WO2007069718A1 - 液状媒体等の気化分離装置 - Google Patents

液状媒体等の気化分離装置 Download PDF

Info

Publication number
WO2007069718A1
WO2007069718A1 PCT/JP2006/325032 JP2006325032W WO2007069718A1 WO 2007069718 A1 WO2007069718 A1 WO 2007069718A1 JP 2006325032 W JP2006325032 W JP 2006325032W WO 2007069718 A1 WO2007069718 A1 WO 2007069718A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
pressure
medium
vaporization
Prior art date
Application number
PCT/JP2006/325032
Other languages
English (en)
French (fr)
Inventor
Shigeru Torii
Kouichi Miki
Katsumi Koretomo
Original Assignee
Techno Sigma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Sigma Co., Ltd. filed Critical Techno Sigma Co., Ltd.
Priority to JP2007550237A priority Critical patent/JPWO2007069718A1/ja
Priority to EP06834775A priority patent/EP1967243A1/en
Priority to US12/086,510 priority patent/US20090165653A1/en
Publication of WO2007069718A1 publication Critical patent/WO2007069718A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/08Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
    • B01D3/085Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs using a rotary evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • B01D1/0052Use of a liquid transfer medium or intermediate fluid, e.g. bain-marie
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • B01D5/0063Reflux condensation

Definitions

  • the present invention relates to a vaporization / separation apparatus for a liquid medium or the like, and relates to a fully automatic apparatus capable of dealing with an increase in size that can measure a liquid surface position of a changing liquid medium or the like with high accuracy.
  • the conventional apparatus uses V, distillation at atmospheric pressure or reduced pressure (a method in which the solvent is heated to the boiling point to produce saturated vapor, and this saturated vapor is separated) as the principle of medium separation.
  • V distillation at atmospheric pressure or reduced pressure
  • a conceptual diagram of these devices is shown in Figs. The symbols in the figure are 11: round bottom flask for evaporation, 12: heating bath, 13: thermometer, 14: cooling condenser for condensation, 15: recovery receiver, 16 : Refrigerant connection port, 17: Column tower, 18: Solenoid valve.
  • Fig. 1 shows a simple distillation apparatus for organic solvents that is widely used.
  • the boiled solvent vapor is guided to the condensing section (condensing cooling condenser 14), where it is condensed and the solvent is separated and purified.
  • the distillation apparatus in Fig. 2 is an apparatus for separating and purifying a mixed solvent in which two or more kinds of solvents are mixed into a single component solvent.
  • the evaporation section of this apparatus is filled with the solvent, and the evaporation bottom of the evaporation section is filled.
  • Flask 11 is connected to a vertically extending fraction (column tower 17), and a condenser (condensation cooling condenser 14) is connected to the upper part of the column.
  • This branch pipe is further devised so that it branches further at the upper part and a part of the condensed liquid is refluxed to the upper part of the fractionating column tower 17. Therefore, recovery and reflux are controlled by solenoid valves 18 and 19 to enable fractional distillation of the solvent.
  • boiling organic solvents This is a device for purifying the mixed solvent while raising and properly switching between reflux and fractionation. The end point of the distillation purification is confirmed by visual inspection or manual operation with a measuring instrument as a guide.
  • n-butanol, butyl acetate, water, 2-butoxyethanol, 2-hexyloxyethanol, and high-purity n -butanol and water are separated from the used waste liquid, and the aqueous and solvent phases are separated.
  • Patent Document 1 a method for recovering by repeating rectification under reduced pressure has been disclosed.
  • this purification method is based on an empirical method for boiling distillation of the solvent, and is a manual method as described above.
  • Capacitance type, float switch type, electrode type, ultrasonic type, vibration type, optical sensor type, etc. are used as a method for sensing the liquid surface position.
  • liquid level gauges such as capacitance type, electrode type, and ultrasonic type, for example, sensing of the liquid level position by changing the capacitor capacity, conductivity, ultrasonic waveform, etc.
  • a method is known in which a vaporization promoting means (rotary disc) is provided in a reservoir through which a circulation path that causes a gas to flow through a blower means, and a liquid level position of the reservoir is detected.
  • Speak Patent Literature 2
  • the shape of the vaporizer becomes complicated.
  • Patent Document 5 a method in which a differential pressure gauge and a weight scale are combined is known (Patent Document 5).
  • a differential pressure gauge In order to detect the position of the liquid level with a differential pressure gauge, the difference between the pressure of the liquid phase in the container and the pressure of the gas phase in the container is detected, and the difference pressure is based on the head pressure of the detection tube provided in the liquid phase. Using this, the differential pressure level is specified. Since only the differential pressure gauge has low measurement accuracy of the liquid level, the measurement accuracy is improved to the required level by calibrating with the use of a weight meter.
  • the above-described misalignment method also requires a series of vaporization and separation operations such as injection of the liquid to be purified into the distiller, discharge of the purified liquid, discharge of the residue, and the like within the required level or cost. ,fluctuate It was difficult to measure the liquid level. Therefore, there has been a demand for a vaporization / separation apparatus having a mechanism capable of continuously measuring a fluctuating liquid surface position to such an extent that liquid medium and the like can be continuously evaporated and recovered.
  • Patent Document 1 Japanese Patent Publication No. 4 86978
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-202201
  • Patent Document 3 Utility Model Publication No. 5-7301
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-148169
  • Patent Document 5 Japanese Patent Laid-Open No. 10-328548
  • the object of the present invention is to solve the above-mentioned drawbacks of the conventional apparatus, and to measure the pressure level of a processing object such as a liquid medium or a mixed liquid by measuring the position of the liquid medium or the like that fluctuates. Therefore, an object of the present invention is to provide a novel apparatus that can be vaporized and separated by automatic control.
  • the present invention relates to a vaporization method in which a liquid surface is formed by storing either one of a liquid medium or a mixed liquid containing the liquid medium and a non-volatile substance.
  • Separation means for cooling the gas discharged from the vaporization means and the vaporization medium to separate the vaporization medium from the gas by making the vaporization medium a condensed condensation medium, and vaporization separation of the liquid mixture Visit the device
  • Pressure detecting means for detecting the pressure of the gas
  • a differential pressure detecting means for detecting a differential pressure between the pressure at a predetermined position in the vaporizing means and the pressure of the gas
  • the liquid level position of the liquid varies due to vaporization of the liquid
  • the calculated liquid level position is a liquid medium and liquid mixture vaporization and separation device corresponding to a liquid level position when the liquid level position of the liquid is stationary.
  • the present invention is an apparatus that automatically prevents the bumping phenomenon and the like by simply measuring the liquid surface position of the fluctuating liquid and simply confirming the injection amount of the solution to be purified. This is a device that achieves an automated control system, unlike partial automation, which requires a part that is manually operated and monitored by an operator.
  • the apparatus of the present invention is a vaporization / separation apparatus for a liquid medium or the like, and is an apparatus capable of responding to an increase in size that can measure a liquid surface position of a changing liquid medium or the like with high accuracy. Furthermore, since the corresponding range of processing objects and operating conditions is wide and the control mechanism can be automated, the conventional safety countermeasure mechanism is unnecessary, which increases the reliability and safety. It is a costly device.
  • FIG. 1 is a schematic view showing a conventional organic solvent simple distillation apparatus.
  • FIG. 2 is a schematic view showing a conventional organic solvent fractional distillation apparatus.
  • FIG. 3 is a functional block diagram of an apparatus for vaporizing and separating liquid medium and the like according to the present invention.
  • FIG. 4 is a schematic view showing an apparatus for vaporizing and separating a liquid medium or the like according to the present invention.
  • FIG. 5 shows a graph of the temperature of the liquid in the container 110 over time when the low-boiling liquid medium and the high-boiling liquid medium are separated using the vaporizing and separating apparatus for the liquid medium of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the apparatus of the present invention.
  • the vaporization / separation apparatus 10 of the present invention includes vaporization means 2, separation means 4, pressure detection means 6, differential pressure detection means 7, and calculation means 8.
  • a signal indicating the gas pressure is sent from the pressure detection means 6 to the calculation means 8, and the differential pressure detection means 7 sends a pressure between the pressure at a predetermined position in the vaporization means 2 and the gas pressure.
  • a signal indicating the differential pressure is issued to the calculating means 8, and the calculating means 8 calculates the calculated liquid level position.
  • the vaporization means 2 is a vaporization means 2 in which a liquid surface is formed by storing one of a liquid medium or a mixed liquid containing a liquid medium and a non-volatile substance. Then, the liquid medium is vaporized to obtain a vaporized medium.
  • the separation means 4 cools the gas discharged from the vaporization means 2 and the vaporization medium, and vaporizes it.
  • the medium is separated from the gas by making it a condensed condensation medium.
  • the pressure detection means 6 detects the gas pressure.
  • the differential pressure detection means 7 detects the differential pressure between the pressure at a predetermined position in the vaporization means 2 and the gas pressure.
  • the predetermined position is a predetermined position provided in the vaporizing means 2 and is a position below the first to third liquid surface positions.
  • 0 is indicated because no differential pressure is generated.
  • the specified position is below the liquid level position, a differential pressure is generated.
  • the differential pressure increases as the predetermined position is below the liquid level position and the depth is deeper.
  • the calculation means 8 calculates the liquid level position of the liquid with reference to a predetermined position in the vaporization means. Calculation Calculated as the liquid level position. Since the differential pressure is proportional to the depth of the liquid, the depth from the liquid surface position at a predetermined position can be obtained by dividing the differential pressure by the area of the liquid determined from the shape of the container. As described above, it is preferable to calculate the liquid level position of the liquid by obtaining the liquid level position corresponding to when the predetermined position force is at rest from the value of the differential pressure and adding the time change rate of the pressure of the gas to it. . Since the actual liquid surface position varies depending on the liquid vaporization, calculating the calculated liquid surface position described above means that the liquid surface position corresponding to when the liquid surface position is static! Is calculated.
  • the “liquid medium” is not particularly limited as long as it is liquid. Either a single medium or a mixture of two or more kinds of organic solvents, inorganic solvents, polar solvents or nonpolar solvents may be used. A medium that is liquid at room temperature and atmospheric pressure is preferable. Examples of the liquid medium include a low boiling point medium having a boiling point of 50 ° C. or less, for example, ethers, methylene chloride, and pentane.
  • Medium boiling medium having a boiling point of 50 to 100 ° C. for example, tetrahydrofuran (THF), ethyl acetate, chloroform, acetone, hexane, benzene, acetonitrile, ethanol, or alcohol such as methanol.
  • THF tetrahydrofuran
  • ethyl acetate chloroform
  • acetone hexane
  • benzene acetonitrile
  • ethanol or alcohol such as methanol.
  • high boiling medium having a boiling point of 100 ° C. or higher include toluene, xylene, propylene glycol monomethyl ether acetate (PGME A), dimethylformaldehyde (DMF), and dimethyl sulfoxide (DMSO).
  • PGME A propylene glycol monomethyl ether acetate
  • DMF dimethylformaldehyde
  • DMSO dimethyl sulfoxide
  • the “mixed liquid” includes a non-volatile substance and a liquid medium, and may be a uniform substance system such as a suspension and an emulsion or a mixed liquid in a heterogeneous substance system.
  • Specific examples of the mixed liquid include a state after the liquid medium is used as a diluent such as a synthetic solvent, an extractant, a cleaning agent, an eluent, a developing agent, an absorbent, and a dispersion solvent.
  • a diluent such as a synthetic solvent, an extractant, a cleaning agent, an eluent, a developing agent, an absorbent, and a dispersion solvent.
  • cleaning of fine chemical synthesis solvents, electronic substrates, liquid crystal films, etc. extraction of herbal medicines and their separation and purification, liquid media used in columns, reverse phase chromatography, etc., and regeneration treatment of various cleaning solutions, etc. Can be mentioned.
  • liquid includes both a liquid medium and a mixed liquid containing a liquid medium and a non-volatile substance.
  • Nonvolatile substances are non-volatile liquids, solids or mixtures thereof that exist in a liquid phase with a liquid medium in a liquid mixture. Specifically, specimens, extracts and the like using a liquid medium as a diluent, an extractant and the like can be mentioned.
  • Gas is not particularly limited as long as it is inert to the liquid medium to be treated and the like and maintains a gaseous state even when cooled with a refrigerant.
  • a gas for example, a carrier gas or a detection gas
  • suitable for the condition is determined in accordance with conditions (for example, vaporization conditions or condensation conditions) determined in consideration of the liquid medium to be processed. Specifically, air, nitrogen, helium, argon, and their dry gas, etc. Cost and cost are preferably nitrogen or air.
  • Separatation gas is a gas that has passed through the separation means, and a medium in which the liquid medium is vaporized (hereinafter abbreviated as a vaporization medium) is mixed with the gas to form a mixed gas, but passes through the separation means. Then, the vaporized medium is condensed into a liquid medium and separated from the gas, so that the vaporized medium essentially does not contain the vaporized medium. Therefore, the partial pressure of the vaporized medium in the separation gas is easy to vaporize the medium when the medium is brought into contact with a gas that is very small. However, depending on the separation conditions, when the separation gas contains a vaporization medium to some extent, the separation gas may contain a vaporization medium depending on the vaporization conditions.
  • the “liquid level” is a liquid level formed by storing the liquid described above.
  • the storage of the liquid is, for example, storing the liquid in a container constituting the vaporizing means 2, and the surface of the liquid formed in the container at that time is the liquid level.
  • the vaporizing means 2 is configured to store the liquid level of one of the liquid medium (for example, a solvent) or the mixed liquid containing the liquid medium and the non-volatile substance.
  • a vaporizing means for forming a vaporized medium by vaporizing a liquid medium.
  • the liquid level of the liquid fluctuates due to the vaporization of the liquid.
  • the calculating means 8 calculates the liquid liquid based on the predetermined position in the vaporizing means from the pressure and the gas pressure in the predetermined position in the vaporizing means 2.
  • the surface position can be calculated as the calculated liquid surface position.
  • means for increasing the area of the gas-liquid interface which will be described later, and auxiliary heating means can be used to adjust the vaporization rate of the liquid medium.
  • the non-volatile substance contained in the mixed solution is not vaporized, and only the liquid medium is vaporized, so that the liquid mixture is concentrated as the liquid medium is vaporized. . Therefore, as the vaporization means 2 of the present invention, a means (for example, the vaporization apparatus 100 of FIG. 4 described later) known as a liquid medium concentration means can be used.
  • the shape of the vaporizing means is a shape that can withstand pressure reduction and pressurization, and a liquid level is formed. If it is a thing, it will not specifically limit. It is preferable to provide a liquid level fluctuation means to be described later.
  • the separating unit 4 cools the gas (for example, carrier gas) discharged from the vaporizing unit 2 and the vaporizing medium, and separates the vaporized medium from the gas by using the condensed vaporized condensing medium.
  • gas for example, carrier gas
  • this separation means 4 partial separation means for condensing a part of the vaporized medium vaporized by the vaporization means 2 into a condensed medium, a part of the vaporized medium, and a separated gas, or A complete separation means that condenses all of the vaporized medium obtained by vaporizing the liquid medium by the vaporization means and separates it into a condensed medium and a separated gas, or a combination of partial separation means and complete separation means can be used. .
  • the separation speed in the separation means 4 can be calculated from the vapor pressure curve of the liquid medium in the vaporization means 2 and the gas pressure, and can be adjusted by the amount of gas supplied by the gas supply means described later.
  • the separation rate and the concentration rate of the non-volatile substance in the mixed solution are preferably determined in consideration of the handleability, economy and the form of the non-volatile substance obtained.
  • a partial separation means when vaporizing in a state where the pressure in the vaporizing means 2 is lower than atmospheric pressure (under reduced pressure), it is preferable to use a partial separation means from the viewpoint of economy.
  • the partial separation means When the partial separation means is used under reduced pressure, the vaporized medium that has not been separated by the partial separation means can be supplied to a further separate separation means and separated under atmospheric pressure.
  • the separation condition in the separation means 4 is not particularly limited as long as it is a temperature condition in which the vaporized liquid medium is condensed to be in a liquid state.
  • the temperature of the condensing of the medium In order to increase the vapor separation (recovery) efficiency, it is preferable to set the temperature of the condensing of the medium to a lower temperature. In the case of a low boiling point medium, 0 to 40 ° C is preferable, and -10 to -40 is more preferable. For medium-boiling media, 10 to -30 ° C is preferred. 0 to -30 ° C is more preferred. In the case of a high boiling point medium, 20 to -20 ° C is preferable, and 10 to -20 ° C is more preferable.
  • the condensation temperature of the vaporized separation medium is set to a higher temperature by using a partial separation means under reduced pressure and a further separation means under atmospheric pressure. Can do.
  • a low boiling point medium 0 to ⁇ 25 ° C. is preferable ⁇ 5 to ⁇ 15 ° C. is more preferable.
  • medium-boiling media 5 to -20 ° C is preferred 5 to -10 ° C More preferable.
  • 20 to 0 ° C. is more preferable in consideration of the case where the high boiling point medium is frozen depending on the type in which 20 to 0 ° C. is preferred.
  • the flow rate of the vaporization medium passing through the separation means 4 is not particularly limited, but the flow rate is preferable without affecting the condensation of the vaporization medium itself.
  • a condenser shape for condensing solvent vapor can be used. Considering the efficiency, it is most preferable to use the organic solvent refining and recovery apparatus (Patent No. 3244639) of the present inventors as a capacitor.
  • the pressure detection means 6 detects the pressure of the gas, and the measurement range preferably extends from the positive pressure region to the negative pressure region.
  • the pressure detection means 6 is preferably an instrument capable of analog output at a measurement range of ⁇ 100 kPa to +10 OkPa at 4 to 20 mA DC or 1 to 5 V DC, for example.
  • the gas pressure is the pressure of the mixed gas of the gas and the vaporized medium when the partial separation unit and the mixed gas supply unit are used as described above.
  • the pressure detection means 6 issues a signal indicating the gas pressure to the calculation means 8.
  • the differential pressure between the pressure at a predetermined position in the vaporizing means 2 and the gas pressure is detected by, for example, a differential pressure gauge (preferably using a differential pressure gauge 180 in FIG. 4 described later).
  • the pressure at a predetermined position in the vaporizing means 2 is the pressure (liquid head pressure) at the outlet of the liquid in the vaporizing means 2 provided below the liquid level (preferably using a detection tube 112 in FIG. 4 described later). It corresponds to the liquid head pressure expressed by the depth below the liquid level of the detection tube from the corresponding liquid level position when the liquid level position is stationary.
  • the liquid head pressure in the detection tube is the outlet pressure of the gas (for example, detection gas) filled in the detection tube.
  • the liquid head pressure can be regarded as the same as the liquid pressure at the detection tube outlet.
  • a signal indicating the pressure difference between the pressure at a predetermined position in the vaporizing means 2 and the pressure of the gas is issued from the differential pressure detecting means 7 to the calculating means 8.
  • the differential pressure gauge can measure a liquid head pressure from 0 to about twice the liquid surface position in the reactor. preferable.
  • a signal indicating the gas pressure is issued from the pressure detection means 6 to the calculation means 8, and the pressure at the predetermined position in the vaporization means 2 and the gas pressure are calculated from the differential pressure detection means 7 to the calculation means 8.
  • a signal indicating the differential pressure is generated. These emitted signals are supplied to the calculation means 8.
  • the calculating means 8 calculates the liquid level position of the liquid based on the predetermined position in the vaporizing means 2 as the calculated liquid level position from the gas pressure and the differential pressure. It is preferable to calculate the liquid level position from the pressure of the gas and the differential pressure, for example, by the above formula.
  • the differential pressure obtained from the above-mentioned differential pressure detection means is calibrated with the gas pressure, an accurate differential pressure is obtained, and the value is calculated based on the volume (area and depth) of the liquid in the vaporization means 2.
  • the calculated liquid level position is calculated by obtaining the distance of the predetermined position in the vaporizing means 2 from the corresponding liquid level position when the liquid level position of the liquid is stationary.
  • the calculated liquid level position is a liquid level position corresponding to when the liquid level position of the liquid is stationary.
  • the vaporization separation apparatus according to the present invention can be used, for example, in a solvent concentration recovery apparatus.
  • the liquid vaporization / separation apparatus has the following liquid level fluctuation means, liquid supply means, gas supply means, stop means, non-volatile substance discharge means, and gas adjustment means.
  • the liquid level of the liquid can be changed mechanically. Thereby, the area where the gas and the liquid are in contact with each other can be positively increased, and the vaporization rate can be adjusted.
  • a container rotation type fluctuation means or a container fixed type fluctuation means provided with an electric motor can be used as the means for mechanically varying the liquid level.
  • the container rotation type variation means provided with an electric motor is a container rotation type in which the container itself is rotated by an electric motor.
  • Examples of the container rotation type include horizontal cylinder type, V type, double cone type, cube type, and round bottom flask type, for example, for two types whose rotation axis is horizontal or inclined.
  • the container-fixed type variable means equipped with an electric motor is rotated by an electric motor in the container. It is a container fixed type in which a rotating blade is provided and fluid in the container is caused to flow by the blade.
  • Examples of the container fixing type include a ribbon type, a screw type, and a paddle type for two types in which the rotation axis of the mixing blade is horizontal or inclined.
  • the area where the gas and the liquid come into contact with each other can be increased by positively bringing the gas into contact with the boundary film portion between the liquid and the gas. This can be done by bringing the gas into contact with the boundary film portion, applying a flow to the gas using a pump or the like, converting it into an air flow, the force of blowing this air flow against the liquid, or publishing the liquid mixture. In this way, by bringing the air current into contact with the boundary film formed at the interface between the liquid and gas, the vaporized medium is moved by the boundary film, and the efficiency of vaporization is improved by constantly updating the boundary film. be able to.
  • the vaporization means 2 provided with the liquid level fluctuation means for example, in the case of a small scale, a single distillation apparatus is preferred. A large rotary evaporator is preferable up to a scale of about 200 L, and 200 to 200-
  • the LOOOOL large-scale apparatus includes a vaporization / separation apparatus 10 having a liquid reservoir of vaporized and separated in an apparatus such as a stirring type pressure-resistant reaction kettle and a rotary-coal type concentration tank.
  • the liquid supply means includes a gas circulation means, a gas adjustment means, and a container for storing a liquid.
  • Liquid is supplied to the vaporizing means 2 until the calculated liquid level position becomes the first liquid level position. Reduce the pressure of the gas in the vaporization means, and in that state, connect the vaporization means 2 (container 110 in FIG. 4 to be described later) to a liquid (pre-purification stock solution tank 156 in FIG. 4 to be described later)
  • an automatic valve not shown provided in the pipe 22 shown in FIG.
  • the gas supply means includes a gas circulation means and a gas adjustment means.
  • the gas is circulated in the vaporization / separation device 10 by gas circulation means (pump 200 in FIG. 4 described later) for supplying gas as gas (for example, carrier gas) to the vaporization means 2 described above.
  • gas circulation means for supplying gas as gas (for example, carrier gas) to the vaporization means 2 described above.
  • the gas adjusting means (the air supply port 52, the supply port 56, and the exhaust port 54 in FIG. 4 described later) supplies or supplies gas. Discharges.
  • the gas pressure can be changed and the gas can be supplied into the vaporization separation apparatus 10.
  • the gas is vaporized and separated by gas adjusting means (air supply port 52 and discharge port 54 in FIG. 4 to be described later) for discharging the gas in the vaporization separation device 10 to the outside of the device or supplying the gas from the vaporization separation device 10 outside.
  • gas adjusting means air supply port 52 and discharge port 54 in FIG. 4 to be described later
  • the gas pressure is reduced (depressurized), or when the gas is supplied from outside the vaporization / separation apparatus 10, the gas pressure is increased (pressurized).
  • the gas supply means can be a mixed gas supply means for supplying a mixed gas of a part of the vaporizing medium and the separated gas.
  • the above-described pump may be a pump having chemical resistance.
  • a pump for gas circulation is preferred, and a diaphragm pump made of fluorine resin is preferred.
  • the pump only needs to have a function of circulating gas in the vaporization separation apparatus 10.
  • the gas supply capacity of the pump in other words, the discharge amount is selected depending on the total volume of the device as described later.
  • the gas moving ability of the pump the ability to move a gas in the range of 0.1 to 10 times the total internal volume in the apparatus constituting the vaporizing means and the separating means of the present invention per minute. Necessary force Preferably, use a pump capable of evacuating gas in the range of 0.3 to 5 times per minute. For example, if the total internal volume of the devices constituting the vaporization means and the separation means is 30 L, the capacity to use a fluororesin diaphragm pump having an exhaust capacity of 10 to LOOL / min is preferable. It is recommended to use a diaphragm pump with a displacement of 20-40L / min.
  • An automatic valve is provided at the supply port or the discharge port of the gas adjusting means (a supply port 52, a supply port 56, and a discharge port 54 in Fig. 4 described later).
  • Automatic valves include flow controllers, automatic valves with orifices, flow control valves, and pressure control valves. The automatic valve is selected arbitrarily according to the function of supply or discharge and the predetermined flow rate.
  • a branch (not shown) may be provided at the supply port to the vaporizing means 2. It can be connected to a further vapor separation device via a branch.
  • the vaporizer The vaporization separation rate can be improved by setting one as a partial condensation condition under reduced pressure and the other as a (normal) condensation condition under atmospheric pressure.
  • the gas supply means (The gas supply by the pump 200, the air supply port 52, the supply port 56, and the exhaust port 54) of Fig. 4 to be described later is stopped.
  • the second liquid surface position is a position where the supply of gas is temporarily stopped, and corresponds to the height of bubbles that cause bumping.
  • the bumping phenomenon is detected as a large fluctuation in the liquid surface position (for example, bubbling about 1.5 times the liquid surface position).
  • the gas supply is turned off until the fluctuations return to normal (eg several seconds).
  • the third liquid level position lower than the second liquid level position is a position where vaporization separation is stopped, and is set based on the amount of remaining liquid in the container 110.
  • the pressure in the vaporization means 2 is increased by supplying gas, and the non-volatile substances are discharged from the vaporization means 2.
  • the gas pressure is increased by supplying the gas, and it is connected to a container (residue tank 158 in FIG. 4 to be described later) for discharging the concentrate, and the non-volatile substances are discharged.
  • a solvent concentration and recovery apparatus such as heating means and gas purification means, will be described (not shown).
  • an auxiliary heating means (not shown) can be used to promote vaporization of the liquid in the vaporizing means 2.
  • the liquid is preferably vaporized at a temperature below the boiling point.
  • the temperature may be adjusted to a temperature at which evaporation occurs at 100 ° C or lower by adjusting the pressure.
  • the vaporization means 2 can be used as a part for holding the container in which the liquid is stored and a heating part (illustrated). Without). Further, when the vaporizing means 2 is a closed apparatus, the heating apparatus can be provided outside the apparatus to heat the entire apparatus.
  • gas purification means (not shown) can be further included.
  • the gas purification means is means (for example, an adsorption filter, a cleaning trap) for removing fine particulate matter, acid, alkali and the like.
  • the gas purification means may be provided in any path that can be provided in the vaporization separation apparatus 10 of the present invention.
  • the gas supply port 114) is preferably provided.
  • a preferred embodiment of the present invention is an embodiment in which gas is circulated in a closed system. It is possible to maintain a high vaporization separation rate by circulating gas in the atmospheric pressure device. It is also possible to select a mode in which most liquid medium is vaporized and separated in a closed system and then partially opened to leak. In the latter case, it will be a mode of leaking partly into the atmospheric pressure system, but trapping it with a gas purification means before releasing it to the atmospheric pressure system will minimize the opportunity for the medium to dissipate outside. be able to.
  • the material used in the apparatus of the present invention is a material that is impermeable to gases and liquids and has chemical resistance.
  • the apparatus including the vaporizing unit of the present invention can be made opaque as it does not need to be visible from the outside.
  • materials are carbon materials, glass, enamel, stainless steel, GL steel, GL stainless steel, inorganic materials such as ceramics; polyethylene, polypropylene, tetrafluoroethylene resin, trifluoride salt, ethylene resin, Organic materials such as vinylidene fluoride resin, fluorinated styrene propylene resin, perfluorinated alkoxy resin, unsaturated polyester, epoxy resin, bull ester resin, furan resin, fluorine resin; metal, transition metal , Noble metals, alloys thereof, such as Al-Mg alloys, Cu alloys (eg Cu-Sn alloys, Sn Zn alloys, Cu-AL alloys, Cu-Ni alloys), Ni alloys (eg Ni-Cu alloys, Ni- Metal materials such as
  • the present invention relates to, for example, concentration of a solvent used in a reaction kettle or the like in the organic synthetic chemical industry, concentration of an extract of a natural product such as a crude drug, concentration of a trace component in an environmental chemical analysis, and a distillation apparatus. It can be used for concentration recovery of liquids, concentration of liquid specimens; or recovery of cleaning liquids such as mechanical devices, mechanical parts, substrates, molds, and photoresists.
  • FIG. 4 shows a conceptual diagram of a liquid medium and mixed liquid vaporizing / separating apparatus according to a preferred embodiment of the present invention.
  • the vaporization / separation apparatus for the liquid medium and the mixed liquid includes the vaporization apparatus 100 as the vaporization means, the separation apparatus 140 as the separation means, the compound meter 160 as the pressure detection means, and the differential pressure detection. It includes a differential pressure gauge 180 as a means, a calculation means, a detection control device 300, and other attached devices.
  • the vaporizer 100 includes a container 110.
  • the container 110 includes a detection tube 112 for detecting pressure at a predetermined position in the container 110, a supply port 114 for supplying gas to the container 110, and a container 110.
  • a transfer port 116 for supplying a raw solution before purification or discharging a concentrated solution, and a temperature tube 118 having a temperature sensor for measuring the temperature of the solvent in the container 110 are provided.
  • a holding table that also serves as a heat source unit and a liquid level fluctuation control means (not shown) including an electric motor that mechanically fluctuates the liquid level may be included.
  • the predetermined position of the detection tube 112 is preferably lower than any of the first to third liquid surface positions.
  • the container 110 has a long shape, for example, a flask shape or a test tube shape, at one end of which a movable connecting portion to the cooling condenser 144 and the concentration (vaporization / separation) liquid receiver 150 is formed. Is preferred to have ⁇ .
  • the conduit provided in the container 110 is properly used according to the purpose and application.
  • Large diameter pipes are used as conduits for the transfer of gases, liquids and vaporized media (eg, supply port 114 and conduit 116 in FIG. 4).
  • a slightly finer conduit is used for the detection tube at the liquid level (for example, the detection tube 112 in FIG. 4).
  • a conduit inserted into the container 110 in the vaporizing means 2 As the material, it is possible to use a material having a solvent-resistant performance such as a corrosion-resistant metal, glass, polypropylene, or polyethylene, and it is preferable to use fluorine resin.
  • the temperature tube 118 detects the temperature in the container 110 by a temperature sensor provided.
  • a temperature sensor (indicated by the symbol “T” in FIG. 4) provided in the temperature pipe 118 and a detection control unit 300 described later are electrically connected by a wiring 314.
  • the white squares shown at the bottom of the temperature sensor in Fig. 4 indicate the output section that outputs the temperature sensor force signal.
  • the output unit of the temperature sensor issues a signal indicating the detected temperature value to the detection control means 300.
  • the temperature sensor detects the inflection point of the liquid indicating the end of vaporization of the low-boiling liquid medium (for example, 5 graphs).
  • the solvent that vaporizes and separates before the inflection point is a low boiling point solvent, and the solvent that vaporizes and separates after the inflection point is a high boiling point solvent.
  • the gas circulation in the vaporizer 10 is stopped.
  • the power to replace the concentrated (collected) liquid receiver 150, and the purified (collected) liquid receiver 150 is discharged into the purified recovery medium tank 154 for the low-boiling point purified solvent. Thereafter, the vaporization separation can be resumed, and the high boiling point solvent can be separated into the concentrated (recovery) liquid receiver 150 and discharged to the purified recovery medium tank 154 having a high boiling point.
  • the container 110 can be held by a holding table (not shown), and the temperature of the container 110 can be adjusted by using both the holding table and a heat source unit (not shown).
  • the heat source unit is electrically connected to the detection control means 300 through a wiring 312.
  • the white squares shown in the lower part of the heat source part provided in the lower part of the container 110 in FIG. 4 is a drive system for driving the heat source part, and includes, for example, an electric motor and a solenoid.
  • the container 110 is heated based on a signal for driving the heat source unit. In consideration of the boiling point of the liquid, a hot water bath, an oil bath, a hot platen, etc. can be used as the heat source. From the viewpoint of safety, a hot water bath is preferable.
  • the container 110 has a container rotation type variation means equipped with an electric motor for mechanically varying the liquid level as described above.
  • the container rotation type fluctuation means equipped with an electric motor rotates the container itself with an electric motor to mechanically fluctuate the liquid level (for example, a rotary evaporator is preferable).
  • a container-fixing type fluctuation means equipped with an electric motor rotates a blade provided in the container to The body fluid level is changed mechanically.
  • the electric motors of these fluctuating means are electrically connected to the detection control means 300 by wiring 310.
  • the white squares shown in the lower part of the container inlet in FIG. 4 are drive systems for driving the electric motor of the changing means, and are composed of, for example, an electric motor or a solenoid. Based on the control signal for driving the electric motor of the fluctuating means, the electric motor operates to fluctuate the liquid level.
  • the gas supply port 114 is formed in the upper portion of the container 110.
  • the lower end of the nozzle of the gas supply port 114 is open, and the gas supplied through the gas supply port 114 can be discharged downward from the nozzle.
  • the airflow described above is used. Can be sprayed on liquid.
  • Vaporization of the solvent is promoted by discharging the gas from the lower end of the nozzle of the gas supply port 114 provided above the liquid level of the solvent injected into the container 110.
  • the outlet port 142 to the separation device 140 is formed in the upper portion of the container 110, and the vaporized medium is discharged from the container 110 through the outlet port 122 to the separation device 140.
  • the air flow described above is used. The liquid mixture can be bubbled.
  • Vaporization of the solvent is promoted by discharging the gas from the lower end of the nozzle of the gas supply port 114 provided below the liquid level of the solvent injected into the container 110.
  • the transfer port 116 for supplying the raw solution before purification into the container 110 or discharging the concentrated liquid is formed in the upper part of the container 110.
  • the transfer port 116 is connected to the pre-purification stock solution tank 156 via the pipe 22, and is connected to the concentrate tank 158 via the pipe 26.
  • An automatic valve (not shown) provided in the pipe 22 for transferring the unpurified stock solution is electrically connected to the detection control means 300 by a wiring 332.
  • a white square shown on the left side of the pipe 22 in FIG. 4 is a drive system for driving the automatic valve of the pipe 22, and is composed of, for example, an electric motor or a solenoid. The automatic valve operates based on the control signal for driving the automatic valve of the pipe 22.
  • An automatic valve (not shown) provided in the pipe 26 for transferring the concentrated liquid is electrically connected to the detection control means 300 through the wiring 334.
  • the open square shown on the left side of the pipe 26 in FIG. 4 is a drive system for driving the automatic valve of the pipe 26. For example, an electric motor is a solenoid force. Based on the control signal for driving the automatic valve of this pipe 26, the automatic valve operates.
  • Separator 140 includes a concentrating (collecting) liquid receiver 150 and a condensing unit (cooling condenser) 144 connected to the upper part thereof.
  • the solvent vapor inlet 142 formed in the vicinity of the lower end of the cooling condenser 144 is branched and one is connected to the container 110 that supplies the vaporized medium, and the other stores the condensed medium.
  • Concentrated (collected) liquid receiver 150 is connected.
  • Cooling condenser 1 A gas outlet 148 formed at the upper part of 144 for extracting the separated carrier gas is connected to a differential pressure gauge 180 via a pipe 28.
  • the condensing cooling coil 146 formed in a spiral shape in the condensing cooling condenser 144 is connected to a refrigerant reservoir (not shown) provided with a supply pump.
  • the supply pump for the refrigerant reservoir supplies the refrigerant to the condensing cooling coil 146.
  • the type of refrigerant and the refrigerant temperature can be selected according to the desired cooling temperature.
  • the supply pump for the refrigerant reservoir is electrically connected to the detection control means 300 by the wiring 320.
  • the white square shown on the left side of the separation device 140 in FIG. 4 is a drive system for driving the supply pump for the refrigerant reservoir, and includes, for example, an electric motor and a solenoid.
  • a control signal for driving the refrigerant reservoir supply pump is issued from the detection control means 300 to the refrigerant reservoir supply pump. With this control signal, the supply pump for the refrigerant reservoir supplies the refrigerant to the condensing cooling coil 146.
  • the concentration (recovery) liquid receiver 150 is connected to the refined recovery medium liquid tank 154 via the pipe 24.
  • An automatic valve (not shown) provided in the pipe 24 for transferring the purified recovery medium liquid is electrically connected to the detection control means 300 through the wiring 330.
  • a white square shown on the left side of the pipe 24 in FIG. 4 is a drive system for driving the automatic valve of the pipe 24, and includes, for example, an electric motor and a solenoid. This control signal for driving the automatic valve of this pipe 24 Based on this, the automatic valve operates.
  • a gas outlet 148 for leading the carrier gas separated from the separator 140 is connected to the pipe 28.
  • the separated carrier gas is supplied to the compound meter 160 through the pipe 28.
  • the compound meter 160 is connected via a pipe 28 to a separation device 140 connected to one end thereof and a pump 200 connected to the opposite end thereof.
  • the compound gauge 160 is connected to the differential pressure gauge 180 through the pipe 30 through a branch connection provided between the separation device 140 of the pipe 28 and the compound gauge 160.
  • the gas pressure is detected using a coupled meter 160.
  • the coupled meter 160 (indicated by reference numeral “S2” in FIG. 4) is electrically connected to the detection control means 300 via a wiring 370.
  • the white squares beside the coupled meter 160 (reference “S2”) in FIG. 4 indicate the output unit that outputs a signal from the coupled meter 160.
  • the output unit of the coupled meter 160 issues a signal indicating the detected pressure value to the detection control means 300.
  • the differential pressure gauge 180 includes a gas pipe formed on the detection tube 112 provided at a predetermined position (a position below the first liquid level) in the container 110 described above and the condenser cooling condenser 144 described above. Connected to exit 148.
  • the detection pipe 112 is connected to a pipe 30 provided with a supply port 56 for supplying a carrier gas to the detection pipe 112.
  • the supply port 56 has a flow controller, and has several kinds of automatic valves with orifices (not shown). Have it!
  • the differential pressure gauge 180 detects the differential pressure between the pressure of the liquid at the outlet of the detection tube 112 (the outlet pressure of the detection tube 112) and the pressure of the gas.
  • the differential pressure gauge 180 (indicated by reference numeral “S1” in FIG. 4) is electrically connected to the detection control means 300 via a wiring 360.
  • the white squares shown beside the differential pressure gauge 180 (reference “S1”) in FIG. 4 indicate an output unit that outputs a signal from the differential pressure gauge 180.
  • the output unit of the differential pressure gauge 180 issues a signal indicating the value of the differential pressure detected by the differential pressure gauge 180 to the detection control means 300.
  • the supply port 56 includes a flow controller or an automatic valve (not shown) with any of a plurality of orifices.
  • the automatic valve at supply port 56 controls the flow rate of the carrier gas supplied to detection tube 112. Control.
  • the automatic valve of the supply port 56 is electrically connected to the detection control means 300 by wiring 354.
  • a white square shown on the right side of the supply port 56 in FIG. 4 is a drive system for driving the automatic valve of the supply port 56, and includes, for example, an electric motor and a solenoid. Based on the control signal for driving the automatic valve of the supply port 56, the size of the orifice of the automatic valve is switched and the flow rate is adjusted. Detection gas is supplied to the supply port 56 (intake arrow in FIG. 4).
  • the separated carrier gas is led out from the gas outlet 148 formed in the upper part of the condenser condenser 144 for condensation described above.
  • One end of the pipe 28 is connected to the gas outlet port 148.
  • the other end of the pipe 28 is connected to the suction port 202 of the pump 200.
  • the pump 200 has an outlet 204 for discharging the supplied carrier gas.
  • an air supply port 52 and an exhaust port 54 are connected to the pump 200.
  • the pump 200 is electrically connected to a power source (not shown) for supplying power to the pump 200.
  • the carrier gas supplied to the suction port 202 is led out from the discharge port 204, and the carrier gas is supplied to the supply port 114 of the vaporizer 100.
  • the pump 200 is electrically connected to the detection control means 300 through a wiring 340.
  • the white square shown in the lower part of the pump 200 in FIG. 4 is a drive system for driving the pump 200 in the pipe 24, and includes, for example, an electric motor and a solenoid. Based on the control signal for driving the automatic valve of the pump 200, the pump 200 operates.
  • the pump 200 is preferably a gas circulation vacuum pump, and the pump 200 has chemical resistance! /.
  • a vacuum pump made of fluorine resin is preferred.
  • the air supply port 52 includes a flow controller or an automatic valve (not shown) with any of a plurality of orifices.
  • the air supply port 52 supplies carrier gas into the vaporization / separation device 10. (Air supply arrow in Fig. 4)
  • the automatic valve of the air supply port 52 is electrically connected to the detection control means 300 through a wiring 350.
  • a white square shown on the right side of the air supply port 52 in FIG. 4 is a drive system for driving the automatic valve of the air supply port 52, and also includes, for example, an electric motor and a solenoid force. Based on the control signal for driving the automatic valve of the air supply port 52, the automatic valve opens and closes.
  • Flow controller, or -It is preferable that the flow rate is adjusted by the size of one dollar valve or orifice. Needle valves or orifices are preferred because of their price and reliability.
  • the exhaust port 54 is equipped with a flow controller or an automatic valve (not shown) with any number of orifices.
  • the exhaust port 54 exhausts the carrier gas from the inside of the vapor separation device 10 (exhaust arrow in FIG. 4).
  • the pipe 20 may be provided with a branch (not shown) between the exhaust port 54 and the supply port 114.
  • One of the branches of the pipe 20 is connected to the supply port 114 of the vaporizer 100 through a flow rate control valve (not shown), and the other is a pipe with one end opened.
  • a pipe (both not shown) provided with a pressure regulating valve at the opened and open end may be included.
  • the pressure regulating valve is a valve that has a mechanism in which a stop mechanism in the valve is pushed open by gas pressure, and is opened and closed depending on the pressure. The pressure regulating valve is opened when the pressure in the vaporization / separation device 10 exceeds atmospheric pressure.
  • One of the open pipes can be connected to an apparatus for further vapor separation, or can be connected to the pipe 30. Two or more devices for vapor separation can be connected through such a branch.
  • the automatic valve at the exhaust port 54 is electrically connected to the detection control means 300 through the wiring 352.
  • a white square shown on the right side of the exhaust port 54 in FIG. 4 is a drive system for driving the automatic valve of the exhaust port 54, and also includes, for example, an electric motor and a solenoid force. Based on the control signal for driving the automatic valve of the exhaust port 54, the automatic valve opens and closes.
  • the preferred shape is the same as that of the automatic valve of the air inlet 52 described above.
  • Detection control means (apparatus) 300 includes calculation means (apparatus), temperature control means (apparatus), liquid level change control means (apparatus), condenser control means (apparatus), and pressure adjustment control means (apparatus). ), Residual volatile substance discharge control means (apparatus), liquid supply control means (apparatus), vaporization separation control means (apparatus), stop / end control means (apparatus), and discharge of residue concentrate It includes control means (apparatus) and purified recovery liquid discharge control means (apparatus).
  • the calculation means can use a value (for example, pressure, differential pressure) calculated in advance by each control means as the calculated liquid level position.
  • the vaporization separation apparatus 10 In the vaporization separation apparatus 10, the residual volatile substance discharge control means, the liquid supply control means, the vaporization separation control means, the stop completion control means, the residue concentrate discharge control means, and the purified recovery liquid discharge control.
  • the vaporization separation apparatus 10 can be automatically controlled by combining the means and, if necessary, other control means in a series of flows as will be described later.
  • the detection control means 300 preferably includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. that perform arithmetic processing.
  • the temperature control means determines whether the temperature is lower or higher than a predetermined temperature based on the signal indicating the temperature value detected by the temperature sensor. If it is determined that the temperature is lower, the temperature control means sends a signal to start heating to the heat source section. When the container 110 is heated and determined to be high, a signal for stopping the heating is issued to the heat source unit, and the heating of the container 110 is stopped. Thereby, the temperature of the container 110 is controlled to a predetermined temperature.
  • the liquid level fluctuation control means issues a control signal for mechanically changing the liquid level of the liquid in the container 110 to an electric motor (not shown) of the container rotation type fluctuation means (rotary evaporator). With this control signal, the electric motor rotates the rotary evaporator. Thereby, the liquid level of the liquid is mechanically changed.
  • the condenser control means issues a control signal for operating the condenser 140 to the supply pump of the refrigerant reservoir. This control signal activates the supply pump for the refrigerant reservoir. As a result, the refrigerant is supplied to the condensation cooling coil 146.
  • the pressure adjustment control means is not limited as long as the inside of the vaporization / separation apparatus 10 is controlled to be depressurized, atmospheric pressure, or pressurized. As an example, the following configuration can be adopted.
  • a control signal for depressurizing the inside of the vapor separation apparatus 10 is sent to the automatic valve of the air supply port 52, the automatic valve (not shown) of the exhaust port 54, and the pump 200.
  • This control signal closes the automatic valve at the supply port 52, opens the automatic valve at the exhaust port 54, and activates the pump 200. Let As a result, the pressure of the gas in the vaporization / separation apparatus 10 is reduced (depressurized).
  • a control signal for bringing the inside of the vaporization / separation apparatus 10 to atmospheric pressure is issued to the automatic valve of the air supply port 52, the automatic valve of the exhaust port 54 (both not shown) and the pump 200.
  • the automatic valve at the air supply port 52 is opened, the automatic valve at the exhaust port 54 is opened, and the pump 200 is operated.
  • the pressure of the gas in the vaporization separation apparatus 10 is made the same as the atmospheric pressure (atmospheric pressure).
  • a control signal for pressurizing the inside of the vaporization / separation apparatus 10 is sent to the automatic valve of the air supply port 52, the automatic valve of the exhaust port 54 (both not shown) and the pump 200.
  • the automatic valve at the inlet 52 is opened, the automatic valve at the outlet 54 is closed, and the pump 200 is operated. This increases (pressurizes) the pressure of the gas in the vaporization / separation apparatus 10.
  • the residual volatile substance discharge control means sends a control signal for discharging the volatile substance in the pump 200 to an automatic valve for the supply port 52 and an automatic valve for the exhaust port 54 ( This control signal opens the automatic valve at the air supply port 52, opens the automatic valve at the exhaust port 54, and operates the pump 200. As a result, the volatile remaining in the pump 200 is released. The substance is discharged and the inside of the pump 200 is cleaned.
  • the discharge control means for residual volatile substances receives a control signal for discharging volatile substances in the pump 200
  • the value of the operation time of the pump 200 (for example, 5 minutes) It is determined whether the substance has the same force as the value of the discharge pump time, and if it is determined that it is the same, the automatic valve of the supply port 52 is closed, the automatic valve of the exhaust port 54 is closed, and the pump A control signal for deactivating 200 is issued, and at the same time, a control signal is issued indicating that the remaining volatile substances have been discharged. As a result, the discharge of the remaining volatile substances is completed.
  • the liquid supply control means includes calculation means.
  • the liquid supply control means receives a control signal indicating that the discharge of residual volatile substances has been completed.
  • the control signal for reducing the pressure in the vaporization separation apparatus 10 is as described above. It is issued to the automatic valve of the air supply port 52, the automatic valve of the exhaust port 54 (not shown) and the pump 200.
  • the GO liquid supply control means determines whether or not the pressure of the gas detected by the compound meter 160 is the same as the value at the time of the predetermined liquid injection. A control signal to stop the operation and a control signal to close the automatic valve of the exhaust port 54 are issued. As a result, the pressure of the gas in the vaporization / separation apparatus 10 is set to a predetermined value at the time of liquid injection (for example, ⁇ 80 kPa).
  • the liquid supply control means issues a control signal to the automatic valve (not shown) of the supply port 56 to make the outlet pressure of the detection tube 112 of the differential pressure gauge 180 the same as the pressure at the time of liquid injection.
  • the control signal the orifice of the automatic valve of the supply port 56 is changed to a predetermined orifice suitable for a predetermined liquid injection.
  • a control signal for flowing the detection gas through the detection pipe 112 of the differential pressure gauge 180 is automatically sent to the supply port 56 so that the outlet pressure of the detection pipe 112 and the pressure of the liquid at the outlet of the detection pipe 112 are balanced. Fires on a valve (not shown).
  • this control signal the detection gas flows into the detection tube 112 at a predetermined flow rate. As a result, the outlet pressure of the detection tube 112 and the pressure of the liquid at the outlet of the detection tube 112 are balanced.
  • the liquid supply control means issues a control signal for supplying the liquid (the raw solution before purification) to the container 110 to an automatic valve (not shown) provided in the pipe 22 by the wiring 332. With this control signal, the automatic valve provided in the pipe 22 is opened. As a result, the liquid is transferred from the unpurified stock solution solvent tank 156 to the container 110.
  • the liquid supply control means determines whether or not the differential pressure detected by the differential pressure gauge 180 is a value corresponding to the first liquid level position. A predetermined signal is given to the supply control means, the automatic valve provided in the pipe 22 is closed, and a control signal is issued indicating that the liquid supply is finished. Thereby, the liquid is supplied into the container 110 up to the first liquid level position.
  • the vaporization separation control means circulates a single carrier gas in the vaporization separation device 10 when it receives a control signal indicating that the liquid supply has been completed, or when it receives a control signal for starting vaporization separation.
  • the control signal to start vaporization separation the automatic valve of the inlet 52, Is emitted to an automatic valve (not shown) and pump 200 at outlet 54.
  • the automatic valve of the air inlet 52 is closed, the automatic valve of the air inlet 54 is closed, and the pump 200 is operated.
  • the carrier gas is circulated in the vapor separation apparatus 10 and the carrier gas is supplied from the supply port 114.
  • the stop / end control means When receiving the control signal for starting vaporization separation, the stop / end control means sends a control signal for adjusting the outlet pressure of the detection tube 112 of the differential pressure gauge 180 to the pressure at the time of vaporization separation. Fires on a valve (not shown).
  • the orifice of the automatic valve of the supply port 56 is changed for a predetermined vaporization separation.
  • a control signal for flowing the detection gas to the detection tube 112 of the differential pressure gauge 180 is sent to the automatic valve of the supply port 56 so that the outlet pressure of the detection tube 112 and the pressure of the liquid at the outlet of the detection tube 112 are in equilibrium. (Not shown).
  • the detection gas is caused to flow through the detection tube 112 at a predetermined flow rate. As a result, the outlet pressure of the detection tube 112 and the pressure of the liquid at the outlet of the detection tube 112 are balanced.
  • the stop / end control means determines whether or not the differential pressure detected by the differential pressure gauge 180 is a value exceeding the second liquid level position. If it is determined that the differential pressure gauge 180 exceeds, the control signal for stopping the pump 200 is issued. . Thereby, vaporization separation is stopped.
  • the stop / end control means determines whether or not the differential pressure detected by the differential pressure gauge 180 is a value corresponding to the third liquid level position. In addition, a control signal indicating that the vaporization separation has been stopped is issued. As a result, the vaporization separation is stopped and terminated.
  • the residue concentrate discharge control means When the residue concentrate discharge control means receives a control signal indicating that vaporization separation has been stopped, or when it receives a control signal for starting the residue concentrate discharge, the inside of the vapor separator 10 is added. As described above, the control signal for adjusting the pressure is sent to the automatic valve of the air supply port 52, the automatic valve of the exhaust port 54 (not shown), and the pump 200.
  • the residue concentrate discharge control means determines whether or not the gas pressure detected by the coupling meter 160 is the same as the value at the time of discharge of the predetermined residue concentrate, and determines that they are the same. Closes the automatic valve at the inlet 52, closes the automatic valve at the outlet 54 and activates the pump 200 Issue a control signal to stop. As a result, the pressure of the gas in the vaporization / separation apparatus 10 becomes a predetermined value (for example, +20 kPa) at the time of discharging the concentrated residue.
  • a predetermined value for example, +20 kPa
  • the residue concentrate discharge control means issues a control signal for discharging the concentrated (recovered) solution to the concentrate tank 158 to the automatic valve (not shown) provided in the pipe 26 via the wiring 334.
  • the automatic valve provided in the pipe 26 is opened.
  • the concentrate is transferred from the container 110 to the concentrate tank 158.
  • the residue concentrate discharge control means determines whether or not the gas pressure detected by the coupling meter 160 is the same as the value at the end of the discharge of the predetermined residue concentrate, and determines that they are the same. When this happens, the automatic valve provided in the pipe 26 is closed and a control signal is issued indicating that the residue concentrate has been discharged. As a result, the pressure of the gas in the vaporization / separation apparatus 10 becomes a predetermined value (for example, 1. OkPa) at the end of the discharge of the residue concentrate, and the discharge of the residue concentrate is ended.
  • a predetermined value for example, 1. OkPa
  • the purification / recovery liquid discharge control means adds the inside of the vapor separator 10 when receiving a control signal indicating that the residue concentrated liquid has been discharged or when receiving a control signal for starting the discharge of the purified recovery liquid.
  • the control signal for adjusting the pressure is sent to the automatic valve of the air supply port 52, the automatic valve of the exhaust port 54 (not shown), and the pump 200.
  • the purified recovery liquid discharge control means determines whether or not the gas pressure detected by the coupled meter 160 is the same as the value at the time of discharge of the predetermined purified recovery liquid. Closes the automatic valve at the inlet 52, closes the automatic valve at the outlet 54, and issues a control signal to deactivate the pump 200. As a result, the pressure of the gas in the vaporization / separation apparatus 10 becomes a value (for example, +20 kPa) at the time of discharging a predetermined purified recovery liquid.
  • the purified recovery liquid discharge control means issues a control signal for discharging the purified recovery liquid to the purified recovery liquid tank 154 to an automatic valve (not shown) provided in the pipe 24 via the wiring 330. With this control signal, the automatic valve provided in the pipe 24 is opened. As a result, the purified liquid is transferred from the concentrated (collected) liquid receiver 150 to the purified recovered liquid tank 154.
  • the gas pressure detected by the compound meter 160 is the same as the value at the end of the discharge of the specified purified recovery liquid.
  • it issues a control signal indicating that the purified and recovered liquid has been discharged. According to this Then, the pressure of the gas in the vaporization separation apparatus 10 becomes the value at the end of discharge of the predetermined purified recovery liquid (for example, 1. OkPa), and the discharge of the purified recovery liquid ends.
  • the predetermined purified recovery liquid for example, 1. OkPa
  • the vaporization separation control means issues a control signal for enabling the pressure regulating valve to an automatic valve (not shown) provided at the branch of the pipe 20.
  • the vaporization separation control means opens the automatic valve provided at the branch of the pipe 20 by this control signal.
  • the pressure regulating valve becomes operable.
  • the vaporization separation control unit issues a control signal for reducing the flow rate of the flow rate control valve to a flow rate control valve (not shown) provided in the pipe 20.
  • this control signal the flow rates of the carrier gas and the vaporizing medium supplied to the supply port 114 through the flow rate control valve provided in the pipe 20 are reduced.
  • the inside of the container 110 remains in a reduced pressure state, and the inside of the pipe 20 is in a pressurized state.
  • the pressure in the pipe 20 is brought to atmospheric pressure by the above-mentioned pressure regulating valve.
  • the vaporization separation control means issues a control signal for detecting an inflection point in the temperature change of the liquid to a temperature sensor (not shown) of the temperature tube 118. It is determined whether the inflection point detected by the temperature sensor is a force that is the inflection point of a given liquid. If it is determined that the inflection point is an inflection point, control is performed to bring the vaporization separation device 10 to atmospheric pressure. Signals are sent to the automatic valve at the supply port 52, the automatic valve at the exhaust port 54 (both not shown) and the pump 200 as described above.
  • the vaporization separation control means sends a control signal for starting the discharge of the purified recovered liquid, as described above, an automatic valve for the supply port 52 and an automatic valve for the exhaust port 54 (1 /, not shown) And pump 200.
  • the vaporization separation control means uses the automatic valve provided in the pipe 24 by the wiring 330 to send the control signal for discharging the purified recovery liquid to the purified recovery liquid tank 154 (tank for low boiling liquid medium). (Not shown).
  • the vaporization separation control unit when the vaporization separation control unit receives the control signal for starting the vaporization separation, the control signal for starting the vaporization separation by circulating the carrier gas in the vaporization separation device 10, It is emitted to the automatic valve of the air supply port 52, the automatic valve of the exhaust port 54 (both not shown) and the pump 200.
  • a low-boiling liquid medium is carried out under atmospheric pressure, and a high-boiling liquid medium is carried out under reduced pressure.
  • the low-boiling liquid medium and the high-boiling liquid medium can be separated by switching the purified recovery liquid tank 154 from which the purified recovery liquid is discharged.
  • Types of setting values in control of vaporization separation Table 1 shows the actual setting values kPa and setting purposes for each of A to H. Based on the calculation means described above, the set value should be set appropriately according to factors such as the volume of the container 110 in the vaporization means 2, the volume of the liquid at the first to third liquid surface positions, the viscosity of the liquid, and the boiling point of the liquid. Can do.
  • Table 1 Types of pressure increase / decrease set values, implementation set values, and setting purposes
  • the container 110 (flasco type 10 L volume) is first heated to 35 ° C. in a hot water bath, and the refrigerant ( (10 ° C) was supplied, and then the container 110 was rotated (stirred) using a large rotary evaporator for solvent evaporation, and detection control for operation preparation was performed.
  • the pump 200 was operated for about 5 minutes to discharge residual volatile substances in the pump.
  • the pressure inside the apparatus (vapor separation apparatus 10) was reduced to the set value A-1 (—80. OkPa) of the compound meter S2.
  • a methanol solution was injected from the pre-purification stock solution tank 156.
  • the liquid level position in the container was measured. That is, a comparison was made with the set value B-1 (0.5 kPa) of the differential pressure gauge S1, and when it was lower than the set value B-1, the methanol solution was again injected from the unpurified stock solution tank 156. This control was repeated, and when the value of the differential pressure gauge S1 became higher than the set value B-1, the end point of the methanol solution injection was determined.
  • B-1 0.5 kPa
  • Vaporization separation control was performed under reduced pressure until the set value C 1 (96. During this time, if the liquid level is higher than the differential pressure gauge setting value D-1 (0.7 kPa) (when the second liquid level is exceeded), a diaphragm pump is used to prevent bumping. 200 was temporarily stopped and vaporization separation control was performed. The point at which the differential pressure gauge set value E-1 (0.2 kPa) was reached was defined as the end point of vaporization separation. Thereafter, gas was introduced into the apparatus, and the pressure was increased to atmospheric pressure until the setting value F-1 (one 1. OkPa) of the compound meter was reached.
  • the inside of the container 110 is pressurized until the set value G-1 (+20 OkPa) of the compound meter is reached, and the concentrated liquid (residue) accumulated at the bottom of the container 110 is discharged to the concentrated liquid tank 158. This was maintained until the setting value of the compound meter reached H-1 (1. OkPa).
  • the inside of the container 110 was pressurized until the set value G-1 (+20 OkPa) of the compound meter was reached again. Subsequently, the recovered liquid was discharged from the solvent receiver 150 to the purified recovered liquid tank 154 and left as it was until the set value H of the coupled meter was reached. As soon as the above series of controls were completed, residual volatile substances in the diaphragm pump 200 were discharged.
  • Example 2 The same procedure as in Example 1 was performed except that the type of the recovered solvent and the heating bath were changed as shown in Table 2.
  • Table 2 shows the results of Examples 1-9.
  • Table 2 Solvent recovery under reduced pressure
  • the discharge control of the remaining volatile substances by the detection control for the initial operation preparation and the detection control of the liquid supply from the unpurified stock solution tank are performed in the same manner as in Example 1.
  • the temperature of the heating bath was 65 ° C.
  • the vapor separation control was started.
  • the diaphragm pump was operated so as to keep the set value C-2 (about -5kPa) of the coupled meter S2 while supplying gas into the vaporization vessel.
  • the liquid surface position was detected and recovered.
  • the end point of vaporization separation was determined when the differential pressure gauge set value E-2 (0.2 kPa) was reached.
  • Example 10 The same procedure as in Example 10 was performed except that the type of organic solvent to be recovered, the heating bath temperature, and the diaphragm pump flow rate were changed as shown in Table 3. The results are shown in Table 3.
  • Vapor separation control was started with 5 L of solvent injected into the container 110 from the stock tank 1 5 6 before purification.
  • the discharge control of the remaining volatile substances by the detection control for the initial operation preparation and the detection control of the liquid supply from the unpurified stock solution tank are performed in the same manner as in Example 1. It was.
  • the diaphragm pump was operated to keep the set value C3 (about 5kPa) of the compound meter S2, and the liquid level position was detected. During this time, the change with time of the liquid temperature in the container 110 was followed. After recovery of the solvent and before the inflection point, a solvent with a lower boiling point was recovered. When the inflection point was detected, the gas circulation in the apparatus was once stopped. Thereafter, the vaporization separation apparatus 10 was decompressed and started again, and recovery of the high boiling point solvent was started. This control is continued until the set value E ⁇ 3 (0.2 kPa) of the differential pressure gauge is reached.
  • Fig. 5 shows a graph of the temperature of the liquid in the vessel 110 that separates low-boiling and high-boiling solvents.
  • the peak in the time graph of the liquid temperature is the inflection point of the liquid temperature.
  • a flow control valve (needle valve) (not shown) is further provided in front of an automatic valve (not shown) in the middle of the conduit 20 connecting the decompression pump 200 and the container 110,
  • an automatic valve (not shown) in the middle of the conduit 20 connecting the decompression pump 200 and the container 110
  • one branch pipe (not shown) in front of the one-dollar valve is connected to the vacuum pump 200, and the other pipe is led to the atmosphere side.
  • a pressure control valve (relief valve) (not shown) serving as a check valve is attached to the outlet of the conduit opened to the atmospheric pressure atmosphere. This pressure control valve opens when the pressure in the pipe exceeds atmospheric pressure, and closes when the pressure is below atmospheric pressure.
  • the detection control of the discharge of residual volatile substances by the detection control for the first operation preparation was performed in the same manner as in “Example 1”.
  • the gas was flown in until the set value F-4 (1. OkPa) of the coupled meter was reached, and the pressure of the gas was changed to atmospheric pressure.
  • the vacuum pump 200 is operated to reduce the pressure in the container 110 (75 kPa), and the dioxane evaporation recovery operation is started. That is, the evaporated dioxane is condensed and recovered by a cooling condenser 144 in which a 15 ° C. refrigerant circulates.
  • the control starts with time measurement and continues the operation of the pressure reduction pump 200 while measuring the recovered amount of dioxane for a certain period of time. During this time, the needle valve and the pressure control valve operate appropriately, and the degree of pressure reduction (-75kPa ).
  • Example 20 was carried out in the same manner as in Example 19 except that the type of the organic solvent to be recovered was changed to ethyl acetate and the heating bath was changed to 60 ° C.
  • the detection control of the discharge of residual volatile substances by the detection control for the first operation preparation was performed in the same manner as in “Example 1”.
  • the automatic valve (not shown) in the middle of the conduit 20 connecting the decompression pump 200 and the container 110 is closed, and the needle valve (not shown) is opened.
  • the decompression pump 200 is operated while the operation is continued.
  • an initial operation value and a predetermined degree of decompression (75 kPa) for recovering dioxane are input to the control device.
  • the vaporization separation apparatus 10 is depressurized in this way, the dioxane evaporative recovery operation is started.
  • the automatic valve in the pipe 20 is closed, and then the automatic valve 54 is opened and the decompression pump 200 is operated.
  • the gas inside the vaporization / separation apparatus 10 is discharged to the outside and the decompressed state is achieved.
  • an automatic valve installed in the middle of the pipe 22 is opened, and unpurified dioxane (about 500 ml) is moved to the container 110.
  • the container 110 was heated to 80 ° C. at a predetermined degree of decompression, and the dioxane evaporative recovery operation was started while the decompression pump 200 was continuously operated.
  • the evaporated dioxane is circulated by a 15 ° C refrigerant.
  • a cooling condenser 144 In this control, a part of the dioxane vapor that has not been condensed by the cooling capacitor at 15 ° C is discharged from the exhaust port of the decompression pump 200 to the atmosphere side, and these are connected to the vaporization separator 10. Vaporization separation is performed by a further vaporization separation device (atmospheric pressure condition).
  • Table 4 shows the purification and recovery conditions and recovery efficiency per hour for ethyl acetate and dioxane.
  • Example 20 was carried out in the same manner as in Example 21 except that the type of organic solvent recovered was ethyl acetate and the heating bath was changed to 60 ° C.
  • Table 4 shows the results. Table 4 Comparison of recovery efficiency with and without forced circulation of gas containing solvent vapor
  • Solvent recovery according to the present invention involves a large amount of water (residue concentrate) obtained by removing most of the organic solvent from waste water containing the organic solvent (raw solution), and a high concentration of organic solvent!
  • the apparatus of the present invention can be used for the purpose of performing wastewater purification treatment by positioning it as (purified and recovered liquid).
  • the discharge of residual volatile substances by the detection control for the first operation preparation, the detection control of the supply of liquid from the raw liquid tank before purification, and the vaporization separation control are the same as in “Example 10”.
  • the temperature of the heating bath was set to 40 ° C, and a gas supply port 114 for supplying gas was provided below the liquid surface position in the stock solution in the container 110 for publishing to increase the vaporization efficiency. went.
  • the acetone in the liquid was purified from 15.0% to 6.0% before treatment, and almost all (> 99%) of the evaporated acetone, ie, the recovered organic solvent, was recovered.
  • Example 24 The heating bath was carried out in the same manner as in Example 23, except that in Example 24, the temperature was changed from 40 ° C to 57 ° C, and in Example 25, the temperature was changed from 40 ° C to 70 ° C.
  • Example 25 The same procedure as in Example 25 was performed except that the organic solvent to be recovered was changed to acetone-powered acryl-tolyl.
  • the method and apparatus of the present invention is a novel method capable of vaporizing and separating an object to be treated such as a liquid medium and a mixed liquid by automatic control under various pressure operation conditions by measuring the liquid surface position of the changing liquid medium.
  • an object to be treated such as a liquid medium and a mixed liquid by automatic control under various pressure operation conditions by measuring the liquid surface position of the changing liquid medium.
  • Device capable of vaporizing and separating an object to be treated such as a liquid medium and a mixed liquid by automatic control under various pressure operation conditions by measuring the liquid surface position of the changing liquid medium.
  • the apparatus of the present invention can measure the liquid level position of the changing liquid medium with high accuracy, it is possible to prevent the bumping phenomenon of the liquid medium without providing a partition in the container to be vaporized.
  • the structure can be simplified.
  • the object to be treated by the apparatus of the present invention is compatible with any liquid medium including a liquid medium having a low boiling point to a high boiling point, and also a mixed liquid of a non-volatile substance and a liquid medium.
  • the apparatus of the present invention is also optimal for high-boiling liquid media that are frequently used in industrial production processes, where not only the medium and low boiling point solvents can be efficiently recovered by evaporation.
  • the apparatus of the present invention can be used not only for the gas circulation method under atmospheric pressure, but also for vaporization separation under reduced pressure, vaporization separation under conditions of increased vapor density under slight pressure, etc. There are a wide selection of combinations of recovery conditions as desired. Therefore, it can be applied for many purposes and there is no restriction on the processing scale.
  • the device of the present invention comprises:
  • the temperature of the separation conditions can be made higher than the general separation conditions.
  • it can be operated under the conditions that maximize the capacity of the compressor of the chiller, and it is possible to achieve both economy and vaporization separation rate.
  • new investment is unnecessary and that it is easy to balance the vaporization separation efficiency according to the cooling capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

明 細 書
液状媒体等の気化分離装置
技術分野
[0001] 本発明は、液状媒体等の気化分離装置であって、変動する液状媒体等の液面位 置を高精度で測定可能である大型化に対応可能な全自動式装置に関する。
背景技術
[0002] 近年、環境問題に関する関心が高まっており、また、人の健康や生態系に有害な おそれのある化学物質等を管理するための ISOといった国際規格及び PRTR (Pollu tant Release and Transfer Register)のような法制度が一段と整備されてきている。こ のような動きを受けて、溶媒の排出量を削減するため、使用済み液状媒体等を再利 用することに関心が高まっており、この目的に供する装置として、最近、有機溶媒蒸 留装置、溶媒再生装置、自動溶剤回収装置等の名称で各種の分離装置が市販され ている。
[0003] しかし、従来の装置は、 V、ずれも大気圧または減圧での蒸留 (溶媒を沸点まで加熱 して飽和蒸気を作り、この飽和蒸気を分け取る方法)を媒体分離の原理としており、 それらの装置の概念図を図 1及び図 2に示す。図中の符号は、 11 :蒸発用丸底フラ スコであり、 12 :加温浴であり、 13 :温度計であり、 14 :凝縮用冷却コンデンサーであ り、 15 :回収受器であり、 16 :冷媒接続口であり、 17 :カラム塔であり、 18 :電磁弁で ある。図 1は、汎用されている有機溶媒の単蒸留装置であり、沸騰させた溶媒蒸気を 凝縮部 (凝縮用冷却コンデンサー 14)に導き、ここで凝縮させて溶媒を分離精製する 。図 2の蒸留装置は、 2種類以上の溶媒が混合された混合溶媒を、単成分の溶媒に 分離精製する装置であって、この装置の蒸発部に溶媒を満たし、蒸発部の蒸発用丸 底フラスコ 11は垂直に延びた分留部 (カラム塔 17)に連結され、このカラムの上部に 凝縮部 (凝縮用冷却コンデンサー 14)が連結され、そこ力 枝管が延びて回収受器 1 5に接続されており、この枝管は上部でさらに分岐して分留カラム塔 17の上部へ凝 縮液の一部が還流するように工夫されている。そのため、回収と還流とは電磁弁 18、 19等で制御する等して溶媒の分別蒸留を可能としている。要するに、有機溶媒を沸 騰させて還流と分取を適当に切換えながら混合溶媒を精製する装置である。そして、 蒸留精製の終点は目視または計器等を目安とする手動作業により確認して 、る。
[0004] 例えば、 n—ブタノール、酢酸ブチル、水、 2—ブトキシエタノール、 2—へキシルォ キシエタノール力 なる使用済みの廃液から高純度の n—ブタノール及び水を、水相 と溶剤相を沈降分離し、減圧下で精留を繰り返して回収する方法が開示されている( 特許文献 1)。しかし、この精製方法も、溶剤を沸騰蒸留する経験的な手法による精 製方法に準拠しており、上述と同様に手動による方法である。
[0005] これらの装置の欠点としては、(1)溶媒蒸気圧の力を利用するために、溶媒を沸点 以上に加熱する必要があり、したがって、引火点の低い液状媒体等では安全操作の 観点から恒常的に人的注意が不可欠であること、さらに、(2)循環システム系でない 従来の装置では、連続運転に際し、その構造上の制約から、溶媒の追加、精製溶媒 の取り出し、濃縮母液の排出等を自動化するための装置上の機構が複雑になること 、さらに、(3)装置が複雑であること、操作が煩雑であること、等の解決すべき問題が 多い。他方、液状媒体等を多量に精製する従来技術では、回分式に操作するものが 殆どで、強制的に液状媒体等に接触させる気体を液状媒体等回収装置内で循環さ せて、該媒体を回収分離する方式の、いわゆる液状媒体等の完全自動回収型の生 産設備は見当たらない。また、多くの市販装置は、液状媒体等の注入、受器の回収 液の排出、蒸発釜中の残查を排出する等の操作等のいずれかが部分的に自動化さ れたものの実用化に過ぎない。そこで、突沸現象防止制御機構を搭載した大型の溶 媒回収装置が強く待望されて!ヽる。
[0006] そこで、従来は突沸現象対策として、未処理精製液が回収液へ混入するのを防止 する隔壁を設けていたが、気化器の形状が複雑になること、そのような加工を可能と する材料が限られることという問題点があった。
また、気化部分の液面位置を精密に制御して運転し、突沸現象を含めた上述の問 題点を制御することが検討されている。液面位置をセンシングする方法として、静電 容量式、フロートスィッチ式、電極式、超音波式、振動式、光センサー式等が使われ ている。静電容量式、電極式及び超音波式等の液面計では、例えば、コンデンサー 容量や伝導度の変化及び超音波波形等での液面位置のセンシングは、固溶体溶液 系での測定が不正確になる等、いずれも濃縮釜中での直接測定には解決すべき問 題を残しており、大型装置での応用展開には至っていない。また、ロータリーエバポ レーターのような回転容器内では、液体の液面が変動するためにフロートスィッチを 機能させるのは困難である。他方、密閉されたステンレス製の蒸発釜の中では、外部 力 光が液相を通過させられな 、等の問題があり、自動センシングには本質的に向 かないという欠点がある。
[0007] 例えば、送風手段を介して気体に流れを生じさせた循環路が通じる貯留器中に蒸 発促進手段(回転盤)を備え、貯留器の液面位置を検出する方法が知られて ヽる(特 許文献 2)。しかし、気化器の形状が複雑になるという問題点があった。
傾斜させた気化器を回転させて液面積を増加させて気化を促進させた方法では、 3次元で変化する液面位置の検出は光センサ、 CCDセンサ等によって行うことが知 られている。光センサを用いる場合 (特許文献 3)、容器が透明である必要があり、材 料が限られるため、装置の自動化、大型化ができないという問題があった。また、 CC Dセンサを用いる場合 (特許文献 4)、連続的に流動する液面の画像処理が複雑であ るので、装置の大型化が困難であるという問題があった。
また、差圧計と、重量計を組み合わせた方法が知られている (特許文献 5)。差圧計 で液面位置を検出するには、容器内の液相の圧力と、容器内気相の圧力の差を検 出し、その差圧が液相に設けられた検出管のヘッド圧によるものであることを利用し、 この差圧力 液面位置を特定している。差圧計のみでは、液面位置の測定精度が低 いために、重量計を併用して、較正することにより、測定精度を要求水準まで改善さ せている。
しかし、このような差圧計 ·重量計の併用では、変動している液面 (たとえば、撹拌' 混合されている液体の液面)を測定することは困難である。まず液面位置を検出する 精度が要求水準を満たさないほど低くなる。そして、重量計により較正するとしても、 変動する液体また、差圧計と重量計測等の手段を併用したとしても液面位置を特定 することは困難であった。
[0008] 上記の ヽずれの方法も、蒸留器への被精製液の注入、精製液の排出、残查の排 出等のような一連の気化分離操作を要求される水準あるいはコスト内での、変動する 液体の液面位置を測定できな力つた。そこで、液状媒体等を連続的に蒸発回収を行 うことを可能とする程度に、変動する液面位置を連続的に測定することを可能とする 機構を有する気化分離装置が求められていた。
[0009] 特許文献 1 :特許平 4 86978号公報
特許文献 2:特開 2000— 202201号公報
特許文献 3:実用新案公開平 5— 7301号公報
特許文献 4:特開 2004— 148169号公報
特許文献 5:特開平 10— 328548号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、上記の従来装置の欠点を解決し、液状媒体、混合液のような処 理対象を、液状媒体等の変動する液面位置を測定することを通じて、あらゆる圧力条 件で、自動制御により気化分離できる新規な装置を提供することにある。
課題を解決するための手段
[0011] 本発明は、液状媒体の、又は前記液状媒体と非揮発性物質とを含む混合液の、う ちのいずれか一方の液体が貯留されることによって液体の液面が形成される気化手 段であって、前記液状媒体を気化させて気化媒体とする気化手段と、
前記気化手段から排出された気体と前記気化媒体とを冷却して、前記気化媒体を 凝縮した凝縮媒体にすることによって前記気体から分離する分離手段と、を含む液 状媒体及び混合液の気化分離装置にぉ ヽて、
前記気体の圧力を検出する圧力検出手段と、
前記気化手段内の所定位置における圧力と前記気体の圧力との差圧を検出する 差圧検出手段と、
前記気体の圧力と前記差圧とに基づいて、前記所定位置を基準とした前記液体の 液面位置を、算出液面位置として算出する算出手段と、を含み、
前記液体の液面位置は、前記液体の気化により変動し、
前記算出液面位置は、前記液体の液面位置が静止して ヽるときに対応した液面位 置である、液状媒体及び混合液の気化分離装置である。 [0012] 本発明は、変動する液体の液面位置を測定し、単に被精製溶液の注入量を確認 するのみでなぐ突沸現象防止等を自動的に行う装置である。オペレーターによる人 為的な操作や監視をする部分を必要とする部分自動化とは異なり自動化された制御 系を達成する装置である。
発明の効果
[0013] 本発明の装置は、液状媒体等の気化分離装置であって、変動する液状媒体等の 液面位置を高精度で測定可能である大型化に対応可能な装置である。さらには、処 理対象及び操作条件の対応範囲が広範であること、制御機構も自動化可能であるの で、従来の安全対策機構が不要であることから、信頼性及び安全性が高ぐまた低コ ストな装置である。
図面の簡単な説明
[0014] [図 1]従来の有機溶媒単蒸留装置を示す概略図である。
[図 2]従来の有機溶媒分別蒸留装置を示す概略図である。
[図 3]本発明の液状媒体等の気化分離装置の機能ブロック図である。
[図 4]本発明の液状媒体等の気化分離装置を示す概略図である。
[図 5]本発明の液状媒体等の気化分離装置を用いて、低沸点と高沸点液状媒体を 分ける際の、容器 110内の液温の経時グラフを図 5に示す。
発明を実施するための最良の形態
[0015] 図 3は、本発明の装置の構成を示す構成ブロック図である。
図 3に示すように、本発明の気化分離装置 10は、気化手段 2と、分離手段 4と、圧 力検出手段 6と、差圧検出手段 7と、算出手段 8とからなる。尚、図 3において、圧力 検出手段 6からは、気体の圧力を示す信号が算出手段 8に発せられ、差圧検出手段 7からは、気化手段 2内の所定位置における圧力と気体の圧力との差圧を示す信号 が算出手段 8に発せられ、算出手段 8は算出液面位置を算出する。
気化手段 2は、液状媒体の、又は液状媒体と非揮発性物質とを含む混合液の、うち のいずれか一方の液体が貯留されることによって液体の液面が形成される気化手段 2であって、前記液状媒体を気化させて気化媒体とする。
また、分離手段 4は、気化手段 2から排出された気体と気化媒体とを冷却して、気化 媒体を凝縮した凝縮媒体にすることによって気体から分離する。
さらに、圧力検出手段 6は、気体の圧力を検出する。
差圧検出手段 7は、気化手段 2内の所定位置における圧力と気体の圧力との差圧 を検出する。ここで、所定位置とは、気化手段 2内に設けられた所定の位置であって 、第一〜第三の液面位置よりも下の位置である。所定位置が液面位置より上にあると き、差圧は生じないので 0を示す。所定位置が液面位置より下にあるとき、差圧が生 じる。所定位置が液面位置より下にあり、その深さが深いほど差圧は増大する。
算出手段 8は、圧力検出手段 6が検出した気体の圧力と、差圧検出手段 7が検出し た差圧とに基づいて、気化手段内の所定位置を基準とした液体の液面位置を、算出 液面位置として算出する。差圧は、液体の深さに比例するので、容器の形状から決 定される液体の面積で差圧を割ることにより、所定位置の液面位置からの深さが求め られる。上述のとおり差圧の値から、所定位置力 の静止しているときに対応する液 面位置を求め、それに気体の圧力の時間変化率を加えて、液体の液面位置を算出 することが好ましい。実際の液体の液面位置は、液体の気化により変動するため、上 述した算出液面位置を算出することは、液体の液面位置が静止して!/ヽるときに対応 する液面位置を算出することを意味する。
これは数式で以下のように示される。
所定の液体の液面位置力 の気化手段 2内の所定位置の深さを H (mm)としたとき 、所定位置における圧力と気体の圧力との差圧を測定し、このときの差圧値 Δ Ρ
Hを 得る。得られた ΗΖ Δ Ρを係数として定義する。液体の算出液面位置を Y(mm)とし、
H
制御開始からの所要時間 t (秒)後における、差圧を Δ Ρ (kPa)とし、気体の圧力を p ( t)とするとき:
p (t)の時間変化率である dp (t) /dt< 0. 5 (kPa/秒)である場合、
算出液面位置 Υ= (Η/ Δ Ρ ) Χ Δ Ρ
H t
として示される。
p (t)の時間変化率である dp (t) /dt≥0. 5 (kPa/秒)である場合、
算出液面位置 Y= l. 5Η
として示される。 [0016] 「液状媒体」とは、液状である限り特に限定されな 、。単独の媒体でも二種以上の 混合媒体でもよぐ有機溶媒でも無機溶媒でもよぐ極性溶媒でも無極性溶媒でもよ い。常温 '大気圧で液体である媒体であることが好ましい。液状媒体として、例えば、 沸点 50°C以下の低沸点媒体、例えば、エーテル類、塩化メチレン、ペンタンが挙げ られる。沸点 50〜100°Cの中沸点媒体、例えば、テトラヒドロフラン (THF)、酢酸ェ チル、クロ口ホルム、アセトン、へキサン、ベンゼン、ァセトニトリル、エタノール、若しく はメタノールのようなアルコールが挙げられる。沸点 100°C以上の高沸点媒体、例え ば、トルエン、キシレン、プロピレングリコールモノメチルエーテルアセテート(PGME A)、ジメチルホルムアルデヒド(DMF)、ジメチルスルフォキシド(DMSO)が挙げら れる。
[0017] 「混合液」は、非揮発性物質と液状媒体とを含み、懸濁液及び乳化液等のような均 一物質系でも、不均一物質系の状態にある混合液でもよい。混合液としては、具体 的には、液状媒体を、合成溶剤、抽出剤、洗浄剤、溶出剤、展開剤、吸収剤、分散 溶剤等、希釈剤として用いた後の状態を挙げることができる。例えば、精密化学薬品 合成の溶剤、電子基板及び液晶フィルム等の洗浄、生薬等の抽出及びそれらの分 離精製、カラム及び逆相クロマトグラフィー等に使用した液状媒体又は各種洗浄液 等の再生処理等が挙げられる。
ここで、「液体」は、液状媒体、及び液状媒体と非揮発性物質とを含む混合液の両方 の意味を包含する。
[0018] 「非揮発性物質」は、混合液中に、液状媒体と共に液相に存在する、非揮発性の液 体、固体又はそれらの混合物である。具体的には、液状媒体を希釈剤、抽出剤等と して用いた、検体、抽出物等が挙げられる。
[0019] 「気体」は、処理される液状媒体等に対して不活性であり、かつ、冷媒で冷却された ときにも気体状態を維持する気体であれば、特に制限されない。尚、処理に付される 液状媒体を考慮して決定される条件 (例えば、気化条件や凝縮条件)に応じて、それ に適した気体 (例えば、キャリアーガス、検出用ガス)を選択する。具体的には、空気 、窒素、ヘリウム、アルゴン及びそれらの乾燥気体等を挙げることができる力 コスト面 力も窒素又は空気が好まし 、。 [0020] 「分離気体」は、分離手段を通過した気体であり、液状媒体が気化した媒体 (以下、 気化媒体と略す)は気体と混合されて混合気体を形成するが、分離手段を通過する と、気化媒体は凝縮されて液状媒体となり、気体と分離されるため、本質的に気化媒 体を含んでいない気体である。したがって、分離気体内の気化媒体の分圧は非常に 小さぐ気体と媒体とを接触させた時に、媒体を気化させやすい。但し、分離条件に 依存して、分離気体が気化媒体をある程度含む場合、気化条件に依存して分離気 体が気化媒体を含む場合もある。
[0021] 「液体の液面」は、上述の液体が貯留されることによって形成される液体の液面であ る。液体の貯留は、例えば気化手段 2を構成する容器に液体を貯留させることであり 、そのときに容器内で形成される液体の表面が液面である。
[0022] 以下においては、上述した気化手段 2と、分離手段 4と、圧力検出手段 6と、差圧検 出手段 7と、算出手段 8とについて説明する。
[0023] <気化手段 2>
上述したように、気化手段 2は、液状媒体 (例えば溶媒)の、又は液状媒体と非揮発 性物質とを含む混合液の、うちのいずれか一方の液体が貯留されることによって液体 の液面が形成される気化手段であって、液状媒体を気化させて気化媒体とする。気 化手段 2においては、液体の液面は液体の気化により変動しており、例えば突沸現 象のような泡立ちを伴う急激な気化により大きく変動する場合がある。このような突沸 現象が生じた場合であっても、算出手段 8によって、気化手段 2内の所定位置におけ る圧力と気体の圧力とから、気化手段内の所定位置を基準とした液体の液面位置を 、算出液面位置として算出することができる。そして、気化手段 2においては、液状媒 体の気化速度を調整するために、後述の気 液界面の面積を増大させる手段、補 助的な加熱手段を用いることができる。
[0024] また、気化手段 2にお ヽて、混合液に含まれる非揮発性物質は気化されず、液状 媒体のみが気化されるため、液状媒体が気化されるにつれ、混合液は濃縮される。 そこで、本発明の気化手段 2として、通常、液体の媒体の濃縮手段として知られる手 段 (例えば、後述する図 4の気化装置 100)を用いることができる。
[0025] 気化手段の形状は、減圧及び加圧に耐える形状であり、液体の液面が形成される ものであれば特に限定されない。後述する液面変動手段を備えることが好ましい。
[0026] <分離手段 4 >
上述したように、分離手段 4は、気化手段 2から排出された気体 (例えば、キャリアー ガス)と気化媒体とを冷却して、気化媒体を凝縮した凝縮媒体にすることによって気 体から分離する。
この分離手段 4においては、気化手段 2で液状媒体を気化した気化媒体のうちの一 部を凝縮して、凝縮された媒体と気化媒体の一部と分離気体とに分離する部分分離 手段、あるいは気化手段で液状媒体を気化した気化媒体のうちの全部を凝縮して、 凝縮された媒体と分離気体とに分離する完全分離手段、あるいは部分分離手段及 び完全分離手段の組み合わせを用いることができる。分離手段 4における分離速度 は、気化手段 2における液状媒体の蒸気圧曲線と気体の圧力とから算出し、後述す る気体供給手段により供給される気体の供給量により調整することができる。分離速 度及び混合液中の非揮発性物質の濃縮率は、取り扱い性、経済性及び得られる非 揮発性物質の形態を考慮して、決定することが好ましい。
例えば、気化手段 2内の圧力が大気圧よりも低い状態で気化させるとき (減圧下)、 経済性の面から、部分分離手段を用いることが好ましい。そして、減圧下に部分分離 手段を用いる場合、部分分離手段で分離されなかった気化媒体を、場合により、更 なる別個の分離手段に供給し、大気圧下に分離することができる。
[0027] 分離手段 4における分離条件に関しては、気化させた液状媒体が凝縮されて液体 の状態となる温度条件であれば特に限定されな 、。
気化分離(回収)効率を高めるためには、媒体の凝縮温度をより低 、温度に設定す ることが好適である。低沸点媒体の場合、 0〜一 40°Cが好ましぐー10〜ー40でが より好ましい。中沸点媒体の場合、 10〜― 30°Cが好ましぐ 0〜― 30°Cがより好まし い。高沸点媒体の場合、 20〜― 20°Cが好ましぐ 10〜― 20°Cがより好ましい。 あるいは、経済性を高めるためには、上述のように、減圧下に部分分離手段を用い る場合と大気圧下の更なる分離手段の併用により、気化分離媒体の凝縮温度をより 高い温度に設定することできる。低沸点媒体の場合、 0〜― 25°Cが好ましぐ― 5〜 — 15°Cがより好ましい。中沸点媒体の場合、 5〜― 20°Cが好ましぐ 5〜― 10°Cがよ り好ましい。高沸点媒体の場合、 20〜0°Cが好ましぐ種類により高沸点媒体が凍結 する場合を考慮すると 20〜10°Cがより好ましい。
また、分離手段 4を通る気化媒体の流速は、特に制限されないが、気化媒体自体 の凝縮に影響を与えな 、流速が好まし ヽ。
[0028] 本発明の分離手段 4として、溶媒蒸気を凝縮させるコンデンサーの形状を用いるこ とができる。効率を考慮すると、本発明者らの有機溶媒精製回収装置 (特許 324463 9)をコンデンサ一として使用することが最も好ま 、。
[0029] <圧力検出手段 6 >
上述したように、気体の圧力を検出する。圧力検出手段 6 (例えば、図 4の連成計 1 60を用いることが好ましい)は、気体の圧力を検出し、その測定の範囲は正圧領域か ら負圧領域にわたることが好ましい。圧力検出手段 6は、例えば、— 100kPa〜 + 10 OkPaの測定範囲を、 DC4〜20mA、又は DC1〜5Vでアナログ出力可能な計器であ ることが好ましい。ここで、気体の圧力は、上述のように部分分離手段及び混合気体 供給手段を用いる場合は、気体及び気化された媒体の混合気体の圧力である。圧 力検出手段 6からは算出手段 8へ気体の圧力を示す信号が発せられる。
[0030] <差圧検出手段 7 >
上述のように、気化手段 2内の所定位置における圧力と気体の圧力との差圧を、例 えば差圧計 (後述する図 4の差圧計 180を用いることが好ましい)により検出する。気 化手段 2内の所定位置における圧力は、気化手段 2内の液体の液面下に設けられた (後述する図 4の検出管 112を用いることが好ましい)の出口における圧力(液頭圧) であり、液体の液面位置が静止しているときに対応する液面位置からの検出管の液 面下の深度で表した液頭圧に相当する。検出管の液頭圧は、検出管に満たされた 気体 (例えば、検出用ガス)の出口圧力であり、検出管に所定の流量の気体を流すこ とにより、液頭圧と、検出管出口の液体の圧力とはほぼ平衡とされ、液頭圧は検出管 出口の液体の圧力と同じとみなすことができる。差圧検出手段 7からは算出手段 8へ 気化手段 2内の所定位置における圧力と気体の圧力との差圧を示す信号が発せら れる。
[0031] 差圧計は、 0〜反応器内における液面位置の 2倍程度の液頭圧を測定できることが 好ましい。
[0032] <算出手段 8 >
上述のように、圧力検出手段 6からは算出手段 8へ気体の圧力を示す信号が発せ られ、差圧検出手段 7からは算出手段 8へ気化手段 2内の所定位置における圧力と 気体の圧力との差圧を示す信号が発せられる。発せられたこれらの信号は算出手段 8に供給される。算出手段 8は、気体の圧力と差圧とから、気化手段 2内の所定位置 を基準とした液体の液面位置を、算出液面位置として算出する。気体の圧力と差圧 から、例えば上述の式によって液面位置を算出することが好ましい。上述の差圧検出 手段から得られた差圧を、気体の圧力で較正し、正確な差圧を得て、その値を、気化 手段 2における液体の容積 (面積と深さ)に基づき、液体の液面位置が静止している ときに対応する液面位置からの気化手段 2内の所定位置の距離を求めることにより、 算出液面位置を算出する。ここで、算出液面位置は、液体の液面位置が静止してい るときに対応する液面位置である。
[0033] 本発明に係る気化分離装置は、例えば、溶媒の濃縮回収装置に用いることができ る。このようにした場合には、液体の気化分離装置は、以下の液面変動手段、液体 供給手段、気体供給手段、停止手段、非揮発性物質排出手段及び気体調整手段を 有するものが好ましい。
[0034] <液面変動手段 >
液体の液面を機械的に変動させることができる。それにより、気体と液体とが接触す る面積を積極的に増大させ、気化速度を調整することができる。
[0035] 気体と液体とが接触する面積を増大させる手段としては、流動機能を容器に備える 手段、あるいは流動気体を利用する手段が挙げられる。
[0036] 液体の液面を機械的に変動させる手段としては、電気モータを備えた容器回転型 変動手段あるいは容器固定型変動手段を用いることができる。電気モータを備えた 容器回転型変動手段は、容器自体を電動モータによって回転させる容器回転型で ある。容器回転型として、回転軸が水平又は傾斜する 2種類のタイプについて、例え ば水平円筒型、 V型、ダブルコーン型、立方体型、丸底フラスコ型が挙げられる。ある いは電気モータを備えた容器固定型変動手段は、容器内に電動モータによって回 転する羽根を設けて、羽根によって容器内の流体を流動させる容器固定型である。 容器固定型として、混合羽根の回転軸が水平又は傾斜する 2種類のタイプについて 、例えばリボン型、スクリュー型、パドル型が挙げられる。
[0037] また、流動気体を利用する手段としては、液体と気体の境膜部に気体を積極的に 接触させることにより気体と液体とが接触する面積を増大させることもできる。境膜部 に気体を接触させ、ポンプ等を使って気体に流れを与えて、気流に変え、この気流を 液体に吹きつける力、混合液中をパブリングする等して行うことができる。このように、 液体と気体の界面に形成される境膜部に気流を接触させることにより、気化された媒 体を境膜部力 移動させ、常時境膜部を更新させて気化の効率を高めることができ る。
[0038] 液面変動手段を備えた気化手段 2としては、例えば、小規模の場合は、単蒸留装 置が好ましぐ 200L前後の規模までは、大型のロータリーエバポレーターが好ましく 、また、 200〜: LOOOOLの大型装置では、撹拌型の耐圧製の反応釜、回転式コ-カ ル型の濃縮靨のような装置内に気化分離された溶媒の液溜を有する気化分離装置 10が挙げられる。
[0039] <液体供給手段 >
液体供給手段は、気体循環手段と、気体調整手段と、液体を貯留する容器とを含 む。
算出液面位置が、第一の液面位置となるまで、気化手段 2に液体を供給する。気化 手段内の気体の圧力を低くし、その状態で気化手段 2 (後述する図 4の容器 110)に 液体を貯留する容器 (後述する図 4の精製前原液タンク 156)への接続を通にするこ とにより(後述する図 4の配管 22に設けられた自動弁(図示せず)を用いることが好ま しい)、液体を供給する。
[0040] <気体供給手段 >
気体供給手段は、気体循環手段と、気体調整手段とを含む。
気体を上述の気化手段 2に気体 (例えばキャリアーガス)として供給する気体循環 手段 (後述する図 4のポンプ 200)により、気化分離装置 10内に気体を循環させる。 気体調整手段 (後述する図 4の給気口 52、供給口 56、排気口 54)は、気体を供給又 は排出する。気体循環手段と共に気体調整手段を用いることにより、気体の圧力を 変化させて、気化分離装置 10内に気体を供給することができる。
気化分離装置 10内の気体を装置外に排出するか、又は気体を気化分離装置 10 外から供給する気体調整手段 (後述する図 4の給気口 52、排出口 54)により、気体を 気化分離装置 10外に排出する場合には、気体の圧力は低下 (減圧)され、あるいは 気体を気化分離装置 10外から供給する場合には、気体の圧力は増加 (加圧)される 。また、気体供給手段として、気化媒体の一部と分離気体の混合気体を供給する混 合気体供給手段とすることができる。
[0041] 上述したポンプ (例えば後述する図 4のポンプ 200)は、耐薬品性を備えたポンプで あればよい。例えば、気体循環用のポンプが好ましぐ特に、内部がフッ素榭脂製の ダイヤフラムポンプが好まし 、。蒸気ミストが発生しな 、条件下でポンプを使用するこ とにより、気化手段 2内で緩やかに気体を循環させることができる。
ポンプは、気体を気化分離装置 10内に循環させる機能を有していればよい。ボン プの気体供給能力、言い換えると排出量は、後述のとおり装置の全容積に依存して 選択される。
[0042] また、ポンプの気体移動能力として、 1分間に本発明の気化手段と分離手段を構成 する装置での全内容積に対して 0. 1〜10倍の範囲の気体を移動させる能力が必要 である力 好ましくは、 1分間に 0. 3〜5倍の範囲の気体を排気させる能力のあるボン プを使用する。例えば、当該気化手段と分離手段を構成する装置の内容積の総和 が 30Lであるならば、排気量が 10〜: LOOL/minの排気能力のあるフッ素榭脂製のダ ィャフラムポンプを使用できる力 好ましくは、排気量が 20〜40L/minのダイヤフラム ポンプを使用するとよい。
[0043] 気体調整手段 (後述する図 4の給気口 52、供給口 56、排出口 54)の供給口或いは 排出口には自動弁を設ける。自動弁は、流量制御計、オリフィス付き自動弁、流量調 整弁、圧力調整弁等である。自動弁を供給、排出のいずれかの機能及び所定の流 量に合わせて任意に選択する。
場合により、気化手段 2への供給口に分岐 (図示せず)を設けてもよい。分岐を介し て、更なる気化分離装置に接続することができる。このような場合、気化分離装置の 一つを減圧下の部分凝縮条件とし、他の一つを大気圧下の(通常)凝縮条件として、 気化分離率を向上させることができる。
[0044] <停止手段 >
算出手段 8によって算出された算出液面位置が、第二の液面位置を超えたときに、 あるいは算出液面位置が、第三の液面位置と同じとなったときに、気体供給手段 (後 述する図 4のポンプ 200、給気口 52、供給口 56、排気口 54)による気体の供給を停 止させる。
第二の液面位置は、気体の供給を一時停止する位置であり、突沸現象とする泡立 ちの高さに相当する。突沸現象は、液面位置に大きな変動(例えば、液面位置の 1. 5倍程度の泡立ち)として検出される。変動が常態に戻るまで (例えば、数秒)、気体 の供給が停止される。
第二の液面位置よりも低い第三の液面位置は、気化分離を停止する位置であり、 容器 110内の残液量に基づき設定する。
[0045] <非揮発性物質排出手段 >
気化手段 2内の圧力を気体の供給により高めて、非揮発性物質を気化手段 2から 排出させる。気化分離の停止後、気体の圧力を気体の供給により高め、濃縮液を排 出する容器 (後述する図 4の残渣タンク 158)に接続し、非揮発性物質を排出する。
[0046] 以下においては、本発明の気化分離装置、例えば溶媒の濃縮回収装置に、任意 に設けることができる手段、例えば加熱手段、気体浄ィ匕手段について説明する(図示 せず)。
[0047] また、本発明においては、気化手段 2において液体の気化を促進するために、補 助的な加熱手段(図示せず)を用いることができる。好適には液体の温度を沸点以下 の温度で気化させることが好ましい。例えば、沸点が 100°Cを超える高沸点の液状媒 体に関しては、圧力を調節することにより 100°C以下で蒸発させる温度に調節すると よい。また、低沸点有機溶媒に関しては、沸点より 5〜10°C低い温度に調節すること が好適である。但し、沸点以上の温度で気化させてもよい。
また、液体を液状媒体の沸点以下の温度まで加熱するために、気化手段 2におい て、液体が貯留される容器を保持する部分と加熱部を兼用させることができる(図示 せず)。また、気化手段 2が閉鎖された装置である場合、加熱手段をその装置の外側 に設けて、その装置全体を加熱することができる。
[0048] <気体浄化手段 >
本発明においては、気体浄ィ匕手段(図示せず)を更に含むことができる。気体浄ィ匕 手段は、微細な粒状物、酸、アルカリ等を除くための手段 (例えば、吸着フィルター、 洗浄トラップ)である。気体浄化手段は、本発明の気化分離装置 10において、設ける ことが可能ないずれの経路に設けてもよい。例えば、気化手段 2からの導出経路 (例 えば、図 4の配管 28、 30)に設けることが好ましぐあるいは気化手段 2に気体 (キヤリ ァーガス)を供給するための供給口(後述する図 4の気体供給口 114)に設けることが 好ましい。
[0049] なお、本発明の好適なものとしては、閉鎖系にして気体を循環させる態様をあげる ことができる。大気圧の装置内で気体が循環することで高い気化分離率を維持する ことが可能となる。また、閉鎖系で大半の液状媒体を気化分離し、その後一部開放系 にしてリークさせる態様も選択することができる。後者の場合、一部大気圧系にリーク させる態様となるが、大気圧系への放出する前に気体浄ィ匕手段でトラップすることに より、外部に媒体が放散する機会を最低限に押さえることができる。
[0050] 本発明の装置に用いる材料は、気体及び液体に対し非透過性で耐薬品性を備え た材料である。本発明の気化部を含めた装置は、外部から見える必要はなぐ不透 明とすることができる。材料の例として、炭素材料、ガラス、ほうろう、ステンレス鋼、 G L鋼、 GLステンレス鋼、セラミックスのような無機材料;ポリエチレン、ポリプロピレン、 四フッ化工チレン榭脂、三フッ化塩ィ匕エチレン榭脂、フッ化ビニリデン榭脂、フッ化工 チレンプロピレン榭脂、過フッ化アルコキシ榭脂、不飽和ポリエステル、エポキシ榭脂 、ビュルエステル榭脂、フラン榭脂、フッ素榭脂のような有機材料;金属、遷移金属、 貴金属、それらの合金、例えば Al—Mg合金、 Cu合金(例えば、 Cu— Sn合金、 Sn Zn合金、 Cu—AL合金、 Cu—Ni合金)、 Ni合金(例えば、 Ni—Cu合金、 Ni—M o合金、 Ni— Cr合金)のような金属材料;又は複合材料;或 、はそれ自体は気体及 び液体に対し非透過性で耐薬品性を備えた材料ではな!ヽが、気体及び液体に対し 非透過性で耐薬品性を備えた材料で被覆された材料等が挙げられる。装置に用い る材料は、ガラス、フッ素榭脂、ステンレス、 GLステンレスが好ましい。
[0051] 本発明は、例えば有機合成化学工業における反応釜等で用いる溶剤の濃縮、生 薬等のような天然物の抽出液の濃縮、環境化学分析での微量成分の濃縮、蒸留装 置での濃縮回収、液状の検体の濃縮;あるいは、機械装置、機構部品、基板、金型、 フォトレジスト等の洗浄液の回収等に用いることができる。
[0052] 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
本発明の好ましい実施態様の液状媒体及び混合液の気化分離装置の概念図を、 図 4に示す。
図 4に示すように、液状媒体及び混合液の気化分離装置は、気化手段である気化 装置 100と、分離手段である分離装置 140と、圧力検出手段である連成計 160と、差 圧検出手段である差圧計 180と、算出手段と、検出制御装置 300、及びその他の付 属装置を含む。
[0053] <気化装置 100 >
気化装置 100は、容器 110を含み、容器 110は、容器 110内の所定位置における 圧力を検出するための検出管 112と、容器 110に気体を供給するための供給口 114 と、容器 110内に精製前原液を供給するか、又は濃縮液を排出する移送口 116と、 容器 110内の溶媒の温度を測定するための温度センサを有する温度管 118とを備え ている。また、場合により熱源部を兼用する保持台、液体の液面を機械的に変動させ る電動モータを備えた液面変動制御手段 ( 、ずれも図示せず)を含めてもょ 、。ここ で、検出管 112の所定位置は、第一〜第三の液面位置のいずれよりも低くすることが 好ましい。
[0054] 容器 110は、その一端に冷却用コンデンサー 144及び濃縮 (気化分離)液受け器 1 50への可動性の連結部が形成された長尺な形状、例えば、フラスコ状、試験管状の 形状を有することが好まし ヽ。
[0055] 容器 110内に設けられた導管は、目的や用途に従って使い分けられる。気体、液 体及び気化した媒体の移動の導管(例えば、図 4の供給口 114及び導管 116)には 口径サイズの大きな導管が用いる。液面位置の検出管 (例えば、図 4の検出管 112) にはやや細目の導管が用いられる。また、気化手段 2内の容器 110に挿入する導管 の材質は、耐蝕金属製、ガラス製、ポリプロピレン製、ポリエチレン製等の耐溶媒性能 のあるものを使用することができる力 好ましくはフッ素榭脂製を使用することが好ま しい。
[0056] 温度管 118は、備えられた温度センサにより容器 110内の温度を検出する。温度管 118に設けられた温度センサ(図 4中では符号「T」で示す)と、後述する検出制御手 段 300とは、配線 314により電気的に接続されている。図 4の温度センサ (符号「Τ」) の下部に示した白抜き四角は、温度センサ力 信号を出力する出力部を示す。温度 センサの出力部は、検出された温度の値を示す信号を検出制御手段 300に発する。 低沸点の液状媒体と高沸点の液状媒体とを含む液体を気化分離する場合に、温 度センサにより、低沸点の液状媒体の気化終了を示す液体の変曲点を検出する (例 えば、図 5のグラフ)。変曲点以前に気化分離する溶媒は低沸点の溶媒であり、変曲 点以降に気化分離する溶媒は高沸点の溶媒である。変曲点に到達した時、気化分 離装置 10内の気体の循環を停止させる。濃縮(回収)液受器 150を交換する力、濃 縮 (回収)液受器 150から精製済み溶媒を低沸点用とした精製回収媒液タンク 154 に排出する。その後、気化分離を再開し、高沸点の溶媒を濃縮 (回収)液受器 150に 分離し、高沸点とした精製回収媒液タンク 154に排出することができる。
[0057] 容器 110を保持台(図示せず)で保持することができ、保持台と熱源部(図示せず) を兼用させ、容器 110の温度を調整させることができる。熱源部は、検出制御手段 30 0に、配線 312により電気的に接続されている。図 4の容器 110の下部に設けられた 熱源部の下部に示した白抜き四角は、熱源部を駆動させるための駆動系であり、例 えば電動モータやソレノイドからなる。この熱源部を駆動するための信号に基づき、 容器 110を加熱する。熱源部としては、液体の沸点を考慮して、湯浴、オイル浴、カロ 熱台等を用いることができる。安全性の点から、湯浴が好ましい。
[0058] 容器 110には、上述のように液体の液面を機械的に変動させる、電気モータを備え た容器回転型変動手段ある!/ヽは容器固定型変動手段を備えることができる。電気モ ータを備えた容器回転型変動手段は、容器自体を電動モータによって回転させて、 液体の液面を機械的に変動させる(例えば、ロータリーエバポレーターが好ましい)。 電気モータを備えた容器固定型変動手段は、容器内に設けた羽根を回転させて、液 体の液面を機械的に変動させる。これらの変動手段の電動モータは検出制御手段 3 00に、配線 310により電気的に接続されている。図 4の容器入口の下部に示した白 抜き四角は、変動手段の電動モータを駆動させるための駆動系であり、例えば電動 モータやソレノイドからなる。この変動手段の電動モータを駆動するための制御信号 に基づき、電動モータは作動して、液体の液面を変動させる。
[0059] 上述したように、容器 110の上部には、気体供給口 114が形成されている。気体供 給口 114のノズル下端部は開放されており、気体供給口 114を通じて供給された気 体をノズルから下方に向かって排出することができる。気体供給口 114のノズルの下 端部が、容器 110に注入されている液体の液面位置よりも上に (例えば、第二の液面 位置よりも上に)設ける場合、上述した、気流を液体に吹きつけることができる。
容器 110に注入されて ヽる溶媒の液面位置より上に設けた気体供給口 114のノズ ル下端部から気体を排出することによって、溶媒は気化が促進される。上述したよう に、容器 110の上部には、分離装置 140への導出口 142が形成されており、気化さ れた媒体は、分離装置 140への導出口 122を介して容器 110から排出される。 また、気体供給口 114のノズルの下端部力 容器 110に注入されている液体の液 面位置よりも下に (例えば、第二の液面位置よりも下に)設ける場合、上述した、気流 で混合液中をバブリングすることができる。
容器 110に注入されて ヽる溶媒の液面位置より下に設けた気体供給口 114のノズ ル下端部から気体を排出することによって、溶媒は気化が促進される。
[0060] 上述したように容器 110の上部には、容器 110内に精製前原液を供給するか、又 は濃縮液を排出する移送口 116が形成されている。移送口 116は、配管 22を介して 精製前原液タンク 156に接続され、また配管 26を介して濃縮液タンク 158と接続され ている。
精製前原液を移送する配管 22に設けられた自動弁 (図示せず)は、検出制御手段 300に、配線 332により、電気的に接続されている。図 4の配管 22の左側に示した白 抜き四角は、配管 22の自動弁を駆動させるための駆動系であり、例えば電動モータ やソレノイドからなる。この配管 22の自動弁を駆動するための制御信号に基づき、自 動弁は作動する。 濃縮液を移送する配管 26に設けられた自動弁(図示せず)は、検出制御手段 300 に、配線 334により、電気的に接続されている。図 4の配管 26の左側に示した白抜き 四角は、配管 26の自動弁を駆動させるための駆動系であり、例えば電動モータゃソ レノイド力 なる。この配管 26の自動弁を駆動するための制御信号に基づき、自動弁 は作動する。
[0061] <分離装置 140 >
分離装置 140は、濃縮 (回収)液受け器 150と、その上部に接続された凝縮部 (冷 却用コンデンサー) 144とを含む。
冷却用コンデンサー 144の下端部の近傍に形成された溶媒蒸気導入口 142は、 分岐して、一方は気化された媒体を供給する容器 110に接続され、もう一方は凝縮さ れた媒体を貯留する濃縮(回収)液受け器 150に接続されている。冷却用コンデンサ 一 144上部に形成された、分離されたキャリアーガスを導出するための気体導出口 1 48は、配管 28を介して、差圧計 180と接続されている。凝縮用冷却コンデンサー 14 4内の螺旋状に形成された凝縮冷却コイル 146は、供給ポンプを備えた冷媒溜め( 図示せず)に接続されている。
[0062] 冷媒溜めの供給ポンプは、凝縮冷却コイル 146に冷媒を供給する。冷媒の種類及 び冷媒温度は所望する冷却温度に応じて選択することができる。冷媒溜めの供給ポ ンプは検出制御手段 300に配線 320により電気的に接続されている。図 4の分離装 置 140の左側に示した白抜き四角は、冷媒溜めの供給ポンプを駆動させるための駆 動系であり、例えば電動モータやソレノイドからなる。この冷媒溜めの供給ポンプを駆 動するための制御信号は検出制御手段 300から冷媒溜めの供給ポンプに発せられ る。この制御信号により、冷媒溜めの供給ポンプは、冷媒を凝縮冷却コイル 146に供 給する。
[0063] 濃縮(回収)液受け器 150は、配管 24を介して精製回収媒液タンク 154に接続され ている。精製回収媒液を移送する配管 24に設けられた自動弁(図示せず)は、検出 制御手段 300に、配線 330により、電気的に接続されている。図 4の配管 24の左側 に示した白抜き四角は、配管 24の自動弁を駆動させるための駆動系であり、例えば 電動モータやソレノイドからなる。この配管 24の自動弁を駆動するための制御信号に 基づき、自動弁は作動する。
[0064] <連成計 160 >
分離装置 140から分離されたキャリアーガスを導出するための気体導出口 148は、 配管 28に接続されている。分離されたキャリアーガスは、配管 28を通って、連成計 1 60に供給される。
連成計 160は、配管 28を介して、その一端に接続される分離装置 140と、その反 対の端に接続されるポンプ 200と接続されている。また、連成計 160は、配管 28の分 離装置 140と連成計 160の間に設けられた分岐接続を介して、配管 30を通じて、差 圧計 180に接続されている。
連成計 160を用いて、気体の圧力を検出する。連成計 160 (図 4中では符号「S2」 で示す)は、検出制御手段 300に配線 370により電気的に接続されている。図 4の連 成計 160 (符号「S2」)の横に示した白抜き四角は、連成計 160から信号を出力する 出力部を示す。連成計 160の出力部は、検出された圧力の値を示す信号を、検出制 御手段 300に発する。
[0065] <差圧計 180 >
差圧計 180は、上述した容器 110内の所定位置 (第一の液面よりも下の位置)に設 けられた検出管 112と、上述した凝縮用冷却コンデンサー 144の上部に形成された 気体導出口 148とに、接続されている。検出管 112は、検出管 112にキャリアーガス を供給する供給口 56が設けられた配管 30に接続し、供給口 56は流量制御計ある 、 は数種のオリフィス付き自動弁(図示せず)を有して!/ヽる。
差圧計 180は、検出管 112出口の液体の圧力 (検出管 112の出口圧力)と気体の 圧力との差圧を検出する。差圧計 180 (図 4中では符号「S1」で示す)は、検出制御 手段 300に、配線 360により電気的に接続されている。図 4の差圧計 180 (符号「S1」 )の横に示した白抜き四角は、差圧計 180から信号を出力する出力部を示す。差圧 計 180の出力部は、差圧計 180が検出した差圧の値を示す信号を、検出制御手段 3 00に発する。
[0066] 供給口 56は、流量制御計あるいは任意の複数のオリフィス付き自動弁(図示せず) を備える。供給口 56の自動弁は、検出管 112に供給されるキャリアーガスの流量を 制御する。供給口 56の自動弁は、検出制御手段 300に、配線 354により電気的に接 続されている。図 4の供給口 56の右側に示した白抜き四角は、供給口 56の自動弁を 駆動させるための駆動系であり、例えば電動モータやソレノイドからなる。この供給口 56の自動弁を駆動するための制御信号に基づ!/、て、自動弁のオリフィスの大小を切 り替え、流量を調整する。供給口 56には検出ガスが供給される(図 4の吸気矢印)。
[0067] <ポンプ 200 >
上述した凝縮用冷却コンデンサー 144の上部に形成されている気体導出口 148か らは分離されたキャリアーガスが導出される。この気体導出口 148には、配管 28の一 端が接続されている。この配管 28の他端は、ポンプ 200の吸込口 202に接続されて いる。ポンプ 200には、供給されたキャリアーガスを排出するための排出口 204が形 成されている。また、ポンプ 200には、給気口 52、排気口 54が接続されている。
[0068] ポンプ 200には、ポンプ 200に給電するための電源(図示せず)が電気的に接続さ れている。吸込口 202に供給されたキャリアーガスを排出口 204から導出して、気化 装置 100の供給口 114にキャリアーガスを供給する。
ポンプ 200は、検出制御手段 300に、配線 340により、電気的に接続されている。 図 4のポンプ 200の下部に示した白抜き四角は、配管 24のポンプ 200を駆動させる ための駆動系であり、例えば電動モータやソレノイドからなる。このポンプ 200の自動 弁を駆動するための制御信号に基づき、ポンプ 200は作動する。
[0069] ポンプ 200は、気体循環用減圧ポンプが好ましぐポンプは耐薬品性を備えて!/、る ことが好ま 、。例えばポンプはフッ素榭脂製の減圧ポンプが好ま 、。
[0070] <給気口 52>
給気口 52は、流量制御計あるいは任意の複数のオリフィス付き自動弁(図示せず) を備える。給気口 52は、気化分離装置 10内にキャリアーガスを給気する。(図 4の給 気矢印)
給気口 52の自動弁は、検出制御手段 300に、配線 350により、電気的に接続され ている。図 4の給気口 52の右側に示した白抜き四角は、給気口 52の自動弁を駆動さ せるための駆動系であり、例えば電動モータやソレノイド力もなる。この給気口 52の 自動弁を駆動するための制御信号に基づき、 自動弁は開閉する。流量制御計、或い は-一ドル弁またはオリフィスの大小で流量調整されることが好まし 、。価格と信頼性 の点から、ニードル弁またはオリフィスが好まし 、。
[0071] く排気口 54 >
排気口 54は、流量制御計あるいは任意の複数のオリフィス付き自動弁(図示せず) を備える。排気口 54は、気化分離装置 10内からキャリアーガスを排気する(図 4の排 気矢印)。
場合により、配管 20に排気口 54と供給口 114の間に分岐 (図示せず)を設けてもよ い。配管 20の分岐は、一方は流量調節弁(図示せず)を通じて気化装置 100の供給 口 114に接続され、他方は一端が開放された配管であって、分岐側の端部に自動弁 力 S設けられ、開放された端部に圧力調整弁が設けられた配管 (いずれも図示せず)を 含めてもよい。圧力調整弁は、弁の中の停止機構が、気体の圧力により押し開ける 機構を有し、圧力に依存して開閉される弁である。圧力調整弁は、気化分離装置 10 内の圧力が大気圧を超えると開放される。この一方が開放された配管は、さらなる気 化分離用の装置に接続することができ、あるいは配管 30に接続することもできる。こ のような分岐を介して、気化分離用の装置を 2つ以上接続することができる。
排気口 54の自動弁は、検出制御手段 300に、配線 352により、電気的に接続され ている。図 4の排気口 54の右側に示した白抜き四角は、排気口 54の自動弁を駆動さ せるための駆動系であり、例えば電動モータやソレノイド力もなる。この排気口 54の 自動弁を駆動するための制御信号に基づき、自動弁は開閉する。好ましい形状は上 述の給気口 52の自動弁と同様である。
[0072] <検出制御手段 300 >
検出制御手段 (装置) 300は、算出手段 (装置)と、温度制御手段 (装置)と、液面変 動制御手段 (装置)と、凝縮器制御手段 (装置)と、圧力調整制御手段 (装置)と、残 存揮発性物質の排出制御手段 (装置)と、液体の供給制御手段 (装置)と、気化分離 制御手段 (装置)と、停止終了制御手段 (装置)と、残渣濃縮液の排出制御手段 (装 置)と、精製回収液の排出制御手段 (装置)とを含む。算出手段は、算出液面位置と して、各制御手段において予め算出された値 (例えば、圧力、差圧)を用いることがで きる。 気化分離装置 10において、残存揮発性物質の排出制御手段と、液体の供給制御 手段と、気化分離制御手段と、停止終了制御手段と、残渣濃縮液の排出制御手段と 、精製回収液の排出制御手段と、場合により他の制御手段とを後述するように一連の 流れで組み合わせることにより、気化分離装置 10を自動制御することができる。検出 制御手段 300は、 CPU (中央処理装置)、 ROM (リードオンリーメモリー)、 RAM (ラ ンダムアクセスメモリ)等の演算処理を行うものを含むのが好まし 、。
[0073] <温度制御手段 >
温度制御手段は、温度センサが検出した温度の値を示す信号に基づき、温度が所 定の温度よりも低いか高いか判断し、低いと判別したときは、加熱を開始する信号を 熱源部に発し、容器 110が加熱され、高いと判別したときは、加熱を停止する信号を 熱源部に発し、容器 110の加熱は停止される。これによつて、容器 110の温度は所 定の温度に制御される。
[0074] <液面変動制御手段 >
液面変動制御手段は、容器 110内の液体の液面を機械的に変動させるための制 御信号を、容器回転型変動手段(ロータリーエバポレーター)の電動モータ(図示せ ず)に発する。この制御信号により、電動モータがロータリーエバポレーターを回転さ せる。これによつて、液体の液面を機械的に変動させる。
[0075] <凝縮器制御手段 >
凝縮器制御手段は、凝縮器 140を作動させるための制御信号を、冷媒溜めの供給 ポンプに発する。この制御信号により、冷媒溜めの供給ポンプを作動させる。これに よって、凝縮冷却コイル 146に冷媒を供給する。
[0076] <圧力調整制御手段 >
圧力調整制御手段は、気化分離装置 10内を減圧、あるいは大気圧、加圧に制御 するものであれば、制限されることはない。一例として、次に述べるような構成をとるこ とがでさる。
気化分離装置 10内を減圧にするための制御信号を、給気口 52の自動弁、排気口 54の自動弁 (いずれも図示せず)及びポンプ 200に発する。この制御信号により、給 気口 52の自動弁を閉じ、排気口 54の自動弁を開放するとともに、ポンプ 200を作動 させる。これによつて、気化分離装置 10内の気体の圧力を低下 (減圧)させる。
気化分離装置 10内を大気圧にするための制御信号を、給気口 52の自動弁、排気 口 54の自動弁(いずれも図示せず)及びポンプ 200に発する。この制御信号により、 給気口 52の自動弁を開放し、排気口 54の自動弁を開放するとともに、ポンプ 200を 作動させる。これによつて、気化分離装置 10内の気体の圧力を大気圧と同じ (大気 圧)にさせる。
気化分離装置 10内を加圧にするための制御信号を、給気口 52の自動弁、排気口 54の自動弁 (いずれも図示せず)及びポンプ 200に発する。この制御信号により、給 気口 52の自動弁を開放し、排気口 54の自動弁を閉じるとともに、ポンプ 200を作動 させる。これによつて、気化分離装置 10内の気体の圧力を増加 (加圧)させる。
[0077] <残存揮発性物質の排出制御手段 >
(0 残存揮発性物質の排出制御手段は、ポンプ 200内の揮発性物質を排出するた めの制御信号を、給気口 52の自動弁及び排気口 54の自動弁 ( 、ずれも図示せず) に発する。この制御信号により、給気口 52の自動弁を開放し、排気口 54の自動弁を 開放するとともに、ポンプ 200を作動させる。これによつて、ポンプ 200内に残存する 揮発性物質を排出させ、ポンプ 200内を清浄化させる。
GO さらに、残存揮発性物質の排出制御手段は、ポンプ 200内の揮発性物質を排出 するための制御信号を受けたとき、ポンプ 200の作動時間の値が(例えば、 5分間)、 所定の揮発性物質を排出ポンプ時間の値と同じである力否かを判断し、同じであると 判別したときは、給気口 52の自動弁を閉じ、排気口 54の自動弁を閉じるとともに、ポ ンプ 200を作動停止する制御信号を発し、それとともに残存揮発性物質を排出終了 したとする制御信号を発する。これによつて、残存揮発性物質を排出終了する。
[0078] <液体の供給制御手段 >
液体の供給制御手段は、算出手段を含む。
(0 液体の供給制御手段は、残存揮発性物質を排出終了したとする制御信号を、残 存揮発性物質の排出制御手段力も受けたとき、あるいは算出手段力も液体の液面位 置が所定の算出液面位置であるとの信号 (液体の供給を開始するための制御信号) を受けたとき、気化分離装置 10内を減圧にするための制御信号を、上述したように、 給気口 52の自動弁、排気口 54の自動弁( 、ずれも図示せず)及びポンプ 200に発 する。
GO 液体の供給制御手段は、連成計 160が検出した気体の圧力が、所定の液体注 入時の値と同じである力否かを判断し、同じであると判別したときは、ポンプ 200を作 動停止する制御信号を発し、かつ排気口 54の自動弁を閉じる制御信号を発する。こ れによって、気化分離装置 10内の気体の圧力が所定の液体注入時の値 (例えば、 — 80kPa)とされる。
(iii) 液体の供給制御手段は、差圧計 180の検出管 112の出口圧力を液体注入時 の圧力と同じ圧力にするための制御信号を、供給口 56の自動弁(図示せず)に発す る。この制御信号により、供給口 56の自動弁のオリフィスを、所定の液体注入時用に 適合する所定のオリフィスに変更する。次いで、検出管 112の出口圧力と検出管 11 2出口の液体の圧力とが平衡にとなるように差圧計 180の検出管 112に検出用ガス を流すための制御信号を、供給口 56の自動弁(図示せず)に発する。この制御信号 により、検出管 112に検出用ガスが所定の流量で流入される。これによつて、検出管 112の出口圧力と検出管 112出口の液体の圧力とが平衡になる。
(iv) 液体の供給制御手段は、液体 (精製前原液)を容器 110に供給させるための制 御信号を、配線 332により配管 22に設けられた自動弁(図示せず)に発する。この制 御信号により、配管 22に設けられた自動弁を開放する。これによつて、精製前原液 溶媒タンク 156から液体が容器 110に移送される。
(v) 液体の供給制御手段は、差圧計 180が検出した差圧が、第一の液面位置に相 当する値である力否かを判断し、同じであると判別したときは、液体の供給'制御手段 に所定の信号を与え、配管 22に設けられた自動弁を閉じるとともに、液体供給を終 了したとする制御信号を発する。これによつて、容器 110内に液体が第一の液面位 置まで供給される。
<気化分離制御手段 >
(0 気化分離制御手段は、液体供給を終了したとする制御信号を受けたとき、あるい は気化分離を開始するための制御信号を受けたとき、気化分離装置 10内にキャリア 一ガスを循環させて、気化分離を開始するための制御信号を、給気口 52の自動弁、 排気口 54の自動弁( 、ずれも図示せず)及びポンプ 200に発する。この制御信号に より、給気口 52の自動弁を閉じ、 気口 54の自動弁を閉じるとともに、ポンプ 200を 作動させる。これによつて、気化分離装置 10内にキャリアーガスが循環され、供給口 114からキャリアーガスが供給される。
[0080] <停止終了制御手段 >
停止終了制御手段は、気化分離を開始するための制御信号を受けたとき、差圧計 180の検出管 112の出口圧力を気化分離時の圧力に調整するための制御信号を、 供給口 56の自動弁(図示せず)に発する。この制御信号により、供給口 56の自動弁 のオリフィスを所定の気化分離時用に変更する。次いで、検出管 112の出口圧力と 検出管 112出口の液体の圧力とが平衡になるように差圧計 180の検出管 112に検 出用ガスを流すための制御信号を、供給口 56の自動弁(図示せず)に発する。この 制御信号により、検出管 112に検出用ガスが所定の流量で流される。これによつて、 検出管 112の出口圧力がと検出管 112出口の液体の圧力とが平衡になる。
停止終了制御手段は、差圧計 180が検出した差圧が、第二の液面位置を超える値 であるか否かを判断し、超えると判別したときは、ポンプ 200を停止させる制御信号を 発する。これによつて、気化分離が停止される。
停止終了制御手段は、差圧計 180が検出した差圧が、第三の液面位置に相当す る値である力否かを判断し、相当すると判別したときは、ポンプ 200を停止させるとと もに、気化分離を停止終了したとする制御信号を発する。これによつて、気化分離が 停止終了される。
[0081] <残渣濃縮液の排出制御手段 >
残渣濃縮液の排出制御手段は、気化分離を停止終了したとする制御信号を受けた とき、あるいは残渣濃縮液の排出を開始するための制御信号を受けたとき、気化分 離装置 10内を加圧にするための制御信号を、上述したように、給気口 52の自動弁、 排気口 54の自動弁( 、ずれも図示せず)及びポンプ 200に発する。
残渣濃縮液の排出制御手段は、連成計 160が検出した気体の圧力が、所定の残 渣濃縮液の排出時の値と同じであるか否かを判断し、同じであると判別したときは、 給気口 52の自動弁を閉じ、排気口 54の自動弁を閉じるとともに、ポンプ 200を作動 停止する制御信号を発する。これによつて、気化分離装置 10内の気体の圧力が所 定の残渣濃縮液の排出時の値 (例えば、 + 20kPa)となる。
残渣濃縮液の排出制御手段は、濃縮(回収)液を濃縮液タンク 158に排出させるた めの制御信号を、配線 334を介して配管 26に設けられた自動弁(図示せず)に発す る。この制御信号により、配管 26に設けられた自動弁を開放する。これによつて、容 器 110から濃縮液が濃縮液タンク 158に移送される。
残渣濃縮液の排出制御手段は、連成計 160が検出した気体の圧力が、所定の残 渣濃縮液の排出終了時の値と同じであるか否かを判断し、同じであると判別したとき は、配管 26に設けられた自動弁を閉じるとともに、残渣濃縮液を排出終了したとする 制御信号を発する。これによつて、気化分離装置 10内の気体の圧力が所定の残渣 濃縮液の排出終了時の値 (例えば、 1. OkPa)となり、残渣濃縮液を排出終了する。 <精製回収液の排出制御手段 >
精製回収液の排出制御手段は、残渣濃縮液を排出終了したとする制御信号を受 けたとき、あるいは精製回収液の排出を開始するための制御信号を受けたとき、気化 分離装置 10内を加圧にするための制御信号を、上述したように、給気口 52の自動 弁、排気口 54の自動弁( 、ずれも図示せず)及びポンプ 200に発する。
精製回収液の排出制御手段は、連成計 160が検出した気体の圧力が、所定の精 製回収液の排出時の値と同じであるか否かを判断し、同じであると判別したときは、 給気口 52の自動弁を閉じ、排気口 54の自動弁を閉じるとともに、ポンプ 200を作動 停止する制御信号を発する。これによつて、気化分離装置 10内の気体の圧力が所 定の精製回収液の排出時の値 (例えば、 + 20kPa)となる。
精製回収液の排出制御手段は、精製回収液を精製回収液タンク 154に排出させる ための制御信号を、配線 330により配管 24に設けられた自動弁(図示せず)に発す る。この制御信号により、配管 24に設けられた自動弁を開放する。これによつて、濃 縮(回収)液受器 150から精製液が精製回収液タンク 154に移送される。
連成計 160が検出した気体の圧力が、所定の精製回収液の排出終了時の値と同 じである力否かを判断し、同じであると判別したときは、配管 24に設けられた自動弁 を閉じるとともに、精製回収液を排出終了したとする制御信号を発する。これによつて 、気化分離装置 10内の気体の圧力が所定の精製回収液の排出終了時の値 (例え ば、 1. OkPa)となり、精製回収液を排出終了する。
[0083] 気化分離制御手段において、次のような変形態様を行うことができる。
気化分離装置 10において液体を部分凝縮する場合
気化分離制御手段は、圧力調整弁を作動可能とするための制御信号を、配管 20 の分岐に設けられた自動弁(図示せず)に発する。気化分離制御手段は、この制御 信号により、配管 20の分岐に設けられた自動弁を開放する。これによつて、圧力調整 弁が作動可能となる。次いで、気化分離制御手段は、流量調節弁の流量を小さくす るための制御信号を、配管 20に設けられた流量調節弁(図示せず)に発する。この 制御信号により、配管 20に設けられた流量調節弁を通じて供給口 114に供給される キャリアーガス及び気化媒体の流量は小さくなる。これによつて、容器 110内は減圧 状態に留まり、配管 20内は加圧状態となる。配管 20内の圧力は上述の圧力調整弁 により大気圧とされる。
[0084] 気化分離装置 10において、低沸点の液状媒体と高沸点の液状媒体とを含む液体を 気化分離する場合 (大気圧から減圧下)
気化分離制御手段は、液体の温度変化における変曲点を検出する制御信号を、 温度管 118の温度センサに(図示せず)に発する。温度センサが検出した変曲点が、 所定の液体の変曲点である力否かを判断し、変曲点であると判別したときは、気化分 離装置 10を大気圧にするための制御信号を、上述のように給気口 52の自動弁、排 気口 54の自動弁 (いずれも図示せず)及びポンプ 200に発する。次いで、気化分離 制御手段は、精製回収液の排出を開始するための制御信号を、上述するように給気 口 52の自動弁、排気口 54の自動弁(1/、ずれも図示せず)及びポンプ 200に発する。 上述のように、気化分離制御手段は、精製回収液を精製回収液タンク 154 (低沸点 液状媒体用のタンク)に排出させるための制御信号を、配線 330により配管 24に設 けられた自動弁(図示せず)に発する。上述のように、気化分離制御手段は、気化分 離を開始するための制御信号を受けたとき、気化分離装置 10内にキャリアーガスを 循環させて、気化分離を開始するための制御信号を、給気口 52の自動弁、排気口 5 4の自動弁(いずれも図示せず)及びポンプ 200に発する。これによつて、気化分離 が低沸点の液状媒体は大気圧下に行われ、高沸点の液状媒体は減圧下に行われ る。場合により、精製回収液が排出される精製回収液タンク 154を切換えることにより 、低沸点の液状媒体と高沸点の液状媒体とを分取することができる。
[0085] 気化分離の制御における各設定値の種類 A〜H毎の実施設定値 kPaと設定目的を 表 1に示す。設定値は、上述する算出手段に基づき、気化手段 2における容器 110 の容積、第一〜第三の液面位置における液体の容積、液体の粘度、液体の沸点等 の因子により、適宜設定することができる。
[0086] 表 1 加減圧設定値の種類と実施設定値及び設定目的
Figure imgf000031_0001
実施例
[0087] 以下、本発明を実施例に基づき、より詳細に説明する。これらの実施例は、本発明 を 、かなる意味にぉ 、ても制限するものではな 、。
[0088] 減圧条件での溶媒の回収
実施例 1
本発明の液状媒体及び混合液の気化分離装置 10において、始めに容器 110 (フ ラスコ型 10L容)を湯浴で 35°Cに加温を始めるとともに、凝縮用冷却コンデンサー 14 0への冷媒(― 10°C)を供給し、次 、で溶媒蒸発用の大型ロータリーエバポレーター を用いて容器 110の回転 (かきまぜ)を始め、運転準備のための検出制御を行った。 次に、ポンプ 200を約 5分間稼動させてポンプ内の残存揮発性物質の排出をした。 次いで、装置内 (気化分離装置 10)を連成計 S2の設定値 A— 1 (— 80. OkPa)に 減圧にした。つぎに、メタノール溶液を精製前原液タンク 156から注入した。
次いで容器内の液面位置を測定した。即ち、差圧計 S1の設定値 B— 1 (0. 5kPa) との比較を行い、設定値 B—1より低い場合、再度メタノール溶液を精製前原液タンク 156から注入した。この制御を繰り返し、設定値 B—1より差圧計 S1の値が高くなつた ときにメタノール溶液注入の終点とした。
続けて気化分離制御を行った。気化分離制御は、連成計 S2の設定値 C 1 ( 96 . OkPa)に到達する迄減圧して行った。その間に、差圧計の設定値 D— 1 (0. 7kPa) 以上に液面位置が高くなつた場合 (第二の液面位置を超えた場合)には、突沸現象 を防止するためにダイヤフラムポンプ 200を一時停止させ、続けて気化分離制御を 行い、差圧計の設定値 E— 1 (0. 2kPa)に到達した点を、気化分離の終点とした。 その後、装置内に気体を流入させ、連成計の設定値 F— 1 (一 1. OkPa)になるまで 大気圧まで加圧した。次に、連成計の設定値 G—1 ( + 20. OkPa)になるまで容器 11 0内を加圧し、容器 110の底に溜った濃縮液 (残渣)を濃縮液タンク 158に排出し、連 成計の設定値 H— 1 (1. OkPa)になるまでそのまま持続した。設定値 H— 1になった 時に、再度、連成計の設定値 G—1 ( + 20. OkPa)になるまで容器 110内を加圧した 。続いて、溶媒受け器 150から精製回収液タンク 154へ回収液を排出させ、連成計 の設定値 Hになるまでそのまま放置した。上記の一連の制御が終わり次第、ダイヤフ ラムポンプ 200内の残存揮発性物質を排出させた。
上記の一連の検出制御を繰返し、精製前原液の全量にっ ヽて気化分離を行った。 溶媒受け器 150に精製メタノールが約 120ml/minの割合で、ほぼ全量(> 99%)が 回収された。
実施例 2〜9
回収溶媒の種類、並びに加温浴を、表 2の通りに代えた以外は、実施例 1と同様に して行った。
表 2に、実施例 1〜9の結果を示す。 表 2 減圧下での溶媒の回収
Figure imgf000033_0001
[0091] 大気圧条件での溶媒の回収
実施例 10
本発明の装置において、始めの運転準備のための検出制御による残存揮発性物 質の排出、精製前原液タンクからの液体の供給の検出制御までは、「実施例 1」と同 様にして行った力 加温浴の温度を 65°Cとした。
その後、連成計の設定値 F— 2 (— 1. OkPa)になるまで気体を流入させ、気体の圧 力を、大気圧とした。
続けて、気化分離制御に移った。この制御は、気体を気化容器内に供給しながら、 連成計 S 2の設定値 C— 2 (約— 5kPa)を保つようにダイヤフラムポンプを稼動させた 。同時に液面位置の検出及び回収を行った。差圧計の設定値 E— 2 (0.2kPa)に到達 時を、気化分離の終点とした。
以降の大気開放、濃縮液の排出、回収液の移動等の検出制御は、「実施例 1」と同 様にして行った。精製メタノールが約 37ml/minの割合で、ほぼ全量(> 99%)が回収 された。
[0092] 実施例 11〜17
回収される有機溶媒の種類、並びに加温浴温度、ダイヤフラムポンプ流量を、表 3 の通りに代えた以外は、実施例 10と同様にして行った。 結果を、表 3に示す。
[0093] 表 3
Figure imgf000034_0001
注 : 精製前原液タンク 1 5 6から溶媒を容器 1 1 0に 5 L注入した状態で気化分離制御を開始し た。
[0094] 大気圧及び減圧条件を併用した混合溶媒の回収
実施例 18
本発明の装置において、始めの運転準備のための検出制御による残存揮発性物 質の排出、精製前原液タンクからの液体の供給の検出制御までは、「実施例 1」と同 様にして行った。
連成計の設定値 F— 3 (— 1. OkPa)になるまで気体を流入させ、気体の圧力を、大 気圧とした。
気化分離の制御を行 、つつ、連成計 S2の設定値 C 3 (約 5kPa)を保つように ダイヤフラムポンプを稼動させて液面位置を検出した。この間、容器 110内の液温の 経時変化を追跡した。溶媒の回収後〜変曲点以前は、より沸点の低い溶媒が回収さ れた。変曲点を検出した時、一旦装置内における気体の循環を停止させた。その後 気化分離装置 10を減圧にして再度開始させ、高沸点の溶媒の回収を始めた。差圧 計の設定値 E— 3 (0. 2kPa)に到達するまでこの制御を続け気化分離の終点とする。 その他の大気開放、濃縮液の排出、回収液の移動等の検出制御は、「実施例 1」と 同様にして行った。精製メタノールが約 30ml/min、高沸点の溶媒約 65ml/minの割 合で、ほぼ全量(> 99%)が回収された。
低沸点の溶媒と高沸点溶媒を分取する容器 110内の液温の経時グラフを図 5に示 す。液温の経時グラフにおけるピークは、液温の変曲点である。
高温の凝縮器及び圧力調節弁を用いる例
実施例 19
この実施例の装置には、減圧ポンプ 200と容器 110とを結ぶ導管 20の途中にある 自動弁(図示せず)の手前に更に流量調節弁 (ニードル弁)(図示せず)を設けて 、る 。また、この-一ドル弁の手前にある分岐の一方の導管(図示せず)は減圧ポンプ 20 0と接続し、もう一方の導管は大気側に導かれている。この大気圧雰囲気に開放され て 、る導管の出口には逆止弁となる圧力調節弁 (リリーフバルブ)(図示せず)を取り 付けられている。この圧力調節弁は、配管内の圧力が大気圧を超えると開き、大気圧 未満では閉ざされる。
本発明の気化分離装置 10において、始めの運転準備のための検出制御による残 存揮発性物質の排出の検出制御までは、「実施例 1」と同様にして行った。
連成計の設定値 F— 4 ( 1. OkPa)になるまで気体を流入させ、気体の圧力を、大 気圧とした。
始めに、制御機器に運転条件の初期値及びジォキサンを回収する所定の減圧度( — 75kPa)を設定し、全容器内を減圧状態にする。気化分離装置 10内部が設定した 減圧値に達した後、配管 22の途中に設けられた自動弁(図示せず)を開き、未精製 のジォキサン(約 500ml)を、容器 110〖こ移し、 80°C〖こ温める。
次に減圧ポンプ 200を運転して容器 110内を減圧度( 75kPa)にしたのち、ジォ キサンの蒸発回収運転を開始する。即ち、蒸発したジォキサンは、 15°Cの冷媒が循 環する冷却用コンデンサー 144で凝縮されて回収される。その制御は、まず時間計 測を始め、一定時間のジォキサンの回収量を測定しつつ減圧ポンプ 200の運転を続 け、この間、ニードル弁と圧力調節弁が適度に作動して減圧度(- 75kPa)に調整さ せながら行われる。このとき、減圧ポンプ 200より排気される少量の気体は、ニードル 弁(図示せず)を経由して容器 110へ戻されて循環するため、この状態での大気側へ のジォキサン蒸気の放出はなくなる。この間に容器 110から蒸発したジォキサン蒸気 は、 15°Cに冷された冷却用コンデンサー 144で液化し回収された。 8分間の気化分 離装置 10の運転後、減圧ポンプ 200の運転を停止し、給気口 52を開放して、気体 の圧力を大気圧に戻して、蒸発回収運転を停止したところ、溶媒受け器 150にジォ キサン力 70ml回収された。続いて始めの検出制御に戻る。これらの一連の回収作 業を自動的に検出制御することにより所定量の溶媒の精製が終わる迄自動的に反 復する。上記の溶媒回収工程では、 15°Cの凝縮器で液ィ匕しなカゝつた溶媒蒸気が循 環気体として利用されるため、同じ減圧度で循環させない場合に比べて、回収効率 は 35〜45%改善される。
表 4に、結果を示す。
[0096] 実施例 20
回収される有機溶媒の種類を酢酸ェチルとし、加温浴を 60°Cに代えた以外は、実 施例 19と同様にして、実施例 20を行った。
表 4に、結果を示す。
[0097] 高温の凝縮器を用いる、外気側への開放系でのジォキサンの回収例
実施例 21
本発明の気化分離装置 10において、始めの運転準備のための検出制御による残 存揮発性物質の排出の検出制御までは、「実施例 1」と同様にして行った。
その後、連成計の設定値 F— 5 (— 1. OkPa)になるまで気体を流入させ、気体の圧 力を、大気圧とした。
上記の実施例 19に記載の気化分離装置 10を用いて、減圧ポンプ 200と容器 110 とを結ぶ導管 20の途中にある自動弁(図示せず)を閉じ、ニードル弁(図示せず)は 開放したままで減圧ポンプ 200を運転する。この際、制御機器に運転初期値及びジ ォキサンを回収する所定の減圧度( 75kPa)を入力する。この様にして気化分離装 置 10内を減圧状態にしたのち、ジォキサンの蒸発回収運転を開始する。
この運転では、配管 20にある自動弁を閉じ、次に自動弁 54を開いて減圧ポンプ 2 00を運転することにより、気化分離装置 10内部の気体は外部に排出され、減圧状態 となる。気化分離装置 10内部が入力した減圧値に達した後、配管 22の途中に設置 された自動弁を開き、未精製のジォキサン (約 500ml)を、容器 110に移動させる。次 に、容器 110は所定の減圧度で 80°Cに加温し、減圧ポンプ 200を連続運転しながら 、ジォキサンの蒸発回収運転を始めた。蒸発したジォキサンは、 15°Cの冷媒が循環 する冷却用コンデンサー 144で凝縮し回収された。この制御では、 15°Cの冷却用コ ンデンサ一で凝縮されなカゝつたジォキサン蒸気の一部が減圧ポンプ 200の排気口か ら大気側へ放出されるが、それらは気化分離装置 10に接続された、さらなる気化分 離装置 (大気圧条件)により気化分離される。
表 4に、酢酸ェチル及びジォキサンの精製回収条件と時間あたりの回収効率を示 す。
実施例 22
回収される有機溶媒の種類を酢酸ェチルとし、加温浴を 60°Cに代えた以外は、実 施例 21と同様にして、実施例 20を行った。
表 4に、結果を示す。 表 4 溶媒蒸気を含む気体を強制的に循環させる場合と循環させない場合の回収効率の比較
Figure imgf000037_0001
C : 全閉 (Close) R : 絞り (Reduced) 大気圧条件下での溶媒回収 (浄化処理への応用)
実施例 23
本願発明による溶媒回収は、有機溶媒を含んだ廃水 (原液)から、大部分の有機溶 媒を除去した大量の水 (残渣濃縮液)と、有機溶媒濃度の高!ヽ少量の有機溶媒水溶 液 (精製回収液)とに分離すると位置づけることにより、廃水浄化処理を行う目的で本 発明の装置を利用することができる。
本発明の装置において、始めの運転準備のための検出制御による残存揮発性物 質の排出、精製前原液タンクからの液体の供給の検出制御、気化分離制御を、「実 施例 10」と同様にして行った力 加温浴の温度を 40°Cとし、さらに気体を供給する気 体供給口 114を容器 110内の原液内の液面位置よりも下に設けて、気化効率を高め るパブリングを行った。 液中のアセトンは処理前の 15. 0%から 6. 0%に浄ィ匕され、蒸発したアセトン、すな わち回収される有機溶媒はほぼ全量( > 99%)回収された。
表 5に結果を示す。
[0100] 実施例 24及び 25
加温浴を、実施例 24においては 40°Cから 57°Cに変更、実施例 25においては 40 °Cから 70°Cに変更した以外は、実施例 23と同様にして行った。
表 5に結果を示す。
[0101] 実施例 26
回収する有機溶媒をアセトン力 アクリル-トリルに変更した以外は、実施例 25と同 様にして行った。
表 5に結果を示す。
[0102] 表 5 :
Figure imgf000038_0001
液中のアクリロニトリルは処理前の 2. 0%から 0. 03%に浄ィ匕され、アセトンは 15% 力も 1. 1%に浄ィ匕され、蒸発した溶媒はほぼ全量(> 99%)回収された。
産業上の利用可能性
[0103] 本発明の方法及び装置は、液状媒体、混合液のような処理対象を、変動する液状 媒体の液面位置を測定することを通じて、あらゆる圧力操作条件で、自動制御により 気化分離できる新規な装置である。
本発明の装置は、変動する液状媒体の液面位置を高精度に測定可能であるため、 気化させる容器に隔壁を設けずに液状媒体の突沸現象防止が可能であり、気化'分 離部の構造を簡易化させることができる。また、高精度であるために、大規模生産設 備にお 、ても高 ヽ信頼性、安全性を満たす装置である。 さらに、本発明の装置の処理対象は、低沸点から高沸点の液状媒体を含むあらゆ る液状媒体、さらに非揮発性物質と液状媒体との混合液にも適合する。本発明の装 置は、中沸点、低沸点の溶媒が効率良く蒸発回収できるだけではなぐ産業での生 産工程で頻繁に使用される高沸点の液状媒体にも最適である。
また、本発明の装置は、大気圧下での気体循環方法のみならず、減圧下での気化 分離ゃ微加圧下で蒸気密度を高めた条件下での気化分離等を装置の条件を任意 に選択でき、所望により回収条件の組み合わせの選択枝が広い。そのために、多目 的に応用でき、かつ処理規模の制約がない。
より詳細には、本発明の装置は、
(1)自動化可能であるので、連続操業することができる。その利点として、オンオフに よる電力の消費量を低減させるだけでなぐリレーのオンオフによる故障やトラブルを 防止することができ、経済性及び設備の維持管理上で好ま 、。
(2)変動する液状媒体の液面位置を高精度に測定可能であるので、分離条件の温 度が一般的な分離条件よりも高くすることが可能である。その利点として、冷却機のコ ンプレッサーの能力を最大に発揮させる条件で稼動でき、経済性と気化分離率を両 立させることができる。特に、事業所の既存の冷却水設備を利用した装置化が可能 であるので、新規投資が不要であり、また、冷却能力に合わせて気化分離効率との バランスが取り易い、という利点がある。
符号の説明
2 :気化手段
4 :分離手段
6 :圧力検出手段
7 :差圧検出手段
8 :算出手段
10 :気化分離装置
11 :蒸発用丸底フラスコ
12 :加温浴
13 :温度計 14:凝縮用冷却コンデンサー
15:回収受器
16:冷媒接続口
17:カラム塔
18:自動弁
19:自動弁
20:導管
22:導管
24:導管
26:導管
28:導管
52:給気口
54:排気口
56:供給口、気体供給口
100:気化装置
110:容器
112:検出管
114:気体供給口
116:移送口
118:温度管
140:分離装置
142:溶媒蒸気導入口(下部蒸気入口)、溶媒導出口 144:冷却用コンデンサー
146:凝縮冷却コイル
148:気体導出口
150:溶媒受け器、濃縮 (回収)液受器
152:濃縮(回収)液受器導入口
154:精製回収媒液タンク 156精製前原液溶媒タンク
158濃縮液タンク、残渣タンク
160 S1 連成計
180 S2 差圧計
200ポンプ 200
202 吸込口
204排出口
300検出制御手段
310配線
312配線
314配線
320配線
330配線
332配線
334配線
340配線
350配線
352配線
354配線
360配線
370配線

Claims

請求の範囲
[1] 液状媒体の、又は前記液状媒体と非揮発性物質とを含む混合液の、うちの!、ずれ か一方の液体が貯留されることによって液体の液面が形成される気化手段であって 、前記液状媒体を気化させて気化媒体とする気化手段と、
前記気化手段から排出された気体と前記気化媒体とを冷却して、前記気化媒体を 凝縮した凝縮媒体にすることによって前記気体から分離する分離手段と、を含む液 状媒体及び混合液の気化分離装置にぉ ヽて、
前記気体の圧力を検出する圧力検出手段と、
前記気化手段内の所定位置における圧力と前記気体の圧力との差圧を検出する 差圧検出手段と、
前記気体の圧力と前記差圧とに基づいて、前記所定位置を基準とした前記液体の 液面位置を、算出液面位置として算出する算出手段と、を含み、
前記液体の液面位置は、前記液体の気化により変動し、
前記算出液面位置は、前記液体の液面位置が静止して ヽるときに対応した液面位 置である、液状媒体及び混合液の気化分離装置。
[2] 前記液体の液面を機械的に変動させる液面変動手段を更に含み、
前記液体の液面が静止して 、るときは、前記気化手段への気体の供給を停止し、 かつ前記液面変動手段を停止させているときである、請求項 1記載の装置。
[3] 前記算出液面位置が、第一の液面位置となるまで、前記気化手段に前記液体を供 給する液体供給手段を更に含む、請求項 1又は 2記載の装置。
[4] 前記気化手段にお!、て前記液体に前記気体を供給する気体供給手段と、
前記算出液面位置が、所定の第二の液面位置を超えたときに、あるいは前記算出 液面位置が、前記第二の液面位置よりも低い第三の液面位置と同じとなったときに、 前記気体供給手段による前記気体の供給を停止させる停止手段と、
を更に含む、請求項 1〜3のいずれか 1項記載の装置。
[5] 前記気化手段内の圧力を、前記気化手段に気体を供給することにより高めて、前 記非揮発性物質を前記気化手段から排出させる非揮発性物質排出手段を更に含む
、請求項 1〜4のいずれか 1項記載の装置。 前記気化手段内の圧力が大気圧よりも低い状態で気化させるときに、
前記分離手段は、前記気化媒体のうちの一部を凝縮した凝縮媒体を、前記気化媒 体の一部及び気体から分離する部分分離手段であり、
前記気体供給手段は、前記気化媒体のうちの一部と前記気体の混合気体を供給 する混合気体供給手段である、請求項 1〜5の!ヽずれか 1項記載の装置。
PCT/JP2006/325032 2005-12-16 2006-12-15 液状媒体等の気化分離装置 WO2007069718A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007550237A JPWO2007069718A1 (ja) 2005-12-16 2006-12-15 液状媒体等の気化分離装置
EP06834775A EP1967243A1 (en) 2005-12-16 2006-12-15 Vaporizing separator for liquid medium and the like
US12/086,510 US20090165653A1 (en) 2005-12-16 2006-12-15 Apparatus for Gasifying and Separating a Liquid Medium or the Like

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005363928 2005-12-16
JP2005-363928 2005-12-16

Publications (1)

Publication Number Publication Date
WO2007069718A1 true WO2007069718A1 (ja) 2007-06-21

Family

ID=38163020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325032 WO2007069718A1 (ja) 2005-12-16 2006-12-15 液状媒体等の気化分離装置

Country Status (5)

Country Link
US (1) US20090165653A1 (ja)
EP (1) EP1967243A1 (ja)
JP (1) JPWO2007069718A1 (ja)
CN (1) CN101330950A (ja)
WO (1) WO2007069718A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036886A (ko) * 2017-08-01 2020-04-07 한스 하이돌프 게엠베하 회전 증발기

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121650A1 (de) * 2011-12-19 2013-06-20 Hans Heidolph Gmbh & Co. Kg Destillationsvorrichtung
CN104597261B (zh) * 2014-12-31 2016-08-24 聚光科技(杭州)股份有限公司 一种水质在线检测分析装置及方法
US10421030B2 (en) * 2015-04-11 2019-09-24 David Bradley Boylan System and method for distillation
DE202018002603U1 (de) * 2018-05-30 2018-06-18 Heidolph Instruments GmbH & Co. KG Reinigungsvorrichtung für einen Rotationsverdampfer
CN109406339B (zh) * 2018-10-25 2021-02-02 西南石油大学 一种固液两相浓度的检测系统及方法
CN113916640A (zh) * 2020-07-09 2022-01-11 青岛市食品药品检验研究院(青岛市药品不良反应监测中心、青岛市实验动物和动物实验中心) 一种多功能样品前处理装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158402U (ja) * 1983-04-12 1984-10-24 三洋電機株式会社 ドライクリ−ナの溶剤蒸溜装置
JPH0486978A (ja) 1990-07-31 1992-03-19 Toshiba Corp 磁気カード処理装置
JPH057301U (ja) 1991-07-08 1993-02-02 日本ゼオン株式会社 突沸防止機構付き真空蒸留装置
JPH10328548A (ja) 1997-06-02 1998-12-15 Toshiba Eng Co Ltd タンク内溶液の撹拌装置及び溶液量計測装置
JP2000202201A (ja) 1999-01-19 2000-07-25 Konica Corp 蒸発濃縮装置
JP2001079301A (ja) * 1999-09-10 2001-03-27 Chiyoda Corporation:Kk 万能蒸留装置
JP3244639B2 (ja) 1996-08-09 2002-01-07 株式会社テクノシグマ 有機溶媒回収装置
JP2003260301A (ja) * 2002-03-11 2003-09-16 Ebara Corp 化学処理液の濃縮方法およびこれに使用する装置
JP3488871B2 (ja) * 2001-06-01 2004-01-19 金子産業株式会社 故障診断機能付きマグネットフロート式液面計
JP2004148169A (ja) 2002-10-29 2004-05-27 Kohei Sawa 溶剤蒸留システム及び溶剤の蒸留方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828660A (en) * 1986-10-06 1989-05-09 Athens Corporation Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids
US6906164B2 (en) * 2000-12-07 2005-06-14 Eastman Chemical Company Polyester process using a pipe reactor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158402U (ja) * 1983-04-12 1984-10-24 三洋電機株式会社 ドライクリ−ナの溶剤蒸溜装置
JPH0486978A (ja) 1990-07-31 1992-03-19 Toshiba Corp 磁気カード処理装置
JPH057301U (ja) 1991-07-08 1993-02-02 日本ゼオン株式会社 突沸防止機構付き真空蒸留装置
JP3244639B2 (ja) 1996-08-09 2002-01-07 株式会社テクノシグマ 有機溶媒回収装置
JPH10328548A (ja) 1997-06-02 1998-12-15 Toshiba Eng Co Ltd タンク内溶液の撹拌装置及び溶液量計測装置
JP2000202201A (ja) 1999-01-19 2000-07-25 Konica Corp 蒸発濃縮装置
JP2001079301A (ja) * 1999-09-10 2001-03-27 Chiyoda Corporation:Kk 万能蒸留装置
JP3488871B2 (ja) * 2001-06-01 2004-01-19 金子産業株式会社 故障診断機能付きマグネットフロート式液面計
JP2003260301A (ja) * 2002-03-11 2003-09-16 Ebara Corp 化学処理液の濃縮方法およびこれに使用する装置
JP2004148169A (ja) 2002-10-29 2004-05-27 Kohei Sawa 溶剤蒸留システム及び溶剤の蒸留方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036886A (ko) * 2017-08-01 2020-04-07 한스 하이돌프 게엠베하 회전 증발기
KR102596737B1 (ko) * 2017-08-01 2023-10-31 한스 하이돌프 게엠베하 회전 증발기

Also Published As

Publication number Publication date
EP1967243A1 (en) 2008-09-10
CN101330950A (zh) 2008-12-24
JPWO2007069718A1 (ja) 2009-05-28
US20090165653A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
WO2007069718A1 (ja) 液状媒体等の気化分離装置
US4980032A (en) Distillation method and apparatus for reprocessing sulfuric acid
KR101709101B1 (ko) Nmp의 증류장치
US9574799B2 (en) Extractor and concentrator
AU2008297017B2 (en) Devices and methods for water removal in distillation columns
CN101385905B (zh) 连续取出精细晶体形式的目标产物x的方法
WO2005039725A1 (ja) 液状媒体の回収方法並びに液状の媒体回収装置
JPH11506431A (ja) イソプロピルアルコールの無水化及び純粋化
CN204502433U (zh) 闪蒸刮板浓缩器
IL91391A (en) Process and device for extracting solid materials by using a solvent
CN205867635U (zh) 一种真空间歇式精馏塔
RU2007133801A (ru) Устройство и способ для получения этиленоксида
EP2564911B1 (en) Pure liquid manufacturing apparatus
KR20010070408A (ko) 가압 고순도의 액체 이산화탄소 스트림을 제조하기 위한방법 및 장치
US5061348A (en) Sulfuric acid reprocessor with continuous purge of second distillation vessel
JP4652895B2 (ja) クロマトグラフィー装置及び溶剤組成調整装置
US20100116727A1 (en) Membrane container
US5500095A (en) High efficiency chemical processing
CN218011196U (zh) 一种高效率超临界设备
CN218357428U (zh) 串联式精馏回收装置
CN114272646A (zh) 一种高效率超临界设备
CN202143820U (zh) 渗透汽化综合实验装置
JPH0891811A (ja) 廃硫酸精製装置及び精製方法
CN202844889U (zh) 超滤渗透汽化综合实验装置
JP2901866B2 (ja) 真空蒸留回収装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046784.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007550237

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12086510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834775

Country of ref document: EP