. 4 is a diagram for explaining the order of laser irradiation positions according to the first embodiment.
[図 5]図 5は、ガルバノ位置指令とレーザ出力の関係を説明するための図である。 FIG. 5 is a diagram for explaining a relationship between a galvano position command and a laser output.
[図 6]図 6は、ガルバノ位置指令と加工位置の誤差の関係を説明するための図である  FIG. 6 is a diagram for explaining the relationship between the galvano position command and the machining position error.
[図 7]図 7は、レーザカ卩ェ装置の他の構成例を示す機能ブロック図である。 FIG. 7 is a functional block diagram showing another configuration example of the laser cafe apparatus.
[図 8]図 8は、加工プログラムの一例を示す図である。  FIG. 8 is a diagram showing an example of a machining program.
[図 9]図 9は、実施の形態 2に係るレーザ加工装置の動作手順を示すフローチャート である。  FIG. 9 is a flowchart showing an operation procedure of the laser processing apparatus according to the second embodiment.
[図 10]図 10は、実施の形態 2に係るレーザ照射位置の順番を説明するための図であ る。  FIG. 10 is a diagram for explaining the order of laser irradiation positions according to the second embodiment.
[図 11]図 11は、実施の形態 3に係るレーザ加工装置の構成を示す機能ブロック図で ある。  FIG. 11 is a functional block diagram showing a configuration of a laser processing apparatus according to Embodiment 3.
[図 12]図 12は、被カ卩ェ物に対するガルバノエリアを説明するための図である。  [FIG. 12] FIG. 12 is a diagram for explaining a galvano area for the object to be covered.
[図 13]図 13は、実施の形態 3のレーザカ卩ェ装置が用いる従来の加工プログラムの一 例を示す図である。  FIG. 13 is a diagram showing an example of a conventional machining program used by the laser carriage device of the third embodiment.
符号の説明  Explanation of symbols
[0011] 1 レーザ加工装置 [0011] 1 Laser processing equipment
10 加工制御装置  10 Machining control device
11 メイン制御部  11 Main control unit
12 レーザ制御部  12 Laser controller
13 X— Yテーブル制御部  13 X—Y table controller
14 加工プログラム記憶部 15 ガルバノスキャナ制御部 14 Machining program storage 15 Galvano scanner controller
20 加工駆動装置  20 Processing drive
21 レーザ発振器  21 Laser oscillator
22 像転写光学機構  22 Image transfer optics
23 コリメーシヨンレンズ  23 Collimation lens
24 マスク  24 mask
30 レーザ加工部  30 Laser processing section
34 f Θレンズ  34 f Θ lens
35X, 35Y ガルバノミラー  35X, 35Y Galvano mirror
36X, 36Y ガルバノスキャナ  36X, 36Y Galvano Scanner
37 被加工物  37 Workpiece
38 X— Yテーブル  38 X—Y table
39 観察光学機構  39 Observation optics
40 加工手順制御装置  40 Machining procedure controller
41 ユーザプログラム入力部  41 User program input section
42, 62 CAD変換咅  42, 62 CAD conversion
43 カロェプログラム  43 Karoe Program
44 手順制御部  44 Procedure control section
45,65 加工プログラム記憶部  45,65 Machining program storage
51 ガルバノエリア  51 Galvano Area
60 プログラム作成装置  60 Program creation device
Hl〜Hn 加工穴  Hl ~ Hn hole
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に、本発明に力かるレーザカ卩ェ装置、プログラム作成装置およびレーザ加工 方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により この発明が限定されるものではない。 [0012] Embodiments of a laser cafe device, a program creation device, and a laser processing method according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.
[0013] 実施の形態 1. Embodiment 1.
図 1は、本発明に係るレーザ加工装置の内部構成を示す斜視図である。レーザ加 ェ装置 1は、レーザ光 (パルスレーザ光)の照射(サイクルパルスモード)によって被カロ ェ物 37に微細穴を穴開け加工できるよう構成されており、レーザ光を発振するレー ザ発振器 21、レーザ光を整形するとともに所望のビーム形状、ビームエネルギーに 調整する像転写光学機構 22、被加工物のレーザ加工を行うレーザ加工部 30、加工 制御装置 10を備えている。なお、ここでのサイクルパルスモードは、被カ卩ェ物に設定 された複数の穴あけ加工位置を順次走査し、各穴に対するレーザ照射を複数サイク ルで行なう加工処理 (レーザ光を 1ショットずつ照射するサイクルを複数回繰り返すカロ ェ処理)である。 FIG. 1 is a perspective view showing an internal configuration of a laser processing apparatus according to the present invention. Laser processing The device 1 is configured so that fine holes can be drilled in the workpiece 37 by irradiation with laser light (pulse laser light) (cycle pulse mode). The laser oscillator 21 that oscillates the laser light, the laser An image transfer optical mechanism 22 that shapes light and adjusts it to a desired beam shape and beam energy, a laser processing unit 30 that performs laser processing of a workpiece, and a processing control device 10 are provided. Note that in this cycle pulse mode, a plurality of drilling positions set on the workpiece are sequentially scanned, and laser processing is performed for each hole in multiple cycles (laser light is irradiated one shot at a time). This is a Caloe process that repeats the cycle to perform multiple times.
[0014] レーザ発振器 21は、レーザ光を発振し、像転写光学機構 22に送出する。像転写 光学機構 22は、コリメーシヨンレンズ 23、マスク 24を備えている。コリメーシヨンレンズ 23は、レーザ発振器 21からのレーザ光魏光して光軸を調整(平行化)し、マスク 24 はレーザ光のビーム形状を整形する。  The laser oscillator 21 oscillates laser light and sends it to the image transfer optical mechanism 22. The image transfer optical mechanism 22 includes a collimation lens 23 and a mask 24. The collimation lens 23 irradiates the laser beam from the laser oscillator 21 to adjust (parallelize) the optical axis, and the mask 24 shapes the beam shape of the laser beam.
[0015] レーザ加工部 30は、ガルバノミラー 35X, 35Y、ガルバノスキャナ 36Χ, 36Y、 f—  [0015] The laser processing unit 30 includes a galvanometer mirror 35X, 35Y, a galvanometer scanner 36 mm, 36Y, f—
Θレンズ 34、被力卩ェ物(ワーク) 37、 X— Υテーブル 38、観察光学機構(ビジョンセン サ) 39を備えている。  It has a Θ lens 34, a to-be-powered object (work) 37, an X-— table 38, and an observation optical mechanism (vision sensor) 39.
[0016] ガルバノスキャナ 36Χ, 36Υは、レーザ光の軌道を変化させて被力卩ェ物 37への照 射位置を移動させる機能を有しており、レーザ光を X— Υ方向に走査するため、ガル ノ ノミラー 35Χ, 35Υを所定の角度に回動させる。ガルバノミラー 35Χ, 35Υは、像転 写光学機構 22のマスク 24から出射されたレーザ光 (光ビーム)を反射させるとともに 任意の角度に偏向させる。ガルバノミラー 35Χは、レーザ光を X方向に偏向させ、ガ ルバノミラー 35Υは、レーザ光を Υ方向に偏向させる。 f- Θレンズ 34は、レーザ光を 被力卩ェ物 37の表面に対して垂直な方向に偏向させるとともに、レーザ光を被加工物 37の加工位置 (表面)に集光 (照射)させる。  [0016] The galvano scanners 36 and 36 have a function of moving the irradiation position of the object 37 by changing the trajectory of the laser beam, in order to scan the laser beam in the X-Υ direction. Rotate the gal non mirrors 35Χ and 35Υ to a predetermined angle. The galvanometer mirrors 35 and 35 reflect the laser light (light beam) emitted from the mask 24 of the image transfer optical mechanism 22 and deflect it at an arbitrary angle. The galvanometer mirror 35Χ deflects the laser beam in the X direction, and the galvanometer mirror 35Υ deflects the laser beam in the Υ direction. The f-Θ lens 34 deflects the laser light in a direction perpendicular to the surface of the object 37 and condenses (irradiates) the laser light on the processing position (surface) of the object 37.
[0017] 被力卩ェ物 37は、プリント基板等であり、複数の穴あけ力卩ェが行なわれる。 X—Yテ 一ブル 38は、被力卩ェ物 37を載置するものであり、図示しない X軸モータおよび Y軸 モータの駆動によって X軸、 Y軸 2次元平面を自在に移動する。  [0017] The to-be-powered object 37 is a printed circuit board or the like, and is subjected to a plurality of drilling forces. The X—Y table 38 is used to mount the object 37 to be moved, and freely moves in a two-dimensional plane of the X and Y axes by driving an X axis motor and a Y axis motor (not shown).
[0018] 観察光学機構 39は、被加工物 37の Z軸方向の高さを検出する。観察光学機構 39 によって検出された被加工物 37の Z軸方向の高さ(情報)は、加工制御装置 10に送 られ、加工制御装置 10はこの情報に基づいて被力卩ェ物 37の高さ方向を制御する。 The observation optical mechanism 39 detects the height of the workpiece 37 in the Z-axis direction. The height (information) of the workpiece 37 detected by the observation optical mechanism 39 in the Z-axis direction is sent to the machining controller 10. Then, the machining control device 10 controls the height direction of the workpiece 37 based on this information.
[0019] 加工制御装置 10は、パーソナルコンピュータ等のコンピュータ装置によって構成さ れ、レーザ発振器 21、像転写光学機構 22、レーザ力卩ェ部 30を NC (Numerical Control)制御等によって制御する。  The processing control device 10 is configured by a computer device such as a personal computer, and controls the laser oscillator 21, the image transfer optical mechanism 22, and the laser force feeding unit 30 by NC (Numerical Control) control or the like.
[0020] レーザ加工装置 1は、この構成によりレーザ発振器 21から出射されたレーザ光を像 転写光学機構 22で整形して所望のビーム形状、ビームエネルギーに調整し、ガルバ ノミラー 35X, 35Yによって任意の角度に偏向させ、 f— Θレンズ 34を介して被カロェ 物 37の所定位置に結像し照射する。これにより、被加工物 37の所定の照射位置に レーザ光のビーム径に対応する開口径の穴(凹部)が加工される。なお、本実施の形 態 1では、 1つの穴の加工位置に対して複数回のレーザ照射を行う。  [0020] With this configuration, the laser processing apparatus 1 shapes the laser light emitted from the laser oscillator 21 by the image transfer optical mechanism 22 and adjusts it to a desired beam shape and beam energy. The beam is deflected to an angle, and is imaged and irradiated at a predetermined position of the object 37 through the f-Θ lens 34. Thereby, a hole (concave portion) having an opening diameter corresponding to the beam diameter of the laser beam is processed at a predetermined irradiation position of the workpiece 37. In Embodiment 1, laser irradiation is performed a plurality of times for the processing position of one hole.
[0021] 図 2は、本発明に係るレーザカ卩ェ装置の構成を示す機能ブロック図である。レーザ 加工装置 1は、加工制御装置 10と加工駆動装置 20を備えている。加工駆動装置 20 は、レーザ加工を行う手段であり、図 1に示したレーザ発振器 21、像転写光学機構 2 2、レーザ加工部 30に対応する。  FIG. 2 is a functional block diagram showing the configuration of the laser cache device according to the present invention. The laser processing device 1 includes a processing control device 10 and a processing drive device 20. The processing drive device 20 is a means for performing laser processing, and corresponds to the laser oscillator 21, the image transfer optical mechanism 22, and the laser processing unit 30 shown in FIG.
[0022] 加工制御装置 10は、加工駆動装置 20を制御する装置であり、メイン制御部 11、レ 一ザ制御部 12、 X— Yテーブル制御部 13、加工プログラム記憶部 14、ガルバノスキ ャナ制御部 15を備えて ヽる。  [0022] The machining control device 10 is a device that controls the machining drive device 20, and includes a main control unit 11, a laser control unit 12, an XY table control unit 13, a machining program storage unit 14, and a galvano scanner control. Come with part 15.
[0023] レーザ制御部 12は、レーザ光に関する制御(レーザ光の発振、光軸調整など)を行 なう。レーザ制御部 12は、レーザ発振器 21を制御してレーザ光の発振 (タイミング、 パワーなど)を制御するとともに、コリメーシヨンレンズ 23、マスク 24を制御してレーザ 光の光軸調整やビーム形状を制御する。また、レーザ制御部 12は、 f Θレンズ 34 の位置を制御してレーザ光を被加ェ物 37の表面に対して垂直な方向に偏向させる  [0023] The laser control unit 12 performs control related to laser light (laser light oscillation, optical axis adjustment, etc.). The laser control unit 12 controls the laser oscillator 21 to control the oscillation (timing, power, etc.) of the laser beam, and controls the collimation lens 23 and the mask 24 to adjust the optical axis of the laser beam and adjust the beam shape. Control. The laser controller 12 controls the position of the f Θ lens 34 to deflect the laser beam in a direction perpendicular to the surface of the workpiece 37.
[0024] X—Yテーブル制御部 13は、 X—Yテーブル 38を制御して、 X—Yテーブル 38上 の被力卩ェ物 37を X—Y方向に移動させる。ガルバノスキャナ制御部 15は、ガルバノ スキャナ 36X, 36Yを制御してガルバノミラー 35X, 35Yを所定の角度に回動させ、 レーザ光を X— Y方向に走査させる。 [0024] The XY table control unit 13 controls the XY table 38 to move the object 37 on the XY table 38 in the XY direction. The galvano scanner control unit 15 controls the galvano scanners 36X and 36Y to rotate the galvano mirrors 35X and 35Y to a predetermined angle to scan the laser light in the XY directions.
[0025] 本実施の形態 1では、 X—Yテーブル制御部 13によって X—Yテーブル 38上の被 加工物 37を X—Y方向に移動させるとともに、ガルバノスキャナ制御部 15によってレ 一ザ光を X— Υ方向に走査させて被力卩ェ物 37の所定の加工位置に対してレーザ照 射を行なう。 X— Υテーブル制御部 13、ガルバノスキャナ制御部 15は、後述の加工 プログラムや NCプログラム等に基づ!/、て、 Χ—Υテーブル 38の位置を制御するととも に、レーザ光を Χ—Υ方向に走査させる。 In the first embodiment, the X—Y table control unit 13 causes the X—Y table 38 to be covered. The workpiece 37 is moved in the X—Y direction, and the laser light is scanned in the X—Υ direction by the galvano scanner control unit 15 to irradiate a predetermined machining position of the workpiece 37 with laser irradiation. Do. X—Υ table control unit 13 and galvano scanner control unit 15 control the position of 38—Υ table 38 and control the laser beam based on the machining program and NC program described later! Scan in the direction.
[0026] 加工プログラム記憶部 14は、被力卩ェ物 37のレーザ力卩ェを行なうための各種プログ ラム等を記憶する。加工プログラム記憶部 14は、例えば被力卩ェ物 37の加工手順に 関する加工プログラム、 NCプログラム等を記憶している。加工プログラムは、加工す るガルバノエリアの順番、被力卩ェ物 37の加工位置(穴)の順番に関する情報、レーザ 光を照射するタイミングに関する情報、レーザ光の照射回数に関する情報等を含ん でいる。メイン制御部 11は、レーザ制御部 12、 Χ—Υテーブル制御部 13、力!]ェプロ グラム記憶部 14、ガルバノスキャナ制御部 15を制御する。  The machining program storage unit 14 stores various programs and the like for performing the laser force measurement of the workpiece 37. The machining program storage unit 14 stores, for example, a machining program related to a machining procedure of the force object 37, an NC program, and the like. The machining program includes information on the order of galvano areas to be machined, information on the order of machining positions (holes) of the object 37, information on the timing of laser beam irradiation, information on the number of times of laser beam irradiation, etc. . The main control unit 11 includes a laser control unit 12, a Χ— 13 table control unit 13, and power! ] Controls the program storage unit 14 and the galvano scanner control unit 15.
[0027] つぎに、実施の形態 1に係るレーザ加工装置の動作手順を説明する。図 3は、実施 の形態 1に係るレーザ加工装置の動作手順を示すフローチャートであり、図 4は、実 施の形態 1に係るレーザ照射位置の順番を説明するための図である。  Next, an operation procedure of the laser processing apparatus according to Embodiment 1 will be described. FIG. 3 is a flowchart showing an operation procedure of the laser processing apparatus according to the first embodiment, and FIG. 4 is a diagram for explaining the order of the laser irradiation positions according to the first embodiment.
[0028] ここでは、レーザ加工の一例として、例えば、レーザ加工装置 1が第 1番目の加工 穴 HIから第 η (ηは 2以上の自然数)番目の加工穴 Ηηまでをサイクルパルスモードで レーザカ卩ェする場合について説明する。なお、ここではレーザカ卩ェ装置 1のレーザ 加工の一例として、加工穴が 4つ以上 (ηが 4以上)である場合にっ 、て説明する。  [0028] Here, as an example of laser processing, for example, the laser processing apparatus 1 uses a laser pulse in a cycle pulse mode from the first processing hole HI to the ηth (η is a natural number of 2 or more) th processing hole Ηη. A description will be given of the case where the operation is performed. Here, as an example of laser processing of the laser cage apparatus 1, a case where there are four or more processing holes (η is four or more) will be described.
[0029] レーザカ卩ェ装置 1による被力卩ェ物 37のレーザカ卩ェ処理が開始されると、 Χ—Υテー ブル制御部 13は、加工プログラム記憶部 14内の加工プログラムや NCプログラムに 基づいて、 Χ—Υテーブル 38の位置を制御する。これにより、レーザ光が所定のガル ノ ノエリア(ガルバノスキャナ 36Χ, 36Υによって加工位置が制御されるエリア) 51に 照射されるよう、 Χ—Υテーブル 38上の被力卩ェ物 37が Χ—Υ方向に移動する。  [0029] When the laser cache processing of the workpiece 37 by the laser cache device 1 is started, the table controller 13 is based on the machining program and the NC program in the machining program storage unit 14. The position of the Χ—Χ table 38 is controlled. As a result, the target object 37 on the table 38 is moved so that the laser beam is irradiated to a predetermined gallon area (area where the processing position is controlled by the galvano scanners 36 and 36) 51. Move in the direction.
[0030] ガルバノスキャナ制御部 15は、初期設定として、レーザ光の照射位置がガルバノエ リア 51のデフォルト座標(例えば原点(ガルバノエリアの中央点))となるようガルバノ スキャナ 36Χ, 36Υを制御する。  As an initial setting, the galvano scanner control unit 15 controls the galvano scanners 36 Χ and 36 よ う so that the irradiation position of the laser light becomes the default coordinates of the galvano area 51 (for example, the origin (the center point of the galvano area)).
[0031] まず、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 η番目の加工位 置 (力卩ェ穴 Hn)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yにガ ルバノ位置指令を行なう。これにより、第 n番目の加工位置 (加工穴 Hn)がレーザ光 の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを制 御する (ステップ S 110)。このとき、レーザ制御部 12は、レーザ発振器 21からレーザ 光を発振させない。 [0031] First, the galvano scanner control unit 15 performs the η-th machining position based on the machining program. Command the galvano position to the galvano scanners 36X, 36Y so that the position (force hole Hn) is the laser beam irradiation position. Thus, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the nth processing position (processing hole Hn) becomes the irradiation position of the laser light (step S110). At this time, the laser control unit 12 does not oscillate the laser beam from the laser oscillator 21.
[0032] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 1番目の加工 位置 (力卩ェ穴 HI)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 1番目の加工位置 (加工穴 HI)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S120) (l) o  [0032] Next, the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to make a galvano position command so that the first machining position (force hole HI) becomes the irradiation position of the laser beam based on the machining program. To do. As a result, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first machining position (machining hole HI) becomes the irradiation position of the laser beam (step S120) (l) o
[0033] そして、レーザ制御部 12は、レーザ発振器 21からレーザ光を発振させる。これによ り、レーザ光は像転写光学機構 22で整形され所望のビーム形状、ビームエネルギー に調整される。さらに、マスク 24から出射されたレーザ光は、ガルバノミラー 35X, 35 Yで反射して偏向され、 f- Θレンズ 34を介して被力卩ェ物 37の加工穴 HIに結像し照 射される。これにより、加工穴 HI (第 1穴)に 1ショット目の加工処理が行われる (ステ ップ S 130)。  Then, the laser control unit 12 oscillates laser light from the laser oscillator 21. As a result, the laser beam is shaped by the image transfer optical mechanism 22 and adjusted to a desired beam shape and beam energy. Further, the laser light emitted from the mask 24 is reflected and deflected by the galvanometer mirrors 35X and 35Y, and is imaged and irradiated on the processing hole HI of the object 37 through the f-Θ lens 34. The As a result, the first shot of the processing hole HI (first hole) is processed (step S130).
[0034] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 2番目の加工 位置 (力卩ェ穴 H2)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 2番目の加工位置 (加工穴 H2)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S 140) (2)。そして、レーザ制御部 12は、レーザ発振器 21からレ 一ザ光を発振させる。これにより、加工穴 H2 (第 2穴)に 1ショット目の加工処理が行 われる(ステップ S 150)。  [0034] Next, the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to send a galvano position command so that the second machining position (force hole H2) becomes the laser beam irradiation position based on the machining program. To do. Thereby, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the second processing position (processing hole H2) becomes the irradiation position of the laser beam (step S140) (2). Then, the laser control unit 12 oscillates laser light from the laser oscillator 21. Thereby, the first shot is processed in the processing hole H2 (second hole) (step S150).
[0035] この後、図 3には示していないが、ガルバノスキャナ制御部 15は、加工プログラムに 基づ 、て第 3番目以降 (第 (n— 2)番目まで)の加工位置がレーザ光の照射位置とな るよう、ガルバノスキャナ 36X, 36Yにガルバノ位置指令を行なうとともに、第 3番目以 降 (第 (n— 2)番目まで)の加工穴に 1ショット目の加工処理を行う。  After this, although not shown in FIG. 3, the galvano scanner control unit 15 determines that the third and subsequent (up to (n−2)) machining positions of the laser beam are based on the machining program. A galvano position command is issued to the galvano scanners 36X and 36Y so that the irradiation position is reached, and the first shot is processed in the third and subsequent (up to (n−2)) holes.
[0036] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 (n— 1)番目 の加工位置 (加工穴 H (n— 1) )がレーザ光の照射位置となるよう、ガルバノスキャナ 3 6X, 36Yにガルバノ位置指令を行なう。これにより、第 (n—l)番目の加工位置 (カロ ェ穴 H2)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノ ミラー 35X, 35Yを制御する(ステップ S160) (n)。 [0036] Next, the galvano scanner control unit 15 determines the (n-1) th based on the machining program. A galvano position command is issued to the galvano scanners 36X and 36Y so that the machining position (the machining hole H (n-1)) is the laser beam irradiation position. As a result, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the (n−l) -th processing position (calorie hole H2) becomes the irradiation position of the laser beam (step S160) (n) .
[0037] そして、レーザ制御部 12は、レーザ発振器 21からレーザ光を発振させる。これによ り、加工穴 H (n- 1) (第 (n— 1)穴)に 1ショット目の加工処理が行われる (ステップ S1 70)。 Then, the laser control unit 12 oscillates laser light from the laser oscillator 21. As a result, the first shot of the processing hole H (n-1) ((n-1)) hole is processed (step S170).
[0038] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 n番目の加工 位置 (力卩ェ穴 Hn)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 n番目の加工位置 (加工穴 H2)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S 180) (n+ l)。そして、レーザ制御部 12は、レーザ発振器 21か らレーザ光を発振させる。これにより、加工穴 Hn (第 n穴)に 1ショット目の加工処理が 行われる(ステップ S 190)。  [0038] Next, the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to provide a galvano position command so that the nth machining position (force hole Hn) becomes the laser beam irradiation position based on the machining program. To do. As a result, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the n-th processing position (processing hole H2) becomes the irradiation position of the laser beam (step S 180) (n + 1). Then, the laser control unit 12 oscillates laser light from the laser oscillator 21. As a result, the first shot of the processing hole Hn (nth hole) is processed (step S190).
[0039] メイン制御部 11は、このガルバノエリア 51でのレーザカ卩ェ処理が終了したか否かを 判断する(ステップ S 200)。本実施の形態 1は、サイクルパルスモードでのレーザカロ ェであるため、メイン制御部 11は、このガルバノエリア 51でのレーザカ卩ェ処理が終了 していないと判断する(ステップ S200、 No)。そして、ガルバノスキャナ制御部 15は、 加工プログラムに基づいて第 1番目の加工位置 (加工穴 HI)がレーザ光の照射位置 となるよう、ガルバノスキャナ 36X, 36Yにガルバノ位置指令を行なう。これにより、第 1番目の加工位置 (加工穴 HI)がレーザ光の照射位置となるよう、ガルバノスキャナ 3 6X, 36Yがガルバノミラー 35X, 35Yを制御する(ステップ S 120)。そして、レーザ制 御部 12は、レーザ発振器 21からレーザ光を発振させる。これにより、加工穴 HI (第 1 穴)に 2ショット目の加工処理が行われる(ステップ S 130)。  [0039] The main control unit 11 determines whether or not the laser cache processing in the galvano area 51 has been completed (step S200). Since the first embodiment is a laser calorie in the cycle pulse mode, the main control unit 11 determines that the laser caulking process in the galvano area 51 has not ended (No in step S200). Then, the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y so that the first machining position (machining hole HI) becomes the irradiation position of the laser beam based on the machining program. Thereby, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first processing position (processing hole HI) becomes the irradiation position of the laser beam (step S120). The laser controller 12 oscillates the laser beam from the laser oscillator 21. As a result, the second shot of the processing hole HI (first hole) is processed (step S130).
[0040] この後、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 2番目〜第 n 番目の加工位置 (力卩ェ穴 H2〜Hn)がレーザ光の照射位置となるよう、ガルバノスキ ャナ 36X, 36Yにガルバノ位置指令を行なうとともに、レーザ制御部 12は、各加工位 置でレーザ発振器 21からレーザ光を発振させる。これにより、第 2番目〜第 n番目の 加工位置 (力卩ェ穴 HI〜Hn)がレーザ光の照射位置となるよう、ガルバノスキャナ 36 X, 36Yがガルバノミラー 35X, 35Yを制御し、加工穴 Hl〜Hn (第 1穴〜第 n穴)に 2ショット目のカロ工処理力行われる(ステップ S140〜S 190) [0040] After that, the galvano scanner control unit 15 sets the galvano scanner so that the second to n-th machining positions (force holes H2 to Hn) become the laser beam irradiation positions based on the machining program. The galvano position command is issued to 36X and 36Y, and the laser control unit 12 oscillates the laser beam from the laser oscillator 21 at each processing position. As a result, the 2nd to nth The galvano scanners 36 X and 36Y control the galvanometer mirrors 35X and 35Y so that the machining position (force hole HI to Hn) is the laser beam irradiation position, and machining holes Hl to Hn (1st hole to nth hole) ) The second shot's processing power is performed (Steps S140 to S190)
[0041] そして、メイン制御部 11は、このガルバノエリア 51でのレーザカ卩ェ処理が終了した か否かを判断する (ステップ S200)。メイン制御部 11が、このガルバノエリア 51での レーザカ卩ェ処理が終了したと判断するまで、ステップ S120〜S200の処理が繰り返 される。 [0041] Then, the main control unit 11 determines whether or not the laser cache process in the galvano area 51 has been completed (step S200). The processes in steps S120 to S200 are repeated until the main control unit 11 determines that the laser cache process in the galvano area 51 has been completed.
[0042] メイン制御部 11が、このガルバノエリア 51でのレーザカ卩ェ処理が終了したと判断す ると (ステップ S200、 Yes)、ガルバノスキャナ制御部 15、レーザ制御部 12は、このガ ルバノエリア 51でのレーザカ卩ェ処理を終了し、次のガルバノエリア 51での加工処理 を行なえるよう、 X—Yテーブル 38の位置を制御する。そして、次のガルバノエリア 51 での加工処理が行なわれる。  [0042] When the main control unit 11 determines that the laser cache processing in the galvano area 51 has been completed (step S200, Yes), the galvano scanner control unit 15 and the laser control unit 12 operate in the galvano area 51. The position of the XY table 38 is controlled so that the laser-caching process is finished and the next galvano area 51 can be processed. Then, the next galvano area 51 is processed.
[0043] ここで、ガルバノ位置指令とレーザ光のレーザ出力の関係について説明する。図 5 は、ガルバノ位置指令とレーザ出力の関係を説明するための図である。図 5に示すよ うに、実施の形態 1では、まず最初にガルバノスキャナ制御部 15がガルバノスキャナ 36X, 36Yに対し、第 n穴目の位置にガルバノ位置指令を行なう。そして、このときレ 一ザ発振器 21によるレーザ出力(発振)は行なわれない。次に、ガルバノスキャナ制 御部 15はガルバノスキャナ 36X, 36Yに対し、第 1穴目の位置にガルバノ位置指令 を行なう。このときレーザ発振器 21は、第 1穴目の位置にレーザ出力を行う。以下、 第 2穴目〜第 n穴目までガルバノスキャナ制御部 15からガルバノスキャナ 36X, 36Y に対してガルバノ位置指令が行なわれ、各穴 (位置)でレーザ発振器 21によるレーザ 出力が行なわれる。  Here, the relationship between the galvano position command and the laser output of the laser light will be described. FIG. 5 is a diagram for explaining the relationship between the galvano position command and the laser output. As shown in FIG. 5, in the first embodiment, first, the galvano scanner control unit 15 issues a galvano position command to the position of the nth hole with respect to the galvano scanners 36X and 36Y. At this time, laser output (oscillation) by the laser oscillator 21 is not performed. Next, the galvano scanner control unit 15 issues a galvano position command to the position of the first hole to the galvano scanners 36X and 36Y. At this time, the laser oscillator 21 performs laser output at the position of the first hole. Thereafter, from the second hole to the nth hole, the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y, and the laser oscillator 21 performs laser output at each hole (position).
[0044] これにより、第 1穴目〜第 n穴目までの第 1ショット目の加工処理を完了し、第 1穴目 〜第 n穴目までの第 2ショット目の加工処理を行なう。すなわち、第 1穴目〜第 n穴目 までガルバノスキャナ制御部 15がガルバノスキャナ 36X, 36Yに対してガルバノ位置 指令を行い、各穴でレーザ発振器 21によるレーザ出力(2ショット目)が行なわれる。  Thereby, the first shot processing from the first hole to the n-th hole is completed, and the second shot processing from the first hole to the n-th hole is performed. That is, the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y from the first hole to the nth hole, and laser output (second shot) is performed by the laser oscillator 21 in each hole.
[0045] つぎに、ガルバノ位置指令と加工位置の誤差の関係につ!、て説明する。図 6は、ガ ルバノ位置指令と加工位置の誤差の関係を説明するための図である。ガルバノスキ ャナ制御部 15が、所定の加工位置がレーザ光の照射位置となるよう、ガルバノスキヤ ナ 36X, 36Yにガルバノ位置指令を行なうと、この加工位置がレーザ光の照射位置 となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを制御する。 Next, the relationship between the galvano position command and the machining position error will be described. FIG. 6 is a diagram for explaining the relationship between the galvano position command and the machining position error. Galvanski When the channel controller 15 issues a galvano position command to the galvano scanners 36X and 36Y so that the predetermined processing position becomes the laser beam irradiation position, the galvano scanner 36X is set so that the processing position becomes the laser beam irradiation position. , 36Y controls the Galvano mirrors 35X, 35Y.
[0046] ところが、レーザ光の照射位置は、前の照射位置力 の移動経路 (距離、方向)に 応じて所定の位置決め誤差 (ズレ量)を生じてしまう。すなわち、ガルバノ位置指令と 実際のガルバノ位置(照射位置)〖こズレ (オーバーシュートやアンダーシュート)が生 じてしまう。 However, the laser beam irradiation position causes a predetermined positioning error (deviation amount) according to the movement path (distance, direction) of the previous irradiation position force. In other words, the galvano position command and the actual galvano position (irradiation position) deviation (overshoot or undershoot) will occur.
[0047] 例えば、従来行なわれて!/、た加工手順では、第 1穴の第 1ショット目を加工する場 合のガルバノ位置は、原点などのデフォルト座標力 第 1穴の加工位置に移動する。 ところが、第 1穴の第 2ショット目を加工する場合のガルバノ位置は、第 n穴の加工位 置力も第 1穴の加工位置に移動する。このため、第 1穴においては、 1ショット目と 2シ ヨット目とで、実際のガルバノ位置の位置ズレ量が異なることとなる。これにより、従来 の加工手順では、第 1穴が被加工物 37の加工面上力も見て楕円形状やダルマ形状 となり、被加工物の加工形状を精度良く加工することができな力つた。  [0047] For example, in the conventional process! /, The galvano position when processing the first shot of the first hole moves to the default coordinate force, such as the origin, to the processing position of the first hole. . However, the galvano position when machining the second shot of the first hole moves the machining position force of the nth hole to the machining position of the first hole. For this reason, in the first hole, the actual positional deviation of the galvano position differs between the first shot and the second shot. As a result, according to the conventional machining procedure, the first hole has an elliptical shape or a dharma shape by looking at the machining surface force of the workpiece 37, so that the machining shape of the workpiece can not be machined with high accuracy.
[0048] 一方、実施の形態 1では、第 1穴の 1ショット目を加工する際、第 n穴目の位置にガ ルバノ位置指令を行なってガルバノ位置を移動させた後、第 n穴目の位置から第 1穴 の加工位置にガルバノ位置指令を行なってガルバノ位置を移動させる。これにより、 第 1穴の 1ショット目の実際のガルバノ位置の位置ズレ量と、第 1穴の 2ショット目以降 の実際のガルバノ位置の位置ズレ量とが略同程度のズレ量となる。  [0048] On the other hand, in Embodiment 1, when processing the first shot of the first hole, a galvano position command is issued to the position of the nth hole to move the galvano position, and then the nth hole A galvano position command is issued from the position to the first hole machining position to move the galvano position. As a result, the displacement amount of the actual galvano position in the first shot of the first hole and the displacement amount of the actual galvano position in the second and subsequent shots of the first hole are substantially the same.
[0049] なお、実施の形態 1では、加工制御装置 10の加工プログラム記憶部 14が加工プロ グラムを予め記憶しており、この加工プログラムに基づいてレーザ力卩ェを行う構成とし たが、加工プログラムを加工制御装置 10の外部装置力も受信して使用する構成とし てもよい。以下、図 7および図 8を用いて外部装置からカ卩ェプログラムを取得してレー ザ加工を行なう場合について説明する。  In the first embodiment, the machining program storage unit 14 of the machining control device 10 stores the machining program in advance, and the laser force check is performed based on the machining program. The program may be configured to receive and use the external device force of the machining control device 10 as well. Hereinafter, a case where a laser program is acquired from an external device and laser processing is performed will be described with reference to FIGS. 7 and 8. FIG.
[0050] この場合、例えばレーザカ卩ェ装置 1でカ卩ェプログラムを作成し、この加工プログラム に基づいてレーザカ卩ェ装置 1がレーザ力卩ェを行なう。すなわち、図 2に示した力卩ェ制 御装置 10の加工プログラム記憶部 14内に記憶する加工プログラムを外部装置で作 成し、この作成したカ卩ェプログラムを用いてレーザ力卩ェを行う。 [0051] 図 7は、実施の形態 1に係るレーザ加工装置の他の構成例を示す機能ブロック図で あり、図 7の各構成要素のうち図 2に示すレーザ加工装置 1と同一機能を達成する構 成要素については同一番号を付しており、重複する説明は省略する。 [0050] In this case, for example, a laser program is created by the laser carriage device 1, and the laser carriage device 1 performs laser force checking based on the machining program. That is, a machining program stored in the machining program storage unit 14 of the force control device 10 shown in FIG. 2 is created by an external device, and laser force is measured using the created cache program. . FIG. 7 is a functional block diagram showing another configuration example of the laser processing apparatus according to the first embodiment, and achieves the same function as the laser processing apparatus 1 shown in FIG. 2 among the components in FIG. The same numbers are assigned to the constituent elements, and duplicate descriptions are omitted.
[0052] ここでのレーザ加工装置 1は、加工制御装置 10とカ卩ェ駆動装置 20に加えて、加工 プログラム記憶部 14内に記憶しておくための加工プログラムを作成するプログラム作 成装置 60を備えている。  The laser processing apparatus 1 here is a program creation apparatus 60 that creates a machining program to be stored in the machining program storage unit 14 in addition to the machining control apparatus 10 and the cache drive apparatus 20. It has.
[0053] プログラム作成装置 60は、パーソナルコンピュータ等の装置によって構成され、ュ 一ザプログラム入力部 41、 CAD (Computer Aided Design)変換部 62を有している。 ユーザプログラム入力部 41は、被加工物 37上の穴あけ加工位置 (座標)を示すユー ザプログラム (ガーバー形式の座標プログラム)を入力する。  The program creation device 60 is configured by a device such as a personal computer, and includes a user program input unit 41 and a CAD (Computer Aided Design) conversion unit 62. The user program input unit 41 inputs a user program (gerber type coordinate program) indicating a drilling position (coordinates) on the workpiece 37.
[0054] CAD変換部 62は、ユーザプログラム入力部 41からのユーザプログラムを、レーザ 加工装置 1に合った適切なフォーマットの加工プログラムに変換する。 CAD変換部 6 2は、加工目的に応じてガルバノエリア範囲や変換形式等 (X方向主の移動、 Y方向 主の移動、最短距離の移動経路)をユーザによって指定可能な構成となって 、る。  The CAD conversion unit 62 converts the user program from the user program input unit 41 into a processing program having an appropriate format suitable for the laser processing apparatus 1. The CAD converter 62 has a configuration that allows the user to specify the galvano area range, conversion format, etc. (main movement in the X direction, main movement in the Y direction, and the movement path with the shortest distance) according to the processing purpose. .
[0055] さらに、 CAD変換部 62は、ユーザプログラム力 変換したカ卩ェプログラムにレーザ 光(レーザビーム)のオン Zオフを指令するパラメータを付加する。 CAD変換部 62は 、例えばレーザ光のオンを指令するパラメータとして「1」を加工プログラムに付加する とともに、レーザ光のオフを指令するパラメータとして「0」をカ卩ェプログラムに付加す る。具体的には、 CAD変換部 62は、例えばガルバノエリア N1に対し、最初に第 n穴 目の加工位置である「X300 Y300」にガルバノ位置指令を行なうとともに、レーザ光 を照射しな 、命令(「0」 )をカ卩ェプログラムに付加する。 CAD変換部 62が作成したカロ ェプログラムは、加工プログラム記憶部 14が記憶する。  [0055] Further, the CAD conversion unit 62 adds a parameter for commanding on / off of the laser beam (laser beam) to the cache program converted by the user program force. The CAD conversion unit 62 adds, for example, “1” to the machining program as a parameter for instructing laser light to be turned on, and adds “0” to the cache program as a parameter for instructing laser light to be turned off. Specifically, for example, for the galvano area N1, the CAD conversion unit 62 first issues a galvano position command to “X300 Y300”, which is the machining position of the nth hole, and does not irradiate the laser beam. "0") is added to the cache program. The machining program storage unit 14 stores the Caloe program created by the CAD conversion unit 62.
[0056] 加工プログラムは、例えばビームオフを示す情報によって位置決め位置のみを指 定することが可能なフォーマットで作成されており、レーザ加工装置 1で読み取り可能 な形式のフォーマットに変換されている。  The processing program is created in a format that can specify only the positioning position based on, for example, information indicating beam off, and is converted into a format that can be read by the laser processing apparatus 1.
[0057] つぎに、加工プログラムの一例について説明する。図 8は、加工プログラムの一例を 示す図である。加工プログラムは、ガルバノエリア N1 (加工エリア 1)において、第 η穴 目の加工点が例えば、「Χ300 Υ300」であり、原点などのデフォルト座標力も第 η穴 目の加工位置にガルバノ位置が移動させられることを示している。また、この最初の 第 n穴目へのガルバノ位置の移動の際には、 1ショット目のレーザ力卩ェは行われない ことを示している。この後、第 1穴目の加工点、第 2穴目の加工点と、順番に加工位置 にガルバノ位置を移動させてガルバノエリア N1内の各穴のレーザ力卩ェが行なわれる [0057] Next, an example of a machining program will be described. FIG. 8 is a diagram showing an example of a machining program. In the machining program, in the galvano area N1 (machining area 1), the machining point of the η-th hole is, for example, Χ300 Υ300, and the default coordinate force such as the origin is also in the η-th hole. It shows that the galvano position is moved to the eye processing position. In addition, when the galvano position is moved to the first n-th hole, the laser power of the first shot is not performed. After that, the laser power of each hole in the galvano area N1 is performed by moving the galvano position to the machining point of the first hole and the machining point of the second hole in order.
[0058] ここでの加工プログラムは、その後ガルバノエリア N2に移動することを示している。 [0058] The machining program here indicates that the machine then moves to the galvano area N2.
さらに、加工プログラムは、ガルバノエリア N2 (加工エリア 2)において、第 M穴目(M は自然数)の加工点が例えば、「X300 Y300」であり、原点などのデフォルト座標か ら第 Μ穴目の加工位置にガルバノ位置が移動させられることを示している。また、こ の最初の第 Μ穴目へのガルバノ位置の移動の際には、 1ショット目のレーザ力卩ェは 行われないことを示している。この後、第 1穴目の加工点、第 2穴目の加工点と、順番 に加工位置にガルバノ位置が移動させてガルバノエリア Ν2内の各穴のレーザカロェ が行なわれる。ここでは、加工プログラムに基づいてカ卩ェ制御装置 10がレーザカロェ 装置 1のレーザ力卩ェを制御する。  Furthermore, in the machining program, in the galvano area N2 (machining area 2), the machining point of the M-th hole (M is a natural number) is, for example, “X300 Y300”, and from the default coordinates such as the origin, It shows that the galvano position is moved to the processing position. It also shows that the laser power of the first shot is not performed when the galvano position moves to this first hole. After that, the laser caloring of each hole in the galvano area Ν2 is performed by moving the galvano position to the machining point of the first hole and the machining point of the second hole in order. Here, the carriage control device 10 controls the laser force of the laser caloe device 1 based on the machining program.
[0059] なお、ここではレーザカ卩ェ装置 1がプログラム作成装置 60を備える構成とした力 レ 一ザカ卩ェ装置 1とプログラム作成装置 60を独立した異なる構成とし、プログラム作成 装置 60で作成したカ卩ェプログラムを用いてレーザカ卩ェ装置 1がレーザ力卩ェを行なう こととしてもよい。この場合、プログラム作成装置 60とレーザカ卩ェ装置 1を接続してプ ログラム作成装置 60からレーザカ卩ェ装置 1にカ卩ェプログラムを送信する構成としても よ!、し、プログラム作成装置 60で作成した加工プログラムを可搬性の外部記憶媒体 を介してレーザ加工装置 1に入力する構成としてもよ!、。  [0059] Here, it is assumed that the laser cage apparatus 1 includes the program creation device 60. The force laser cache device 1 and the program creation device 60 are configured independently of each other, and the program created by the program creation device 60 is used. The laser carriage device 1 may perform the laser force check using the program. In this case, it is possible to connect the program creation device 60 and the laser cache device 1 and send the program from the program creation device 60 to the laser cache device 1! The machined program can be input to the laser machine 1 via a portable external storage medium!
[0060] なお、実施の形態 1では、レーザ加工装置 1がサイクルパルスモードで被加工物 37 のレーザ力卩ェを行なう場合について説明した力 レーザカ卩ェ装置 1は、レーザ光の 照射位置を変化させながら被加工物の複数の加工位置に対しレーザ光を 1〜複数 ショットずつ照射するサイクルを複数回繰り返すカ卩ェ処理によって被力卩ェ物 37のレ 一ザ力卩ェを行なってもよ ヽ。  [0060] In the first embodiment, the force described in the case where the laser processing apparatus 1 performs the laser force check of the workpiece 37 in the cycle pulse mode. The laser check apparatus 1 changes the irradiation position of the laser beam. The laser force of the workpiece 37 may be measured by a caulking process that repeats a cycle of irradiating one to a plurality of shots of laser light to a plurality of machining positions of the workpiece several times.ヽ.
[0061] また、実施の形態 1では、第 1穴の 1ショット目を加工する際、第 η穴目の位置にガル バノ位置を移動させた後、、第 η穴目の位置力 第 1穴の加工位置にガルバノ位置を 移動させることとしたが、第 1穴の 1ショット目を加工する際、第 m穴目(mは (n—l)よ りも小さ ヽ自然数)の位置にガルバノ位置を移動させた後、第 m穴目〜第 n穴目まで ガルバノ位置を移動させ、その後第 1穴目の加工位置にガルバノ位置を移動させる こととしてちよい。 In the first embodiment, when the first shot of the first hole is processed, the galvano position is moved to the position of the η-th hole, and then the position force of the η-th hole Set the galvano position to the hole processing position. However, when processing the first shot of the first hole, after moving the galvano position to the position of the mth hole (m is a natural number smaller than (n−l)), It is possible to move the galvano position from the m-th hole to the n-th hole, and then move the galvano position to the machining position of the first hole.
[0062] また、実施の形態 1では、第 1穴の 1ショット目を加工する際、第 n穴目の位置にガル バノ位置を移動させた後、第 n穴目の位置から第 1穴目の加工位置にガルバノ位置 を移動させることとしたが、第 1穴の 1ショット目を加工する際、第 n穴目から第 1穴目 の加工経路の途中位置にガルバノ位置を移動させた後、この途中位置力 第 1穴目 の加工位置にガルバノ位置を移動させて第 1穴の 1ショット目をカ卩ェすることとしても よい。  In Embodiment 1, when processing the first shot of the first hole, after moving the galvano position to the position of the nth hole, the first hole is moved from the position of the nth hole. We decided to move the galvano position to the processing position of the eye, but when processing the first shot of the 1st hole, after moving the galvo position from the nth hole to the middle position of the processing path from the 1st hole The intermediate position force may be moved to the machining position of the first hole and the first shot of the first hole may be checked.
[0063] また、第 1穴目の 1ショット目を加工する際の第 n穴目から第 1穴目までのガルバノ位 置の移動距離を少なくするため、第 n穴目を第 1穴目に近い穴 (例えば穴間距離が 最短となる穴)に設定してもよい。第 n穴目から第 1穴目に移動する際のガルバノ移動 距離が短かければ、ガルバノ位置の位置ズレ量が少なくなるため、これにより第 n穴 目力 第 1穴目に移動した際のガルバノ位置の位置ズレ量を少なくさせることが可能 となる。また、第 n穴目から第 1穴目にガルバノ位置を移動させる際の移動時間を短く することが可能となる。  [0063] In order to reduce the movement distance of the galvano position from the nth hole to the first hole when processing the first shot of the first hole, the nth hole is made to the first hole. It may be set to a close hole (for example, the hole having the shortest distance between holes). If the galvano movement distance when moving from the nth hole to the 1st hole is short, the amount of displacement of the galvano position decreases. It is possible to reduce the amount of positional deviation. In addition, it is possible to shorten the movement time when the galvano position is moved from the nth hole to the first hole.
[0064] また、第 1穴目の 1ショット目を加工する際の原点力も第 n穴目までのガルバノ位置 の移動距離を少なくするため、第 n穴目を原点に近い穴 (例えば穴間距離が最短と なる穴)に設定してもよい。これにより、原点力も第 n穴目にガルバノ位置を移動させ る際の移動時間を短くすることが可能となる。  [0064] Also, the origin force when machining the first shot of the 1st hole is also a hole close to the origin of the nth hole (for example, the distance between holes) to reduce the movement distance of the galvano position to the nth hole. May be set to the shortest hole). This makes it possible to shorten the movement time when the galvano position is moved to the nth hole in the origin force.
[0065] さらに、第 1穴目の 1ショット目を加工する際の原点力 第 n穴目までのガルバノ位 置の移動距離と第 n穴目から第 1穴目までのガルバノ位置の移動距離の合計距離を 少なく(例えば最短距離)するよう第 n穴目および第 1穴目を設定してもよい。これによ り、原点力 第 n穴目へガルバノ位置を移動させる際の移動時間と、第 n穴目から第 1 穴目へガルバノ位置を移動させる際の移動時間の合計時間を短くすることが可能と なる。  [0065] In addition, the origin force when machining the first shot of the first hole The movement distance of the galvano position from the nth hole to the movement distance of the galvano position from the nth hole to the first hole The nth hole and the first hole may be set to reduce the total distance (for example, the shortest distance). As a result, the total time of the movement time when moving the galvano position from the nth hole to the first hole and the movement time when moving the galvo position from the nth hole to the nth hole can be shortened. It becomes possible.
[0066] また、レーザカ卩ェ装置 1は、走査エリア毎に X—Yテーブル 38を停止させ、ガルバノ ミラー 35X, 35Yのみを回動させてレーザ光を走査するステージ停止加工であっても よいし、 X—Yテーブル 38を動かしたままガルバノミラー 35X, 35Yを動かしてレーザ 光を走査するステージ非停止加工であってもよ 、。 [0066] Further, the laser carriage device 1 stops the XY table 38 for each scanning area, so that the galvanometer is stopped. It may be stage stop processing that scans the laser beam by rotating only the mirrors 35X and 35Y, or the stage that does not stop scanning the laser beam by moving the galvano mirrors 35X and 35Y while moving the X—Y table 38. Even processing.
[0067] このように、実施の形態 1によれば、第 1穴の 1ショット目の実際のガルバノ位置の位 置ズレ量と、第 1穴の 2ショット目以降の実際のガルバノ位置の位置ズレ量とを略同程 度のズレ量とさせることができるので、第 1穴を被加工物 37の加工面上から見て略円 形状に加工でき、被加工物 37の加工形状を精度良く加工することが可能となる。  [0067] Thus, according to the first embodiment, the positional deviation amount of the actual galvano position in the first shot of the first hole and the positional deviation of the actual galvano position in the second and subsequent shots of the first hole. The first hole can be machined into a substantially circular shape when viewed from the machining surface of the work piece 37, and the work shape of the work piece 37 can be machined with high accuracy. It becomes possible to do.
[0068] また、プログラム作成装置 60が第 1穴の 1ショット目を加工する際、第 n穴目の位置 にガルバノ位置指令を行なってガルバノ位置を移動させた後、第 n穴目の位置から 第 1穴の加工位置にガルバノ位置指令を行なってガルバノ位置を移動させる加工プ ログラムを作成するので、レーザカ卩ェ装置 1は第 1穴の 1ショット目の実際のガルバノ 位置の位置ズレ量と、第 1穴の 2ショット目以降の実際のガルバノ位置の位置ズレ量と を略同程度のズレ量とさせることができる。これにより、第 1穴を被力卩ェ物 37の加工面 上から見て略円形状に加工でき、被加工物 37の加工形状を精度良く加工することが 可能な加工プログラムをレーザカ卩ェ装置 1に提供することが可能となる。  [0068] When the program creation device 60 processes the first shot of the first hole, the galvano position command is issued to the position of the nth hole to move the galvano position, and then the position of the nth hole is changed. Since a machining program is created to move the galvano position by issuing a galvano position command to the machining position of the 1st hole, the laser carriage device 1 has a positional shift amount of the actual galvano position of the first shot of the 1st hole, The displacement amount of the actual galvano position after the second shot of the 1st hole can be made to be approximately the same displacement amount. As a result, it is possible to machine the first hole into a substantially circular shape when viewed from the machining surface of the workpiece 37, and a machining program capable of machining the machining shape of the workpiece 37 with high accuracy is provided. It will be possible to provide one.
[0069] 実施の形態 2.  [0069] Embodiment 2.
つぎに、図 1, 2および図 9, 10を用いてこの発明の実施の形態 2について説明する 。実施の形態 2では、サイクルパルスモードの 1サイクル終了毎に所定のデフォルト座 標へガルバノ位置指令を行い、第 1穴目を加工する際のガルバノ位置移動が全ての サイクル(1ショット目を含む全ショット)で同一経路となるようガルバノミラー 35X, 35Y を制御する。実施の形態 2のレーザ加工装置 1も、実施の形態 1の図 1, 2で説明した レーザ加工装置 1と同様の構成を有するので、ここではその説明を省略する。  Next, a second embodiment of the present invention will be described with reference to FIGS. In Embodiment 2, a galvano position command is issued to a predetermined default coordinate at the end of each cycle in the cycle pulse mode, and galvano position movement when machining the first hole is performed in all cycles (all the first shot including the first shot). Galvanometer mirrors 35X and 35Y are controlled so that the same path is obtained in the shot. Since the laser processing apparatus 1 of the second embodiment also has the same configuration as the laser processing apparatus 1 described in FIGS. 1 and 2 of the first embodiment, the description thereof is omitted here.
[0070] 実施の形態 2に係るレーザ加工装置の動作手順を説明する。図 9は、実施の形態 2 に係るレーザ加工装置の動作手順を示すフローチャートであり、図 10は、実施の形 態 2に係るレーザ照射位置の順番を説明するための図である。ここでは、レーザ加工 の一例として、例えば、レーザカ卩ェ装置 1が第 1番目の加工穴 HIから第 n(nは 2以 上の自然数)番目の加工穴 Hnまでをサイクルパルスモードでレーザ加工する場合に ついて説明する。なお、ここではレーザカ卩ェ装置 1のレーザ力卩ェの一例として、加工 穴が 4つ以上 (nが 4以上)である場合にっ 、て説明する。 An operation procedure of the laser processing apparatus according to Embodiment 2 will be described. FIG. 9 is a flowchart showing an operation procedure of the laser processing apparatus according to the second embodiment, and FIG. 10 is a diagram for explaining the order of the laser irradiation positions according to the second embodiment. Here, as an example of laser processing, for example, the laser carriage apparatus 1 performs laser processing in the cycle pulse mode from the first processing hole HI to the nth (n is a natural number of 2 or more) processing hole Hn. Explain the case. Here, as an example of the laser force of the laser carriage device 1, processing is performed. This is explained when there are 4 or more holes (n is 4 or more).
[0071] レーザカ卩ェ装置 1による被力卩ェ物 37のレーザカ卩ェ処理が開始されると、 X—Yテー ブル制御部 13は、加工プログラム記憶部 14内の加工プログラムや NCプログラムに 基づいて、 X—Yテーブル 38の位置を制御する。これにより、レーザ光が所定のガル ノ ノエリア(ガルバノスキャナ 36X, 36Yによって加工位置が制御されるエリア) 51に 照射されるよう、 X—Yテーブル 38上の被力卩ェ物 37が X—Y方向に移動する。  [0071] When the laser cache processing of the object 37 to be supported by the laser cache device 1 is started, the XY table control unit 13 is based on the processing program and the NC program in the processing program storage unit 14. Then, the position of the X—Y table 38 is controlled. As a result, the target object 37 on the X—Y table 38 is moved to the X—Y so that the laser beam is irradiated to a predetermined gal non area (area where the processing position is controlled by the galvano scanner 36X, 36Y) 51. Move in the direction.
[0072] ガルバノスキャナ制御部 15は、初期設定として、レーザ光の照射位置がガルバノエ リア 51のデフォルト座標(例えば原点)となるようガルバノスキャナ 36X, 36Yを制御 する(ステップ S310)。  [0072] As an initial setting, the galvano scanner control unit 15 controls the galvano scanners 36X and 36Y so that the irradiation position of the laser light becomes the default coordinates (for example, the origin) of the galvano area 51 (step S310).
[0073] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 1番目の加工 位置 (力卩ェ穴 HI)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 1番目の加工位置 (加工穴 HI)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S320) (l) o  [0073] Next, the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to make a galvano position command so that the first machining position (force hole HI) becomes the laser beam irradiation position based on the machining program. To do. As a result, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first machining position (machining hole HI) becomes the irradiation position of the laser beam (step S320) (l) o
[0074] そして、レーザ制御部 12は、レーザ発振器 21からレーザ光を発振させる。これによ り、レーザ光は像転写光学機構 22で整形され所望のビーム形状、ビームエネルギー に調整される。さらに、マスク 24から出射されたレーザ光は、ガルバノミラー 35X, 35 Yで反射して偏向され、 f- Θレンズ 34を介して被力卩ェ物 37の加工穴 HIに結像し照 射される。これにより、加工穴 HI (第 1穴)に 1ショット目の加工処理が行われる (ステ ップ S330)。  Then, the laser control unit 12 oscillates the laser beam from the laser oscillator 21. As a result, the laser beam is shaped by the image transfer optical mechanism 22 and adjusted to a desired beam shape and beam energy. Further, the laser light emitted from the mask 24 is reflected and deflected by the galvanometer mirrors 35X and 35Y, and is imaged and irradiated on the processing hole HI of the object 37 through the f-Θ lens 34. The As a result, the first shot of the processing hole HI (first hole) is processed (step S330).
[0075] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 2番目の加工 位置 (力卩ェ穴 H2)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 2番目の加工位置 (加工穴 H2)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S 340) (2)。そして、レーザ制御部 12は、レーザ発振器 21からレ 一ザ光を発振させる。これにより、加工穴 H2 (第 2穴)に 1ショット目の加工処理が行 われる(ステップ S350)。  [0075] Next, the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to provide a galvano position command so that the second machining position (force hole H2) becomes the laser beam irradiation position based on the machining program. To do. Thus, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the second processing position (processing hole H2) becomes the irradiation position of the laser beam (step S340) (2). Then, the laser control unit 12 oscillates laser light from the laser oscillator 21. As a result, the first shot of the machining hole H2 (second hole) is processed (step S350).
[0076] この後、図 9には示していないが、ガルバノスキャナ制御部 15は、加工プログラムに 基づ 、て第 3番目以降 (第 (n— 2)番目まで)の加工位置がレーザ光の照射位置とな るよう、ガルバノスキャナ 36X, 36Yにガルバノ位置指令を行なうとともに、第 3番目以 降 (第 (n— 2)番目まで)の加工穴に 1ショット目の加工処理を行う。 Thereafter, although not shown in FIG. 9, the galvano scanner control unit 15 adds the machining program. Based on this, a galvano position command is issued to the galvano scanners 36X and 36Y so that the third and subsequent machining positions (up to the (n−2) th) position become the laser beam irradiation position, and the third and subsequent processes are performed. The first shot is processed in the (n-2) th hole.
[0077] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 (n— 1)番目 の加工位置 (加工穴 H (n— 1) )がレーザ光の照射位置となるよう、ガルバノスキャナ 3 6X, 36Yにガルバノ位置指令を行なう。これにより、第 (n—l)番目の加工位置 (カロ ェ穴 H (n—1) )がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガ ルバノミラー 35X, 35Yを制御する(ステップ S360)。そして、レーザ制御部 12は、レ 一ザ発振器 21からレーザ光を発振させる。これにより、加工穴 H (n—l) (第 (n—l) 穴)に 1ショット目の加工処理が行われる(ステップ S370)。  [0077] Next, the galvano scanner control unit 15 sets the (n-1) -th processing position (processing hole H (n-1)) based on the processing program so as to be the irradiation position of the laser beam. 3 Command galvano position to 6X and 36Y. As a result, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the (n−l) -th processing position (calorie hole H (n−1)) becomes the irradiation position of the laser beam (step S360). The laser controller 12 oscillates the laser beam from the laser oscillator 21. As a result, the first shot of the processing hole H (n−l) ((n−l) hole) is processed (step S370).
[0078] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 n番目の加工 位置 (力卩ェ穴 Hn)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 n番目の加工位置 (加工穴 Hn)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S380)。そして、レーザ制御部 12は、レーザ発振器 21からレーザ 光を発振させる。これにより、加工穴 Hn (第 n穴)に 1ショット目の加工処理が行われる (ステップ S390)。  [0078] Next, the galvano scanner control unit 15 instructs the galvano scanners 36X and 36Y to execute a galvano position command so that the nth machining position (force hole Hn) becomes the laser beam irradiation position based on the machining program. To do. Thereby, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the n-th processing position (processing hole Hn) becomes the irradiation position of the laser beam (step S380). The laser controller 12 oscillates laser light from the laser oscillator 21. As a result, the first shot of the processing hole Hn (nth hole) is processed (step S390).
[0079] メイン制御部 11は、このガルバノエリア 51でのレーザカ卩ェ処理が終了したか否かを 判断する(ステップ S400)。本実施の形態 1は、サイクルパルスモードでのレーザカロ ェであるため、メイン制御部 11は、このガルバノエリア 51でのレーザカ卩ェ処理が終了 して ヽな 、と判断する(ステップ S400、 No)。  [0079] The main control unit 11 determines whether or not the laser cache processing in the galvano area 51 has been completed (step S400). Since the first embodiment is a laser calorie in the cycle pulse mode, the main control unit 11 determines that the laser caulking process in the galvano area 51 should be finished (step S400, No). .
[0080] ガルバノスキャナ制御部 15は、加工プログラムに基づいてガルバノエリア 51のデフ オルト座標(原点)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、原点がレーザ光の照射位置となるよう、ガル バノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを制御する(ステップ S310)。こ のとき、レーザ制御部 12は、レーザ発振器 21からレーザ光を発振させない。  Based on the machining program, the galvano scanner control unit 15 issues a galvano position command to the galvano scanners 36X and 36Y so that the default coordinates (origin) of the galvano area 51 become the laser light irradiation position. Thereby, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the origin is the irradiation position of the laser beam (step S310). At this time, the laser control unit 12 does not oscillate the laser beam from the laser oscillator 21.
[0081] つぎに、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 1番目の加工 位置 (力卩ェ穴 HI)がレーザ光の照射位置となるよう、ガルバノスキャナ 36X, 36Yに ガルバノ位置指令を行なう。これにより、第 1番目の加工位置 (加工穴 HI)がレーザ 光の照射位置となるよう、ガルバノスキャナ 36X, 36Yがガルバノミラー 35X, 35Yを 制御する (ステップ S320)。そして、レーザ制御部 12は、レーザ発振器 21からレーザ 光を発振させる。これにより、加工穴 HI (第 1穴)に 2ショット目の加工処理が行われる (ステップ S330)。 [0081] Next, the galvano scanner control unit 15 controls the galvano scanners 36X and 36Y so that the first machining position (force hole HI) becomes the irradiation position of the laser beam based on the machining program. Command the galvo position. Thereby, the galvano scanners 36X and 36Y control the galvanometer mirrors 35X and 35Y so that the first processing position (processing hole HI) becomes the irradiation position of the laser beam (step S320). The laser controller 12 oscillates laser light from the laser oscillator 21. As a result, the second shot of the processing hole HI (first hole) is processed (step S330).
[0082] この後、ガルバノスキャナ制御部 15は、加工プログラムに基づいて第 2番目〜第 n 番目の加工位置 (力卩ェ穴 H2〜Hn)がレーザ光の照射位置となるよう、ガルバノスキ ャナ 36X, 36Yにガルバノ位置指令を行なうとともに、レーザ制御部 12は、各加工位 置でレーザ発振器 21からレーザ光を発振させる。これにより、第 2番目〜第 n番目の 加工位置 (力卩ェ穴 HI〜Hn)がレーザ光の照射位置となるよう、ガルバノスキャナ 36 X, 36Yがガルバノミラー 35X, 35Yを制御し、加工穴 Hl〜Hn (第 1穴〜第 n穴)に 2ショット目のカロ工処理力行われる(ステップ S340〜S390)  [0082] After that, the galvano scanner control unit 15 sets the galvano scanner so that the second to n-th machining positions (force hole H2 to Hn) become the laser beam irradiation positions based on the machining program. The galvano position command is issued to 36X and 36Y, and the laser control unit 12 oscillates the laser beam from the laser oscillator 21 at each processing position. As a result, the galvano scanners 36 X and 36Y control the galvanometer mirrors 35X and 35Y so that the 2nd to nth machining positions (force hole HI to Hn) are the irradiation positions of the laser beam, and the machining holes Hl to Hn (1st hole to nth hole) are subjected to the second shot's processing power (steps S340 to S390)
[0083] そして、メイン制御部 11は、このガルバノエリア 51でのレーザカ卩ェ処理が終了した か否かを判断する (ステップ S400)。メイン制御部 11が、このガルバノエリア 51での レーザカ卩ェ処理が終了したと判断するまで、ステップ S320〜S400の処理力繰り返 される。すなわち、実施の形態 2では、加工穴 Hnをカ卩ェした後に加工穴 HIを加工 する場合、ステップ S310の処理である原点へのガルバノ位置指令を行なった後に 加工穴 HIへのガルバノ位置指令を行なって力卩ェ穴 HIをカ卩ェする。  [0083] Then, the main control unit 11 determines whether or not the laser cache process in the galvano area 51 has been completed (step S400). The processing power of steps S320 to S400 is repeated until the main control unit 11 determines that the laser cache processing in the galvano area 51 has been completed. That is, in the second embodiment, when machining the hole HI after machining the machining hole Hn, the galvano position command to the machining hole HI is issued after the galvano position command to the origin, which is the process of step S310. Go ahead and take care of HI.
[0084] メイン制御部 11が、このガルバノエリア 51でのレーザカ卩ェ処理が終了したと判断す ると (ステップ S400、 Yes)、ガルバノスキャナ制御部 15、レーザ制御部 12は、このガ ルバノエリア 51でのレーザカ卩ェ処理を終了し、次のガルバノエリア 51での加工処理 を行なえるよう、 X—Yテーブル 38の位置を制御する。そして、次のガルバノエリア 51 での加工処理が行なわれる。  [0084] When the main control unit 11 determines that the laser cache processing in the galvano area 51 has been completed (step S400, Yes), the galvano scanner control unit 15 and the laser control unit 12 operate in this galvano area 51. The position of the XY table 38 is controlled so that the laser-caching process is finished and the next galvano area 51 can be processed. Then, the next galvano area 51 is processed.
[0085] なお、実施の形態 2では、原点力も第 1穴目までのガルバノ位置の移動距離を少な くするため、第 1穴目を原点に近い穴 (例えば穴間距離が最短となる穴)に設定して もよい。また、第 n穴目力も原点までのガルバノ位置の移動距離を少なくするため、第 n穴目を原点に近い穴 (例えば穴間距離が最短となる穴)に設定してもよい。さらに、 第 1穴目の 1ショット目を加工する際の原点力 第 1穴目までのガルバノ位置の移動 距離と第 n穴目から原点までのガルバノ位置の移動距離の合計距離を少なく(例え ば最短距離)するよう第 n穴目および第 1穴目を設定してもよい。これにより、第 n穴目 力も原点へガルバノ位置を移動させる際の移動時間、原点力も第 1穴目へガルバノ 位置を移動させる際の移動時間、これらの移動時間の合計時間を短くすることが可 能となる。 [0085] In the second embodiment, the origin force is also a hole close to the origin in the first hole (for example, the hole having the shortest distance between holes) in order to reduce the movement distance of the galvano position to the first hole. It may be set to. Also, the n-th hole force may be set to a hole close to the origin (for example, a hole having the shortest distance between holes) in order to reduce the movement distance of the galvano position to the origin. Furthermore, origin force when machining the first shot of the first hole Movement of the galvano position to the first hole The nth and 1st holes may be set so as to reduce the total distance of the distance and the movement distance of the galvano position from the nth hole to the origin (for example, the shortest distance). This makes it possible to shorten the movement time when moving the galvano position to the origin for the nth hole force, the movement time when moving the galvano position to the first hole, and the total time of these movement times. It becomes ability.
[0086] また、実施の形態 2でも実施の形態 1と同様に、加工制御装置 10の加工プログラム 記憶部 14が加工プログラムを予め記憶し、この加工プログラムに基づいてレーザカロ ェを行う構成に限られず、加工プログラムを加工制御装置 10の外部装置力も受信し て使用する構成としてもよい。  Further, in the second embodiment, as in the first embodiment, the machining program storage unit 14 of the machining control device 10 is not limited to the configuration in which the machining program is stored in advance and the laser calorie is performed based on the machining program. The machining program may be configured to receive the external device force of the machining control device 10 and use it.
[0087] このように、実施の形態 2では、第 1穴を加工する際、原点にガルバノ位置指令を行 なってガルバノ位置を移動させた後、、原点力ゝら第 1穴の加工位置にガルバノ位置指 令を行なってガルバノ位置を移動させる。これにより、第 1穴の 1ショット目の実際のガ ルバノ位置の位置ズレ量と、第 1穴の 2ショット目以降の実際のガルバノ位置の位置 ズレ量とが略同程度のズレ量となる。  As described above, in Embodiment 2, when machining the first hole, the galvano position command is issued to the origin to move the galvano position, and then the origin force is changed to the machining position of the first hole. Move the galvo position by issuing a galvo position command. As a result, the displacement amount of the actual galvano position for the first shot of the first hole and the displacement amount of the actual galvano position for the second and subsequent shots of the first hole are substantially the same.
[0088] このように、実施の形態 2によれば、第 1穴の 1ショット目の実際のガルバノ位置の位 置ズレ量と、第 1穴の 2ショット目以降の実際のガルバノ位置の位置ズレ量とを略同程 度のズレ量とさせることができるので、第 1穴を被加工物 37の加工面上から見て略円 形状に加工でき、被加工物 37の加工形状を精度良く加工することが可能となる。  [0088] Thus, according to the second embodiment, the positional deviation of the actual galvano position in the first shot of the first hole and the positional deviation of the actual galvano position after the second shot of the first hole. The first hole can be machined into a substantially circular shape when viewed from the machining surface of the work piece 37, and the work shape of the work piece 37 can be machined with high accuracy. It becomes possible to do.
[0089] 実施の形態 3.  [0089] Embodiment 3.
つぎに、図 11〜図 13を用いてこの発明の実施の形態 3について説明する。実施の 形態 3では、従来力 用いられていた加工プログラム (第 1穴の第 1ショット目を加工 する場合のガルバノ位置を、原点などのデフォルト座標カゝら直接第 1穴の加工位置 に移動させる加工手順)を用いるとともに、所定の制御装置 (後述する加工手順制御 装置)を用いて実施の形態 1や実施の形態 2と同様の加工手順 (ガルバノ位置の移 動手順とレーザ光の照射タイミング)でレーザ力卩ェを行なうようレーザカ卩ェ装置 1を制 御する。  Next, Embodiment 3 of the present invention will be described with reference to FIGS. In Embodiment 3, the machining program that has been used in the past (moving the galvano position when machining the first shot of the first hole to the machining position of the first hole directly from the default coordinates such as the origin) Machining procedure), and using a predetermined control device (machining procedure control device to be described later), the same machining procedure as in the first and second embodiments (galvano position moving procedure and laser beam irradiation timing) The laser carriage device 1 is controlled so that the laser force is fed at.
[0090] すなわち、実施の形態 3では、例えば各ガルバノエリアにおいて第 1穴の 1ショット 目を加工する際には、第 n穴目の位置にガルバノ位置指令を行なってガルバノ位置 を移動させた後、第 n穴目の位置力ゝら第 1穴の加工位置にガルバノ位置指令を行な つてガルバノ位置を移動させる。そして、この後の加工手順には従来力も用いられて V、たカ卩ェプログラムを用いてレーザカ卩ェ処理を行う(実施の形態 1に対応する加工手 順)。 That is, in the third embodiment, for example, when processing the first shot of the first hole in each galvano area, a galvano position command is issued to the position of the nth hole and the galvano position is After moving, the galvano position is moved by issuing a galvano position command to the machining position of the first hole based on the position force of the nth hole. Then, in the subsequent processing procedure, the conventional force is also used, and the laser cache process is performed using the V and the cache program (the processing procedure corresponding to the first embodiment).
[0091] 図 11は、実施の形態 3に係るレーザ加工装置の構成を示す機能ブロック図である。  FIG. 11 is a functional block diagram showing the configuration of the laser processing apparatus according to Embodiment 3.
図 11の各構成要素のうち図 2に示す実施の形態 1, 2のレーザ加工装置 1と同一機 能を達成する構成要素については同一番号を付しており、重複する説明は省略する  Among the constituent elements in FIG. 11, the constituent elements that achieve the same functions as those of the laser processing apparatus 1 in the first and second embodiments shown in FIG.
[0092] レーザカ卩ェ装置 1は、加工制御装置 10とカ卩ェ駆動装置 20に加えて、加工手順制 御装置 40を備えている。加工手順制御装置 40は、パーソナルコンピュータ等の装置 によって構成され、ユーザプログラム入力部 41、 CAD (Computer The laser cafe apparatus 1 includes a processing procedure control device 40 in addition to the processing control device 10 and the carriage drive device 20. The processing procedure control device 40 is configured by a device such as a personal computer, and includes a user program input unit 41, a CAD (Computer
Aided Design)変換部 42、加工プログラム 43を記憶するための加工プログラム記憶 部 45、手順制御部 44を有している。ユーザプログラム入力部 41は、被加工物 37上 の穴あけカ卩工位置 (座標)を示すユーザプログラム (ガーバー形式の座標プログラム) を入力する。  Aided Design) conversion unit 42, machining program storage unit 45 for storing machining program 43, and procedure control unit 44. The user program input unit 41 inputs a user program (gerber type coordinate program) indicating a drilling position (coordinates) on the workpiece 37.
[0093] CAD変換部 42は、ユーザプログラム入力部 41からのユーザプログラムを、レーザ 加工装置 1に合った適切なフォーマットの加工プログラム 43に変換する機能を有して いる。 CAD変換部 42は、加工目的に応じてガルバノエリア範囲や変換形式 (X方向 主の移動、 Y方向主の移動、最短距離の移動経路)等をユーザによって指定可能な 構成となっている。  The CAD conversion unit 42 has a function of converting the user program from the user program input unit 41 into a processing program 43 having an appropriate format suitable for the laser processing apparatus 1. The CAD conversion unit 42 is configured to allow the user to specify the galvano area range and conversion format (main movement in the X direction, main movement in the Y direction, and the shortest distance movement path) according to the machining purpose.
[0094] 加工プログラム 43は、 CAD変換部 42によってユーザプログラムが変換されたプロ グラムであり、レーザ加工装置 1で読み取り可能な形式のフォーマットに変換されてい る。なお、ここでの加工プログラム 43が従来までの加工プログラム(第 1穴の第 1ショッ ト目を加工する場合に、原点などのデフォルト座標カゝら直接第 1穴の加工位置に移 動して第 1穴の第 1ショット目の加工を開始する加工手順を含むプログラム)に対応し ている。この加工プログラム 43は、加工プログラム記憶部 14に記憶させておく。  The machining program 43 is a program obtained by converting the user program by the CAD conversion unit 42, and has been converted into a format that can be read by the laser machining apparatus 1. The machining program 43 here is the conventional machining program (when machining the 1st shot of the 1st hole, move directly to the machining position of the 1st hole from the default coordinates such as the origin. This corresponds to a program that includes a machining procedure that starts machining the first shot of the first hole. The machining program 43 is stored in the machining program storage unit 14.
[0095] 手順制御部 44は、加工プログラム記憶部 14が記憶する従来の加工プログラム 43 に対して、各ガルバノエリアにおいて第 1穴の 1ショット目をカ卩ェする際には、第 n穴 目の位置にガルバノ位置指令を行なうよう加工制御装置 10 (メイン制御部 11)に指 示情報を出すとともに、第 n穴目の位置ではレーザ光を照射させないよう加工制御装 置 10に指示情報を出す。さらに、手順制御部 44は、第 1穴目の位置にガルバノ位置 指令を行なうよう加工制御装置 10に指示情報を出し、第 n穴目の位置から第 1穴の 加工位置にガルバノ位置を移動させ、その後、従来の加工プログラムによる加工処 理 (第 1穴目の 1ショット目にレーザ光を照射)を行わせる。 [0095] The procedure control unit 44, when checking the first shot of the first hole in each galvano area with respect to the conventional machining program 43 stored in the machining program storage unit 14, Instruction information is sent to the machining control device 10 (main control unit 11) so as to give a galvano position command to the eye position, and instruction information is given to the machining control device 10 so that the laser beam is not irradiated at the position of the nth hole. put out. Furthermore, the procedure control unit 44 issues instruction information to the machining control device 10 to issue a galvano position command to the position of the first hole, and moves the galvano position from the position of the nth hole to the machining position of the first hole. Then, the processing by the conventional processing program (laser light is irradiated to the first shot of the first hole) is performed.
[0096] つぎに、実施の形態 3に係る加工手順制御装置 40の動作手順を説明する。レーザ 加工装置 1による被力卩ェ物 37のレーザ力卩ェを開始するため、レーザ加工装置 1のュ 一ザは、被力卩ェ物 37座標上の穴あけ位置エリア(例えば 500mm X 500mm) (被カロ ェ物 37のサイズ)や穴あけ位置を指定するユーザプログラムをカ卩工手順制御装置 4 0のユーザプログラム入力部 41に入力する。  Next, an operation procedure of the machining procedure control apparatus 40 according to the third embodiment will be described. In order to start the laser force measurement of the workpiece 37 by the laser processing device 1, the user of the laser processing device 1 uses the drilling position area (for example, 500mm X 500mm) on the target workpiece 37 coordinate ( A user program for designating the size 37 of the workpiece 37 and the drilling position is input to the user program input unit 41 of the carpenter procedure control device 40.
[0097] 図 12は、被力卩ェ物内のガルバノエリアを説明するための図である。被力卩ェ物 37座 標上の穴あけ位置エリアである被力卩ェ物 37のサイズは、例えば 500mm X 500mm のサイズで構成されて!、る。  FIG. 12 is a diagram for explaining a galvano area in the object. The size of the force object 37, which is the area where the hole is drilled on the mark, is composed of a size of 500mm x 500mm, for example! RU
[0098] この被力卩ェ物 37の穴あけ位置エリアは、 CAD変換部 42によって例えば 50mm X  [0098] The drilling position area of the force object 37 is, for example, 50 mm X by the CAD conversion unit 42.
50mmのサイズであるガルバノエリア(穴座標に関する情報を含んだカ卩ェエリアであ るガルバノエリア N1〜N3等)に分割される。さら〖こ、 CAD変換部 42はユーザプログ ラムに基づいて、各ガルバノエリアでの加工位置、最適カ卩工経路を算出してカ卩ェプロ グラム 43を作成する。この加工プログラム 43は、加工プログラム記憶部 45 (加工プロ グラム記憶部 14)が記憶しておく。なお、ここでのガルバノエリア N1〜N3等力 実施 の形態 1の図 4で示したガルバノエリア 51に対応して!/、る。  Divided into galvano areas (galvano areas N1 to N3, etc. that are information areas that contain information about hole coordinates) that are 50mm in size. Furthermore, the CAD conversion unit 42 calculates the machining position and the optimum machining path in each galvano area based on the user program, and creates a cafe program 43. The machining program 43 is stored in the machining program storage unit 45 (machining program storage unit 14). Here, the galvo areas N1 to N3 isotropic force correspond to the galvo areas 51 shown in FIG.
[0099] ここで、従来の加工プログラム 43の一例について説明する。図 13は、実施の形態 3 のレーザカ卩ェ装置が用いる従来の加工プログラムの一例を示す図である。従来の加 工プログラム 43は、ガルバノエリア N1 (加工エリア 1)において、第 1穴目の加工点( 加工位置)が例えば、「X300 Y400」であり、原点などのデフォルト座標から直接第 1穴目の加工位置にガルバノ位置が移動させられて 1ショット目のレーザ加工が行な われる。この後、第 2穴目の加工点、第 3穴目の加工点と、順番に加工位置にガルバ ノ位置が移動させられてガルバノエリア N1内の各穴のレーザ力卩ェが行なわれる。 [0100] その後、ガルバノエリア N2に移動して原点などのデフォルト座標力も直接第 1穴目 の加工位置である「X300 Y300」にガルバノ位置が移動させられて 1ショット目のレ 一ザ加工が行なわれる。この後、第 2穴目以降の加工位置にガルバノ位置が移動さ せられてガルバノエリア Ν2内の各穴のレーザ力卩ェが行なわれる。 Here, an example of the conventional machining program 43 will be described. FIG. 13 is a diagram showing an example of a conventional machining program used by the laser carriage device of the third embodiment. In the conventional machining program 43, in the galvano area N1 (machining area 1), the machining point (machining position) of the first hole is, for example, “X300 Y400”, and the first hole directly from the default coordinates such as the origin The galvano position is moved to the first machining position, and the first shot of laser machining is performed. Thereafter, the galvano position is moved to the machining position in order of the machining point of the second hole and the machining point of the third hole, and the laser power of each hole in the galvano area N1 is performed. [0100] After that, it moves to the galvano area N2, and the default coordinate force such as the origin is moved directly to the first hole machining position "X300 Y300", and the first shot of the laser is performed. It is. Thereafter, the galvano position is moved to the machining position after the second hole, and the laser power of each hole in the galvano area 2 is performed.
[0101] 実施の形態 3において、各ガルバノエリア(例えばガルバノエリア N1)において第 1 穴の 1ショット目をカ卩ェする際には、手順制御部 44は、加工プログラム力 第 1穴の 1 ショット目を加工する指示を認識すると、第 η穴目の位置にガルバノ位置指令を行なう よう加工制御装置 10に指示情報を出すとともに、第 η穴目の位置ではレーザ光を照 射させないよう加工制御装置 10に指示情報を出す。その後、手順制御部 44は、カロ ェ制御装置 10にカ卩ェプログラム 43による加工処理 (第 1穴目の位置にガルバノ位置 指令を行なってレーザ加工を開始)を行わせる。  [0101] In the third embodiment, when checking the first shot of the first hole in each galvano area (for example, galvano area N1), the procedure control unit 44 uses the machining program force 1 shot of the first hole. When the instruction to process the eye is recognized, the instruction information is sent to the processing control device 10 so as to issue a galvano position command to the position of the η-th hole, and the processing control device is configured not to irradiate the laser beam at the position of the η-th hole. Instruction information is sent to 10. After that, the procedure control unit 44 causes the calorie control device 10 to perform processing by the cache program 43 (giving a galvano position command to the position of the first hole and starting laser processing).
[0102] これにより、レーザ加工装置 1は、まず第 1番目の加工点でレーザ加工処理(1ショ ット目)を行い、次に第 2番目の加工点でレーザカ卩ェ処理(1ショット目)を行う。以下、 実施の形態 1で説明したカ卩ェ処理手順と同様の処理手順によって被力卩ェ物 37の加 ェ処理を行う。  [0102] As a result, the laser processing apparatus 1 first performs laser processing (first shot) at the first processing point, and then performs laser caching (first shot) at the second processing point. )I do. Hereinafter, the processing of the load 37 is performed by the same processing procedure as that described in the first embodiment.
[0103] さらに、例えばガルバノエリア N1での加工処理が終了すると、手順制御部 44は、 次のガルバノエリアであるガルバノエリア Ν2でガルバノエリア N1と同様の加工処理 を行なわせる。以下、同様に手順制御部 44はガルバノエリア Ν2以降の加工処理を 加工制御装置 10に行わせる。なお、以降の処理においても、手順制御部 44は、カロ ェプログラム力 第 1穴の 1ショット目を加工する指示を認識すると、第 η穴目の位置 にガルバノ位置指令を行なうよう加工制御装置 10に指示情報を出すとともに、第 η穴 目の位置ではレーザ光を照射させないよう加工制御装置 10に指示情報を出す。そし て、手順制御部 44は、加工制御装置 10にカ卩ェプログラム 43による加工処理 (第 1穴 目の位置にガルバノ位置指令を行なってレーザ力卩ェを開始)を行わせる。  [0103] Further, for example, when the processing in the galvano area N1 is completed, the procedure control unit 44 causes the same processing as in the galvano area N1 to be performed in the galvano area Ν2, which is the next galvano area. In the same manner, the procedure control unit 44 causes the machining control device 10 to perform machining processing after the galvano area Ν2. Also in the subsequent processing, when the procedure control unit 44 recognizes an instruction to process the first shot of the Caloe program force first hole, the processing control device 10 issues a galvano position command to the position of the η hole. The instruction information is output to the processing control apparatus 10 so that the laser beam is not irradiated at the position of the η-th hole. Then, the procedure control unit 44 causes the machining control device 10 to perform a machining process (a galvano position command is issued at the position of the first hole to start the laser force measurement) by the cache program 43.
[0104] なお、実施の形態 3では、手順制御部 44が各ガルバノエリアにおいて第 1穴の 1シ ヨット目を加工する際には、実施の形態 1に対応する加工手順で加工を開始するよう 加工制御装置 10を制御し、従来の加工プログラム 43を用いた力卩ェを行なう場合に っ 、て説明した力 手順制御部 44が各ガルバノエリアにぉ ヽて第 η穴の各ショットを 加工した後に (サイクルパルスモードの各サイクル終了毎に)、実施の形態 2に対応 する加工手順で加工を継続するよう加工制御装置 10を制御して、従来の加工プログ ラム 43を用いた力卩ェを行なわせてもよ 、。 [0104] In the third embodiment, when the procedure control unit 44 processes the first hole of the first hole in each galvano area, the processing is started in accordance with the processing procedure corresponding to the first embodiment. When controlling the machining control device 10 and performing a force check using the conventional machining program 43, the force procedure control unit 44 described above makes each shot of the η-th hole through each galvano area. After machining (at the end of each cycle in the cycle pulse mode), the machining control device 10 is controlled to continue machining in accordance with the machining procedure corresponding to the second embodiment, and the force applied using the conventional machining program 43 is controlled. You can do it.
[0105] また、実施の形態 3では、レーザ加工装置 1が加工手順制御装置 40を備える構成 である場合について説明したが、レーザ加工装置 1と加工手順制御装置 40を独立し た異なる構成とし、それぞれを接続して動作させる構成としてもょ ヽ。  [0105] In the third embodiment, the case where the laser processing device 1 is configured to include the processing procedure control device 40 has been described. However, the laser processing device 1 and the processing procedure control device 40 are configured to be independent and different from each other. It can also be configured to operate each connected.
[0106] さらに、実施の形態 3では、ガルバノスキャナ制御部 15とカ卩工手順制御装置 40が 異なる構成である場合にっ 、て説明した力 ガルバノスキャナ制御部 15が手順制御 部 44の機能を備える構成としてもよい。この場合、手順制御部 44の機能を備えたガ ルバノスキャナ制御部 15が、加工プログラム記憶部 14が記憶する従来の加工プログ ラム 43に基づいてレーザ力卩ェを行なう。  Furthermore, in the third embodiment, the force galvano scanner control unit 15 described above has the function of the procedure control unit 44 when the galvano scanner control unit 15 and the carpenter procedure control device 40 have different configurations. It is good also as a structure provided. In this case, the galvano scanner control unit 15 having the function of the procedure control unit 44 performs the laser power check based on the conventional processing program 43 stored in the processing program storage unit 14.
[0107] なお、実施の形態 3では、加工手順制御装置 40が加工プログラム記憶部 45を備え る構成とした力 加工手順制御装置 40は加工プログラム記憶部 45を備えて 、なくて もよい。この場合、 CAD変換部 42で作成したカ卩ェプログラム 43は、カロェプログラム 記憶部 14に直接入力される構成となる。  In the third embodiment, the force machining procedure control device 40 configured to include the machining program storage unit 45 may be omitted as long as the machining procedure control device 40 includes the machining program storage unit 45. In this case, the cache program 43 created by the CAD conversion unit 42 is configured to be directly input to the Caloe program storage unit 14.
[0108] このように実施の形態 3によれば、従来の加工プログラム 43を用いて実施の形態 1 , 2と同様のレーザ力卩ェを行うので、被力卩ェ物 37の加工処理毎に新たな力卩ェプログ ラムを作成することなく容易に被加工物 37の加工形状を精度良く加工することが可 能となる。  As described above, according to the third embodiment, the same laser force as in the first and second embodiments is performed using the conventional machining program 43, so that each time the workpiece 37 is processed, This makes it possible to easily machine the workpiece 37 with high accuracy without creating a new force program.
産業上の利用可能性  Industrial applicability
[0109] 以上のように、本発明に力かるレーザカ卩ェ装置、プログラム作成装置およびレーザ 加工方法は、パルスレーザ光で被力卩ェ物を穴あけカ卩ェするレーザ力卩ェに適して!/、る As described above, the laser cache device, the program creation device, and the laser processing method that are useful in the present invention are suitable for laser force checks that drill a target object with a pulsed laser beam! /

Claims

請求の範囲 The scope of the claims
[1] レーザ光の照射位置を変化させながら被加工物の複数の加工位置に対しレーザ 光を 1〜複数ショットずつ照射するサイクルを複数回繰り返す加工モードで前記被カロ ェ物に複数の穴あけ力卩ェを行なうレーザカ卩ェ装置において、  [1] Multiple drilling forces on the workpiece in a machining mode in which the laser beam is irradiated one or more shots at multiple positions while changing the laser beam irradiation position. In the laser carriage device that performs
レーザ光を発振するレーザ光発振部と、  A laser beam oscillation unit for oscillating a laser beam;
前記レーザ光発振部が発振したレーザ光の前記被加工物への照射位置を移動さ せる照射位置移動部と、  An irradiation position moving unit for moving an irradiation position of the laser beam oscillated by the laser beam oscillation unit to the workpiece;
前記レーザ光発振部が発振するレーザ光の発振タイミングおよび前記照射位置移 動部が移動させるレーザ光の照射位置を制御する制御部と、  A control unit for controlling the oscillation timing of the laser beam oscillated by the laser beam oscillation unit and the irradiation position of the laser beam moved by the irradiation position moving unit;
を備え、  With
前記制御部は、  The controller is
最初のサイクルに第 1穴に前記レーザ光を照射する際に前記照射位置移動部が前 記第 1穴の穴あけ加工位置に移動させる照射位置の移動経路と、第 2番目のサイク ル以降に第 1穴に前記レーザ光を照射する際に前記照射位置移動部が前記第 1穴 の穴あけ加工位置に移動させる照射位置の移動経路とが同一経路となるよう、前記 照射位置移動部を制御することを特徴とするレーザ加工装置。  When irradiating the first hole with the laser light in the first cycle, the irradiation position moving unit moves the irradiation position to the first hole drilling position, and the second and subsequent cycles. Controlling the irradiation position moving unit so that the movement path of the irradiation position moved by the irradiation position moving unit to the drilling position of the first hole becomes the same path when irradiating the laser beam to one hole; A laser processing apparatus characterized by the above.
[2] 前記制御部は、最初のサイクルに第 1穴に穴あけ加工を行なう前に 1サイクルにお ける最後の穴あけ加工位置に前記レーザ光の照射位置を移動させるとともに、前記 最後の穴あけ加工位置力 前記第 1穴の穴あけ加工位置に前記レーザ光の照射位 置を移動させるよう前記照射位置移動部を制御するとともに、  [2] The control unit moves the irradiation position of the laser beam to the last drilling position in one cycle and performs the last drilling position before performing drilling in the first hole in the first cycle. Force control the irradiation position moving unit to move the irradiation position of the laser beam to the drilling position of the first hole;
各サイクルの前記最後の穴あけ加工位置へのレーザ光照射終了後は、前記第 1穴 の穴あけ加工位置に対し前記レーザ光の照射位置を移動させるよう前記照射位置 移動部を制御することを特徴とする請求項 1に記載のレーザ加工装置。  After the laser beam irradiation to the last drilling position of each cycle is completed, the irradiation position moving unit is controlled to move the laser beam irradiation position with respect to the drilling position of the first hole. The laser processing apparatus according to claim 1.
[3] 前記制御部は、最後の穴あけ加工位置と第 1穴目の穴あけ加工位置との距離が、 全穴あけ加工位置間の中で最も短くなるよう最後の穴あけ加工位置を設定することを 特徴とする請求項 2に記載のレーザ加工装置。  [3] The control unit sets the last drilling position so that the distance between the last drilling position and the first drilling position is the shortest among all drilling positions. The laser processing apparatus according to claim 2.
[4] 前記制御部は、最初のサイクルに第 1穴に穴あけ加工を行なう前に所定のデフオル ト座標位置に前記レーザ光の照射位置を移動させるとともに、前記デフォルト座標位 置力 前記第 1穴の穴あけ加工位置に前記レーザ光の照射位置を移動させるよう前 記照射位置移動部を制御するとともに、 [4] The control unit moves the irradiation position of the laser beam to a predetermined default coordinate position and performs the default coordinate position before drilling the first hole in the first cycle. Placement force While controlling the irradiation position moving unit to move the irradiation position of the laser beam to the drilling position of the first hole,
各サイクルの前記最後の穴あけ加工位置へのレーザ光照射終了後は、前記デフォ ルト座標位置を経由させて前記第 1穴の穴あけ加工位置に対し前記レーザ光の照射 位置を移動させるよう前記照射位置移動部を制御することを特徴とする請求項 1に記 載のレーザ加工装置。  After the laser beam irradiation to the last drilling position in each cycle is completed, the irradiation position is moved so that the laser beam irradiation position is moved with respect to the drilling position of the first hole via the default coordinate position. The laser processing apparatus according to claim 1, wherein the moving unit is controlled.
[5] 前記制御部は、前記デフォルト座標を原点位置に設定することを特徴とする請求項 [5] The control unit sets the default coordinates to an origin position.
4に記載のレーザ加工装置。 4. The laser processing apparatus according to 4.
[6] 前記照射位置移動部は、ガルバノスキャナを含んで構成されることを特徴とする請 求項 1に記載のレーザカ卩ェ装置。 [6] The laser carriage device according to claim 1, wherein the irradiation position moving unit includes a galvano scanner.
[7] レーザ光の照射位置を変化させながら被カ卩ェ物の複数の加工位置に対しレーザ 光を 1〜複数ショットずつ照射するサイクルを複数回繰り返す加工モードで前記被カロ ェ物に複数の穴あけ力卩ェを行なうレーザカ卩ェ装置において、 [7] In a machining mode in which a cycle of irradiating one to multiple shots of laser light to a plurality of machining positions of the workpiece while changing the irradiation position of the laser light, a plurality of times are applied to the workpiece. In a laser carriage device that performs drilling force check,
レーザ光を発振するレーザ光発振部と、  A laser beam oscillation unit for oscillating a laser beam;
前記レーザ光発振部が発振したレーザ光の前記被加工物への照射位置を移動さ せる照射位置移動部と、  An irradiation position moving unit for moving an irradiation position of the laser beam oscillated by the laser beam oscillation unit to the workpiece;
前記レーザ光発振部が発振するレーザ光の発振タイミングおよび前記照射位置移 動部が移動させるレーザ光の照射位置を制御する制御部と、  A control unit for controlling the oscillation timing of the laser beam oscillated by the laser beam oscillation unit and the irradiation position of the laser beam moved by the irradiation position moving unit;
を備え、  With
前記制御部は、最初のサイクルに第 1穴に穴あけ加工を行なう前に 1サイクルにお ける最後の穴あけ加工位置と前記第 1穴との間である途中経路位置に前記レーザ光 の照射位置を移動させるとともに、前記途中経路位置力 前記第 1穴の穴あけ加工 位置に前記レーザ光の照射位置を移動させるよう前記照射位置移動部を制御すると ともに、  The control unit sets the irradiation position of the laser beam at a midway path position between the last drilling position in one cycle and the first hole before drilling the first hole in the first cycle. And controlling the irradiation position moving unit to move the irradiation position of the laser beam to the drilling position of the first hole,
各サイクルの前記最後の穴あけ加工位置へのレーザ光照射終了後は、前記第 1穴 の穴あけ加工位置に対し前記レーザ光の照射位置を移動させるよう前記照射位置 移動部を制御することを特徴とするレーザ加工装置。  After the laser beam irradiation to the last drilling position of each cycle is completed, the irradiation position moving unit is controlled to move the laser beam irradiation position with respect to the drilling position of the first hole. Laser processing equipment.
[8] レーザ光の照射位置を変化させながら被カ卩ェ物の複数の加工位置に対しレーザ 光を 1〜複数ショットずつ照射するサイクルを複数回繰り返す加工モードで前記被カロ ェ物に複数の穴あけ加工を行なうレーザ加工装置の制御プログラムを作成するプロ グラム作成装置において、 [8] While changing the irradiation position of the laser beam, the laser is applied to multiple processing positions of the workpiece In a program creation device for creating a control program for a laser processing device that performs a plurality of drilling operations on the workpiece in a processing mode in which a cycle of irradiating one to a plurality of shots at a time is repeated a plurality of times.
各穴の加工位置座標を用い、最初のサイクルに第 1穴に前記レーザ光を照射する 際に前記第 1穴の穴あけ加工位置に移動させる発振したレーザ光の前記被加工物 への照射位置の移動経路と、第 2番目のサイクル以降に第 1穴に前記レーザ光を照 射する際に前記第 1穴の穴あけ加工位置に移動させる前記照射位置の移動経路と が同一経路となるよう、前記照射位置を制御する制御プログラムを作成するプロダラ ム作成部を備えることを特徴とするプログラム作成装置。  Using the processing position coordinates of each hole, the irradiation position of the oscillated laser beam that moves to the drilling position of the first hole when irradiating the first hole with the laser beam in the first cycle is determined. The movement path and the movement path of the irradiation position that is moved to the drilling position of the first hole when the laser beam is irradiated to the first hole after the second cycle are set to be the same path. A program creation device comprising a program creation unit for creating a control program for controlling an irradiation position.
[9] レーザ光の照射位置を変化させながら被カ卩ェ物の複数の加工位置に対しレーザ 光を 1〜複数ショットずつ照射するサイクルを複数回繰り返す加工モードで前記被カロ ェ物に複数の穴あけ力卩ェを行なうレーザカ卩ェ方法において、 [9] While changing the irradiation position of the laser beam, a plurality of processing positions of the workpiece are irradiated with one to several shots at a plurality of processing positions of the workpiece. In the laser cleaning method for drilling force check,
最初のサイクルに第 1穴に前記レーザ光を照射する際に前記第 1穴の穴あけ加工 位置に移動させる照射位置の移動経路と、第 2番目のサイクル以降に第 1穴に前記 レーザ光を照射する際に前記第 1穴の穴あけ加工位置に移動させる照射位置の移 動経路とが同一経路となるよう、最初のサイクルに第 1穴に前記レーザ光の照射位置 を移動させる第 1のステップと、  When the first hole is irradiated with the laser light in the first cycle, the irradiation position is moved to the drilling position of the first hole, and the first hole is irradiated with the laser light after the second cycle. A first step of moving the irradiation position of the laser beam to the first hole in the first cycle so that the movement path of the irradiation position moved to the drilling position of the first hole is the same path when ,
前記最初のサイクルに第 1穴に前記レーザ光の照射を行なう第 2のステップと、 を含むことを特徴とするレーザ加工方法。  And a second step of irradiating the first hole with the laser light in the first cycle.
[10] 前記第 1のステップは、最初のサイクルに第 1穴に穴あけ加工を行なう前に 1サイク ルにおける最後の穴あけカ卩工位置に前記レーザ光の照射位置を移動させるとともに 、前記最後の穴あけ加工位置力 前記第 1穴の穴あけ加工位置に前記レーザ光の 照射位置を移動させる工程を含み、 [10] In the first step, the laser beam irradiation position is moved to the last drilling position in one cycle before the first hole is drilled in the first cycle, and the last step is performed. Drilling position force including the step of moving the irradiation position of the laser beam to the drilling position of the first hole,
前記第 2のステップの後、各サイクルの前記最後の穴あけ加工位置へのレーザ光 照射終了後は、前記第 1穴の穴あけ加工位置に対し前記レーザ光の照射位置を移 動させる第 3のステップをさらに含むことを特徴とする請求項 9に記載のレーザ加工方 法。  After the second step, after the laser beam irradiation to the last drilling position in each cycle is completed, the laser beam irradiation position is moved with respect to the drilling position of the first hole. The laser processing method according to claim 9, further comprising:
[11] 前記第 1のステップは、最初のサイクルに第 1穴に穴あけ加工を行なう前に所定の デフォルト座標位置に前記レーザ光の照射位置を移動させるとともに、前記デフオル ト座標位置力 前記第 1穴の穴あけ加工位置に前記レーザ光の照射位置を移動さ せる工程を含み、 [11] The first step is a predetermined step before the first hole is drilled in the first cycle. Moving the irradiation position of the laser beam to a default coordinate position, and moving the irradiation position of the laser beam to a drilling position of the first hole, the default coordinate position force;
前記第 2のステップの後、各サイクルの前記最後の穴あけ加工位置へのレーザ光 照射終了後は、前記デフォルト座標位置を経由させて前記第 1穴の穴あけ加工位置 に対し前記レーザ光の照射位置を移動させる第 4のステップをさらに含むことを特徴 とする請求項 9に記載のレーザ加工方法。  After the second step, after the laser beam irradiation to the last drilling position of each cycle is completed, the laser beam irradiation position with respect to the drilling position of the first hole via the default coordinate position The laser processing method according to claim 9, further comprising a fourth step of moving.
前記第 1のステップは、最初のサイクルに第 1穴に穴あけ加工を行なう前に 1サイク ルにおける最後の穴あけ加工位置と前記第 1穴との間である途中経路位置に前記レ 一ザ光の照射位置を移動させるとともに、前記途中経路位置力 前記第 1穴の穴あ け加工位置に前記レーザ光の照射位置を移動させる工程を含み、  In the first step, before the first hole is drilled in the first cycle, the laser beam is placed on a halfway path position between the last drilling position in one cycle and the first hole. Moving the irradiation position and moving the irradiation position of the laser beam to the drilling position of the first hole while moving the irradiation path position force,
前記第 2のステップの後、各サイクルの前記最後の穴あけ加工位置へのレーザ光 照射終了後は、前記第 1穴の穴あけ加工位置に対し前記レーザ光の照射位置を移 動させる第 5のステップをさらに含むことを特徴とする請求項 9に記載のレーザ加工方 法。  After the second step, after the laser beam irradiation to the last drilling position of each cycle is completed, the laser beam irradiation position is moved with respect to the drilling position of the first hole. The laser processing method according to claim 9, further comprising:
PCT/JP2006/300094 2006-01-06 2006-01-06 Laser material processing system, program creating device and laser material processing method WO2007077630A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800000378A CN101142052B (en) 2006-01-06 2006-01-06 Laser machining apparatus, program generating device and laser processing method
JP2006520436A JP4800939B2 (en) 2006-01-06 2006-01-06 Laser processing apparatus, program creation apparatus, and laser processing method
PCT/JP2006/300094 WO2007077630A1 (en) 2006-01-06 2006-01-06 Laser material processing system, program creating device and laser material processing method
TW095102772A TWI296219B (en) 2006-01-06 2006-01-25 Laser processing device, program preparation device, and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300094 WO2007077630A1 (en) 2006-01-06 2006-01-06 Laser material processing system, program creating device and laser material processing method

Publications (1)

Publication Number Publication Date
WO2007077630A1 true WO2007077630A1 (en) 2007-07-12

Family

ID=38227994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300094 WO2007077630A1 (en) 2006-01-06 2006-01-06 Laser material processing system, program creating device and laser material processing method

Country Status (4)

Country Link
JP (1) JP4800939B2 (en)
CN (1) CN101142052B (en)
TW (1) TWI296219B (en)
WO (1) WO2007077630A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186056A (en) * 2013-03-21 2014-10-02 Sumitomo Chemical Co Ltd Detector, laser beam irradiation device, and manufacturing apparatus of optical member laminate
EP2824699A1 (en) * 2013-07-08 2015-01-14 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Providing a chip die with electrically conductive elements
JP2020091576A (en) * 2018-12-04 2020-06-11 株式会社ディスコ Wiring board processing apparatus and wiring board processing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808267B2 (en) * 2012-02-20 2015-11-10 住友重機械工業株式会社 Laser processing apparatus and laser processing method
CN102615281B (en) * 2012-04-09 2013-10-16 西安交通大学 Regional mobile light source scanning system for laser rapid prototyping technology
CN103084733A (en) * 2012-12-06 2013-05-08 芜湖华力金属制品有限公司 Method for cutting steel plate with thickness of 5mm by using 500W laser cutting machine
JP5622973B1 (en) * 2013-01-04 2014-11-12 三菱電機株式会社 Processing control device, laser processing device, and processing control method
TWI608323B (en) * 2013-05-29 2017-12-11 Via Mechanics Ltd Laser processing method, device and program
CN103978315B (en) * 2014-05-23 2015-12-30 孙树峰 A kind of nozzle opening laser high-efficiency and precision automatic machining device and method
CN105034608A (en) * 2015-07-10 2015-11-11 辽宁科技大学 Industrial robot laser marking machine
CN106881525B (en) * 2015-12-15 2019-06-18 新代科技股份有限公司 Laser machine control system and its control method
JP6464213B2 (en) 2017-02-09 2019-02-06 ファナック株式会社 Laser processing system having laser processing head and imaging device
JP6514278B2 (en) * 2017-07-04 2019-05-15 ファナック株式会社 Laser processing robot system
JP7262410B2 (en) * 2020-03-11 2023-04-21 住友重機械工業株式会社 Processing sequence determination device, laser processing device, and laser processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192571A (en) * 1998-01-07 1999-07-21 Matsushita Electric Ind Co Ltd Laser processing method and apparatus therefor
JP2004164083A (en) * 2002-11-11 2004-06-10 Sumitomo Heavy Ind Ltd Working planning method and device for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122945A (en) * 1995-10-27 1997-05-13 Miyachi Technos Corp Laser beam machine
JP3407715B2 (en) * 2000-06-06 2003-05-19 松下電器産業株式会社 Laser processing equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192571A (en) * 1998-01-07 1999-07-21 Matsushita Electric Ind Co Ltd Laser processing method and apparatus therefor
JP2004164083A (en) * 2002-11-11 2004-06-10 Sumitomo Heavy Ind Ltd Working planning method and device for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186056A (en) * 2013-03-21 2014-10-02 Sumitomo Chemical Co Ltd Detector, laser beam irradiation device, and manufacturing apparatus of optical member laminate
EP2824699A1 (en) * 2013-07-08 2015-01-14 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Providing a chip die with electrically conductive elements
WO2015005779A1 (en) * 2013-07-08 2015-01-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Providing a chip die with electrically conductive elements
US9659822B2 (en) 2013-07-08 2017-05-23 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Providing a chip die with electrically conductive elements
JP2020091576A (en) * 2018-12-04 2020-06-11 株式会社ディスコ Wiring board processing apparatus and wiring board processing method

Also Published As

Publication number Publication date
CN101142052A (en) 2008-03-12
JPWO2007077630A1 (en) 2009-06-04
JP4800939B2 (en) 2011-10-26
CN101142052B (en) 2010-08-25
TW200726563A (en) 2007-07-16
TWI296219B (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4800939B2 (en) Laser processing apparatus, program creation apparatus, and laser processing method
CN108723583B (en) Laser processing system with measuring function
JP6325646B1 (en) Laser processing robot system for performing laser processing using robot and control method of laser processing robot
US11420288B2 (en) Laser machining systems and methods
JPH10323785A (en) Laser processing device
KR101544385B1 (en) Laser processing system and laser processing method for continuous roll patterning
KR20010110322A (en) Laser processing system
JP3323987B2 (en) Laser processing equipment
JPWO2011128966A1 (en) LASER MACHINE, LASER PROCESSING METHOD, AND LASER PROCESSING CONTROL DEVICE
JP4590782B2 (en) Laser processing equipment
JP6434554B2 (en) Galvano scanner
JP5931840B2 (en) Laser marking device
JP4277747B2 (en) Laser processing equipment
KR100794062B1 (en) Laser material processing system, program creating device and laser material processing method
JP2001300755A (en) Method and device for laser beam machining
US11537098B2 (en) Cutting machine and cutting method including tool radius compensation relative to a laser path
JP4670911B2 (en) Laser processing equipment
JP4698092B2 (en) Galvano scanner device and control method thereof
JP2005313204A (en) Laser aperture forming apparatus, laser machining apparatus and laser aperture forming method
JP2003236692A (en) Method and device for controlling galvano-scanner
JP2012047844A (en) Method for controlling galvano-device and laser machine
JP2004017101A (en) Control method for laser beam machining and device used for the same
JP2001205467A (en) Machine for laser machining and method of machining
JP3620484B2 (en) Laser processing apparatus and control method thereof
JPH11254168A (en) Control method for laser beam machining device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006520436

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680000037.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067013646

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711478

Country of ref document: EP

Kind code of ref document: A1