WO2007076639A1 - Composant de catalyseur pour la polymerisation ou la copolymerisation d'olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation - Google Patents

Composant de catalyseur pour la polymerisation ou la copolymerisation d'olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation Download PDF

Info

Publication number
WO2007076639A1
WO2007076639A1 PCT/CN2006/000001 CN2006000001W WO2007076639A1 WO 2007076639 A1 WO2007076639 A1 WO 2007076639A1 CN 2006000001 W CN2006000001 W CN 2006000001W WO 2007076639 A1 WO2007076639 A1 WO 2007076639A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst component
compound
titanium
magnesium
catalyst
Prior art date
Application number
PCT/CN2006/000001
Other languages
English (en)
French (fr)
Inventor
Zhiwu Wang
Zhong Tan
Zhengyang Guo
Kai Zhang
Tianyi Li
Jun Xiao
Peng Kou
Liang Pan
Li'an Yan
Xingbo Li
Huijuan Xu
Haixiang Cui
Yu Wang
Ling Yang
Original Assignee
China Petroleum & Chemical Corporation
Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chemical Corporation, Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation filed Critical China Petroleum & Chemical Corporation
Priority to KR1020087018726A priority Critical patent/KR101246777B1/ko
Priority to PCT/CN2006/000001 priority patent/WO2007076639A1/zh
Priority to EP06703143A priority patent/EP1970388A4/en
Publication of WO2007076639A1 publication Critical patent/WO2007076639A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Definitions

  • the present invention relates to a catalyst component for olefin polymerization or copolymerization, a process for the preparation thereof, a catalyst comprising the catalyst component and its use in olefin polymerization or copolymerization.
  • Supported high activity Ziegler-Natta catalysts are widely used in olefin polymerization.
  • a conventional method for preparing such a highly active supported catalyst is a coprecipitation method in which a magnesium halide is dissolved in a solvent system to form a homogenate solution, and then the active magnesium halide is precipitated by treatment with 3 ⁇ 4 of titanium, and simultaneously and/or The titanium active component is then carried up. No.
  • 4,784,983 discloses a catalyst system for the polymerization and copolymerization of olefins comprising: (a) a solid catalyst component comprising Ti, (b) an alkyl aluminum compound, and (c) a silicone, Wherein component (a) is a homogeneous solution formed by dissolving magnesium halide in a solvent mixture composed of an organic epoxy compound and an organophosphorus compound, and the solution is mixed with titanium tetrachloride or a derivative thereof, and is selected from the group consisting of organic acid liver and organic acid.
  • the solid matter is precipitated in the presence of a deuterating agent of an ether and a ketone; the solid is treated with a polycarboxylate, supported on a solid, and treated with a mixture of tetra- or titanium oxide or an inert diluent thereof. Obtained as a solid.
  • the catalyst system is used for the polymerization of propylene, the catalyst activity is high, and the obtained polymer has high isotacticity and large apparent density.
  • Patent application CN1229092 discloses a catalyst preparation method similar to that of USP 4,784,983, in which a magnesium halide is added to modify a magnesium halide in a step of dissolving magnesium to form a homogenate solution, so that the prepared catalyst is active in catalyzing ethylene polymerization. substantial improvement.
  • this catalyst is not suitable for the production of polypropylene and ethylene-propylene copolymer.
  • Another object of the present invention is to provide a catalyst for the polymerization or copolymerization of olefins.
  • Another object of the present invention is to provide a process for the preparation of the olefin polymerization or copolymerization catalyst component of the present invention.
  • Still another object of the invention is to provide the use of the olefin polymerization or copolymerization catalyst of the invention.
  • the catalyst of the invention has high catalytic activity and anti-impurity property when used for propylene polymerization and ethylene-propylene copolymerization; the catalyst particles have good morphology, the particle distribution is narrow, and the average particle diameter is adjustable from 5 ⁇ ⁇ to 35 ⁇ ⁇ ; Various polymerization processes such as bulk method and gas phase method; the molecular weight distribution Mw/Mn of the polymer is large, and the polymer particles have good morphology and less fine powder.
  • the excellent anti-impurity performance of the catalyst of the present invention can effectively reduce the cost of resin production.
  • the catalyst of the present invention is particularly suitable for the production of impact propylene copolymers and BOPP film resins.
  • the present invention relates to a catalyst component for olefin polymerization or copolymerization comprising ruthenium, titanium, a halogen, an internal electron donor compound and an alkoxy group derived from a surface modifier, wherein the surface is derived from The modifier has an alkoxy group content of greater than 0 but less than 5% by weight based on the weight of the catalyst component.
  • catalyst component means a main catalyst component or a pre-catalyst which, together with a co-catalyst component and an optional external electron donor, constitutes a catalyst for olefin polymerization or copolymerization of the present invention.
  • the catalyst component of the present invention can be obtained by a process comprising the steps of: i) dissolving a magnesium compound in a solvent mixture of an organic epoxy compound, an organophosphorus compound, and optionally an inert diluent to form a homogeneous solution,
  • the surface modifying agent is selected from the group consisting of organic alcohols
  • the co-precipitating agent is at least one selected from the group consisting of organic acid anhydrides, organic acids, ethers and ketones.
  • the catalyst component of the present invention can be prepared as follows: (1) Dissolving a magnesium compound in a solvent mixture composed of an organic epoxy compound, an organic phosphorus compound and an inert diluent under stirring to form a homogenous solution In the presence of a co-precipitating agent, at a temperature of -30 to 60 ° C, preferably -30 to 5 ° C, a titanium compound is dropped into a uniform solution of the above magnesium compound or a homogeneous solution of the magnesium compound is dropped into the titanium compound.
  • the reaction mixture is heated to 60 ⁇ 110 ° C, and stirred at this temperature for 0.5 ⁇ 8 hours; the mother liquor is filtered off, the remaining solid is washed with an inert diluent to obtain a solid containing magnesium and titanium;
  • the above solid matter is suspended in an inert diluent, and a surface modifier and a titanium compound are added at a temperature of -30 to 50 ° C, and the temperature is raised to a range of 10 to 80 under stirring, and an internal electron donor is added, and the internal electron donor can be It can be added in several times at different temperatures; the reaction is continued at 100 ⁇ 130 °C for 0.5 ⁇ 8 hours, the liquid is filtered off, and the titanium compound and inert diluent are used. The mixture was treated 1-2 times, the liquid was filtered off, washed with an inert solid diluent, to prepare a solid catalyst component containing titanium.
  • the magnesium compound used in the present invention is selected from the group consisting of magnesium dihalide, a complex of water and an alcohol of a magnesium dihalide, a derivative in which one of the halogen atoms is replaced by a hydrocarbon group or a hydrocarbyloxy group, and a mixture of them.
  • examples of the above magnesium compound include, but are not limited to, magnesium dichloride, magnesium dibromide, magnesium diiodide, preferably magnesium dichloride.
  • the organic epoxy compound used in the present invention is selected from the group consisting of an aliphatic olefin having 2 to 8 carbon atoms, a diene or an oxide of an aliphatic olefin or a diene, a glycidyl ether and an internal ether. At least one of them. Examples include, but are not limited to: ethylene oxide, epoxy Propane, butylene oxide, butadiene oxide, butadiene double oxide, epichlorohydrin, methyl glycidyl ether, diglycidyl ether.
  • the organophosphorus compound used in the present invention is selected from a hydrocarbyl ester or a halogenated hydrocarbyl ester of orthophosphoric acid or phosphorous acid, such as but not limited to: trimethyl orthoformate, triethyl orthophosphate, tributyl orthophosphate , triphenyl orthophosphate, trimethyl phosphite, triethyl phosphite, tributyl phosphite, benzyl phosphite.
  • a hydrocarbyl ester or a halogenated hydrocarbyl ester of orthophosphoric acid or phosphorous acid such as but not limited to: trimethyl orthoformate, triethyl orthophosphate, tributyl orthophosphate , triphenyl orthophosphate, trimethyl phosphite, triethyl phosphite, tributyl phosphite, benzyl phosphite.
  • the co-precipitation agent used in the present invention is selected from one of an organic acid, an organic acid anhydride, an organic ether, an organic ketone, or a mixture thereof.
  • an organic acid an organic acid anhydride
  • an organic ether an organic ketone
  • a mixture thereof for example, but not limited to: acetic anhydride, phthalic anhydride, succinic anhydride, maleic anhydride, pyromellitic dianhydride, acetic acid, propionic acid, butyric acid, acrylic acid, methacrylic acid, acetone, methyl ethyl ketone, Benzophenone, oxime ether, diethyl ether, propyl ether, dibutyl ether, pentyl ether.
  • the surface modifier used in the present invention is selected from the group consisting of organic alcohols, preferably linear or isomeric alcohols of 1 to 8 carbon atoms, such as: methanol, ethanol, propanol, isopropanol, butanol, isobutanol, octane Alcohol, isooctanol or a mixture thereof.
  • the titanium compound used in the present invention has the formula of Ti(OR) 4 . n X n , wherein R is the same or different d-C 14 aliphatic hydrocarbon group or aromatic hydrocarbon group, and X is a halogen, n Is an integer from 0 to 4.
  • R is the same or different d-C 14 aliphatic hydrocarbon group or aromatic hydrocarbon group
  • X is a halogen
  • Examples include titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium tetrabutoxide, titanium tetraethoxide, titanium monochlorotriethoxy, titanium dichlorodiethoxylate, trichloro-ethoxy Base titanium and mixtures thereof, preferably titanium tetrachloride.
  • the titanium compounds used in the steps ii) and iii) of the above production method may be the same or different.
  • At least one internal electron donor compound must also be added to the preparation of the catalyst component of the invention.
  • internal electron donor compounds in, for example, propylene polymerization catalysts is well known in the art, and these commonly used internal electron donor compounds, such as polycarboxylic acids, monocarboxylic esters or polycarboxylates, anhydrides, ketones, singles Ether or polyethers and amines can be used in the present invention.
  • Examples of internal electron donor compounds which can be used in the present invention include, but are not limited to: (i) aliphatic or aromatic polycarboxylate compounds such as phthalates, malonic esters, succinates, pentane Diester, adipate, maleate, cedar An acid ester, a trimellitic acid ester, a trimellitic acid ester, a pyromellitic acid ester, a pivalate or a carbonate.
  • R R R 6 , -R 211 groups are the same or different hydrogen, halogen or a substituted or unsubstituted linear or branched -Qio fluorenyl group, C 3 -C 2 .
  • R 3 - R 6 and RLR 211 groups optionally contain one or more heteroatoms as carbon or hydrogen atoms or a substituent of the two, wherein the hetero atom is selected from nitrogen, oxygen, sulfur, silicon, phosphorus or a halogen atom, and one or more of the R 3 - R 6 and -R 211 groups may be joined to form a ring; An integer from 0 to 10;
  • R r R 6 , R ! -R 2 group is as defined in the formula (I).
  • R 3 , R 4 , R 5 and R 6 are not hydrogen at the same time, and R 3 , R 4 , R 5 and R At least one of the groups 6 is selected from the group consisting of halogen, C r C 10 linear or branched alkyl, C 3 -C 10 cycloalkyl, C 6 -C 10 aryl, C 7 -C 1 () alkane Base or aralkyl group.
  • the compound of the formula (I) further includes a compound of the formula (III):
  • R r R 6 group is as defined in the formula (I);
  • R is the same or different hydrogen, halogen atom, linear or branched d- o alkyl group, C 3 -C 20 cycloalkyl group , C 6 -C 20 aryl, C 7 -C 2Q alkaryl or C 7 -C 20 aralkyl.
  • polyol polyol compounds represented by the general formulae (I), ((), and (III) preferably at least one of them is selected from a phenyl group, a halogenated phenyl group, an alkylphenyl group or a halogenated group. Alkylphenyl.
  • polyol ester electron donor compound examples include 1,3-pentanediol diphenyl Formate,
  • RR n , R m , R IV , R v and R VI are the same or different from each other and are selected from hydrogen, a halogen atom, a linear or branched dC alkyl group, C 3 -C 2 .
  • R VI1 and R vm may be the same or different from each other, selected from a straight Chain or branched Ci-C 20 C 3 -C 20 ring pit group, C 6 -C 20 aryl group, C 7 -C 20 alkaryl group and C 7 -C 2 o aryl fluorenyl group; R 1 - R VI
  • the groups can be bonded to form a ring. Preference is given to 1,3-diethers in which R VI1 and R vm are selected from C r C 4 alkyl.
  • internal electron donor compound does not include an alcohol used as a surface modifier in the present invention.
  • the inert diluent used in the present invention is not limited in principle as long as it does not interfere with the progress of the process. However, it is preferred to use an alkane solvent such as hexane, heptane, octane, decane or the like, or an aromatic hydrocarbon solvent such as benzene, toluene, xylene or the like.
  • the inert diluents used in the respective steps of the preparation method may be the same or different.
  • the amount of each raw material used is 0.2 to 10 moles per mole of the magnesium compound, preferably 0.5 to 4 moles; and the organophosphorus compound is 0.1 to 3 moles. , preferably 0.3 to 1 mole; the helper is 0.03 to 1 mole, preferably 0.05 to 0.4 mole; the surface modifier is 0.005 to 15 mole, excellent 0.06 ⁇ 10 moles, more preferably 0 ⁇ 1 ⁇ 3 moles, most preferably 0 ⁇ 2 ⁇ 1.5 moles; the drink compound is 0.5-20 moles, preferably 1-15 moles; the electron donor compound is 0.005-10 moles, It is preferably 0.01 to 2 moles.
  • the catalyst component of the present invention has substantially the following composition: 1 to 10 wt% of titanium, 10 to 20 wt% of magnesium, 40 to 70 wt% of halogen, 5 to 25 wt% of electron donor compound, and alkoxy group derived from surface modifier greater than 0. However, it is less than 5 wt%, and the inert diluent is 0 to 10 wt%, based on the total weight of the catalyst components.
  • the content of the alkoxy group derived from the surface modifier is more than 0 but less than 5%, preferably 0.01 to 3%, more preferably 0.02 to 2%, still more preferably 0.05 to 1.5%, most preferably 0.1 to 1%.
  • the alkoxy content is determined by the method described below.
  • the term "alkoxy derived from a surface modifying agent" as used in the present invention does not include an alkoxy moiety as an ester of an internal electron donor contained in a catalyst component.
  • the invention relates to a catalyst for the polymerization or copolymerization of olefins comprising the following components:
  • the organoaluminum compound used as component B of the catalyst of the present invention has the formula AIR n X 3 .
  • R may be hydrogen or a hydrocarbon group having 1 to 20 carbon atoms, particularly an alkyl group or an aralkyl group.
  • Base aryl
  • X is halogen, especially chlorine or bromine
  • n is a number satisfying 0 ⁇ n 3.
  • trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum An alkyl aluminum halide such as diethylaluminum monohydride, monoisobutylaluminum hydride, diethylaluminum dichloride, monochlorodiisobutylaluminum, sesquiethylaluminum chloride or dichloroethylaluminum, Among them, triethyl aluminum and triisobutyl aluminum are preferred.
  • the molar ratio of aluminum in component B to titanium in component A is from 5 to 5,000, preferably from 20 to 500.
  • Optional component C in the catalyst system of the invention may be a conventional external electron donor A bulk compound, such as an organosilicon compound.
  • the organosilicon compound has the formula R n Si ( OR 1 ) 4- makeup» wherein n is an integer of 0 to 3, and R and R 1 are the same or different alkyl groups, cycloalkyl, aryl , Halogenated alkyl, etc., R may also be a halogen or a hydrogen atom.
  • Examples include, but are not limited to: trimethylmethoxysilane, trimethylethoxysilane, trimethylphenoxysilane, dimethyldiene Methoxy, dimethyldiethoxy gu 3 ⁇ 4, decylcyclohexyldiethoxysilane, decylcyclohexyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethyl Oxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane.
  • the C component may or may not be added during polymerization.
  • the catalyst of the present invention can be used for the polymerization of ethylene, and ethylene with other ⁇ -olefins such as propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-pentene, 1-octene Co-polymerization.
  • the catalyst of the present invention can also be used for the polymerization of propylene, and propylene with other ⁇ -olefins such as ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-pentene, 1-octyl Copolymerization of an ene or the like.
  • the catalyst of the present invention is particularly suitable for the homopolymerization of propylene and the copolymerization of propylene and ethylene.
  • the invention relates to a process for the polymerization or copolymerization of olefins comprising contacting ethylene or propylene and optionally an alpha -olefin comonomer with a catalyst of the invention under polymerization conditions.
  • the catalyst of the present invention is suitable for use in slurry polymerization, bulk polymerization, and gas phase polymerization processes. These processes and polymerization conditions are well known in the art.
  • the invention relates to the use of a catalyst of the invention in the polymerization or copolymerization of olefins.
  • the catalyst performance is greatly improved.
  • the catalyst has high catalytic activity and anti-impurity property in propylene polymerization or ethylene-propylene copolymerization, good catalyst particle morphology and narrow particle distribution, and is suitable for various polymerization processes such as slurry method, bulk method and gas phase method, and molecular weight of polymer.
  • the catalyst is particularly suitable for the production of impact propylene copolymers and ruthenium resin.
  • the catalyst component powder sample is decomposed in a deionized aqueous solution such that OR in the sample forms ROH.
  • the ROH in the aqueous phase was then determined by gas chromatography, thereby obtaining an OR content.
  • Example 1 After replacing the dried sample bottle with nitrogen, weigh about 0.2 g of the sample (accurate to 0.000 ⁇ l), add 0.003 g of internal standard (about 6 ul, accurate to O.OOOlg), and slowly inject 4 ml of deionized water. Decomposition of the catalyst (there will be exothermic pressure when adding the water-decomposing catalyst, so be sure to press the cap by hand and place the sample vial in a container filled with water to allow rapid cooling). After pressing the cap for 2-3 minutes , stand still 5miii or more, take 0.5ul of water phase, and measure it by chromatograph.
  • Example 1 Example 1
  • the solid A prepared above was suspended in 93 liters of toluene, and 1.4 liters of ethanol and 48 liters of titanium tetrachloride were added at -10 ° C, and the temperature was gradually raised to 110 ° C under stirring, during the temperature rise, at 20 ° C.
  • DIBP diisobutyl phthalate
  • DNBP di-n-butyl phthalate
  • the liquid was then filtered off, and the remaining solid product was washed 5 times with hexane and dried in vacuo to give a solid titanium catalyst component.
  • the titanium content is 2.58% (wt)
  • the DNBP content is 7.63% (wt)
  • the DIBP content is 2.49% (wt)
  • the DEP content is 1.5% (wt)
  • the ethoxy group content is 0.17% (wt).
  • the specific surface area was 348 m 2 /g, the pore volume was 0.32 cm 3 /g, and the average pore diameter was 3.78 nm.
  • the reaction vessel was cooled and stirred to remove the reaction product, which was dried to give 790 g of a white polymer.
  • the catalyst activity was 79,000 g of polypropylene/g of catalyst component, the polymer bulk density was 0.46 g/cm 3 , the fine powder content of less than 80 mesh was 0.5 wt%, the molecular weight distribution of the polymer was Mw/Mn of 6.0, and Ml was 6.7 g. /10min.
  • the pressure in the autoclave (gauge pressure) was lowered to 0, the temperature was raised to 80 ° C, and the mixture was subjected to a constant pressure of 1.0 Mpa, and polymerization was carried out for 45 minutes under the conditions.
  • the polymer product is then recovered.
  • the catalyst activity was 83,500 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.38 g/cm 3 , the ethylene content of the polymer was 14.7 wt%, and the xylene solubles were 21.1 wt%.
  • the solid A prepared above was suspended in 72 ml of toluene, and 1.7 ml of n-butanol and 48 ml of titanium tetrachloride were added at -10 °C.
  • the reaction mixture was gradually warmed to 110 ° C with stirring.
  • 1.5 liters of DNBP was added at 80 ° C, and the temperature was maintained at 110 ° C for 1 hour after the temperature.
  • the remaining solid was treated with titanium tetrachloride 48 liters and toluene 72 liters at 110 ° C for 2 hours, and the treatment was repeated once more.
  • the titanium content is 2.13% (wt)
  • the DNBP content is 12.8% (wt)
  • the butoxy group content is 0.1% (wt)
  • the specific surface area of the catalyst is 282.1 m 2 /g
  • the pore volume is 0.27 cm 3 /g.
  • the average pore diameter was 3.79 nm. 3, polymerization 1
  • the polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1, and the catalyst activity was 68000 g of polypropylene/g catalyst component, the polymer bulk density was 0.42 g/cm 3 , and the fine powder content of less than 80 mesh was 1.0 wt%.
  • the molecular weight distribution Mw/Mn of the material was 5.2, and Ml was 7.2 g/10 min.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 73,600 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.37 g/cm 3 , the ethylene content of the polymer was 13.3 wt%, and the xylene was The solution was 17.0% by weight.
  • Example 3
  • the solid A prepared above was suspended in 72 ml of toluene, 3.0 ml of isooctanol was added at 10 ° C, the temperature was lowered to -10 ° C, and 48 ml of titanium tetrachloride was added.
  • the reaction mixture was gradually warmed to 110. C, and add 1.0 liters of DIBP at 80 ° C, and keep warm at 110 ° C for 1 hour after the temperature. After filtering off the liquid, the remaining solids are treated with titanium tetrachloride 48 ml and toluene 72 at 110 ° C. 2 After the filtration, the treatment was repeated once more.
  • the remaining solid product was washed 5 times with hexane and dried under vacuum to obtain a solid titanium catalyst component, wherein the titanium content was 2.34% by weight, DIBP content.
  • the ratio is 10.57% by weight, the DIOP content is 0.8% by weight, the octyloxy group content is 0.1% by weight, the specific surface area of the catalyst is 273.6 m 2 /g, the pore volume is 0.26 cm 3 /g, and the average pore diameter is 3.78 nm.
  • the polymerization conditions of propylene were as described in the polymerization reaction 1 of Example 1, and the catalyst activity was 62,300 g of polypropylene/g of the catalyst component, the polymer bulk density was 0.46 g/cm 3 , and the fine powder content of less than 80 mesh was 0.5 wt%.
  • the molecular weight distribution Mw/Mn of the material is 5.4.
  • the MI is 5.8 g/10 min.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 55900 g polypropylene/g catalyst component, the polymer bulk density was 0.35 g/cm 3 , the ethylene content in the polymer was 16.4 wt%, and xylene was used.
  • the solution was 21.2% by weight.
  • the solid A prepared above was suspended in 72 ml of toluene, and 2.5 liters of isooctanol and 48 liters of titanium tetrachloride were added at 0 °C.
  • the reaction mixture was gradually warmed to 110 ° C, and 1.0 liter of di-n-butyl phthalate (DNBP) was added at 80 ° C, and the temperature was maintained at 110 ° C for 1 hour after warming.
  • DNBP di-n-butyl phthalate
  • the remaining solid was treated with 48 ml of titanium tetrachloride and toluene 72 at 110 ° C for 2 hours, and the treatment was repeated once more.
  • the remaining solid product was washed 5 times with hexane and dried under vacuum to obtain a solid titanium catalyst component.
  • the titanium content is 2.36% (wt)
  • the DNBP content is 9.75% (wt)
  • the DIOP content is 0.65% (wt)
  • the octyloxy group content is 0.12% (wt)
  • the specific surface area of the catalyst is 245.3 m 2 /g.
  • the pore volume was 0.25 cm 3 /g, and the average pore diameter was 3.90 nm.
  • the polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1.
  • the catalyst activity was 77600 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.46 g/cm 3 , and the fine powder content of less than 80 mesh was 0.3 wt%.
  • the molecular weight distribution Mw/Mn of the material was 5.1, and Ml was 6.3 g/10 min.
  • Example 5 The polymerization conditions were as described in Polymerization 2 of Example 1, and the catalyst activity was 81,400 g of polypropylene per gram of the catalyst component, and the polymer bulk density was 0.38 g/cm 3 .
  • the ethylene content in the medium was 13.0% by weight, and the xylene soluble matter was 16.4% by weight.
  • Example 5 The ethylene content in the medium was 13.0% by weight, and the xylene soluble matter was 16.4% by weight.
  • the solid A prepared above was suspended in 93 liters of toluene, and 1.4 liters of ethanol was added at -10 °C.
  • the reaction mixture was gradually warmed to 30 ° C, maintained for 30 minutes, then cooled to -10 ° C, and 48 liters of titanium tetrachloride was added.
  • the reaction mixture was then gradually warmed to 110 ° C, and 2.0 liters of di-n-butyl phthalate (DNBP) was added at 80 ° C, and the temperature was maintained at 110 ° C for 1 hour after warming.
  • DNBP di-n-butyl phthalate
  • the remaining solid was treated with 48 liters of titanium tetrachloride and 72 liters of toluene at 110 ° C for 2 hours, and the treatment was repeated once more. Then, the liquid was filtered off, and the remaining solid product was washed 5 times with hexane and dried in vacuo to give a solid titanium catalyst component.
  • the titanium content is 2.56% (wt)
  • the DNBP content is 8.64% (wt)
  • the DEP content is 0.7% (wt)
  • the ethoxy group content is 0.24% (wt)
  • the specific surface area of the catalyst is 284.7 m 2 /g.
  • the pore volume was 0.27 cm 3 /g, and the average pore diameter was 3.53 nm.
  • the propylene polymerization unit was the same as the polymerization reaction 1 in Example 1, and the catalyst activity was 78,000 g polypropylene/g catalyst component, the polymer bulk density was 0.47 g/cm 3 , and the fine powder content of less than 80 mesh was 0.5 wt%.
  • the polymer had a molecular weight distribution Mw/Mn of 5.3 and Ml of 5.6 g/10 min.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 81,600 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.38 g/cm 3 , the ethylene content of the polymer was 14.5 wt%, and xylene was used.
  • the dissolved matter was 19.3 wt% 0 1.
  • the solid A prepared above was suspended in 93 liters of toluene, and 1.4 liters of ethanol was added at -10 °C. .
  • the reaction mixture was gradually warmed to 30. C, after 30 minutes, the temperature was lowered to -10 °C, and 48 liters of titanium tetrachloride was added. Then, the reaction mixture was gradually warmed to 110 ° C, and 1.7 liters of diisobutyl phthalate (DIBP), 110 was added at 80 °C. C is thermostated for 1 hour after warming.
  • DIBP diisobutyl phthalate
  • the remaining solid was treated with 48 liters of titanium tetrachloride and 72 liters of toluene at 110 ° C for 2 hours, and the treatment was repeated once more. Then, after filtering off the liquid, the remaining solid product was washed 5 times with hexane and dried under vacuum to obtain a solid titanium catalyst component.
  • the titanium content is 2.56% (wt)
  • the DIBP content is 7.83% (wt)
  • the DEP is 3.2% (wt)
  • the ethoxy group content is 0.15% (wt)
  • the specific surface area of the catalyst is 297.6 m 2 /g.
  • the pore volume was 0.29 cm 3 /g, and the average pore diameter was 3.49 nm.
  • the polymerization conditions of the propionium were the same as those of the polymerization reaction 1 in Example 1, and the catalyst activity was 74,000 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.47 g/cm 3 , and the fine powder content of less than 80 mesh was 0.4 wt%.
  • the polymer had a molecular weight distribution Mw/Mn of 5.8 and Ml of 5.8 g/10 min.
  • the polymerization element was the same as the polymerization reaction 2 in Example 1, and the catalyst activity was 63,200 g of polypropylene/g of catalyst component, the polymer bulk density was 0.38 g/cm 3 , and the ethylene content of the polymer was 15.8 wt%, xylene.
  • the soluble matter was 22.32% by weight.
  • the liquid was filtered off, it was kept at a constant temperature of 110 ° C for 2 hours with 48 liters of titanium tetrachloride and 72 liters of toluene, and the treatment was repeated once again after filtration. Then, after the liquid was filtered off, the remaining solid product was washed 5 times with hexane and dried in vacuo to give a solid titanium catalyst component.
  • the titanium content is 3.19% by weight
  • the 1,3-pentanediol dibenzoate content is 10.3 wt%
  • the ethoxy group content is 0.15% by weight
  • the specific surface area of the catalyst is 283.5 m 2 /g.
  • the volume was 0.27 cm 3 /g, and the average pore diameter was 3.65 nm.
  • the polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1, and the catalyst activity was 61,500 g of polypropylene/g of the catalyst component, the polymer bulk density was 0.44 g/cm 3 , and the fine powder content of less than 80 mesh was 0.4 wt%.
  • the molecular weight distribution Mw/Mn of the material was 8.5, and Ml was 3.8 g/10 min.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 64,800 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.37 g/cm 3 , and the ethylene content of the polymer was 14.9 wt%.
  • the solution was 18.62% by weight.
  • the solid A prepared above was suspended in 93 liters of toluene, and 1.4 liters of ethanol was added at 35 °C. After the reaction mixture was maintained at this temperature for 30 minutes, 48 liters of titanium tetrachloride was added, and then the temperature was gradually raised to 110 ° C, and 2.0 liters of diisobutyl phthalate (DIBP) was added at 40 ° C, 110 ° C. Constant temperature for 1 hour after warming. After filtering off the liquid, the remaining solid is tetrachlorinated 48 liters of titanium and 72 liters of toluene were treated at 110 ° C for 2 hours, and the treatment was repeated once more after filtration.
  • DIBP diisobutyl phthalate
  • the titanium content is 3.27% (wt)
  • the DIBP content is 6.80% (wt)
  • the DEP content is 2.1% (wt)
  • the ethoxy group content is 0.14% (wt)
  • the specific surface area of the catalyst is 307.4 m 2 /g.
  • the pore volume is 0.29cm 3 /g and the average pore diameter is 4.09.
  • the polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1.
  • the catalyst activity was 58,000 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.45 g/cm 3 , and the fine powder content of less than 80 mesh was 0.4 wt%.
  • the molecular weight distribution Mw/Mn of the material is 5.6 Ml is 5.4 g/10 min.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 62,100 g of polypropylene/g of the catalyst component, the polymer bulk density was 0.39 g/cm 3 , and the ethylene content of the polymer was 13.7% by weight.
  • the dissolved matter is 16.86 wt%
  • the solid A prepared above was suspended in 72 ml of toluene, and 3.0 liters of ethanol and 48 ml of titanium tetrachloride were added at -10 °C.
  • the reaction mixture was gradually warmed to 110 ° C.
  • 1.0 ml of DIBP was added at 80 C, and the temperature was maintained at 110 ° C for 1 hour.
  • the remaining solid was treated with titanium tetrachloride 48 liters and toluene 72 liters at 110 ° C for 2 hours, and the treatment was repeated once more.
  • the titanium content is 2.85% (wt)
  • the DIBP content is 11.5% (wt)
  • the ethoxy group content is 1.3% (wt)
  • the specific surface area of the catalyst is 321.5 m 2 /g
  • the pore volume is 0.30 cm 3 /g. Flat The average pore diameter was 3.62 nm.
  • the polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1.
  • the catalyst activity was 59,400 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.43 g/cm 3 , and the fine powder content of less than 80 mesh (0.18 mm) was 2.4.
  • the wt% of the polymer has a molecular weight distribution Mw Mn of 5.6 and Ml of 5.7 g/10 min.
  • the solid A prepared above was suspended in 72 ml of toluene, and 1.0 ml of ethanol and 48 ml of titanium tetrachloride were added at -10 °C.
  • the reaction mixture was gradually warmed to 110 ° C.
  • 1.0 liter of DIBP was added at 80 ° C, and the temperature was maintained at 110 ° C for 1 hour after warming.
  • the remaining solid was treated with titanium tetrachloride 48 liters and toluene 72 liters at 110 ° C for 2 hours, and the treatment was repeated once more. After filtering off the liquid, the remaining solid product was washed 5 times with hexane and dried under vacuum to give a solid titanium catalyst component.
  • the titanium content is 2.54% (wt)
  • the DNBP is 4.8% (wt)
  • the DIBP content is 6.9% (wt)
  • the DEP content is 1.3% (wt)
  • the ethoxy group content is 0.20% (wt).
  • the specific surface area was 305.4 m 2 /g
  • the pore volume was 0.28 cm 3 /g
  • the average pore diameter was 3.64 nm.
  • polymerization 1 The polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1, and the catalyst activity was 65000 g of polypropylene/g catalyst component, the polymer bulk density was 0.47 g/cm 3 , and the fine powder content of less than 80 mesh was 0.6 wt%.
  • the molecular weight distribution Mw/Mn of the material was 5.4, and Ml was 6.9 g/10 min.
  • the copolymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 71,500 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.39 g/cm 3 , and the ethylene content of the polymer was 13.9% by weight.
  • the benzene solubles were 16.8% by weight.
  • the solid A prepared above was suspended in 72 ml of toluene, and 1.0 liter of ethanol and 48 liters of titanium tetrachloride were added at -10 ° C, and the reaction mixture was gradually warmed to 110 with stirring.
  • C. 5 ⁇ DIBP ⁇ At the temperature of 80 ° C was added 1. 5 ml of DIBP. The temperature was maintained at 110 ° C for 1 hour after the temperature. After the liquid was filtered off, the remaining solid was treated with 48 ml of titanium tetrachloride and 72 ml of toluene at 110 ° C for 2 hours, and filtered and then treated again.
  • the titanium content is 3.12 ° /. (m)
  • the specific surface area of the catalyst is 295. 4m7g, pore volume
  • the specific surface area of the catalyst is 295. 4% (wt)
  • the ethoxy group content is 0. 18% (wt)
  • the specific surface area of the catalyst is 295. 4m7g, pore volume is 0. 28cra 3 / g, an average pore diameter of 3. 70nm.
  • polymerization 1 The propylene polymerization conditions are the same as those in the polymerization reaction of the first embodiment, the catalyst activity is 64000 g gram of polypropylene / gram of the catalyst component, the polymer bulk density is 0. 47 g / cm 3 , less than 80 mesh fine powder content is 0. 4 ⁇ /10 ⁇ The molecular weight distribution Mw / Mn of 5, 8, Ml is 6. 4g/10min.
  • the catalyst activity is 64000 g gram of polypropylene / gram of the catalyst component
  • the polymer bulk density is 0. 47 g / cm 3
  • less than 80 mesh fine powder content is 0. 4 ⁇ /10 ⁇
  • the molecular weight distribution Mw / Mn of 5, 8, Ml is 6. 4g/10min.
  • the solids A prepared above were suspended in 93 liters of toluene, and 1.4 liters of ethanol was added at -25 °C. The reaction mixture was then gradually warmed to 30 ° C, maintained for 30 minutes, then cooled to -10 ° C, and 48 liters of titanium tetrachloride was added. The reaction mixture was gradually warmed to 110. C, 1.5 L of diisobutyl phthalate (DIBP) and 1.8 L of ethyl benzoate (EB) were added at 40 ° C, and the temperature was maintained at 110 ° C for 1 hour after warming.
  • DIBP diisobutyl phthalate
  • EB ethyl benzoate
  • the catalyst activity is 64300 g PP / g catalyst component, a polymer bulk density of 0.44 g / cm 3, less than 80 mesh fines content 0. 4wt % ⁇
  • the molecular weight distribution Mw / Mn was 6. 3, Ml was 9. 8g/10rain.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1, and the catalyst activity was 73,200.
  • G PP / g catalyst component a polymer bulk density of 0.36 g / cm 3, ethylene content of the polymer 14. 5wt%, xylene solubles 18. 5wt% 0 Comparative Example 1
  • the mother liquor was filtered off, and the remaining solid was treated with toluene 60 liters and titanium tetrachloride 40 liters at 110 ° C for 2 hours, and the treatment was repeated once more.
  • the solid after filtration was washed with hexane 5 times and dried to obtain a solid titanium catalyst component.
  • the titanium content is 1.9% (wt)
  • the DNBP content is 12.50% (wt)
  • the specific surface area of the catalyst is 180.5 m 2 /g
  • the pore volume is 0.22 cm 3 /
  • the average pore diameter is 4.12 nm
  • the ethoxy group content is 0. .
  • the polymerization conditions of propylene were the same as those of the polymerization reaction 1 in Example 1, and the catalyst activity was 55,000 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.47 g/cm 3 , and the fine powder content of less than 80 mesh was 1.5 wt%.
  • the molecular weight distribution of the material was Mw/Mn of 4.3 and Ml was 4.5 g/10 min.
  • the polymerization conditions were the same as those in the polymerization reaction 2 in Example 1.
  • the catalyst activity was 46,200 g of polypropylene per gram of the catalyst component, the polymer bulk density was 0.35 g/cm 3 , the ethylene content of the polymer was 9.5 wt%, and xylene was used.
  • the solution was 13.8% by weight. Comparative example 2 1. Preparation of magnesium/titanium solids
  • the solid A prepared above was suspended in 72 ml of toluene, and 8.0 ml of ethanol and 48 liters of titanium tetrachloride were added at -10 °C. The mixture was gradually warmed to 85 ° C, and 1.0 liter of DIBP was added at 80 ° C during the temperature rise, and the temperature was maintained at 85 ° C for 1 hour after the temperature. Then, the liquid was filtered off, and the remaining solid product was washed 5 times with hexane, and dried under vacuum to obtain a solid titanium catalyst component.
  • the titanium content is 4.32% (wt)
  • the DIBP content is 13.5% (wt)
  • the ethoxy group content is 5.5% (wt)
  • the specific surface area of the catalyst is 170.6 m 2 /g, and the pore volume is
  • the propylene polymerization unit was the same as the polymerization reaction 1 in Example 1, and the catalyst activity was 36,400 g polypropylene/g catalyst component, the polymer bulk density was 0.43 g/cm 3 , and the fine powder content was less than 80 mesh (0.18 mm). 5.6 wt%, the molecular weight distribution of the polymer Mw/Mn was 5.3, and Ml was 6.2 g/10 min.
  • the reaction mixture was gradually warmed to 85 ° C, and 2.0 liters of DNBP was added at 80 ° C, and the temperature was maintained at 85 ° C for one hour.
  • the mother liquor was filtered off, and 60 liters of toluene and 40 liters of titanium tetrachloride were added, and treated at 110 ° C for 2 hours, and the treatment was repeated once more after filtration.
  • the liquid was filtered off, and the remaining solid product was washed 5 times with hexane and dried to give a solid titanium catalyst component.
  • the titanium content is 3,56% (wt)
  • the DNBP content is 12.20% (wt)
  • the ethoxy group is 0.30% (wt)
  • the specific surface area of the catalyst is 150.4 m 2 /g.
  • the pore volume was 0.21 cm 3 /g, and the average pore diameter was 4.23 nm.
  • the polymerization conditions of propylene were the same as those in Example 1.
  • the catalyst activity was 25,300 g of polypropylene/g of catalyst component, the polymer bulk density was 0.43 g/cm 3 , less than 80 (0.18 mm), the fine powder content was 10.2 wt%, and the molecular weight of the polymer.
  • the distribution Mw/Mn is 4.8, and Ml is 4.9 g/10 min. c

Description

一种用于烯烃聚合或共聚合的催化剂组分、 其制备方法、 包含该催化剂组分的催化剂及其应用 技术领域
本发明涉及一种用于烯烃聚合或共聚合的催化剂组分、 其制备 方法、 包含该催化剂组分的催化剂及其在烯烃聚合或共聚合中的应 用。
背景技术
负载的高活性 Ziegler-Natta催化剂广泛用于烯烃聚合中。一种制 备这样的高活性载体催化剂的常规方法是共析出法, 其中将卤化镁 溶解在一种溶剂体系中形成均勾溶液, 再用 ¾化钛处理将活性卤化 镁析出, 并同时和 /或随后将钛活性组分载负上去。 专利 USP4,784,983公开了一种用于烯烃聚合和共聚合的催化剂体系, 该 催化剂体系包括: (a)含 Ti 的固体催化剂组分, (b)烷基铝化合物, 和 (c)有机硅, 其中 (a)组分是由卤化镁溶于有机环氧化合物和有机磷 化合物组成的溶剂混合物中形成均匀溶液, 该溶液与四 化钛或其 衍生物混合, 在选自有机酸肝、 有机酸、 醚和酮的助析出剂存在下, 析出固体物; 此固体物用多元羧酸酯处理, 使其载附于固体物上, 再用四 !¾化钛或其与惰性稀释剂的混合物处理分离的固体物而得 到。 该催化剂体系用于丙浠聚合时, 催化剂活性较高, 所得聚合物 的等规度较高, 表观密度大。
专利申请 CN1229092公开了类似于 USP4,784,983的催化剂制备 方法, 其中在 1¾化镁溶解形成均勾溶液这一步骤中, 加入了乙醇对 卤化镁进行改性, 使得制备的催化剂在催化乙烯聚合时活性大幅度 提高。 但该催化剂不适合聚丙烯及乙丙共聚物的生产。
发明概述
本发明的一个目的是提供一种用于烯烃聚合或共聚合的催化剂 组分。
本发明的另一个目的是提供一种用于烯烃聚合或共聚合的催化 剂。
本发明的另一个目的是提供本发明的烯烃聚合或共聚合催化剂 组分的制备方法。
本发明的又一个目的是提供一种烯烃聚合或共聚合方法。
本发明的又一个目的是提供本发明的烯烃聚合或共聚合催化剂 的应用。
本发明的催化剂用于丙烯聚合及乙丙共聚合时具有高催化活性 和抗杂质性能; 催化剂颗粒形态良好, 颗粒分布窄, 平均粒径在 5 μ ιη ~ 35 μ ιη 可调; 适用于浆液法、 本体法和气相法等多种聚合工 艺; 聚合物的分子量分布 Mw/Mn较大, 且聚合物颗粒形态良好, 细粉少。 本发明催化剂的优良的抗杂质性能可有效的降低树脂生产 成本。 本发明的催化剂特别适合于抗冲丙烯共聚物和 BOPP膜树脂 的生产。
优选实施方案的详细描述
在第一方面,本发明涉及用于烯烃聚合或共聚合的催化剂组分, 它包含镆、 钛、 卤素、 内给电子体化合物和源自表面修饰剂的烷氧 基,其中所述源自表面修饰剂的烷氧基的含量为大于 0但小于 5%重 量, 基于催化剂组分重量计。
在本发明中, 术语 "催化剂组分" 是指主催化剂組分或前催化 剂, 其与助催化剂组分及任选的外给电子体一起組成本发明的用于 烯烃聚合或共聚合的催化剂。
本发明的所述催化剂组分可以通过包括如下步驟的方法得到: i )将镁化合物溶解于有机环氧化合物、 有机磷化合物以及任选 的惰性稀幹剂组成的溶剂混合物中, 形成均匀溶液,
ii )在助析出剂存在下, 任选在至少一种内给电子体化合物存在 下, 用钛化合物处理上述溶液, 析出含镁和钛的固体沉淀物,
iii ) 用至少一种表面修饰剂处理该固体沉淀物, 并同时或随后 再进一步负载上至少一种钛化合物和至少一种内电子给体, 以得到 一种处理过的固体沉淀物, 和
iv )用惰性稀幹剂洗涤所述处理过的固体沉淀物,
其中表面修饰剂选自有机醇, 助析出剂是选自有机酸酐、 有机 酸、 醚和酮中的至少一种。
按照一个优选的实施方案, 本发明的催化剂组分可如下制备: ( 1 )在搅拌下将镁化合物溶解在有机环氧化合物、有机磷化合物和 惰性稀释剂组成的溶剂混合物中, 形成均勾溶液; 在助析出剂存在 下, 在 -30 ~ 60°C温度下, 最好为 -30 ~ 5°C , 将钛化合物滴入上述镁 化合物的均匀溶液或将镁化合物的均匀溶液滴入钛化合物中, 再将 反应混合物升温至 60 ~ 110 °C, 并在此温度下搅拌 0.5 ~ 8小时; 滤 去母液,用惰性稀释剂洗涤剩余固体,得到含镁和钛的固体物; (2 ) 将上述固体物悬浮在惰性稀释剂中, 在 -30 ~ 50°C温度下, 加入表面 修饰剂及钛化合物, 在搅拌下升温至 10 ~ 80 范围内, 加入内电子 给体, 内电子给体可以一次加入, 也可以在不同的温度下分几次加 入; 在 100 ~ 130°C温度下继续反应 0.5 ~ 8小时, 滤出液体, 再用钛 化合物及惰性稀释剂的混合物处理 1 ~ 2次, 滤出液体, 用惰性稀释 剂洗涤固体物, 制得含钛的固体催化剂组分。
用于本发明的所述的镁化合物选自二卤化镁, 二卤化镁的水和 醇的络合物, 二卤化镆分子式中其中一个卤原子被烃基或烃氧基所 置换的衍生物, 及它们的混合物。 上述的镁化合物的实例包括但不 限于: 二氯化镁、 二溴化镁、 二碘化镁, 优选二氯化镁。
用于本发明的所述的有机环氧化合物是选自碳原子数在 2 ~ 8的 脂肪族烯烃、 二烯烃或! ¾代脂肪族烯烃或二烯烃的氧化物、 缩水甘 油醚和内醚中的至少一种。 其实例包括但不限于: 环氧乙烷、 环氧 丙烷、 环氧丁烷、 丁二烯氧化物, 丁二烯双氧化物、 环氧氯丙烷、 甲基缩水甘油醚、 二缩水甘油醚。
用于本发明的所述的有机磷化合物选自正磷酸或亚磷酸的烃基 酯或卤代烃基酯, 例如但不限于: 正碑酸三甲酯、 正磷酸三乙酯、 正磷酸三丁酯、 正磷酸三苯酯、 亚磷酸三甲酯、 亚磷酸三乙酯、 亚 磷酸三丁酯、 亚磷酸苯甲酯。
用于本发明的所述的助析出剂选自有机酸、 有机酸酐、 有机醚、 有机酮中的一种, 或它们的混合物。 例如但不限于: 乙酸酐、 邻苯 二甲酸酐、 丁二酸酐、 顺丁烯二酸酐、 均苯四曱酸二酐、 醋酸、 丙 酸、 丁酸、 丙烯酸、 曱基丙烯酸、 丙酮、 甲乙酮、 二苯酮、 曱醚、 乙醚、 丙醚、 丁醚、 戊醚。
本发明中使用的表面修饰剂选自有机醇, 优选 1 ~ 8个碳原子的 直链醇或异构醇, 例如: 甲醇、 乙醇、 丙醇、 异丙醇、 丁醇、 异丁 醇、 辛醇、 异辛醇或它们的混合物。
用于本发明的所述的钛化合物的通式为 Ti(OR)4.nXn, 式中 R为 相同或不同的 d ~ C14的脂族烃基或芳族烃基, X为卤素, n是 0至 4的整数。 实例包括四氯化钛、 四溴化钛、 四碘化钛、 四丁氧基钛、 四乙氧基钛、 一氯三乙氧基钛、 二氯二乙氧基钛、 三氯一乙氧基钛 和它们的混合物, 优选四氯化钛。 在上述制备方法的步骤 ii )和 iii ) 中使用的钛化合物可以相同或不同。
在本发明催化剂組分的制备中还须加入至少一种内给电子体化 合物。 内给电子体化合物在例如丙烯聚合催化剂中的应用是本领域 公知的, 并且这些通常使用的内给电子体化合物, 例如多元羧酸、 一元羧酸酯或多元羧酸酯、 酸酐、 酮、 单醚或多醚和胺都可以应用 于本发明。可用于本发明的内给电子体化合物的实例包括但不限于: ( i )脂族或芳族的多元羧酸酯化合物, 例如邻苯二甲酸酯、 丙 二酸酯、 琥珀酸酯、 戊二酸酯、 己二酸酯、 顺丁烯二酸酯、 蔡二羧 酸酯、 偏苯三酸酯、 连苯三酸酯、 均苯四酸酯、 新戊酸酯或碳酸酯。 具体如: 丙二酸二乙酯、 丙二酸二丁酯、 己二酸二丁酯、 己二酸二 乙酯、 邻苯二甲酸酯二乙酯、 邻苯二曱酸酯二异丁酯、 邻苯二甲酸 酯二正丁酯、邻苯二甲酸酯二异辛酯、 2, 3-二异丙基琥珀酸二乙酯、 2, 3-二异丙基琥珀酸二异丁酯、 2, 3-二异丙基琥珀酸二正丁酯、 2, 3-二异丙基琥珀酸二甲基酯、 2 , 2-二甲基琥珀酸二异丁酯、 2-乙基 -2-甲基琥珀酸二异丁酯、 2-乙基 -2-甲基琥珀酸二乙酯、 顺丁烯二酸 二乙酯、 顺丁烯二酸二正丁酯、 萘二羧酸二乙酯、 萘二羧酸二丁酯、 偏苯三酸三乙酯、 偏苯三酸三丁酯、 连苯三酸三乙酯、 连苯三酸三 丁酯、 均苯四酸四乙酯、 均苯四酸四丁酯等。
(ii) 多元醇酯类化合物, 例如:
通式(I )
Figure imgf000007_0001
式中 RRR6、 -R211基团为相同或不相同的氢、 卤素或取代或未 取代的直链或支链的 -Qio垸基、 C3-C2。环烷基、 C6-C2o单环或多 环芳基、 C7-C2G烷芳基、 C7-C2。芳烷基、 C2-C1G烯烃基或 C2-C10酯 基; 但 和 不是氢, R3- R6及 RLR211基团上任意包含一个或几 个杂原子作为碳或氢原子或两者的取代物, 所述的杂原子选自氮、 氧、 硫、 硅、 磷或卤原子, R3- R6及 -R211基团中的一个或多个可 以连起来成环; n为 0-10的整数;
这类多元醇酯类化合物详细公开于 WO 03/068828 和 WO 03/068723, 其相关内容引入本发明作为参考。
在上述的多元醇酯类化合物中, 优选通式(II )所示的化合物: 0 τ
(II)
其中 RrR6、 R!-R2 基团如通式(I) 中的定义。
在通式(I)或通式(II)所示的多元醇酯类化合物中, 优选 R3, R4, R5, R6不同时为氢,且 R3、 R4、 R5和 R6中至少有一个基团选 自鹵素、 CrC10直链或支链的烷基、 C3-C10环烷基、 C6-C10芳基、 C7-C1()烷芳基或芳烷基。
另外, 通式(I) 的化合物还包括通式(III)所示的化合物:
Figure imgf000008_0001
(III)
其中 RrR6基团如通式(I)中的定义; R,为相同或不相同的氢、 卤原子、 直链或支链的 d- o烷基, C3-C20环烷基, C6-C20芳基, C7-C2Q烷芳基或 C7-C20芳烷基。
上述的通式( I )、 ( Π )和(III)所示的多元醇酯类化合物中, 优选 和 中至少有一个选自苯基、 卤代的苯基、 烷基苯基或卤 代的烷基苯基。
所述的多元醇酯类给电子体化合物的实例包括 1,3-戊二醇二苯 甲酸酯,
( iii )二醚类化合物, 例如
通式( IV )所示的 1,3-二醚类化合物:
Figure imgf000009_0001
( IV )
其中 R Rn、 Rm、 RIV、 Rv和 RVI彼此相同或不相同, 选自氢、 鹵 原子、直链或支链的 d-C^烷基、 C3-C2。环烷基、 C6-C2()芳基、 C7-C20 烷芳基、 和 C7-C2o芳烷基, 而 RVI1和 Rvm可以相同或互不相同, 选 自直链或支链的 Ci-C20 C3-C20环坑基、 C6-C20芳基、 C7-C20 烷芳基和 C7-C2o芳焼基; R1 - RVI的基团间可键接成环。 优选其中 RVI1和 Rvm选自 CrC4烷基的 1,3-二醚。 这些 1,3-二醚化合物公开 在中国专利 ZL89108368.5和中国专利 CN11411285A中, 其相关内 容引入本发明作为参考。
本发明中使用的术语 "内给电子体化合物" 不包括在本发明中 用作表面修饰剂的醇。
用于本发明的所述的惰性稀释剂原则上没有限制, 只要其不干 涉所述方法的进行。 但是优选采用烷烃溶剂如己烷、 庚烷、 辛烷、 癸烷等, 或芳烃溶剂如苯、 甲苯、 二甲苯等。 在所述制备方法的各 步驟中使用的所述惰性稀释剂可相同或不同。
本发明的催化剂组分的制备中, 所述的各原料的用量以每摩尔 镁化合物计, 有机环氧化合物为 0.2 ~ 10摩尔, 以 0.5 ~ 4摩尔为好; 有机磷化合物为 0.1 ~ 3摩尔,以 0.3 ~ 1摩尔为好;助析出剂为 0.03 ~ 1摩尔, 以 0.05 ~ 0.4摩尔为好; 表面修饰剂为 0.005 ~ 15摩尔, 优 选 0.06~10摩尔, 更优选 0·1~3摩尔, 最优选 0·2~1.5摩尔; 饮化 合物为 0.5 ~ 20摩尔,以 1 ~ 15摩尔为好;电子给体化合物为 0.005 ~ 10摩尔, 以 0.01~2摩尔为好。
本发明的催化剂组分基本上具有如下組成: 钛 l~10wt%, 镁 10 ~ 20wt%, 卤素 40 ~ 70wt%, 电子给体化合物 5 ~ 25wt%, 源自 表面修饰剂的烷氧基大于 0 但小于 5wt%, 和惰性稀释剂 0~ 10wt%, 基于催化剂组分的总重量计。
在本发明的催化剂组分中, 源自表面修饰剂的烷氧基的含量为 大于 0但小于 5%,优选 0.01 ~ 3 % ,更优选 0.02 ~ 2 % ,更优选 0.05 至 1.5%, 最优选 0.1至 1 %。 该烷氧基含量通过下文中描述的方法 测定。 本发明中使用的术语 "源自表面修饰剂的烷氧基" 不包括催 化剂组分中包含的作为内给电子体的酯的烷氧基部分。
在第二方面, 本发明涉及用于烯烃聚合或共聚合的催化剂, 其 包含以下组分:
A)本发明的催化剂组分;
B)有机铝化合物; 和
C)任选地, 外给电子体化合物。
用作本发明催化剂的组分 B 的所述的有机铝化合物具有通式 AIRnX3.„,式中 R可以为氢或碳原子数为 1~ 20的烃基,特别是烷基、 芳烷基、 芳基; X为卤素, 特别是氯或溴; n为满足 0<n 3的数。 具体化合物如: 三甲基铝、 三乙基铝、 三异丁基铝、 三辛基铝、 一 氢二乙基铝、 一氢二异丁基铝、 一氯二乙基铝、 一氯二异丁基铝、 倍半乙基氯化铝、 二氯乙基铝等烷基铝卤化物, 其中以三乙基铝、 三异丁基铝为好。
本发明的催化剂体系中, 组分 B中铝与组分 A中钛的摩尔比为 5-5000, 优选为 20 ~ 500。
本发明的催化剂体系中的任选的组分 C可以是常规的外给电子 体化合物, 例如有机硅化合物。 所述有机硅化合物的通式为 Rn Si ( OR1 ) 4-„» 式中 n是 0至 3的整数, R和 R1 为同种或不同种的烷 基, 环烷基, 芳基, 卤化烷基等, R也可以为卤素或氢原子。 实例 包括但不限于: 三甲基甲氧基硅烷, 三甲基乙氧基硅烷, 三甲基苯 氧基娃燒, 二甲基二甲氧基娃 , 二甲基二乙氧基桂 ¾, 曱基环己 基二乙氧基硅垸, 曱基环己基二甲氧基硅烷, 二苯基二甲氧基硅烷, 二苯基二乙氧基硅烷, 苯基三乙氧基硅烷, 苯基三甲氧基硅烷, 乙 烯基三甲氧基硅烷。 根据不同烯烃种类和 /或内给电子体种类, 聚合 时可以加入或不加入 C组分。
本发明的催化剂可用于乙烯的聚合, 以及乙烯与其它 α-烯烃, 例如丙烯、 1-丁烯、 4-甲基 -1-戊烯、 1-己烯、 1-戊烯、 1-辛烯等的共 聚合。 本发明的催化剂还可用于丙烯的聚合, 以及丙烯与其它 α-烯 烃, 例如乙烯、 1-丁烯、 4-甲基 -1-戊烯、 1-己烯、 1-戊烯、 1-辛烯等 的共聚合。 本发明的催化剂特别适用于丙烯的均聚合, 及丙烯和乙 烯的共聚合。
因此, 在第三方面, 本发明涉及烯烃聚合或共聚合的方法, 包 括在聚合条件下, 使乙烯或丙烯以及任选的 α-烯烃共聚单体与本发 明的催化剂接触。
本发明的催化剂适用于淤浆聚合、 本体聚合及气相聚合工艺。 这些工艺以及聚合条件是本领域公知的。
在第四方面, 本发明涉及本发明催化剂在烯烃聚合或共聚合中 的应用。
在本发明中, 由于所述至少一种表面修饰剂的使用和控制源自表 面修饰剂的烷氧基的含量, 催化剂性能有了较大改进。 该催化剂用 于丙烯聚合或乙丙共聚合时具有高催化活性和抗杂质性能, 催化剂 颗粒形态良好, 颗粒分布窄, 适用于浆液法、 本体法和气相法等多 种聚合工艺, 聚合物的分子量分布 Mw/Mn较大, 且聚合物颗粒形 态良好, 细粉少; 其优良的抗杂质性能可有效的降低树脂生产成本; 而且在用于乙丙共聚时催化剂的共聚性能十分优良, 共聚物中乙烯 的含量较高。 该催化剂特别适合于抗冲丙烯共聚物和 ΒΟΡΡ膜树脂 的生产。 具体实施方式
下面给出的实施例是为了举例说明本发明, 而不是对本发明进行 限制。
源自表面修饰剂的烷氧基的含量的测试方法:
将催化剂组分粉末样品在去离子水溶液中分解, 使得样品中的 OR形成 ROH。 然后用气相色谱法测定水相中的 ROH, 由此得到 OR含量。
具体操作方法:
将干燥的称样瓶用氮气置换后, 称取样品 0.2g 左右 (精确至 O.OOOl ),加内标物 0.003g(约 6ul,精确至 O.OOOlg ),緩慢注入 4ml 去离子水, 使催化剂分解(加水分解催化剂时会放热造压, 所以一 定要用手压紧瓶盖并把试样瓶置于盛有水的容器中, 使迅速冷却), 压紧瓶盖震荡 2-3min后, 静置 5miii以上, 取水相 0.5ul, 进色谱仪 测定。 实施例 1
1、 镁 /钛固体物的制备
在经过高纯氮气重复置换的反应釜中,依次加入 6.5公斤无水氯 化镁、 132.7升甲苯、 5.4升环氧氯丙烷、 16.9升磷酸三丁酯。 将反 应混合物在搅拌转速 130rpm、 温度为 60 °C的条件下搅拌 2.5小时, 然后加入 1.89公斤邻苯二曱酸酐, 继续反应一小时。 降温至 -28°C, 滴加四氯化钛 56升, 逐渐升温至 85°C, 恒温一小时。 滤去母液, 残 余固体物用曱苯和然后用己烷多次洗涂后干燥, 得到含镆 /钛的固体 物 A。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 93升甲苯中, 在 -10°C加入 1.4 升乙醇和 48升四氯化钛, 在搅拌下逐渐升温至 110°C , 在升温过程 中, 在 20 °C时加入 0.5升邻苯二甲酸二异丁酯 (DIBP), 在 80°C时加 入 2.0升邻苯二甲酸二正丁酯 (DNBP), 然后在 110°C下恒温 1小时, 滤除液体后, 加入四氯化钛 48升, 甲苯溶液 72升, 在 110°C恒温 2 小时, 过滤后再重复处理一次。 然后过滤掉液体, 剩余固体产物用 己烷洗涤 5次, 并经真空干燥, 得到固体钛催化剂组分。 其中钛含 量为 2.58%(wt),DNBP含量为 7.63%(wt),DIBP含量为 2.49%(wt), DEP含量为 1.5%(wt), 乙氧基含量为 0.17%(wt), 催化剂的比表面 积为 348 m2/g , 孔容为 0.32 cm3/g, 平均孔径为 3.78nm。
3、 聚合反应 1
5升不锈钢反应釜经氮气充分置换后, 加入 5亳升浓度为 0.5摩 尔 /升的三乙基铝己烷溶液和 1亳升浓度为 0.1摩尔 /升的曱基环己基 二甲氧基硅烷 (CHMMS)己烷溶液及上面制备的催化剂组分 10 毫 克, 然后加入 10毫升己烷冲洗加料管线, 再加入 1升 (标准状态下) 氢气,和 2升精制丙烯,升温至 70 °C, ,在此温度下聚合反应 2小时。 反应结束后,将反应釜降温并停搅拌排出反应产物,经干燥得到 790 克白色聚合物。 催化剂活性为 79000克聚丙烯 /克催化剂组分, 聚合 物堆积密度为 0.46克 /厘米 3, 小于 80目细粉含量为 0.5wt%, 聚合 物的分子量分布 Mw/Mn为 6.0, Ml为 6.7g/10min。
4、 聚合反应 2
5升不锈钢反应釜经氮气充分置换后,加入 10亳升浓度为 0.5摩 尔 /升的三乙基铝己烷溶液和 5亳升浓度为 0.1摩尔 /升的甲基环己基 二甲氧基硅烷 (CHMMS)己烷溶液及上面制备的催化剂组分 10 毫 克, 然后加入 10毫升己烷冲洗加料管线, 再加入 5升 (标准状态下) 氢气和 2升精制丙烯, 升温至 70°C, 在此温度下聚合反应 1小时。 然后, 将釜内压力 (表压)降为 0, 升温至 80°C , 通混合气恒压 1.0 Mpa, 在此条件下聚合反应 45 分钟。 混合气中气体摩尔比为氢 /乙 烯 /丙烯 =0.005: 1.0: 1.25。然后回收聚合物产物。催化剂活性为 83500 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.38克 /厘米 3, 聚合物 中乙烯含量为 14.7wt%, 二甲苯可溶物为 21.1wt%。 实施例 2
1、 镁 /饮固体物的制备
在经过高纯氮气重复置换的反应釜中,依次加入 4.8克无水氯化 镁、 93毫升甲苯、 4.0亳升环氧氯丙烷、 12.5毫升磷酸三丁酯。 在搅 拌转速 450rpm、 温度为 60 °C的条件下, 搅拌该混合物 2小时。 加 入 1.4克邻苯二甲酸酐, 继续反应一小时。 将反应混合物降温至 -28 °C。 滴加四氯化钛 56亳升, 逐渐升温至 85°C:, 恒温一小时。 滤去母 液, 将残余固体用甲苯及随后用己烷多次洗涤并干燥, 得到含镁 /钛 的固体物 A。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 72ml 甲苯中, 在 -10°C加入 1.7 毫升正丁醇和 48亳升四氯化钛。在搅拌下将反应混合物逐渐升温至 110°C。 在升温过程中, 在 80°C加入 1.5亳升 DNBP, 110°C到温后 恒温 1小时。 滤除液体后, 将剩余固体物用四氯化钛 48亳升和甲苯 72亳升在 110°C处理 2小时, 过滤后再重复处理一次。 然后, 滤除 液体后, 将剩余固体物用己烷洗涤 5次, 并真空干燥得到固体钛催 化剂组分。 其中钛含量为 2.13%(wt), DNBP含量为 12.8%(wt), 丁 氧基含量为 0.1%(wt) , 催化剂的比表面积为 282.1m2/g, 孔容为 0.27cm3/g, 平均孔径为 3.79nm。 3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 68000g克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.42克 /厘米 3, 小于 80目细粉含量为 1.0wt%,聚合物的分子量分布 Mw/Mn为 5.2, Ml为 7.2g/10min.。
4、 聚合反应 2
聚合条件同实施例 1中聚合反应 2所述,催化剂活性为 73600克 聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.37克 /厘米 3, 聚合物中 乙烯含量为 13.3wt%, 二甲苯可溶物为 17.0wt%。 实施例 3
1、 镁 /钛固体物的制备
同实施例 2。
2、 固体钛催化剂組分的制备
将上述制备的固体物 A悬浮于 72ml曱苯中, 在 10°C加入 3.0 毫升异辛醇, 降温至 -10°C , 加入 48 毫升四氯化钛。 将反应混合物 逐渐升温至 110。C , 并在 80"C时加入 1.0亳升 DIBP, 110°C到温后 恒温 1小时。滤除液体后,剩余固体物用四氯化钛 48毫升和甲苯 72 亳升在 110°C处理 2小时, 过滤后再重复处理一次。 然后, 在滤除液 体后, 剩余固体产物用己烷洗涤 5次, 并真空干燥, 得到固体钛催 化剂组分。 其中钛含量为 2.34%(wt), DIBP含量为 10.57%(wt), DIOP含量为 0.8%(wt), 辛氧基含量为 0.1%(wt), 催化剂的比表面 积为 273.6m2/g, 孔容为 0.26cm3/g, 平均孔径为 3.78nm。
3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 62300克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.46克 /厘米 3, 小于 80目细粉含量为 0.5wt%,聚合物的分子量分布 Mw/Mn为 5.4, MI为 5.8g/10min.。
4、 聚合反应 2
聚合条件同实施例 1中聚合反应 2所述, 催化剂活性为 55900 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.35克 /厘米 3, 聚合物 中乙烯含量为 16.4wt%, 二甲苯可溶物为 21.2wt%。 实施例 4
1、 镁 /钛固体物的制备
同实施例 2。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 72ml甲苯中, 在 0°C加入 2.5亳 升异辛醇和 48升四氯化钛。 将反应混合物逐渐升温至 110 °C, 并在 80°C时加入 1.0亳升邻苯二甲酸二正丁酯(DNBP ), 110°C到温后恒 温 1小时。滤除液体后,将剩余固体物用四氯化钛 48毫升和甲苯 72 亳升在 110°C处理 2小时, 过滤后再重复处理一次。 然后, 在滤除液 体后, 将剩余固体产物用己烷洗涤 5次, 并真空干燥, 得到固体钛 催化剂组分。 其中钛含量为 2.36%(wt), DNBP含量为 9.75%(wt), DIOP含量为 0.65%(wt), 辛氧基含量为 0.12%(wt), 催化剂的比表 面积为 245.3m2/g, 孔容为 0.25cm3/g, 平均孔径为 3.90nm。
3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 77600克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.46克 /厘米 3, 小于 80目细粉含量为 0.3wt%,聚合物的分子量分布 Mw/Mn为 5.1, Ml为 6.3g/10min.。
4、 聚合反应 2
聚合条件同实施例 1中聚合反应 2所述, 催化剂活性为 81400 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.38克 /厘米 3 , 聚合物 中乙烯含量为 13.0wt%, 二甲苯可溶物为 16.4wt%。 实施例 5
1、 镁 /钛固体物的制备
同实施例 1。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 93升甲苯中, 在 -10°C加入 1.4 升乙醇。 将反应混合物逐渐升温至 30 °C, 维持 30分钟后降温至 -10 °C, 并加入 48升四氯化钛。 然后将反应混合物逐渐升温至 110°C, 并在 80°C时加入 2.0升邻苯二甲酸二正丁酯 (DNBP), 110°C到温后 恒温 1小时。滤除液体后,将剩余固体物用四氯化钛 48升和甲苯 72 升在 110°C处理 2小时, 过滤后再重复处理一次。 然后, 滤除液体, 并将剩余固体产物用己烷洗涤 5次, 真空干燥, 得到固体钛催化剂 组分。 其中钛含量为 2.56%(wt), DNBP含量为 8.64%(wt), DEP含 量为 0.7%(wt), 乙氧基含量为 0.24%(wt), 催化剂的比表面积为 284.7m2/g, 孔容为 0.27cm3/g, 平均孔径为 3.53nm。
3、 聚合反应 1
丙烯聚合奈件同实施例 1 中聚合反应 1 所述, 催化剂活性为 78000克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.47克 /厘米 3, 小于 80目细粉含量为 0.5wt%,聚合物的分子量分布 Mw/Mn为 5.3, Ml为 5.6g/10min.。
4、 聚合反应 2
聚合条件同实施例 1 中聚合反应 2所述, 催化剂活性为 81600 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.38克 /厘米 3, 聚合物 中乙烯含量为 14.5wt%, 二甲苯可溶物为 19.3wt%0 1、 镁 /钛固体物的制备
同实施例 1。
2、 固体钛催化剂組分的制备
将上述制备的固体物 A悬浮于 93升甲苯中, 在 -10°C加入 1.4 升乙醇。。将反应混合物逐渐升温至 30。C,雄持 30分钟后降温至 -10 °C , 并加入 48升四氯化钛。 然后, 将反应混合物逐渐升温至 110°C, 并在 80°C时加入 1.7升邻苯二曱酸二异丁酯 (DIBP), 110。C到温后恒 温 1小时。 滤除液体后, 将剩余固体物用四氯化钛 48升和甲苯 72 升在 110°C处理 2小时, 过滤后再重复处理一次。 然后, 在滤除液体 后, 将剩余固体产物用己烷洗涤 5次, 并真空干燥, 得到固体钛催 化剂组分。其中钛含量为 2.56%(wt), DIBP含量为 7.83%(wt), DEP 舍量为 3.2%(wt), 乙氧基含量为 0.15%(wt), 催化剂的比表面积为 297.6m2/g, 孔容为 0.29cm3/g, 平均孔径为 3.49nm。
3、 聚合反应 1
丙浠聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 74000克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.47克 /厘米 3, 小于 80目细粉含量为 0.4wt%,聚合物的分子量分布 Mw/Mn为 5.8, Ml为 5.8g/10min.。
4、 聚合反应 2
聚合奈件同实施例 1 中聚合反应 2所述, 催化剂活性为 63200 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.38克 /厘米 3, 聚合物 中乙烯含量为 15.8wt%, 二甲苯可溶物为 22.32wt%。 实施例 7
1、 镁 /钛固体物的制备
同实施例 1。
2、 固体钛催化剂组分的制备 将上述制备的固体物 A悬浮于 93升甲苯中, 在 -25°C加入 1.4 升乙醇。 将反应混合物逐渐升温至 30 °C , 维持 30分钟后降温至 -10 °C , 并加入 48升四氯化钛。 然后将反应混合物逐渐升温至 110 °C , 并在 40°C加入 4.5升二苯甲酸 1,3-戊二醇酯, 110。C到温后恒温 1小 时。滤除液体后,用四氯化钛 48升和甲苯 72升在 110°C恒温 2小时, 过滤后再重复处理一次。 然后, 在滤除液体后, 将剩余固体产物用 己烷洗潦 5次, 并真空干燥, 得到固体钛催化剂组分。 其中钛含量 为 3.19%(wt), 二苯甲酸 1,3-戊二醇酯含量为 10.3wt%, 乙氧基含量 为 0.15%(wt), 催化剂的比表面积为 283.5m2/g, 孔容为 0.27cm3/g, 平均孔径为 3.65nm。
3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 61500克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.44克 /厘米 3, 小于 80目细粉含量为 0.4wt%,聚合物的分子量分布 Mw/Mn为 8.5, Ml为 3.8g/10min.。
4、 聚合反应 2
聚合条件同实施例 1 中聚合反应 2所述, 催化剂活性为 64800 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.37克 /厘米 3, 聚合物 中乙烯含量为 14.9wt%, 二甲苯可溶物为 18.62wt%。
实施例 8
1、 镁 /钛固体物的制备
同实施例 1。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 93升甲苯中,在 35°C加入 1.4升 乙醇。 将反应混合物在该温度维持 30分钟后加入 48升四氯化钛, 然后逐渐升温至 110°C,并在 40°C时加入 2.0升邻苯二甲酸二异丁酯 (DIBP), 110°C到温后恒温 1小时。 滤除液体后, 剩余固体用四氯化 钛 48升和甲苯 72升在 110°C处理 2小时, 过滤后再重复处理一次。 然后, 滤除液体, 剩余固体产物用己烷洗涤 5次并真空干燥, 得到 固体钛催化剂组分。 其中钛含量为 3.27%(wt), DIBP 含量为 6.80%(wt), DEP含量为 2.1 %(wt), 乙氧基含量为 0.14%(wt), 催 化剂的比表面积为 307.4m2/g , 孔容为 0.29cm3/g , 平均孔径为 4.09
3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 58000克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.45克 /厘米 3, 小于 80目细粉含量为 0.4wt%,聚合物的分子量分布 Mw/Mn为 5.6 Ml为 5.4g/10min.
4、 聚合反应 2
聚合条件同实施例 1中聚合反应 2所述, 催化剂活性为 62100 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.39克 /厘米 3, 聚合物 中乙烯含量为 13.7wt%, 二甲苯可溶物为 16.86wt%
实施例 9
1、 钛固体物的制备
同实施例 2
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 72ml甲苯中, 在 -10°C加入 3.0 亳升乙醇和 48毫升四氯化钛。 将反应混合物逐渐升温至 110 °C , 在 升温过程中, 在 80 C加入 1.0毫升 DIBP, 110°C到温后恒温 1小时。 滤除液体后,剩余固体用四氯化钛 48亳升和甲苯 72亳升在 110°C处 理 2小时, 过滤后再重复处理一次。 然后, 在滤除液体后, 剩余固 体产物用己烷洗涤 5次并真空干燥, 得到固体钛催化剂组分。 其中 钛含量为 2.85%(wt) , DIBP 含量为 11.5%(wt), 乙氧基含量为 1.3%(wt), 催化剂的比表面积为 321.5m2/g, 孔容为 0.30cm3/g, 平 均孔径为 3.62nm。
3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 59400克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.43克 /厘米 3, 小于 80 目(0.18mm)细粉含量为 2.4wt% , 聚合物的分子量分布 Mw Mn为 5.6, Ml为 5.7g/10min。 实施例 10
1、 镆 /钛固体物的制备
在经过高纯氮气重复置换的反应釜中,依次加入 4.8克无水氯化 镁、 93亳升甲苯、 4.0亳升环氧氯丙烷、 12.5毫升磷酸三丁酯。 在搅 拌转速 450rpm、 温度为 60 °C的条件下, 搅拌该混合物 2小时。 然 后加入 1.4克邻苯二甲酸酐,继续反应一小时。将反应混合物降温至 -28 °C , 滴加四氯化钛 56 亳升, 逐渐升温至 85。C, 并在 80。C加入 DNBP0.5 毫升, 在 85°C恒温一小时。 滤去母液, 剩余固体物用甲苯 及随后用己烷多次洗涤后干燥, 得到含镆 /钛的固体物 A。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 72ml甲苯中, 在 -10°C加入 1.0 毫升乙醇和 48毫升四氯化钛。 将反应混合物逐渐升温至 110°C, 在 升温过程中 , 在 80°C加入 1.0亳升 DIBP, 110°C到温后恒温 1小时。 滤除液体后,剩余固体用四氯化钛 48亳升和曱苯 72亳升在 110 °C处 理 2小时, 过滤后再重复处理一次。 然后滤除液体后, 剩余固体产 物用己垸洗涤 5次并真空干燥, 得到固体钛催化剂组分。 其中钛含 量为 2.54%(wt), DNBP舍量为 4.8%(wt), DIBP含量为 6.9%(wt), DEP含量为 1.3%(wt), 乙氧基含量为 0.20%(wt), 催化剂的比表面 积为 305.4m2/g, 孔容为 0.28cm3/g, 平均孔径为 3.64nm。
3、 聚合反应 1 丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 65000g克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.47克 /厘米 3, 小于 80目细粉含量为 0.6wt%,聚合物的分子量分布 Mw/Mn为 5.4, Ml为 6.9g/10min.。
4、 聚合反应 2
共聚合条件同实施例 1中聚合反应 2所述,催化剂活性为 71500 克聚丙烯 /克催化剂組分, 聚合物堆积密度为 0.39克 /厘米 3, 聚合物 中乙烯含量为 13.9wt%, 二曱苯可溶物为 16.8wt%。
实施例 11
1、 含镁和钛的固体物的制备
在经过高纯氮气重复置换的反应釜中, 依次加入 4. 8克无水氯 化镁、 93毫升甲苯、 8. 0亳升环氧氯丙烷、 10. 0亳升磷酸三丁酯。 在搅拌转速 450rpm、 温度为 60°C的条件下, 搅拌该混合物 2小时。 然后加入 1. 4克邻苯二甲酸酐, 继续反应一小时, 降温至 - 28 °C。 滴 加四氯化钛 56亳升, 逐渐升温至 85 °C, 恒温一小时, 滤去母液, 经 曱苯及然后经己烷多次洗涤后干燥, 得到含镁和钛的固体物 A。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 72ml 甲苯中, 在- 10°C加入 1. 0 亳升乙醇和 48亳升四氯化钛,并将反应混合物在搅拌下逐渐升温至 110。C。 在升温过程中, 在 80°C加入 1. 5毫升 DIBP。 110°C到温后恒 温 1小时。 滤除液体后, 剩余固体物用四氯化钛 48亳升和曱苯 72 毫升在 110°C处理 2小时, 过滤后再重复处理一次。 然后滤除液体, 剩余固体产物用己烷洗涤 5次并真空干燥,得到固体钛催化剂组分。 其中钛含量为 3. 12°/。(wt), DIBP 含量为 15. 7% (wt) , DEP 含量为 0. 4% (wt) , 乙氧基含量为 0. 18% (wt), 催化剂的比表面积为 295. 4m7g, 孔容为 0. 28cra3/g, 平均孔径为 3. 70nm。
3、 聚合反应 1 丙烯聚合条件同实施例 1中聚合反应 1中所述, 催化剂活性为 64000g克聚丙烯 /克催化剂组分,聚合物堆积密度为 0. 47克 /厘米 3, 小于 80目细粉含量为 0. 7wt%, 聚合物的分子量分布 Mw/Mn为 5, 8, Ml为 6. 4g/10min.。 实施例 12
1、 含镁和钛的固体物的制备 '
同实施例 1。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 93升甲苯中, 在- 25 °C加入 1. 4 升乙醇。然后将反应混合物逐渐升温至 30°C ,维持 30分钟后降温至 -10 °C , 加入 48升四氯化钛。 将反应混合物逐渐升温至 110。C , 在 40 °C加入 1. 5 升邻苯二曱酸二异丁酯(DIBP)和 1. 8 升苯曱酸乙酯 (EB) , 110°C到温后恒温 1小时。 滤除液体后, 剩余固体物用四氯化 钛 48升和曱苯 72升在 110 °C处理 2小时, 过滤后再重复处理一次。 然后滤除液体, 剩余固体产物用己烷洗涤 5次并真空干燥, 得到固 体钛催化剂组分。 其中钛含量为 2. 1% (wt), DIBP含量为 4, 2% (wt), EB含量为 2. 0°/。(wt),DEP含量为 0, 8% (wt) ,乙氧基含量为 0. 13% (wt) , 催化剂的比表面积为 304. 3m2/g , 孔容为 0. 29cra3/g, 平均孔径为
3、 42nm。
3、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 64300克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0. 44克 /厘米 3, 小于 80目细粉含量为 0. 4wt%, 聚合物的分子量分布 Mw/Mn为 6. 3 , Ml为 9. 8g/10rain.。
4、 聚合反应 2
聚合条件同实施例 1 中聚合反应 2所述, 催化剂活性为 73200 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0. 36克 /厘米 3, 聚合 物中乙烯含量为 14. 5wt%, 二甲苯可溶物为 18. 5wt%0 比较例 1
1、 固体钛催化剂组分的制备
将 4.8克无水氯化镁、 93毫升甲苯、 4.0亳升环氧氯丙烷、 12.5 亳升磷酸三丁酯加入到已用高纯氮气彻底置换的反应釜内。 将该混 合物在搅拌转速 450rpm、 温度为 60 °C的条件下搅拌 2小时, 加入 1.4克邻苯二甲酸酐, 继续反应一小时。 将混合物降温至 -28°C, 滴 加四氯化钛 56 亳升, 逐渐升温至 85°C, 并在 80°C加入 2.0 亳升 DNBP, 85°C到温后恒温一小时。 滤去母液, 剩余固体用甲苯 60亳 升和四氯化钛 40亳升在 110°C处理 2小时,过滤后再重复处理一次。 过滤后固体物用己烷 5次洗涤后干燥, 得到固体钛催化剂组分。 其 中钛含量为 1.9%(wt), DNBP含量为 12.50%(wt), 催化剂的比表面 积为 180.5m2/g, 孔容为 0.22cm3/ , 平均孔径为 4.12nm, 乙氧基含 量为 0。
2、 聚合反应 1
丙烯聚合条件同实施例 1 中聚合反应 1 所述, 催化剂活性为 55000克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.47克 /厘米 3, 小于 80目细粉含量为 1.5wt%,聚合物的分子量分布 Mw/Mn为 4.3, Ml为 4.5g/10min.。
3、 聚合反应 2
聚合条件同实施例 1中聚合反应 2所述, 催化剂活性为 46200 克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.35克 /厘米 3, 聚合物 中乙烯含量为 9.5wt%, 二甲苯可溶物为 13.8wt%。 比较例 2 1、 镁 /钛固体物的制备
同实施例 2。
2、 固体钛催化剂组分的制备
将上述制备的固体物 A悬浮于 72ml甲苯中, 在 -10°C加入 8.0 毫升乙醇和 48亳升四氯化钛。将该混合物逐渐升温至 85°C,在升温 过程中, 在 80°C加入 1.0亳升 DIBP, 85°C到温后恒温 1小时。 然后 滤掉液体, 剩余固体产物用己烷洗涤 5次, 经真空干燥得到固体钛 催化剂组分。 其中钛含量为 4.32%(wt), DIBP含量为 13.5%(wt), 乙氧基含量为 5.5%(wt), 催化剂的比表面积为 170.6m2/g, 孔容为
0.22cm3/g, 平均孔径为 4.65nm。
3、 聚合反应 1
丙烯聚合奈件同实施例 1 中聚合反应 1 所述, 催化剂活性为 36400克聚丙烯 /克催化剂组分, 聚合物堆积密度为 0.43克 /厘米 3, 小于 80 目(0.18mm)细粉含量为 5.6wt%, 聚合物的分子量分布 Mw/Mn为 5.3, Ml为 6.2g/10min.。
比较例 3
1、 含钛固体催化剂组分的制备
将 4.8克无水氯化镁、 93毫升甲苯、 4.0亳升环氧氯丙烷、 12. 5 毫升磷酸三丁酯、 1亳升乙醇加入到已用高纯氮气彻底置换的反应釜 内。 将该混合物在搅拌转速 450rpm、 温度为 60 °C的条件下搅拌 2 小时。 加入 1.4克邻苯二甲酸酐, 继续反应一小时。 降温至 -28°C , 滴加四氯化钛 56亳升。 将反应混合物逐渐升温至 85°C, 并在 80 °C 加入 2.0亳升 DNBP, 85°C到温后恒温一小时。 滤去母液, 加入曱苯 60亳升和四氯化钛 40亳升, 110°C处理 2小时, 过滤后再重复处理 一次。 过滤掉液体, 剩余固体产物用己烷 5次洗涤后干燥, 得到固 体钛催化剂組分。 其中钛含量为 3,56%(wt) , DNBP 含量为 12.20%(wt), 乙氧基 0.30%(wt), 催化剂的比表面积为 150.4m2/g, 孔容为 0.21cm3/g, 平均孔径为 4.23nm。
2、 聚合反应 1
丙烯聚合条件同实施例 1, 催化剂活性为 25300克聚丙烯 /克催 化剂组分, 聚合物堆积密度为 0.43克 /厘米 3, 小于 80 (0.18mm) 细粉含量为 10.2wt%, 聚合物的分子量分布 Mw/Mn为 4.8, Ml为 4.9g/10min. c

Claims

权 利 要 求
1. 一种用于烯烃聚合或共聚合的催化剂组分, 它包含镁、钛、 卤 素、 内给电子体化合物和源自选自醇的表面修饰剂的烷氧基, 其中 所述源自表面修飾剂的烷氧基的含量为 0.01至 3%重量, 基于催化 剂组分重量计。
2. —种用于烯烃聚合或共聚合的催化剂组分,它可通过包括如下 步骤的方法得到:
i )将镁化合物溶解于有机环氧化合物、 有机磷化合物以及任选 的惰性稀释剂组成的溶剂混合物中, 形成均匀溶液,
ii )在助析出剂存在下, 任选在至少一种内电子给体存在下, 用 钛化合物处理上述溶液, 析出含镁和钛的固体物沉淀物,
iii )用至少一种表面修饰剂处理该固体物沉淀物, 并同时或随 后再进一步负载上至少一种钛化合物和至少一种内电子给体, 以形 成一种处理过的固体沉淀物, 和
iv )用惰性稀释剂洗涤该处理过的固体沉淀物,
其中表面修饰剂选自有机醇, 助析出剂是选自有机酸酐、 有机酸、 醚和酮中的至少一种,
其中所述催化剂组分含有基于催化剂組分重量计 0.01至 3%重量的 源自所述表面修饰剂的烷氧基。
3. 权利要求 1或 2所述的催化剂组分,其中所述表面修饰剂选自 1 ~ 8个碳原子的直链醇或异构醇。
4. 权利要求 1或 2所述的催化剂组分,其中所述表面修饰剂为甲 醇、 乙醇、 丙醇、 异丙醇、 丁醇、 异丁醇、 辛醇、 异辛醇或它们的 混合物。
5. 权利要求 2所述的催化剂组分,其中所述的镁化合物选自二卤 化镁, 二卤化镁的水和醇的络合物, 二卤化镁分子式中其中一个卤 原子被烃基或烃氧基所置换的衍生物,及它们的混合物; 所述的钛化 合物具有通式 Ti(OR)4_nXn, 式中 R为 d ~ C14的脂族烃基或芳族烃 基, X为卤素, n是 0至 4的整数。
6. 权利要求 5所述的催化剂组分,其中所述的镁化合物是二氯化 镁, 和所述的钛化合物是四氯化钛。
7. 权利要求 2所述的催化剂组分,其中所述的内电子给体化合物 选自多元羧酸、 一元羧酸酯或多元羧酸酯、 酸酐、 酮、 单醚或多醚 和胺。
8. 权利要求 7所述的催化剂组分,其中所述的内电子给体化合物 选自邻苯二甲酸二乙酯、 邻苯二曱酸二异丁酯、 邻苯二甲酸二正丁 酯、 邻苯二曱酸二异辛酯、 邻苯二甲酸二正辛酯、 丙二酸二乙酯、 丙二酸二丁酯、 2, 3-二异丙基琥珀酸二乙酯、 2, 3-二异丙基琥珀酸 二异丁酯、 2, 3-二异丙基琥珀酸二正丁酯、 2, 3-二异丙基琥珀酸二 甲基酯、 2, 2-二甲基琥珀酸二异丁酯、 2-乙基 -2-甲基琥珀酸二异丁 酯、 2-乙基 -2-甲基琥珀酸二乙酯、 己二酸二乙酯、 己二酸二丁酯、 癸二酸二乙酯、 癸二酸二丁酯、 顺丁烯二酸二乙酯、 顺丁烯二酸二 正丁酯、 萘二羧酸二乙酯、 萘二羧酸二丁酯、 偏苯三酸三乙酯、 偏 苯三酸三丁酯、 连苯三酸三乙酯、 连苯三酸三丁酯、 均苯四酸四乙 酯、 均苯四酸四丁酯、 二苯甲酸 1,3-戊二酯、 苯甲酸乙酯和它们的 混合物
9. 权利要求 2 所述的催化剂组分, 其中所述的惰性稀幹剂为己 烷, 庚烷, 辛烷, 癸坑, 苯, 甲苯, 或二甲苯。
10. 权利要求 2所述的催化剂组分, 其中所述的表面修饰剂的用 量为 0.06 ~ 10摩尔, 基于每摩尔镁化合物计。
11. 权利要求 2所述的催化剂组分, 其中所述的内电子给体化合 物的用量为 0.01 ~ 2摩尔, 基于每摩尔镁化合物计。
12. 权利要求 1-11中任何一项所述的催化剂组分,其中所述源自 表面修饰剂的烷氧基的含量为 0.02至 2%重量, 基于催化剂组分重 量计。
13. 一种用于烯烃聚合或共聚合的催化剂组分, 它包含镁、 钛、 氯、 内给电子体化合物和源自选自 crc8醇的表面修饰剂的 crc8 烷氧基, 其中所述源自表面修饰剂的 -C8烷氧基的含量为 0.01至 3%重量, 基于催化剂组分重量计, 该催化剂组分可通过包括如下步 驟的方法得到:
i )将二氯化镁溶解于有机环氧化合物、 有机磷化合物以及任选 的惰性稀释剂组成的溶剂混合物中, 形成均匀溶液,
ii )在选自有机酸酐、 有机酸、 醚和酮中的至少一种助析出剂存 在下, 任选在至少一种内电子给体存在下, 用四氯化钛处理上述溶 液, 析出含镁和钛的固体物沉淀物,
Hi )用至少一种所述表面修饰剂处理该固体物沉淀物, 并同时 或随后再进一步负载上四氯化钛和至少一种内电子给体, 以形成处 理过的固体沉淀物, 和 iv )用惰性##剂洗涤所述处理过的固体沉淀物。
14. 一种制备权利要求 1或 2所述的用于烯烃聚合或共聚合的催 化剂组分的方法,包括如下步骤:
i )将镁化合物溶解于有机环氧化合物、 有机磷化合物以及任选 的惰性稀释剂组成的溶剂混合物中, 形成均匀溶液,
ii )在助析出剂存在下, 任选在至少一种内电子给体存在下, 用 钛化合物处理上述溶液, 析出含镁和钛的固体物沉淀物 ,
iii )用至少一种表面修饰剂处理该固体物沉淀物, 并同时或随 后再进一步负载上至少一种钛化合物和至少一种内电子给体, 以形 成一种处理过的固体沉淀物, 和
iv )用惰性稀释剂洗涤该处理过的固体沉淀物,
其中表面修饰剂选自有机醇, 助析出剂是选自有机酸酐、 有机酸、 醚和酮中的至少一种。
15. 一种用于烯烃聚合或共聚合的催化剂, 它包含:
A )权利要求 1-13中任何一项所述的催化剂组分;
B )有机铝化合物; 和
C )任选地, 外给电子体化合物。
16. 一种烯烃聚合或共聚合的方法, 包括在聚合奈件下, 使乙烯 或丙烯以及任选的 α-烯烃共聚单体与权利要求 15 所述的催化剂接 触。
17. 权利要求 16所述的方法, 其在淤浆、 本体或气相中进行。
PCT/CN2006/000001 2006-01-04 2006-01-04 Composant de catalyseur pour la polymerisation ou la copolymerisation d'olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation WO2007076639A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087018726A KR101246777B1 (ko) 2006-01-04 2006-01-04 올레핀 중합 또는 공중합을 위한 촉매 성분, 이의 제조방법, 이를 포함하는 촉매 및 이의 용도
PCT/CN2006/000001 WO2007076639A1 (fr) 2006-01-04 2006-01-04 Composant de catalyseur pour la polymerisation ou la copolymerisation d'olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation
EP06703143A EP1970388A4 (en) 2006-01-04 2006-01-04 CATALYST COMPONENT FOR POLYMERIZING OR COPOLYMERIZING OLEFINS, PROCESS FOR PREPARING THE SAME, CATALYST CONTAINING SAID CATALYST COMPONENT AND USE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/000001 WO2007076639A1 (fr) 2006-01-04 2006-01-04 Composant de catalyseur pour la polymerisation ou la copolymerisation d'olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation

Publications (1)

Publication Number Publication Date
WO2007076639A1 true WO2007076639A1 (fr) 2007-07-12

Family

ID=38227896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000001 WO2007076639A1 (fr) 2006-01-04 2006-01-04 Composant de catalyseur pour la polymerisation ou la copolymerisation d'olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation

Country Status (3)

Country Link
EP (1) EP1970388A4 (zh)
KR (1) KR101246777B1 (zh)
WO (1) WO2007076639A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067794A1 (en) * 2007-12-06 2009-06-10 Borealis Technology OY Use of a Ziegler-Natta procatalyst containing a trans-esterification product of a lower alcohol and a phthalic ester for the production of reactor grade thermoplastic polyolefins with improved paintability
WO2009088596A1 (en) * 2007-12-31 2009-07-16 Basf Catalysts Llc Molar ratio modifications to larger polyolefin catalysts
CN102268110A (zh) * 2010-06-04 2011-12-07 中国石油天然气股份有限公司 烯烃聚合催化剂组分
US8685879B2 (en) 2011-04-29 2014-04-01 Basf Corporation Emulsion process for improved large spherical polypropylene catalysts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234337B (zh) * 2010-04-22 2013-08-14 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂
CN103154049A (zh) * 2010-10-19 2013-06-12 巴塞尔聚烯烃意大利有限责任公司 制备高纯度丙烯聚合物的方法
TWI644896B (zh) * 2013-05-21 2018-12-21 中國石油化工科技開發有限公司 Catalyst component, catalyst and application for olefin polymerization
CN104513327B (zh) * 2013-09-30 2017-02-15 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组合物及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477587A (en) * 1982-12-20 1984-10-16 Stauffer Chemical Company Supported catalyst for polymerization of olefins
US4784983A (en) 1985-04-01 1988-11-15 Beijing Research Institute Of Chemical Industry Catalyst system for use in olefinic polymerization
US4814312A (en) * 1986-12-26 1989-03-21 Toa Nenryo Kogyo Kabushiki Kaisha Method for production of catalyst component for olefin polymerization
CN1042547A (zh) 1988-09-30 1990-05-30 希蒙特公司 烯烃聚合成分及催化剂
CN1141285A (zh) 1995-02-21 1997-01-29 蒙特尔北美公司 适用在齐格勒-纳塔催化剂制备中使用的二醚
CN1176258A (zh) * 1996-09-06 1998-03-18 弗纳技术股份有限公司 制备高结晶聚丙烯的催化剂体系
CN1229092A (zh) 1998-03-17 1999-09-22 中国石油化工集团公司 用于乙烯聚合或共聚合的催化剂及其制法
WO2003068723A1 (en) 2002-02-07 2003-08-21 China Petroleum & Chemical Corporation Polyol ester compounds useful in preparation of a catalyst for olefins polymerization, process for preparing the same and use thereof
WO2003068828A1 (en) 2002-02-07 2003-08-21 China Petroleum & Chemical Corporation Solid catalyst component for polymerization of olefins, catalyst comprising the same and use thereof
CN1552743A (zh) * 2003-05-29 2004-12-08 中国石油化工股份有限公司 一种用于乙烯聚合或共聚合的催化剂及其制备方法
CN1681853A (zh) * 2002-09-16 2005-10-12 巴塞尔聚烯烃意大利有限公司 烯烃聚合用组分和催化剂

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819577A1 (de) * 1988-06-09 1989-12-14 Hoechst Ag Verfahren zur herstellung eines polypropylens
IT1230134B (it) * 1989-04-28 1991-10-14 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine.
TW396168B (en) * 1997-08-28 2000-07-01 Toho Titanium K K Solid catalyst component and catalyst for polymerization of olefins

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477587A (en) * 1982-12-20 1984-10-16 Stauffer Chemical Company Supported catalyst for polymerization of olefins
US4784983A (en) 1985-04-01 1988-11-15 Beijing Research Institute Of Chemical Industry Catalyst system for use in olefinic polymerization
US4814312A (en) * 1986-12-26 1989-03-21 Toa Nenryo Kogyo Kabushiki Kaisha Method for production of catalyst component for olefin polymerization
CN1042547A (zh) 1988-09-30 1990-05-30 希蒙特公司 烯烃聚合成分及催化剂
CN1141285A (zh) 1995-02-21 1997-01-29 蒙特尔北美公司 适用在齐格勒-纳塔催化剂制备中使用的二醚
CN1176258A (zh) * 1996-09-06 1998-03-18 弗纳技术股份有限公司 制备高结晶聚丙烯的催化剂体系
CN1229092A (zh) 1998-03-17 1999-09-22 中国石油化工集团公司 用于乙烯聚合或共聚合的催化剂及其制法
WO2003068723A1 (en) 2002-02-07 2003-08-21 China Petroleum & Chemical Corporation Polyol ester compounds useful in preparation of a catalyst for olefins polymerization, process for preparing the same and use thereof
WO2003068828A1 (en) 2002-02-07 2003-08-21 China Petroleum & Chemical Corporation Solid catalyst component for polymerization of olefins, catalyst comprising the same and use thereof
CN1681853A (zh) * 2002-09-16 2005-10-12 巴塞尔聚烯烃意大利有限公司 烯烃聚合用组分和催化剂
CN1552743A (zh) * 2003-05-29 2004-12-08 中国石油化工股份有限公司 一种用于乙烯聚合或共聚合的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970388A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067794A1 (en) * 2007-12-06 2009-06-10 Borealis Technology OY Use of a Ziegler-Natta procatalyst containing a trans-esterification product of a lower alcohol and a phthalic ester for the production of reactor grade thermoplastic polyolefins with improved paintability
WO2009071461A1 (en) * 2007-12-06 2009-06-11 Borealis Technology Oy Use of a ziegler-natta procatalyst containing a transesterification product of a lower alcohol and a phthalic ester for the production of reactor grade thermoplastic polyolefins with improved paintability
WO2009088596A1 (en) * 2007-12-31 2009-07-16 Basf Catalysts Llc Molar ratio modifications to larger polyolefin catalysts
CN102268110A (zh) * 2010-06-04 2011-12-07 中国石油天然气股份有限公司 烯烃聚合催化剂组分
US8685879B2 (en) 2011-04-29 2014-04-01 Basf Corporation Emulsion process for improved large spherical polypropylene catalysts

Also Published As

Publication number Publication date
EP1970388A1 (en) 2008-09-17
KR101246777B1 (ko) 2013-03-26
EP1970388A4 (en) 2010-11-10
KR20080091456A (ko) 2008-10-13

Similar Documents

Publication Publication Date Title
JP6073968B2 (ja) プロピレン重合のための触媒成分を調製する方法
US7388060B2 (en) Catalyst component for olefin (co)polymerization, preparation thereof, a catalyst comprising the same and use thereof
JP3857723B2 (ja) オレフィン重合に適する触媒の調製法
KR101017081B1 (ko) 올레핀 중합 반응용 촉매 성분 및 이의 촉매
KR101548595B1 (ko) 올레핀 중합용 촉매 성분 및 그것을 포함하는 촉매
KR20150113108A (ko) 올레핀 중합용 촉매 성분을 제조하는 방법
JP2502624B2 (ja) オレフイン重合用触媒成分
WO2007076639A1 (fr) Composant de catalyseur pour la polymerisation ou la copolymerisation d&#39;olefines, son procede de preparation, catalyseur contenant ledit composant de catalyseur et son utilisation
JP2008521944A (ja) オレフィンの重合のための触媒成分の調製方法
KR20140129228A (ko) 올레핀 중합용 촉매 성분
WO2010118641A1 (zh) 一种用于烯烃聚合的催化剂组分、其制备方法及包含该催化剂组分的催化剂
WO2004074329A1 (fr) Support complexe pour catalyseur de polymerisation du propylene, composant de catalyseur et catalyseur contenant ce composant
JP4624986B2 (ja) 電子供与体としてシクロアルカンジカルボキシレートを含むオレフィン重合触媒
CN104558276B (zh) 烯烃聚合用催化剂及其制备方法和应用
JP2004527636A (ja) オレフィン重合触媒組成物及びその製造方法
CS272788B2 (en) Method of catalyst&#39;s solid component preparation for application during olefin polymerization
JP2007532717A (ja) オレフィン重合プロ触媒(procatalyst)組成物及び調製方法
JP2502106B2 (ja) オレフイン重合用触媒成分の製造法
CN105622789A (zh) 一种烯烃聚合用的小孔径催化剂组分、制备方法及其应用
JP2769711B2 (ja) オレフィン重合用触媒成分の製造方法及びオレフィンの重合方法
EP1587845A1 (en) Method of polymerization and copolymerization of ethylene
TWI388578B (zh) 一種用於烯烴聚合或共聚合的催化劑組分、其製備方法、包含該催化劑組分的催化劑及其應用
EP2029277A1 (en) Catalyst component for the polymerization of olefins
JPH03124705A (ja) チーグラー/ナッタ触媒タイプの触媒組成物
JPS6123209B2 (zh)

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006703143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087018726

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006703143

Country of ref document: EP