WO2007074627A1 - フライアッシュ中の未燃カーボン除去方法 - Google Patents

フライアッシュ中の未燃カーボン除去方法 Download PDF

Info

Publication number
WO2007074627A1
WO2007074627A1 PCT/JP2006/324643 JP2006324643W WO2007074627A1 WO 2007074627 A1 WO2007074627 A1 WO 2007074627A1 JP 2006324643 W JP2006324643 W JP 2006324643W WO 2007074627 A1 WO2007074627 A1 WO 2007074627A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
unburned carbon
slurry
carbon
unburned
Prior art date
Application number
PCT/JP2006/324643
Other languages
English (en)
French (fr)
Other versions
WO2007074627A8 (ja
Inventor
Kazuyoshi Matsuo
Kazuo Abe
Takao Suzuki
Shinichiro Saito
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Taiheiyo Cement Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd., Taiheiyo Cement Corporation filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Priority to US12/087,069 priority Critical patent/US7703610B2/en
Priority to DK06834398.7T priority patent/DK1970135T3/da
Priority to ES06834398T priority patent/ES2425230T3/es
Priority to EP06834398.7A priority patent/EP1970135B1/en
Priority to CN2006800492052A priority patent/CN101346193B/zh
Publication of WO2007074627A1 publication Critical patent/WO2007074627A1/ja
Publication of WO2007074627A8 publication Critical patent/WO2007074627A8/ja
Priority to KR1020087016208A priority patent/KR101269456B1/ko
Priority to HK09104384.7A priority patent/HK1126160A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/16Flotation machines with impellers; Subaeration machines
    • B03D1/22Flotation machines with impellers; Subaeration machines with external blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/08Subsequent treatment of concentrated product
    • B03D1/085Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1406Flotation machines with special arrangement of a plurality of flotation cells, e.g. positioning a flotation cell inside another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1462Discharge mechanisms for the froth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless

Definitions

  • the present invention relates to a method for removing unburned carbon in fly ash, and more specifically, a method for removing unburned carbon in fly ash that efficiently removes fly ash force unburned carbon generated in a coal-fired thermal power plant. About.
  • Fly ash (FA) generated at a coal-fired thermal power plant is used as a raw material for cement and artificial lightweight aggregates, or as an admixture for concrete.
  • fly ash with little unburned carbon is used as admixture for concrete, etc., and fly ash with a lot of unburned carbon is used as a cement raw material or landfilled as industrial waste. It had been.
  • Part of the oil is also collected by the high-speed shear mixer on the surface of the activated ash that is contained in the ash and only adheres to the surface of the unburned carbon. It adheres when stirring. For this reason, there exists a problem that the required addition amount of the oil which is a collection agent increases.
  • the present invention has been made to solve such a problem, and an object of the present invention is to apply unaffected carbon in fly ash by applying a flotation method by surface lipophilicity (surface modification).
  • surface lipophilicity surface modification
  • the present invention is configured as follows.
  • the invention according to claim 1 is a method for removing unburned carbon contained in fly ash as a raw material, and adding a slurry to the fly ash to form a slurry, and a slurry fly ash. Sheared by a stirring blade rotating at high speed, Therefore, the step of imparting lipophilicity by generating active energy on the surface of the unburned carbon, and the unburnt carbon made lipophilic by adding a scavenger and a foaming agent to the slurry containing the oleophilic unburned carbon.
  • These are a process of attaching a scavenger to the air and attaching a non-burning carbon with a scavenger attached to the air bubbles, and a method for removing unburned carbon in the fly ash.
  • the invention according to claim 2 is characterized in that the fly ash concentration in the slurry is 5 to 40 wt% when water is added to the fly ash to form a slurry. This is a method for removing unburned carbon.
  • the invention according to claim 3 is characterized in that a stirring power of 10 to LOOKw / m 3 per unit slurry amount of slurry is applied to apply shear force to the slurry fly ash. 2.
  • the invention according to claim 4 is characterized in that the slurry residence time is 0.1 to 10 minutes when the shearing force is applied to the slurry fly ash. This is a method for removing unburned carbon from fly ash.
  • the addition amount of the collection agent is 0 to 3.
  • water is added to fly ash to form a slurry, and then, for example, a shearing force is applied to the fly ash that has been slurried using a high-speed shear mixer or the like, so that it is contained in the fly ash.
  • transient active energy surface energy
  • the surface becomes more lipophilic (hydrophobic).
  • fly ash generated in a coal-fired thermal power plant is combustion ash generated by burning pulverized coal at a high temperature (eg, 1200 to 1500 ° C), and is therefore included in the ash.
  • the surface of the unburned carbon is in an acidified state and loses its original lipophilicity.
  • the scavenger is attached to the unburned carbon activated by surface modification and the surface of which is made oleophilic. Since the agent is not attached, the additive (use amount) of the collection agent (oil) can be reduced as compared with the conventional method. Moreover, since there is no adhesion of the scavenger to the fly ash surface, the recovery rate of fly ash is increased, and the amount of unburned carbon in the recovered fly ash is reduced.
  • FIG. 1 is a system configuration diagram for carrying out a method for removing unburned carbon in fly ash according to the present invention.
  • FIG. 2 is a configuration diagram of an apparatus for carrying out the method for removing unburned carbon in fly ash according to the present invention.
  • FIG. 3 is a side view including a partial cross section of the high-speed shear mixer.
  • FIG. 4 is a cross-sectional view of an example of a flotation machine.
  • FIG. 5 is a plan view of an example of a flotation machine.
  • FIG. 6 is a cross-sectional view of an example of a stirrer.
  • FIG. 7 (a) State diagram during slurry, (b) State diagram during surface modification, (c) State diagram during addition of scavenger, (d) State diagram during flotation.
  • the system is mainly composed of a slurry preparation tank 1 in which water b is added to fly ash a, which is a raw material, and a surface reformer (for example, high-speed shearing) that performs surface modification of the slurry fly ash.
  • a surface reformer for example, high-speed shearing
  • Mixer 10 the adjustment tank 30 for adding the collection agent e and the foaming agent f to the slurry after the surface modification, and the slurry after the addition of the collection agent and the foaming agent are stirred and not mixed with bubbles.
  • It consists of a flotation machine 40 that flotates fuel carbon.
  • the slurry preparation tank 1 is provided for generating slurry d with fly ash a and water b, and internally includes stirring blades 2 for stirring slurry d. Yes.
  • a front stage of the slurry preparation tank 1 is provided with a fly ash tank and a water supply facility (not shown), and a pump 3 for supplying the slurry d to the high-speed shear mixer 10 which is a surface reforming apparatus is provided at the subsequent stage. have.
  • the high-speed shear mixer 10 is provided to modify the surface of unburned carbon by applying a shearing force (abrasion force) to the slurry fly ash.
  • the high-speed shear mixer 10 includes a cylindrical horizontal main body 11, a plurality of annular partition walls 13 that divide the main body 11 into a plurality of chambers 12 in the axial direction, and a main body 11. It has a rotating shaft 14 penetrating, a disk 15 provided on the rotating shaft 14, and a plurality of stirring blades 16 provided radially on both sides of the disk 15, and rotates via a motor 17 and a speed reducer 18. The shaft 14 and the stirring blade 16 are rotated.
  • the adjustment tank 30 adds a small amount of a trapping agent e such as kerosene, light oil, and heavy oil and a foaming agent f such as MIBC (methyl isobutyl carbinol) to the slurry from the high-speed shear mixer 10.
  • a stirring blade 31 for low-speed stirring is provided inside.
  • a pump 32 for supplying the slurry d to the flotation machine 40 is disposed downstream of the adjustment tank 30.
  • the flotation machine 40 causes unburned carbon to adhere to the generated bubbles and floats up to separate the unburned carbon c and the ash a 'from which the unburned carbon has been removed.
  • the flotation machine 40 has a structure as shown in FIGS. 4 to 6, but may have another structure (for example, column flotation).
  • the flotation machine 40 has a plurality of rooms 43 partitioned by a partition wall 42 in a rectangular tank 41, and each room 43 is provided with a stirrer 44.
  • This stirrer 44 is a vertical rotation
  • An outer tube 47 is provided outside the shaft 45.
  • the outer pipe 47 has an air introduction pipe 48 at the upper part and a hood 49 for covering the stirring blades 46 at the lower part.
  • the flotation machine 40 has a floss discharge path 50 on both sides of the tank 41.
  • the floss discharge path 50 has an inclined bottom 51 and a floss collecting path 52 connected to both floss discharge paths 50 on the valley side.
  • the flotation machine 40 is provided with a floss feeder 54 on the upper side of a side wall (also referred to as a weir) 53 having a floss discharge path 50.
  • the floss feeder 54 includes a rotating shaft 56 that is rotated by a motor 55 and a plurality of water wheels 57 that are provided on the rotating shaft 56.
  • the flotation machine 40 has a slurry inlet 58 on the upstream end face, a tail outlet 59 on the downstream end face, and a floss outlet 60 on the floss collecting path 52. Yes.
  • Each partition wall 42 has a communication port 61.
  • fly ash a is supplied to the slurry preparation tank 1 and mixed with water b to form slurry d.
  • the fly ash concentration in the slurry is adjusted in the range of 5 to 40 wt%, preferably 15 to 25 wt%. If the fly ash concentration in the slurry is less than 5 wt%, the fly ash content is too small, and it is not profitable when industrialized. On the other hand, if it exceeds 4 Owt%, the slurry concentration increases and hinders subsequent processes.
  • the slurry d in the slurry preparation tank 1 is supplied to the high-speed shear mixer 10 by the pump 3, and the shearing force is applied by the high-speed shear mixer 10.
  • the application of the shearing force can be performed using the high-speed shearing mixer 10 shown in FIG.
  • the slurry d supplied from the inlet 19 of the high-speed shear mixer 10 is activated by applying a shearing force by the stirring blade 16 rotating at high speed in each room 12 partitioned by the partition wall 13. At that time, the annular partition wall 13 can prevent the slurry d from being short-passed and can surely apply a shearing force to the slurry.
  • the activated slurry d applied with shearing force is discharged from the outlet 20 and supplied to the adjusting tank 30.
  • the shearing force is applied to the fly ash slurry to activate it. This is because the surface of unburned carbon is modified to improve the flotation floatability. This will be described with reference to FIGS. 7 (a) to 7 (d).
  • the slurry d containing fly ash is merely in a state where fly ash a and unburned carbon c are individually mixed in water, as shown in FIG. 7 (a).
  • transient activation energy surface energy
  • g is formed, and the surface becomes more lipophilic (hydrophobic).
  • the surface of fly ash a becomes more hydrophilic and adapts to water.
  • the residence time of the slurry in the high-speed shear mixer 10 is 0.1 to: L0 minutes, preferably 0.5 to 5 minutes. If the slurry residence time is less than 0.1 minute, the surface modification of the unburned carbon is insufficient, and if it exceeds 10 minutes, there are problems such as increased equipment cost and running cost of the surface reformer. .
  • the slurry d 'activated by applying shear force by the high-speed shear mixer 10 is supplied to the adjustment tank 30, and in the adjustment tank 30, the collecting agent is used for the slurry d' after the surface modification.
  • e eg kerosene, light oil, heavy oil
  • foaming agent f eg MIBC (methyl isobutyl carbinol)
  • the addition amount of the collection agent is 0 to 3. Owt%, preferably 0.05 to 1. Owt% with respect to fly ash.
  • the amount of foaming agent added is 20-5, OOOppm, preferably 100-1000ppm.
  • the addition amount of the foaming agent is less than 20 ppm, the addition amount of the foaming agent is insufficient, and it is difficult to sufficiently generate bubbles. Conversely, if the amount of foaming agent added exceeds 5, OOOppm, some fly ash is adsorbed by the bubbles, which reduces the recovery rate of fly ash.
  • the slurry d "stirred and adjusted in the adjustment tank 30 is supplied to the flotation machine 40 by the pump 32.
  • the slurry d ⁇ supplied to the flotation machine 40 is stirred by the stirrer 44.
  • the stirrer 44 rotates, the air h is sucked from the air introduction pipe 48, and bubbles n are generated.At that time, there is a case where air is forcibly blown in.
  • an air introduction pipe is provided and a blower or the like is provided.
  • bubbles n are generated, unburned carbon c adheres to the surface of the bubbles n via the trapping agent e and floats with the bubbles n, as shown in Fig. 7 (d).
  • the unburned carbon c that has floated together with the bubbles n is blown out of the tank by the floss blower 54 provided at the upper end of the side wall (weir) 53 and flows down into the floss discharge passage 50.
  • the floss (unburned carbon) i in the floss discharge path 50 flows along the inclined bottom 51, and is discharged to the outside through the floss collecting path 52.
  • the tail (fly ash) j remaining in the tank 41 is discharged out of the machine through the take-out port 59 together with water.
  • the surface of the unburned carbon is modified by the shearing force by the high-speed shear mixer.
  • the surface of the unburned carbon is removed by the shearing force using a device such as an ejector.
  • a device such as an ejector.
  • any device may be used as long as it can modify the surface of the unburned carbon by applying a shearing force to the slurry-like unburned force.
  • the fly ash recovery rate was 76. It was 5 wt%.
  • the amount of unburned carbon in the recovered fly ash was 1. lwt%, resulting in insufficient scavenger.
  • the present invention can be used, for example, for efficiently removing unburned carbon from fly ash generated in a coal-fired thermal power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 原料のフライアッシュ中に含まれている未燃カーボンを除去する方法であり、前記フライアッシュに水を加えてスラリー化する工程と、スラリー化したフライアッシュを高速で回転する攪拌羽根によって剪断し、その剪断力によって未燃カーボンの表面に活性エネルギーを生じさせて親油性を付与する工程と、親油化した未燃カーボンを含むスラリーに捕集剤と起泡剤を添加して親油化した未燃カーボンに捕集剤を付着させると共に、気泡に捕集剤の付いた未燃カーボンを付着させて浮選する工程から構成される。

Description

明 細 書
フライアッシュ中の未燃力一ボン除去方法
技術分野
[0001] 本発明は、フライアッシュ中の未燃カーボン除去方法、更に詳しくは、石炭焚き火 力発電所で発生したフライアッシュ力 未燃カーボンを効率的に除去するフライアツ シュ中の未燃カーボン除去方法に関する。
背景技術
[0002] 石炭焚き火力発電所で発生したフライアッシュ (FA)は、セメント及び人工軽量骨 材の原料、或いは、コンクリート用混和材などに利用されている。
[0003] し力しながら、フライアッシュをコンクリートの混和材として使用すると、フライアッシュ 中に含まれている未燃カーボンが AE剤、減水剤などを吸収するため、吸収分を考 慮して AE剤、減水剤などを余分に補充する必要があり、不経済であった。また、未 燃カーボンが撥水性を有するため、コンクリートを打設した際に、未燃カーボンがコン クリートから遊離して浮き上がり、コンクリートの打継部に未燃カーボンによる黒色部 が発生するなどの弊害があった。また、フライアッシュに含まれる未燃カーボン量が多 い場合は、フライアッシュ同士の結合力が低下するため、人工軽量骨材の品質が低 下するという問題もあった。
[0004] このため、未燃カーボンの少ない比較的良質のフライアッシュだけをコンクリート用 の混和材などに利用し、未燃カーボンの多いフライアッシュは、セメント原料としての 利用や産業廃棄物として埋め立て処理されていた。
[0005] ところが、埋め立て地が、年々、不足する状況にあることから、原料となるフライアツ シュ中の未燃カーボンを除去する方法が提案されている。例えば、 日本国特許第 36 13347号明細書には、フライアッシュに水を加えてスラリー化し、このスラリー状のフ ライアッシュに灯油などの捕集剤を添加し、しかる後に、捕集剤が添加されたスラリー を高速剪断ミキサーによって攪拌して、フライアッシュ中に含まれている未燃カーボン の表面を親油化すると同時に、表面が親油化した未燃カーボンに捕集剤を付着させ 、更に、起泡剤を添加して気泡を発生させ、この気泡の表面に捕集剤を介して未燃 カーボンを付着させて浮選を行う、フライアッシュ中の未燃カーボン除去方法が提案 されている。
[0006] しかし、従来の方法は、先ず、スラリー化したフライアッシュに捕集剤である油(例え ば、灯油)を添加し、しかる後に、捕集剤が添加されたスラリーを高速剪断ミキサーに よって攪拌して、フライアッシュ中に含まれて 、る未燃カーボンの表面を活性ィ匕して 親油化すると同時に、表面が活性化して親油化した未燃カーボンに捕集剤を付着さ せ、更に、起泡剤を添加して気泡を発生させ、この気泡の表面に捕集剤を介して活 性ィ匕された未燃カーボンを付着させて浮選を行って 、るので、フライアッシュ中に含 まれて 、る未燃カーボンの表面に捕集剤である油の一部が付着するだけでなぐ活 性化された灰分の表面の方にも油の一部が高速剪断ミキサーによる攪拌時に付着 する。このため、捕集剤である油の必要添加量が多くなるという問題がある。
[0007] また、浮選工程では、油分が付着した灰分も気泡に付着し易いことから、灰分の一 部も未燃カーボンと一緒にフロス (未燃カーボン)側に回収される。従って、テール側 の灰分の回収率が低下するという問題がある。また、捕集剤の油が未燃カーボンに 選択的に付着しないため、捕集剤の量が足らなくなってテール側の未燃カーボン量 が多くなる傾向がある。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、このような問題を解決するためになされたものであり、その目的は、表面 親油化 (表面改質)による浮選法を適用してフライアッシュ中の未燃カーボンを除去 するにあたって、灰分の回収率を向上させる一方、捕集剤である油の添加量を低減 させ、テール側の未燃カーボン量をより少なくすることができるフライアッシュ中の未 燃カーボン除去方法を提供することにある。
課題を解決するための手段
[0009] 上記の課題を解決するため、本発明は、次のように構成されている。
請求項 1に記載の発明は、原料のフライアッシュ中に含まれて 、る未燃カーボンを 除去する方法において、前記フライアッシュに水を加えてスラリー化する工程と、スラ リー化したフライアッシュを高速で回転する攪拌羽根によって剪断し、その剪断力に よって未燃カーボンの表面に活性エネルギーを生じさせて親油性を付与する工程と 、親油化した未燃カーボンを含むスラリーに捕集剤と起泡剤を添加して親油化した未 燃カーボンに捕集剤を付着させると共に、気泡に捕集剤の付いた未燃カーボンを付 着させて浮選する工程と、力 成るフライアッシュ中の未燃カーボン除去方法である。
[0010] 請求項 2に記載の発明は、フライアッシュに水をカ卩えてスラリー化するにあたって、 スラリー中のフライアッシュ濃度を 5〜40wt%とすることを特徴とする請求項 1記載の フライアッシュ中の未燃カーボン除去方法である。
[0011] 請求項 3に記載の発明は、スラリー化したフライアッシュに剪断力を付与するにあた つて、スラリーの単位スラリー量当り 10〜: LOOKw/m3の攪拌動力を付与することを 特徴とする請求項 1記載のフライアッシュ中の未燃カーボン除去方法である。
[0012] 請求項 4に記載の発明は、スラリー化したフライアッシュに剪断力を付与するにあた つて、スラリーの滞留時間を 0. 1〜10分とすることを特徴とする請求項 1記載のフライ アッシュ中の未燃カーボン除去方法である。
[0013] 請求項 5に記載の発明は、活性エネルギーにより親油化した未燃カーボンを含むス ラリーに捕集剤を添加するにあたって、捕集剤の添加量を、フライアッシュに対して 0 〜3. Owt%とすることを特徴とする請求項 1記載のフライアッシュ中の未燃カーボン 除去方法である。
[0014] 請求項 6に記載の発明は、活性エネルギーにより親油化した未燃カーボンを含むス ラリーに起泡剤を添加するにあたって、起泡剤の添加量を、 20-5, OOOppmとする ことを特徴とする請求項 1記載のフライアッシュ中の未燃カーボン除去方法である。 発明の効果
[0015] 本発明によれば、フライアッシュに水を加えてスラリー化し、その後、例えば、高速 剪断ミキサーなどを用いてスラリー化したフライアッシュに剪断力を付与するので、フ ライアッシュ中に含まれて 、る未燃カーボンの表面に過渡的な活性エネルギー(表 面エネルギー)が生じ、その表面がより親油化 (疎水化)する。
[0016] 一般に、石炭焚き火力発電所で発生したフライアッシュは、微粉炭を高温 (例えば、 1200〜 1500°C)で燃焼させることによって生じた燃焼灰であるから、その中に含ま れている未燃カーボンの表面が酸ィ匕された状態になっており、本来の親油性が失わ れているが、スラリー状態で高剪断力を付与することにより、親油性 (疎水性)を回復 させることがでさる。
[0017] しかる後に、活性ィ匕エネルギーにより親油化した未燃カーボンを含むスラリーに捕 集剤及び起泡剤を添加すると、親油化した未燃カーボンの表面と捕集剤 (油)の粒子 の表面とが密着して表面エネルギーが下がる。他方、活性ィ匕したフライアッシュの表 面は、水に馴染み、水に分散することによって表面エネルギーが下がり、より親水性 を増す。その結果、フライアッシュは、後段の浮選工程において、水中に分散し、未 燃カーボンと分離する。他方、起泡剤によって気泡が発生することから、フライアツシ ュと分離した未燃カーボンは、気泡の表面に付着し、浮選される。
[0018] 従って、本発明によれば、表面改質によって活性化されて表面が親油化した未燃 カーボンには、捕集剤が付着されるが、親水化したフライアッシュには、捕集剤が付 着しな 、ことから、従来法に比べて捕集剤(油)の添加料 (使用量)を低減させること ができる。また、フライアッシュ表面への捕集剤の付着がないために、フライアッシュ の回収率が高くなり、また、回収フライアッシュ中の未燃カーボン量が少なくなる。 図面の簡単な説明
[0019] [図 1]本発明に係るフライアッシュ中の未燃カーボン除去方法を実施するためのシス テム構成図である。
[図 2]本発明に係るフライアッシュ中の未燃カーボン除去方法を実施する装置の構成 図である。
[図 3]高速剪断ミキサーの一部断面を含む側面図である。
[図 4]浮選機の一例の断面図である。
[図 5]浮選機の一例の平面図である。
[図 6]攪拌機の一例の断面図である。
[図 7] (a)スラリー時の状態図、(b)表面改質時の状態図、(c)捕集剤添加時の状態 図、(d)浮選機時の状態図である。
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態を図面を用いて説明する。
図 1に示すように、本発明に係るフライアッシュ中の未燃カーボン除去方法を実施 するためのシステムは、主として、原料であるフライアッシュ aに水 bをカ卩えてスラリー 化するスラリー調製槽 1と、スラリー化したフライアッシュの表面改質を行なう表面改質 機 (例えば、高速剪断ミキサー) 10と、表面改質後のスラリーに捕集剤 e及び起泡剤 f を添加する調整槽 30と、捕集剤及び起泡剤を添加後のスラリーを攪拌し、気泡と共 に未燃カーボンを浮選する浮選機 40などで構成されている。
[0021] 図 2に示すように、スラリー調製槽 1は、フライアッシュ aと水 bとでスラリー dを生成す るために設けられ、スラリー dを攪拌するための攪拌羽根 2を内部に備えている。この スラリー調製槽 1の前段には、図示しないフライアッシュタンクと水供給設備とが設け られ、その後段には、スラリー dを表面改質装置である高速剪断ミキサー 10に供給す るためのポンプ 3を有している。
[0022] 高速剪断ミキサー 10は、スラリー化したフライアッシュに剪断力(擦過力)を付与し て未燃カーボンの表面を改質するために設けられている。この高速剪断ミキサー 10 は、図 3に示すように、円筒状の横型の本体 11と、本体 11をその軸線方向に複数の 部屋 12に分割する複数の円環状の仕切壁 13と、本体 11を貫通している回転軸 14と 、回転軸 14に設けた円板 15と、円板 15の両側に放射状に設けた複数の攪拌羽根 1 6とを備え、モータ 17及び減速機 18を介して回転軸 14及び攪拌羽根 16が回転する ようになっている。
[0023] 調整槽 30は、高速剪断ミキサー 10からのスラリーに対して、灯油、軽油、重油など の捕集剤 eと、 MIBC (メチルイソブチルカルビノール)などの起泡剤 fとを少量添加し て、これらを混合するものであって、図 2に示すように、内部に低速攪拌用の攪拌羽 根 31を備えている。この調整槽 30の後段には、スラリー dを浮選機 40に供給するた めのポンプ 32が配置されている。
[0024] 浮選機 40は、発生した気泡に未燃カーボンを付着させて浮上させ、未燃カーボン c と、未燃カーボンが除去された灰分 a'とに分離するものである。この浮選機 40は、例 えば、図 4〜図 6の如き構造となっているが、他の構造のもの(例えば、カラム浮選)で も良い。
[0025] この浮選機 40は、直方形の槽 41内に隔壁 42で仕切られた複数の部屋 43を有し、 各部屋 43内に、それぞれ、攪拌機 44を備えている。この攪拌機 44は、縦長の回転 軸 45の外側に外管 47を有している。この外管 47は、図 6に示すように、その上部に 空気導入管 48を有し、下部に攪拌羽根 46を覆うためのフード 49を有している。
[0026] また、この浮選機 40は、槽 41の両側にフロス払い出し路 50を有している。このフロ ス払い出し路 50は、傾斜した底部 51を有し、その谷側に双方のフロス払い出し路 50 に接続するフロス集合路 52を有している。また、この浮選機 40は、フロス払い出し路 50を持つ側壁 (堰ともいう。) 53の上部にフロス搔き出し機 54を設けている。このフロ ス搔き出し機 54は、モーター 55によって回転される回転軸 56と、この回転軸 56に設 けた複数の水車 57から構成されて 、る。
[0027] また、この浮選機 40は、上流側の端面にスラリー入り口 58を有し、下流側の端面に テール取り出し口 59を有し、フロス集合路 52にフロス取り出し口 60を有している。ま た、各隔壁 42に連通口 61を有している。
[0028] 次に、上記システムの作用について、図 2〜図 7を参照しながら説明する。
図 2に示すように、フライアッシュ aは、スラリー調製槽 1に供給され、水 bと混合して スラリー dとなる。ここで、スラリー中のフライアッシュ濃度を 5〜40wt%、好ましくは、 1 5〜25wt%の範囲に調製する。スラリー中のフライアッシュ濃度が 5wt%未満の場 合は、フライアッシュ分が少なすぎるため、工業化した場合、採算性がない。逆に、 4 Owt%を超えると、スラリー濃度が高くなり、後工程に支障が出る。
[0029] スラリー調製槽 1内のスラリー dは、ポンプ 3によって高速剪断ミキサー 10に供給さ れ、高速剪断ミキサー 10による剪断力の付与が行なわれる。剪断力の付与は、例え ば、図 3の高速剪断ミキサー 10を用いて行うことができる。高速剪断ミキサー 10の入 り口 19から供給されたスラリー dは、仕切壁 13によって仕切られた各部屋 12におい て、高速回転する攪拌羽根 16によって剪断力が付与され活性化される。その際、円 環状の仕切壁 13によってスラリー dのショートパスを防止して、スラリーに剪断力を確 実に付与することができる。剪断力を付与され活性化されたスラリー dは、出口 20から 排出され、調整槽 30に供給される。
[0030] 上記のように、フライアッシュのスラリーに剪断力を付与し、活性化するのは、未燃 カーボンの表面改質を行って浮選浮遊性を向上させるためである力 この点につい て、図 7 (a)〜図 7 (d)を参照しながら説明する。 [0031] フライアッシュを含むスラリー dは、図 7 (a)に示すように、水 の中にフライアッシュ a と、未燃カーボン cとが個々に混合された状態となっているに過ぎない。ところが、スラ リー dに剪断力を付与して未燃カーボン cの表面改質を行うと、図 7 (b)に示すように、 未燃カーボン cの表面に過渡的な活性エネルギー(表面エネルギー) gが生じ、その 表面が、より親油化 (疎水化)する。他方、フライアッシュ aの表面は、より親水化し、水 に馴染むようになる。
[0032] 未燃カーボン cの表面改質を行った後、スラリー dに捕集剤 e及び気泡剤 fを添加す ると、図 7 (c)に示すように、未燃カーボン cに捕集剤 eが付着する。そして、浮選機を 用いて浮選する際に、図 7 (d)に示すように、捕集剤 eの付着した未燃カーボン cが気 泡 nに付着して浮上する。
[0033] なお、高速剪断ミキサー 10によってスラリーへの剪断力を付与するにあたって、スラ リーの単位スラリー量当り 10〜: LOOKwZm3、好ましくは、 30〜50KwZm3の攪拌 力 (攪拌動力)を付与する。単位スラリー量当りの攪拌動力が lOKwZm3未満の場 合は、未燃カーボンの表面改質が不十分であり、単位スラリー量当りの攪拌動力が 1 OOKw/m3を超えると、ランニングコストの増大や表面改質機の磨耗などの問題が ある。
[0034] また、高速剪断ミキサー 10におけるスラリーの滞留時間は、 0. 1〜: L0分、好ましく は、 0. 5〜5分とする。スラリーの滞留時間が 0. 1分未満の場合は、未燃カーボンの 表面改質が不十分であり、 10分を超えると、表面改質機の設備コストやランニングコ ストの増大などの問題がある。
[0035] 高速剪断ミキサー 10によって剪断力が付与され活性化されたスラリー d'は、調整 槽 30に供給されるが、調整槽 30では、表面改質後のスラリー d'に対して捕集剤 e ( 例えば、灯油、軽油、重油)、及び起泡剤 f (例えば、 MIBC (メチルイソブチルカルビ ノール))が添加される。親油化した未燃カーボンを含むスラリーに、捕集剤 e及び起 泡剤 fを添加しながら、攪拌羽根 31によって低速攪拌すると、活性化エネルギーによ り親油化した未燃カーボン cの表面と捕集剤 eの粒子の表面とが密着(図 7 (c)参照。 )して表面エネルギーが下がる。他方、活性ィ匕したフライアッシュ aの表面は、水に馴 染み、水に分散するため、表面エネルギーが下がる。 [0036] ここで、捕集剤の添加量は、フライアッシュに対して 0〜3. Owt%、好ましくは、 0. 0 5〜1. Owt%とする。また、起泡剤の添加量は、 20〜5, OOOppm、好ましくは、 100 〜1000ppmとする。捕集剤の添加量が 3. Owt0/(^超えると、捕集剤の添加量が過 剰となり、不経済となる。
[0037] 他方、起泡剤の添加量が 20ppm未満の場合は、起泡剤の添加量が不足し、気泡 を十分に発生させることが困難になる。逆に、起泡剤の添加量が 5, OOOppmを超え ると、気泡に吸着するフライアッシュもあることから、フライアッシュの回収率が低下す るという問題もある。
[0038] 次に、調整槽 30において攪拌調整されたスラリー d"は、ポンプ 32によって浮選機 40に供給される。浮選機 40に供給されたスラリー d〃は、攪拌機 44によって攪拌され るが、攪拌機 44が回転することによって空気導入管 48から空気 hが吸い込まれ、気 泡 nが発生する。その際、強制的に空気を吹き込む場合もある。例えば、空気導入管 を設け、ブロア等から供給する方式がある。気泡 nが発生すると、図 7 (d)に示すよう に、気泡 nの表面に捕集剤 eを介して未燃カーボン cが付着し、気泡 nとともに浮上す る。気泡 nとともに浮上した未燃カーボン cは、側壁 (堰) 53の上端に設けたフロス搔き 出し機 54によって槽外に搔き出され、フロス払い出し路 50内に流下する。
[0039] フロス払い出し路 50内のフロス (未燃カーボン) iは、傾斜した底部 51に沿って流動 し、フロス集合路 52を経て機外に排出される。他方、槽 41内に残ったテール (フライ アッシュ) jは、水と共に取り出し口 59から機外に排出される。
[0040] 以上の説明では、高速剪断ミキサーによる剪断力によって未燃カーボンの表面を 改質する場合について説明したが、例えば、ェゼクタ一などの機器を用いて、剪断力 により未燃カーボンの表面を改質しても差し支えがない。要は、スラリー状の未燃力 一ボンに剪断力を付与して、未燃カーボンの表面を改質できるものであれば、如何 なる機器を使用してもよい。
実施例
[0041] (実施例 1)
水 1000mlと、フライアッシュ(未燃カーボン分、 5. 0%) 200gとを攪拌しながら混 合し、スラリーとする。このスラリーを、高速剪断ミキサーで高速攪拌 (高速剪断ミキサ 一動力:40KwZm3)することにより、スラリーに剪断力を付与し活性化させて、フライ アッシュ中の未燃カーボンを親油化 (疎水化)する。
[0042] 活性ィ匕エネルギーにより親油化したスラリーを低速で攪拌しながら、捕集剤として灯 油を 1. 3ml添加し、起泡剤として MIBC (メチルイソブチルカルビノール)を 200mg 添加した。次に、浮選操作により気泡を発生させ、発生した気泡に未燃カーボンを付 着させて浮上させ、浮上した気泡をフロスとして取り出した。この浮選工程を 5分継続 して行った。
[0043] 次に、容器内に残ったテールを乾燥して計量したところ、 165gあり、その中の未燃 カーボン量は 0. 4wt%であった。その結果、フライアッシュの回収率は、 86. 5wt% ( = (165 X 0. 996/200 X 0. 95) X 100)であること力 S分力、つた。
[0044] これに対し、従来と同様に、ミキサーで剪断力を付与する前に、スラリーに捕集剤で ある灯油を同量添カ卩した場合には、フライアッシュの回収率は、 76. 5wt%であった 。また、回収フライアッシュ中の未燃カーボン量は 1. lwt%であり、捕集剤が足らな い結果となった。
産業上の利用の可能性
[0045] 本発明は、例えば、石炭焚きの火力発電所で発生したフライアッシュから未燃カー ボンを効率的に除去する場合などに利用可能である。

Claims

請求の範囲
[1] 原料のフライアッシュ中に含まれている未燃カーボンを除去する方法において、前 記フライアッシュに水を加えてスラリー化する工程と、スラリー化したフライアッシュを 高速で回転する攪拌羽根によって剪断し、その剪断力によって未燃カーボンの表面 に活性エネルギーを生じさせて親油性を付与する工程と、親油化した未燃カーボン を含むスラリーに捕集剤と起泡剤を添加して親油化した未燃カーボンに捕集剤を付 着させると共に、気泡に捕集剤の付いた未燃カーボンを付着させて浮選する工程と、 力も成るフライアッシュ中の未燃カーボン除去方法。
[2] フライアッシュに水をカ卩えてスラリー化するにあたって、スラリー中のフライアッシュ 濃度を 5〜40wt%とすることを特徴とする請求項 1記載のフライアッシュ中の未燃力 一ボン除去方法。
[3] スラリー化したフライアッシュに剪断力を付与するにあたって、スラリーの単位スラリ 一量当り 10〜: LOOKwZm3の攪拌動力を付与することを特徴とする請求項 1記載の フライアッシュ中の未燃カーボン除去方法。
[4] スラリー化したフライアッシュに剪断力を付与するにあたって、スラリーの滞留時間 を 0. 1〜10分とすることを特徴とする請求項 1記載のフライアッシュ中の未燃カーボ ン除去方法。
[5] 活性エネルギーにより親油化した未燃カーボンを含むスラリーに捕集剤を添加する にあたって、捕集剤の添加量をフライアッシュに対して 0〜3. Owt%とすることを特徴 とする請求項 1記載のフライアッシュ中の未燃カーボン除去方法。
[6] 活性エネルギーにより親油化した未燃カーボンを含むスラリーに起泡剤を添加する にあたって、起泡剤の添加量を 20〜5, OOOppmとすることを特徴とする請求項 1記 載のフライアッシュ中の未燃カーボン除去方法。
PCT/JP2006/324643 2005-12-26 2006-12-11 フライアッシュ中の未燃カーボン除去方法 WO2007074627A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/087,069 US7703610B2 (en) 2005-12-26 2006-12-11 Method for removal of unburned carbon contained in fly ash
DK06834398.7T DK1970135T3 (da) 2005-12-26 2006-12-11 Fremgangsmåde til fjernelse af uforbrændt carbon i flyveaske
ES06834398T ES2425230T3 (es) 2005-12-26 2006-12-11 Método para retirar el carbón sin quemar contenido en la ceniza volante
EP06834398.7A EP1970135B1 (en) 2005-12-26 2006-12-11 Method for removal of unburned carbon contained fly ash
CN2006800492052A CN101346193B (zh) 2005-12-26 2006-12-11 飞灰中的未燃烧碳除去方法
KR1020087016208A KR101269456B1 (ko) 2005-12-26 2008-07-03 플라이 애시 중의 미연 카번 제거방법
HK09104384.7A HK1126160A1 (en) 2005-12-26 2009-05-13 Method for removal of unburned carbon contained fly ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-373020 2005-12-26
JP2005373020A JP4917309B2 (ja) 2005-12-26 2005-12-26 フライアッシュ中の未燃カーボン除去方法

Publications (2)

Publication Number Publication Date
WO2007074627A1 true WO2007074627A1 (ja) 2007-07-05
WO2007074627A8 WO2007074627A8 (ja) 2008-05-29

Family

ID=38217848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324643 WO2007074627A1 (ja) 2005-12-26 2006-12-11 フライアッシュ中の未燃カーボン除去方法

Country Status (10)

Country Link
US (1) US7703610B2 (ja)
EP (1) EP1970135B1 (ja)
JP (1) JP4917309B2 (ja)
KR (1) KR101269456B1 (ja)
CN (1) CN101346193B (ja)
DK (1) DK1970135T3 (ja)
ES (1) ES2425230T3 (ja)
HK (1) HK1126160A1 (ja)
TW (1) TWI362966B (ja)
WO (1) WO2007074627A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004942A1 (ja) * 2008-07-08 2010-01-14 三井造船株式会社 フライアッシュ中の未燃カーボンの分離方式
JP2010023018A (ja) * 2008-06-18 2010-02-04 Shingijutsu Kenzai Kk スラリー化した石炭灰前処理方法およびスラリー化した石炭灰前処理装置並びに石炭灰処理方法および石炭灰処理設備
US20110036271A1 (en) * 2008-03-31 2011-02-17 Taiheiyo Cement Corporation Method of controlling chemical in wet decarburinozation of fly ash
JP2014087755A (ja) * 2012-10-31 2014-05-15 Taiheiyo Cement Corp 建設材料の製造装置及び製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960629B2 (ja) * 2005-12-22 2012-06-27 三井造船株式会社 フライアッシュ中の未燃カーボンの除去方法
JP4802305B2 (ja) 2009-07-17 2011-10-26 独立行政法人科学技術振興機構 浮遊分離装置及び方法並びにその利用製品の製造方法
US9074767B2 (en) * 2010-02-11 2015-07-07 Alstom Technology Ltd Rotary bottom ash regeneration system
JP6089198B1 (ja) * 2016-07-22 2017-03-08 株式会社リュウクス フライアッシュの加熱焼成装置及び焼成方法
CN107309239A (zh) * 2017-05-18 2017-11-03 潍坊鑫山环保重工科技有限公司 一种煤化工气化炉炉渣的煤灰分离方法
JP2019042624A (ja) * 2017-08-30 2019-03-22 太平洋セメント株式会社 石炭灰処理・物流方法
JP6737414B2 (ja) * 2018-02-06 2020-08-12 日本製鉄株式会社 炭素含有粉、分離方法、及び炭素含有粉の利用方法
JP7372829B2 (ja) * 2019-12-18 2023-11-01 株式会社トクヤマ 改質フライアッシュの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489902A (en) * 1977-12-23 1979-07-17 American Cyanamid Co Floth floatation of coal
JPS58104652A (ja) * 1981-12-15 1983-06-22 Mitsubishi Heavy Ind Ltd 石炭凝集浮揚物の分離方法
JPS59127660A (ja) * 1983-01-07 1984-07-23 Kawasaki Heavy Ind Ltd 石炭灰、低品位炭の処理方法
JPH0538468A (ja) * 1991-08-07 1993-02-19 Onoda Cement Co Ltd 石炭灰の処理方法
JPH0857351A (ja) * 1994-08-18 1996-03-05 Chichibu Onoda Cement Corp 石炭灰の処理方法
JP2003266057A (ja) * 2003-01-24 2003-09-24 Taiheiyo Cement Corp 石炭灰の処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK146216C (da) * 1981-02-16 1984-02-20 Oeresund Kryolit Fremgangsmaade til fraskillelse af kulpartikler fra flyveaske ved flotation
ATE8699T1 (de) * 1981-03-17 1984-08-15 Zaklady Energetyczne Okregu Poludniowego Verfahren und system von vorrichtungen zum herstellen einer suspension von flugasche in wasser und zum transport der suspension in rohrleitungen.
JPS63104668A (ja) * 1986-10-21 1988-05-10 Mitsubishi Heavy Ind Ltd 浮選方法
US5116487A (en) * 1990-07-27 1992-05-26 University Of Kentucky Research Foundation Froth flotation method for recovery of ultra-fine constituent
CN1098425A (zh) * 1993-08-04 1995-02-08 邓端云 利用煤灰制取炭黑和白炭黑的方法
JP4346299B2 (ja) * 2002-10-25 2009-10-21 三井造船株式会社 微粉炭の浮選方法、微粉炭表面改質装置及び微粉炭の浮選システム
JP3613347B1 (ja) * 2003-10-09 2005-01-26 太平洋セメント株式会社 フライアッシュ中の未燃カーボンの除去方法
JP4751139B2 (ja) * 2005-08-26 2011-08-17 三井造船株式会社 フライアッシュ中の未燃カーボン除去装置
US8893892B2 (en) * 2005-12-07 2014-11-25 Taiheiyo Cement Corporation Apparatus and method for removing unburned carbon from fly ash
JP4960629B2 (ja) * 2005-12-22 2012-06-27 三井造船株式会社 フライアッシュ中の未燃カーボンの除去方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489902A (en) * 1977-12-23 1979-07-17 American Cyanamid Co Floth floatation of coal
JPS58104652A (ja) * 1981-12-15 1983-06-22 Mitsubishi Heavy Ind Ltd 石炭凝集浮揚物の分離方法
JPS59127660A (ja) * 1983-01-07 1984-07-23 Kawasaki Heavy Ind Ltd 石炭灰、低品位炭の処理方法
JPH0538468A (ja) * 1991-08-07 1993-02-19 Onoda Cement Co Ltd 石炭灰の処理方法
JPH0857351A (ja) * 1994-08-18 1996-03-05 Chichibu Onoda Cement Corp 石炭灰の処理方法
JP2003266057A (ja) * 2003-01-24 2003-09-24 Taiheiyo Cement Corp 石炭灰の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1970135A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036271A1 (en) * 2008-03-31 2011-02-17 Taiheiyo Cement Corporation Method of controlling chemical in wet decarburinozation of fly ash
US8454745B2 (en) * 2008-03-31 2013-06-04 Taiheiyo Cement Corporation Method of controlling chemical in wet decarburinozation of fly ash
JP2010023018A (ja) * 2008-06-18 2010-02-04 Shingijutsu Kenzai Kk スラリー化した石炭灰前処理方法およびスラリー化した石炭灰前処理装置並びに石炭灰処理方法および石炭灰処理設備
WO2010004942A1 (ja) * 2008-07-08 2010-01-14 三井造船株式会社 フライアッシュ中の未燃カーボンの分離方式
JP2010017619A (ja) * 2008-07-08 2010-01-28 Mitsui Eng & Shipbuild Co Ltd フライアッシュ中の未燃カーボンの分離方法
JP2014087755A (ja) * 2012-10-31 2014-05-15 Taiheiyo Cement Corp 建設材料の製造装置及び製造方法

Also Published As

Publication number Publication date
TW200732041A (en) 2007-09-01
JP2007167825A (ja) 2007-07-05
US7703610B2 (en) 2010-04-27
EP1970135B1 (en) 2013-07-17
DK1970135T3 (da) 2013-08-26
TWI362966B (en) 2012-05-01
CN101346193B (zh) 2012-07-11
JP4917309B2 (ja) 2012-04-18
US20090008302A1 (en) 2009-01-08
HK1126160A1 (en) 2009-08-28
KR20080087110A (ko) 2008-09-30
ES2425230T3 (es) 2013-10-14
WO2007074627A8 (ja) 2008-05-29
EP1970135A1 (en) 2008-09-17
EP1970135A4 (en) 2012-01-18
CN101346193A (zh) 2009-01-14
KR101269456B1 (ko) 2013-05-30

Similar Documents

Publication Publication Date Title
WO2007074627A1 (ja) フライアッシュ中の未燃カーボン除去方法
JP3613347B1 (ja) フライアッシュ中の未燃カーボンの除去方法
JP2007054773A (ja) 石炭灰中の未燃カーボン除去方法
US8051985B2 (en) Method of removing unburned carbon from coal ash
JP4960629B2 (ja) フライアッシュ中の未燃カーボンの除去方法
JP4859459B2 (ja) フライアッシュ中の未燃カーボンの除去方法
WO2007066534A1 (ja) フライアッシュ中の未燃カーボン除去装置及び除去方法
US8127931B2 (en) Apparatus for removing unburned carbon in fly ash
JPH0857351A (ja) 石炭灰の処理方法
JP4878605B2 (ja) フライアッシュの湿式脱炭における前処理装置
JP4751139B2 (ja) フライアッシュ中の未燃カーボン除去装置
JP3581707B2 (ja) 石炭灰の処理方法
JP3505000B2 (ja) 石炭灰の処理方法
JPH07222939A (ja) 石炭灰の処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049205.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12087069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087016208

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006834398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3887/CHENP/2008

Country of ref document: IN