WO2007072751A1 - 送信機および送信方法 - Google Patents
送信機および送信方法 Download PDFInfo
- Publication number
- WO2007072751A1 WO2007072751A1 PCT/JP2006/325031 JP2006325031W WO2007072751A1 WO 2007072751 A1 WO2007072751 A1 WO 2007072751A1 JP 2006325031 W JP2006325031 W JP 2006325031W WO 2007072751 A1 WO2007072751 A1 WO 2007072751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sector
- transmission
- information
- unit
- sectors
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0491—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
Definitions
- the present invention relates to a soft combine technique for performing communication using a plurality of sectors in a communication system using a cell also configured with a plurality of sector forces.
- Diversity is a technique for setting a plurality of propagation paths to prevent deterioration in communication quality due to an increase in the level difference of radio signals. In other words, this is a technique for improving wireless communication quality by using a plurality of transmission antennas or reception antennas.
- Diversity methods include a method of selecting a good antenna for each received packet and a method of combining the received data of each antenna force according to the level of the received signal.
- the 3GPP (3rd Generation Partnership Project) adopts the OFDM (Orthogonal Frequency Division Multiplex) communication method, which is one of the multi-carrier communication methods, as the downlink wireless communication method in preparation for standardization of the next generation communication method.
- OFDM Orthogonal Frequency Division Multiplex
- 1-cell repetition OFDM / (TDMA, FDMA) Orthogonal Frequency Division Multiplex
- This communication method is used in a multi-cell environment composed of a plurality of cells, and all cells communicate using the same frequency.
- the modulation method used for communication is OFDM
- the access method is TDMA or FDM.
- Each cell is composed of multiple sectors controlled by one base station, and each sector uses the same frequency band.
- Inter-sector diversity communication refers to radio data transmission from two sectors at the same time to a mobile station that performs radio communication near the boundary between two adjacent sectors in the same cell.
- this transmission / reception method is referred to as “soft combine”.
- soft combine In the vicinity of the sector boundary, as described above, since the radio signal of each sector power using the same frequency band usually transmits different radio data, the mobile station performing transmission / reception with a single sector. On the other hand, transmission signals from different sectors become interference waves and cause degradation of reception quality.
- soft combine transmission / reception wireless data can be received in a radio wave environment with good reception quality by transmitting the same wireless data from two sectors in the same time and the same frequency band.
- OFDMZ TDM, which is one of the communication systems to which the present invention is applied.
- the OFDM communication method is also used in a 5 GHz band wireless LAN system, in which several tens of thousands of carriers are arranged at the minimum frequency interval where theoretical interference does not occur, and communication is performed simultaneously. is there.
- this carrier is called a subcarrier in the OFDM communication system, and each subcarrier is modulated by a modulation method such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), or 64QAM.
- BPSK Binary Phase Shift Keying
- QPSK Quadrature Phase Shift Keying
- 16QAM Quadrature Amplitude Modulation
- 64QAM Quadrature Amplitude Modulation
- the TDMA communication method is a method in which each mobile station performs wireless communication by dividing time when transmitting and receiving data.
- a frame configuration having a plurality of blocks, which are units of communication time is used.
- the FDMA communication method is a method of accessing by dividing the frequency when transmitting and receiving data.
- wireless communication is performed by dividing the frequency into several bands and dividing the access frequency band. This is a system for distinguishing the mobile stations to be performed.
- FIG. 6 is a diagram illustrating an example of a two-dimensional OFDM / (TDMA, FDMA) frame configuration.
- the vertical axis is frequency and the horizontal axis is time.
- One of the squares is the minimum unit used for data transmission, and is composed of a plurality of OFDM symbols. In this specification, this is referred to as a block, and a plurality of blocks arranged periodically is referred to as a frame.
- FIG. 6 shows an example of the configuration of a frame 900 in downlink communication, which is a frame 900 composed of 9 blocks in the time axis direction and 12 blocks in the frequency axis direction.
- One block 910 is shown by a small square.
- FIG. 7 is a diagram illustrating an example of blocks constituting a frame in downlink communication.
- a small square represents one symbol.
- the length in the time axis direction is 15 symbols long, and the width in the frequency axis direction is 16 subcarriers.
- a common pilot channel which is a symbol to which known data is assigned to a mobile station, is arranged in the frequency axis direction every other subcarrier in the first symbol in the time direction.
- the common pilot channel is transmitted every block, and the symbol arrangement is known to the mobile station.
- a data (Shared Data) channel is arranged as another channel.
- the data channel includes traffic data carrying normal data such as voice data and image data, and higher layer control data.
- control information (Shared Control Signaling) channels that convey mapping information, modulation method information, etc., known information that can be used supplementarily by mobile stations with poor transmission path conditions during dynamic transmission beam direction control, etc. It consists of a dedicated pilot channel (not shown) that is data.
- the dedicated pilot channel is not always allocated because it is dynamically used depending on the propagation path environment of the mobile station receiving the block, but its position is fixed and known to the mobile station.
- the base station allocates each small square (block) in Fig. 6 shown in the description of the frame configuration to a different mobile station and transmits data. It is also possible to assign all blocks to one mobile station for wireless communication.
- sector identification in the wireless communication system will be described. Since this wireless communication system is a one-cell repetitive wireless communication system as described above, the frequency band used in each cell is the same. In addition, each sector in the cell uses the same frequency band, but is set so that sector identification can be performed by sector-specific codes. Since each sector in the same cell is controlled by one base station apparatus, the transmission block is synchronized in time.
- the known channel which is a pit channel
- the transmission signal of the adjacent sector power becomes an interference wave, which causes a problem in estimating the propagation path. . Therefore, by multiplying the pilot channel by a sector-specific code, it is possible to remove adjacent sector force interference waves by despreading even near the sector boundary.
- Sector identification codes (sector-specific codes) multiplied by the pilot channel are orthogonal to each other.
- sector-specific codes sector-specific codes
- C1, C2, C3, C4 that also have four chip forces have four types of orthogonal code sequences.
- orthogonal codes can be used in each sector. These orthogonal codes are multiplied by the same symbol of the common pilot channel in each sector in the same cell.
- the sector individual code is multiplied for each pilot channel subcarrier in the frequency axis direction by multiplying the sector head code by the head force of the frame or block, and is applied to all pilot channel subcarriers in the frequency axis direction. Is multiplied.
- the sector individual code is multiplied for each pilot channel subcarrier in the frequency axis direction by multiplying the sector head code by the head force of the frame or block, and is applied to all pilot channel subcarriers in the frequency axis direction. Is multiplied.
- the orthogonal code it is possible to easily investigate the received power of each sector.
- Soft combine transmission is a technology that combines data transmitted with different transmission powers at the same time by the receiving side device, or a combination of one transmission data. It is a technology that receives and synthesizes with several antennas.
- This specification or Non-Patent Document 1 is directed to the former technology, and is a technology executed in the environment shown in FIG.
- FIG. 8 is a diagram illustrating an example of an environment of one cell in a wireless communication system including a plurality of sectors.
- Fig. 8 shows an example of a cell with 3 sector power, and there are multiple mobile stations in the sector.
- a mobile station in sector # 3 will be omitted.
- the three sectors are controlled by a base station 20 at the center of the cell.
- the base station 20 schedules transmission data for mobile stations in each sector. It is assumed that mobile station 11 to mobile station 14 exist in sector # 1, and mobile station 15 to mobile station 17 exist in sector # 2.
- base station 20 When mobile station 11 moves near the boundary between sector # 1 and sector # 2 and enters an area where the transmission signal of sector # 2 can be received, base station 20 performs soft combine transmission, and sector # 1 and Data is simultaneously transmitted to mobile station 11 using resources of both radio transmission signals in sector # 2.
- FIG. 9 is a diagram showing an example of block allocation for sector # 1 and sector # 2 when soft-conne transmission is adapted for each sector.
- FIG. 9 shows an example of the frame of sector # 1 in the upper row and the frame of sector # 2 in the lower row.
- sector # 1 and sector # 2 are time-synchronized, so the illustrated frame is transmitted simultaneously from each sector.
- the vertical axis in the figure indicates the frequency, and sector # 1 and sector # 2 use the same frequency.
- the block group shown as the soft combine area is the same frequency band at the same time, and is transmitted to the mobile station at the same time.
- FIG. 9 shows a case where soft combine is applied to the mobile station 11.
- Non-Patent Document 1 proposes two types of block configurations for performing soft-conne transmission.
- FIG. 10 is a diagram illustrating an example of a block configuration used in the soft combine transmission method disclosed in Non-Patent Document 1. Each is a method of transmitting the same data channel as a pilot channel unique to a different sector.
- Figure 10 (a) shows a transmission method that estimates the propagation path using the dedicated pilot channel transmitted from both sectors in common.
- Figure 10 (b) shows a transmission method in which the propagation path estimates are obtained after different propagation channel forces are estimated for each channel, and then used for data channel demodulation.
- Non-Patent Document 1 NTT DoCoMo, NEC, SHARP, "Intra -Node B Macro Diversity Using simultaneous Transmission with Soft— combining in Evolved UTRA Downlink", 3GPP TSG RAN WG1 # 42 on LTE Rl -050700 London, UK, August 29 — September 2, 2005 p. 1—5 Disclosure of Invention
- the mobile station when the mobile station receives the soft combine transmission data, the mobile station performs the following processing. First, the mobile station receives the common pilot channel transmitted from the two sectors and despreads each received common pilot channel to estimate the propagation path of each sector. Next, the mobile station performs channel estimation during soft combine by combining the channel estimation values generated by channel estimation for each sector. In this way, after the propagation path of each sector is estimated, a two-step process of combining the propagation path estimation values for each sector is performed. Also, when the propagation path is estimated using an individual pilot channel instead of using a common pilot channel, the mobile station transmits control information based on the common pilot channel transmitted by each sector power. Receive 'analysis.
- the mobile station demodulates the dedicated pilot channel transmitted as the same known data with the same symbol from two sectors by detecting the information that the block included in the control information is transmitted in soft-cone-in.
- the mobile station uses a demodulated individual pilot channel to estimate the propagation path that combines two sectors, the work becomes complicated, and extra resources for the individual pilot are required. In this case as well, it is possible to estimate the propagation path by combining two sectors at the same time, but more efficient processing is desired.
- the present invention has been made in view of such circumstances.
- the transmitting side performs soft combine communication
- the receiving side normally does not determine the start of soft combine communication.
- a transmitter and a communication method for transmitting transmission data that can be received by the same receiving operation as described above are provided. Means for solving the problem
- a transmitter is a transmitter that communicates with a receiver that exists in a cell constituted by a plurality of sector cards that specify a predetermined communication range. Therefore, a scheduler for generating scheduling information for assigning transmission data addressed to the receiver to the same area of each transmission unit to be transmitted from at least two sector cameras, and a sector individual code to be used individually in each sector are generated. And a signal encoded with a sector individual code corresponding to one of the at least two sectors based on the generated scheduling information, and transmission data addressed to the receiver.
- a transmission information generation unit that generates transmission information assigned to the same area of each transmission unit, and a transmission unit that transmits the generated transmission information.
- the transmitting side encodes the known signals (common pilot channel) of a plurality of sectors with a code corresponding to one sector.
- the receiving side receives the soft combine transmission signal with the same operation as usual without any special operation even during the soft combine communication.
- the receiving side performs the same operation as when receiving a single sector force known signal without estimating the propagation path for each sector. Can be estimated. As a result, the effect of soft combine reception can be obtained without performing extra propagation path estimation, and efficiency can be improved.
- the code generation unit generates the sector individual codes so that the sector individual codes used in the sectors have an orthogonal relationship. .
- Interference components can be suppressed.
- the code generation unit generates a sector individual code corresponding to the sector to which transmission data addressed to the receiver was previously assigned.
- the transmitting side encodes a known signal using the code of the sector that was previously used by the receiving side
- the receiving side performs soft combine transmission by the same operation as the previous reception. A signal can be received.
- the transmission information generation unit does not generate information for notifying that the soft combine communication is started.
- the transmitter according to the present invention is characterized in that the transmission information generating unit uses a known signal that is commonly used in each sector as a signal encoded by the sector individual code.
- the receiving side can transmit a known signal encoded by a similar operation to a plurality of sectors. And the received known signal can be analyzed.
- the transmission data is transmitted from one sector or at least two based on reception quality information indicating the reception quality in which the receiver power is also notified. It further comprises a determination unit for determining whether to transmit one sector force.
- the determination unit selects a sector individual code corresponding to one of the at least two sectors based on the reception quality information, and the code
- the generation unit generates the sector individual code selected by the determination unit.
- the sector individual code used in soft combine communication can be selected based on the reception quality information.
- the transmitter according to the present invention further includes a schedule information storage unit that holds the schedule information, and the determination unit is based on the schedule information held in the schedule information storage unit.
- the reception quality information the reception quality information that was previously subjected to soft combine communication is corrected.
- a transmission method is a transmission method of a transmitter that communicates with a receiver that exists in a cell configured by a plurality of sector forces that specify a predetermined communication range, and the receiver Scheduling information for allocating transmission data addressed to at least two sector powers to the same region of each transmission unit to be transmitted, sector-specific codes used individually in each sector are generated, and based on the generated scheduling information, Generate transmission information in which a signal encoded with a sector-specific code corresponding to one of at least two sectors and transmission data addressed to the receiver are allocated to the same area in each of the transmission units. The generated transmission information is transmitted.
- the transmitting side encodes known signals (common pilot channels) of a plurality of sectors with a code corresponding to one sector.
- the receiving side can receive the soft combine transmission signal with the same operation as usual without any special operation even during soft combine communication.
- the receiving side does not determine the start of soft-conno communication, and the transmitting side (transmitter) power is the same as normal transmission data transmitted by soft combine communication. It is possible to receive by receiving operation.
- the physical layer units 102a to 102c indicate that there are three similar components.
- the physical layer unit 102 it refers to any one or more of the plurality of physical layer units 102a to 102c, and when it is described as the physical layer unit 102a or the physical layer unit 102b, Each physical layer part shall be distinguished and pointed to.
- Each embodiment will be described using wireless communication between a base station that controls a communication range of a cell having a plurality of sector forces and a mobile station that receives base station force transmission data.
- the present invention can be applied to a communication apparatus that includes either a transmitter that performs transmission by soft combine communication, a receiver that receives transmission data transmitted by soft combine communication, or both. It is. Therefore, in each embodiment, the base station apparatus includes the transmitter according to the present invention, and the mobile station apparatus includes the receiver according to the present invention.
- soft combine communication means that the transmission side transmits data from different transmission sources at the same time, and the reception side receives data transmitted simultaneously from different transmission sources, It means communication that demodulates the synthesized data.
- the explanation is given assuming the cell environment shown in Fig. 8. However, the number of sectors is not limited to three as shown in Fig. 8, but may be two or more. In each embodiment, a case where data is received from two sectors will be described. However, the present invention is not limited to this, and it is a case where data is received from three or more sectors (from at least two sectors). The present invention can also be applied.
- Soft combine communication is sometimes referred to as soft combine transmission in the description of the transmitting side (base station), soft combine reception in the description of the receiving side (mobile station), and sometimes referred to as soft combine transmission / reception.
- a mobile station When performing radio communication with a base station, a mobile station normally performs radio communication by connecting to any one of antennas corresponding to three sectors in a cell. The mobile station receives the known signal assigned to each block transmitted from the antenna corresponding to each sector, determines that the antenna transmitting the signal with the smallest propagation loss is the closest, and the antenna. Performs wireless communication in the transmitting sector.
- FIGS. 6 to 8 also apply to the embodiments described below.
- the transmission unit from the base station is the frame shown in FIG. 6, and the minimum unit for allocating data addressed to each mobile station is assumed to be the block shown in FIG.
- the mobile station reports the channel quality of each block to the base station in order to have the communication data allocated to the base station.
- Channel quality indicators are generally SINR (Signal to Interference and Noise Ratio), SiR (Signal to Interference Ratio), 3;
- the power is used.
- the control data indicating the channel quality is referred to as “CQI (Channel Quality Indicator) information”. It is also assumed that the mobile station monitors whether there are adjacent sectors apart from the communicating sector and intermittently reports the received power status of the sector that is a candidate for handover destination to the base station. Information on adjacent sectors is called “handover candidate information”.
- the CQI information may be the channel quality measurement value itself, but the group ID is a group of measurement values divided into sections (for example, when the measurement values are divided into multiple levels) Etc. can also be used.
- the handover destination candidate information is notified by the received power from the adjacent sector, which is a numerical value indicating the quality, or the ratio between the received power from the adjacent sector and the received power from the currently communicating sector exceeds a certain threshold. The method of notifying that it has become may be used.
- the mobile station When the mobile station is located near the sector center, it is possible to receive one of the three sectors with good quality. However, when moving to the vicinity of the adjacent sector boundary, the transmission signal of the adjacent sector power becomes an interference wave, and the reception quality deteriorates. At this time, by simultaneously transmitting the same data in the adjacent sector, the transmission signal from the adjacent sector, which is an interference wave, can be used to increase the reception power of the mobile station.
- the transmitting side transmits a known signal encoded using a sector individual code corresponding to the previously used sector of the two sectors.
- FIG. 1 is a block diagram showing an example of the configuration of the base station apparatus (transmitter) according to the first embodiment of the present invention.
- Fig. 1 shows the transmitter part of base station apparatus 100.
- the structure of the MAC (Media Access Control) sublayer (MAC section 101) and physical layer (physical layer section 102) An example is shown.
- the MAC unit 101 includes a determination unit 103, a scheduler 104, and a transmission circuit control unit 105.
- the physical layer unit 102 includes a reception circuit unit 106, a transmission circuit unit 107, an analog circuit unit 108, and an antenna unit 109.
- the MAC unit 101 performs mapping of logical channels and physical channels, scheduling processing, and control of the physical layer unit 102, and outputs data input from an upper layer to the physical layer unit 102. On the other hand, the data input from the physical layer unit 102 is output to the upper layer.
- the physical layer unit 102 Based on the control information notified from the MAC unit 101, the physical layer unit 102 converts the transmission data input from the MAC unit 101 into a radio transmission signal, and converts the radio reception signal received by the antenna unit 109 into transmission data. Convert.
- the determination unit 103 determines, for each mobile station, whether or not to start soft combine communication based on control information (including CQI information and handover candidate information) notified from the mobile station.
- Scheduler 104 determines which allocation block is used to communicate with a plurality of mobile stations that communicate with a base station, and generates scheduling information.
- the scheduler 104 allocates at least two sector forces to the same area of each transmission unit to be transmitted. Therefore, the scheduling information includes block information for soft-conne communication.
- the transmission circuit control unit 105 controls the transmission circuit unit 105 using the subcarrier allocation information of each block based on the scheduling information (allocation information of each block) notified from the scheduler 104.
- the reception circuit unit 106 demodulates the signal input from the analog circuit unit 108 and outputs the demodulated signal to the MAC unit 101.
- the transmission circuit unit 107 modulates the data notified from the MAC unit 101 based on the control of the transmission circuit control unit 105 and outputs the modulated data to the analog circuit unit 108.
- the analog circuit unit 108 converts the transmission signal input from the transmission circuit unit 107 into a radio frequency, and converts the reception signal received from the antenna unit 109 into a frequency band that can be processed by the reception circuit unit 106.
- the antenna unit 109 transmits the transmission signal input from the analog circuit unit 108 to the radio space and receives the signal in the radio space.
- the physical layer unit 102 is configured for each sector, and in the present embodiment, since three sectors are assumed, a diagram including three blocks of the physical layers 102a to 102c is shown.
- FIG. 2 is a block diagram showing an example of the configuration of the transmission circuit unit 106 of the present embodiment.
- the transmission circuit unit 107 includes a signal modulation unit 121, a pilot signal generation unit 122, a code generation unit 123, a multiplier 124, a subcarrier allocation unit 125, and a signal conversion unit 126.
- the signal modulation unit 121 performs signal processing for each user.
- the pilot signal generator 122 And generate a no-lot signal.
- pilot signal generation section 122 generates a common pilot signal that is used in common by a plurality of sectors.
- the code generator 123 generates a code (orthogonal code) to be multiplied with the pilot signal generated by the pilot signal generator 122.
- the code generator 123 generates an individual sector individual code for each sector. Sector individual codes are used in each sector, and it is desirable that the sector individual codes for each sector have an orthogonal relationship. In the present embodiment, when performing soft combine communication, sector-specific codes corresponding to the previously assigned transmission data addressed to the receiver are used.
- Multiplier 124 multiplies the pilot signal generated by pilot signal generation section 122 and the orthogonal code generated by code generation section 123, and outputs the result to subcarrier allocation section 125.
- the subcarrier allocation unit 125 inputs the output data from the signal modulation unit 121 and the encoded pilot signal, the signal input from the signal modulation unit 121 and the encoded pilot signal input from the multiplier 124, In addition, data with zero transmission power is allocated to an appropriate subcarrier based on scheduling information (subcarrier allocation information) notified from the transmission circuit control unit 105.
- the signal conversion unit 126 performs signal processing on each subcarrier allocated by the subcarrier allocation unit 125.
- signal modulation section 121 performs error correction coding section 127 that performs error correction coding of transmission data, and modulation processing such as BPSK, QPSK, and 16QAM to the signal output from error correction coding section 127
- a data modulation unit 128 is included.
- the output of the signal modulation unit 121 is allocated to an appropriate subcarrier in the subcarrier allocation unit 125 that allocates to an appropriate subcarrier based on the subcarrier allocation information notified from the transmission circuit control unit 107 (see FIG. 1). Thereafter, the signal is output to the signal converter 126.
- the signal conversion unit 126 performs an inverse fast Fourier transform (inverse fast Fourier transform) unit 129 on the signal output from the subcarrier allocation unit 125, and a parallel / serial conversion on the output of the IFFT unit 129.
- GI Guard Interval
- adding unit 131 that adds a guard interval to the output of parallel / serial converting unit 130, and a signal in a desired band from the output of GI adding unit 131.
- Filter unit 132 which converts the output of the filter unit into a digital signal and analog signal D / A (Digital / Analog) converter 133 is included.
- the output of the signal conversion unit 126 passes through the analog circuit unit 108 that performs frequency conversion to a radio frequency, is output to the antenna unit 109, and is transmitted as a radio signal.
- a component that includes a signal modulation unit 121, a subcarrier allocation unit 125, and a signal conversion unit 126 is a transmission that generates transmission information to be transmitted from the base station (transmitter) to the mobile station (receiver).
- the information generator 120 is assumed.
- the signal modulation unit 121 has a plurality of identical functional blocks for performing error correction coding and parallel processing of modulation for each mobile station (or the number of blocks in the frequency axis direction) and for each physical layer channel. It is also possible to substitute by performing serial processing. Further, in the case of a base station apparatus having a plurality of antennas in the same sector, the signal conversion unit 126 requires a plurality of blocks in order to perform processing for each antenna. However, in the present embodiment, a configuration diagram for a case where each sector has one antenna is shown.
- FIG. 3 is a flowchart showing an example of the transmission operation of the base station of this embodiment.
- the base station shown in FIG. 1 receives the above-mentioned CQI information and the neighbor sector information indicating how close the adjacent sector is by uplink wireless communication from the mobile station, the received power of the handover sector candidate is received. Judge the difference, and perform soft combine transmission when it is determined that soft combine communication (soft combine transmission / reception) is possible. This will be described in detail with reference to the flowchart of FIG.
- the mobile station transmits uplink wireless communication data to the base station.
- the uplink wireless communication data includes handover candidate information in addition to control information and CQI information notified from the mobile station.
- the handover candidate information includes the identification information of the handover sector candidate and the received power difference between the currently communicating sector and the handover sector candidate, or the received power itself of each of the currently communicating sector and the handover sector candidate. Contains information.
- the antenna unit 109 receives the received uplink radio communication data (step S11), and the reception circuit unit 106 demodulates the uplink radio communication data processed by the analog circuit unit 108. Information necessary to determine soft combine transmission Is acquired (step S12).
- the determination unit 103 analyzes the demodulated information power as well as CQI information and node / overover candidate information (information on the received power difference between the currently communicating sector and the handover candidate sector) and determines the positional relationship between the mobile station and each sector. (Step S13).
- the determination unit 103 makes a determination based on the received power difference of the downlink radio signal in each sector measured by the mobile station. If the received power difference between the communicating sector and other sectors is small, the determining unit 103 The station determines that it is located near the boundary between the two sectors compared, and if the received power difference is large, the mobile station determines that it is located near the sector center.
- the reception power of downlink wireless communication from sector # 1 and sector # 2 increases, and the reception power of the two sectors is high.
- the force difference becomes smaller.
- mobile station 13 has a higher downlink wireless communication reception power from sector # 1 and a lower downlink wireless communication reception power of other sectors.
- the received power difference becomes larger.
- the determination unit 103 determines that the mobile station is in a state where soft-conne communication is possible, and when the received power difference increases to 6 dB, the soft combine communication is not performed. It is determined that the mobile station is in an impossible state.
- Each mobile station can make such a determination, and when the sector that is a candidate for handover falls within the received power range, information that notifies the sector that is a candidate for handover is sent to the base station. You may make it transmit.
- the determination unit 103 determines that soft combine transmission is possible (Yes in step S13), and the scheduler 104 Performs soft combine scheduling (step S14).
- soft combine transmission scheduling mobile stations that are determined to be able to transmit soft combine transmission signals are assigned to the same area in each transmission unit (frame) transmitted from at least two sector cars.
- the scheduler 104 determines each sector (communication in progress) determined by the determination unit 103 to be near the sector boundary in the mobile station position determination. The same data is assigned to the same block in the time axis direction and the frequency axis direction.
- MAC section 101 determines a modulation scheme corresponding to a plurality of sectors performing soft combine communication (step S15). Also, transmission circuit system The control unit 105 decides to use a sector-specific code corresponding to the sector in which the mobile station assigned to the block has been communicating before the block that performs soft combine communication, and performs normal communication. For the blocks to be implemented, it is decided to use sector-specific codes for each sector.
- step S13 If it is determined that the mobile station power is 1 near the sector boundary (soft combine communication is not possible), that is, if it is determined that the mobile station is located near the sector center (step S13). No), the scheduler 104 performs normal scheduling within a single sector (step S18). The MAC unit 101 determines a modulation scheme corresponding to an individual sector that performs normal communication (step S 19).
- Transmission circuit section 107 generates transmission information (step S16).
- the generated transmission information is processed by analog circuit section 108, and antenna section 109 performs downlink radio transmission (step S17). ).
- the transmission circuit unit 107 generates transmission information under the control of the transmission circuit control unit 105.
- the transmission circuit control unit 105 notifies the modulation scheme to be modulated by the signal modulation unit 121 depending on whether the power is soft combine communication or normal communication, and instructs the code to be generated by the code generation unit 123.
- the subcarrier allocation information (scheduling information) of the carrier allocation unit 125 is notified.
- the code generation unit 123 for the mobile station that performs soft combine communication under the control of the control circuit control unit 105, out of the two sectors, the sector of the sector that previously performed communication.
- a sector individual code corresponding to the sector that performs communication is generated.
- normal scheduling is performed for mobile stations 12, 13, and 14 in sector # 1, and soft control is performed for mobile station 11 located near the sector boundary. In transmission is possible.
- FIG. 4 shows an example of blocks to which the base station of the first embodiment assigns data for soft combine communication.
- the mobile station that was communicating with sector # 1 moves near the boundary between sector # 2 and performs soft-conne transmission / reception near the sector boundary between sector # 1 and sector # 2. Shows when to do.
- the upper part of Fig. 4 shows the block transmitted by sector # 1 (sector # 1 block), and the lower part of Fig. 4 shows the block transmitted by sector # 2 (sector # 2 block).
- Both sector # 1 block and sector # 2 block The same data is transmitted in the same block in the frame (transmission unit). For this reason, the mobile station receives the same signal from both sectors almost simultaneously. It is desirable to select a modulation scheme that takes into account the combination of the propagation path environments of the downlink radio transmission with two sector powers when performing soft combine transmission.
- the common pilot channel is arranged every other subcarrier in the first symbol, and the control information channel is arranged between the pilot channels and in the second symbol in the block configuration. Subsequently, the data channel is arranged after the third symbol.
- the arrangement configuration is not particularly limited to the arrangement shown in the figure.
- the common pilot channel of each sector is multiplied by an orthogonal code that is a sector-specific code.
- an orthogonal code that is a sector-specific code.
- two sector forces are transmitted. For example, the orthogonal code of the sector in which the mobile station previously communicated is used as the orthogonal code multiplied to each symbol of the common pilot channel.
- the sector individual codes are a first orthogonal code, a second orthogonal code, and a third orthogonal code, respectively.
- the first orthogonal code is used in the case of a mobile station that has moved near the boundary with sector # 2 in the vicinity of the center of sector # 1, since the sector that the mobile station communicated last time is sector # 1, the first orthogonal code is used. Will do. Therefore, the first orthogonal code, which is an orthogonal code of sector # 1, is used in two sectors (sector # 1, sector # 2) when transmitting and receiving soft-conne.
- the mobile station uses the same orthogonal code as the sector that was performing radio communication at the time of normal transmission / reception, so that the mobile station propagates the block transmitted by the soft combine transmission.
- Route estimation can be performed in the same way as normal reception processing. That is, the mobile station does not need to obtain the pilot channel transmitted from each sector controller by despreading separately when estimating the propagation path of the block transmitted by the soft combine. There is no need to send control information to the mobile station.
- this transmission / reception method two sectors are multiplied by the same orthogonal code. Since the common pilot channel is transmitted, the mobile station receives the combined pilot channel of the transmission signals from the two sectors in the normal reception operation, and the combined propagation path of the two sectors is received. It can be easily estimated.
- the frame transmitted from sector # 1 and the frame transmitted from sector # 2 are both encoded with the orthogonal code (sector-specific code) of sector # 1, the sector # Handled as sent from 1.
- the mobile station performs a special operation on the mobile station side because the data transmitted by multiplying the same orthogonal code from two sectors is the same as processing the delayed wave of the data transmitted by one sector force. There is no need to do.
- the data to be multiplied by the same orthogonal code can be a part (single block) in the frame.
- a block (hereinafter referred to as "measurement block") that is not transmitted with soft combine transmission is set in advance in the frame.
- the mobile station uses the measurement block when measuring the SINR of the neighboring base station.
- a measurement block if there is a promise not to always send soft-cone for the reason such as sending control information for all mobile stations in the first block, be sure to measure the soft block by measuring the measurement block part in the frame. It is possible to perform data measurement after being sent in.
- the mobile station determines which of the two sectors performing soft combine is closer by measuring the SINR of the peripheral sector including the two sectors performing soft combine transmission / reception. It is possible. In this embodiment, the difference in SINR between sector # 1 and sector # 2, which is the communication target sector, is higher in sector # 1 at the start of soft combine transmission / reception. However, as it moves towards the center of sector # 2! /, The SINR of sector # 2 reverses the SINR of sector # 1 and the SINR of sector # 2 increases. In such an environment, the base station receives control information from the mobile station, and the determination unit 103 changes the orthogonal code used in the soft combine transmission / reception to the code of sector # 2.
- the determination unit 103 selects a sector individual code corresponding to any one of at least two sectors based on SINR (reception quality information), and selects the selected sector individual code (or sector number).
- SINR reception quality information
- the code generation unit 123 is notified via the transmission circuit control unit 105, and the mobile station is notified of the change of the sector individual code and the code to be changed through downlink radio communication using the sector individual code before the change.
- the code generation unit 123 generates the code selected by the determination unit 103 under the control of the transmission circuit control unit 105.
- the base station when the base station confirms that the mobile station in soft combine communication has also separated the power near the sector boundary based on the control information of the mobile station power, for example, the difference in received power between sector # 1 and sector # 2 When the value exceeds a certain value, the base station notifies the mobile station of control information related to the end of the soft combine transmission / reception, and when the mobile station confirms that the mobile station has received it, it uses only the resources of the destination sector. Start communication.
- the base station encodes the known signals of a plurality of sectors with the same code, so that the mobile station receives the soft-contained transmission signal without any special operation. It is possible to perform soft combine communication. As a result, the mobile station can move between sectors while maintaining a good communication state.
- FIG. 5 is a block diagram illustrating an example of the configuration of the receiver.
- the configuration of the receiver 200 shown in FIG. 5 is an example of a general configuration of an OFDM receiver.
- the soft combine transmission / reception without adding a special block for receiving the soft combine transmission data of the present invention is performed. Can be done.
- FIG. 5 shows a part of the receiver 200 and shows an example of the configuration of the physical layer.
- the receiver 200 is received by the antenna unit 201 that transmits and receives radio signals.
- AZD Analog
- AZD conversion unit 203 inputs the converted signal
- the input signal power also removes the guard interval GI removal unit 204
- GI removal unit 204 inputs the signal from which GI is removed
- Serial-to-parallel converter 205 that converts the converted signal from serial data to parallel data
- FFT Fast Fourier Transform
- the mobile station having the receiver 200 shown in Fig. 5 intermittently reports CQI information to the base station as described above.
- the mobile station is multiplied by the same orthogonal code. Since the common pilot channel is used, the signals from each sector cannot be separated. Therefore, one of the two adjacent sectors has a good propagation path environment, and the other is not detected. In this embodiment, the propagation path environment of sector # 1 is good, and the propagation path environment of sector # 2 cannot be measured.
- Correction methods include (1) conversion of received power in half, (2) complementation with previously reported data, or (3) another measurement such as adjacent blocks. For example, it may be supplemented by the measurement result of the block in the frequency band.
- the scheduler 104 of the base station generates a schedule generated at the time of scheduling.
- Storage information is stored in a predetermined storage area, and information on a block in which soft combine communication is performed is acquired based on the stored previous scheduling information.
- the MAC unit 101 (or the scheduler 104) may be provided with a storage area (schedule information storage unit) for temporarily storing schedule information.
- the determination unit 103 detects a block that has started soft combine communication based on the scheduling information when determining whether or not the power to start soft con- tain communication is based on the control information notified from the mobile station.
- software combine communication will be started and CQI information related to blocks will be corrected.
- the transmitting side encodes the known signals (common pilot channels) of a plurality of sectors with a code corresponding to one sector. Therefore, the receiving side (receiver, mobile device) can receive the soft combine transmission signal with the same operation as usual without performing any special operation during the soft combine communication. Also, the interference component can be removed by making the codes used for the known signal codes between the sectors orthogonal. Furthermore, since the transmitting side encodes a known signal using the code of the sector used last time by the receiving side, the receiving side can receive the soft combine transmission signal by the same operation as the previous reception. it can.
- the reception side by encoding a known signal to be transmitted using a plurality of sectors on the transmission side with a predetermined code, the reception side In addition, it is possible to receive and use signals transmitted by soft combine communication by the same operation as usual without detecting the start of soft connect communication. On the receiving side, it is not necessary to estimate the propagation path for each sector with respect to the known signal transmitted by soft combine communication.
- the propagation path for the known signal can be estimated by the same operation as when transmitted in one sector. it can. As a result, the effect of soft-contain reception can be obtained without performing extra propagation path estimation, and efficiency can be improved.
- the same data is simultaneously transmitted in adjacent sectors. Therefore, the transmission signal transmitted from the adjacent sector becomes interference power, but the transmission side uses multiple sectors. Data is transmitted using the same code, and the receiving side can receive data transmitted from multiple sectors as a transmission signal encoded with the same code.
- the transmission signal from the receiver can be used to increase the reception power of the receiver (mobile station). For this reason, reception quality can be improved.
- the common pilot signal is encoded with a sector-specific code to notify the start of soft combine communication.
- the reception side is not limited to the common pilot signal.
- the other known signal may be encoded.
- the present invention can be applied to a case where a predetermined known signal decided in advance on the transmission side and the reception side is encoded with a combine notification code.
- FIG. 1 is a block diagram showing an example of the configuration of a base station apparatus (transmitter) according to the first embodiment of the present invention.
- FIG. 2 is a block diagram showing an example of a configuration of a transmission circuit unit according to the first embodiment.
- FIG. 3 is a flowchart showing an example of a transmission operation of the base station according to the first embodiment.
- FIG. 4 is a diagram illustrating an example of a block in which the base station of the first embodiment assigns data for soft combine communication.
- FIG. 5 is a block diagram showing an example of a configuration of a receiver.
- FIG. 6 is a diagram showing an example of a two-dimensional frame structure of OFDMZ (TDMA, FDMA).
- FIG. 7 is a diagram illustrating an example of blocks constituting a frame in downlink communication.
- FIG. 8 is a diagram showing an example of an environment of one cell in a radio communication system including a plurality of cells.
- FIG. 9 A diagram showing an example of block allocation for sector # 1 and sector # 2 when soft-connoin transmission is adapted.
- FIG. 10 is a diagram showing an example of a block configuration used in the soft combine transmission method shown in Non-Patent Document 1.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
【課題】ソフトコンバイン通信を行なう場合に、受信側がソフトコンバイン通信の開始を判断することなく通常と同様の受信動作で受信することができる送信データを送信する送信機を提供する。 【解決手段】複数のセクタから構成されるセルに存在する受信機と通信を行なう送信機であって、受信機宛の送信データを、少なくとも二つのセクタから送信する送信単位それぞれの同じ領域へ割り当てるスケジューリング情報を生成するスケジューラと、各セクタで個別に用いるセクタ個別符号を生成する符号生成部123と、スケジューリング情報に基づいて、少なくとも二つのセクタのいずれか一つのセクタに対応するセクタ個別符号で符号化した信号と受信機宛の送信データとを、送信単位それぞれの同じ領域へ割り当てた送信情報を生成する送信情報生成部120と、生成した送信情報を送信する送信部と、を備える。
Description
明 細 書
送信機および送信方法
技術分野
[0001] 本発明は、複数のセクタ力も構成されるセルを用いる通信システムにおいて、複数 のセクタを用いて通信を行なうソフトコンバイン技術に関する。
背景技術
[0002] 従来から、移動体通信システムでは、セル内における 1つの基地局に対し、複数の 移動局が同時に接続して無線通信を行なう多元接続方式で通信が行なわれている 。近年、このような多元接続方式においてデータ通信のさらなる高速化、高容量化が 求められており、この分野の研究が盛んに行なわれてきて!/、る。
[0003] 高容量化を実現する 1つの方法として、ダイバーシチ技術を利用した送受信方法が ある。ダイバーシチとは、無線信号のレベル差が大きくなることによって通信品質が悪 くなることを防ぐため、伝搬路を複数設定するようにするための技術である。すなわち 、送信アンテナもしくは受信アンテナを複数使用することによって無線通信品質を向 上させるための技術である。ダイバーシチの方法としては、受信パケット毎に良好な アンテナを選択する方法と、受信信号のレベルに応じて各アンテナ力 の受信デー タを合成する方法がある。
[0004] 現在、 3GPP (3rd Generation Partnership Project)では、次世代通信方式 の標準化策定に向け下り方向無線通信方式にマルチキャリア通信方式の一つであ る OFDM (Orthogonal Frequency Division Multiplex)通信方式を採用した 1セル繰り返し OFDM/ (TDMA、 FDMA) (Orthogonal Frequency Division
Multiplex / Time Division Multiple Access、 Frequency Division Multiple Access)通信方式の検討が行なわれている。この通信方式は、複数のセ ルで構成されるマルチセル環境にぉ 、て、すべてのセルで同じ周波数を用いて通信 を行ない、通信する際の変調方式が OFDMであり、アクセス方式が TDMA、 FDM Aを使用しているという技術である。また、各セルは 1つの基地局が制御する複数の セクタで構成され、各セクタは同一の周波数帯を使用する。
[0005] 上記の OFDM通信方式の検討では、非特許文献 1に示されたような同一セル内に おけるセクタ間のダイバーシチ通信方法に関する研究が行なわれて 、る。セクタ間ダ ィバーシチ通信とは、同一セル内にある 2つの隣接するセクタの境界付近において 無線通信を行なう移動局に対して、 2つのセクタから同時に無線データ送信を行ない 、移動局で合成して受信する技術である。以降、この送受信方法を「ソフトコンバイン 」と呼称する。セクタ境界付近においては、前述したように同一周波数帯域を使用し ている各セクタ力 の無線信号は、通常、異なった無線データが送信されているため 、単一セクタと送受信を行なっている移動局に対して異なるセクタからの送信信号は 干渉波となり、受信品質の劣化を引き起こす原因となる。ソフトコンバイン送受信では 、同一時間、同一周波数帯域で 2つのセクタから同一の無線データを送信することに より、受信品質の良好な電波環境で無線データの受信が可能になる。
[0006] し力しながら、上記の検討では、具体的システムの運用方法や制御情報の送受信 方法などは、未だ提案されていないため未定な部分が多い。以下、基本無線通信方 式の詳細を示す。まず、本発明を適用する通信方式の一つである OFDMZ(TDM
A、 FDMA)の要素技術である OFDM、 TDMA、 FDMAについて簡単に説明する
[0007] OFDM通信方式は、 5GHz帯の無線 LANシステムでも採用されている方式であり 、数十力 数千のキャリアを理論上干渉の起こらない最小となる周波数間隔に並べ、 同時に通信する方式である。通常、 OFDM通信方式においてこのキャリアをサブキ ャリアと呼び、各サブキャリアを BPSK (Binary Phase Shift Keying)、 QPSK ( Quadrature Phase Shift Keying)、 16QAM (Quadrature Amplitude M odulation)、 64QAM等の変調方式で変調して通信を行なう。
[0008] 次に、 TDMA通信方式は、データを送受信する際、時間を分割して各移動局が無 線通信を行なう方式である。通常、 TDMAをアクセス方式に用いた通信システムに おいては、通信する時間の単位であるブロックが複数あるフレーム構成を使用する。
[0009] 次に、 FDMA通信方式は、データを送受信する際、周波数を分割してアクセスす る方式である。通常、 FDMAをアクセス方式に用いた通信システムおいては、周波 数をいくつかの帯域に分け、アクセスする周波数帯域を分けることにより、無線通信を
行なう移動局を区別する方式である。
[0010] 次に、 OFDMZ(TDMA、 FDMA)について上述の緒言をもとに説明する。図 6 は、 OFDM/ (TDMA, FDMA) 2次元のフレーム構成の一例を示す図である。図 6において、縦軸が周波数、横軸が時間である。四角形の 1つがデータ伝送に用いる 最小単位であり、複数の OFDMシンボルから構成され、本明細書においては、これ をブロックと称し、複数のブロックを周期的に並べたものをフレームと呼んでいる。図 6 では下り方向通信におけるフレーム 900の一構成例を示したものであり、時間軸方向 に 9つのブロックと周波数軸方向に 12のブロックから構成されるフレーム 900である。 小さい四角形で示したものが 1つのブロック 910である。
[0011] 図 7は、下り方向通信におけるフレームを構成するブロックの一例を示す図である。
小さい四角形で示したものが 1つのシンボルを示しており、図 7に示した例では、時間 軸方向の長さが 15シンボル長であり、周波数軸方向の幅が 16サブキャリア分になつ ている。ブロック構成は、移動局に既知のデータが割り当てられたシンボルである共 通パイロット(Common Pilot)チャネルが時間方向の先頭のシンボルに 1サブキヤ リアおきに周波数軸方向に配置されている。共通ノ ィロットチャネルは毎ブロック送信 され、シンボル配置は移動局に既知である。また、その他のチャネルとしてデータ(S hared Data)チャネルが配置されている。データチャネルは例えば音声データ、画 像データなどの通常データを運ぶトラフィックデータや上位層の制御データが含まれ る。また、マッピング情報や変調方式情報などを伝達する制御情報 (Shared Contr ol Signaling)チャネル、動的な送信ビーム方向制御時や伝搬路環境の悪い移動 局などが補助的に使用することができる既知情報データである個別パイロット (Dedic ated Pilot)チャネル(図示せず)などから構成される。個別パイロットチャネルは当 該ブロックを受信する移動局の伝搬路環境により動的に使用されるため常に配置さ れるチャネルではないが、その配置位置に関しては固定で移動局に既知である。
[0012] 基地局から移動局に無線データ通信を行なう場合、基地局は前記フレーム構成の 説明で示した図 6の小さい四角形 1つひとつ(ブロック)を別々の移動局に割り当てて データを送信することも可能であるし、すべてのブロックを 1つの移動局に割り当てて 無線通信をすることも可能である。
[0013] 次に、本無線通信システムにおけるセクタの識別について説明する。本無線通信 システムは、前述したように、 1セル繰り返し無線通信システムであるため、各セルに おいて使用している周波数帯域は同一である。また、セル内の各セクタも同一の周波 数帯を使用しているが、セクタ個別符号によりセクタ識別を行なえるよう設定されてい る。同一セル内の各セクタは 1つの基地局装置によって制御されているため、送信ブ ロックが時間的に同期したシステムなっている。すなわち、既知のデータであるパイ口 ットチャネルは、各セクタで同一シンボルに配置され送信されるため、特にセクタ境界 付近では伝搬路推定を行なう上で隣接セクタ力 の送信信号が干渉波となり問題と なる。そこで、パイロットチャネルにセクタ固有の符号を乗算しておくことで、セクタ境 界付近でも逆拡散を施すことにより、隣接セクタ力 の干渉波を除去することができる
[0014] パイロットチャネルに乗算されているセクタ識別用の符号 (セクタ個別符号)は、互 いに直交関係になっている。例えば、一般的なセルラー方式に使用されている 3セク タのセル配置において、 4つのチップ力もなるセクタ個別符号 (セクタ固有符号)(C1 , C2, C3, C4)では、 4種類の直交符号系列を使用することができる。例えば、セク タ # 1で(1, 1, 1, 1)、セクタ # 2で(1, - 1, 1, —1)、セクタ # 3で(1, 1, —1, 1 )を使用することによって、それぞれのセクタで直交する符号を使用することができる 。これらの直交符号は、同一セル内の各セクタで共通パイロットチャネルの同一シン ボルに乗算される。例えば、符号の乗算方法は、セクタ個別符号をフレームの先頭も しくはブロックの先頭力 周波数軸方向にパイロットチャネルのサブキャリア毎に乗算 され、周波数軸方向にすべてのノ ィロットチャネルのサブキャリアに乗算される。これ により、セクタ境界付近においては、パイロットチャネルを 4つのサブキャリア毎に逆拡 散することによって、隣接セクタ力 の信号の干渉の影響を受けずに伝搬路推定を 行なうことができ、また、所望の直交符号を利用することによって各セクタ力もの受信 電力を容易に調査することができる。
[0015] 次に、非特許文献 1に記載の一般的なソフトコンノ イン通信の基本的技術に関して 図面を参照して説明する。ソフトコンバイン送信とは、同時に異なる送信元力も送信さ れたデータを受信した受信側装置で合成する技術、もしくは 1つの送信データを複
数のアンテナで受信し、それを合成する技術のことである。本明細書または非特許文 献 1では、前者の技術を対象としたものであって、図 8のような環境で実行される技術 である。
[0016] 図 8は、複数のセクタによって構成される無線通信システムの一つのセルの環境の 一例を示す図である。図 8では、セルは 3セクタ力も成るセルを一例とし、セクタに複 数の移動局が存在している例を示している。ここでは、セクタ # 1とセクタ # 2の境界 付近での通信に関する動作例を示すため、セクタ # 3内の移動局は省略して説明す る。 3つのセクタはセルの中心にある基地局 20によって制御されている。基地局 20は 、各セクタ内の移動局に対する送信データのスケジューリングを行なっている。セクタ # 1には移動局 11から移動局 14が存在し、セクタ # 2には移動局 15から移動局 17 が存在して 、るものとする。移動局 11がセクタ # 1とセクタ # 2の境界付近に移動し、 セクタ # 2の送信信号を受信可能な領域に入ったとき、基地局 20は、ソフトコンバイ ン送信を行ない、セクタ # 1とセクタ # 2の両方の無線送信信号のリソースを使用して 移動局 11にデータを同時に送信する。
[0017] 具体的なブロック割り当て例を図 9に示す。図 9は、セクタ # 1とセクタ # 2のソフトコ ンノイン送信適応時のブロック割当て例をそれぞれのセクタに関して示した図である 。図 9では、上段にセクタ # 1のフレーム、下段にセクタ # 2のフレームの例を示して いる。本システムにおいて、セクタ # 1とセクタ # 2は時間同期しているので、図示した フレームは、それぞれのセクタから同時に送信されるものとする。また、図の縦軸は周 波数を示しており、セクタ # 1とセクタ # 2とで同一の周波数を使用している。図中、ソ フトコンバイン領域として示したブロック群は、同一時間で同一周波数帯であり、同時 に移動局に送信される。図 9では、移動局 11へソフトコンバインを適用した場合を示 している。
[0018] 非特許文献 1では、ソフトコンノ イン送信を行なうときのブロック構成が 2種提案され ている。図 10は、非特許文献 1に示されているソフトコンバイン送信方法で使用する ブロック構成の一例を示す図である。それぞれ、異なるセクタ固有のパイロットチヤネ ルと同一のデータチャネルを送信する方式である。図 10 (a)は、両セクタから共通に 送信される個別パイロットチャネルを使用して伝搬路推定を行なう送信方法であり、
図 10 (b)は、異なるノ ィロットチャネル力もそれぞれの伝搬路推定を行った後、合成 した伝搬路推定値を求め、データチャネルの復調に利用する送信方法である。 非特許文献 1 :NTT DoCoMo, NEC, SHARP, "Intra -Node B Macro D iversity Using simultaneous Transmission with Soft— combining in Evolved UTRA Downlink", 3GPP TSG RAN WG1 # 42 on LTE Rl -050700 London, UK, August 29— September 2, 2005 p. 1—5 発明の開示
発明が解決しょうとする課題
[0019] し力しながら、上述した 2種の方式では、ソフトコンバイン送信データを移動局が受 信する場合に、移動局では次のような処理を実施する。まず、移動局は、 2つのセク タカも送信された共通パイロットチャネルを受信し、受信した各共通パイロットチヤネ ルを逆拡散して各セクタの伝搬路推定を行なう。次に、移動局は、伝搬路推定により 生成したセクタ毎の伝搬路推定値を合成することによりソフトコンバイン時の伝搬路 推定を行なう。このように、各セクタの伝搬路を推定した後、セクタ毎の伝搬路推定値 を合成するという 2段階の処理を実施することになる。また、共通パイロットチャネルを 用いるのではなく個別パイロットチャネルを使用して伝搬路を推定する場合には、移 動局は、それぞれのセクタ力 送信された共通パイロットチャネルに基づ 、て制御情 報を受信'解析する。その後、移動局は、制御情報に含まれる当該ブロックがソフトコ ンノイン送信されているという情報を検出することにより、 2つのセクタから同一シンポ ルで同一の既知データとして送信された個別パイロットチャネルを復調し、復調した 個別パイロットチャネルを用いて 2つのセクタの合成した伝搬路推定を行なうなど、作 業が煩雑になり、個別パイロット分のリソースが余計に必要になる。この場合も同時に 2つのセクタの合成した伝搬路推定を行なうことが可能であるが、より効率的な処理が 望まれる。
[0020] 本発明は、このような事情に鑑みてなされたものであり、送信側がソフトコンバイン通 信を行なう場合に、受信側 (受信機)がソフトコンバイン通信の開始を判断することな く通常と同様の受信動作で受信することができる送信データを送信する送信機およ び通信方法を提供することを特徴とする。
課題を解決するための手段
[0021] (1)上記目的を達成するため、本発明に係る送信機は、所定の通信範囲を特定す る複数のセクタカゝら構成されるセルに存在する受信機と通信を行なう送信機であって 、前記受信機宛の送信データを、少なくとも二つのセクタカゝら送信する送信単位それ ぞれの同じ領域へ割り当てるスケジューリング情報を生成するスケジューラと、各セク タで個別に用いるセクタ個別符号を生成する符号生成部と、前記生成したスケジュ 一リング情報に基づいて、前記少なくとも二つのセクタのいずれか一つのセクタに対 応するセクタ個別符号で符号化した信号と前記受信機宛の送信データとを、前記送 信単位それぞれの同じ領域へ割り当てた送信情報を生成する送信情報生成部と、 前記生成した送信情報を送信する送信部と、を備えることを特徴とする。
[0022] このように、本発明に係る送信機によれば、送信側 (送信機、基地局)が複数のセク タの既知信号 (共通パイロットチャネル)を一つのセクタに対応する符号で符号化す ることにより、受信側 (受信機、移動機)は、ソフトコンバイン通信時においても特別な 動作をすることなぐ通常と同様の動作でソフトコンバイン送信信号を受信することが できる。符号化された既知信号を用いて伝搬路を推定する場合には、受信側は、セ クタ毎に伝搬路を推定することなぐ 1つのセクタ力 既知信号を受信した場合と同様 の動作で伝搬路を推定することが可能となる。これにより、余剰な伝搬路推定を行な わずにソフトコンバイン受信の効果が得られるとともに、効率ィ匕を図ることができる。
[0023] (2)また、本発明に係る送信機において、前記符号生成部は、前記各セクタで用い るセクタ個別符号それぞれが直交関係になるようにセクタ個別符号を生成することを 特徴とする。
[0024] このように、セクタ間で既知信号の符号ィ匕に用いる符号を直交関係にすることにより
、干渉成分を抑制することができる。
[0025] (3)さらに、本発明に係る送信機において、前記符号生成部は、前記受信機宛の 送信データが前回割り当られて 、たセクタに対応するセクタ個別符号を生成すること を特徴とする。
[0026] このように、送信側が、受信側が前回使用したセクタの符号を用いて既知信号を符 号ィ匕することより、受信側は前回の受信時と同様の動作によってソフトコンバイン送信
信号を受信することができる。
[0027] (4)本発明に係る送信機において、前記送信情報生成部は、ソフトコンバイン通信 を開始することを通知する情報を生成しないことを特徴とする。
[0028] この構成により、事前に通知する制御情報を削減することができる。
[0029] (5)本発明に係る送信機において、前記送信情報生成部は、前記セクタ個別符号 で符号ィ匕する信号として、各セクタで共通に用いる既知信号を使用することを特徴と する。
[0030] このように、送信側で既知信号を複数のセクタで同じ符号を用いて符号ィ匕すること により、受信側は、通常と同様の動作により符号化された既知信号を複数のセクタか ら受信し、受信した既知信号を解析することができる。
[0031] (6)本発明に係る送信機において、前記受信機力も通知された受信品質を示す受 信品質情報に基づいて、前記送信データを、一つのセクタから送信するか、少なくと も二つのセクタ力も送信するかを判定する判定部を、更に備えることを特徴とする。
[0032] このように、受信品質情報に基づいて、ソフトコンバイン通信の開始を判断すること ができる。
[0033] (7)本発明に係る送信機において、前記判定部は、前記受信品質情報に基づいて 、前記少なくとも二つのセクタのいずれか一つのセクタに対応するセクタ個別符号を 選択し、前記符号生成部は、前記判定部が選択したセクタ個別符号を生成すること を特徴とする。
[0034] このように、受信品質情報に基づいて、ソフトコンバイン通信で使用するセクタ個別 符号を選択することができる。これにより、移動機の受信品質情報に対応してセクタ 個別符号を選択することが可能になり、受信品質を向上させることができる。
[0035] (8)本発明に係る送信機にお!ヽて、前記スケジュール情報を保持するスケジュール 情報記憶部を、更に備え、前記判定部は、前記スケジュール情報記憶部に保持する スケジュール情報に基づいて、前記受信品質情報のうち、前回ソフトコンバイン通信 を行った受信品質情報を補正することを特徴とする。
[0036] このように、ソフトコンバイン通信を行なっている受信機力も通知された受信品質情 報を正確に解析することができる。
[0037] (9)本発明に係る送信方法は、所定の通信範囲を特定する複数のセクタ力 構成 されるセルに存在する受信機と通信を行なう送信機の送信方法であって、前記受信 機宛の送信データを、少なくとも二つのセクタ力 送信する送信単位それぞれの同じ 領域へ割り当てるスケジューリング情報を生成し、各セクタで個別に用いるセクタ個別 符号を生成し、前記生成したスケジューリング情報に基づいて、前記少なくとも二つ のセクタのいずれか一つのセクタに対応するセクタ個別符号で符号ィ匕した信号と前 記受信機宛の送信データとを、前記送信単位それぞれの同じ領域へ割り当てた送 信情報を生成し、前記生成した送信情報を送信することを特徴とする。
[0038] このように、本発明に係る送信方法によれば、送信側 (送信機、基地局)が複数の セクタの既知信号 (共通パイロットチャネル)を一つのセクタに対応する符号で符号化 することにより、受信側 (受信機、移動機)は、ソフトコンバイン通信時においても特別 な動作をすることなぐ通常と同様の動作でソフトコンバイン送信信号を受信すること ができる。
発明の効果
[0039] 本発明によれば、受信側 (受信機)は、ソフトコンノイン通信の開始を判断すること なぐ送信側 (送信機)力もソフトコンバイン通信で送信された送信データを通常と同 様の受信動作で受信することが可能となる。
発明を実施するための最良の形態
[0040] 次に、本発明の実施の形態について、図面を参照しながら説明する。各図面にお いて同一の構成または機能を有する構成要素および相当部分には、同一の符号を 付し、その説明は省略する。また、本明細書では、同じ構成要素が複数存在し、それ ぞれを区別する場合に、符号に接尾辞を付加して、複数の構成要素それぞれを区 別するものとする。例えば、図 1では、物理層部 102a〜102cは、同様の構成要素が 三つ存在することを示している。物理層部 102と記した場合は、複数の物理層部 102 a〜102cのいずれか一つまたは複数を指し、物理層部 102a、あるいは、物理層部 1 02bと記した場合には、複数の物理層部それぞれを区別して指して 、るものとする。
[0041] 各実施形態では、複数のセクタ力 構成されるセルの通信範囲を制御する基地局 と、基地局力 送信データを受信する移動局との間の無線通信を用いて説明するが
、本発明の適用はこれに限られるわけではない。ソフトコンバイン通信による送信を実 施する送信機と、ソフトコンバイン通信により送信された送信データを受信する受信 機とのいずれか、あるいは、その両方を備える通信装置へ本発明を適用することが可 能である。従って、各実施形態では、基地局装置は、本発明に係る送信機を備え、 移動局装置は、本発明に係る受信機を備える。
[0042] 本明細書では、ソフトコンバイン通信 (ソフトコンバイン無線通信)とは、送信側は同 時に異なる送信元からデータを送信し、受信側は異なる送信元から同時に送信され たデータを受信し、合成されたデータを復調するという通信を意味する。また、図 8〖こ 示したセルの環境を想定して説明する。し力しながら、セクタ数は、図 8に示す三つに 限られることはなぐ二以上であればよい。各実施形態では、二つのセクタからデータ を受信する場合を説明するが、これに限られるわけではなぐ三つ以上の複数のセク タから (少なくとも二つのセクタから)データを受信する場合であっても本発明を適用 することができる。例えば、基地局の直近に移動局が存在する場合に、三つのセクタ 力もデータを受信することができる場合があり、それぞれのセクタのアンテナ力も受信 したデータを合成することができる。ソフトコンバイン通信は、送信側 (基地局)の説明 ではソフトコンバイン送信、受信側 (移動局)の説明ではソフトコンバイン受信というこ ともあり、ソフトコンバイン送受信ということもある。
[0043] 移動局は、基地局と無線通信を行なう場合、通常、セルの中にある三つのセクタに 対応するいずれかのアンテナと接続し無線通信を行なう。移動局は、各セクタに対応 するアンテナから送信されたそれぞれのブロックに割り当てられた既知の信号を受信 し、最も伝搬損の小さい信号を送信しているアンテナを最も近いと判断し、そのアン テナが送信を行なっているセクタで無線通信を行なう。
[0044] また、図 6から図 8は、以下に説明する各実施形態へも適用する。基地局からの送 信単位は、図 6に示すフレームであり、各移動局宛のデータを割り当てる最小単位は 、図 7に示すブロックであることを前提として説明する。
[0045] 移動局は、通信データを基地局に割り当ててもらうために、各ブロックのチャネル品 質を基地局に報告する。チャネル品質の指標は一般的に SINR (Signal to Interf erence and Noise Ratio)、 SiR (Signal to Interference Ratio)、 3;た【 受
信電力などが使用される。本実施形態において、このチャネル品質を示す制御デー タを「CQI (Channel Quality Indicator)情報」と呼称する。また、移動局は通信 を行なっているセクタとは別に近接するセクタが存在するかモニターし、ハンドオーバ 一先候補のセクタの受信電力状況を間欠的に基地局に報告しているものとする。隣 接するセクタに関する情報は、「ハンドオーバー候補情報」と呼称する。 CQI情報は、 上記チャネル品質の測定値そのものでもよいが、測定値の数値をある区間に区切つ てグループ化したグループ ID (例えば、測定値を多段階のレベルに区分して示す場 合など)などを使用することもできる。また、ハンドオーバー先候補情報の通知は、品 質を表す数値でなぐ隣接セクタからの受信電力、若しくは、隣接セクタからの受信 電力と現在通信中のセクタからの受信電力との比がある閾値以上になったことを通 知する方法でもよい。
[0046] 移動局がセクタ中心付近に位置する場合、 3つのセクタのうちの 1つの信号を良好 な品質で受信することができる。しかしながら、隣接するセクタ境界付近に移動すると 隣接セクタ力もの送信信号が干渉波となり、受信品質が劣化する。このとき、隣接セク タにおいて同一のデータを同時に送信することにより、干渉波であった隣接セクタか らの送信信号を当該移動局の受信電力の増加に使用することができる。
[0047] (第 1の実施形態)
第 1の実施形態では、送信側は、二つのセクタのうち、前回使用したセクタに対応 するセクタ個別符号を用いて符号ィ匕した既知信号を送信する。
[0048] 図 1は、本発明に係る第 1の実施形態の基地局装置 (送信機)の構成の一例を示す ブロック図である。図 1は、基地局装置 100が有する送信機の部分を示したものであ り、 MAC (Media Access Control:メディアアクセスコントロール)サブレイヤ(M AC部 101)および物理レイヤ(物理層部 102)の構成の一例を示している。 MAC部 101は、判定部 103、スケジューラ 104、送信回路制御部 105を備え、物理層部 102 は、受信回路部 106、送信回路部 107、アナログ回路部 108、アンテナ部 109を備 える。
[0049] MAC部 101は、論理チャネルと物理チャネルのマッピング、スケジューリング処理 、物理層部 102の制御を行ない、上位層から入力されたデータを物理層部 102へ出
力する一方、物理層部 102から入力されたデータを上位層へ出力する。物理層部 1 02は、 MAC部 101から通知される制御情報に基づいて、 MAC部 101より入力され た伝送データを無線送信信号へ変換し、アンテナ部 109で受信した無線受信信号を 伝送データへ変換する。判定部 103は、移動局から通知される制御情報 (CQI情報 、ハンドオーバー候補情報を含む)に基づいて、ソフトコンバイン通信を開始するか 否かを、移動局毎に判断する。
[0050] スケジューラ 104は、基地局と通信を行なう複数の移動局と、どの割り当てブロック を用いて通信を行なうかを決定し、スケジューリング情報を生成する。スケジューラ 10 4は、判定部 103がソフトコンバイン通信を開始すると判断した場合、少なくとも二つ のセクタ力も送信する送信単位それぞれの同じ領域へ割り当てる。従って、スケジュ 一リング情報には、ソフトコンノイン通信するブロックの情報が含まれる。
[0051] 送信回路制御部 105は、スケジューラ 104より通知されるスケジューリング情報 (各 ブロックの割り当て情報)を基に各ブロックのサブキャリア割り当て情報を用いて送信 回路部 105を制御する。
[0052] 受信回路部 106は、アナログ回路部 108から入力する信号を復調し、 MAC部 101 へ出力する。送信回路部 107は、送信回路制御部 105の制御に基づいて、 MAC部 101より通知されるデータに対して変調を行ない、アナログ回路部 108に出力する。 アナログ回路部 108は、送信回路部 107から入力される送信信号を無線周波数に変 換し、アンテナ部 109より受信された受信信号を受信回路部 106で処理できる周波 数帯に変換する。アンテナ部 109は、アナログ回路部 108より入力された送信信号を 無線空間に送信し、無線空間中の信号を受信する。
[0053] なお、物理層部 102はセクタ毎に構成され、本実施形態では、 3セクタの想定して いるため、物理層 102a〜102c3つのブロックで構成される図を示している。
[0054] 続いて、図 2を用いて送信回路部 107について詳述する。図 2は、本実施形態の送 信回路部 106の構成の一例を示すブロック図である。図 2に示すように、送信回路部 107は、信号変調部 121、パイロット信号生成部 122、符号生成部 123、乗算器 124 、サブキャリア割り当て部 125、並びに、信号変換部 126を備える。
[0055] 信号変調部 121は、各ユーザ宛の信号処理を行なう。パイロット信号生成部 122は
、ノ ィロット信号を生成する。本実施形態では、パイロット信号生成部 122は、複数の セクタで共通して使用する共通パイロット信号を生成する。
[0056] 符号生成部 123は、パイロット信号生成部 122が生成したパイロット信号と乗算する 符号 (直交符号)を生成する。符号生成部 123は、セクタ毎に個別のセクタ個別符号 を生成する。セクタ個別符号は、各セクタで用いられ、セクタ毎のセクタ個別符号同 士は、直交関係にあることが望ましい。本実施形態では、ソフトコンバイン通信を行な う場合、受信機宛の送信データが前回割り当られて 、たセクタに対応するセクタ個別 符号を用いる。
[0057] 乗算器 124は、パイロット信号生成部 122が生成したパイロット信号と符号生成部 1 23が生成した直交符号とを乗算し、サブキャリア割り当て部 125へ出力する。サブキ ャリア割り当て部 125は、信号変調部 121からの出力データ、符号化されたパイロット 信号を入力し、信号変調部 121から入力される信号並びに乗算器 124から入力され る符号化されたパイロット信号、並びに、送信電力が零のデータを、送信回路制御部 105より通知されるスケジューリング情報 (サブキャリア割り当て情報)に基づき適切な サブキャリアに割り当てる。信号変換部 126は、サブキャリア割り当て部 125が割り当 てた各サブキャリアの信号処理を行なう。
[0058] また、信号変調部 121は、送信データの誤り訂正符号化を行なう誤り訂正符号化部 127と、誤り訂正符号化部 127から出力される信号へ、 BPSK、 QPSK、 16QAMな どの変調処理を行なうデータ変調部 128を含む。信号変調部 121の出力は、送信回 路制御部 107 (図 1参照)より通知されるサブキャリア割り当て情報に基づき適切なサ ブキャリアに割り当てるサブキャリア割り当て部 125において、適切なサブキャリアに 割り当てられた後、信号変換部 126に出力される。
[0059] 信号変換部 126は、サブキャリア割り当て部 125から出力される信号を逆高速フー リエ変換する IFFT (Inverse Fast Fourier Transform:逆高速フーリエ変換)部 129、 IFFT部 129の出力を並列直列変換する並列直列変換部 130、並列直列変 換部 130の出力に対してガードインターバルを付カ卩する GI (Guard Interval:ガー ドインターバル)付加部 131と、 GI付加部 131の出力から所望帯域の信号を取り出す フィルタ部 132と、フィルタ部の出力をデジタル信号力もアナログ信号に変換する D
/A (Digital/Analog)変換部 133を含む。信号変換部 126の出力は無線周波数 への周波数変換を行なうアナログ回路部 108を通り、アンテナ部 109へと出力され、 無線信号として送信される。
[0060] 信号変調部 121、サブキャリア割り当て部 125、並びに、信号変換部 126を含む構 成部分を、基地局 (送信機)から移動局 (受信機)へ送信する送信情報を生成する送 信情報生成部 120とする。信号変調部 121は、移動局 (または周波数軸方向のプロ ック数)毎、さらには物理層チャネル毎の誤り訂正符号化、変調のパラレル処理を行 なうため複数の同一機能ブロックを有するが、連続したシリアル処理を行なうことでも 代用することが可能である。また、信号変換部 126は、同一セクタ内に複数アンテナ を有する基地局装置の場合にはアンテナ毎の処理を行なうために、複数ブロック必 要になる。ただし、本実施形態では各セクタのアンテナが 1つの場合に関しての構成 図を示している。
[0061] 次に、本実施形態の基地局 (送信機)の動作を説明する。図 3は、本実施形態の基 地局の送信動作の一例を示すフローチャートである。図 1に示した基地局では移動 局からの上り方向無線通信により前述した CQI情報と隣接するセクタがどれくらい近 くにあるかを示すノ、ンドオーバー候補情報を受信すると、ハンドオーバーセクタ候補 の受信電力差を判定し、ソフトコンバイン通信 (ソフトコンバイン送受信)可能と判断し た場合にソフトコンバイン送信を行なう。以下に図 3のフローチャートを参照しつつ詳 細に説明する。
[0062] 移動局は、基地局に上り方向無線通信データを送信する。上り方向無線通信デー タは、移動局から通知される制御情報、 CQI情報に加え、ハンドオーバー候補情報 を含む。ハンドオーバー候補情報は、ハンドオーバーセクタ候補の同定情報、および 、現在通信中のセクタとハンドオーバーセクタ候補との受信電力差、若しくは、現在 通信中のセクタとハンドオーバーセクタ候補それぞれの受信電力そのものの情報が 含まれている。
[0063] 基地局において、アンテナ部 109は、受信した上り方向無線通信データを受信し( ステップ S11)、受信回路部 106は、アナログ回路部 108で処理された上り方向無線 通信データを復調することにより、ソフトコンバイン送信を判断するために必要な情報
を取得する (ステップ S12)。判定部 103は、復調した情報力も CQI情報およびノ、ンド オーバー候補情報 (現在通信中のセクタとハンドオーバー候補セクタの受信電力差 の情報)を解析し、移動局と各セクタの位置関係を判断する (ステップ S13)。判定部 103は、移動局で測定された各セクタにおける下り方向無線信号の受信電力差によ り判断し、通信中のセクタと他のセクタとの間の受信電力差が小さい場合には、移動 局は、比較した 2つのセクタの境界付近に位置すると判断し、受信電力差が大きい場 合には、移動局は、セクタ中心付近に位置すると判断する。
[0064] 例えば図 8に示した例では、移動局 11はセクタ境界付近にいるためセクタ # 1とセ クタ # 2からの下り方向無線通信の受信電力が高くなり、その 2つのセクタの受信電 力差は小さくなる。一方、移動局 13はセクタ # 1からの下り方向無線通信の受信電力 が高くなり、その他のセクタ力もの下り方向無線通信の受信電力が低くなるため、セク タ # 1と他のセクタとの間の受信電力差は大きくなる。例えば、受信電力差が 4dB以 下になつたときに、判定部 103は、ソフトコンノ イン通信が可能な状態である移動局と 判定し、受信電力差が 6dBまで広がったときにソフトコンバイン通信が不可能な状態 である移動局と判定する。このような判断を各移動局で行なうことも可能であり、ハン ドオーバー候補となるセクタが存在する受信電力範囲内に入ったときに、ハンドォー バー候補とするセクタを通知する情報を基地局に送信するようにしても良い。
[0065] セクタ境界付近に移動局力 ^、ると判断された場合 (ソフトコンバイン通信実施可能) には、判定部 103は、ソフトコンバイン送信が可能であるとし (ステップ S13で Yes)、 スケジューラ 104は、ソフトコンバインスケジューリングを行なう(ステップ S14)。ソフト コンバイン送信のスケジューリングは、ソフトコンバイン送信信号を送信可能と判断さ れた移動局に対し、少なくとも二つのセクタカゝら送信する送信単位 (フレーム)それぞ れの同じ領域へ割り当てるものである。スケジューラ 104は、ソフトコンバイン送信する 移動局宛の下り方向無線通信のリソースすなわちブロックを割り当てる場合に、判定 部 103が移動局の位置判定でセクタ境界付近に位置すると判定したそれぞれのセク タ(通信中のセクタとハンドオーバーセクタ候補)で時間軸方向と周波数軸方向で同 一のブロックに同一のデータを割り当てる。 MAC部 101は、ソフトコンバイン通信を 行なう複数のセクタに応じた変調方式を決定する (ステップ S15)。また、送信回路制
御部 105は、ソフトコンバイン通信をするブロックについては、ブロックに割り当てられ た移動局がそれ以前に通信を実施していたセクタに対応するセクタ個別符号を用い ることを決定し、通常の通信を実施するブロックについては、各セクタのセクタ個別符 号を用いることを決定する。
[0066] セクタ境界付近に移動局力 、な 1、と判断された場合 (ソフトコンバイン通信実施不 可能)には、つまりセクタ中央付近に移動局が位置すると判定された場合には (ステツ プ S13で No)、スケジューラ 104は、単一セクタ内で通常スケジューリングを行なう(ス テツプ S18)。 MAC部 101は、通常の通信を行なう個別のセクタに応じた変調方式を 決定する (ステップ S 19)。
[0067] 送信回路部 107は、送信情報を生成し (ステップ S16)、生成された送信情報は、ァ ナログ回路部 108で処理され、アンテナ部 109は、下り方向無線送信を行なう(ステツ プ S17)。送信回路部 107では、送信回路制御部 105の制御のもとで、送信情報を 生成する。送信回路制御部 105は、ソフトコンバイン通信である力、通常の通信であ るかによって、信号変調部 121が変調する変調方式を通知し、符号生成部 123で生 成する符号を指示し、サブキャリア割り当て部 125のサブキャリア割り当て情報 (スケ ジユーリング情報)を通知する。また、符号生成部 123は、制御回路制御部 105の制 御のもとで、ソフトコンバイン通信をする移動局については、二つのセクタのうち、そ れ以前に通信を実施していたセクタのセクタ個別符号を生成し、通常の通信を実施 する移動局については、通信を行なうセクタに対応するセクタ個別符号を生成する。
[0068] 本実施形態の図 8の例では、セクタ # 1の移動局 12、 13、 14に対しては通常スケ ジユーリングを行な 、、セクタ境界付近に位置する移動局 11に対してソフトコンノイン 送信を行なうことが可能である。
[0069] 図 4は、第 1の実施形態の基地局がソフトコンバイン通信のデータの割り当てを行つ たブロックの一例を示す。図 4の例では、セクタ # 1と通信を行なっていた移動局が、 セクタ # 2との境界付近に移動し、セクタ # 1とセクタ # 2との 2つのセクタ境界付近で ソフトコンノ イン送受信を行なう場合に関して示している。図 4上段はセクタ # 1で送 信するブロック(セクタ # 1ブロック)を、図 4下段はセクタ # 2で送信するブロック (セク タ # 2ブロック)を示す。セクタ # 1ブロックおよびセクタ # 2ブロックともに、各セクタの
フレーム(送信単位)中の同一ブロックで同一のデータを送信する。このため、移動局 にはほぼ同時に両方のセクタから同一の信号が届くこととなる。ソフトコンバイン送信 を行なう際の変調方式は 2つのセクタ力 の下り方向無線送信の伝搬路環境の合成 を考慮した変調方式を選択することが望まし ヽ。
[0070] ブロック構成は通常の送信時と同様に、先頭シンボルに 1サブキャリアおきに共通 パイロットチャネルが配置され、パイロットチャネルの間および 2番目のシンボルに制 御情報チャネルが配置される。続いて、 3シンボル目以降にデータチャネルが配置さ れる構成となっている。ただし、配置構成に関しては特に図に示した配置に限定する ものではない。また、通常スケジューリング時には各セクタの共通パイロットチャネル にはセクタ個別符号である直交符号がそれぞれ乗算されているが、第 1の実施形態 におけるソフトコンバイン通信の特徴のひとつとして、 2つのセクタ力 送信される共 通パイロットチャネルの各シンボルに乗算されている直交符号に移動局がそれ以前 に通信を行なっていたセクタの直交符号を使用することがあげられる。
[0071] 本実施形態のセクタ # 1とセクタ # 2の境界付近の例においては、通常送信時は例 えばセクタ # 1にて(1, 1, 1, 1)、セクタ # 2で(1, - 1, 1, 1)、セクタ # 3で(1, 1 1, 1)の直交符号を使用するように設定とする。セクタ個別符号をそれぞれ第 1の直交符号、第 2の直交符号、第 3の直交符号とする。本実施形態では、セクタ # 1 の中央付近力 セクタ # 2との境界付近に移動した移動局の場合、移動局が前回通 信したセクタはセクタ # 1であるため、第 1の直交符号を使用することになる。従って、 ソフトコンノイン送受信時には 2つのセクタ(セクタ # 1、セクタ # 2)でセクタ # 1の直 交符号である第 1の直交符号を使用する。
[0072] このように、通常送受信力 ソフトコンバイン送受信に切り替わる際に通常送受信時 に無線通信を行なっていたセクタと同じ直交符号を使用することによって、移動局は 、ソフトコンバイン送信されたブロックの伝搬路推定を通常の受信処理と同様に行なう ことが可能となる。すなわち、移動局は、ソフトコンバイン送信されたブロックの伝搬路 推定を行なう場合、各セクタカゝら送信されたパイロットチャネルを別々に逆拡散するこ とによって求める必要がなぐまた、基地局は、特別な制御情報を移動局に送信する 必要がない。この送信受方法では、 2つのセクタから同一の直交符号が乗算された
共通パイロットチャネルが送信されるので、移動局は通常受信動作のままで 2つのセ クタからの送信信号の合成されたパイロットチャネルを受信することになり、 2つのセク タの合成された伝搬路を容易に推定することが可能になる。
[0073] すなわち、セクタ # 1から送信されたフレームとセクタ # 2から送信されたフレームと は、いずれも、セクタ # 1の直交符号 (セクタ個別符号)で符号ィ匕されているため、セ クタ # 1から送信されたものとして取り扱われる。移動局は、 2つのセクタから同一の直 交符号を乗算して送信されたデータは 1つのセクタ力 送信されたデータの遅延波を 処理することと同様となるため、移動局側で特別な動作をする必要がなくなる。なお、 この同一直交符号を乗算するデータはフレーム内の一部(単一ブロック)でも可能で ある。
[0074] また、移動局がセクタ境界付近力もセクタ中央付近へ移動し、ソフトコンバイン送受 信を終了し通常送受信状態に戻るときの動作を以下に説明する。移動局は、ソフトコ ンバイン送受信中にも開始時 (すなわち通常送受信時)と同様に CQI情報とハンドォ 一バー候補情報を基地局に送信しているものとする。ただし、移動局は前述の情報 を測定するブロックをソフトコンバイン送受信に使用したブロック以外のブロックを使 用する必要がある。チャネル品質測定は共通パイロットチャネルを使用して測定され るので、ソフトコンバイン送信されたブロックではセクタの分離ができず、正確な測定 を行なうことができな 、ためである。
[0075] 例えば、フレーム内に予めソフトコンバイン送信されないブロック(以下、「測定用ブ ロック」とする)を仕様上設定しておくこと前提とする。移動局は、隣接基地局の SINR を測定する場合には測定用ブロックを使用する。測定ブロックの一例として、先頭の ブロックで全移動局向けの制御情報を送るなどの理由から常にソフトコンノ イン送信 しないなどの約束があれば、フレーム内の測定ブロック部分を測定することによって 必ずソフトコンノイン送信されて ヽな 、データの測定を行なうことができる。
[0076] また、移動局は、ソフトコンバイン送受信を行なっている 2つのセクタを含む周辺セ クタの SINRを測定することにより、ソフトコンバインを行なっている 2つのセクタのどち らに近 、か判断することが可能である。本実施形態での通信対象セクタであるセクタ # 1とセクタ # 2での SINRの差はソフトコンバイン送受信開始時にはセクタ # 1が高く
なって 、るが、セクタ # 2の中央付近に向かって移動して!/、くにつれセクタ # 2の SIN Rがセクタ # 1の SINRを逆転し、セクタ # 2の SINRが高くなる。このような環境になつ た場合、基地局は移動局からの制御情報を受信し、判定部 103によりソフトコンバイ ン送受信で使用している直交符号をセクタ # 2の符号に変更する。
[0077] この際の閾値の設定方法としては例えば SINRの差が 1 dB以上となる時間が 10フ レーム続いた場合とすることがあげられる。すなわち、判定部 103は、 SINR (受信品 質情報)に基づいて、少なくとも二つのセクタのいずれか一つのセクタに対応するセ クタ個別符号を選択し、選択したセクタ個別符号 (あるいはセクタ番号)を送信回路制 御部 105を介して符号生成部 123へ通知すると共に移動局にセクタ個別符号の変 更と変更する符号を変更以前のセクタ個別符号を用いた下り無線通信を通じて通知 する。符号生成部 123は、送信回路制御部 105の制御のもとで、判定部 103が選択 した符号を生成する。
[0078] さらに、基地局は、移動局力 の制御情報により、ソフトコンバイン通信中の移動局 がセクタ境界付近力も離れたことを確認した場合、例えば、セクタ # 1とセクタ # 2の 受信電力差が一定値以上になった場合には、基地局は、ソフトコンバイン送受信の 終了に関する制御情報を移動局に通知し、移動局が受信したことを確認すると、移 動先セクタのリソースのみを使用して通信を開始する。
[0079] このようにして、基地局 (送信機)が複数のセクタの既知信号を同一の符号で符号 化することにより、移動局がソフトコンノ イン送信信号を特別な動作なしに受信を行な うことが可能なソフトコンバイン通信を行なうことができる。これにより、移動局は、セク タ間を良好な通信状態を保ったまま移動することができる。
[0080] 次に、送信情報としてソフトコンバイン送信信号を受信する移動局装置に関して説 明する。図 5は、受信機の構成の一例を示すブロック図である。図 5に示した受信機 2 00の構成は OFDM受信機の一般的な構成の一例であり、本発明のソフトコンバイン 送信データを受信するための特別なブロックを付加することなぐソフトコンバイン送 受信を行なうことができる。
[0081] 図 5は、受信機 200の部分を示したものであり、物理レイヤの構成の一例を示して いる。受信機 200は、無線信号を送受信するアンテナ部 201、アンテナ部 201で受
信された無線信号を無線周波数カゝらベースバンド周波数に変換するアナログ受信回 路部 202、アナログ受信回路部 202が変換した信号を入力し、入力した信号をデジ タル信号に変換する AZD (Analog/Digital)変換部 203、 AZD変換部 203が変 換した信号を入力し、入力した信号力もガードインターバルを除去する GI除去部 20 4、 GI除去部 204が GIを除去した信号を入力し、入力した信号を直列データから並 列データに変換する直列並列変換部 205、並列データに変換された信号を入力し、 入力した信号へ高速フーリエ変換処理を施す FFT (Fast Fourier Transform: 高速フーリエ変換)部 206、伝搬路推定と伝搬路補償を行ない、各信号処理を施す サブキャリア整形部 207、サブキャリア整形部 207が処理した信号を入力し、各サブ キャリアの信号を復調するデータ復調部 208、並びに、データ復調部 208から信号を 入力し、入力した各信号を復号して MAC部に信号を出力するデータ復号部 209を 備える。
[0082] 通常、図 5に示した受信機 200を有する移動局は前述したように CQI情報を間欠的 に基地局に報告している。しかし、セクタ境界付近に位置する移動局が前記ソフトコ ンノイン送受信に使用されているブロックの共通パイロットチャネルでセクタ識別のた めの CQI測定を行った場合、移動局は、同一の直交符号が乗算された共通パイロッ トチャネルを使用するため各セクタからの信号を分離することができない。従って、 2 つの隣接するセクタのうち一方は良好な伝搬路環境で、もう一方は検出されないとい う測定結果となる。本実施形態においてはセクタ # 1の伝搬路環境は良好で、セクタ # 2の伝搬路環境は測定できなくなる。
[0083] このような結果をそのまま基地局が移動局のスケジューリングに使用すると不具合 が生じる。このため、基地局は、各セクタでソフトコンバイン送信したブロックを記憶し 、記憶したブロックを測定してフィードバックされた CQI情報等をスケジューリングに使 用しない、もしくは補正をしてスケジューリングに使用する必要がある。補正の方法と しては、(1)受信電力を半分として換算する、(2)以前に報告された過去のデータに より補完する、または、(3)隣接するブロックなどの同時に測定した別の周波数帯の ブロックの測定結果により補完するなどが考えられる。
[0084] 例えば、基地局のスケジューラ 104は、スケジューリング時に生成したスケジユーリ
ング情報を所定の記憶領域に記憶しておき、記憶した前回のスケジューリング情報 に基づいて、ソフトコンバイン通信を実施したブロックの情報を取得する。 MAC部 10 1内(あるいはスケジューラ 104内)にスケジュール情報を一時的に記憶する記憶領 域 (スケジュール情報記憶部)を備えていてもよい。また、判定部 103は、移動局から 通知される制御情報に基づいて、ソフトコンノ イン通信を開始する力否かを判断する 場合に、スケジューリング情報に基づいてソフトコンバイン通信を開始したブロックを 検出し、ソフトコンバイン通信を開始して 、るブロックに関する CQI情報等については 補正等を実施して行なう。
[0085] このように、本実施形態によれば、送信側 (送信機、基地局)が複数のセクタの既知 信号 (共通パイロットチャネル)を一つのセクタに対応する符号で符号ィ匕することによ り、受信側 (受信機、移動機)は、ソフトコンバイン通信時においても特別な動作をす ることなぐ通常と同様の動作でソフトコンバイン送信信号を受信することができる。ま た、セクタ間で既知信号の符号ィ匕に用いる符号を直交関係にすることにより、干渉成 分を除去することができる。さらに、送信側が、受信側が前回使用したセクタの符号を 用いて既知信号を符号ィ匕することより、受信側は前回の受信時と同様の動作によつ てソフトコンバイン送信信号を受信することができる。
[0086] 以上のように、本発明に係る好適な実施形態によれば、送信側で複数のセクタを使 用して送信する既知信号を、所定の符号で符号化することにより、受信側は、ソフトコ ンノ イン通信の開始を検出する動作をすることなぐ通常と同様の動作によってソフト コンバイン通信で送信された信号を受信し、利用することができる。また、受信側では 、ソフトコンバイン通信で送信された既知信号についてセクタ毎に伝搬路を推定する 必要がなぐ 1つのセクタで送信された場合と同様の動作によって既知信号について 伝搬路を推定することができる。これにより、余剰な伝搬路推定を行なわずにソフトコ ンノイン受信の効果が得られるとともに、効率ィ匕を図ることができる。
[0087] また、ソフトコンノイン通信では隣接セクタにおいて同一のデータを同時に送信す ることになるため、隣接セクタから送信された送信信号は、干渉電力となるが、送信側 は、複数のセクタで同じ符号を用いてデータを送信し、受信側は、複数のセクタから 送信されたデータを同じ符号で符号された送信信号として受信できるため、隣接セク
タからの送信信号を当該受信機 (移動局)の受信電力の増加に使用することができる 。このため、受信品質を改善させることが可能となる。
[0088] なお、上記各実施形態では、共通パイロット信号をセクタ個別符号で符号化してソ フトコンバイン通信の開始を通知する態様を説明したが、共通パイロット信号に限ら れることはなぐ受信側で既知となって ヽる他の既知信号を符号化する場合であって もよい。予め、送信側と受信側で取り決めた所定の既知信号をコンバイン通知符号で 符号化する場合であれば、本発明を適用することが可能である。
図面の簡単な説明
[0089] [図 1]本発明に係る第 1の実施形態の基地局装置 (送信機)の構成の一例を示すプロ ック図である。
[図 2]第 1の実施形態の送信回路部の構成の一例を示すブロック図である。
[図 3]第 1の実施形態の基地局の送信動作の一例を示すフローチャートである。
[図 4]第 1の実施形態の基地局がソフトコンバイン通信のデータの割り当てを行ったブ ロックの一例示す図である。
[図 5]受信機の構成の一例を示すブロック図である。
[図 6]OFDMZ (TDMA、 FDMA) 2次元のフレーム構成の一例を示す図である。
[図 7]下り方向通信におけるフレームを構成するブロックの一例を示す図である。
[図 8]複数のセルによって構成される無線通信システムの一つのセルの環境の一例 を示す図である。
[図 9]セクタ # 1とセクタ # 2のソフトコンノイン送信適応時のブロック割当て例をそれ ぞれのセクタに関して示した図である。
[図 10]非特許文献 1に示されているソフトコンバイン送信方法で使用するブロック構 成の一例を示す図である。
符号の説明
[0090] 100 基地局装置
101 MAC部
102a〜102c 物理層部
103 判定部
104 スケジューラ
105 送信回路制御部
106 受信回路部
107 送信回路部
108 アナログ回路部
109 アンテナ部
121a, 121b 信号変換部
122 パイロット信号生成部
123 符号生成部
124
125 サブキャリア割り当て部
126 信号変調部
127 誤り訂正符号化部
128 データ変調部
129 IFFT部
130 並列直列変換部
131 GI付加部
132 フィルタ部
133 DZA変換部
200 受信機
201 アンテナ部
202 アナログ受信回路部
203 AZD変換部
204 GI除去部
205 直列並列変換部
206 FFT咅
207 サブキャリア整形部
208 データ復調部
209 データ復号部
Claims
[1] 所定の通信範囲を特定する複数のセクタから構成されるセルに存在する受信機と 通信を行なう送信機であって、
前記受信機宛の送信データを、少なくとも二つのセクタカゝら送信する送信単位それ ぞれの同じ領域へ割り当てるスケジューリング情報を生成するスケジューラと、 各セクタで個別に用いるセクタ個別符号を生成する符号生成部と、
前記生成したスケジューリング情報に基づ 、て、前記少なくとも二つのセクタの 、ず れか一つのセクタに対応するセクタ個別符号で符号ィ匕した信号と前記受信機宛の送 信データとを、前記送信単位それぞれの同じ領域へ割り当てた送信情報を生成する 送信情報生成部と、
前記生成した送信情報を送信する送信部と、を備えることを特徴とする送信機。
[2] 前記符号生成部は、前記各セクタで用いるセクタ個別符号それぞれが直交関係に なるようにセクタ個別符号を生成することを特徴とする請求項 1記載の送信機。
[3] 前記符号生成部は、前記受信機宛の送信データが前回割り当られて 、たセクタに 対応するセクタ個別符号を生成することを特徴とする請求項 1または請求項 2記載の 送信機。
[4] 前記送信情報生成部は、ソフトコンバイン通信を開始することを通知する情報を生 成しな 、ことを特徴とする請求項 1から請求項 3の 、ずれかに記載の送信機。
[5] 前記送信情報生成部は、前記セクタ個別符号で符号化する信号として、各セクタで 共通に用いる既知信号を使用することを特徴とする請求項 1から請求項 4のいずれか に記載の送信機。
[6] 前記受信機から通知された受信品質を示す受信品質情報に基づ!、て、前記送信 データを、一つのセクタから送信するか、少なくとも二つのセクタカゝら送信するかを判 定する判定部を、更に備えることを特徴とする請求項 1から請求項 5のいずれかに記 載の送信機。
[7] 前記判定部は、前記受信品質情報に基づいて、前記少なくとも二つのセクタのい ずれか一つのセクタに対応するセクタ個別符号を選択し、
前記符号生成部は、前記判別部が選択したセクタ個別符号を生成することを特徴
とする請求項 6記載の送信機。
[8] 前記スケジュール情報を保持するスケジュール情報記憶部を、更に備え、
前記判定部は、前記スケジュール情報記憶部に保持するスケジュール情報に基づ いて、前記受信品質情報のうち、前回ソフトコンバイン通信を行った受信品質情報を 補正することを特徴とする請求項 6または請求項 7記載の送信機。
[9] 所定の通信範囲を特定する複数のセクタから構成されるセルに存在する受信機と 通信を行なう送信機の送信方法であって、
前記受信機宛の送信データを、少なくとも二つのセクタカゝら送信する送信単位それ ぞれの同じ領域へ割り当てるスケジューリング情報を生成し、
各セクタで個別に用いるセクタ個別符号を生成し、
前記生成したスケジューリング情報に基づ 、て、前記少なくとも二つのセクタの 、ず れか一つのセクタに対応するセクタ個別符号で符号ィ匕した信号と前記受信機宛の送 信データとを、前記送信単位それぞれの同じ領域へ割り当てた送信情報を生成し、 前記生成した送信情報を送信することを特徴とする送信方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005366120 | 2005-12-20 | ||
JP2005-366120 | 2005-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007072751A1 true WO2007072751A1 (ja) | 2007-06-28 |
Family
ID=38188530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325031 WO2007072751A1 (ja) | 2005-12-20 | 2006-12-15 | 送信機および送信方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007072751A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7705028B2 (en) | 2005-12-19 | 2010-04-27 | Glaxosmithkline Llc | Farnesoid X receptor agonists |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002345013A (ja) * | 2001-05-14 | 2002-11-29 | Matsushita Electric Ind Co Ltd | セルラシステムにおける無線基地局装置 |
JP2003348637A (ja) * | 2002-05-23 | 2003-12-05 | Nec Corp | 移動通信システム |
JP2004064240A (ja) * | 2002-07-25 | 2004-02-26 | Sony Corp | 無線通信方法、無線通信システム及び無線端末装置 |
JP2005347846A (ja) * | 2004-05-31 | 2005-12-15 | Kyocera Corp | 基地局装置及び基地局装置制御方法 |
WO2006106615A1 (ja) * | 2005-03-31 | 2006-10-12 | Ntt Docomo, Inc. | 制御装置、移動局および移動通信システム並びに制御方法 |
-
2006
- 2006-12-15 WO PCT/JP2006/325031 patent/WO2007072751A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002345013A (ja) * | 2001-05-14 | 2002-11-29 | Matsushita Electric Ind Co Ltd | セルラシステムにおける無線基地局装置 |
JP2003348637A (ja) * | 2002-05-23 | 2003-12-05 | Nec Corp | 移動通信システム |
JP2004064240A (ja) * | 2002-07-25 | 2004-02-26 | Sony Corp | 無線通信方法、無線通信システム及び無線端末装置 |
JP2005347846A (ja) * | 2004-05-31 | 2005-12-15 | Kyocera Corp | 基地局装置及び基地局装置制御方法 |
WO2006106615A1 (ja) * | 2005-03-31 | 2006-10-12 | Ntt Docomo, Inc. | 制御装置、移動局および移動通信システム並びに制御方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7705028B2 (en) | 2005-12-19 | 2010-04-27 | Glaxosmithkline Llc | Farnesoid X receptor agonists |
US8158665B2 (en) | 2005-12-19 | 2012-04-17 | Glaxosmithkline Llc | Farnesoid X receptor agonists |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1806884B1 (en) | Method and system for transmitting/receiving data in a communication system | |
US10084585B2 (en) | Wireless communication apparatus and wireless communication method | |
JP4864008B2 (ja) | マルチセル直交周波数分割多元接続システムにおけるキャリア割り当て方法 | |
JP4836672B2 (ja) | 基地局、端末、無線通信装置、及び無線通信方法 | |
US7388845B2 (en) | Multiple access wireless communications system using a multisector configuration | |
CA2536218C (en) | Synchronization techniques for a wireless system | |
JP4641877B2 (ja) | 送信制御方法、端末側送信方法、干渉電力測定方法、制御局装置および端末装置 | |
US8284731B2 (en) | Communication terminal apparatus, communication control apparatus, wireless communication system, and communication method all using a plurality of slots | |
US20040109432A1 (en) | Beacon signaling in a wireless system | |
US20040095902A1 (en) | Beacon signaling in a wireless system | |
JP2006191533A (ja) | 通信端末装置、制御局及びマルチキャリア通信方法 | |
KR20100051065A (ko) | 기지국장치 | |
KR100905279B1 (ko) | 협력 다중입출력을 위한 데이터 전송 방법 및 장치 | |
JP4157443B2 (ja) | 送信方法、送信信号生成方法およびそれを用いた送信装置 | |
WO2008020623A1 (fr) | Dispositif station de base de communication sans fil et procédé d'organisation des canaux de contrôle | |
JP2007043710A (ja) | セルラー環境で隣接する二つの周波数帯域を同時に受信するための装置及び方法 | |
WO2010061768A1 (ja) | 基地局、基地局でのサブバースト領域の配置方法、通信対象端末決定方法及び下りバースト領域の割り当て方法 | |
JP4926647B2 (ja) | 通信システム、該通信システムに用いる基地局及び端末並びに基地局切替方法 | |
JP4942741B2 (ja) | 送信機、受信機および無線送信方法 | |
KR100566273B1 (ko) | 주파수 도약 직교주파수분할다중화 시스템에서의 간섭회피 데이터 전송 방법 | |
JP2008283528A (ja) | 移動通信システム、無線制御装置および通信端末装置 | |
US20130279620A1 (en) | Methods of transmitting coordinate multiple point data based on ortogonal covering codes | |
US8638733B2 (en) | Apparatus and method for estimating map size in a broadband wireless communication system | |
WO2007072751A1 (ja) | 送信機および送信方法 | |
JP4703253B2 (ja) | 通信端末装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06834774 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |