WO2007069650A1 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
WO2007069650A1
WO2007069650A1 PCT/JP2006/324855 JP2006324855W WO2007069650A1 WO 2007069650 A1 WO2007069650 A1 WO 2007069650A1 JP 2006324855 W JP2006324855 W JP 2006324855W WO 2007069650 A1 WO2007069650 A1 WO 2007069650A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary
boundary line
blood vessel
line
intima
Prior art date
Application number
PCT/JP2006/324855
Other languages
English (en)
French (fr)
Inventor
Takao Suzuki
Hisashi Hagiwara
Makoto Kato
Yoshinao Tan-Naka
Hiroshi Kanai
Hideyuki Hasegawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Tohoku University filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP20060834610 priority Critical patent/EP1961384A4/en
Priority to US12/097,142 priority patent/US20090227867A1/en
Publication of WO2007069650A1 publication Critical patent/WO2007069650A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties

Definitions

  • the present invention relates to a medical ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus that measures a blood vessel wall.
  • An ultrasonic diagnostic apparatus observes the inside of a subject by irradiating the subject with ultrasonic waves and analyzing information contained in the echo signal.
  • an ultrasonic diagnostic apparatus widely used obtains the structure of a subject as a tomographic image by converting the intensity of an echo signal into the luminance of a corresponding pixel. Thereby, the internal structure of the subject can be known. Since the inside of a subject can be observed noninvasively, ultrasonic diagnostic equipment is indispensable in clinical settings alongside X-ray CT and MRI.
  • carotid artery echo is performed using an ultrasonic diagnostic device. It is known that the carotid artery has a structure having three layers of intima, media and adventitia in order of medial force. In carotid artery echo, the combined thickness of the intima and media (intima-media complex thickness: hereinafter referred to as IMT) is measured and used as an index of arteriosclerosis. According to Non-Patent Document 1, IMT of 1.1 mm or more is diagnosed as abnormal thickening. The IMT measurement is performed manually using the length measurement function on the tomographic image, which is generally equipped as standard in ultrasonic diagnostic equipment.
  • FIG. 12 shows an example of measuring the IMT of the carotid artery using a conventional ultrasound diagnostic device.
  • FIG. 12 shows a tomographic image (cross section obtained by longitudinally cutting the blood vessel wall) parallel to the axis of the blood vessel wall.
  • the six + marks are the manually set measurement points, and the distance between the two + marks at the position indicated as 1 in the center is 0.5 mm, and at the positions indicated as 2 and 3. The distance between the two + marks is 0.4 mm each.
  • Patent Document 1 accurately tracks the motion caused by the heartbeat of two minute regions of the blood vessel wall, and measures the minute thickness change superimposed on the large amplitude displacement motion caused by the heartbeat, that is, the amount of distortion.
  • a method for obtaining a local elastic modulus from a strain amount and a blood pressure difference and an apparatus for displaying an image of the spatial distribution of the elastic modulus are disclosed.
  • a phase difference tracking method disclosed in Patent Document 2 is used for tracking a minute region of a blood vessel wall.
  • FIGS. 13 (a) and 13 (b) a method for tracking a subject tissue disclosed in Patent Document 1 will be described. As shown in FIG.
  • ultrasonic waves are emitted toward the blood vessel 111 in the probe 10 1 force subject 110, and echoes from the blood vessel 111 are received by the probe 101.
  • Set measurement points A and B on the blood vessel wall analyze the received signals from measurement points A and B by the method disclosed in Patent Document 2, and track the movement of measurement points A and B
  • the blood vessel 111 repeatedly contracts and dilates according to the heartbeat. Specifically, blood vessels 111 dilate rapidly during systole and slowly contract during diastole.
  • Figure 13 (b) shows the tracking waveforms TA, TB, and the ECG waveform ECG tracking the positions of measurement points A and B. Measurement points A and B change rapidly as the blood vessel 111 dilates, and then slowly return to the original position.
  • the thickness change waveform W between measurement points A and B is obtained.
  • the strain amount ⁇ between the measurement points A and B is expressed by the following equation (1).
  • Non-Patent Document 2 discloses a method of obtaining a circumferential elastic modulus that represents more accurate physical characteristics than the radial elastic modulus of a blood vessel. According to Non-Patent Document 2, the circumferential elastic modulus is given by the following equation (3).
  • hO is the initial radial thickness of the entire vessel wall and rO is the initial radius of the vessel
  • FIG. 14 shows a monitor screen displayed when an arterial blood vessel is diagnosed using an ultrasonic diagnostic apparatus.
  • an elastic modulus image 201 showing the elastic modulus distribution is superimposed on the rear wall of the tomographic image 200 (the blood vessel wall on the side where the skin surface force is far) 230.
  • the boundary line 204 between the flow 207 and the inner membrane 231 of the rear wall 230 and the boundary line 206 between the outer membrane 233 of the rear wall 230 and the surrounding tissue were set manually.
  • the operator recognizes the boundary between the region of blood flow 207 and the region of the intima 221 of the front wall 220 displayed based on the shading shown in the reflection intensity scale 202 for tomographic images.
  • the boundary line 203 is set by tracing the boundary with the cursor 210 displayed on the monitor screen.
  • the boundary lines 204 and 206 can be set by repeating the same operation.
  • Patent Document 1 JP 2000-229078
  • Patent Document 2 Japanese Patent Laid-Open No. 10-5226
  • Non-Patent Document 1 Hiroshi Furudate, "Carotid Echo”, Vector 'Core, 2004, ISBN4-93837 2-88-6
  • Non-Patent Document 2 Hasegawa, Kanai et al. “Local elastic modulus measurement method for tubes with non-uniform wall thickness”, J Med Ultrasounics Vol.28, No.l (2001) pp.J3— J13
  • the present invention solves such problems and can reduce the burden on the operator. It aims at providing a cutting device.
  • the ultrasonic diagnostic apparatus of the present invention is an ultrasonic diagnostic apparatus for measuring a blood vessel wall, and includes a transmitter that drives a probe for transmitting ultrasonic waves to a subject including a blood vessel, An ultrasonic echo obtained by reflection of the ultrasonic wave at the subject is received using the probe, and a reception unit that generates a reception signal; and a tomographic image of the subject is displayed from the reception signal.
  • a tomographic image processing unit that generates an image signal to be displayed on the display unit, a first boundary line setting unit that sets a first boundary line based on the tomographic image displayed on the display unit, and the first
  • a second boundary line generation unit that generates at least one second boundary line by translating the boundary line;
  • the ultrasonic diagnostic apparatus further includes a user interface for an operator to specify a position on the tomographic image.
  • the boundary line setting unit moves the first boundary line to a position designated by the operator using a user interface based on information on the first boundary line.
  • the second boundary line is generated by translation.
  • the first boundary line setting unit is configured to display information on a line segment drawn on the tomographic image by the operator using a user interface. Store as line information.
  • the first boundary line setting unit generates a straight line or a broken line as the first boundary line based on the position specified by the operator! .
  • the first boundary line includes a boundary between an intima and a blood flow in the anterior wall and the posterior wall of the blood vessel, and an intima and an outer membrane in the anterior wall and the posterior wall of the blood vessel.
  • a boundary group force including the boundary between the outer wall of the blood vessel and the outer membrane of the blood vessel and the surrounding tissue, and the second boundary line is selected from the boundary group. Located on one boundary.
  • the first boundary setting unit determines a boundary between the intima of the anterior wall or the posterior wall of the blood vessel and the blood flow based on the image signal. Detect and set the first boundary at the detected boundary.
  • the first and second boundary lines are placed on the boundary between the intima and the blood flow and the boundary between the media and the adventitia on the anterior wall or the posterior wall, respectively. Based on the first and second boundary lines, the intima-media thickness of the blood vessel wall is obtained.
  • the ultrasonic diagnostic apparatus receives information on a blood pressure of the subject, a tissue tracking unit that tracks the movement of the tissue in the subject, and the tracking based on the received signal. And a property value calculation unit for calculating a property value of the tissue based on the tissue movement, and based on the first and second boundaries, the intima, media and adventitia of the blood vessel Of these, the property value of at least one tissue is calculated.
  • the first and second boundary lines are located at a boundary between an intima and a blood flow and a boundary between an outer membrane and a surrounding tissue, respectively.
  • the method for setting the boundary of the blood vessel wall in the ultrasonic diagnostic apparatus of the present invention is based on the tomographic image of the blood vessel of the subject obtained by transmitting and receiving ultrasonic waves, and the front wall and the rear wall of the blood vessel. From the boundary group including the boundary between the intima and the blood flow of the wall, the boundary between the media and the adventitia on the anterior and posterior walls of the blood vessel, and the boundary between the adventitia and the surrounding tissue on the anterior and posterior walls of the blood vessel Generating a second boundary line located on at least one other selected boundary force by translating a first boundary line set to be located on at least one selected boundary; Is included.
  • the method further includes a step of storing information on a line segment drawn on the tomographic image by an operator using a user interface as information on the first boundary line.
  • the step of generating the second boundary line generates the second boundary line based on the stored information on the first boundary line.
  • the method is configured such that a straight line or a polygonal line is formed on the first boundary line based on a position designated by the operator on the tomographic image of the blood vessel by a user interface. It further includes the step of generating as
  • the method determines a boundary between an intima of the anterior wall or the posterior wall of the blood vessel and a blood flow based on an image signal for displaying the tomographic image. Detect and detect The method further includes the step of setting the first boundary line to the extended boundary.
  • the labor and time for defining each boundary of the blood vessel wall are reduced, and the measurement time by the ultrasonic diagnostic apparatus can be shortened.
  • FIG. 1 (a) is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to the present invention, and (b) is a block diagram showing a configuration of its main part.
  • FIG. 2 is a flowchart showing a procedure for setting a boundary line by the ultrasonic diagnostic apparatus shown in FIG.
  • FIG. 3 shows an example of a monitor screen corresponding to the procedure shown in FIG.
  • FIG. 4 (a) to (c) are diagrams for explaining an example of a procedure for setting a boundary line by moving it in parallel.
  • FIG. 5] (a) to (c) are diagrams illustrating another example of the procedure for setting the boundary line by moving it in parallel.
  • FIG. 6] (a) to (c) are diagrams for explaining another example of the procedure for setting the boundary line by moving it in parallel.
  • FIG. 7 is a flowchart showing another procedure for setting a boundary line by the ultrasonic diagnostic apparatus shown in FIG. 1.
  • FIG. 8 shows an example of a monitor screen corresponding to the procedure shown in FIG.
  • FIG. 9 is a flowchart showing another procedure for setting a boundary line by the ultrasonic diagnostic apparatus shown in FIG. 1.
  • FIG. 10 shows an example of a monitor screen corresponding to the procedure shown in FIG.
  • FIG. 11 is a flowchart showing another procedure for setting a boundary line by the ultrasonic diagnostic apparatus shown in FIG. 1.
  • FIG. 12 shows an example of a surface for measuring IMT in a conventional ultrasonic diagnostic apparatus.
  • FIG. 13 (a) is a diagram for explaining the procedure for obtaining the distortion amount from the tracking waveform at the measurement point in the conventional ultrasonic diagnostic apparatus, and (b) shows the tracking waveform at the measurement point.
  • FIG. 14 shows an example of a screen for displaying an elastic modulus image in a conventional ultrasonic diagnostic apparatus. Yes.
  • the ultrasonic diagnostic apparatus of the present invention is used for measuring the shape and property value of a blood vessel wall.
  • the boundary between the blood flow and the intima in the anterior wall of the blood vessel wall, the boundary between the blood flow and the intima in the posterior wall of the blood vessel wall, the boundary between the media and the outer membrane, and the outer membrane and the surrounding tissue An example of setting the boundary is described.
  • the present invention is not limited to these boundaries, but can also be applied to the case where the boundary between the media and the outer membrane of the front wall and the boundary between the outer membrane and the surrounding tissue are set.
  • FIG. 1 (a) is a block diagram showing a configuration of the ultrasonic diagnostic apparatus according to the present embodiment.
  • the ultrasonic diagnostic apparatus includes a transmission unit 102, a reception unit 103, a tomographic image processing unit 104, a tissue tracking unit 105, an image synthesis unit 106, and an elastic modulus calculation unit 108. Further, a control unit 100 and a user interface 130 for controlling these units are further provided.
  • the user interface 130 is an input device that accepts input from an operator such as a keyboard, track Bonore, switch, or button.
  • the operator's command obtained by the user interface 130 is the control unit 100. Is input.
  • the control unit 100 is composed of a microcomputer or the like, and controls each unit based on an operator command.
  • the control unit 100 includes a boundary setting unit 150 that sets a boundary line for indicating the boundary of the tissue included in the blood vessel wall. Out. It should be noted that the control unit 100 passes signals to and from the blocks shown in FIG. 1 (a). In FIG. 1 (a), the lines indicating signal transfer are not shown because they are complicated.
  • the transmission unit 102 generates a high-voltage transmission signal that drives the probe 101 at a designated timing based on an instruction from the control unit 100.
  • the probe 101 converts the transmission signal generated by the transmission unit 102 into an ultrasonic wave and irradiates the subject. In addition, the ultrasonic echo reflected inside the subject is converted into an electrical signal.
  • a plurality of piezoelectric transducers are arranged in the probe 101, and the deflection angle and focus of ultrasonic waves to be transmitted / received are controlled by selecting these piezoelectric transducers and timing to apply voltage to the piezoelectric transducers.
  • the receiving unit 103 amplifies the electrical signal generated by the probe 101 and outputs a received signal. In addition, only ultrasonic waves from a specified position (focus) or direction (deflection angle) are detected.
  • the tomographic image processing unit 104 also has power such as a filter, a detector, and a logarithmic amplifier, and mainly analyzes the amplitude of the received signal to generate an image signal representing a tomographic image of the subject.
  • the tissue tracking unit 105 analyzes the phase difference between the received signals and calculates the amount of movement of the subject tissue along the transmission / reception direction of the ultrasonic wave, adds the amount of movement to the original position, Find position Consists of a position tracking calculator that tracks the movement of the subject tissue along the ultrasound transmission / reception direction.
  • the elastic modulus calculation unit 108 obtains property characteristic values such as a strain amount and an elastic modulus. Specifically, the amount of distortion is also calculated for the movement force of the tracked subject tissue.
  • information about the blood pressure of the subject is received from the sphygmomanometer 111. Further, as will be described in detail below, the information on the first boundary line and the second boundary line set by the boundary setting unit 150 is received to determine the distance between the boundary lines in the subject, and the blood vessel Calculate radius and vessel wall thickness.
  • the radial and circumferential elastic moduli are calculated based on the strain amount, information on blood pressure, the radius of the blood vessel and the thickness of the blood vessel wall, and the elastic modulus is output as a numerical value or a two-dimensional distribution image.
  • the image composition unit 106 synthesizes the tomographic image and at least one of the elastic modulus image and the elastic modulus value, and displays them on the monitor 107.
  • the memory 121 stores tracking position information, that is, at least one of movement of the subject tissue and distortion. The information recorded in the memory 121 is read when the elastic modulus value is recalculated in a state where transmission / reception of ultrasonic waves by the probe 101 is stopped (hereinafter referred to as a freeze state).
  • the memory 120 stores the image signal, and the image signal indicating the tomographic image synchronized with the elastic modulus is read in the frozen state.
  • FIG. 1 (b) is a block diagram showing the main part of the present invention.
  • the boundary line setting unit 150 sets the first boundary line based on the tomographic image displayed on the monitor 107. Then, at least one second boundary line is generated by translating the set first boundary line.
  • the boundary line setting unit 150 includes a first boundary line setting unit 153, a second boundary line generation unit 152, and a boundary line storage unit 151.
  • the first boundary line setting unit 153 sets a first boundary line based on the tomographic image, and stores information on the first boundary line in the boundary line storage unit 151.
  • This first boundary line is drawn as a cursor locus when the operator moves the cursor using the user interface 130 such as a mouse while the tomographic image of the subject is displayed on the monitor 107. Is a line segment.
  • the first boundary line setting unit 153 is a two or more specified by the operator clicking the mouse.
  • a straight line or a polygonal line connecting the upper positions may be generated as the first boundary line, and the information may be stored.
  • a regression line may be obtained using a plurality of positions designated by the operator, and the regression line may be used as the first boundary line, or a spline function passing through the plurality of positions designated by the operator is obtained.
  • the function may be the first boundary.
  • the first boundary line is not limited to one, and a plurality of first boundary lines may be set.
  • the second boundary line generation unit 152 translates the first boundary line to the position designated by the operator based on the information on the first boundary line stored in the boundary line storage unit 151. Produces the second boundary.
  • the first boundary setting unit 153 sets, stores, and stores a plurality of first boundary lines
  • the user interface 130 selects from among the plurality of first boundary lines! / You can also choose between them! ,.
  • the elastic modulus calculation unit 108 also obtains the distance between the boundary lines in the subject with these information forces, and uses the obtained distance for calculating the elastic modulus.
  • boundary line setting unit 150 The function of the boundary line setting unit 150 will be further described with reference to the tomographic image of the blood vessel displayed on the monitor 107.
  • FIG. 2 is a flowchart showing a procedure for determining a boundary line of each tissue on the blood vessel wall using a tomographic image parallel to the axis of the blood vessel.
  • the ultrasonic diagnostic apparatus is set in a frozen state.
  • the cursor 210 displayed on the screen of the monitor 107 is displayed on the screen of the monitor 107 using the user interface 130 such as a track ball or a mouse that is installed in the ultrasonic diagnostic apparatus.
  • the cursor 210 moves to trace the boundary between the blood flow 207 on the tomographic image 200 and the intima 231 of the rear wall 230.
  • a line segment is drawn on the screen as a boundary line 204 between the blood flow 207 and the intima 231 in the rear wall 230.
  • the boundary line storage unit 151 includes the first boundary Information of the boundary line 204 is stored as a line.
  • step S202 the boundary line 205 between the intermediate film 232 and the outer film 233 on the rear wall 230 is set by the same procedure.
  • the boundary line storage unit 151 stores information on the boundary line 205 as the first boundary line.
  • the second boundary line generation unit 152 determines the position designated by the operator based on the information of the boundary line 205 stored in the boundary line storage unit 151. By moving the boundary line 205 to the parallel, a boundary line 206 is generated at the boundary between the outer membrane 233 and the surrounding tissue on the rear wall 230.
  • step S 204 the cursor 210 displayed on the screen of the monitor 107 is powered, and the blood flow 207 on the tomographic image 200 and the intima 221 on the front wall 220 are A boundary line 203 between the blood flow 207 and the intima 221 on the front wall 220 is set.
  • the boundary line storage unit 151 stores information on the boundary line 203 as the first boundary line. This procedure reduces the operator's burden of tracing the boundary and the time required to set the boundary line by one step.
  • step S203 For setting the boundary line in step S203, various image processing procedures for copying a line segment on a computer screen and pasting it at a predetermined position can be used.
  • FIGS. 4 (a) to (c) and FIGS. 5 (a) to (c) show examples of these procedures.
  • regions 501, 502, and 503 schematically show different tissues.
  • a boundary line 510 is first set as a first boundary line at the boundary between the organization 501 and the organization 502.
  • This boundary line 510 is obtained as a line segment drawn by the locus of the force sol 210 when the operator moves the cursor 210 along the boundary between the tissue 501 and the tissue 502 using the user interface 130.
  • the boundary line 510 information on the boundary line 510 is stored in the boundary line storage unit 151.
  • the operator may specify a plurality of positions with the cursor 210, and the boundary line 510 may be set by generating a straight line or a broken line passing through the specified position. Alternatively, the plurality of specified positions may be set. Generate a boundary line 510 by generating a regression line using the least squares method based on, or by generating a spline function.
  • the second boundary line generation unit 152 After setting the boundary 510, a command from the operator via the user interface 130 Based on the above, the second boundary line generation unit 152 generates a boundary line 511 having the same shape and orientation as the boundary line 510 at the tip of the cursor 210. For example, by inputting a command representing “copy” from the user interface 130, a boundary line 511 is generated and displayed on the motor screen. The boundary line 511 is generated based on the information on the boundary line 510 and the position information on the cursor 210 stored in the boundary line storage unit 151. When the operator moves the cursor 210, the boundary line 511 is also translated.
  • the operator moves the cursor 210 to the position after generating the boundary line.
  • the cursor 210 is placed on the boundary between the region 502 and the region 503! /.
  • a boundary line 510 is set as a first boundary line at the boundary between the organization 501 and the organization 502.
  • the procedure for setting the boundary line 510 is the same as the procedure described with reference to FIG.
  • the boundary line storage unit 151 stores the information of the boundary line 510 as the first boundary line, and then shifts to the “copy” mode based on a command from the user interface 130. As shown in Fig. 5 (a), in this procedure, the operator can move the cursor 210 to a desired position using the user interface 130 while the boundary line copied from the boundary line 510 is not displayed on the screen. Can do.
  • the operator moves the cursor 210 to a position where a boundary line is to be generated.
  • the cursor 210 in order to set a boundary line at the boundary between the region 502 and the region 503, the cursor 210 is set at the boundary between the region 502 and the region 503.
  • the operator inputs a command for generating a copy of the boundary 510 through the user interface 130 at the position.
  • the second boundary line setting unit 152 Based on the boundary line information, a boundary line 511 obtained by translating the boundary line 510 to the position designated by the cursor 210 is generated.
  • the boundary line 512 is confirmed at that position. In this way, the boundary line 512 obtained by translating the boundary line 510 set by the operator is set.
  • FIG. 6 (a) the operator places the cursor 210 at the boundary between the organization 501 and the organization 502.
  • FIG. 6B when the operator traces the boundary between the organization 501 and the organization 502 with the cursor 210, a line segment 509 indicating the first boundary line is drawn.
  • the boundary line setting unit 150 automatically draws a locus of points on the same acoustic line as the cursor 210 and separated by a predetermined distance as a line segment 511.
  • the first boundary line setting unit 153 acquires the position of the cursor 210 and outputs the obtained position to the boundary line storage unit 151.
  • the operator inputs the interval between the position of the point to be automatically generated and the cursor 210 using the user interface 130.
  • the boundary between the organization 501 and the organization 502 and the interval between the organization 502 and the organization 503 are set by the operator.
  • the second boundary line setting unit 152 generates a line segment 511 based on the position of the cursor 210 read from the boundary line storage unit 151 and the interval input by the user interface 130.
  • the interval can be set by force before starting the series of operations shown in Fig. 6 (a).
  • a boundary 510 serving as a first boundary is set.
  • the boundary line 512 that is the second boundary line is automatically generated. Since this boundary line 512 is a locus of points with a predetermined interval between the positional forces of the cursor 210 that draws the boundary line 510, the boundary line 510 is translated. In this way, the boundary line 510 set by the operator and the boundary line 512 obtained by translating the boundary line 510 are set.
  • the front wall and the rear wall are observed across the blood vessel cavity through which the blood flows, and each of the front wall and the rear wall is observed.
  • Area to be measured in order to obtain blood vessel property characteristic values In the region, the diameter of the vascular cavity and the thickness of each tissue are generally constant, unless the tissue boundaries are lesioned. Therefore, ideally, the boundary between the blood flow and the intima, the boundary between the intima and the media, the boundary between the media and the adventitia, and the boundary between the adventitia and the surrounding tissue are generally parallel to each other. Conceivable. Even when the axis of the blood vessel is not a straight line, the diameter of the blood vessel cavity and the thickness of each tissue are substantially constant, so that the boundaries are obtained by translating each other.
  • the second boundary line set by the boundary line setting unit 150 as described above matches the actual boundary of the tissue well as long as it is not adjacent to the portion where the lesion or the like has occurred. In this way, the operator's burden of tracing the boundary and the time required to set the boundary line can be reduced.
  • the boundary displayed in the tomographic image is not very clear, it is not so burdensome for the operator to specify the position of the boundary, but it is difficult for the operator to trace all the unclear boundaries with the cursor. It's a big burden for me. According to the present invention, such a burden is reduced.
  • the thickness of the intima and media of the blood vessel wall and the blood vessel diameter vary greatly depending on the health condition and individual differences, but the variation in the thickness of the outer membrane is small.
  • the thickness of the adventitia in the carotid artery of healthy people is said to be about 0.3 mm. Therefore, when there is no lesion in the adventitia, the thickness of the adventitia is determined in advance, and the adventitia and surrounding tissue are located at the same distance apart when setting the media-adventitia boundary. By setting the boundary, the burden on the operator can be further reduced. It is appropriate to determine the thickness of the outer membrane from about 0.2 mm to 0.4 mm.
  • the second boundary line set by the boundary line setting unit 150 is not limited to the boundary between the outer membrane and the surrounding tissue, and boundary lines can be set at various boundaries. Hereinafter, an example in which another boundary line is set will be described.
  • FIG. 8 shows a tomographic image of a case where a knot-like lesion was formed outside the blood vessel.
  • FIG. 7 is a flowchart showing a procedure for setting a boundary line on the tomographic image shown in FIG.
  • step S211 using the user interface 130 such as a trackball or a mouse provided in the ultrasonic diagnostic apparatus, the screen is displayed on the screen of the monitor 107.
  • the cursor 210 shown Move the cursor 210 shown, and trace the boundary between the blood flow 207 on the tomographic image 200 and the intima 231 on the rear wall 2 with the cursor 210, and the boundary line between the blood flow 207 on the rear wall 230 and the intima 231 2 04 Set.
  • the boundary line storage unit 151 stores information on the boundary line 204 as the first boundary line.
  • the second boundary line generation unit 152 translates the boundary line 204 based on the information of the boundary line 204 stored in the boundary line storage unit 151. Therefore, the boundary line 205 is set at the boundary between the media 232 and the outer film 233 on the rear wall 230 as the second boundary line.
  • step S213 the user interface 130 is used to move the cursor 210 displayed on the screen of the motor 107, and the cursor 210 causes the rear wall 230 on the tomographic image 200 to be moved.
  • the boundary line 206 between the outer membrane 233 and the surrounding tissue on the rear wall 230 is set by tracing the boundary between the outer membrane 233 and the surrounding tissue.
  • the boundary line storage unit 151 stores information on the boundary line 206 as the first boundary line.
  • a boundary line 203 between blood flow 207 and intima 221 in front wall 220 is set by the same procedure as in step S213.
  • the boundary line storage unit 151 stores information on the boundary line 203 as the first boundary line.
  • FIG. 10 shows a tomographic image of a blood vessel of a healthy person.
  • FIG. 9 is a flowchart showing a procedure for setting a boundary line on the tomographic image shown in FIG.
  • step S221 the cursor 210 displayed on the screen of the monitor 107 is moved using the user interface 130 such as a trackball or mouse that is installed in the ultrasonic diagnostic apparatus.
  • the boundary line 204 between the blood flow 207 and the intima 231 on the rear wall 230 is set by tracing the boundary between the blood flow 207 on the tomographic image 200 and the intima 231 on the rear wall 230 with the cursor 210.
  • the boundary line storage unit 151 performs fe of information on the boundary line 204 as the first boundary line. .
  • the second boundary line setting unit 152 translates the boundary line 204 based on the information of the boundary line 204 stored in the boundary line storage unit 151. Yotsu Thus, the boundary line 205 is set at the boundary between the media 232 and the outer membrane 233 on the rear wall 230 as the second boundary line.
  • step S223 the boundary line 204 is translated based on the positional information of the boundary line 204 stored in the boundary line storage unit 151, whereby the outer membrane 233 on the rear wall 230 is converted.
  • a boundary line 206 is set at the boundary between and the surrounding tissue.
  • step S224 the user interface 130 is used to communicate
  • FIG. 11 is a flowchart showing another procedure for setting a boundary line on the tomographic image shown in FIG.
  • step S231 the cursor 210 displayed on the screen of the monitor 107 is moved using the user interface 130 such as a trackball or mouse equipped in the ultrasonic diagnostic apparatus,
  • the boundary line 204 between the blood flow 207 and the intima 231 on the rear wall 230 is set by tracing the boundary between the blood flow 207 on the tomographic image 200 and the intima 231 on the rear wall 230 with the cursor 210.
  • the boundary line storage unit 151 performs fe of information on the boundary line 204 as the first boundary line. .
  • the second boundary line setting unit 152 translates the boundary line 204 based on the information of the boundary line 204 stored in the boundary line storage unit 151. Therefore, the boundary line 205 is set at the boundary between the media 232 and the outer film 233 on the rear wall 230 as the second boundary line.
  • the second boundary line setting unit 152 translates the boundary line 204 based on the position information of the boundary line 204 stored in the boundary line storage unit 151. By doing so, the boundary line 206 is set as the second boundary line at the boundary between the outer membrane 233 and the surrounding tissue on the rear wall 230.
  • step S234 the boundary line 204 stored in the boundary line storage unit 151 is stored.
  • the boundary line 204 is set as the second boundary line at the boundary between the blood flow 207 and the intima 221 on the front wall 220 by translating the boundary line 204 based on the position information.
  • ultrasonic waves are transmitted and received using the probe 101, and a tomographic image parallel to the axis of the blood vessel wall continuous in time is acquired and displayed on the monitor 107 in real time.
  • the tomographic image data is stored in the memory 120.
  • the data of memory 120 is also read out in the frozen state, and the tomographic image optimal for IMT measurement is displayed on monitor 107.
  • the operator operates the user interface 130 to move the cursor 210 displayed on the screen of the monitor 107.
  • the cursor 210 With the cursor 210, the blood flow in and out of the front wall or the rear wall on the tomographic image displayed on the monitor 107 is displayed.
  • Set the first boundary by tracing the boundary with the membrane.
  • the boundary line storage unit 151 stores information on the first boundary line.
  • the second The boundary line setting unit 152 translates the boundary line set at the boundary between the blood flow and the intima, and the second boundary line between the media and the adventitia at a position coincident with the boundary between the media and the adventitia. Set. If they are not parallel, for example, if there is a diseased part in the intima, the boundary between the media and the outer membrane is also displayed on the monitor 107 screen by operating the user interface 130.
  • the first boundary line is set by moving the cursor 210 and tracing the boundary between the media and outer membrane on the tomographic image with the force Sol 210.
  • the second boundary line setting unit 152 further translates the boundary line of the rear wall or the front wall set earlier, Alternatively, a boundary line indicating the boundary between the blood flow and the intima of the posterior wall or the boundary between the media and the adventitia may be set. Whether the operator sets the boundary line using the user interface 130 or not is determined according to whether or not the boundary line set by the operator by the second boundary line setting unit 152 is moved in parallel. So that you can switch obviously!
  • the IMT can be calculated from the boundary between the blood flow and the intima thus obtained and the boundary between the media and the adventitia. This operation can reduce the burden on the operator and the time-consuming work of tracing the boundary. In addition, the time required to obtain IMT can be shortened.
  • ultrasonic waves are transmitted and received using the probe 101, and a tomographic image parallel to the axis of the blood vessel wall continuous in time is acquired and displayed on the monitor 107 in real time.
  • the blood vessel wall tissue is tracked by the tissue tracking unit 105, the elastic modulus calculation unit 108 is used to measure the elastic modulus in the radial direction using the blood pressure value obtained from the sphygmomanometer 111, and the distribution image of the radial elastic modulus Is displayed on the monitor 107.
  • the tomographic image data is recorded in the memory 120, and the radial elastic modulus distribution image data is recorded in the memory 121.
  • the tomographic image is displayed continuously in time, but the elastic modulus distribution image is updated once per heartbeat.
  • data in the memory 121 is read out, and an optimal elastic modulus distribution image and a tomographic image synchronized therewith are read out from the memory 120 and displayed on the monitor 107.
  • the operator operates the user interface 130 to move the cursor 210 displayed on the monitor 107 screen, and the blood flow and the inner wall of the rear wall on the tomographic image displayed on the monitor 107 with the cursor 210 are moved.
  • Set the first boundary by tracing the boundary with the membrane. Information on the set first boundary line is stored in the boundary line storage unit 151.
  • the boundary line generation unit 152 translates the first boundary line set at the boundary between the blood flow and the intima and places the first boundary line between the outer film and the surrounding tissue at a position coincident with the boundary between the outer film and the surrounding tissue. Set the border of 2. If the lesion is not parallel, such as when there is a lesion in the intima or adventitia, the boundary between the adventitia and surrounding tissue is displayed on the monitor 107 screen by operating the user interface 130 as well. The first boundary line is set by moving the cursor 210 and tracing the boundary between the outer membrane and the surrounding tissue on the tomographic image with the cursor 210.
  • the second boundary line generation unit 152 At the boundary between blood flow and intima The first boundary line that has been set is translated and the second boundary line is set at a position that coincides with the boundary between the blood flow and the intima on the front wall. If they are not parallel, the boundary between the blood flow and the intima on the anterior wall is also operated by operating the user interface 130 to move the cursor 210 displayed on the monitor 107 screen. Trace the boundary of the front wall with the intima and set the first boundary line.
  • the distance between the boundary line between the blood flow and the intima and the boundary line between the adventitia and the surrounding tissue in the posterior wall thus obtained is the initial radial thickness hO of the entire blood vessel wall.
  • the boundary line between the blood flow and the intima and the boundary line force between the blood flow and the intima in the back wall The initial radius rO of the blood vessel is obtained.
  • the first boundary line is set by the operator using the user interface 130, or by the operator specifying a plurality of positions.
  • the first boundary may be generated automatically.
  • the sound impedance differs greatly between the blood flow portion and the blood vessel wall portion of the subject, and the amplitude of the image signal also differs.
  • the first boundary line setting unit detects the boundary between the intima of the front wall or the rear wall and the blood flow based on the image signal generated by the tomographic image processing unit, and sets the first boundary line at the boundary. May be.
  • the blood flow portion has a Doppler effect on the reflected echo due to the movement of blood. Therefore, the first boundary line setting unit may detect the boundary between the intima of the front wall or the rear wall and the blood flow using the Doppler mode, and set the first boundary line as the boundary.
  • the acoustic impedance of the intima, media and adventitia contained in the blood vessel wall does not differ so much and may be difficult to detect by these methods.
  • the boundary between these tissues in the blood vessel wall is often parallel to the boundary between the intima and the blood flow if no lesion site exists.
  • the second boundary line generation unit can set the second boundary line by translating the first boundary line automatically detected and set to the position specified by the operator. Therefore, the burden on the operator can be greatly reduced, and variations due to the judgment of the operator are reduced.
  • the present invention is suitably used for an ultrasonic diagnostic apparatus that measures the shape and property characteristic value of a blood vessel wall of a subject.

Abstract

本発明の超音波診断装置は、血管壁を計測するための超音波診断装置であって、血管を含む被検体に超音波を送信するための探触子を駆動する送信部と、前記被検体において前記超音波が反射することにより得られる超音波エコーを前記探触子を用いて受信し、受信信号を生成する受信部と、前記受信信号から、被検体の断層画像を表示部に表示するための画像信号を生成する断層画像処理部と、前記表示部に表示された断層画像に基づいて、第1の境界線を設定する第1の境界線設定部と、前記第1の境界線を平行移動することによって、少なくとも1つの第2の境界線を生成する第2の境界線生成部とを備える。

Description

超音波診断装置
技術分野
[0001] 本発明は医療用の超音波診断装置に関し、特に血管壁を計測する超音波診断装 置に関する。
背景技術
[0002] 超音波診断装置は、超音波を被検体に照射し、そのエコー信号に含まれる情報を 解析することにより、被検体内を観察する。従来から広く用いられている超音波診断 装置は、エコー信号の強度を対応する画素の輝度に変換することにより、被検体の 構造を断層画像として得ている。これにより、被検体の内部の構造を知ることができる 。被検体内を非観血的に観察できるため、超音波診断装置は X線 CTや MRIと並ん で、臨床現場では不可欠な装置となっている。
[0003] 近年、動脈硬化を患う人が増力!]しており、動脈硬化を診断するために、超音波診断 装置を用いた頸動脈エコーが行われている。頸動脈は、内側力 順に内膜、中膜、 外膜の 3層を有する構造を備えていることが知られている。頸動脈エコーでは、この 内膜と中膜をあわせた厚さ(内中膜複合体厚:以下 IMTと呼ぶ)を計測し、動脈硬化 の指標としている。非特許文献 1によれば、 IMTが 1. 1mm以上を異常肥厚と診断 する。 IMTの計測は、超音波診断装置に一般的に標準装備されている断層画像上 の長さ計測機能を用いて、手動により行われる。 IMTの計測は 1箇所の値だけを求 める場合もあり、複数箇所の値を求め、その最大値、平均値などを指標として用いる こともある。図 12は、従来の超音波診断装置を用いて頸動脈の IMTを計測する一例 を示している。図 12は、血管壁の軸に平行な断層画像 (血管壁を縦切りにした断面) を示している。図中、 6箇所の +印が手動で設定した計測点であり、中央の 1と示した 位置における 2つの +印間の距離は 0. 5mmであり、 2および 3と示した位置におけ る 2つの +印間の距離はそれぞれ 0. 4mmである。
[0004] また、動脈硬化を診断する別の試みとして、近年、反射エコー信号の主に位相を解 析することにより、被検体の動きを精密に計測し、被検体の動きから被検体組織の歪 みや弾性率、粘性率などの組織性状を計測すると!ヽぅ試みが行われて ヽる。
[0005] 特許文献 1は、血管壁の 2つの微小領域の心拍による運動を精密に追跡し、心拍 による大振幅変位運動に重畳されている微小な厚みの変化、つまり歪み量を計測し 、この歪み量と血圧差から局所弾性率を求める方法、および、弾性率の空間分布を 画像表示する装置を開示している。血管壁の微小領域の追跡には特許文献 2に示さ れる位相差トラッキング法が用いられる。図 13 (a)および (b)を参照して、特許文献 1 に開示された被検体組織の追跡方法を説明する。図 13 (a)に示すように、探触子 10 1力 被検体 110中の血管 111へ向けて超音波を照射し、血管 111からのエコーを 探触子 101により受信する。血管壁上に計測点 A、 Bを設定し、計測点 A、 Bからの 受信信号を特許文献 2に示された方法により解析し、計測点 A、 Bの動きを追跡する
[0006] 血管 111は心拍によって収縮拡張を繰り返す。具体的には、心収縮期には急激に 血管 111が拡張し、心拡張期にはゆっくりと収縮する。図 13 (b)は、計測点 A、 Bの 位置を追跡した追跡波形 TA、 TBおよび心電波形 ECGを示している。計測点 A、 B は、血管 111の拡張に伴って急激に変動しその後、ゆっくり元の位置へ戻る。追跡波 形 TA、 TB力も計測点 A— B間の厚み変化波形 Wが求められる。厚み変化波形 Wの 変化量を AW、計測点初期化時の基準厚みを Wsとすると、計測点 A— B間の歪み 量 εは以下の式(1)で示される。
[0007] ε = AW/Ws (1)
[0008] このときの血圧差を Δ Ρとすると、計測点 Α— Β間の径方向弾性率 Erは以下の式(2 )で表される。
[0009] Er= Δ Ρ/ ε = A P-Ws/ AW (2)
[0010] この弾性率 Erを断層画像上の複数の位置で計測することにより、弾性率の分布画 像が得られる。
[0011] 非特許文献 2は、血管の径方向弾性率よりも、さらに正確な物理特性を表す周方向 弾性率の求め方を開示している。非特許文献 2によれば、周方向弾性率は以下の式 (3)で与えられる。
[0012] Ε θ = - (l/2) - (rO/hO+ l) - ( A P/ £ ) = - (1/2) - (rO/hO+ 1) -Er (3)
ここで、 hOは血管壁全体の径方向の初期厚みであり、 rOは血管の初期半径である
[0013] 図 14は、超音波診断装置を用いて動脈血管を診断した場合に表示されるモニタ画 面を示している。画面には、断層画像 200の後壁 (皮膚表面力も遠い側の血管壁) 2 30部分に、弾性率の分布を示す弾性率画像 201が重畳して表示されている。
[0014] 従来、血管壁全体の初期厚み hOと、初期半径 rOを知るために、血流 207と前壁( 皮膚表面力も近い側の血管壁) 220の内膜 221との境界線 203、血流 207と後壁 23 0の内膜 231との境界線 204および、後壁 230の外膜 233と周辺組織との境界線 20 6を手動で設定していた。具体的には、断層画像用反射強度スケール 202に示され る濃淡に基づいて表示されるモニタ画面の血流 207の領域と前壁 220の内膜 221の 領域との境界を操作者が認識し、境界をモニタ画面上に表示されたカーソル 210で なぞることによって境界線 203を設定する。同様の操作を繰り返すことにより、境界線 204、 206を設定することができる。
特許文献 1:特開 2000— 229078号公報
特許文献 2:特開平 10— 5226号公報
非特許文献 1 :古幡博、「頸動脈エコー」、ベクトル 'コア社、 2004、 ISBN4— 93837 2-88-6
非特許文献 2 :長谷川、金井他「不均一な壁厚を有する管の局所弾性率計測法」、 J Med Ultrasounics Vol.28, No.l(2001) pp.J3— J13
発明の開示
発明が解決しょうとする課題
[0015] し力しながら、設定すべき境界線が複数あるために、すべての境界線を設定するの には時間を要する。また、設定した境界線が血管壁全体の初期厚み hOおよび初期 半径 rOを算出する基準となるため、境界線を正確に設定する必要がある。このため、 このようにカーソルを移動させて境界線を設定するのは、操作者に多大な負担となつ てしまう。
[0016] 本発明はこのような問題を解決し、操作者の負担を低減することが可能な超音波診 断装置を提供することを目的とする。
課題を解決するための手段
[0017] 本発明の超音波診断装置は、血管壁を計測するための超音波診断装置であって、 血管を含む被検体に超音波を送信するための探触子を駆動する送信部と、前記被 検体において前記超音波が反射することにより得られる超音波エコーを前記探触子 を用いて受信し、受信信号を生成する受信部と、前記受信信号から、被検体の断層 画像を表示部に表示するための画像信号を生成する断層画像処理部と、前記表示 部に表示された断層画像に基づいて、第 1の境界線を設定する第 1の境界線設定部 と、前記第 1の境界線を平行移動することによって、少なくとも 1つの第 2の境界線を 生成する第 2の境界線生成部とを備える。
[0018] ある好ましい実施形態において、超音波診断装置は、前記断層画像上における位 置を操作者が指定するためのユーザーインターフェースをさらに備える。
[0019] ある好ましい実施形態において、前記境界線設定部は、前記第 1の境界線に関す る情報に基づいて、前記操作者がユーザーインターフェースを用いて指定した位置 へ前記第 1の境界線を平行移動させることにより前記第 2の境界線を生成する。
[0020] ある好ま ヽ実施形態にお!ヽて、前記第 1の境界線設定部は、前記操作者がユー ザ一インターフェースにより、前記断層画像上に描画した線分の情報を第 1の境界線 の情報として記憶する。
[0021] ある好ま ヽ実施形態にお!ヽて、前記第 1の境界線設定部は、前記操作者が指定 した位置に基づ!/、て直線または折れ線を第 1の境界線として生成する。
[0022] ある好ましい実施形態において、前記第 1の境界線は、前記血管の前壁および後 壁の内膜と血流との境界、前記血管の前壁および後壁における中膜と外膜との境界 ならびに血管の前壁および後壁の外膜と周辺組織との境界を含む境界群力 選ば れる少なくとも 1つの境界に位置し、前記第 2の境界線は、前記境界群から選ばれる 少なくとも他の 1つの境界に位置する。
[0023] ある好ま ヽ実施形態にお!ヽて、前記第 1の境界線設定部は、前記画像信号に基 づいて、前記血管の前壁または後壁の内膜と血流との境界を検出し、検出した境界 に前記第 1の境界線を設定する。 [0024] ある好ましい実施形態において、前記第 1および第 2の境界線は、前壁または後壁 における内膜と血流との境界および中膜と外膜との境界にそれぞ; 立置しており、前 記第 1および第 2の境界線に基づいて血管壁内中膜複合体厚を求める。
[0025] ある好ましい実施形態において、超音波診断装置は、前記受信信号に基づいて、 前記被検体中の組織の動きを追跡する組織追跡部と、前記被検体の血圧に関する 情報を受け取り、前記追跡した組織の動きに基づいて、前記組織の性状値を算出す る性状値算出部とをさらに備え、前記第 1および第 2の境界に基づいて、前記血管の 内膜、中膜および外膜のうち、少なくとも 1つの組織の性状値を算出する。
[0026] ある好ましい実施形態において、前記第 1および第 2の境界線は、内膜と血流との 境界および外膜と周辺組織との境界にそれぞれ位置しており、前記第 1および第 2の 境界線に基づいて、前記血管の半径および血管壁の厚さを算出することによって、 前記性状値として周方向弾性率を求める。
[0027] 本発明の超音波診断装置における血管壁の境界を設定する方法は、超音波を送 受信することにより得られた被検体の血管の断層画像上において、血管の前壁およ び後壁の内膜と血流との境界、前記血管の前壁および後壁における中膜と外膜との 境界ならびに血管の前壁および後壁の外膜と周辺組織との境界を含む境界群から 選ばれる少なくとも 1つの境界に位置するように設定された第 1の境界線を平行移動 することによって、前記境界群力 選ばれる少なくとも他の 1つの境界に位置する第 2 の境界線を生成するステップを包含する。
[0028] ある好ま 、実施形態にぉ 、て、前記方法は、操作者がユーザーインターフェース により前記断層画像上に描画した線分の情報を第 1の境界線の情報として記憶する ステップをさらに包含し、前記第 2の境界線を生成するステップは、前記記憶した第 1 の境界線の情報に基づいて前記第 2の境界線を生成する。
[0029] ある好ま 、実施形態にぉ 、て、前記方法は、操作者がユーザーインターフェース により前記血管の断層画像上にぉ 、て指定した位置に基づ ヽて直線または折れ線 を第 1の境界線として生成するステップをさらに包含する。
[0030] ある好ま 、実施形態にぉ 、て、前記方法は、前記断層画像を表示するための画 像信号に基づいて、前記血管の前壁または後壁の内膜と血流との境界を検出し、検 出した境界に前記第 1の境界線を設定するステップをさらに包含する。 発明の効果
[0031] 本発明によれば、血管壁の各境界を定める労力と時間が低減され、超音波診断装 置による計測時間を短縮することが可能となる。
図面の簡単な説明
[0032] [図 1] (a)は本発明による超音波診断装置の構成を示すブロック図であり、(b)はその 主要部の構成を示すブロック図である。
[図 2]図 1に示す超音波診断装置により境界線を設定する手順を示すフローチャート である。
[図 3]図 2に示す手順に対応するモニタ画面の例を示している。
[図 4] (a)から (c)は、境界線を平行移動させて設定する手順の一例を説明する図で ある。
[図 5] (a)から (c)は、境界線を平行移動させて設定する手順の他の例を説明する図 である。
[図 6] (a)から (c)は、境界線を平行移動させて設定する手順の他の例を説明する図 である。
[図 7]図 1に示す超音波診断装置により境界線を設定する他の手順を示すフローチヤ ートである。
[図 8]図 7に示す手順に対応するモニタ画面の例を示している。
[図 9]図 1に示す超音波診断装置により境界線を設定する他の手順を示すフローチヤ ートである。
[図 10]図 8に示す手順に対応するモニタ画面の例を示している。
[図 11]図 1に示す超音波診断装置により境界線を設定する他の手順を示すフローチ ヤートである。
[図 12]従来の超音波診断装置における IMTを計測する面の一例を示している。
[図 13] (a)は、従来の超音波診断装置における計測点の追跡波形から歪み量を求め る手順を説明する図であり、(b)は、計測点の追跡波形を示している。
[図 14]従来の超音波診断装置における弾性率画像を表示する画面の一例を示して いる。
符号の説明
100 制御部
101 探触子
102 送信部
103 受信部
104 断層画像処理部
105 組織追跡部
106 画像合成部
107 モニタ
108 弾性率算出部
111 血 J土十
112 血圧計制御および血圧値取り込み部
120、 121 メモリ
130 ユーザーインターフェース
150 境界線設定部
151 境界線記憶部
152 第 2の境界線生成部
153 第 1の境界線設定部
200 断層画像
202 断層画像用反射強度スケール
203 血管前壁の血流 内膜境界線
204 血管後壁の血流 内膜境界線
205 血管後壁の中膜一外膜境界線
206 血管後壁の外膜一周辺組織境界線
発明を実施するための最良の形態
以下、図面を参照しながら、本発明による超音波診断装置の実施形態を説明する 。本発明の超音波診断装置は、血管壁の形状や性状値を計測するために用いられ る。本実施形態では、血管壁の前壁の血流と内膜との境界、血管壁の後壁の血流と 内膜との境界、中膜と外膜との境界および外膜と周辺組織との境界を設定する例を 説明する。しかし、本発明はこれらの境界に限定されるものではなぐ前壁の中膜と 外膜との境界や外膜と周辺組織との境界などを設定する場合にも適用できる。
[0035] 図 1 (a)は、本実施形態による超音波診断装置の構成を示すブロック図である。超 音波診断装置は、送信部 102と、受信部 103と、断層画像処理部 104と、組織追跡 部 105と、画像合成部 106と、弾性率算出部 108とを備えている。また、これら各部を 制御する制御部 100およびユーザーインターフェース 130をさらに備える。
[0036] ユーザーインターフェース 130は、キーボードやトラックボーノレ、スィッチ、ボタンと いった操作者からの入力を受け付ける入力デバイスであり、ユーザーインターフエ一 ス 130により得られた操作者の指令は制御部 100へ入力される。制御部 100はマイ コンなどによって構成され、操作者の指令に基づいて各部を制御する。また、以下に おいて図 1 (b)を参照しながら詳細に説明するように、制御部 100は血管壁に含まれ る組織の境界を示すための境界線を設定する境界設定部 150を含んで 、る。なお、 制御部 100は図 1 (a)に示す各ブロックと信号を受け渡ししている力 図 1 (a)におい ては、煩雑になるため、信号の受け渡しを示す線は示していない。
[0037] 送信部 102は、制御部 100の指令に基づいて、指定されたタイミングで探触子 101 を駆動する高圧の送信信号を発生する。探触子 101は、送信部 102で発生した送信 信号を超音波に変換して被検体に向けて照射する。また、被検体内部において反射 した超音波エコーを電気信号に変換する。探触子 101内には複数の圧電変換素子 が配置され、これらの圧電変換素子の選択および、圧電変換素子に電圧与えるタイ ミングによって送受信する超音波の偏向角およびフォーカスを制御する。受信部 103 は、探触子 101が生成した電気信号を増幅し、受信信号を出力する。また、定められ た位置 (フォーカス)または方向(偏向角)からの超音波のみを検出する。
[0038] 断層画像処理部 104は、フィルタ、検波器、対数増幅器など力もなり、受信信号の 主に振幅を解析して、被検体の断層画像を表す画像信号を生成する。組織追跡部 1 05は、受信信号間の位相差を解析し、超音波の送受信方向に沿う被検体組織の移 動量を求める移動量演算部、移動量を元の位置に加算して移動後の位置を求める 位置追跡演算部からなり、被検体組織の超音波の送受信方向に沿う動きを追跡する
[0039] 弾性率算出部 108は、歪み量および弾性率などの性状特性値を求める。具体的に はまず、追跡した被検体組織の動き力も歪み量を計算する。また、被検体の血圧に 関する情報を血圧計 111から受け取る。また、以下において詳細に説明するように、 境界設定部 150により設定された第 1の境界線および第 2の境界線の情報を受け取 つて被検体における境界線間の距離を求め、さらに、血管の半径および血管壁の厚 さを算出する。そして、歪み量、血圧に関する情報、血管の半径および血管壁の厚さ に基づいて径方向および周方向弾性率を算出するとともに、その弾性率を数値や 2 次元分布画像として出力する。
[0040] 画像合成部 106は、断層画像と弾性率画像および弾性率値の少なくとも一方とを 合成し、モニタ 107に表示する。メモリ 121は追跡位置情報、つまり被検体組織の動 き、または歪み量の少なくともいずれか一つを記憶する。メモリ 121に記録された情 報は、探触子 101による超音波の送受信を停止した状態 (以下フリーズ状態という) において、弾性率値を再計算する際に読み出される。メモリ 120は画像信号を記憶し 、フリーズ状態のときに弾性率に同期した断層画像を示す画像信号が読み出される
[0041] 次に、境界線設定部 150を詳細に説明する。図 1 (b)は、本発明の主要部分を示 すブロック図である。境界線設定部 150はモニタ 107に表示された断層画像に基づ いて第 1の境界線を設定する。そして、設定した第 1の境界線を平行移動することに よって、少なくとも 1つの第 2の境界線を生成する。
[0042] このために、境界線設定部 150は、第 1の境界線設定部 153と第 2の境界線生成 部 152と境界線記憶部 151を含む。第 1の境界線設定部 153は、断層画像に基づい て第 1の境界線を設定し、第 1の境界線の情報を境界線記憶部 151に記憶する。こ の第 1の境界線は、モニタ 107に被検体の断層画像が表示されている状態において 、操作者がマウスなどのユーザーインターフェース 130を用いてカーソルを移動させ ることにより、カーソルの軌跡として描画される線分である。
[0043] 第 1の境界線設定部 153は、操作者がマウスをクリックすることによって指定した 2以 上の位置を結ぶ直線または折れ線を第 1の境界線として生成し、その情報を記憶し てもよい。また、操作者によって指定された複数の位置を用いて回帰線を求め、回帰 線を第 1の境界線としてもよいし、操作者によって指定された複数の位置を通るスプ ライン関数を求め、スプライン関数を第 1の境界線としてもよい。第 1の境界線は 1つ に限られず、複数の第 1の境界線を設定してもよい。
[0044] 第 2の境界線生成部 152は、境界線記憶部 151に記憶された第 1の境界線の情報 に基づいて、操作者が指定した位置に第 1の境界線を平行移動させることによって 第 2の境界線を生成する。複数の第 1の境界線を第 1の境界線設定部 153が設定、 記憶して 、る場合には、記憶して 、る複数の第 1の境界線の中からユーザーインター フェース 130によって!/、ずれかを選択できるようにしてもよ!、。
[0045] 第 1の境界線および第 2の境界線の情報は弾性率算出部 108へ出力される。弾性 率算出部 108はこれらの情報力も被検体における境界線間の距離を求め、得られた 距離を弾性率の算出に利用する。
[0046] このような境界線設定部 150の機能をモニタ 107に表示された血管の断層画像を 参照しながら、さらに説明する。
[0047] 図 2は、血管の軸に平行な断層画像を用いて血管壁の各組織の境界線を決定す る手順を示すフローチャートである。まず、超音波診断装置において、被検体内に超 音波を送受信し、血管壁の断層画像を取得する。図 3に示すように、正しく取得され た断層画像 200には、前壁 220中に内膜 221、中膜 222および外膜 223が、後壁 2 30中に内膜 231、中膜 232および外膜 233が明瞭に示されている。図 3は後壁 230 の内膜 231と中膜 232との間に脂質ゃコレステロールがたまり、粥腫と呼ばれるこぶ ができた症例を示して ヽる。断層画像 200に示された状態で血管壁の各組織間の境 界線を設定するために、超音波診断装置をフリーズ状態にする。
[0048] まず、ステップ S 201に示すように、超音波診断装置に装備されて 、るトラックボー ルゃマウスなどのユーザーインターフェース 130を使用して、モニタ 107の画面上に 表示されたカーソル 210を動かし、カーソル 210で断層画像 200上の血流 207と後 壁 230の内膜 231の境界をなぞる。これにより画面上に後壁 230における血流 207と 内膜 231の境界線 204として線分が描画される。境界線記憶部 151は、第 1の境界 線として境界線 204の情報を記憶する。
[0049] ステップ S202に示すように同様の手順によって、後壁 230における中膜 232と外 膜 233との境界線 205を設定する。境界線記憶部 151は、第 1の境界線として境界 線 205の情報を記憶する。
[0050] 次に、ステップ S203に示すように、第 2の境界線生成部 152は、境界線記憶部 15 1に記憶された境界線 205の情報に基づ 、て、操作者が指定した位置へ境界線 20 5を平行移動させることによって、後壁 230における外膜 233と周辺組織との境界に 境界線 206を生成する。
[0051] 最後にステップ S 204に示すように、モニタ 107の画面上に表示されたカーソル 21 0を動力、し、カーソノレ 210で断層画像 200上の血流 207と前壁 220の内膜 221との 境界をなぞって、前壁 220における血流 207と内膜 221の境界線 203を設定する。 境界線記憶部 151は第 1の境界線として境界線 203の情報を記憶する。このような手 順により、境界をなぞるという操作者の負担と境界線の設定に要する時間を 1ステツ プ減らすことができる。
[0052] ステップ S203における境界線の設定には、コンピュータ画面上において線分をコ ピーし、所定の位置にペーストする種々の画像処理の手順を利用することができる。
[0053] 図 4 (a)から(c)および図 5 (a)から(c)は、これらの手順の例を示して!/、る。これらの 図において、領域 501、 502、および 503は異なる組織を模式的に示している。
[0054] 図 4 (a)に示すように、まず組織 501と組織 502との境界に第 1の境界線として境界 線 510を設定する。この境界線 510は、ユーザーインターフェース 130を用いて操作 者がカーソル 210を組織 501と組織 502との境界に沿って移動させることにより、力 一ソル 210の軌跡により描画される線分として得られる。境界線 510の設定により境 界線 510の情報は境界線記憶部 151に記憶される。前述したように、カーソル 210に よって複数の位置を操作者が指定し、指定した位置を通る直線や折れ線を生成する ことにより、境界線 510を設定してもよいし、指定された複数の位置に基づいて最小 二乗法による回帰線を生成したり、スプライン関数を生成することにより境界線 510を 生成してちょい。
[0055] 境界線 510を設定した後、ユーザーインターフェース 130による操作者からの指令 に基づいて、第 2の境界線生成部 152は、カーソル 210の先端に境界線 510と同じ 形状および向きを有する境界線 511を生成する。たとえば、「コピー」を表すコマンド をユーザーインターフェース 130から入力することにより、境界線 511を生成し、モ- タの画面に表示する。この境界線 511は、境界線記憶部 151に記憶された境界線 5 10の情報とカーソル 210の位置情報に基づいて生成される。操作者がカーソル 210 を移動させると、境界線 511も平行移動する。
[0056] 図 4 (b)に示すように、操作者は境界線を生成した 、位置にカーソル 210を移動さ せる。図 4 (b)では、領域 502と領域 503との境界に境界線を設定するため、領域 50 2と領域 503との境界にカーソル 210を合わせて!/、る。
[0057] 所定の位置にカーソル 210を移動させると、その位置に境界線 510を平行移動さ せることにより得られる境界線 511が表示される。
[0058] 図 4 (c)に示すように、操作者がユーザーインターフェース 130から「貼り付け」など を意味する確認のコマンドを入力すると、その位置において、境界線 512が確定され る。このようにして、操作者が設定した境界線 510を平行移動させた境界線 512が第 2の境界線として設定される。
[0059] また、他の手順を採用してもよい。図 5 (a)に示すように、まず組織 501と組織 502と の境界に第 1の境界線として境界線 510を設定する。境界線 510の設定の手順は図 4 (a)を参照して説明した手順と同じである。
[0060] 境界線記憶部 151は第 1の境界線として境界線 510の情報を記憶した後、ユーザ 一インターフェース 130による操作者力もの指令に基づいて、「コピー」モードに移る 。図 5 (a)に示すように、この手順では、境界線 510を複製した境界線は画面上には 表示されない状態で、操作者はユーザーインターフェース 130により、カーソル 210 を所望の位置へ移動させることができる。
[0061] 図 5 (b)に示すように、操作者は境界線を生成したい位置にカーソル 210を移動さ せる。図 5 (b)では、領域 502と領域 503との境界に境界線を設定するため、領域 50 2と領域 503との境界にカーソル 210を合わせている。所定の位置にカーソル 210を 移動させると、その位置において、操作者は、境界 510のコピーを生成されるコマン ドをユーザーインターフェース 130により入力する。第 2の境界線設定部 152は、第 1 の境界線の情報に基づき、カーソル 210で指定される位置に境界線 510を平行移動 させることにより得られる境界線 511を生成する。
[0062] 図 5 (c)に示すように、操作者がユーザーインターフェース 130から「確定」などを意 味する確認のコマンドを入力すると、その位置において、境界線 512が確定される。 このようにして、操作者が設定した境界線 510を平行移動させた境界線 512が設定 される。
[0063] また、さらに他の手順を採用してもよい。まず、図 6 (a)に示すように、操作者が組織 501と組織 502との境界にカーソル 210を置く。図 6 (b)に示すように、操作者が組織 501と組織 502との境界をカーソル 210でなぞることによって、第 1の境界線を示す 線分 509が描画される。同時に、境界線設定部 150はカーソル 210と同じ音響線上 であって、所定の距離を隔てた点の軌跡を自動的に線分 511として描画する。このた めに、第 1の境界線設定部 153はカーソル 210の位置を取得し、得られた位置を境 界線記憶部 151へ出力する。操作者は自動的に生成すべき点の位置とカーソル 21 0との間隔をユーザーインターフェース 130により入力する。図の場合、組織 502と組 織 503との境界を自動的に生成させたいので、組織 501と組織 502との境界および 組織 502と組織 503との間隔が操作者により設定される。第 2の境界線設定部 152 は、境界線記憶部 151から読み込むカーソル 210の位置とユーザーインターフエ一 ス 130により入力された間隔とに基づいて線分 511を生成する。間隔は図 6 (a)から なる一連の操作を始める前にあら力じめ設定してぉ 、てもよ 、。
[0064] 図 6 (c)に示すように、操作者が組織 501と組織 502との境界をカーソル 210で完 全になぞり終わると、第 1の境界線となる境界線 510が設定される。同時に、第 2の境 界線となる境界線 512が自動的に生成される。この境界線 512は境界線 510を描画 するカーソル 210の位置力 所定の間隔を隔てた点の軌跡であるため、境界線 510 を平行移動させたものである。このようにして、操作者が設定した境界線 510と境界 線 510を平行移動させた境界線 512が設定される。
[0065] 図 3に示しているように、血管をその軸と平行な断面で観察した場合、血液が流れ る血管腔を挟んで前壁および後壁が観察され、前壁および後壁のそれぞれは内膜、 中膜、外膜によって構成されている。血管の性状特性値を求めるために計測する領 域において、これら組織の境界は、病変が生じていなければ、血管腔の直径および 各組織の厚さは概ね一定である。したがって、理想的には、血流と内膜との境界、内 膜と中膜との境界、中膜と外膜との境界および外膜と周辺組織との境界は概ね互い に平行であると考えられる。血管の軸が直線ではない場合であっても、血管腔の直 径および各組織の厚さは概ね一定であるため、各境界は互いに平行移動することに よって得られる関係にある。
[0066] したがって、上述したように境界線設定部 150が設定した第 2の境界線は、病変等 が生じた部分に隣接していない限り、組織の実際の境界とよく一致する。このようにし て、境界をなぞるという操作者の負担と境界線を設定するのに要する時間を低減す ることができる。特に、断層画像に表示された境界があまり明瞭ではない場合、境界 の位置を一点指定することは操作者にさほど負担とはならないが、明瞭ではない境 界をすべてカーソルでなぞることは、操作者にとって大きな負担である。本発明によ ればこのような負担が低減される。
[0067] また、血管壁の内膜や中膜の厚さおよび血管径には、健康状態や個体差によるば らつきが大きく生じるが、外膜の厚さのばらつきは小さい。健常者の頸動脈における 外膜の厚さは 0. 3mm程度といわれている。したがって、外膜に病変がない場合には 、外膜の厚さをあらかじめ決めておき、中膜—外膜境界を設定する際に同時に決め られた厚さだけ離れた位置に外膜と周辺組織との境界を設定することで、さらに操作 者の負担を低減できる。外膜の厚さは 0. 2mmから 0. 4mm程度で決めるのが適当 であろう。
[0068] 境界線設定部 150により設定する第 2の境界線は外膜と周辺組織との境界に限ら れず、種々の境界に境界線を設定できる。以下、他の境界線を設定する例を説明す る。
[0069] 図 8は血管の外側にこぶのような病変ができた症例の断層画像を示している。また 、図 7は、図 8に示す断層画像上に境界線を設定する手順を示すフローチャートであ る。
[0070] まずステップ S211に示すように、超音波診断装置に装備されているトラックボール やマウスなどのユーザーインターフェース 130を使用して、モニタ 107の画面上に表 示されたカーソル 210を動かし、カーソル 210で断層画像 200上の血流 207と後壁 2 30の内膜 231の境界をなぞって、後壁 230における血流 207と内膜 231の境界線 2 04を設定する。境界線記憶部 151は、第 1の境界線として境界線 204の情報を記憶 する。
[0071] 次に、ステップ S212に示すように、第 2の境界線生成部 152は、境界線記憶部 15 1に記憶された境界線 204の情報に基づき、境界線 204を平行移動させることによつ て、第 2の境界線として後壁 230における中膜 232と外膜 233との境界に境界線 205 を設定する。
[0072] 次に、ステップ S213〖こ示すよう〖こ、ユーザーインターフェース 130を使用して、モ- タ 107の画面上に表示されたカーソル 210を動かし、カーソル 210で断層画像 200 上の後壁 230における外膜 233と周辺組織との境界をなぞって、後壁 230における 外膜 233と周辺組織との境界線 206を設定する。境界線記憶部 151は、第 1の境界 線として境界線 206の情報を記憶する。
[0073] さらに、ステップ S214に示すように、ステップ S213と同様の手順によって、前壁 22 0における血流 207と内膜 221との境界線 203を設定する。境界線記憶部 151は、 第 1の境界線として境界線 203の情報を記憶する。
[0074] これにより、境界をなぞるという操作者の負担と境界線の設定に要する時間を 1ステ ップ減らすことができる。
[0075] 図 10は健常者の血管の断層画像を示している。また、図 9は、図 10に示す断層画 像上に境界線を設定する手順を示すフローチャートである。
[0076] まず、ステップ S221に示すように、超音波診断装置に装備されて 、るトラックボー ルゃマウスなどのユーザーインターフェース 130を使用して、モニタ 107の画面上に 表示されたカーソル 210を動かし、カーソル 210で断層画像 200上の血流 207と後 壁 230の内膜 231の境界をなぞって、後壁 230における血流 207と内膜 231の境界 線 204を設定する。境界線記憶部 151は、第 1の境界線として、境界線 204の情報を feす。。
[0077] 次に、ステップ S222に示すように、第 2の境界線設定部 152は、境界線記憶部 15 1に記憶された境界線 204の情報に基づき、境界線 204を平行移動させることによつ て、第 2の境界線として後壁 230における中膜 232と外膜 233との境界に境界線 205 を設定する。
[0078] さらに、ステップ S223に示すように、境界線記憶部 151に記憶された境界線 204 の位置情報に基づいて、境界線 204を平行移動させることによって、後壁 230にお ける外膜 233と周辺組織との境界に境界線 206を設定する。
[0079] つぎに、ステップ S224に示すように、ユーザーインターフェース 130を使用して、モ
-タ 107の画面上に表示されたカーソル 210を動かし、カーソル 210で断層画像 20
0上の血流 207と前壁 220の内膜 221の境界をなぞって、前壁 220における血流 20
7と内膜 221の境界線 203を設定する。
[0080] これにより、境界をなぞるという操作者の負担と境界線の設定に要する時間を 2ステ ップ減らすことができる。
[0081] 図 11は図 10に示す断層画像上に境界線を設定する他の手順を示すフローチヤ一 トである。
[0082] まず、ステップ S231に示すように、超音波診断装置に装備されているトラックボー ルゃマウスなどのユーザーインターフェース 130を使用して、モニタ 107の画面上に 表示されたカーソル 210を動かし、カーソル 210で断層画像 200上の血流 207と後 壁 230の内膜 231の境界をなぞって、後壁 230における血流 207と内膜 231の境界 線 204を設定する。境界線記憶部 151は、第 1の境界線として、境界線 204の情報を feす。。
[0083] 次に、ステップ S232に示すように、第 2の境界線設定部 152は、境界線記憶部 15 1に記憶された境界線 204の情報に基づき、境界線 204を平行移動させることによつ て、第 2の境界線として後壁 230における中膜 232と外膜 233との境界に境界線 205 を設定する。
[0084] さらに、ステップ S223に示すように、第 2の境界線設定部 152は、境界線記憶部 1 51に記憶された境界線 204の位置情報に基づ 、て、境界線 204を平行移動させる ことによって、第 2の境界線として後壁 230における外膜 233と周辺組織との境界に 境界線 206を設定する。
[0085] 同様に、ステップ S234に示すように、境界線記憶部 151に記憶された境界線 204 の位置情報に基づいて、境界線 204を平行移動させることによって、第 2の境界線と して前壁 220における血流 207と内膜 221との境界に境界線 203を設定する。
[0086] これにより、境界をなぞるという操作者の負担と境界線の設定に要する時間を 3ステ ップ減らすことができる。
[0087] このように、境界線を平行移動させることによって、少なくとも 1つの他の境界線を設 定するため操作者の負担と境界線の設定に要する時間を低減することができる。
[0088] 以下、本発明による超音波診断装置を用いて、 IMTを計測する例を図 1 (a)および
(b)を参照しながら説明する。まず、探触子 101を用いて超音波の送受信を行ない、 時間的に連続した血管壁のその軸と平行な断層画像を取得し、モニタ 107に実時間 で表示する。また、断層画像データをメモリ 120に蓄える。フリーズ状態でメモリ 120 力もデータを読み出し、 IMTの計測に最適な断層画像をモニタ 107に表示させる。
[0089] 操作者はユーザーインターフェース 130を操作して、モニタ 107画面上に表示され たカーソル 210を動かし、カーソル 210でモニタ 107に表示された断層画像上の前 壁または後壁における血流と内膜との境界をなぞることによって、第 1の境界線を設 定する。境界線記憶部 151はこの第 1の境界線の情報を記憶する。
[0090] 次に、中膜と外膜との境界が血流と内膜との境界と平行である場合、たとえば、内 膜や中膜に病変部分が見られない場合には、第 2の境界線設定部 152は、血流と内 膜との境界に設定した境界線を平行移動させ、中膜と外膜との境界と一致した位置 に中膜と外膜との第 2の境界線を設定する。平行ではない場合、たとえば、内膜に病 変部分が生じている場合などには、中膜と外膜との境界も同様に、ユーザーインター フェース 130を操作して、モニタ 107画面上に表示されたカーソル 210を動かし、力 一ソル 210で断層画像上の中膜と外膜との境界をなぞって、第 1の境界線を設定す る。前壁と後壁とが断層画像上において、平行である場合には、第 2の境界線設定 部 152により、さらに先に設定した後壁あるいは前壁の境界線を平行移動させて、前 壁あるいは後壁の血流と内膜との境界あるいは中膜と外膜との境界を示す境界線を 設定してもよい。第 2の境界線設定部 152により操作者が設定した境界線を平行移 動させて新しい境界線を設定する力、操作者がユーザーインターフェース 130を用 いて境界線を設定するかは、ユーザーインターフェース 130で切り換えられるようにし てもよ!/、。このようにして得られた血流と内膜との境界線および中膜と外膜との境界線 の間隔から IMTを計算することができる。このように操作することによって、境界をな ぞるという操作者の負担と時間の力かる作業を減らすことができる。また、 IMTを求め る時間を短縮することができる。
[0091] 次に、弾性率の計測手順を説明する。まず、探触子 101を用いて超音波の送受信 を行ない、時間的に連続した血管壁のその軸と平行な断層画像を取得し、モニタ 10 7に実時間で表示する。また、組織追跡部 105により血管壁組織を追跡し、血圧計 1 11から得られる血圧値を用いて、弾性率算出部 108にて径方向の弾性率を計測し、 径方向弾性率の分布画像をモニタ 107に表示させる。断層画像のデータはメモリ 12 0に、径方向弾性率の分布画像のデータはメモリ 121にそれぞれ記録される。断層 画像は時間的に連続して表示されるが、弾性率の分布画像は 1心拍に 1回更新され る。超音波診断装置をフリーズ状態にした後、メモリ 121のデータを読み出し、最適 な弾性率の分布画像と、それに同期した断層画像をメモリ 120から読み出し、モニタ 107に表示させる。
[0092] 続いて操作者はユーザーインターフェース 130を操作して、モニタ 107画面上に表 示されたカーソル 210を動かし、カーソル 210でモニタ 107に表示された断層画像上 の後壁における血流と内膜との境界をなぞることによって、第 1の境界線を設定する。 設定した第 1の境界線の情報が境界線記憶部 151に記憶される。
[0093] 次に、内膜や外膜に病変部分が見られない場合など、後壁における外膜と周辺組 織との境界が血流と内膜との境界と平行である場合、第 2の境界線生成部 152は、 血流と内膜との境界に設定した第 1の境界線を平行移動させ、外膜と周辺組織との 境界と一致した位置に外膜と周辺組織との第 2の境界線を設定する。内膜や外膜に 病変部分が生じている場合など、平行ではない場合には、外膜と周辺組織との境界 も同様に、ユーザーインターフェース 130を操作して、モニタ 107画面上に表示され たカーソル 210を動かし、カーソル 210で断層画像上の外膜と周辺組織との境界を なぞって、第 1の境界線を設定する。
[0094] 次に、前壁における血流と内膜との境界が、後壁における血流と内膜との境界と平 行である場合には、第 2の境界線生成部 152は後壁における血流と内膜との境界に 設定した第 1の境界線を平行移動させ、前壁における血流と内膜との境界と一致した 位置に第 2の境界線を設定する。平行でない場合には、前壁における血流と内膜と の境界も、ユーザーインターフェース 130を操作して、モニタ 107画面上に表示され たカーソル 210を動かし、カーソル 210で断層画像上の血流と前壁の内膜との境界 をなぞって、第 1の境界線を設定する。
[0095] このようにして得られた後壁における血流と内膜との境界線および外膜と周辺組織 との境界線の間隔力 血管壁全体の径方向の初期厚み hOが、前壁における血流と 内膜との境界線と後壁における血流と内膜との境界線力 血管の初期半径 rOが得ら れる。これらの値を用いて周方向弾性率を計算することができる。このように操作する ことによって、境界をなぞるという検者の負担と時間の力かる作業を減らすことができ る。また、周方向弾性率を求めるのに要する時間を短縮することができる。
[0096] なお、上記実施形態では、第 1の境界線は、操作者がユーザーインターフェース 1 30を用いて描画したり、操作者が複数の位置を指定することによって、第 1の境界線 設定部が直線や折れ線を生成することによって設定していた。しかし、第 1の境界線 は、自動的に生成してもよい。たとえば、被検体の血流部分と血管壁部分とでは、音 響インピーダンスが大きく異なり、画像信号の振幅の大きさも異なる。このため、画像 信号の振幅に基づいて、血流部分と血管壁部分との境界、つまり血流と血管壁の内 膜との境界を自動的に検出することが可能である。第 1の境界線設定部は、断層画 像処理部が生成する画像信号に基づいて前壁または後壁の内膜と血流との境界を 検出し、境界に第 1の境界線を設定してもよい。また、血流部分は血液の移動により 、反射エコーにドップラー効果が生じる。したがって、第 1の境界線設定部は、ドッブ ラーモードを利用して前壁または後壁の内膜と血流との境界を検出し、境界に第 1の 境界線を設定してもよい。
[0097] 一方、血管壁に含まれる内膜、中膜および外膜の音響インピーダンスはそれほど 大きく異ならないため、これらの方法によって検出するのが難しい場合がある。しかし 、前述したように、血管壁内のこれら組織の境界は、病変部位が存在しなければ、内 膜と血流との境界と平行である場合が多い。このような場合、操作者が断層画像を見 て、適切であると思われる中膜と外膜との境界の位置を指定することができれば、第 2の境界線生成部により、操作者が指定した位置へ、自動的に検出、設定した第 1の 境界線を平行移動させて、第 2の境界線を設定することができる。したがって、操作 者の負担を大きく低減でき、また、操作者の判断によるばらつきも小さくなる。
産業上の利用可能性
本発明は、被検体の血管壁の形状や性状特性値を計測する超音波診断装置に好 適に用いられる。

Claims

請求の範囲
[1] 血管壁を計測するための超音波診断装置であって、
血管を含む被検体に超音波を送信するための探触子を駆動する送信部と、 前記被検体において前記超音波が反射することにより得られる超音波エコーを前 記探触子を用いて受信し、受信信号を生成する受信部と、
前記受信信号から、被検体の断層画像を表示部に表示するための画像信号を生 成する断層画像処理部と、
前記表示部に表示された断層画像に基づいて、第 1の境界線を設定する第 1の境 界線設定部と、
前記第 1の境界線を平行移動することによって、少なくとも 1つの第 2の境界線を生 成する第 2の境界線生成部と、
を備える超音波診断装置。
[2] 前記断層画像上における位置を操作者が指定するためのユーザーインターフエ一 スをさらに備える請求項 1に記載の超音波診断装置。
[3] 前記境界線設定部は、前記第 1の境界線に関する情報に基づいて、前記操作者 がユーザーインターフェースを用いて指定した位置へ前記第 1の境界線を平行移動 させることにより前記第 2の境界線を生成する請求項 2に記載の超音波診断装置。
[4] 前記第 1の境界線設定部は、前記ユーザーインターフェースを用いて前記操作者 により設定された第 1の境界線に関する情報を記憶する請求項 3に記載の超音波診 断装置。
[5] 前記第 1の境界線設定部は、前記操作者が指定した位置に基づ!ヽて直線または 折れ線を第 1の境界線として生成する請求項 4に記載の超音波診断装置。
[6] 前記第 1の境界線設定部は、前記操作者がユーザーインターフェースにより、前記 断層画像上に描画した線分の情報を第 1の境界線の情報として記憶する請求項 4に 記載の超音波診断装置。
[7] 前記第 1の境界線は、前記血管の前壁および後壁の内膜と血流との境界、前記血 管の前壁および後壁における中膜と外膜との境界ならびに血管の前壁および後壁 の外膜と周辺組織との境界を含む境界群カゝら選ばれる少なくとも 1つの境界に位置し 、前記第 2の境界線は、前記境界群力 選ばれる少なくとも他の 1つの境界に位置す る請求項 3に記載の超音波診断装置。
[8] 前記第 1の境界線設定部は、前記画像信号に基づいて、前記血管の前壁または 後壁の内膜と血流との境界を検出し、検出した境界に前記第 1の境界線を設定する 請求項 7に記載の超音波診断装置。
[9] 前記第 1および第 2の境界線は、前壁または後壁における内膜と血流との境界およ び中膜と外膜との境界にそれぞ; 立置しており、前記第 1および第 2の境界線に基 づいて血管壁内中膜複合体厚を求める請求項 8に記載の超音波診断装置。
[10] 前記受信信号に基づ!、て、前記被検体中の組織の動きを追跡する組織追跡部と、 前記被検体の血圧に関する情報を受け取り、前記追跡した糸且織の動きに基づ 、て
、前記組織の性状値を算出する性状値算出部と、
をさらに備え、
前記第 1および第 2の境界に基づいて、前記血管の内膜、中膜および外膜のうち、 少なくとも 1つの組織の性状値を算出する請求項 9に記載の超音波診断装置。
[11] 前記第 1および第 2の境界線は、内膜と血流との境界および外膜と周辺組織との境 界にそれぞれ位置しており、前記第 1および第 2の境界線に基づいて、前記血管の 半径および血管壁の厚さを算出することによって、前記性状値として周方向弾性率 を求める請求項 10に記載の超音波診断装置。
[12] 超音波診断装置における血管壁の境界を設定する方法であって、
超音波を送受信することにより得られた被検体の血管の断層画像上において、血 管の前壁および後壁の内膜と血流との境界、前記血管の前壁および後壁における 中膜と外膜との境界ならびに血管の前壁および後壁の外膜と周辺組織との境界を含 む境界群力 選ばれる少なくとも 1つの境界に位置するように設定された第 1の境界 線を平行移動することによって、前記境界群力 選ばれる少なくとも他の 1つの境界 に位置する第 2の境界線を生成するステップを包含する血管壁の境界を設定する方 法。
[13] 操作者がユーザーインターフェースにより前記断層画像上に描画した線分の情報 を第 1の境界線の情報として記憶するステップをさらに包含し、 前記第 2の境界線を生成するステップは、前記記憶した第 1の境界線の情報に基 づいて前記第 2の境界線を生成する請求項 12に記載の血管壁の境界を設定する方 法。
[14] 操作者がユーザーインターフェースにより前記血管の断層画像上において指定し た位置に基づ!/、て直線または折れ線を第 1の境界線として生成するステップをさらに 包含する請求項 12に記載の血管壁の境界を設定する方法。
[15] 前記断層画像を表示するための画像信号に基づいて、前記血管の前壁または後 壁の内膜と血流との境界を検出し、検出した境界に前記第 1の境界線を設定するス テツプをさらに包含する請求項 12に記載の血管壁の境界を設定する方法。
PCT/JP2006/324855 2005-12-15 2006-12-13 超音波診断装置 WO2007069650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20060834610 EP1961384A4 (en) 2005-12-15 2006-12-13 ULTRASOUND DEVICE
US12/097,142 US20090227867A1 (en) 2005-12-15 2006-12-13 Ultrasonograph

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005362057A JP4721893B2 (ja) 2005-12-15 2005-12-15 超音波診断装置
JP2005-362057 2005-12-15

Publications (1)

Publication Number Publication Date
WO2007069650A1 true WO2007069650A1 (ja) 2007-06-21

Family

ID=38162955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324855 WO2007069650A1 (ja) 2005-12-15 2006-12-13 超音波診断装置

Country Status (4)

Country Link
US (1) US20090227867A1 (ja)
EP (1) EP1961384A4 (ja)
JP (1) JP4721893B2 (ja)
WO (1) WO2007069650A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172236A (ja) * 2008-01-25 2009-08-06 Gifu Univ 生体動脈評価方法、及び生体動脈評価装置
WO2009118798A1 (ja) * 2008-03-27 2009-10-01 パナソニック株式会社 超音波診断装置
CN103298413A (zh) * 2011-06-13 2013-09-11 松下电器产业株式会社 超声波诊断装置以及利用该超声波诊断装置的超声波测量方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080870A1 (ja) * 2006-01-11 2007-07-19 Matsushita Electric Industrial Co., Ltd. 超音波診断装置
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
JP5346555B2 (ja) * 2008-11-04 2013-11-20 富士フイルム株式会社 動脈硬化リスク表示機能を備えた超音波診断装置
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
US20110002513A1 (en) * 2009-07-01 2011-01-06 Foresight Imaging LLC Medical apparatus and method of using the same for generating a virtual road map guide of a patient's anatomy and annotate the images
US8157742B2 (en) 2010-08-12 2012-04-17 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
JP5209026B2 (ja) * 2010-10-27 2013-06-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP5294340B2 (ja) 2010-10-27 2013-09-18 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
US8548778B1 (en) 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
JP5890358B2 (ja) * 2013-08-29 2016-03-22 日立アロカメディカル株式会社 超音波画像撮像装置及び超音波画像表示方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105226A (ja) 1996-06-24 1998-01-13 Kagaku Gijutsu Shinko Jigyodan 超音波診断装置
JPH11197152A (ja) * 1997-11-11 1999-07-27 Toshiba Corp 超音波画像診断装置
JP2000229078A (ja) 1999-02-10 2000-08-22 Japan Science & Technology Corp 血管病変診断システムおよび診断プログラム記憶媒体
JP2004305236A (ja) * 2003-04-01 2004-11-04 Shimadzu Corp 超音波診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046745A (en) * 1996-03-25 2000-04-04 Hitachi, Ltd. Three-dimensional model making device and its method
US6381350B1 (en) * 1999-07-02 2002-04-30 The Cleveland Clinic Foundation Intravascular ultrasonic analysis using active contour method and system
US6835177B2 (en) * 2002-11-06 2004-12-28 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US6979294B1 (en) * 2002-12-13 2005-12-27 California Institute Of Technology Split-screen display system and standardized methods for ultrasound image acquisition and processing for improved measurements of vascular structures
WO2004054447A1 (en) * 2002-12-18 2004-07-01 Koninklijke Philips Electronics N.V. Ultrasonic apparatus for estimating artery parameters
CN1845707B (zh) * 2003-09-01 2010-04-28 松下电器产业株式会社 生物体信号监视装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105226A (ja) 1996-06-24 1998-01-13 Kagaku Gijutsu Shinko Jigyodan 超音波診断装置
JPH11197152A (ja) * 1997-11-11 1999-07-27 Toshiba Corp 超音波画像診断装置
JP2000229078A (ja) 1999-02-10 2000-08-22 Japan Science & Technology Corp 血管病変診断システムおよび診断プログラム記憶媒体
JP2004305236A (ja) * 2003-04-01 2004-11-04 Shimadzu Corp 超音波診断装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEYUKI HASEGAWA; HIROSHI KANAI ET AL.: "Evaluation of regional elastic modulus of cylindrical shell with non-uniform wall thickness", J.MED. ULTRASONICS, vol. 28, no. 1, 2001
See also references of EP1961384A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172236A (ja) * 2008-01-25 2009-08-06 Gifu Univ 生体動脈評価方法、及び生体動脈評価装置
WO2009118798A1 (ja) * 2008-03-27 2009-10-01 パナソニック株式会社 超音波診断装置
JP5161954B2 (ja) * 2008-03-27 2013-03-13 パナソニック株式会社 超音波診断装置
US8469889B2 (en) 2008-03-27 2013-06-25 Panasonic Corporation Ultrasonograph that chooses tracking waveforms for attribute value calculations
CN103298413A (zh) * 2011-06-13 2013-09-11 松下电器产业株式会社 超声波诊断装置以及利用该超声波诊断装置的超声波测量方法

Also Published As

Publication number Publication date
US20090227867A1 (en) 2009-09-10
EP1961384A4 (en) 2011-04-27
JP2007159920A (ja) 2007-06-28
JP4721893B2 (ja) 2011-07-13
EP1961384A1 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP4721893B2 (ja) 超音波診断装置
JP4667394B2 (ja) 超音波診断装置
JP5486257B2 (ja) 超音波診断装置及び弾性指標算出方法
EP2497425B1 (en) Ultrasound diagnostic apparatus and method of determining elasticity index reliability
JP4667392B2 (ja) 超音波診断装置
JP4884476B2 (ja) 超音波診断装置
WO2005115249A1 (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理方法
JPWO2007122698A1 (ja) 超音波診断装置
WO2008023618A1 (fr) échographe
WO2004089222A1 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2006129545A1 (ja) 超音波診断装置
US20190000415A1 (en) Ultrasound system and method for acquisition parameter determination
US9579084B2 (en) Ultrasound diagnostic apparatus
JP5384919B2 (ja) 超音波診断装置
JP4918369B2 (ja) 超音波診断装置
JP5346555B2 (ja) 動脈硬化リスク表示機能を備えた超音波診断装置
JP5400095B2 (ja) 超音波診断装置
JP2009039277A (ja) 超音波診断装置
JP2011234863A (ja) 超音波診断装置及び画像処理装置
JPWO2007080870A1 (ja) 超音波診断装置
JP5148203B2 (ja) 超音波診断装置
US20120310090A1 (en) Ultrasound diagnostic apparatus
JP5462474B2 (ja) 超音波診断装置
JP2009000444A (ja) 超音波診断装置
JP7023704B2 (ja) 超音波診断装置、画像処理装置及び画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12097142

Country of ref document: US