WO2007065377A1 - Detecteur plan integre pour la detection de champs magnetiques faibles dans 3d, et son procede de fabrication - Google Patents

Detecteur plan integre pour la detection de champs magnetiques faibles dans 3d, et son procede de fabrication Download PDF

Info

Publication number
WO2007065377A1
WO2007065377A1 PCT/CN2006/003349 CN2006003349W WO2007065377A1 WO 2007065377 A1 WO2007065377 A1 WO 2007065377A1 CN 2006003349 W CN2006003349 W CN 2006003349W WO 2007065377 A1 WO2007065377 A1 WO 2007065377A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
thickness
magnetic field
magnetic sensor
Prior art date
Application number
PCT/CN2006/003349
Other languages
English (en)
Chinese (zh)
Inventor
Qihang Qin
Xiufeng Han
Lei Wang
Ming Ma
Hongxiang Wei
Wenshan Zhan
Original Assignee
Institute Of Physics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Physics, Chinese Academy Of Sciences filed Critical Institute Of Physics, Chinese Academy Of Sciences
Publication of WO2007065377A1 publication Critical patent/WO2007065377A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Definitions

  • Some of the sensors are used for their proximity or proximity and the earth's magnetic force. God's universal sensor is used to sense 100 to 1000 Oster e. There is a universal sensor that is made of materials or materials
  • Line 3 can only combine sensors with different sensitive directions, thus qualitative and consistent, and high cost.
  • the junction material () and the material () are made on the 3 magnetic sensor that can be integrated in the direction of the sensor.
  • the sensor has a ratio or even ten times that of the traditional sensor and provides a method that is compatible with each sensor at a low cost. .
  • the provided sensor can be integrated in the direction as shown in 1, which includes the village bottom 1, the upper 2 and the bottom that is born on the upper side, and the magnetic sensor made of more magnets that is born on the bottom.
  • the magnetic sensor 3 described in the root term is the first magnetic sensor 7, the second magnetic sensor 72 and the third magnetic sensor Sensor unit 73
  • the bottom part 2 2 The magnetic sensor unit is standing on a bottom, another dielectric magnetic sensor is on the other bottom 3
  • the magnetic sensor and the magnetic sensor of the same thickness are magnetically dependent, , Non-magnetic, free and cover the first magnetic sensor 71, the second magnetic sensor 72 is much the same as their third magnetic sensor 73, and the "free" points are different in the magnetic sensor and the free
  • the directions of magnetization are perpendicular to each other
  • the directions perpendicular to each other have a direction (direction) perpendicular to the bottom plane and a direction X y which is perpendicular to the bottom plane, and the mutually perpendicular directions X y direction are on the interface of the 2 magnetic sensors on the same bottom.
  • the remaining 2 magnetic sensor surfaces On the other side.
  • the magnetic gold of the magnetic sensor unit with higher autonomy includes n period o P, n period oFe P, TbFe o or dFeCo o Fe alloy N Fe alloy non-oFeB alloy thickness 2 n
  • the non-magnetic in the above wooden scheme is generally g k, Ta, n or T, etc.
  • the material thickness of the tunnel material is 0 5 n or u, Nb Pd Ta, gu or alloy is the material thickness of the element 1.0 1 n
  • the magnetic gold and its alloys with lower autonomy and higher autonomy are smaller o o Fe o Fe B or N Fe alloy N 8Fe thickness.
  • the covering power is not easy to be oxidized and has a large gold material u u P u etc.
  • the thickness 2 n is less than the material is not oxidized.
  • the methods provided by the present sensor that can be integrated in the direction include the following steps
  • Forming means that the first is on any of the magnetic sensor sheep on the first bottom and the second is on the other 2 magnetic sensor sheep to get the original integrated sensor in the direction.
  • the thickness of the magnetic gold with higher autonomy described in steps 4 5 and 6 2 2 n The magnetic gold or alloy with vertical anisotropy is used for sensors with sensors perpendicular to the plane direction.
  • P oFe composed of multi-TbFe o or dFe o and other directions of Fe o N and its alloys o Fe alloy N Fe alloy non-oFeB alloy thickness 2 2 m.
  • the non-magnetic materials such as 0, g N Ta, n, or T in steps 4, 5 and 6 are used in the tunnel material.
  • the element thickness is 0.5 5n or the material in steps 4 5 and 6 Non-magnetic, Nb u PTP u or alloy.
  • Thickness 1. n o Free in steps 4 5 and 6 in the above wooden scheme Lesser magnetic gold and its alloy with higher autonomy o o Fe o Fe B or N Fe alloy N 8Fe Thickness 1.0 n
  • the covering power in steps 4 5 and 6 is not easy to be oxidized and has a larger thickness of gold materials u P, g u etc. 2 n than the material does not oxidize.
  • the thickness described in the wood plan above is 0.3
  • the gold in the wooden scheme is larger than the magnetic sensor 0 1 m for general holes
  • Each of the perceptual magnetic sensor sheep of the integrated sensor that can be provided in the direction has the same direction as the free direction without the external magnetic sensor. Mutually perpendicular directions. Almost integrated sensors can be used
  • Yuki usually combines sensors in different directions to form a magnetic sensor.
  • the consistency of 3 sensors requires high sensor direction and the assembly work is also very expensive.
  • the magnetic sensor obtained is large and poorly qualitative.
  • the provided sensor is integrated with 3 magnetic sensors to reduce the sensor rest and reduce the cost, greatly improving the consistency and qualitative of the magnetic sensor, especially the large-scale integration of road engineering compatible Under certain circumstances, there are irreplaceable including
  • the device size is small.
  • a sensor can achieve 5 X5 m below the device can be below gnmmX2 mm.
  • the small device size can improve the prospects. But the same small device if the sensors are first assembled on the same surface, the operation is very high and the accuracy is reduced. Therefore, the three magnetic sensor units are introduced.
  • the direction has high accuracy.
  • the upper sensor used has a level of almost flatness, and the consistency is very high.
  • the non-guaranteed units have the same accuracy.
  • the regiment is as follows 91 first anti 22 second anti 23 third anti 3 First hit 32 Second hit 33 Third hit
  • step 2 in the bottom of the u on the top, then the carving, the front and the use are to be processed
  • the light is exposed on the ultraviolet exposure,,, and wanzi methods to include the first 8 and the second 8 shown in the bottom 1 and are made into a circle or a circle on each end of each
  • the shape of the gold-selected gold bottom is completely a 5 m square on the lower left. Use gold and the bottom on each side with the same steps.
  • On the bottom 8 according to the number 7 of the magnetic sensor 7 includes 1 n n. , 4.0 n of o Fe effort first hit 31, 1. n
  • the force is non-magnetic 4
  • Fe is the force of the first freedom 5 and 5n
  • the first free fall 51 and the first hit 31 are perpendicular to the direction.
  • the directions both care and the magnetization directions are perpendicular to each other 4.
  • the second gold gold bottom shape is completely a square with a mm in the upper left corner. Use gold and the bottom on each of the first bottom 8.
  • the third gold and gold bottom shape is completely 5mm square in the upper right corner. Use gold and the bottom on each in the same way as step 3.
  • each of the third magnetic sensor 73 is first a force of 1 n and a third inverse 23 is 3 cycles (P .5nm o 0.4n )
  • the third effort 33. n's zero force third non-magnetic 43 3 period (o 1. n P n) force third freedom 3 5n's a force covers house 63 free plus one step 3 free add in the same direction and reverse Do not.
  • the direction of the most obtained magnetization is perpendicular to the direction of free magnetization and the direction of the magnetization of free is perpendicular to each other.
  • the magnetic sensor sheep obtained in step 5 is immersed in the magnetic sensor and the direction of the free magnetization of each magnetic sensor is perpendicular to the direction of 5X.
  • step 6 Put the shape formed in step 6 into each one, and then use the rest engraving method of n on its item surface.
  • Shape 1 shows that the first item 9 is on the first magnetic sensor 71 on the first bottom 8 and the second item 9 is obtained on the 2 and third 73 magnetic sensor surfaces. Sensor.
  • the output of the sensor is connected to the vacant output of the sensor, and the output of the sensor with the tunnel is obtained.
  • each integrated sensor has many magnetic materials What is the thickness of the first sensor unit, the second sensor unit, and the third sensor component S-SO of the magnetic sensor with a good magnetic core, 1 X2 n, and a magnetic sensor with integrated geomagnetic sensors
  • Thickness 2 2 Composition Fe Fe P / CoFe3 Thickness 2 2 05 m0.4 Not, [Composition gO gO gO
  • the integrated three-dimensional sensor has many magnetic materials and thicknesses in 2 of which the nuclear magnetic sensor is good m m
  • each integrated sensor has various magnetic materials and thicknesses in 3, where the nuclear magnetic sensor is good n
  • the first magnetic sensor integrated with a geomagnetic sensor has a large first sensor unit, a second sensor unit, a third sensor unit, a component S 2
  • Thickness 2 2n 2nm Composition oFe oFe dFe o Thickness 2 2n 2nm
  • the integrated sensor has various magnetic materials and thickness in 4 of which the sensor is good n X2 nm
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor, the second sensor, and the third sensor component S 2
  • Thickness m 0.5n 0.bn Free composition o75Fe2 o7Fe25 (P o)
  • the materials and thickness of the magnetic sensor are more than 5, and the magnetic sensor is good mX2 m
  • the original is more magnetic than the integrated geomagnetic sensor
  • each integrated sensor has various magnetic materials and thickness. Among them, the nuclear magnetic sensor is good in 6.
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor unit, the third sensor component 2
  • Thickness 2n 2n 2na Composition oFeB oFeB (P) Thickness 2 2 0.5n .4n
  • Thickness na 0.5n 0.5n Free composition o7Fe25 oFeB (P
  • Thickness nn 05n Thickness nn 05n.
  • each of the integrated sensors has various magnetic materials and thickness in 7 of which the nuclear magnetic sensor is good.
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor unit, and the third sensor unit
  • the magnetic material and thickness are more than 8. Its sensor is good
  • the original is more magnetic than the integrated geomagnetic sensor First sensor unit Second sensor Third sensor unit Component 2
  • each integrated sensor has more magnetic materials and thickness in 9.
  • the magnetic sensor is good 8 mX 6
  • the first multi-sensor unit integrated with a geomagnetic sensor, the second sensor unit, the third sensor unit, and the component 2
  • the integrated sensor of each plane has the material and thickness of more than 10 in the magnetic field.
  • the magnetic sensor is good 2
  • each integrated sensor has more magnetic materials and thickness. Its nuclear magnetic sensor is good 2 n X4 n
  • Thickness 2nm 2 2 m Composition N Fe N Fe (P oFe) Thickness 2 2 0.5nm .4n Not,
  • the integrated sensor has more magnetic materials and thickness than 2.
  • the sensor is good 40 n X8 n
  • the first multi-sensor unit integrated with a geomagnetic sensor, the second sensor, the third sensor component
  • Thickness 2 m 2 2nm Composition N Fe N Fe (P oFe Thickness 2 2n 0.5n .4nm Non,
  • each integrated sensor its magnetic material and thickness are more than 3.
  • the sensor unit is good 0 pm
  • each integrated sensor its magnetic properties and thickness are more than 4.
  • the nuclear magnetic sensor is good 2 X400
  • the first multi-sensor unit integrated with the geomagnetic sensor, the second sensor unit, the second sensor unit, and the component 2
  • the integrated sensor of each plane has more magnetic materials and thickness than 1. Of which the nuclear magnetic sensor is good 5 0
  • the original is more magnetic than the integrated geomagnetic sensor First sensor second sensor third sensor component S 2
  • Thickness n nm n Free component N Fe N Fe P oFe
  • Thickness n n 04 .5n Covered house component u u u
  • the magnetic materials and thickness are more than 6.
  • the nuclear magnetic sensor is good 1 m
  • each integrated three-dimensional sensor its magnetic material and thickness are more than 17.
  • the magnetic sensor is good 2 X4
  • each integrated sensor has more magnetic materials and thickness than 8.
  • the nuclear magnetic sensor unit is good 3 mX6 m
  • the first magnetic sensor integrated with a geomagnetic sensor and the first sensor and the third sensor unit are composed of component S
  • composition N Fe N Fe (P oFe thickness n n 0.4n 0.5n House composition u u u
  • Thickness m The provided integrated sensor can be used to work on the vacant output of the sensor connected to the sensor unit. Measure the output sensor sheep respectively in the X, y, and z directions. There is an external freedom from the output of the sensor
  • the direction is perpendicular to the output in the fixed garden.
  • the output can be obtained from the output.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

L'invention porte sur un détecteur plan intégré pour la détection de champs magnétiques faibles dans 3D comportant trois capteurs magnétiques (71, 72, 73) faits de films magnétiques multicouches, deux capteurs étant disposés sur le même pôle inférieur (8) et le troisième, sur un autre pôle inférieur (8'). Les films des deux capteurs du même pôle sont identiques, mais leurs couches fixé et libre diffèrent de celles du troisième. La direction de magnétisation d'une couche fixé est perpendiculaire à celle d'une couche libre. Les directions des trois axes des couches fixées sont perpendiculaires entre elles, la direction d'induction de leur champ magnétique est perpendiculaire au plan du substrat (1), et deux direction d'induction de leur champ magnétique sont parallèles au plan du substrat (1) et respectivement perpendiculaires entre elles. Un pôle supérieur (9) est séparément disposé sur le plan supérieur de deux capteurs magnétiques situés sur le même pôle inférieur, tandis que l'autre pôle supérieur est disposé sur le plan supérieur des deux autres capteurs.
PCT/CN2006/003349 2005-12-09 2006-12-08 Detecteur plan integre pour la detection de champs magnetiques faibles dans 3d, et son procede de fabrication WO2007065377A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510126428.1 2005-12-09
CN200510126428A CN100593122C (zh) 2005-12-09 2005-12-09 一种平面集成的三维磁场传感器及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2007065377A1 true WO2007065377A1 (fr) 2007-06-14

Family

ID=38122499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003349 WO2007065377A1 (fr) 2005-12-09 2006-12-08 Detecteur plan integre pour la detection de champs magnetiques faibles dans 3d, et son procede de fabrication

Country Status (2)

Country Link
CN (1) CN100593122C (fr)
WO (1) WO2007065377A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752676A4 (fr) * 2011-08-30 2015-12-02 Multidimension Technology Co Ltd Capteur de champ magnétique à axe triple
CN108254706A (zh) * 2016-12-29 2018-07-06 意法半导体股份有限公司 具有改进配置的mems三轴磁传感器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280574B (zh) * 2011-01-07 2014-04-16 江苏多维科技有限公司 薄膜磁电阻传感元件、多个传感元件的组合及与该组合耦合的电子装置
CN202149936U (zh) * 2011-02-14 2012-02-22 美新半导体(无锡)有限公司 单芯片三轴amr传感器
CN102810630B (zh) * 2011-05-30 2015-11-25 中国科学院物理研究所 各向异性可调制的磁性薄膜结构、磁敏传感器及制备方法
CN103543414A (zh) * 2012-07-13 2014-01-29 爱盛科技股份有限公司 三维平面磁传感器
TWI463160B (zh) * 2013-01-28 2014-12-01 meng huang Lai 平面化之三維磁感測晶片
CN104007401B (zh) * 2013-02-21 2017-04-12 赖孟煌 平面化的三维磁感测芯片
CN104515957B (zh) * 2013-09-27 2017-05-31 上海矽睿科技有限公司 磁传感装置及其制备方法
CN103675094A (zh) * 2013-12-16 2014-03-26 无锡乐尔科技有限公司 一种无损探伤装置
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN107275073A (zh) * 2017-06-09 2017-10-20 华侨大学 一种垂直磁特性可调纳米厚度GdFeCo合金薄膜的制备方法
DE102019126320B4 (de) * 2019-09-30 2024-03-28 Infineon Technologies Ag Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250875A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 磁気センサー
GB2276727A (en) * 1993-04-01 1994-10-05 Rolls Royce & Ass Magnetoresistive magnetometer
CN1458702A (zh) * 2002-05-16 2003-11-26 中国科学院物理研究所 隧道效应磁电阻器件及制备方法
JP2004006752A (ja) * 2002-03-27 2004-01-08 Yamaha Corp 磁気センサおよびその製造方法
JP2004012156A (ja) * 2002-06-04 2004-01-15 Wacoh Corp 三次元磁気センサおよびその製造方法
CN1687802A (zh) * 2005-05-27 2005-10-26 中国科学院物理研究所 线性磁场传感器及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250875A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 磁気センサー
GB2276727A (en) * 1993-04-01 1994-10-05 Rolls Royce & Ass Magnetoresistive magnetometer
JP2004006752A (ja) * 2002-03-27 2004-01-08 Yamaha Corp 磁気センサおよびその製造方法
CN1458702A (zh) * 2002-05-16 2003-11-26 中国科学院物理研究所 隧道效应磁电阻器件及制备方法
JP2004012156A (ja) * 2002-06-04 2004-01-15 Wacoh Corp 三次元磁気センサおよびその製造方法
CN1687802A (zh) * 2005-05-27 2005-10-26 中国科学院物理研究所 线性磁场传感器及其制作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752676A4 (fr) * 2011-08-30 2015-12-02 Multidimension Technology Co Ltd Capteur de champ magnétique à axe triple
US9733316B2 (en) 2011-08-30 2017-08-15 Multidemension Technology Co., Ltd. Triaxial magnetic field sensor
CN108254706A (zh) * 2016-12-29 2018-07-06 意法半导体股份有限公司 具有改进配置的mems三轴磁传感器
US10705158B2 (en) 2016-12-29 2020-07-07 Stmicroelectronics S.R.L. MEMS triaxial magnetic sensor with improved configuration
CN108254706B (zh) * 2016-12-29 2021-02-09 意法半导体股份有限公司 具有改进配置的mems三轴磁传感器

Also Published As

Publication number Publication date
CN1979210A (zh) 2007-06-13
CN100593122C (zh) 2010-03-03

Similar Documents

Publication Publication Date Title
WO2007065377A1 (fr) Detecteur plan integre pour la detection de champs magnetiques faibles dans 3d, et son procede de fabrication
JP6193212B2 (ja) シングルチップ2軸ブリッジ型磁界センサ
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
US7589528B2 (en) Magnetic sensor formed of magnetoresistance effect elements
JP5452006B2 (ja) 磁気デバイスの製造方法および磁場角度センサの製造方法
US20030231098A1 (en) Dual axis magnetic sensor
CN102435963B (zh) 单片双轴桥式磁场传感器
US20110068786A1 (en) Magnetic sensor and manufacturing method thereof
CN110176534A (zh) 测量范围可调的隧道结磁电阻传感器及其制备方法
WO2007104206A1 (fr) Détecteur tridimensionnel intégré de champs magnétiques et procédé de fabrication correspondant
US11467232B2 (en) Magnetoresistive sensor and fabrication method for a magnetoresistive sensor
CN100549716C (zh) 一种层状集成的三维磁场传感器及其制备方法和用途
Duenas et al. Micro-sensor coupling magnetostriction and magnetoresistive phenomena
US11002806B2 (en) Magnetic field detection device
CN109346597B (zh) 一种自偏置各向异性磁电阻传感单元的制备方法
CN111312891A (zh) 一种柔性gmr磁场传感器及其制备方法
CN100487938C (zh) 基于单层膜或多层膜纳米磁电子器件的无掩模制备方法
KR101233662B1 (ko) 유연 박막 자기저항 센서 및 그 제조 방법
CN111965571B (zh) 一种gmr磁场传感器的制备方法
KR101083068B1 (ko) 링 타입의 평면 홀 저항 센서
CN100585898C (zh) 一种提高CoFe/Cu/CoFe/IrMn自旋阀结构多层膜结构中偏置场稳定性的方法
KR101965510B1 (ko) 거대자기저항 센서
US9817086B2 (en) CPP-GMR sensor for electronic compass
CN103424131A (zh) 一种垂直偏置磁传感单元的制备方法
US11574758B2 (en) Magnetic field sensor using different magnetic tunneling junction (MTJ) structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06817977

Country of ref document: EP

Kind code of ref document: A1