WO2007065377A1 - An integrate planar sensor for detecting weak magnetic field on three dimensional directions and a manufacturing method thereof - Google Patents

An integrate planar sensor for detecting weak magnetic field on three dimensional directions and a manufacturing method thereof Download PDF

Info

Publication number
WO2007065377A1
WO2007065377A1 PCT/CN2006/003349 CN2006003349W WO2007065377A1 WO 2007065377 A1 WO2007065377 A1 WO 2007065377A1 CN 2006003349 W CN2006003349 W CN 2006003349W WO 2007065377 A1 WO2007065377 A1 WO 2007065377A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
thickness
magnetic field
magnetic sensor
Prior art date
Application number
PCT/CN2006/003349
Other languages
French (fr)
Chinese (zh)
Inventor
Qihang Qin
Xiufeng Han
Lei Wang
Ming Ma
Hongxiang Wei
Wenshan Zhan
Original Assignee
Institute Of Physics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Physics, Chinese Academy Of Sciences filed Critical Institute Of Physics, Chinese Academy Of Sciences
Publication of WO2007065377A1 publication Critical patent/WO2007065377A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Definitions

  • Some of the sensors are used for their proximity or proximity and the earth's magnetic force. God's universal sensor is used to sense 100 to 1000 Oster e. There is a universal sensor that is made of materials or materials
  • Line 3 can only combine sensors with different sensitive directions, thus qualitative and consistent, and high cost.
  • the junction material () and the material () are made on the 3 magnetic sensor that can be integrated in the direction of the sensor.
  • the sensor has a ratio or even ten times that of the traditional sensor and provides a method that is compatible with each sensor at a low cost. .
  • the provided sensor can be integrated in the direction as shown in 1, which includes the village bottom 1, the upper 2 and the bottom that is born on the upper side, and the magnetic sensor made of more magnets that is born on the bottom.
  • the magnetic sensor 3 described in the root term is the first magnetic sensor 7, the second magnetic sensor 72 and the third magnetic sensor Sensor unit 73
  • the bottom part 2 2 The magnetic sensor unit is standing on a bottom, another dielectric magnetic sensor is on the other bottom 3
  • the magnetic sensor and the magnetic sensor of the same thickness are magnetically dependent, , Non-magnetic, free and cover the first magnetic sensor 71, the second magnetic sensor 72 is much the same as their third magnetic sensor 73, and the "free" points are different in the magnetic sensor and the free
  • the directions of magnetization are perpendicular to each other
  • the directions perpendicular to each other have a direction (direction) perpendicular to the bottom plane and a direction X y which is perpendicular to the bottom plane, and the mutually perpendicular directions X y direction are on the interface of the 2 magnetic sensors on the same bottom.
  • the remaining 2 magnetic sensor surfaces On the other side.
  • the magnetic gold of the magnetic sensor unit with higher autonomy includes n period o P, n period oFe P, TbFe o or dFeCo o Fe alloy N Fe alloy non-oFeB alloy thickness 2 n
  • the non-magnetic in the above wooden scheme is generally g k, Ta, n or T, etc.
  • the material thickness of the tunnel material is 0 5 n or u, Nb Pd Ta, gu or alloy is the material thickness of the element 1.0 1 n
  • the magnetic gold and its alloys with lower autonomy and higher autonomy are smaller o o Fe o Fe B or N Fe alloy N 8Fe thickness.
  • the covering power is not easy to be oxidized and has a large gold material u u P u etc.
  • the thickness 2 n is less than the material is not oxidized.
  • the methods provided by the present sensor that can be integrated in the direction include the following steps
  • Forming means that the first is on any of the magnetic sensor sheep on the first bottom and the second is on the other 2 magnetic sensor sheep to get the original integrated sensor in the direction.
  • the thickness of the magnetic gold with higher autonomy described in steps 4 5 and 6 2 2 n The magnetic gold or alloy with vertical anisotropy is used for sensors with sensors perpendicular to the plane direction.
  • P oFe composed of multi-TbFe o or dFe o and other directions of Fe o N and its alloys o Fe alloy N Fe alloy non-oFeB alloy thickness 2 2 m.
  • the non-magnetic materials such as 0, g N Ta, n, or T in steps 4, 5 and 6 are used in the tunnel material.
  • the element thickness is 0.5 5n or the material in steps 4 5 and 6 Non-magnetic, Nb u PTP u or alloy.
  • Thickness 1. n o Free in steps 4 5 and 6 in the above wooden scheme Lesser magnetic gold and its alloy with higher autonomy o o Fe o Fe B or N Fe alloy N 8Fe Thickness 1.0 n
  • the covering power in steps 4 5 and 6 is not easy to be oxidized and has a larger thickness of gold materials u P, g u etc. 2 n than the material does not oxidize.
  • the thickness described in the wood plan above is 0.3
  • the gold in the wooden scheme is larger than the magnetic sensor 0 1 m for general holes
  • Each of the perceptual magnetic sensor sheep of the integrated sensor that can be provided in the direction has the same direction as the free direction without the external magnetic sensor. Mutually perpendicular directions. Almost integrated sensors can be used
  • Yuki usually combines sensors in different directions to form a magnetic sensor.
  • the consistency of 3 sensors requires high sensor direction and the assembly work is also very expensive.
  • the magnetic sensor obtained is large and poorly qualitative.
  • the provided sensor is integrated with 3 magnetic sensors to reduce the sensor rest and reduce the cost, greatly improving the consistency and qualitative of the magnetic sensor, especially the large-scale integration of road engineering compatible Under certain circumstances, there are irreplaceable including
  • the device size is small.
  • a sensor can achieve 5 X5 m below the device can be below gnmmX2 mm.
  • the small device size can improve the prospects. But the same small device if the sensors are first assembled on the same surface, the operation is very high and the accuracy is reduced. Therefore, the three magnetic sensor units are introduced.
  • the direction has high accuracy.
  • the upper sensor used has a level of almost flatness, and the consistency is very high.
  • the non-guaranteed units have the same accuracy.
  • the regiment is as follows 91 first anti 22 second anti 23 third anti 3 First hit 32 Second hit 33 Third hit
  • step 2 in the bottom of the u on the top, then the carving, the front and the use are to be processed
  • the light is exposed on the ultraviolet exposure,,, and wanzi methods to include the first 8 and the second 8 shown in the bottom 1 and are made into a circle or a circle on each end of each
  • the shape of the gold-selected gold bottom is completely a 5 m square on the lower left. Use gold and the bottom on each side with the same steps.
  • On the bottom 8 according to the number 7 of the magnetic sensor 7 includes 1 n n. , 4.0 n of o Fe effort first hit 31, 1. n
  • the force is non-magnetic 4
  • Fe is the force of the first freedom 5 and 5n
  • the first free fall 51 and the first hit 31 are perpendicular to the direction.
  • the directions both care and the magnetization directions are perpendicular to each other 4.
  • the second gold gold bottom shape is completely a square with a mm in the upper left corner. Use gold and the bottom on each of the first bottom 8.
  • the third gold and gold bottom shape is completely 5mm square in the upper right corner. Use gold and the bottom on each in the same way as step 3.
  • each of the third magnetic sensor 73 is first a force of 1 n and a third inverse 23 is 3 cycles (P .5nm o 0.4n )
  • the third effort 33. n's zero force third non-magnetic 43 3 period (o 1. n P n) force third freedom 3 5n's a force covers house 63 free plus one step 3 free add in the same direction and reverse Do not.
  • the direction of the most obtained magnetization is perpendicular to the direction of free magnetization and the direction of the magnetization of free is perpendicular to each other.
  • the magnetic sensor sheep obtained in step 5 is immersed in the magnetic sensor and the direction of the free magnetization of each magnetic sensor is perpendicular to the direction of 5X.
  • step 6 Put the shape formed in step 6 into each one, and then use the rest engraving method of n on its item surface.
  • Shape 1 shows that the first item 9 is on the first magnetic sensor 71 on the first bottom 8 and the second item 9 is obtained on the 2 and third 73 magnetic sensor surfaces. Sensor.
  • the output of the sensor is connected to the vacant output of the sensor, and the output of the sensor with the tunnel is obtained.
  • each integrated sensor has many magnetic materials What is the thickness of the first sensor unit, the second sensor unit, and the third sensor component S-SO of the magnetic sensor with a good magnetic core, 1 X2 n, and a magnetic sensor with integrated geomagnetic sensors
  • Thickness 2 2 Composition Fe Fe P / CoFe3 Thickness 2 2 05 m0.4 Not, [Composition gO gO gO
  • the integrated three-dimensional sensor has many magnetic materials and thicknesses in 2 of which the nuclear magnetic sensor is good m m
  • each integrated sensor has various magnetic materials and thicknesses in 3, where the nuclear magnetic sensor is good n
  • the first magnetic sensor integrated with a geomagnetic sensor has a large first sensor unit, a second sensor unit, a third sensor unit, a component S 2
  • Thickness 2 2n 2nm Composition oFe oFe dFe o Thickness 2 2n 2nm
  • the integrated sensor has various magnetic materials and thickness in 4 of which the sensor is good n X2 nm
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor, the second sensor, and the third sensor component S 2
  • Thickness m 0.5n 0.bn Free composition o75Fe2 o7Fe25 (P o)
  • the materials and thickness of the magnetic sensor are more than 5, and the magnetic sensor is good mX2 m
  • the original is more magnetic than the integrated geomagnetic sensor
  • each integrated sensor has various magnetic materials and thickness. Among them, the nuclear magnetic sensor is good in 6.
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor unit, the third sensor component 2
  • Thickness 2n 2n 2na Composition oFeB oFeB (P) Thickness 2 2 0.5n .4n
  • Thickness na 0.5n 0.5n Free composition o7Fe25 oFeB (P
  • Thickness nn 05n Thickness nn 05n.
  • each of the integrated sensors has various magnetic materials and thickness in 7 of which the nuclear magnetic sensor is good.
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor unit, and the third sensor unit
  • the magnetic material and thickness are more than 8. Its sensor is good
  • the original is more magnetic than the integrated geomagnetic sensor First sensor unit Second sensor Third sensor unit Component 2
  • each integrated sensor has more magnetic materials and thickness in 9.
  • the magnetic sensor is good 8 mX 6
  • the first multi-sensor unit integrated with a geomagnetic sensor, the second sensor unit, the third sensor unit, and the component 2
  • the integrated sensor of each plane has the material and thickness of more than 10 in the magnetic field.
  • the magnetic sensor is good 2
  • each integrated sensor has more magnetic materials and thickness. Its nuclear magnetic sensor is good 2 n X4 n
  • Thickness 2nm 2 2 m Composition N Fe N Fe (P oFe) Thickness 2 2 0.5nm .4n Not,
  • the integrated sensor has more magnetic materials and thickness than 2.
  • the sensor is good 40 n X8 n
  • the first multi-sensor unit integrated with a geomagnetic sensor, the second sensor, the third sensor component
  • Thickness 2 m 2 2nm Composition N Fe N Fe (P oFe Thickness 2 2n 0.5n .4nm Non,
  • each integrated sensor its magnetic material and thickness are more than 3.
  • the sensor unit is good 0 pm
  • each integrated sensor its magnetic properties and thickness are more than 4.
  • the nuclear magnetic sensor is good 2 X400
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor unit, the second sensor unit, and the component 2
  • the integrated sensor of each plane has more magnetic materials and thickness than 1. Of which the nuclear magnetic sensor is good 5 0
  • the original is more magnetic than the integrated geomagnetic sensor First sensor second sensor third sensor component S 2
  • Thickness n nm n Free component N Fe N Fe P oFe
  • Thickness n n 04 .5n Covered house component u u u
  • the magnetic materials and thickness are more than 6.
  • the nuclear magnetic sensor is good 1 m
  • each integrated three-dimensional sensor its magnetic material and thickness are more than 17.
  • the magnetic sensor is good 2 X4
  • each integrated sensor has more magnetic materials and thickness than 8.
  • the nuclear magnetic sensor unit is good 3 mX6 m
  • the first magnetic sensor integrated with a geomagnetic sensor and the first sensor and the third sensor unit are composed of component S
  • composition N Fe N Fe (P oFe thickness n n 0.4n 0.5n House composition u u u
  • Thickness m The provided integrated sensor can be used to work on the vacant output of the sensor connected to the sensor unit. Measure the output sensor sheep respectively in the X, y, and z directions. There is an external freedom from the output of the sensor
  • the direction is perpendicular to the output in the fixed garden.
  • the output can be obtained from the output.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

An integrate planar sensor for detecting weak magnetic field on three dimensional directions includes three magnetic sensing elements (71,72,73) which are composed of multi-layer magnetic films, two of the magnetic sensing elements are arranged on the same bottom pole (8), and the other magnetic sensing element is arranged on the other bottom pole (8’). The multi-layer films of the two magnetic sensing elements are same, and the components of pinned layers and free layers of their multi-layer films are different from that of the third magnetic sensing element, and the magnetization direction of the pinned layer is perpendicular to that of the free layer, three easy axis directions of the pinned layers are perpendicular to each other and have an inductive direction of magnetic field perpendicular to a plane of a substrate (1) and two dimensional inductive directions of magnetic field which are parallel to the plane of the substrate (1) and perpendicular to each other, respectively. A top pole (9) is seperately arranged on a top plane of two magnetic sensing elements which are generated on the same bottom pole, and the other top pole (9’) is commonly arranged on the top plane of the other two magnetic sensing elements.

Description

能在三维方向上探测弱磁场的平面集成的传感器及制法 技术领域 Planar integrated sensor and manufacturing method capable of detecting weak magnetic fields in three dimensions Technical field
本发明涉及一种传感器件, 具体地说是涉及一种带有隧道结磁阻 (TMR)和巨磁电 阻 (GMR)元件的、 能在三维方向上探测弱磁场的传感器件及其制备方法。 背景技术 The present invention relates to a sensor device, specifically to a sensor device with tunnel junction magnetoresistance (TMR) and giant magnetoresistance (GMR) elements that can detect weak magnetic fields in three dimensions and a preparation method thereof. Background technique
磁场传感器有广泛的商业用途, 其应用诸如线形或环形编码器, 接近度检测器, 以 及地球场磁力仪等。一种通用的磁场传感器是以霍尔效应为基础,用以感知 100至 1000 奥斯特(0e)范围的磁场。 还有一种通用的磁场传感器是以半导体或铁磁材料中的磁阻 (MR) 效应为基础, 用以感知相对较小的磁场和在较远距离上的磁场。 传统的 MR传感 器是基于各项异性磁阻(AMR)效应运作的,而较新的 MR传感器则是基于巨大磁阻(GMR) 效应运作的, 例如: 美国国际商业机器公司申请的中国专利: "带有自旋阔磁阻元件的 桥电路磁场传感器及其制备方法", 申请号: 95105085. 0; 该传感器是一维的磁场传感 器。 以上这些磁场传感器主要用于测量一个方向上的磁场, 要进行三维磁场的测量, 只 能把具有不同敏感方向的传感器组合起来, 这种方法不仅成本较高, 而且稳定性和一致 性也较差。 发明内容 Magnetic field sensors are used in a wide range of commercial applications, including linear or ring encoders, proximity detectors, and Earth-field magnetometers. A universal magnetic field sensor is based on the Hall effect and is used to sense magnetic fields in the range of 100 to 1000 Oersted (0e). Another common type of magnetic field sensor is based on the magnetoresistance (MR) effect in semiconductor or ferromagnetic materials and is used to sense relatively small magnetic fields and magnetic fields over long distances. Traditional MR sensors operate based on the anisotropic magnetoresistance (AMR) effect, while newer MR sensors operate based on the giant magnetoresistance (GMR) effect. For example: Chinese patent applied for by International Business Machines Corporation: " "Bridge circuit magnetic field sensor with spin wide magnetoresistive element and preparation method thereof", application number: 95105085.0; The sensor is a one-dimensional magnetic field sensor. The above magnetic field sensors are mainly used to measure the magnetic field in one direction. To measure the three-dimensional magnetic field, sensors with different sensitive directions can only be combined. This method is not only more expensive, but also has poor stability and consistency. . Contents of the invention
本发明的目的在于: 克服现有的磁场传感器只能测量一个方向上的磁场, 当需要进 行三维磁场测量时, 只能把具有不同敏感方向的传感器组合起来进行测量, 因而稳定性 和一致性差, 以及带来成本高的缺陷; 从而提供一种利用近年来新发展的磁性隧道结材 料 (TMR)和巨磁电阻材料 (GMR), 在一块衬底上制作 3个磁性传感器单元, 能在三维方向 上探测弱磁场的平面集成的传感器,该传感器具有磁电阻比值超过传统的磁场传感器几 倍甚至几十倍; 并且提供一种与半导体工艺兼容, 制备工艺简单、 成本低廉的制备该传 感器的方法。 The purpose of this invention is to overcome the problem that existing magnetic field sensors can only measure magnetic fields in one direction. When three-dimensional magnetic field measurement is required, sensors with different sensitive directions can only be combined for measurement, resulting in poor stability and consistency. and bring high cost defects; thereby providing a method to use the newly developed magnetic tunnel junction materials (TMR) and giant magnetoresistance materials (GMR) in recent years to produce three magnetic sensor units on one substrate, which can be used in three-dimensional directions. It is a planar integrated sensor that detects weak magnetic fields. The sensor has a magnetoresistance ratio several times or even dozens of times higher than that of traditional magnetic field sensors. It also provides a method for preparing the sensor that is compatible with semiconductor processes, has a simple manufacturing process, and is low-cost.
本发明的目的是通过如下的技术方案实现的: The purpose of the present invention is achieved through the following technical solutions:
本发明提供的能在三维方向上探测弱磁场的平面集成的传感器, 如图 1所示, 其包 括: 衬底 1、 其上的缓冲层 2和生长在缓冲层上的底部电极, 以及生长在底部电极上的 由磁性多层膜构成的磁性传感器单元; 其特征在于, 还包括 2根顶部电极; 所述的磁性 传感器单元为 3个, 即第一磁性传感器单元 71、 第二磁性传感器单元 72和第三磁性传 感器单元 73; 所述的底部电极为 2根, 2个磁性传感器单元分别独立生长在一根底部电 极上, 另一个磁性传感器单元生长在另一底部电极上; 该 3个磁性传感器单元截面积和 厚度相等; 所述的磁性传感器单元的磁性多层膜依次为反铁磁层、 钉扎层、 非磁性层、 自由层和覆盖层,其中构成第一磁性传感器单元 71与第二磁性传感器单元 72的多层膜 相同, 它们与构成第三磁性传感器单元 73的多层膜中的 "钉扎层"和 "自由层"组分 不同; 三个磁性传感器单元中的钉扎层和自由层的磁化强度方向相互垂直, 三个钉扎层 的三个易轴方向相互垂直,分别具有垂直于衬底平面的磁场感应方向(设为 Z方向)和平 行于衬底平面、 且相互垂直的二维磁场感应方向 (设为 X, y方向); 在同一底部电极上 生长的 2个磁性传感器单元中的一个顶面上, 单独设置一个所述的顶部电极, 其余两个 2个磁性传感器单元顶面上共同设置另一个顶部电极。 The invention provides a planar integrated sensor capable of detecting weak magnetic fields in three dimensions, as shown in Figure 1. It includes: a substrate 1, a buffer layer 2 thereon, a bottom electrode grown on the buffer layer, and a substrate 1 grown on the buffer layer. A magnetic sensor unit composed of a magnetic multilayer film on the bottom electrode; It is characterized in that it also includes 2 top electrodes; There are three magnetic sensor units, namely the first magnetic sensor unit 71 and the second magnetic sensor unit 72 and the third magnetic transmission Sensor unit 73; There are two bottom electrodes, two magnetic sensor units are independently grown on one bottom electrode, and the other magnetic sensor unit is grown on the other bottom electrode; The cross-sectional area of the three magnetic sensor units is and thickness are equal; the magnetic multilayer film of the magnetic sensor unit is an antiferromagnetic layer, a pinned layer, a non-magnetic layer, a free layer and a covering layer in order, which constitute the first magnetic sensor unit 71 and the second magnetic sensor unit The multilayer films of 72 are the same, and they are different from the "pinned layer" and "free layer" components in the multilayer film that constitutes the third magnetic sensor unit 73; the pinned layer and the free layer in the three magnetic sensor units are The magnetization directions are perpendicular to each other, and the three easy-axis directions of the three pinned layers are perpendicular to each other. They respectively have a magnetic field induction direction perpendicular to the substrate plane (set as the Z direction) and a two-dimensional direction parallel to the substrate plane and perpendicular to each other. Magnetic field induction direction (set as X, y direction); On the top surface of one of the two magnetic sensor units grown on the same bottom electrode, set one of the top electrodes separately, and the other two magnetic sensor units are on the top surface Another top electrode is placed on top.
在上述的技术方案中, 所述的底部电极和顶部电极呈条形, 并且两端比中间大, 这 样便于与外部引线连接。 In the above technical solution, the bottom electrode and the top electrode are in a strip shape, and the two ends are larger than the middle, which facilitates connection with external leads.
在上述的技术方案中, 所述的磁性传感器单元的截面积为 0. 01 μ πι2〜100ιηιη2, 厚度 为 20nm〜60nm。 In the above technical solution, the cross-sectional area of the magnetic sensor unit is 0.01 μ π 2 ~ 100 μ m 2 , and the thickness is 20 nm ~ 60 nm.
在上述的技术方案中, 所述的磁性传感器单元的反铁磁层为具有反铁磁性的合金, 优选 Ir- Mn, Fe-Mn, 或 Pt- Mn, 厚度为 2〜20 nm。 In the above technical solution, the antiferromagnetic layer of the magnetic sensor unit is an alloy with antiferromagnetic properties, preferably Ir-Mn, Fe-Mn, or Pt-Mn, with a thickness of 2 to 20 nm.
在上述的技术方案中,所述的磁性传感器单元的钉扎层为具有较高自旋极化率的铁 磁性金属,包括 n周期 Co/Pt的多层膜、 n周期 CoFe/Pt的多层膜、 TbFeCo,或 GdFeCo; Co-Fe合金, Ni-Fe合金, 非晶 CoFeB合金; 厚度为 2〜20 nm。 In the above technical solution, the pinned layer of the magnetic sensor unit is a ferromagnetic metal with a high spin polarization rate, including a multilayer film of n-period Co/Pt, a multi-layer film of n-period CoFe/Pt, TbFeCo, or GdFeCo; Co-Fe alloy, Ni-Fe alloy, amorphous CoFeB alloy; thickness is 2~20 nm.
在上述的技术方案中,所述的非磁性层一般采用 A1203、 Mg0、 Α1Ν、 Τ¾05、 ΖηΟ或 Ti02 等绝缘材料(对于隧道结材料的磁阻元件), 厚度为 0. 5〜5nm; 或者采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金(对于巨磁电阻材料的磁阻元件), 厚度 为 1. 0〜10 nm。 In the above technical solution, the non-magnetic layer generally uses insulating materials such as A1 2 0 3 , Mg0, A1N, T¾0 5 , ZnO or Ti0 2 (for magnetoresistance elements of tunnel junction materials), and the thickness is 0.5 ~5nm ; or use Cu, Cr, V, Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or their alloys (for magnetoresistance elements of giant magnetoresistance materials), the thickness is 1.0~10 nm.
在上述的技术方案中,所述的自由层为矫顽力较小的具有较高自旋极化率的铁磁性 金属及其合金, 优选 Co, Co-Fe, Co - Fe-B或 Ni- Fe合金 (如: Ni81Fe19), 厚度为 1. 0〜 10 nm。 In the above technical solution, the free layer is a ferromagnetic metal with a small coercive force and a high spin polarization rate and its alloy, preferably Co, Co-Fe, Co-Fe-B or Ni-Fe alloy. (For example: Ni 81 Fe 19 ), thickness is 1. 0~10 nm.
在上述的技术方案中, 所述的覆盖层为不易被氧化的且具有较大电阻的金属材料, 优选 Ta、 Cu、 Ru、 Pt、 Ag、 Au等, 厚度为 2〜10 nm, 用于保护材料不被氧化。 In the above technical solution, the covering layer is a metal material that is not easily oxidized and has a large resistance, preferably Ta, Cu, Ru, Pt, Ag, Au, etc., with a thickness of 2 to 10 nm, and is used for protection The material is not oxidized.
所述的衬底为 Si衬底或 Si-Si02衬底, 厚度为 0. 3〜lmm。 The substrate is a Si substrate or a Si-SiO 2 substrate, with a thickness of 0.3~lmm.
所述的缓冲层为电阻较大的金属材料, 优选 Ta、 Ru、 Cr、 Pt, 厚度为 3〜10 nm。 所述的底部电极和顶部电极为电阻较小的金属材料, 优选 Au、 Cu, 厚度为 10~500 nm。 The buffer layer is a metal material with a large resistance, preferably Ta, Ru, Cr, or Pt, and has a thickness of 3 to 10 nm. The bottom electrode and the top electrode are metal materials with low resistance, preferably Au or Cu, with a thickness of 10~500nm.
本发明提供的能在三维方向上探测弱磁场的平面集成的传感器的制备方法,包括如 下的步骤: The method for preparing a planar integrated sensor capable of detecting weak magnetic fields in three dimensions provided by the invention includes the following steps:
1 )、选择衬底: 选择 Si或 Si- Si02晶片作为衬底, 经过常规半导体超声清洗工艺清 洗、干燥之后, 放入磁控溅射仪中在衬底上沉积缓冲层, 沉积缓冲层后的样品待用; 所 述的缓冲层为电阻较大的金属材料, 优选 Ta、 Ru、 Cr、 Pt, 厚度为 3〜10 nm; 1). Select the substrate: Select Si or Si-Si0 2 wafer as the substrate. After cleaning and drying with the conventional semiconductor ultrasonic cleaning process, put it into a magnetron sputtering instrument to deposit a buffer layer on the substrate. After depositing the buffer layer The sample is ready for use; the buffer layer is a metal material with a large resistance, preferably Ta, Ru, Cr, Pt, with a thickness of 3~10 nm;
2)、制作 3块金属掩模: 根据所设计的 3个磁性传感器单元图形, 在 3块金属板上 分别制成带镂空图形的金属掩模板; 所述的金属板优选 Cu板、 A1板或不锈钢板, 其厚 度为 0. 3〜1醒; 2) Make three metal masks: According to the designed patterns of the three magnetic sensor units, make metal masks with hollow patterns on the three metal plates respectively; the metal plates are preferably Cu plates, A1 plates or Stainless steel plate, its thickness is 0.3~1 liter;
3)制作底部电极: 在步骤 1 )制得的样品上, 利用磁控溅射仪沉积底部电极层 8, 其中沉积条件以真空优于 5xl(T5Pa, 沉积速率为 0. 1 nm/s, 沉积时氩气压为 0. 07Pa下, 然后采用常规半导体光刻工艺, 经涂胶、 前烘和曝光后, 显影、 定影后烘干, 再用离子 刻蚀方法把底部电极刻蚀成条形, 其形状为两根长条, 每根条形的两端带有一个方形块 或圆形, 这样便于与外部电路的连接; 3) Make the bottom electrode: On the sample prepared in step 1), use a magnetron sputtering instrument to deposit the bottom electrode layer 8, where the deposition conditions are vacuum better than 5xl (T 5 Pa, and the deposition rate is 0. 1 nm/s , the argon pressure is 0.07Pa during deposition, and then the conventional semiconductor photolithography process is used. After glue coating, pre-baking and exposure, development, fixation and drying are performed, and then the bottom electrode is etched into a strip shape using ion etching method. , its shape is two long strips, with a square block or circle at both ends of each strip, which facilitates connection with external circuits;
4)在步骤 3)制得的样品上制作第一磁性传感器单元:使用第一块金属掩模遮挡在 样品的缓冲层及底部电极上, 利用磁控溅射仪, 以步骤 3) 的沉积条件在其中一根底部 电极上依次沉积反铁磁层 21、 钉扎层 31、 非磁性层 41、 自由层 51和覆盖层 61 ; 在沉 积反铁磁层、 钉扎层、 自由层时, 要同时施加 50〜2000e诱导磁场; 其中在反铁磁层、 钉扎层上所施加的诱导磁场方向相同, 在自由层上所施加的诱导磁场方向与反铁磁层、 钉扎层的诱导磁场方向垂直, 得到钉扎层和自由层的磁化强度方向均在衬底平面内, 且 磁化强度方向相互垂直; 4) Make the first magnetic sensor unit on the sample prepared in step 3): use the first metal mask to cover the buffer layer and bottom electrode of the sample, use a magnetron sputtering instrument, and use the deposition conditions of step 3) On one of the bottom electrodes, the antiferromagnetic layer 21, the pinned layer 31, the nonmagnetic layer 41, the free layer 51, and the covering layer 61 are sequentially deposited; when depositing the antiferromagnetic layer, the pinned layer, and the free layer, they must be deposited simultaneously. Apply an induced magnetic field of 50~2000e; wherein the induced magnetic field direction applied on the antiferromagnetic layer and the pinned layer is the same, and the direction of the induced magnetic field applied on the free layer is perpendicular to the direction of the induced magnetic field of the antiferromagnetic layer and the pinned layer. , it is obtained that the magnetization directions of the pinned layer and the free layer are both in the substrate plane, and the magnetization directions are perpendicular to each other;
5)制作第二磁性传感器单元:使用第二块金属掩模遮挡,重复步骤 4)的制备工艺, 在与步骤 4)同一根底部电极上的另一区域上依次沉积反铁磁层 22、钉扎层 32、非磁性 层 42、 自由层 52和覆盖层 62; 区别是在沉积反铁磁层、 钉扎层、 自由层时所加的诱导 磁场与步骤 4) 中相应的诱导磁场垂直, 最后得到钉扎层和自由层的磁化强度方向均在 衬底平面内, 且磁化强度方向相互垂直; 5) Make the second magnetic sensor unit: Use the second metal mask to cover, repeat the preparation process of step 4), and sequentially deposit the antiferromagnetic layer 22 and nails on another area on the same bottom electrode as step 4). Pinned layer 32, non-magnetic layer 42, free layer 52 and covering layer 62; the difference is that the induced magnetic field added when depositing the antiferromagnetic layer, pinned layer and free layer is perpendicular to the corresponding induced magnetic field in step 4), and finally It is obtained that the magnetization directions of the pinned layer and the free layer are both in the substrate plane, and the magnetization directions are perpendicular to each other;
6)、 制作第三磁性传感器单元: 使用第三块金属掩模遮挡, 重复步骤 4) 的制备工 艺, 在另一根底部电极上依次沉积反铁磁层 23、 钉扎层 33、 非磁性层 43、 自由层 53 和覆盖层 63; 区别是在沉积自由层时, 要施加一与步骤 4)沉积自由层时所加的诱导磁 场方向相同的诱导磁场, 最后得到钉扎层的磁化强度方向垂直于衬底平面, 自由层的磁 化强度平行于衬底平面, 钉扎层和自由层的磁化强度方向相互垂直; 7)成型: 采用常规半导体光刻工艺, 把三个磁性传感器单元分别刻成长条, 该长条 的长边方向与各个磁性传感器单元的自由层磁化强度方向垂直,最后用丙酮浸泡进行去 胶; 6). Make the third magnetic sensor unit: Use the third metal mask to cover, repeat the preparation process of step 4), and sequentially deposit the antiferromagnetic layer 23, the pinned layer 33, and the non-magnetic layer on the other bottom electrode. 43. Free layer 53 and covering layer 63; The difference is that when depositing the free layer, an induced magnetic field with the same direction as that applied when depositing the free layer in step 4) is applied, and finally the magnetization direction of the pinned layer is vertical. The magnetization intensity of the free layer is parallel to the substrate plane, and the magnetization directions of the pinned layer and the free layer are perpendicular to each other; 7) Forming: Use conventional semiconductor photolithography process to carve the three magnetic sensor units into long strips. The long side direction of the strip is perpendicular to the direction of the free layer magnetization of each magnetic sensor unit. Finally, soak it in acetone to remove the glue;
8)制作顶部电极: 利用磁控溅射设备, 在步骤 7)得到的样品利用常规半导体光刻 工艺, 经涂胶、 前珙和曝光后, 显影、 定影后炔干, 再用离子刻蚀方法把顶部电极刻蚀 成形, 即第一顶部电极设置在生长第一底部电极上的任一个磁性传感器单元上, 而第二 顶部电极生长在另外 2个磁性传感器单元顶面上,得到本发明的能在三维方向上探测弱 磁场的平面集成的传感器。 8) Make the top electrode: Using magnetron sputtering equipment, the sample obtained in step 7) uses the conventional semiconductor photolithography process. After glue coating, pre-curing and exposure, development and fixation, alkyne drying, and then ion etching method The top electrode is etched and formed, that is, the first top electrode is placed on any magnetic sensor unit on which the first bottom electrode is grown, and the second top electrode is grown on the top surfaces of the other two magnetic sensor units to obtain the energy of the present invention. Planar integrated sensor that detects weak magnetic fields in three dimensions.
在上述的技术方案中, 所述的顶部电极为两根长条, 两端面积较大; 该底部电极和 顶部电极为电阻率较小的金属, 优选 Au、 Cu等, 厚度为 10〜500nm。 In the above technical solution, the top electrode is two long strips with larger areas at both ends; the bottom electrode and the top electrode are made of metal with a small resistivity, preferably Au, Cu, etc., with a thickness of 10~500nm.
在上述的技术方案中, 步骤 4)、 5)和 6) 中所述的反铁磁层为具有反铁磁性的合 金, 优选 Ir- Mn, Fe-Mn, 或 Pt- Mn, 厚度为 2〜20 nm。 In the above technical solution, the antiferromagnetic layer described in steps 4), 5) and 6) is an alloy with antiferromagnetic properties, preferably Ir-Mn, Fe-Mn, or Pt-Mn, with a thickness of 2~ 20nm.
在上述的技术方案中, 步骤 4)、 5)和 6) 中所述的钉扎层为具有较高自旋极化率 的铁磁性金属, 厚度为 2〜20 nm; 具有垂直于平面磁场感应方向的传感器的钉扎层采用 具有垂直各向异性的铁磁性金属或合金, 优选 Co/Pt多层膜, Pt/CoFe组成的多层膜, TbFeCo, 或 GdFeCo等; 其他两个方向的钉扎层为 Fe、 Co、 Ni及其合金, 优选 Co- Fe合 金, Ni- Fe合金, 非晶 CoFeB合金; 厚度为 2〜20 nm。 , In the above technical solution, the pinning layer described in steps 4), 5) and 6) is a ferromagnetic metal with a high spin polarizability, with a thickness of 2~20 nm; it has a direction perpendicular to the plane magnetic field induction direction. The pinned layer of the sensor is made of ferromagnetic metal or alloy with perpendicular anisotropy, preferably Co/Pt multilayer film, multilayer film composed of Pt/CoFe, TbFeCo, or GdFeCo, etc.; the pinned layers in the other two directions are Fe, Co, Ni and their alloys, preferably Co-Fe alloy, Ni-Fe alloy, amorphous CoFeB alloy; thickness is 2~20 nm. ,
在上述的技术方案中, 步骤 4)、 5)和 6) 中所述的非磁性层一般釆用 A1203、 Mg0、 A1N、 Ta205、 ZnO或 Ti02等绝缘材料(对于隧道结材料的磁阻元件), 厚度为 0. 5〜5nm; 或者对于巨磁电阻材料的磁阻元件, 步骤 4)、 5)和 6)中所述的非磁性层一般采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金, 厚度为 1. 0〜10 nm。 In the above technical solution, the non-magnetic layer described in steps 4), 5) and 6) is generally made of insulating materials such as A1 2 0 3 , Mg0, A1N, Ta 2 0 5 , ZnO or Ti0 2 (for tunnels The magnetoresistive element of junction material), the thickness is 0.5~5nm; or for the magnetoresistive element of giant magnetoresistive material, the non-magnetic layer described in steps 4), 5) and 6) generally adopts Cu, Cr, V , Nb, Mo, Ru, Pd, Ta, W, Pt, Ag, Au or alloys thereof, with a thickness of 1.0~10 nm.
在上述的技术方案中, 步骤 4)、 5)和 6) 中所述的的自由层为矫顽力较小的具有 较高自旋极化率的铁磁性金属及其合金, 优选 Co, Co-Fe, Co-Fe-B或 Ni-Fe合金(如: NislFe19), 厚度为 1. 0〜10 nm。 In the above technical solution, the free layer described in steps 4), 5) and 6) is a ferromagnetic metal with a small coercive force and a high spin polarization rate and its alloy, preferably Co, Co-Fe 0~10 nm。 , Co-Fe-B or Ni-Fe alloy (such as: Ni sl Fe 19 ), thickness is 1. 0~10 nm.
在上述的技术方案中, 步骤 4)、 5)和 6) 中所述的覆盖层为不易被氧化的且具有 较大电阻的金属材料, 优选 Ta、 Cu、 Ru、 Pt、 Ag、 Au等, 厚度为 2〜10 nm, 用于保护 材料不被氧化。 In the above technical solution, the covering layer described in steps 4), 5) and 6) is a metal material that is not easily oxidized and has a large resistance, preferably Ta, Cu, Ru, Pt, Ag, Au, etc., The thickness is 2~10 nm and is used to protect the material from oxidation.
在上述的技术方案中, 步骤 7) 中所刻成的长条的面积为 0. 01 m2〜100mm2 In the above technical solution, the area of the long strip carved in step 7) is 0. 01 m 2 ~100mm 2 .
在上述的技术方案中, 步骤 4)、 5)和 6) 的顺序可以互相调换。 In the above technical solution, the order of steps 4), 5) and 6) can be interchanged.
在上述的技术方案中, 所述的衬底厚度为 0. 3〜lrara。 In the above technical solution, the thickness of the substrate is 0.3~1rara.
在上述的技术方案中,所述的金属掩模上所开的孔要大于单个磁性传感器单元的面 积, 一般孔的面积为' 10〜100mm2 In the above technical solution, the hole opened in the metal mask is larger than the area of a single magnetic sensor unit. area, the general hole area is '10~100mm 2 .
本发明提供的能在三维方向上探测弱磁场的平面集成的传感器的每一个磁性传感 器单元, 在没有外加磁场时三个磁性传感器单元的自由层有同一个易轴方向, 钉扎层的 三个易轴方向相互垂直, 分别具有垂直于衬底平面磁场感应方向和平行于衬底平面、且 相互垂直的二维磁场感应方向。 该平面集成的三维磁场传感器可用于检测三维磁场, 使用时在整个传感器的两个电极(如图 1所示)上接入恒流电源, 在每个磁场传感器单 元的另两个空出的电极的输出端可以测量输出信号, 三个传感器单元分别对应 x、 y、 z 三个方向。 当有外磁场时, 由于三个传感器的磁电阻发生变化, 导致输出信号的变化, 每个自旋阀当自由层与钉扎层的方向垂直时,在一定范围内输出电压与外磁场的变化呈 线性关系, 由输出电压即可得出外磁场的大小。 · 本发明的优点在于: In each magnetic sensor unit of the planar integrated sensor that can detect weak magnetic fields in three dimensions provided by the present invention, when there is no external magnetic field, the free layers of the three magnetic sensor units have the same easy-axis direction, and the three pinned layers have the same easy-axis direction. The directions of the easy axes are perpendicular to each other, and respectively have a magnetic field induction direction perpendicular to the substrate plane and a two-dimensional magnetic field induction direction parallel to the substrate plane and perpendicular to each other. This planar integrated three-dimensional magnetic field sensor can be used to detect three-dimensional magnetic fields. When used, a constant current power supply is connected to the two electrodes of the entire sensor (as shown in Figure 1), and the other two vacant electrodes of each magnetic field sensor unit are connected. The output terminal can measure the output signal, and the three sensor units correspond to the three directions of x, y, and z respectively. When there is an external magnetic field, the magnetoresistance of the three sensors changes, resulting in a change in the output signal. When the direction of the free layer and the pinned layer is perpendicular to each spin valve, the output voltage changes with the external magnetic field within a certain range. There is a linear relationship, and the size of the external magnetic field can be obtained from the output voltage. · The advantages of this invention are:
现有技术通常是将三种感应不同方向的传感器拼在一起组成三维磁性传感器,这就 对 3个传感器的一致性要求很高, 每个传感器对磁场方向都要精确对准; 而且拼装的工 艺也很复杂, 制作成本高, 得到的三维磁性传感器体积大且稳定性较差。 相比之下, 本 发明提供的传感器是将 3个磁性传感器单元集成在一块衬底上, 减小了传感器体积, 降 低了成本, 大大提高了三维磁性传感器的一致性和稳定性, 尤其是可以与大规模集成电 路工艺相兼容, 在一些特定条件下有着显著的、 不可替代的优点, 包括: The existing technology usually combines three sensors that sense different directions to form a three-dimensional magnetic sensor. This requires high consistency of the three sensors. Each sensor must be accurately aligned with the direction of the magnetic field; and the assembly process requires It is also very complex, has high production costs, and the resulting three-dimensional magnetic sensor is large and has poor stability. In contrast, the sensor provided by the present invention integrates three magnetic sensor units on one substrate, which reduces the sensor volume and cost, greatly improves the consistency and stability of the three-dimensional magnetic sensor, and especially can Compatible with large-scale integrated circuit technology, it has significant and irreplaceable advantages under some specific conditions, including:
器件尺寸小。 单独的一个传感器单元可以做到 5mraX 5mra以下, 整个器件可以在 20ramX 20mm以下。器件尺寸小可以提高应用前景。但同时, 这么小的器件, 如果先单独 制备三个传感器, 再拼装到同一平面上, 操作起来很困难, 而且精度会下降, 所以采用 一个衬底上生长 3个磁性传感器单元的制备工艺简单。 Device size is small. A single sensor unit can be less than 5mraX 5mra, and the entire device can be less than 20ramX 20mm. Small device size can improve application prospects. But at the same time, for such a small device, if three sensors are prepared separately and then assembled on the same plane, it will be difficult to operate, and the accuracy will decrease. Therefore, the preparation process of growing three magnetic sensor units on one substrate is simple.
2、 三个方向都有较高的精度。 所用的衬底具有原子级别的平整度, 在一块平整度 的衬底上沉积三个传感器单元, 则一致性会很高, 并保证三个单元有相同的精度。 2. High accuracy in three directions. The substrate used has atomic level flatness. If three sensor units are deposited on a flat substrate, the consistency will be very high and the three units will be guaranteed to have the same accuracy.
3、 便于工业化生产。 现在半导体工业界向集成化发展, 实现类似功能的器件往往 都集成到一个芯片上。 所以平面集成的器件比平面拼装的器件更有应用前景。 附图说明 3. Convenient for industrial production. Nowadays, the semiconductor industry is developing toward integration, and devices that implement similar functions are often integrated into one chip. Therefore, planar integrated devices have more application prospects than planar assembled devices. Description of the drawings
图 1 是本发明的平面集成的三维磁场传感器的示意图 Figure 1 is a schematic diagram of the planar integrated three-dimensional magnetic field sensor of the present invention.
图面说明如下: The diagram description is as follows:
1 -衬底 2-缓冲层 1 - Substrate 2 - Buffer layer
21 -第一反铁磁层 22-第二反铁磁层 23-第三反铁磁层, 31-第一钉扎层 32 -第二钉扎层 33 -第三钉扎层 41 -第一非磁性层 42-第二非磁性层 43-第三非磁性层 21 - first antiferromagnetic layer 22 - second antiferromagnetic layer 23 - third antiferromagnetic layer, 31-First pinned layer 32-Second pinned layer 33-Third pinned layer 41-First non-magnetic layer 42-Second non-magnetic layer 43-Third non-magnetic layer
51 -第一自由层 52 -第二自由层 53-第三自由层 51 - First free layer 52 - Second free layer 53 - Third free layer
61 -第一覆盖层 62-第二覆盖层 63-第三覆盖层 61 - First covering layer 62 - Second covering layer 63 - Third covering layer
71 -第一磁性传感器单元 72-第二磁性传感器单元 73-第三磁性传感器单元 8 -第一底部电极 8' -第二底部电极 9-第一顶部电极 71 - First magnetic sensor unit 72 - Second magnetic sensor unit 73 - Third magnetic sensor unit 8 - First bottom electrode 8' - Second bottom electrode 9 - First top electrode
9' -第二顶部电极 具体实施方式 9'-Second Top Electrode Specific Embodiment
下面结合附图和具体制备方法对本发明的磁场传感器结构进行详细地说明 实施例 1 The structure of the magnetic field sensor of the present invention will be described in detail below with reference to the accompanying drawings and specific preparation methods. Example 1
参照图 1, 制备一种带有隧道结磁阻(TMR)元件的平面集成的三维磁场传感器 Referring to Figure 1, a planar integrated three-dimensional magnetic field sensor with a tunnel junction magnetoresistance (TMR) element is prepared.
1 )、 选择一个厚度为 1 的 Si-Si02衬底作为衬底 1, 经过常规半导体清洗工艺清 洗, 例如在有机溶剂中超声清洗, 再进行千燥之后, 放入磁控溅射仪中在衬底上沉积缓 冲层 2, 其中沉积条件以真空优于 5xl(T5Pa, 沉积速率为 0. 1 nm/s, 沉积时氩气压为 0. 07Pa下, 在该衬底上沉积 5 nm厚的 Ta缓冲层 2; 1). Select a Si-Si0 2 substrate with a thickness of 1 as the substrate 1, clean it through a conventional semiconductor cleaning process, such as ultrasonic cleaning in an organic solvent, dry it, and then put it into a magnetron sputtering instrument. Buffer layer 2 is deposited on the substrate, where the deposition conditions are such that the vacuum is better than 5xl (T 5 Pa, the deposition rate is 0. 1 nm/s, the argon gas pressure during deposition is 0. 07Pa, and a thickness of 5 nm is deposited on the substrate Ta buffer layer 2;
2)、 在磁控溅射仪中, 以步骤 1 ) 相同的沉积条件下, 在缓冲层上沉积 10nm厚的 Cu底部电极层; 然后采用常规半导体光刻工艺,对其涂胶、前烘和利用带有待加工电极 图案的光刻版, 在紫外曝光机上进行曝光后, 显影、 定影、 后烘和用离子刻蚀方法把底 部电极层刻蚀成如图 1所示的条形, 包括第一底电极 8和第二底电极 8' , 并且在每一 电极条形的两端作成一个方块形或者圆形; 2). In a magnetron sputtering instrument, deposit a 10nm thick Cu bottom electrode layer on the buffer layer under the same deposition conditions as step 1); then use conventional semiconductor photolithography processes to apply glue, pre-bake and Using a photoresist plate with the electrode pattern to be processed, after exposure on a UV exposure machine, develop, fix, post-bake and use ion etching method to etch the bottom electrode layer into a strip shape as shown in Figure 1, including the first The bottom electrode 8 and the second bottom electrode 8' are formed into a square or circular shape at both ends of each electrode strip;
3)、选择一金属掩模,该金属掩模与衬底形状完全一样,并在左下角开有一 5mmX 5mm 的方形孔, 使用该金属掩模遮挡缓冲层和底部电极, 在磁控溅射设备上以步骤 1 )相同 的沉积条件, 在第一底部电极 8上依次沉积第一磁性传感器 71的多层膜, 包括 10 nm 厚的 IrMn层作为第一反铁磁层 21 4. 0 nm厚的 Co75Fe25层,作为第一钉扎层 31 1. 0 nm 厚的 A1203层作为第一非磁性层 41 4. 0 nm厚的 Co75Fe25作为第一自由层 51和 5 nm厚 的 Ta作为覆盖层 61 ; 在沉积第一反铁磁层 21、 第一钉扎层 31、 第一自由层 51时, 要 对样品施加 lOOOe的平行于衬底平面的诱导磁场, 其中第一反铁磁层 21、 第一钉扎层 31的诱导磁场方向相同, 第一自由层 51诱导磁场与第一反铁磁层 21、 第一钉扎层 31 的诱导磁场方向垂直,最后得到第一钉扎层 31和第一自由层 51的磁化强度方向均在衬 底平面内, 且磁化强度方向相互垂直; 4)、 再选择第二块金属掩模, 该金属掩模与衬底形状完全一样, 并在左上角开有一 5mmX 5min的方形孔;在磁控溅射设备中用该金属掩模遮挡缓冲层和底部电极,在第一底 部电极 8上依次沉积组成第二磁性传感器 72的多层膜, 该多层膜的沉积条件完全与步 骤 3)中沉积第一磁性传感器 71的沉积反铁磁层 22、第二钉扎层 32、第二非磁性层 42、 第二自由层 52和第二覆盖层 62中多层膜沉积条件相同;区别是沉积反铁磁层 22、第二 钉扎层 32、 第二自由层 52时, 要对样品施加 lOOOe的平行于衬底平面的诱导磁场, 但 与步骤 2的相应诱导磁场均垂直,最后得到钉扎层和自由层的磁化强度方向均在衬底平 面内, 且磁化强度方向相互垂直; 3). Select a metal mask that has exactly the same shape as the substrate and has a 5mm Using the same deposition conditions as step 1), a multilayer film of the first magnetic sensor 71 is sequentially deposited on the first bottom electrode 8, including a 10 nm thick IrMn layer as the first 4.0 nm thick antiferromagnetic layer 21 Co 75 Fe 25 layer as first pinned layer 31 1. 0 nm thick A1 2 0 3 layer as first non-magnetic layer 41 4. 0 nm thick Co 75 Fe 25 as first free layer 51 and 5 nm Thick Ta serves as the covering layer 61; when depositing the first antiferromagnetic layer 21, the first pinned layer 31, and the first free layer 51, an induced magnetic field of 1000e parallel to the substrate plane is applied to the sample, where the first The directions of the induced magnetic fields of the antiferromagnetic layer 21 and the first pinned layer 31 are the same, and the directions of the induced magnetic fields of the first free layer 51 are perpendicular to the directions of the induced magnetic fields of the first antiferromagnetic layer 21 and the first pinned layer 31. Finally, the first The magnetization directions of the pinned layer 31 and the first free layer 51 are both within the substrate plane, and the magnetization directions are perpendicular to each other; 4). Select a second metal mask, which has exactly the same shape as the substrate, and has a square hole of 5mm and a bottom electrode. On the first bottom electrode 8, a multilayer film constituting the second magnetic sensor 72 is sequentially deposited. The deposition conditions of the multilayer film are completely the same as the antiferromagnetic layer 22 of the first magnetic sensor 71 deposited in step 3). , the second pinned layer 32, the second non-magnetic layer 42, the second free layer 52 and the second cladding layer 62 have the same multilayer film deposition conditions; the difference is that the antiferromagnetic layer 22, the second pinned layer 32, In the second free layer 52, an induced magnetic field of 1000e parallel to the substrate plane is applied to the sample, but perpendicular to the corresponding induced magnetic field in step 2. Finally, the magnetization directions of the pinned layer and the free layer are both in the substrate plane. within, and the magnetization directions are perpendicular to each other;
5)、 再选择第三块金属掩模, 该金属掩模与衬底形状完全一样, 并在右上角开有一 5mmX 5mm的方形孔。使用该金属掩模遮挡缓冲层和底部电极,在磁控溅射设备上以与步 骤 3)相同的条件, 在第二底部电极 8'上沉积第三磁性传感器 73的各层, 首先是沉积 10 nra厚的 IrMn作为第三反铁磁层 23, 依次是 3个周期的(Pt 0. 5 run /Co 0. 4 nm)作 为第三钉扎层 33, l. O nm厚的 A1203作为第三非磁性层 43, 3个周期的 (Co 1. 0 nm /Pt 1. 0 nm)作为第三自由层 53, 5 nm厚的 Ta作为覆盖层 63, 沉积自由层时, 要加上一与 步骤 3)沉积自由层时所加的诱导磁场方向相同的诱导磁场, 沉积反铁磁层和钉扎层时 不加磁场。最后得到钉扎层的磁化强度方向垂直于衬底平面, 自由层的磁化强度平行于 衬底平面, 钉扎层和自由层的磁化强度方向相互垂直。 5). Select the third metal mask, which has exactly the same shape as the substrate, and has a 5mmX 5mm square hole in the upper right corner. Use this metal mask to cover the buffer layer and the bottom electrode, and deposit the layers of the third magnetic sensor 73 on the second bottom electrode 8' on the magnetron sputtering equipment under the same conditions as step 3). First, deposit 10 nra thick IrMn as the third antiferromagnetic layer 23, followed by 3 periods (Pt 0. 5 run/Co 0. 4 nm) as the third pinned layer 33, 1.0 nm thick A1 2 0 3 As the third non-magnetic layer 43, 3 periods of (Co 1.0 nm/Pt 1.0 nm) serve as the third free layer 53, and 5 nm thick Ta serves as the covering layer 63. When depositing the free layer, add 1. An induced magnetic field with the same direction as the induced magnetic field applied when depositing the free layer in step 3). No magnetic field is applied when depositing the antiferromagnetic layer and pinned layer. Finally, the magnetization direction of the pinned layer is perpendicular to the substrate plane, the magnetization direction of the free layer is parallel to the substrate plane, and the magnetization directions of the pinned layer and the free layer are perpendicular to each other.
6)、将步骤 5)得到的沉积三个磁性传感器单元的衬底,采用常规半导体光刻工艺, 把三个磁性传感器单元分别刻蚀成长条状, 最后用丙酮浸泡进行去胶; 该长条为 5 μ mX 10 μ m, 其长条的长边方向与各个磁性传感器单元的自由层磁化强度方向垂直; 6). Use the conventional semiconductor photolithography process to etch the three magnetic sensor units on the substrate obtained in step 5) into long strips, and finally soak them in acetone to remove the glue; It is 5 μ m
7)、 最后将步骤 6)成形的样品放入磁控溅射设备中, 在其顶面上沉积一层 lOran 厚的 Cu顶部电极层; 然后利用常规的半导体光刻工艺, 再用离子刻蚀方法把顶部电极 刻蚀成形(如图 1所示), 即第一顶部电极 9设置在生长第一底部电极 8上的第一磁性 传感器单元 71上,而第二顶部电极 9'设置在第二 72和第三 73磁性传感器单元顶面上, 得到本发明的能在三维方向上探测弱磁场的平面集成的传感器。 7). Finally, put the sample formed in step 6) into the magnetron sputtering equipment, and deposit a 10ran thick Cu top electrode layer on its top surface; then use conventional semiconductor photolithography process, and then use ion etching. The method is to etch and shape the top electrode (as shown in Figure 1), that is, the first top electrode 9 is provided on the first magnetic sensor unit 71 grown on the first bottom electrode 8, and the second top electrode 9' is provided on the second 72 and the third 73 on the top surface of the magnetic sensor unit to obtain a planar integrated sensor of the present invention that can detect weak magnetic fields in three dimensions.
将整个传感器的两个电极(如图 1所示)上接入恒流电源, 在每个磁场传感器单元 的另两个空出的电极的输出端分别测量输出信号, 就得到本发明的带有隧道结磁阻 (T R)元件的三维集成地磁场传感器。 实施例 2 Connect the two electrodes of the entire sensor (as shown in Figure 1) to a constant current power supply, and measure the output signals at the output ends of the other two vacated electrodes of each magnetic field sensor unit respectively, to obtain the magnetic field sensor unit of the present invention. Three-dimensional integrated geomagnetic field sensor based on tunnel junction magnetoresistive (TR) element. Example 2
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 1中, 其中该磁场传感器单元切好的长条为 10μπιΧ20μΓη。 表 1、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared, and the materials of each layer of the magnetic multilayer film are and thickness are listed in Table 1, in which the length of the magnetic field sensor unit cut into strips is 10μπιΧ20μΓη. Table 1. Structure of the magnetic multilayer film for three-dimensional integrated geomagnetic field sensor of the present invention
Figure imgf000010_0002
实施例 3
Figure imgf000010_0002
Example 3
按照实施例 1 的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 2中, 其中该磁场传感器单元切好的长条为 1誦 X10mm。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 2. The length of the magnetic field sensor unit cut into strips is 1 × 10 mm.
Figure imgf000010_0001
厚度 2nm 2nm 2nm 钉扎层 成分 CoFeB CoFeB TbFeCo
Figure imgf000010_0001
Thickness 2nm 2nm 2nm Pinned layer composition CoFeB CoFeB TbFeCo
厚度 2nm 2nm 2nm 非磁性 成分 Ti02 Ti02 Ti02 m 厚度 lnm 0. 5nm 0. 5nm 自由层 成分 CoFeB CoFeB TbFeCo Thickness 2nm 2nm 2nm Non-magnetic composition Ti0 2 Ti0 2 Ti0 2 m Thickness lnm 0. 5nm 0. 5nm Free layer composition CoFeB CoFeB TbFeCo
lnm lnm 2nm 霜羔) 成分 Ru Ru Ru lnm lnm 2nm Frost Lamb) Ingredients Ru Ru Ru
5nm 5nm 5nra 顶部电 成分 Cu 5nm 5nm 5nra Top Electrode Component Cu
mm 厚度 lOnm mm thickness lOnm
实施例 4 Example 4
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 3中, 其中该磁场传感器单元切好的长条为 lramX 2mra。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared. The materials and thicknesses of each layer of the magnetic multilayer film are listed in Table 3. The length of the magnetic field sensor unit cut into long strips is lramX 2mra.
表 3、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 3. Structure of the magnetic multilayer film for three-dimensional integrated geomagnetic field sensor of the present invention. First magnetic field sensor unit, second magnetic field sensor unit, third magnetic field sensor unit. Substrate composition Si-Si0 2
厚度 1腿 Thickness 1 leg
缓冲层 成分 Pt Buffer layer composition Pt
厚度 3nm Thickness 3nm
底部电 成分 Cu Bottom electrical component Cu
m 厚度 lOnm m thickness lOnm
反铁磁 成分 Pt-Mn Pt-Mn Pt-Mn Antiferromagnetic composition Pt-Mn Pt-Mn Pt-Mn
厚度 2nm 2nm 2nm 钉扎层 成分 CoFe CoFe GdFeCo Thickness 2nm 2nm 2nm Pinned layer Composition CoFe CoFe GdFeCo
2nm 2nm 2nm 非磁性 成分 Si02 MgO MgO m 厚度 lnm 0. 5nm 0. 5nm 自由层 成分 Co Co GdFeCo 赚 lnm lnm 2nm 覆盖层 成分 Pt Pt Pt 2nm 2nm 2nm Non-magnetic component Si0 2 MgO MgO m Thickness lnm 0. 5nm 0. 5nm Free layer component Co Co GdFeCo Earn lnm lnm 2nm Covering layer component Pt Pt Pt
厚度 5nm 5nm 5nm 顶部电 成分 Cu Thickness 5nm 5nm 5nm Top Electrode Composition Cu
m 厚度 lOnm 实施例 5 m thickness lOnm Example 5
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 4中, 其中该磁场传感器单元切好的长条为 100nmX 200nm。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thicknesses of each layer of the magnetic multilayer film are listed in Table 4, in which the cut strips of the magnetic field sensor unit are 100nm×200nm.
表 4、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 Table 4. Structure of the magnetic multilayer film used for three-dimensional integrated geomagnetic field sensor of the present invention
Figure imgf000012_0001
实施例 6
Figure imgf000012_0001
Example 6
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 5中, 其中该磁场传感器单元切好的长条为 10 μ ϋΐΧ 20 μ πΐ。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared. The materials and thicknesses of each layer of the magnetic multilayer film are listed in Table 5. The length of the magnetic field sensor unit cut into strips is 10 μ ϋΐΧ 20 μ πΐ.
表 5、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 Table 5. Structure of the magnetic multilayer film used in the three-dimensional integrated geomagnetic field sensor of the present invention
第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 First magnetic field sensor unit Second magnetic field sensor unit Third magnetic field sensor unit Substrate composition Si-Si0 2
厚度 1mm Thickness 1mm
缓冲层 成分 Ta Buffer layer composition Ta
厚度 3nm Thickness 3nm
底部电 成分 Cu 厚度 lOnm Bottom electrical component Cu Thickness lOnm
反铁磁 成分 Fe-Mn Fe-Mn Fe-Mn Antiferromagnetic composition Fe-Mn Fe-Mn Fe-Mn
厚度 2nm 2nm 2nra 钉扎层 成分 Ni8iFe19 Ni8iFei9 (Pt /Co) 厚度 2nm 2nm 0. 5nm/0. 4nm 非磁性 成分 Ta205 Ta205 Ta205 m 體 lnm lnm lnm 自由层 成分 NisiFeig NisiFeie (Pt /Co) 厚度 lnm lnm . 0. 5nm/0. 4nm 覆盖层 成分 Ag Ag Ag Thickness 2nm 2nm 2nra Pinned layer composition Ni 8 iFe 19 Ni 8 iFei9 (Pt /Co) Thickness 2nm 2nm 0. 5nm/0. 4nm Non-magnetic composition Ta 2 0 5 Ta 2 0 5 Ta 2 0 5 m Body lnm lnm lnm Free layer composition NisiFeig NisiFeie (Pt /Co) Thickness lnm lnm . 0. 5nm/0. 4nm Covering layer composition Ag Ag Ag
厚度 5nra 5nm 5nra 顶部电 成分 Cu Thickness 5nra 5nm 5nra Top Electrode Composition Cu
m 厚度 lOnm 实施例 7 m Thickness lOnm Example 7
按照实施例 1 的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 6中, 其中该磁场传感器单元切好的长条为 10 μ ηιΧ 100 μ πι。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared. The materials and thicknesses of each layer of the magnetic multilayer film are listed in Table 6. The length of the magnetic field sensor unit cut into strips is 10 μm to 100 μm.
Figure imgf000013_0001
厚度 5nm 5nm 5nm 顶部电 成分 Cu
Figure imgf000013_0001
Thickness 5nm 5nm 5nm Top electrical component Cu
厚度 10nm 实施例 8 Thickness 10nm Example 8
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 7中, 其中该磁场传感器单元切好的长条为 0.8μπιΧ1.6μιη According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared. The materials and thicknesses of each layer of the magnetic multilayer film are listed in Table 7. The length of the magnetic field sensor unit cut into long strips is 0.8 μπι × 1.6 μm.
表 7、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 Table 7. Structure of the magnetic multilayer film used in the three-dimensional integrated geomagnetic field sensor of the present invention
Figure imgf000014_0001
实施例 9
Figure imgf000014_0001
Example 9
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 8中。 其中该磁场传感器单元切好的长条为 5μιηΧ10μπι According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 8. The length of the magnetic field sensor unit cut into strips is 5μmΧ10μπm
表 8、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 8. Structure of the magnetic multilayer film used for three-dimensional integrated geomagnetic field sensor of the present invention First magnetic field sensor unit Second magnetic field sensor unit Third magnetic field sensor unit Substrate composition Si-Si0 2
厚度 1mm Thickness 1mm
缓冲层 成分 Ru Buffer layer composition Ru
厚度 3nm Thickness 3nm
底部电 成分 Au Bottom electrical component Au
厚度 lOnm Thickness lOnm
反铁磁 成分 IrMn IrMn IrMn m 厚度 2nm 2nm 2nm 钉扎层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 2nm 2nm 0. 5nm/0. 4nm 非磁性 成分 Cr Cr Cr Antiferromagnetic component IrMn IrMn IrMn m Thickness 2nm 2nm 2nm Pinned layer component NiFe NiFe (Pt /CoFe) 3 Thickness 2nm 2nm 0. 5nm/0. 4nm Non-magnetic component Cr Cr Cr
體 lnm lnm lnm 自由层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 lnm lnm 0. 4nra/0. 5nm 覆盖层 成分 Cu Cu Cu Body lnm lnm lnm Free layer composition NiFe NiFe (Pt /CoFe) 3Thickness lnm lnm 0. 4nra/0. 5nm Covering layer composition Cu Cu Cu
厚度 5nm 5nm 5nm 顶部电 成分 Au Thickness 5nm 5nm 5nm Top Electron Composition Au
m 厚度 lOnm 实施例 10 m Thickness lOnm Example 10
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 9中。 其中该磁场传感器单元切好的长条为 8 μ ιηΧ 16 μ ιη。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 9. The length of the magnetic field sensor unit cut into strips is 8 μ mΧ 16 μ m m.
Figure imgf000015_0001
Figure imgf000015_0001
Figure imgf000016_0001
实施例 11
Figure imgf000016_0001
Example 11
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 10中。 其中该磁场传感器单元切好的长条为 20 μ ιηΧ 30 μ πι。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 10. The length of the magnetic field sensor unit cut into strips is 20 μ m to 30 μ m.
表 10、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 10. Structure of the magnetic multilayer film for three-dimensional integrated geomagnetic field sensor of the present invention. First magnetic field sensor unit, second magnetic field sensor unit, third magnetic field sensor unit. Substrate composition Si-Si0 2
厚度 1mm Thickness 1mm
缓冲层 成分 Ru Buffer layer composition Ru
3nm 3nm
底部电 成分 Au Bottom electrical component Au
厚度 lOnm Thickness lOnm
反铁磁 成分 IrMn IrMn IrMn Antiferromagnetic composition IrMn IrMn IrMn
厚度 2nra 2nm 2nm 钉扎层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 2nm 2nm 0. 5nm/0. 4nm 非磁性 成分 Nb Nb Nb Thickness 2nra 2nm 2nm Pinned layer composition NiFe NiFe (Pt /CoFe) 3Thickness 2nm 2nm 0. 5nm/0. 4nm Non-magnetic composition Nb Nb Nb
厚度 lnm lnm lnm 自由层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 lnm lnm 0. 4nm/0. 5nm 覆盖层 成分 Cu Cu Cu Thickness lnm lnm lnm Free layer composition NiFe NiFe (Pt /CoFe) 3 Thickness lnm lnm 0. 4nm/0. 5nm Covering layer composition Cu Cu Cu
厚度 5nm 5nm 5nm 顶部电 成分 Au Thickness 5nm 5nm 5nm Top Electron Composition Au
极层 厚度 lOnm 实施例 12 Extreme layer thickness lOnm Example 12
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 11中。 其中该磁场传感器单元切好的长条为 200nraX 400nm。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 11. The cut length of the magnetic field sensor unit is 200nraX 400nm.
表 11、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 Table 11. Structure of the magnetic multilayer film used for three-dimensional integrated geomagnetic field sensor of the present invention
Figure imgf000017_0001
实施例 13
Figure imgf000017_0001
Example 13
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 12中。 其中该磁场传感器单元切好的长条为 400nmX 800nm。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 12. The cut length of the magnetic field sensor unit is 400nmX 800nm.
表 12、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁杨传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 12. Structure of the magnetic multilayer film for three-dimensional integrated geomagnetic field sensor of the present invention. First magnetic field sensor unit. Second magnetic field sensor unit. Third magnetic field sensor unit. Substrate composition Si-Si0 2
厚度 1腿 Thickness 1 leg
缓冲层 成分 Ru Buffer layer composition Ru
體 3nm 1 底部电 成分 Au Body 3nm 1 bottom electrical composition Au
Figure imgf000018_0001
实施例 14
Figure imgf000018_0001
Example 14
按照实施例 l的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 13中。 其中该磁场传感器单元切好的长条为 100 μ πιΧ 200 μ πι。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 13. The length of the magnetic field sensor unit cut into strips is 100 μ m to 200 μ m.
表 13、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 13. Structure of the magnetic multilayer film for three-dimensional integrated geomagnetic field sensor of the present invention. First magnetic field sensor unit, second magnetic field sensor unit, third magnetic field sensor unit. Substrate composition Si-Si0 2
赚 1mm Earn 1mm
缓冲层 成分 Ru Buffer layer composition Ru
3nm 3nm
底部电 成分 Au Bottom electrical component Au
层 厚度 lOnm Layer thickness lOnm
反铁磁 成分 IrMn IrMn IrMn m 厚度 2nm 2nm 2nm 钉扎层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 2nm 2nni 0. 5nra/0. 4nra 非磁性 成分 Pd Pd Pd Antiferromagnetic component IrMn IrMn IrMn m Thickness 2nm 2nm 2nm Pinned layer component NiFe NiFe (Pt /CoFe) 3 Thickness 2nm 2nni 0. 5nra/0. 4nra Non-magnetic component Pd Pd Pd
厚度 lnm lnm lnm 自由层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 lnm lnm 0. 4nm/0. 5nm 覆盖层 成分 Cu Cu Cu 厚度 5nm 5nm 5nm 顶部电 成分 Au Thickness lnm lnm lnm Free layer composition NiFe NiFe (Pt /CoFe) 3 Thickness lnm lnm 0. 4nm/0. 5nm Covering layer composition Cu Cu Cu Thickness 5nm 5nm 5nm Top electrical component Au
m 厚度 lOnm 实施例 15 m Thickness lOnm Example 15
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 14中。 其中该磁场传感器单元切好的长条为 20μΓηΧ400μιη。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 14. The length of the magnetic field sensor unit cut into strips is 20μΓηΧ400μm.
表 14、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 Table 14. Structure of the magnetic multilayer film used for three-dimensional integrated geomagnetic field sensor of the present invention
Figure imgf000019_0001
实施例 16
Figure imgf000019_0001
Example 16
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 15中。 其中该磁场传感器单元切好的长条为 50μπιΧ100μηι。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 15. The length of the magnetic field sensor unit cut into strips is 50 μm × 100 μm.
表 15、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 15. Structure of the magnetic multilayer film used for three-dimensional integrated geomagnetic field sensor of the present invention First magnetic field sensor unit Second magnetic field sensor unit Third magnetic field sensor unit Substrate composition Si-Si0 2
厚度 1mm Thickness 1mm
缓冲层 成分 Ru Buffer layer composition Ru
厚度 3nm Thickness 3nm
底部电 成分 AuBottom electrical component Au
m 厚度 lOnm m thickness lOnm
反铁磁 成分 IrMn IrMn IrMn Antiferromagnetic composition IrMn IrMn IrMn
厚度 2nm 2nm 2nm 钉扎层 成分 NiFe NiFe (Pt /CoFe) 3 厚度 2nm 2nm 0. 5nra/0. 4nm 非磁性 成分 W W W Thickness 2nm 2nm 2nm Pinned layer composition NiFe NiFe (Pt /CoFe) 3Thickness 2nm 2nm 0. 5nra/0. 4nm Non-magnetic composition WWW
厚度 lnm lnm lnm 自由层 成分 NiFe NiFe (Pt /CoFe) 厚度 lnm lnm 0. 4nm/0. 5nm 成分 Cu Cu Cu 厚度 5nm 5nm 5nm 顶部电 成分 Au Thickness lnm lnm lnm Free layer Composition NiFe NiFe (Pt /CoFe) Thickness lnm lnm 0. 4nm/0. 5nm Composition Cu Cu Cu Thickness 5nm 5nm 5nm Top electrode Composition Au
极层 厚度 lOnm 实施例 17 Polar layer thickness lOnm Example 17
按照实施例 l的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 16中。 其中该磁场传感器单元切好的长条为 lmmX 2ram。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor is prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 16. The cut length of the magnetic field sensor unit is lmmX 2ram.
表 16、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 第一磁场传感器单元 第二磁场传感器单元 第三磁场传感器单元 衬底 成分 Si-Si02 Table 16. Structure of the magnetic multilayer film for three-dimensional integrated geomagnetic field sensor of the present invention. First magnetic field sensor unit, second magnetic field sensor unit, third magnetic field sensor unit. Substrate composition Si-Si0 2
厚度 1mm Thickness 1mm
缓冲层 成分 Ru Buffer layer composition Ru
厚度 3nm Thickness 3nm
底部电 成分 Au Bottom electrical component Au
m 厚度 lOnm m thickness lOnm
反铁磁 成分 IrMn IrMn IrMn m 厚度 2nm 2nm 2nm 钉扎层 成分 NiFe NiFe (Pt /CoFe) 3 6003349
Figure imgf000021_0002
实施例 18
Antiferromagnetic composition IrMn IrMn IrMn m Thickness 2nm 2nm 2nm Pinned layer composition NiFe NiFe (Pt /CoFe) 3 6003349
Figure imgf000021_0002
Example 18
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 17中。 其中该磁场传感器单元切好的长条为 2mmX4mm。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 17. The cut strip of the magnetic field sensor unit is 2mmX4mm.
Figure imgf000021_0001
实施例 19
Figure imgf000021_0001
Example 19
按照实施例 1的方法, 制备平面集成的三维磁场传感器, 其磁性多层膜的各层材料 和厚度列于表 18中。 其中该磁场传感器单元切好的长条为 3mmX 6ram。 According to the method of Example 1, a planar integrated three-dimensional magnetic field sensor was prepared. The materials and thickness of each layer of the magnetic multilayer film are listed in Table 18. The cut strip of the magnetic field sensor unit is 3mmX 6ram.
表 18、 本发明的用于三维集成地磁场传感器的磁性多层膜的结构 Table 18. Structure of the magnetic multilayer film used for three-dimensional integrated geomagnetic field sensor of the present invention
Figure imgf000022_0001
本发明提供的上述平面集成的三维磁场传感器可用于检测三维磁场,工作时在整个 传感器的其中两个电极上接入恒流电源,在每个磁场传感器单元的另两个空出的电极的 输出端分别测量输出信号,三个传感器单元分别对应 x、 y、 z三个方向。当有外磁场时, 由于三个传感器的磁电阻发生变化, 导致输出信号的变化, 每个自旋阀当自由层与钉扎 层的方向垂直时, 在一定范围内输出电压与外磁场的变化呈线性关系, 由输出电压即可 得出外磁场的大小。
Figure imgf000022_0001
The above-mentioned planar integrated three-dimensional magnetic field sensor provided by the present invention can be used to detect a three-dimensional magnetic field. During operation, a constant current power supply is connected to two electrodes of the entire sensor, and the output of the other two vacant electrodes of each magnetic field sensor unit is The output signals are measured separately at each end, and the three sensor units correspond to the three directions of x, y, and z respectively. When there is an external magnetic field, due to the change in the magnetoresistance of the three sensors, the output signal changes. When the direction of the free layer and the pinned layer is perpendicular to each spin valve, the output voltage changes with the external magnetic field within a certain range. There is a linear relationship, and the size of the external magnetic field can be obtained from the output voltage.

Claims

权利要求 Rights request
1、一种能在三维方向上探测弱磁场的平面集成的传感器, 包括: 衬底、其上的缓 冲层和生长在缓冲层上的底部电极, 以及生长在底部电极上的由磁性多层膜构成的磁 性传感器单元; 其特征在于, 还包括 2根顶部电极; 所述的磁性传感器单元有 3个, 包括第一磁性传感器单元、 第二磁性传感器单元和第三磁性传感器单元; 所述的底部 电极为 2根, 2个磁性传感器单元分别独立生长在同一底部电极上, 另一个磁性传感 器单元生长在另一底部电极上; 该 3个磁性传感器单元截面积和厚度相等; 构成所述 的磁性传感器单元的磁性多层膜依次为反铁磁层、 钉扎层、 非磁性层、 自由层和覆盖 层, 2个磁性传感器单元的多层膜相同, 它们与第三个磁性传感器单元的多层膜中的 "钉扎层"和 "自由层"组分不同; 三个磁性传感器单元中的钉扎层和自由层的磁化 强度方向相互垂直, 三个钉扎层的三个易轴方向相互垂直, 分别具有垂直于衬底平面 的磁场感应方向和平行于衬底平面、 且相互垂直的二维磁场感应方向; 在同一底部电 极上生长的 2个磁性传感器单元中的一个顶面上, 单独设置一个所述的顶部电极, 其 余两个磁性传感器单元顶面上共同设置另一个顶部电极。 1. A planar integrated sensor capable of detecting weak magnetic fields in three dimensions, including: a substrate, a buffer layer on it, a bottom electrode grown on the buffer layer, and a magnetic multilayer film grown on the bottom electrode. The magnetic sensor unit constituted by; It is characterized in that it also includes 2 top electrodes; There are 3 magnetic sensor units, including a first magnetic sensor unit, a second magnetic sensor unit and a third magnetic sensor unit; The bottom part There are two electrodes, two magnetic sensor units are grown independently on the same bottom electrode, and another magnetic sensor unit is grown on the other bottom electrode; the cross-sectional area and thickness of the three magnetic sensor units are equal; forming the magnetic sensor The magnetic multilayer films of the unit are in sequence an antiferromagnetic layer, a pinned layer, a nonmagnetic layer, a free layer and a covering layer. The multilayer films of the two magnetic sensor units are the same. They are the same as the multilayer films of the third magnetic sensor unit. The "pinned layer" and "free layer" in the three magnetic sensor units have different compositions; the magnetization directions of the pinned layer and the free layer in the three magnetic sensor units are perpendicular to each other, and the three easy-axis directions of the three pinned layers are perpendicular to each other. Each has a magnetic field induction direction perpendicular to the substrate plane and a two-dimensional magnetic field induction direction parallel to the substrate plane and perpendicular to each other; on the top surface of one of the two magnetic sensor units grown on the same bottom electrode, a separate The top electrode and another top electrode are jointly arranged on the top surfaces of the remaining two magnetic sensor units.
2、按权利要求 1所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于, 所述的磁性传感器单元的截面积为 0. 01 y m2〜100mm2, 厚度为 20nrr!〜 60nra。 2. The planar integrated sensor capable of detecting weak magnetic fields in three dimensions according to claim 1, characterized in that the cross-sectional area of the magnetic sensor unit is 0.01 ym 2 ~100mm 2 and the thickness is 20nrr! ~ 60nra.
3、按权利要求 1所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于,所述的底部电极和顶部电极为 Au或 Cu,厚度为 10〜500nm;其形状为两根长条, 两端设计成方块形状或圆形。 3. The planar integrated sensor capable of detecting a weak magnetic field in a three-dimensional direction according to claim 1, characterized in that the bottom electrode and the top electrode are Au or Cu, with a thickness of 10~500nm; and their shape is two-dimensional. The root is a long bar, and the two ends are designed into square shapes or circles.
4、按权利要求 1所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于, 所述的反铁磁层为具有反铁磁性的合金, 厚度为 2〜20 ran; 4. The planar integrated sensor capable of detecting weak magnetic fields in three dimensions according to claim 1, characterized in that the antiferromagnetic layer is an alloy with antiferromagnetic properties and has a thickness of 2 to 20 ran;
所述的钉扎层包括 n周期 Co/Pt的多层膜、 n周期 CoFe/Pt的多层膜、 TbFeCo或 GdFeCo; 或 Co-Fe合金, i-Fe合金, 非晶 CoFeB合金; 厚度为 2〜20 nm。 The pinning layer includes an n-period Co/Pt multilayer film, an n-period CoFe/Pt multilayer film, TbFeCo or GdFeCo; or Co-Fe alloy, i-Fe alloy, amorphous CoFeB alloy; thickness is 2 ~20 nm.
所述的非磁性层采用 A1203、 Mg0、 Α1Ν、 Τ 05、 ΖηΟ或 Ti02绝缘材料,厚度为 0. 5〜 5nm; 或者还釆用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金, 厚度 为 1. 0〜10 nm; The non-magnetic layer adopts A1203 , Mg0 , A1N, T05 , Zn0 or Ti02 insulating material, with a thickness of 0.5~5nm; or Cu, Cr, V, Nb, Mo, Ru , Pd, Ta, W, Pt, Ag, Au or alloys thereof, thickness is 1.0~10 nm;
所述的自由层为 Co, Co-Fe, Co-Fe-B或 Ni- Fe合金, 厚度为 1. 0〜10 nm; The free layer is Co, Co-Fe, Co-Fe-B or Ni-Fe alloy, with a thickness of 1.0~10 nm;
所述的覆盖层为 Ta、 Cu、 Ru、 Pt、 Ag、 Au, 厚度为 2〜10 nm。 The covering layer is Ta, Cu, Ru, Pt, Ag, Au, and has a thickness of 2~10 nm.
5、按权利要求 4所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于, 所述的具有反铁磁性的合金包括: Ir-Mn, Fe-Mn, 或 Pt-Mn。 5. The planar integrated sensor capable of detecting weak magnetic fields in three dimensions according to claim 4, wherein the antiferromagnetic alloy includes: Ir-Mn, Fe-Mn, or Pt-Mn .
6、按权利要求 4所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于, 所述的 n周期为 3个周期, 或 3个周期以上。 6. The planar integrated sensor capable of detecting a weak magnetic field in a three-dimensional direction according to claim 4, characterized in that the n period is 3 periods, or more than 3 periods.
7、按权利要求 1所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于, 所述的衬底为 Si衬底或 Si-Si02衬底, 厚度为 0. 3〜lmm。 7. The planar integrated sensor capable of detecting weak magnetic fields in three dimensions according to claim 1, wherein the substrate is a Si substrate or a Si-SiO 2 substrate, and the thickness is 0.3~ lmm.
8、按权利要求 1所述的能在三维方向上探测弱磁场的平面集成的传感器,其特征 在于, 所述的缓冲层为 Ta、 Ru、 Cr、 Pt材料层, 厚度为 3〜10 nm。 8. The planar integrated sensor capable of detecting weak magnetic fields in three dimensions according to claim 1, characterized in that the buffer layer is a Ta, Ru, Cr, Pt material layer with a thickness of 3~10 nm.
9、一种权利要求 1所述能在三维方向上探测弱磁场的平面集成的传感器的制备方 法, 包括如下的步骤: 9. A method for preparing a planar integrated sensor capable of detecting weak magnetic fields in three dimensions according to claim 1, including the following steps:
1 )、 选择衬底: 选择 Si或 Si- Si02晶片作为衬底, 经过常规半导体超声清洗工艺 清洗、干燥之后, 放入磁控溅射仪中在衬底上沉积缓冲层,沉积缓冲层后的样品待用; 所述的缓冲层为 Ta、 Ru、 Cr、 Pt, 厚度为 3〜10 nm; 1). Select the substrate: Select Si or Si-Si0 2 wafer as the substrate. After cleaning and drying with the conventional semiconductor ultrasonic cleaning process, put it into a magnetron sputtering instrument to deposit a buffer layer on the substrate. After depositing the buffer layer The sample is ready for use; the buffer layer is Ta, Ru, Cr, Pt, and the thickness is 3~10 nm ;
2)、 制作 3块金属掩模: 根据所设计的 3个磁性传感器单元图形, 在 3块金属板 上分别制成带镂空图形的金属掩模板; 所述的金属板为 Cu板、 A1板或不锈钢板, 其 厚度为 0. 3〜lram; 2). Make three metal masks: According to the designed patterns of the three magnetic sensor units, make metal masks with hollow patterns on the three metal plates respectively; the metal plates are Cu plates, A1 plates or Stainless steel plate, its thickness is 0.3~lram;
3)制作底部电极: 在步骤 1 )制得的样品上,利用磁控溅射仪, 沉积底部电极层, 然后采用常规半导体光刻工艺, 经涂胶、 前烘和曝光后, 显影、 定影后烘干, 再用离 子刻蚀方法把底部电极刻蚀成条形, 其形状为两根长条, 每根条形的两端带有一个方 形块或圆形, 这样便于与外部电路的连接; 3) Preparing the bottom electrode: On the sample prepared in step 1), use a magnetron sputtering instrument to deposit the bottom electrode layer, and then use conventional semiconductor photolithography processes to apply glue, pre-bake and expose, develop and fix. Dry, and then use ion etching to etch the bottom electrode into a strip shape. The shape is two long strips, with a square block or circle at both ends of each strip, which facilitates connection with external circuits;
4)在步骤 3)制得的样品上制作第一磁性传感器单元: 使用第一块金属掩模遮挡 在样品的缓冲层及底部电极上, 然后利用磁控溅射仪, 在其中一根底部电极上依次沉 积反铁磁层、 钉扎层、 非磁性层、 自由层和覆盖层; 在沉积反铁磁层、 钉扎层、 自由 层时, 要同时施加 50〜2000e诱导磁场; 其中在反铁磁层、 钉扎层上所施加的诱导磁 场方向相同, 在自由层上所施加的诱导磁场方向与反铁磁层、 钉扎层的诱导磁场方向 垂直, 得到钉扎层和自由层的磁化强度方向均在衬底平面内, 且磁化强度方向相互垂 直; 4) Make the first magnetic sensor unit on the sample prepared in step 3): Use the first metal mask to cover the buffer layer and bottom electrode of the sample, and then use a magnetron sputtering instrument to place one of the bottom electrodes on An antiferromagnetic layer, a pinned layer, a nonmagnetic layer, a free layer and a covering layer are sequentially deposited on the The direction of the induced magnetic field applied to the magnetic layer and the pinned layer is the same. The direction of the induced magnetic field applied to the free layer is perpendicular to the direction of the induced magnetic field of the antiferromagnetic layer and the pinned layer. The magnetization of the pinned layer and the free layer is obtained. The directions are all within the substrate plane, and the magnetization directions are perpendicular to each other;
5)制作第二磁性传感器单元: 使用第二块金属掩模遮挡, 重复步骤 4) 的制备工 艺, 在与步骤 4) 同一根底部电极上的另一区域上依次沉积反铁磁层、 钉扎层、 非磁 性层、 自由层和覆盖层; 区别是在沉积反铁磁层、 钉扎层、 自由层时所加的诱导磁场 与步骤 4) 中相应的诱导磁场垂直, 最后得到钉扎层和自由层的磁化强度方向均在衬 底平面内, 且磁化强度方向相互垂直; 5) Make the second magnetic sensor unit: Use the second metal mask to cover, repeat the preparation process of step 4), and sequentially deposit and pin the antiferromagnetic layer on another area on the same bottom electrode as step 4) layer, non-magnetic layer, free layer and covering layer; the difference is that the induced magnetic field added when depositing the antiferromagnetic layer, pinned layer and free layer is perpendicular to the corresponding induced magnetic field in step 4), and finally the pinned layer and The magnetization directions of the free layer are all within the substrate plane, and the magnetization directions are perpendicular to each other;
6)、 制作第三磁性传感器单元: 使用第三块金属掩模遮挡, 重复步骤 4) 的制备 工艺, 在另一根底部电极上依次沉积反铁磁层、钉扎层、非磁性层、 自由层和覆盖层; 区别是在沉积自由层时, 要施加一与步骤 4)沉积自由层时所加的诱导磁场方向相同 的诱导磁场, 最后得到钉扎层的磁化强度方向垂直于衬底平面, 自由层的磁化强度平 行于衬底平面, 钉扎层和自由层的磁化强度方向相互垂直; 6). Make the third magnetic sensor unit: Use the third metal mask to cover it, and repeat the preparation in step 4). process, deposit an antiferromagnetic layer, a pinned layer, a non-magnetic layer, a free layer and a covering layer on the other bottom electrode in sequence; the difference is that when depositing the free layer, you need to apply the same process as when depositing the free layer in step 4) By adding an induced magnetic field with the same direction, the magnetization direction of the pinned layer is perpendicular to the substrate plane, the magnetization direction of the free layer is parallel to the substrate plane, and the magnetization directions of the pinned layer and the free layer are perpendicular to each other;
7)成型:采用常规半导体光刻工艺,把制好三个磁性传感器单元分别刻成长条状, 该长条的长边方向与各个磁性传感器单元的自由层磁化强度方向垂直, 最后用丙酮浸 泡进行去胶; 7) Forming: Use conventional semiconductor photolithography process to carve the three magnetic sensor units into long strips. The long side direction of the strips is perpendicular to the direction of the free layer magnetization of each magnetic sensor unit. Finally, soak them in acetone. Remove glue;
8)制作顶部电极: 利用磁控溅射设备, 在步骤 7)得到的样品利用常规半导体光 刻工艺, 经涂胶、 前烘和曝光后, 显影、 定影后烘干, 再用离子刻蚀方法把顶部电极 刻蚀成形, 即第一顶部电极设置在生长第一底部电极上的任一个磁性传感器单元上, 而第二顶部电极设置在另外 2个磁性传感器单元顶面上, 得到本发明的能在三维方向 上探测弱磁场的平面集成的传感器。 8) Make the top electrode: Using magnetron sputtering equipment, the sample obtained in step 7) is subjected to conventional semiconductor photolithography processes. After glue coating, pre-baking and exposure, development, fixation and drying are performed, and then ion etching is used. The top electrode is etched and formed, that is, the first top electrode is arranged on any magnetic sensor unit grown on the first bottom electrode, and the second top electrode is arranged on the top surface of the other two magnetic sensor units, so as to obtain the energy of the present invention. Planar integrated sensor that detects weak magnetic fields in three dimensions.
10、 按权利要求 9所述的制备方法, 其特征在于: 所述的衬底厚度为 0. 3〜lmra。 10. The preparation method according to claim 9, characterized in that: the thickness of the substrate is 0.3~lmra.
11、 按权利要求 9所述的制备方法, 其特征在于: 所述的反铁磁层包括具有反铁 磁性的合金, 厚度为 2〜20 nm; 11. The preparation method according to claim 9, characterized in that: the antiferromagnetic layer includes an alloy with antiferromagnetic properties, and the thickness is 2~20 nm;
所述的钉扎层包括 n周期 Co/Pt的多层膜、 n周期 CoFe/Pt的多层膜、 TbFeCo或 GdFeCo; 或 Co- Fe合金, Ni_Fe合金, 非晶 CoFeB合金; 厚度为 2〜20 nm。 The pinning layer includes n-periodic Co/Pt multilayer film, n-periodic CoFe/Pt multilayer film, TbFeCo or GdFeCo; or Co-Fe alloy, Ni_Fe alloy, amorphous CoFeB alloy; thickness is 2~20 nm.
所述的非磁性层采用 A1203、 Mg0、 Α1Ν、 Τ¾05、 ΖηΟ或 Ti02绝缘材料,厚度为 0. 5~ 5nm; 或者还采用 Cu、 Cr、 V、 Nb、 Mo、 Ru、 Pd、 Ta、 W、 Pt、 Ag、 Au或其合金, 厚度 为 1. 0〜10 ran; The non-magnetic layer adopts A1203 , Mg0 , A1N, T¾05 , Zn0 or Ti02 insulating material, with a thickness of 0.5~5nm; or Cu, Cr, V, Nb, Mo, Ru, Pd , Ta, W, Pt, Ag, Au or alloys thereof, thickness is 1.0~10 ran;
所述的自由层为 Co, Co-Fe, Co- Fe- B或 Ni - Fe合金, 厚度为 1. 0〜10 nm; The free layer is Co, Co-Fe, Co-Fe-B or Ni-Fe alloy, with a thickness of 1.0~10 nm ;
所述的覆盖层为 Ta、 Cu、 Ru、 Pt、 Ag、 Au, 厚度为 2〜10 ran。 The covering layer is Ta, Cu, Ru, Pt, Ag, Au, and has a thickness of 2 to 10 ran.
12、按权利要求 11所述的制备方法,其特征在于: 所述的具有反铁磁性的合金为 Ir-Mn, Fe-Mn, 或 Pt- Mn。 12. The preparation method according to claim 11, characterized in that: the antiferromagnetic alloy is Ir-Mn, Fe-Mn, or Pt-Mn.
13、 按权利要求 9所述的制备方法, 其特征在于: 所述的底部电极和顶部电极为 Au或 Cu, 厚度为 10〜500nm; 其形状为两根长条, 两端设计成方块形状或圆形。 13. The preparation method according to claim 9, characterized in that: the bottom electrode and the top electrode are Au or Cu, with a thickness of 10~500nm ; the shape is two long strips, and the two ends are designed in a square shape or Round.
14、 按权利要求 9所述的制备方法, 其特征在于: 所述的磁性传感器单元的截面 积为 0. 01 μ m2〜100mra2, 厚度为 20nm〜60nm。 14. The preparation method according to claim 9, characterized in that: the cross-sectional area of the magnetic sensor unit is 0.01 μm 2 ~ 100mra 2 , and the thickness is 20nm ~ 60nm.
PCT/CN2006/003349 2005-12-09 2006-12-08 An integrate planar sensor for detecting weak magnetic field on three dimensional directions and a manufacturing method thereof WO2007065377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510126428.1 2005-12-09
CN200510126428A CN100593122C (en) 2005-12-09 2005-12-09 3-D magnetic-field sensor integrated by planes, preparing method and use

Publications (1)

Publication Number Publication Date
WO2007065377A1 true WO2007065377A1 (en) 2007-06-14

Family

ID=38122499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003349 WO2007065377A1 (en) 2005-12-09 2006-12-08 An integrate planar sensor for detecting weak magnetic field on three dimensional directions and a manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN100593122C (en)
WO (1) WO2007065377A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752676A4 (en) * 2011-08-30 2015-12-02 Multidimension Technology Co Ltd Tri-axis magnetic field sensor
CN108254706A (en) * 2016-12-29 2018-07-06 意法半导体股份有限公司 MEMS magnetic sensors with improvement configuration

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202083786U (en) * 2011-01-07 2011-12-21 江苏多维科技有限公司 Film magnetoresistance sensing element, combination of a plurality of sensing elements, and electronic device coupled with combination
CN102636762B (en) * 2011-02-14 2015-04-15 美新半导体(无锡)有限公司 Monolithic tri-axis amr sensor and manufacturing method thereof
CN102810630B (en) * 2011-05-30 2015-11-25 中国科学院物理研究所 Magnetic film structure, magneto-dependent sensor and preparation method that anisotropy can be modulated
CN103543414A (en) * 2012-07-13 2014-01-29 爱盛科技股份有限公司 Three-dimensional planar magnetic sensor
TWI463160B (en) * 2013-01-28 2014-12-01 meng huang Lai Planarized 3 dimensional magnetic sensor chip
CN104007401B (en) * 2013-02-21 2017-04-12 赖孟煌 Planarized three-dimensional magnetic sensing chip
CN104515957B (en) * 2013-09-27 2017-05-31 上海矽睿科技有限公司 magnetic sensing device and preparation method thereof
CN103675094A (en) * 2013-12-16 2014-03-26 无锡乐尔科技有限公司 Non-destructive testing device
CN103913709B (en) * 2014-03-28 2017-05-17 江苏多维科技有限公司 Single-chip three-axis magnetic field sensor and manufacturing method thereof
CN107275073A (en) * 2017-06-09 2017-10-20 华侨大学 A kind of preparation method of the adjustable nano thickness GdFeCo alloy firms of vertical magnetic characteristic
DE102019126320B4 (en) * 2019-09-30 2024-03-28 Infineon Technologies Ag Magnetoresistive sensor and manufacturing process for a magnetoresistive sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250875A (en) * 1988-03-31 1989-10-05 Toshiba Corp Magnetic sensor
GB2276727A (en) * 1993-04-01 1994-10-05 Rolls Royce & Ass Magnetoresistive magnetometer
CN1458702A (en) * 2002-05-16 2003-11-26 中国科学院物理研究所 Tunnel effect magneto-resistance device and preparing method
JP2004006752A (en) * 2002-03-27 2004-01-08 Yamaha Corp Magnetic sensor and manufacturing method thereof
JP2004012156A (en) * 2002-06-04 2004-01-15 Wacoh Corp Three-dimensional magnetic sensor and method for manufacturing the same
CN1687802A (en) * 2005-05-27 2005-10-26 中国科学院物理研究所 Linear magnetic field sensor and its mfg. method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250875A (en) * 1988-03-31 1989-10-05 Toshiba Corp Magnetic sensor
GB2276727A (en) * 1993-04-01 1994-10-05 Rolls Royce & Ass Magnetoresistive magnetometer
JP2004006752A (en) * 2002-03-27 2004-01-08 Yamaha Corp Magnetic sensor and manufacturing method thereof
CN1458702A (en) * 2002-05-16 2003-11-26 中国科学院物理研究所 Tunnel effect magneto-resistance device and preparing method
JP2004012156A (en) * 2002-06-04 2004-01-15 Wacoh Corp Three-dimensional magnetic sensor and method for manufacturing the same
CN1687802A (en) * 2005-05-27 2005-10-26 中国科学院物理研究所 Linear magnetic field sensor and its mfg. method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752676A4 (en) * 2011-08-30 2015-12-02 Multidimension Technology Co Ltd Tri-axis magnetic field sensor
US9733316B2 (en) 2011-08-30 2017-08-15 Multidemension Technology Co., Ltd. Triaxial magnetic field sensor
CN108254706A (en) * 2016-12-29 2018-07-06 意法半导体股份有限公司 MEMS magnetic sensors with improvement configuration
US10705158B2 (en) 2016-12-29 2020-07-07 Stmicroelectronics S.R.L. MEMS triaxial magnetic sensor with improved configuration
CN108254706B (en) * 2016-12-29 2021-02-09 意法半导体股份有限公司 MEMS triaxial magnetic sensor with improved configuration

Also Published As

Publication number Publication date
CN100593122C (en) 2010-03-03
CN1979210A (en) 2007-06-13

Similar Documents

Publication Publication Date Title
WO2007065377A1 (en) An integrate planar sensor for detecting weak magnetic field on three dimensional directions and a manufacturing method thereof
JP6193212B2 (en) Single chip 2-axis bridge type magnetic field sensor
JP6420665B2 (en) Magnetoresistive sensor for measuring magnetic fields
US7589528B2 (en) Magnetic sensor formed of magnetoresistance effect elements
JP5452006B2 (en) Manufacturing method of magnetic device and manufacturing method of magnetic field angle sensor
US20030231098A1 (en) Dual axis magnetic sensor
CN102435963B (en) Monolithic dual-axis bridge-type magnetic field sensor
US20110068786A1 (en) Magnetic sensor and manufacturing method thereof
CN110176534A (en) Adjustable tunneling junction magnetoresistive sensor of measurement range and preparation method thereof
WO2007104206A1 (en) An integrated three-dimensional magnetic field sensor and a manufacturing method thereof
US11467232B2 (en) Magnetoresistive sensor and fabrication method for a magnetoresistive sensor
CN100549716C (en) Three-D magnetic field sensor that a kind of stratiform is integrated and its production and use
Duenas et al. Micro-sensor coupling magnetostriction and magnetoresistive phenomena
US11002806B2 (en) Magnetic field detection device
CN109346597B (en) Preparation method of self-bias anisotropic magnetoresistance sensing unit
CN111312891A (en) Flexible GMR magnetic field sensor and preparation method thereof
CN100487938C (en) Non mask preparation method based on thin film multiple layer film nano magnetic electron device
KR101233662B1 (en) Flexible magnetoresistance sensor and manufacturing method thereof
CN111965571B (en) Preparation method of GMR magnetic field sensor
KR101965510B1 (en) Giant magnetoresistance Sensor
KR101083068B1 (en) Ring type planar hall resistance sensor
CN100585898C (en) A kind of method that improves bias field stability in the CoFe/Cu/CoFe/IrMn spin valve structure multi-layer film structure
US9817086B2 (en) CPP-GMR sensor for electronic compass
CN103424131A (en) Method for preparing perpendicular bias magnetic sensing unit
Slater et al. Perpendicular-current exchange-biased spin valve structures with micron-size superconducting top contacts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06817977

Country of ref document: EP

Kind code of ref document: A1