WO2007063893A1 - レベルセンサ - Google Patents

レベルセンサ Download PDF

Info

Publication number
WO2007063893A1
WO2007063893A1 PCT/JP2006/323804 JP2006323804W WO2007063893A1 WO 2007063893 A1 WO2007063893 A1 WO 2007063893A1 JP 2006323804 W JP2006323804 W JP 2006323804W WO 2007063893 A1 WO2007063893 A1 WO 2007063893A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
level sensor
light
electrical signal
electric signal
Prior art date
Application number
PCT/JP2006/323804
Other languages
English (en)
French (fr)
Inventor
Yasutaka Katayama
Original Assignee
Kabushiki Kaisha Topcon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Topcon filed Critical Kabushiki Kaisha Topcon
Priority to US12/095,482 priority Critical patent/US8044335B2/en
Priority to EP06833608A priority patent/EP1956340A4/en
Priority to JP2007547969A priority patent/JP5096925B2/ja
Publication of WO2007063893A1 publication Critical patent/WO2007063893A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • G01C15/006Detectors therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels

Definitions

  • the present invention relates to a level sensor that detects the center of a light receiving position of a laser beam.
  • a level sensor in which a plurality of light receiving elements are arranged side by side is known.
  • a level sensor in which a plurality of light receiving elements are arranged side by side is known.
  • JP-A-2004-309440 is referred to.
  • a powerful level sensor amplifies a light reception signal output from each light receiving element by a plurality of amplifiers, and compares a signal output from each amplifier and a threshold value by a plurality of comparators. The level that is the center position of the laser beam is obtained based on the comparison signal output from each comparator.
  • each light receiving element must be provided with an amplifier and a comparator, which causes a problem that the circuit becomes complicated and expensive.
  • a first feature of the present invention is a level sensor including a plurality of light receiving elements arranged side by side, and the output terminals of the plurality of light receiving elements adjacent to each other.
  • the light receiving position is analyzed by comparing the output signals by the arithmetic and control unit connected to the level sensor based on the signals output from both ends of the connected light receiving elements. It is.
  • a second feature of the present invention is that a plurality of level sensors are arranged in the arrangement direction of the light receiving elements.
  • a third feature of the present invention is that an output terminal is configured by changing a magnitude of a resistor connected to the light receiving element. By changing the light receiving position where the signal ratio of the child becomes equal, the light receiving position is analyzed by the arithmetic unit using any place as a reference for detecting the light receiving position.
  • a fourth feature of the present invention is that a ratio of output signals of the plurality of level sensors arranged is weighted and averaged, and a light receiving position is analyzed by an arithmetic unit.
  • a fifth feature of the present invention is that a plurality of level sensors are connected and arranged, and the light receiving position between adjacent level sensors is analyzed by comparing the outputs of the adjacent level sensors. is there.
  • the sixth feature of the present invention is that the level sensors arranged in a connected manner are provided so that light receiving positions of adjacent level sensors overlap.
  • one of the poles is connected in common and the plurality of light receiving elements arranged to receive the laser beam;
  • a first electric signal conversion element that is connected between the other pole of the element and the other pole adjacent to the light receiving element and converts the electric signal in proportion to the amount of received laser light; and the plurality of light receiving elements
  • a second electric signal conversion element that is connected to the other pole of the light receiving element disposed at the extreme end in one direction of the elements and converts the electric signal proportional to the amount of laser light received;
  • a third electric signal conversion element that is connected to the other pole of the light receiving element disposed at the end opposite to the direction and converts the electric signal proportional to the amount of laser light received;
  • the first electrical signal generated in the electrical signal conversion element And a second electrical signal generated in the third electrical signal conversion element, the computer based on the first electrical signal and the second electrical signal based on the first electrical signal and the second electrical signal
  • a calculation analysis processing unit that performs
  • An eighth feature of the present invention is a level sensor that detects the center of the light receiving position of a laser beam, and is connected to the first light receiving unit and one end of the first light receiving unit, and receives the laser.
  • a first electric signal conversion element that converts an electric signal proportional to the amount of light, and an electric signal that is connected to the other end of the first light receiving unit and is proportional to the amount of laser light received.
  • a third electric signal conversion element that converts the electric signal proportional to the amount of received laser light, and the light of the received laser light connected to the other end of the second light receiving part.
  • a fourth electric signal conversion element that converts the electric signal in proportion to the quantity, a first electric signal generated in the first electric signal conversion element, and a second electric signal conversion element. Receiving the second electric signal generated, the third electric signal generated by the third electric signal conversion element, and the fourth electric signal generated by the fourth electric signal conversion element.
  • a computer that performs the first electrical signal and the computer. 2 based on the two electrical signals, a computation analysis processing unit that performs a computation to obtain a ratio between the first electrical signal and the second electrical signal, a result obtained by the computation, and the plurality of light receptions
  • a comparison analysis processing unit for comparing the ratio of signals at the origin position of the element array.
  • a ninth feature of the present invention is that, in the invention having the eighth feature of the present invention, the first light receiving portion and the second light receiving portion have a predetermined amount of overlapping portions.
  • a third light receiving portion coupled to the second light receiving portion so as to have a predetermined amount of overlapping portions; and And a fourth light receiving portion coupled to the third light receiving portion so as to have a predetermined amount of overlapping portion.
  • FIG. 1 is a block diagram showing a configuration of a level sensor according to a first example of the present invention.
  • FIG. 2 is a diagram showing light receiving elements arranged such that pitch intervals between the light receiving elements are different.
  • FIG. 3 is a block diagram showing a configuration of an arithmetic and control unit according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing functions of the level sensor according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a level sensor according to a second embodiment of the present invention.
  • Fig. 6 is a circuit diagram showing a light receiving portion of a second embodiment of the present invention.
  • FIG. 7 is a graph relating to a point light source showing a relationship between an output signal output from a light receiving unit according to a second embodiment of the present invention and a light receiving position.
  • FIG. 8 is an explanatory view showing a modification of the second embodiment of the present invention, in which two light receiving portions are partially overlapped.
  • FIG. 9 is a graph showing the relationship between the output signal output from the light receiving unit of the second embodiment of the present invention and the light receiving position, and shows when the beam diameter is large.
  • FIG. 10 is an explanatory view showing a third embodiment of the present invention, which has four light receiving portions, and a part of the light receiving portions is overlapped with each other.
  • FIG. 1 is a block diagram showing a configuration of a level sensor 10 that is useful for the present invention.
  • the level sensor 10 includes a light receiving unit 1 IX, a first amplification circuit 20X that amplifies a light reception signal output from one terminal 11a of the light reception unit 1 IX, and an amplification output from the first amplification circuit 20X. Output from the first peak hold circuit 12X that holds the peak value of the signal, the second amplifier circuit 40X that amplifies the received light signal output from the other terminal l ib of the light receiver 1 IX, and the second amplifier circuit 40X.
  • the required arithmetic control device (arithmetic control means) 60 is provided.
  • the light receiving unit 1 IX includes, for example, a plurality of powerful light receiving elements PDXl to PDXn + 1 in the vertical direction, such as photodiodes and PIN photodiodes, and each of the light receiving elements PDX :! to PDXn + 1
  • the anodes are connected by resistors RXl to RXn.
  • the output terminals of the light receiving elements PDXl to PDXn + 1 that are in contact with P are connected by resistors RXl to RXn, respectively.
  • the anode of the light receiving element PDX1 is grounded via a resistor RXH, and the anode of the light receiving element PDX n + 1 is grounded via a resistor RXL.
  • a photodiode is used for the light receiving element, but if high speed is required, a PIN type photodiode should be used.
  • the arithmetic and control unit 60 is based on a digital conversion circuit unit 61 that converts the peak values of the first and second peak hold circuits 12X and 13X into digital, and the digital value converted by the digital conversion circuit unit 61. And a calculation / analysis control unit 62 for analyzing and finding the light receiving position of the laser beam of the light receiving unit 1 IX.
  • Figure 1 shows the laser beam and the light receiving position P.
  • ⁇ R (total RX1 to RXn port) >> RXH (RXL) is sufficient.
  • the light receiving position P is indicated by a distance Lp from an intermediate point between the center of the first light receiving element PDX1 and the center of the (n + 1) th light receiving element PD Xn + 1 to the position where the laser beam is irradiated.
  • the midpoint between the center of the first light receiving element PDX1 and the center of the n + 1 light receiving element PDXn + 1 is the origin position, and the distance Lp to the light receiving position P is expressed by the following equation (1). You can ask for it.
  • Lp L / 2 X ((VXh-VX1) / (VXh + VX1))
  • L is the length of the light receiver 1 IX. This length L indicates the length between the center of the first light receiving element PDX1 and the center of the (n + 1) th light receiving element PDXn + 1.
  • the laser light having a wavelength of about 500 nm to:! OOOnm can be used.
  • a laser light having a wavelength of 870 nm is used.
  • the conversion gain (radiation sensitivity) of the light receiving element is 0.47AZW for 870nm laser light.
  • the output power of the laser beam is SlmW / mm 2
  • a PIN photodiode is used as a light receiving element, and its light receiving area (generally called an active area) is lmm X lmm.
  • the pitch length which is the distance between a diode and the diode adjacent to the diode, needs to be 5 mm or less, but the mounting pitch length in this embodiment is 3.1 mm.
  • the number of light receiving elements is 20 (PDX1 to PDX20).
  • the distance Lp to the light receiving position P can be obtained by the following equation.
  • Lp a X L / 2 X ((VXh-VXl) / (VXh + VX1)) ⁇ ⁇ ⁇ ⁇ (1 ')
  • the intervals between the light receiving elements are equal.
  • the distance between the light receiving elements is actually not required to be equal, by adjusting the resistance value between the light receiving elements. Can be in the same state.
  • FIG. 2 is a diagram showing the light receiving elements arranged so that the pitch intervals as the intervals between the light receiving elements are different.
  • five light receiving elements are respectively arranged with a pitch interval L with respect to adjacent light receiving elements, and a resistor having a resistance value R is connected between the anodes of the adjacent light receiving elements.
  • the resistance value R when the pitch interval L between the three light receiving elements arranged above is 1.5 times 1.5 XL, the resistance value R must also be 1.5 times 1.5 XR. There is.
  • the pitch interval L is 3. lmm and the resistance value R is 7.5 ⁇
  • the resistance value R is also 1.5 times 1 1, 25 Must be ⁇ .
  • the light receiving unit 1 IX receives laser light emitted from a rotary laser device (not shown)
  • the light receiving position of the light receiving unit 1 IX that is, the light receiving element PDX that receives the laser light generates a current corresponding to the received light amount.
  • the received light signal of voltage (VXh, VX1) corresponding to the current of the light receiving element PDX and the position of the light receiving element PDX is output from the terminals lla and l ib.
  • the voltages VXh and VX1 are amplified by the first and second amplifier circuits 20X and 40X.
  • the peak value of the voltage of the received light signal amplified by the first and second amplifier circuits 20X and 40X is held by the first and second peak hold circuits 12X and 13X.
  • FIG. 3 is a block diagram showing a configuration of the arithmetic and control unit 60 according to the first embodiment of the present invention.
  • the arithmetic control device 60 includes a digital conversion circuit unit 61 that converts an analog signal into a digital signal, and an arithmetic analysis control unit 62 connected to the digital conversion circuit unit 61.
  • the arithmetic analysis control unit 62 includes a digital signal input unit 63 that is an input unit that receives a digitally converted signal, and an arithmetic analysis control unit 64 that controls the analysis of the input digital signal. , An arithmetic analysis processing unit 65 that calculates and analyzes and processes the input digital signal, and a comparison analysis processing unit 66 that compares and analyzes and processes the input digital signal.
  • FIG. 4 is a flowchart showing functions of the level sensor 10 according to the first embodiment of the present invention.
  • the light receiving unit 1 IX detects the laser beam.
  • Resistor RXH detects voltage VXh
  • resistor RXL detects voltage VXI.
  • these voltages VXh and VX1 are amplified by the first amplifier 20X and the second amplifier 40X, respectively.
  • the voltage-amplified signal holds the peak value of the voltage by the first peak hold circuit 12X and the second peak hold circuit 13X.
  • step S3 these analog signals are input to the arithmetic and control unit 60 and converted into digital signals by the digital conversion circuit unit 61. As shown in step S4, these digital signals are based on analog signal voltages VXh and VX1.
  • step S5 these digital signals are input to the calculation analysis processing unit 65, and as shown in step S6, calculation analysis of addition / subtraction / multiplication / division is performed, including calculation of the signal ratio.
  • step S7 the comparison analysis processing unit 66 performs a comparison analysis process for comparing the signal ratio at the time of light reception at the zero position with the calculation processing result.
  • step S9 the distance to the light receiving position is obtained as shown in the equation (1) or (1 ′).
  • the calculation analysis control unit 64 is connected to the calculation analysis processing unit 65 to control the calculation analysis, and is also connected to the comparison analysis processing unit 66 to control the comparison analysis. [0028] As described above, it is only necessary to provide the first and second amplifier circuits 20X and 40X and the first and second peak hold circuits 12X and 13X. As in the prior art, an amplifier is provided for each of the light receiving elements PDXl to PDXn + 1. Since there is no need to provide a comparator, the circuit configuration is simple.
  • FIG. 5 is a block diagram showing the configuration of the level sensor 110 using the light receiving unit 111 of the second embodiment.
  • the light receiving unit 111 is configured by coupling the light receiving unit 1 IX and the light receiving unit 11Y.
  • the light receiving unit 11Y is arranged along the parallel direction of the light receiving elements PDXl to PDXn + 1 of the light receiving unit 11X.
  • FIG. 6 is a circuit diagram showing a light receiving unit according to the second embodiment of the present invention. Since the light receiving unit 1 IX is described in the description of FIG. 1, its description is omitted here. As shown in FIG. 6, the light receiving unit 11 Y has a plurality of light receiving elements PD Yl to PDYn + 1 that are made up of photodiodes and the like in the same manner as the light receiving unit 1 IX, and each of the light receiving elements PDYl to PDYn + l The cathodes are connected by resistors RYl to RYn. The force sword of the light receiving element PDY1 is grounded via the resistor RYH, and the force sword of the light receiving element PDYn + 1 is grounded via the resistor RYL.
  • 20Y is a third amplifier circuit that amplifies the received light signal output from one terminal lYa of the light receiving unit 11Y
  • 12Y is the third amplifier circuit 20Y that holds the peak value of the output amplified signal
  • the third peak hold circuit, 40Y is the fourth amplifier circuit that amplifies the received light signal that also outputs the other terminal lYb of the light receiving unit 11Y
  • 13Y is the peak value of the amplified signal that also outputs the fourth amplifier circuit 40Y force.
  • 4th peak hold circuit to hold 160 is obtained by analyzing the light receiving position of the light receiving unit 1 IX, 11Y based on the peak value held by the 1st to 4th peak hold circuits 12X, 13X, 12Y, 14Y It is an arithmetic and control unit.
  • the arithmetic control device 160 has a force including a digital conversion circuit unit 161 and an arithmetic analysis control unit 162.
  • the function of the arithmetic control device 160 is the same as that of the arithmetic control device 60 shown in FIG. Therefore, the description is omitted.
  • the light receivers 1 IX and 11Y are grounded through the resistors RXH, RXL, RYH, and RYL, respectively, the light receivers 1 IX and 11Y are in accordance with the positions of the laser beams irradiated to the light receivers 1 IX and 11Y. ,
  • VXh and VX1 VYh and VYl signal output voltages output from the 11Y terminals 11a and l ib, 1 lYa and 1 lYb.
  • the laser beam is an ideal point light source
  • the voltages VXh, VXl, VYh, VYl output from the terminals 11a, l ib, 11 Ya, l lb of the light receiving units 1 IX, 11Y are as shown in FIG. It looks like the graph shown.
  • the force S can be obtained by obtaining the distance Lx from the output voltages VXh, VXl of the terminals 11a, l ib to the light receiving position P from the following equation (2).
  • Lx a X L / 2 X (VXh-VXl) / (VXh + VXl) ⁇ ⁇ ⁇ ⁇ (2)
  • the voltage and the resistance are proportional to each other according to Ohm's law. In other words, even if the power of the laser beam changes and the current changes, the ratio of VXh and VXl does not change and depends only on the resistance value.
  • the light receiving element is easy to understand.
  • the explanation is that only one laser beam is applied. This relationship is maintained even when the laser beam becomes larger and is irradiated to multiple light receiving elements. That is, it is possible to calculate the light receiving position P without depending on the beam brightness or size of the laser light.
  • the distance Ly from the output voltages VYh and VYl of the terminals l lYa and l lYb to the light receiving position P can be obtained from the following equation (3).
  • the light receiving position P can be calculated without depending on the beam brightness or size of the laser light.
  • the light receiving position can be detected over a wide range.
  • the accuracy is the same as in Example 1.
  • FIG. 8 is an explanatory view showing a modification of the second embodiment of the present invention, in which a part of two light receiving portions is overlapped. As shown in Fig. 8, if the light receiving units 11X and 11Y are shifted to the left and right and part of the light receiving units 11X and 11Y overlaps in the vertical direction, the origin position between the light receiving units 1 IX and 11Y The accuracy in the vicinity of can be improved.
  • the amount of overlap between the light receiving unit 1 IX and the light receiving unit 11Y is that the beam diameter of the laser beam is about 5mm to 20mm. It is desirable that there be. Also, it is not necessary to overlap the beam diameter. In other words, if the beam diameter of 5 mm is considered to be the minimum, the overlap amount may be 5 mm. However, even below this, sufficient effects can be obtained. In short, the amount of duplication may be determined appropriately according to the beam diameter of the laser beam to be measured. By the way, the laser beam has a certain beam diameter.
  • the terminals l la, l ib, l lYa, 11Y b of the light receiving units 11X, 11Y in the second embodiment are used.
  • the voltages VXh, VX1, VYh, and VY1 output from are as shown in the diagram in Figure 9 with respect to the light receiving position.
  • the beam diameter is small, for example, 5 mm or less, whether one of the light receiving sections 1 IX or 11Y is receiving the laser beam Obtain the light receiving position from the light receiving state of the level sensor that is receiving light.
  • the light receiving position is obtained from the light receiving states of both the light receiving units 1 IX and 11Y.
  • the ratio of signals output from the light receiving units 1 IX and 11Y is obtained by weighted averaging. How to find it will be described below.
  • Lp Lpx X (Vx / Vxy) + Lpy X (Vy / Vxy)
  • Vx Vxh + Vxl- ⁇ (7)
  • Vy Vyh + Vyl---(8)
  • Vxy Vxh + Vxl + Vyh + Vyl---(9)
  • Lp (Lpx X O + Lpy XVy)
  • ZVy Lpy.
  • the midpoint of the gap between the light receiving portions 11X and 11Y is the 0 position (origin position) in position detection, and is the mechanical 0 position and the electrical 0 position (voltage is zero).
  • the position is constant. For example, even if there is uneven brightness in the laser beam, if the position is constant, the electrical 0 position will not change. As a result, a more reliable level sensor can be provided to the user.
  • the voltages VXh, VX1, VYh, VY1 output from the terminals 11 &, l ib, HYa, l lYb of the light receiving units 1 IX, 11 ⁇ are amplified by the amplifiers 20X, 40X, 20Y, 40Y.
  • the peak values of the voltages amplified by the amplifiers 20X, 40X, 20Y, and 40Y are held by the first to fourth peak hold circuits 12X, 13X, 12Y, and 14Y.
  • Fig. 10 is an explanatory view showing a third embodiment of the present invention, which has four light receiving portions and a part of the light receiving portions overlapped with each other.
  • the light receiving unit 111 is composed of two light receiving units 11X and 11Y. As shown in FIG. 10, the light receiving unit 111 includes four light receiving units 11 X, 11Y, l lXa, and l lYa. Moyore.
  • the lower end of the light receiving unit 1 IX and the upper end of the light receiving unit 11Y are the lower end of the light receiving unit 11Y and the upper end of the light receiving unit lXa, and the lower end of the light receiving unit lXa And the lower end of the light receiving portion l lYa overlap each other.
  • the overlapping amount of the light receiving unit 1 IX and the light receiving unit 11Y applies to the third embodiment. That is, it is desirable that the overlap amount is about 1/2 of the beam diameter.
  • the adjacent output terminals of the plurality of light receiving elements are connected by the resistors, respectively, so that the level can be obtained only by providing a simple circuit.
  • the present invention can be applied to a level sensor that detects a light receiving position that is a center position of received laser light in a surveying field.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本発明は、並設された複数の受光素子PDX1~PDXnを備えた受光部11Xであって、複数の受光素子PDX1~PDXnの互いに隣接する出力端子をそれぞれ抵抗RX1~RXnで接続したレベルセンサである。

Description

明 細 書
レべノレセンサ 技術分野
[0001] この発明は、レーザ光の受光位置の中心を検出するレベルセンサに関する。
(優先権の主張)
本願は、 2005年 11月 29曰に曰本国特許厅に出願された特願 2005— 343360 号に基づく優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来から、複数の受光素子を上下に並設したレベルセンサが知られている。例えば
、特開 2004— 309440号公報を参照されたい。
[0003] 力かるレベルセンサは、各受光素子から出力される受光信号を複数のアンプでそ れぞれ増幅し、各アンプから出力される信号と閾値とを複数のコンパレータでそれぞ れ比較し、各コンパレータから出力される比較信号に基づいてレーザビームの中心 位置であるレベルを求めるものである。
[0004] このようなレベルセンサにあっては、各受光素子にアンプとコンパレータを設けなけ ればならず、このため回路が複雑になり、高価になってしまうという問題があった。
[0005] 従って、簡単な回路を設けるだけでレーザ光の受光位置を求めることのできるレべ ルセンサの必要性が求められている。
発明の開示
[0006] 上記の必要性を達成するため、本発明の第 1の特徴は、並設された複数の受光素 子を備えたレベルセンサであって、前記複数の受光素子の互いに隣接する出力端 子がそれぞれ抵抗で接続され、前記接続された受光素子の両端から出力される信 号を基に、前記レベルセンサに接続された演算制御装置により出力信号を比較する ことで受光位置を解析することである。
[0007] 本発明の第 2の特徴は、レベルセンサを受光素子の配列方向に複数個配置したこ とである。
[0008] 本発明の第 3の特徴は、前記受光素子に接続する抵抗の大きさを変更して出力端 子の信号比が等しくなる受光位置を変更することで、任意の場所を受光位置検出の 基準として前記演算装置で受光位置を解析することである。
[0009] 本発明の第 4の特徴は、前記複数個配置されたレベルセンサの出力信号の比を加 重平均して演算装置で受光位置を解析することである。
[0010] 本発明の第 5の特徴は、レベルセンサを複数連結して配置し、隣りあうレべノレセン サ間の受光位置は、この隣りあうレベルセンサの出力を比較することで解析すること である。
[0011] 本発明の第 6の特徴は、前記連結して配置されるレベルセンサは、隣りあうレベル センサの受光位置が重複するように設けられていることである。
本発明の第 7の特徴は、レーザ光の受光位置の中心を検出するレベルセンサにお いて、一方の極が共通に接続され、レーザ光を受光する配列された複数の受光素子 と、前記受光素子の他方の極とその受光素子に隣接する他方の極との間に接続され 、受光するレーザ光の光量に比例する電気信号に変換する第 1の電気信号変換素 子と、前記複数の受光素子のうち一方の方向の最も端に配置された受光素子の他 方の極に接続され、受光するレーザ光の光量に比例する電気信号に変換する第 2の 電気信号変換素子と、前記一方の方向と反対の方向の最も端に配置された受光素 子の他方の極に接続され、受光するレーザ光の光量に比例する電気信号に変換す る第 3の電気信号変換素子と、前記第 2の電気信号変換素子において発生する第 1 の電気信号と、前記第 3の電気信号変換素子において発生する第 2の電気信号とを 受信するコンピュータであって、前記コンピュータは、前記第 1の電気信号と前記第 2 の電気信号とに基づいて、前記第 1の電気信号と前記第 2の電気信号との比を求め る演算を行うる演算解析処理部と、前記演算により求められた結果と、前記複数の受 光素子の配列の原点位置における信号の比とを比較する比較解析処理部とを有す ることである。
本発明の第 8の特徴は、レーザ光の受光位置の中心を検出するレベルセンサにお いて、第 1の受光部と、この第 1の受光部の一方の端部に接続され、受光するレーザ 光の光量に比例する電気信号に変換する第 1の電気信号変換素子と、前記第 1の受 光部の他方の端部に接続され、受光するレーザ光の光量に比例する電気信号に変 換する第 2の電気信号変換素子と、前記第 1の受光部と光一電気特性において同一 であって、その受光部と結合した第 2の受光部と、この第 2の受光部の一方の端部に 接続され、受光するレーザ光の光量に比例する電気信号に変換する第 3の電気信 号変換素子と、この第 2の受光部の他方の端部に接続され、受光するレーザ光の光 量に比例する電気信号に変換する第 4の電気信号変換素子と、前記第 1の電気信 号変換素子において発生する第 1の電気信号と、前記第 2の電気信号変換素子に ぉレ、て発生する第 2の電気信号と、前記第 3の電気信号変換素子にぉレ、て発生する 第 3の電気信号と、前記第 4の電気信号変換素子において発生する第 4の電気信号 とを受信するコンピュータであって、前記コンピュータは、前記第 1の電気信号と前記 第 2の電気信号とに基づいて、前記第 1の電気信号と前記第 2の電気信号との比を 求める演算を行うる演算解析処理部と、前記演算により求められた結果と、前記複数 の受光素子の配列の原点位置における信号の比とを比較する比較解析処理部とを 有することである。
本発明の第 9の特徴は、本発明の第 8の特徴を有する発明において、前記第 1の 受光部と前記第 2の受光部とが所定の量の重複部分を有することである。
本発明の第 10の特徴は、本発明の第 9の特徴を有する発明において、前記第 2の 受光部に対して所定の量の重複部分を有するように結合した第 3の受光部と、前記 第 3の受光部に対して所定の量の重複部分を有するように結合した第 4の受光部とを 更に有することである。
図面の簡単な説明
[図 1]本発明の第 1実施例に係るレベルセンサの構成を示したブロック図である。
[図 2]受光素子間のピッチ間隔が異なるように配置した受光素子を示す図である。
[図 3]本発明の第 1実施例に係る演算制御装置の構成を示すブロック図である。
[図 4]本発明の第 1実施例に係るレベルセンサの機能を示すフローチャートである。
[図 5]本発明の第 2実施例のレベルセンサの構成を示したブロック図である。
[図 6]本発明の第 2実施例の受光部を示した回路図である。
[図 7]本発明の第 2実施例の受光部から出力される出力信号と受光位置との関係を 示した点光源に関するグラフである。 [図 8]本発明の第 2実施例の変形であって、 2つの受光部の一部を重ねたものを示し た説明図である。
[図 9]本発明の第 2実施例の受光部から出力される出力信号と受光位置との関係を 示したグラフであって、ビーム径が大きいときを示すものである。
[図 10]本発明の第 3実施例であって、 4つの受光部を有し、その受光部の一部を相 互に重ねたものを示した説明図である。
符号の説明
[0013] 10 レベルセンサ
11X 受光部
PDXl〜PDXn 受光センサ
RXl〜RXn 抵抗
発明を実施するための最良の形態
[0014] 以下、この発明のレベルセンサの実施形態である実施例を図面に基づいて説明す る。
[0015] 図 1はこの発明に力かるレベルセンサ 10の構成を示したブロック図である。このレべ ルセンサ 10は、受光部 1 IXと、この受光部 1 IXの一方の端子 11aから出力される受 光信号を増幅する第 1増幅回路 20Xと、第 1増幅回路 20Xから出力される増幅信号 のピーク値をホールドする第 1ピークホールド回路 12Xと、受光部 1 IXの他方の端子 l ibから出力される受光信号を増幅する第 2増幅回路 40Xと、第 2増幅回路 40Xか ら出力される増幅信号のピーク値をホールドする第 2ピークホールド回路 13Xと、第 1 ,第 2ピークホールド回路 12X, 13Xがホールドしたピーク値に基づいて受光部 1 IX のレーザ光の受光位置を解析して求める演算制御装置 (演算制御手段) 60とを備え ている。
[0016] 受光部 1 IXは、例えばフォトダイオード、 PINフォトダイオードなど力 なる複数の受 光素子 PDXl〜PDXn+ 1を上下(垂直方向)に並設し、それぞれの受光素子 PDX :!〜 PDXn+ 1のアノード間を抵抗 RXl〜RXnで接続したものである。換言すれば、 P 接する受光素子 PDXl〜PDXn+ lの出力端子を抵抗 RXl〜RXnでそれぞれ接 続したものである。 [0017] そして、受光素子 PDX1のアノードは抵抗 RXHを介して接地され、受光素子 PDX n+ 1のアノードは抵抗 RXLを介して接地されている。
一般的に、受光素子にはフォトダイオードを用いるが、高速性を要求するのであれ ば PIN型フォトダイオードを用いるのがよい。
[0018] 演算制御装置 60は、第 1,第 2ピークホールド回路 12X, 13Xのピーク値をデジタ ルに変換するデジタル変換回路部 61と、このデジタル変換回路部 61で変換された デジタル値に基づいて受光部 1 IXのレーザ光の受光位置を解析して求める演算解 析制御部 62とを有している。
次に、上記のように構成されるレベルセンサ 10の動作について説明する。
[0019] 先ず、レーザ光が照射される受光部 1 IXにおける位置である受光位置 Pの求め方 を簡単に説明する。図 1に、レーザ光及び受光位置 Pを示す。
[0020] レーザ光が受光素子 PDXl〜PDXn+ lに照射されると、レーザ光を受光した受光 素子に電流 Ipが発生する。その電流は抵抗 RXH, RXLを流れるので、その抵抗の 両端に電圧が生じる。
抵抗 RXH, RXLの電圧を VXh, VX1とし、抵抗 RXH=抵抗 RXLとする。また、受 光位置 Pを効率よく検出するためには、∑R (RXl〜RXnの総禾口)》RXH (RXL)と すればよい。受光位置 Pは、第 1の受光素子 PDX1の中心と第 n+ 1の受光素子 PD Xn+ 1の中心との中間点からレーザ光が照射される位置までの距離 Lpで示される。 図 1においては、第 1の受光素子 PDX1の中心と第 n+ 1の受光素子 PDXn+ 1の中 心との中間点を原点位置としており、受光位置 Pまでの距離 Lpは下記の(1)式で求 めることができる。
[0021] Lp = L/ 2 X ( (VXh - VX1) / (VXh + VX1) )
ただし、 Lは受光部 1 IXの長さである。この長さ Lは、第 1の受光素子 PDX1の中心 と第 n+ 1の受光素子 PDXn+ 1の中心との間の長さを示すものである。
次に、受光位置 Pにおける出力電圧 VXpを求める。受光位置 Pから見た RXH、 RX Lまでの抵抗値の総和を各々∑RXh、∑RX1とすると、受光位置 Pにおける見かけの 抵抗 RXpは、∑RXhと∑RX1との並列接続として求めることができる。即ち、 RXp= ( ∑RXh X∑RXl) / (∑RXh+∑RX1)。従って、受光位置 Pにおける出力電圧 VXp は、 VXp = Ip X RXpである。
また、 VXh及び VX1を求めると、 VXh=VXp X RXH/∑ RXh、 VXl=VXp X RX L/∑RX1が得られる。
以下に、これらの値の一例を記載する。
レーザ光としては、その波長が約 500nm〜: !OOOnmであるものを使用することがで きる力 本実施例では、波長が 870nmのレーザ光を使用している。受光素子の変換 利得(放射感度)は、 870nmのレーザ光に対して 0. 47AZWである。レーザ光の放 出出力力 SlmW/mm2のとき、 1個の受光素子に発生する電流 Ipは、 Ip = lmm2 X 0 . 47A/WX lmW/mm2=0. 47mAとなる。
実際に、受光素子として PINフォトダイオードを使用し、その受光面積 (一般的に、 アクティブエリアと呼ぶ)は lmm X lmmである。あるダイオードと、そのダイオードに 隣接するダイオードとの距離であるピッチの長さは、 5mm又はそれ以下であることが 必要であるが、本実施例における実装ピッチの長さは 3. 1mmである。受光素子の 個数は 20である(PDX1〜PDX20)。その長さ Lは実装ピッチの長さと受光素子の個 数一 1の積から求められるので、 L = 3· 1mm X 19 = 58· 9mmである。
VXh= 2. 88V、VX1 = 2. 72Vの場合、式(1)の Lpを求めるために上記の値を代 入すると、 Lp = 32. 25mmが得られる。また、 RX1 = · · · =RX19 = 7. 5 Ω、∑RXh = 123. 5 Ω、∑RX1= 131 Q , RXp = 63. 6 Ω、 lp = 0. lmA、 VXp = 6. 36mVの 値も得られる。
一方、ある受光素子と隣接する受光素子との間の抵抗は、 RX1から RX19までから なり、その抵抗値は等しく RX1 = ' " =RX19 = 7. 5 Ωであり、 PDX1のアノードに接 続される抵抗 RXH及び PDX20のアノードに接続される抵抗 RXLは、 RXH = RXL
= 56 Ωである。従って、∑R=∑RX1 H hRX19 = 142. 5 Ωであるので、この 場合、∑R》RXH (RXL)は成立しなレ、。
実際に、∑R》RXH (RXL)と出来ない場合でも、受光部 11Xの終端位置にレー ザ光が照射されたときの光量比ひを乗じるだけでよぐこの値は各抵抗 RX1ないし R Xnおよび RXH, RXLから容易に算出することができる。
この光量比 αは、センサの中心での出力と、センサの一番端にある受光素子の出 力との比である出力比から求めることができる力 これらの出力は、抵抗値で示すこと ができるので、 ひ = (∑RXn +RXU / (∑RXn_RXH)で表すことができる。
光量比ひを用いて、次式で受光位置 Pまでの距離 Lpを求めることができる。
[0023] Lp = a X L/2 X ( (VXh-VXl) / (VXh + VX1) ) · · · ( 1 ')
具体的には、∑RXn= 142. 5 Ω、 RXL = RXH = 56 Qの場合、 ひ = ( 142. 5 + 5 6) / ( 142. 5— 56) = 2. 294である。
[0024] また、この実施例では、受光素子間の間隔を等間隔としているが、実際には等間隔 である必要はなぐ受光素子間の抵抗の値を調整することによって等間隔にしたのと 同じ状態にすることができる。
図 2は、受光素子間の間隔であるピッチ間隔が異なるように配置した受光素子を示 す図である。最初に、 5つの受光素子が隣接する受光素子に対してピッチ間隔 Lをも つて各々配置され、そして隣接する受光素子のアノード間には抵抗値 Rの抵抗が接 続されていたと仮定する。次に、図 2に示すように、上方に配置された 3つの受光素 子間においてそのピッチ間隔 Lを 1.5倍の 1.5 X Lに各々すると、抵抗値 Rも 1. 5倍の 1.5 X Rにする必要がある。
具体的には、ピッチ間隔 Lが 3. lmm、抵抗値 Rが 7. 5 Ωの場合、ピッチ間隔が 1.5 倍の 4. 65mmになったときは、抵抗値 Rも 1.5倍の 1 1 , 25 Ωにする必要がある。 また、受光素子の性能(面積、光電変換量)についても同等のものを使用する必要 はない。いずれにしても、電圧 VXhと VX1との比率により高さ位置 Lpを求めることは 容易にできる。
[0025] 図示しない回転レーザ装置から射出されるレーザ光を受光部 1 IXが受光すると、 その受光部 1 IXの受光位置、すなわちレーザ光を受光する受光素子 PDXがその受 光量に応じた電流を流し、この受光素子 PDXの電流とその受光素子 PDXの位置に 対応した電圧 (VXh, VX1)の受光信号が端子 l l a, l ibから出力される。
[0026] この電圧 VXh, VX1が第 1,第 2増幅回路 20X, 40Xによって増幅される。この第 1 ,第 2増幅回路 20X, 40Xにより増幅された受光信号の電圧のピーク値は第 1,第 2 ピークホールド回路 12X, 13Xにホールドされる。
[0027] 図 3は、本発明の第 1実施例に係る演算制御装置 60の構成を示すブロック図であ る。受光部 1 IXによるレーザ光の検出、電圧への変換、第 1増幅器 20X及び第 2増 幅器 40Xによる電圧増幅、第 1ピークホールド回路 12X及び第 2ピークホールド回路 13Xによる電圧のピーク値のホールドについてのブロック図については省略する。 演算制御装置 60は、アナログ信号をデジタル信号に変換するデジタル変換回路 部 61と、デジタル変換回路部 61に接続された演算解析制御部 62を有する。この演 算解析制御部 62は、デジタル変換された信号を受信する入力部であるデジタル信 号入力部 63と、入力されるデジタル信号の演算'比較の解析等を制御する演算解析 制御部 64と、入力されるデジタル信号を演算し、解析'処理する演算解析処理部 65 と、入力されるデジタル信号を比較し、解析'処理する比較解析処理部 66とを有して いる。
図 4は、本発明の第 1実施例に係るレベルセンサ 10の機能を示すフローチャートで ある。図 1を参照しながら、図 4のフローチャートを説明する。ステップ S1において、受 光部 1 IXはレーザ光を検出する。抵抗 RXHにより電圧 VXh、抵抗 RXLにより電圧 V XIが検出される。ステップ S2において、これらの電圧 VXh、 VX1は、第 1増幅器 20X 及び第 2増幅器 40Xにより、それぞれ増幅される。そして電圧増幅された信号は、第 1ピークホールド回路 12X及び第 2ピークホールド回路 13Xにより、電圧のピーク値 がそれぞれホールドされる。
ステップ S3において、これらのアナログ信号は、演算制御装置 60に入力され、デジ タル変換回路部 61によってデジタル信号に変換される。ステップ S4において示すよ うに、これらのデジタル信号は、アナログ信号電圧 VXh、 VX1に基づくものである。ス テツプ S 5において、これらのデジタル信号は、演算解析処理部 65に入力され、ステ ップ S6に示すように、信号比の演算を始めとして、加減乗除の演算解析をおこなう。 ステップ S7において、比較解析処理部 66は、零位置受光時の信号比と前述の演算 処理結果を比較する比較解析処理を行う。
この結果、ステップ S9において、式(1)又は(1')に示すように、受光位置 までの 距離が求められる。
なお、演算解析制御部 64は、演算解析処理部 65に接続され、その演算解析を制 御し、そして比較解析処理部 66にも接続され、その比較解析を制御する。 [0028] 上述のように、第 1 ,第 2増幅回路 20X, 40Xと第 1,第 2ピークホールド回路 12X, 13Xとを設けるだけでよ 従来のように各受光素子 PDXl〜PDXn+ l毎にアンプ やコンパレータを設ける必要がないので、その回路構成は簡単なもので済むことにな る。
図 5は第 2実施例の受光部 111を用いたレベルセンサ 110の構成を示したブロック 図である。
[0029] 受光部 111は、受光部 1 IXと受光部 11Yとを結合することから構成されている。受 光部 11Yは受光部 11Xの受光素子 PDXl〜PDXn+ lの並設方向に沿って配置さ れている。
[0030] 図 6は、本発明の第 2実施例の受光部を示した回路図である。受光部 1 IXは図 1に 関する説明で記載しているので、ここではその記載を省略する。受光部 11 Yは、図 6 に示すように、受光部 1 IXと同様にフォトダイオードなどからなる複数の受光素子 PD Yl〜PDYn+ lを上下に並設し、それぞれの受光素子 PDYl〜PDYn+ lのカソー ド間を抵抗 RYl〜RYnで接続したものである。そして、受光素子 PDY1の力ソードは 抵抗 RYHを介して接地され、受光素子 PDYn+ 1の力ソードは抵抗 RYLを介して接 地されている。
[0031] 図 5において、 20Yは受光部 11Yの一方の端子 l lYaから出力される受光信号を 増幅する第 3増幅回路、 12Yは第 3増幅回路 20Y力 出力される増幅信号のピーク 値をホールドする第 3ピークホールド回路、 40Yは受光部 11Yの他方の端子 l lYb 力も出力される受光信号を増幅する第 4増幅回路、 13Yは第 4増幅回路 40Y力も出 力される増幅信号のピーク値をホールドする第 4ピークホールド回路、 160は第 1〜 第 4ピークホールド回路 12X, 13X, 12Y, 14Yがホールドしたピーク値に基づいて 受光部 1 IX, 11Yのレーザ光の受光位置を解析して求める演算制御装置である。こ の演算制御装置 160は、デジタル変換回路部 161と、演算解析制御部 162とを有す る力 その演算制御装置 160の機能は、図 1に記載した演算制御装置 60と同様であ る。従って、その説明は省略する。
次に、上記のように構成される受光部 111およびレベルセンサ 110の動作にっレ、て 説明する。 [0032] ここで、説明の便宜上、受光部 1 IXと受光部 11Yとの間のギャップはなレ、、そして 重複部分もないものとする。
[0033] 受光部 1 IX, 11Yはそれぞれ抵抗 RXH, RXL, RYH, RYLを介して接地してあ るので、受光部 1 IX, 11Yに照射されるレーザ光の位置にしたがって、受光部 1 IX,
11Yの端子 11aと l ib, 1 lYaと 1 lYbから出力される VXhと VX1、 VYhと VYlの信号 出力の電圧に差がつく。
[0034] これらの信号出力はレーザ光が照射した位置に関係し、その位置に対応して変化 する。
[0035] レーザ光が理想的な点光源であれば、受光部 1 IX, 11Yの各端子 11a, l ib, 11 Ya, l lYbから出力される電圧 VXh, VXl, VYh, VYlは図 7に示すグラフのようにな る。
[0036] 受光部 1 IXのみに注目し、端子 11a, l ibの出力電圧 VXh, VXlから受光位置 Pま での距離 Lxを下記の(2)式より求めること力 Sできる。
[0037] Lx= a X L/2 X (VXh-VXl) / (VXh+VXl) · · · (2)
実施例 1で使用した値 L = 58. 9mm、 a = l . 786を(2)式に代入すると、 Lx = 52. 5977 X (VXh - VXl) / (VXh + VXl)
となる。
受光位置 Pにおける出力電圧 VXpについては、オームの法則より、電圧と抵抗は 比例関係にある。つまり、レーザ光のパワーが変化し、電流が変化しても、 VXh、 VXl の比率は変化せず、抵抗値のみに依存している。ここでは、分かり易ぐ受光素子の
1個のみにレーザ光が当たっている説明となっている力 レーザ光のビームが大きく なり、複数の受光素子に照射された場合も、この関係は保たれる。即ち、レーザ光の ビーム輝度や大きさに依存しないで、受光位置 Pを算出することが可能である。
また、受光部 11Yのみに注目し、端子 l lYa, l lYbの出力電圧 VYh, VYlから受 光位置 Pまでの距離 Lyを下記の(3)式より求めることができる。
[0038] Ly= a X L/2 X (VYh _ VYl) Z (VYh + VYl)…(3)
ただし、受光部 1 IX, 11丫の長さをしとし、その 1Z2Lの位置をレーザ光が通過し た場合を 0位置 (原点位置)とする。 (3)式の Lyについて、(2)式の Lxの場合と同様に具体的な数値を適用すると、 Ly= 52. 5977 X (VYh-VYl) / (VYh+VYl)
となる。
この結果より、レーザ光のビーム輝度や大きさに依存しないで、受光位置 Pを算出 することが可能であることが理解できる。
[0039] 例えば、受光部 1 IXと受光部 11Yとの間の位置(中間の位置でなくてもよレ、)を 0位 置 (原点位置)とした場合、受光部 1 IXにレーザ光が照射されている場合、(1)式の 受光位置 Pまでの距離 Lpxは、
Lpx= (L/2) +Lx · ' · (4)
となる。
[0040] 受光部 11 Υにレーザ光が照射されている場合、受光位置 Ρまでの距離 Lpyは、
Lpy= - (L/2) -Ly …(5)
となる。
この第 2実施例においては、受光部 1 IXと受光部 11Yを結合することによって全体 の長さが長くなるので、広範囲に渡って受光位置を検出することができる。但し、精度 に関しては、実施例 1と同様である。
[0041] この第 2実施例では、受光部 1 IX, 11Y間のギャップがゼロである力 このギャップ 力 Sレーザ光のビーム径以内であれば、レーザ光の受光位置を検出することができる。 図 8は、本発明の第 2実施例の変形であって、 2つの受光部の一部を重ねたものを 示した説明図である。図 8に示すように、受光部 11X, 11Yを左右にずらせるとともに 受光部 11X, 11Yの一部が上下方向に対して重複するように配置すれば、受光部 1 IX, 11Y間における原点位置の近傍の精度を向上させることができる。
受光部 1 IXと受光部 11Yとが重複する部分の量 (重複量)につレ、ては、レーザ光の ビーム径は φ 5mm〜20mm程度である力 重複量はビーム径の 1 2程度であるこ とが望ましレ、。また、ビーム径以上を重複させる必要はなレ、。即ち、 5mmのビーム径 を最小と考えれば、重複量も 5mmでよいこととなる。但し、これ以下であっても、十分 な効果は得られる。要は、計測するレーザ光のビーム径の大きさに合わせて、適宜重 複量を決定すればよい。 [0042] ところで、レーザ光はあるビーム径をもっており、例えば、ビーム径が大きくて 10m mであるとき、実施例 2における受光部 11X, 11Yの各端子 l la, l ib, l lYa, 11Y bから出力される電圧 VXh, VX1, VYh, VY1は、受光位置に関して図 9に示すダラ フのようになる。
図 9において、受光位置の原点(0で示す)では、電圧 VXh、 VY1の値が Pで示され 、電圧 VX1、 VYhの値が Qでそれぞれ示されている。これらの値 P, Qは、図 7に示す グラフの値と比較すると、小さい値となっているので、値 P, Qよりも大きな出力電圧が 得られるように改善する必要がある。これは、図 8に示すように受光部 11Xと受光部 1 1Yとを一部重ね合わせることにより達成される。
[0043] ビーム径が小さいとき、例えば 5mm又はそれ以下のとき、には、受光している一方 の受光部 1 IXまたは 11Yのどちらかのセンサでレーザを受光してレ、るか否かを求め て、受光しているほうのレベルセンサの受光状態から、受光位置を求める。
[0044] ビーム径が大きいとき、例えば 5mm又はそれ以上のとき、には、受光部 1 IX, 11Y の両方の受光状態から受光位置を求める。この場合、受光部 1 IX, 11Yから出力さ れる信号の比を加重平均して求める。以下にその求め方を説明する。
[0045] 受光部 11X, 11Yにレーザ光が照射されている場合、受光位置 Lpは、
Lp = Lpx X (Vx/Vxy) +Lpy X (Vy/Vxy)
= (Lpx X Vx + Lpy X Vy) /Vxy …(6)
ただし、 Vx=Vxh + Vxl-〜 (7)
Vy=Vyh+Vyl- - - (8)
Vxy=Vxh+Vxl+Vyh+Vyl- - - (9)
ここで、受光部 1 IXにだけレーザ光が照射されていると、 Vy = 0、 Vx=Vxyとなる ことから(6)式により、
Lp= (Lpx XVx + Lpy X O) /Vx = Lpxとなる。
[0046] 同様に、受光部 11Yにだけレーザ光が照射されていると、 Vx = 0、 Vx=Vxyとなる ことから(6)式により、
Lp= (Lpx X O + Lpy XVy) ZVy=Lpyとなる。
[0047] これは、受光位置でのレーザ光が点光源でもビーム径を有していてもこれに依存せ ず、受光位置は(6)式により求めることができることを示してレ、る。
[0048] ところで、受光部 11X, 11Yの間のギャップの中点は、位置検出上の 0位置 (原点 位置)であり、機械的な 0位置と電気的な 0位置(電圧がゼロ)であり、その位置が一 定であることを意味している。例えば、レーザ光のビームに輝度ムラがあってもその位 置が一定であれば、電気的な 0位置は変化することがなレ、。このため、ユーザに対し てより信頼性の高いレベルセンサを提供することができる。
[0049] 上述のように、受光部 1 IX, 11丫の各端子11&, l ib, HYa, l lYbから出力され る電圧 VXh, VX1, VYh, VY1は増幅器 20X, 40X, 20Y, 40Yで増幅され、各増 幅器 20X, 40X, 20Y, 40Yで増幅された電圧のピーク値が第 1〜第 4ピークホール ド回路 12X, 13X, 12Y, 14Yによりホールドされる。そして、演算制御装置 160が第 1〜第 4ピークホールド回路 12X, 13X, 12Y, 14Yでホールドしたピーク値に基づ レ、て受光部 1 IX, 11Yのレーザ光の受光位置を(6)式に基づレ、て求める。
[0050] 図 10は、本発明の第 3実施例であって、 4つの受光部を有し、その受光部の一部を 相互に重ねたものを示した説明図である。上記の第 2実施例では、受光部 111は 2 つの受光部 11X, 11Yから構成されている力 図 10に示すように、 4つの受光部 11 X, 11Y, l lXa, l lYaで構成してもよレ、。この場合、受光部 1 IXの下方端部と受光 部 11Yの上方端部とが、受光部 11Yの下方端部と受光部 l lXaの上方端部とが,受 光部 l lXaの下方端部と受光部 l lYaの下方端部とが、それぞれ重複している。 受光部 1 IXと受光部 11Yとの重複量にっレ、ては前述したが、この重複量は第 3実 施例にも適用される。即ち、重複量はビーム径の 1/2程度であることが望ましい。
[0051] 一組の回路で構成されるレベルセンサでは、精度を保持するため受光部部分の拡 張に限界があるが、複数の受光部を並設することで、精度を保持したまま受光部分を 広範囲に、且つ、安価に拡張することができる。
[0052] この発明によれば、複数の受光素子の互いに隣接する出力端子をそれぞれ抵抗 で接続したものであるから、簡単な回路を設けるだけでレベルを求めることができる。 産業上の利用可能性
[0053] 本発明は、測量分野において、受光したレーザ光の中心位置である受光位置を検 出するレベルセンサに適用することができる。

Claims

請求の範囲
[1] 並設された複数の受光素子を備えたレベルセンサであって、
前記複数の受光素子の互いに隣接する出力端子がそれぞれ抵抗で接続され、 前記接続された受光素子の両端から出力される信号を基に、前記レベルセンサに 接続された演算制御装置により出力信号を比較することで受光位置を解析すること を特徴とするレベルセンサ。
[2] 請求 1に記載のレベルセンサを受光素子の配列方向に複数個配置したことを特徴 とするレベルセンサ。
[3] 前記受光素子に接続する抵抗の大きさを変更して出力端子の信号比が等しくなる 受光位置を変更することで、任意の場所を受光位置検出の基準として前記演算装置 で受光位置を解析することを特徴とする請求項 1に記載のレベルセンサ。
[4] 前記複数個配置されたレベルセンサの出力信号の比を加重平均して演算装置で 受光位置を解析することを特徴とする請求項 2に記載のレベルセンサ。
[5] 請求項 1のレベルセンサを複数連結して配置し、
隣りあうレベルセンサ間の受光位置は、この隣りあうレベルセンサの出力を比較する ことで解析することを特徴とするレベルセンサ。
[6] 前記連結して配置されるレベルセンサは、
隣りあうレベルセンサの受光位置が重複するように設けられていることを特徴とする 請求項 5に記載のレベルセンサ。
[7] レーザ光の受光位置の中心を検出するレベルセンサにおいて、
一方の極が共通に接続され、レーザ光を受光する配列された複数の受光素子と、 前記受光素子の他方の極とその受光素子に隣接する他方の極との間に接続され、 受光するレーザ光の光量に比例する電気信号に変換する第 1の電気信号変換素子 と、
前記複数の受光素子のうち一方の方向の最も端に配置された受光素子の他方の 極に接続され、受光するレーザ光の光量に比例する電気信号に変換する第 2の電気 信号変換素子と、
前記一方の方向と反対の方向の最も端に配置された受光素子の他方の極に接続 され、受光するレーザ光の光量に比例する電気信号に変換する第 3の電気信号変 換素子と、
前記第 2の電気信号変換素子において発生する第 1の電気信号と、前記第 3の電 気信号変換素子において発生する第 2の電気信号とを受信するコンピュータであつ て、前記コンピュータは、
前記第 1の電気信号と前記第 2の電気信号とに基づいて、前記第 1の電気信号と 前記第 2の電気信号との比を求める演算を行うる演算解析処理部と、
前記演算により求められた結果と、前記複数の受光素子の配列の原点位置にお ける信号の比とを比較する比較解析処理部とを有することを特徴とするレベルセンサ レーザ光の受光位置の中心を検出するレベルセンサにおいて、
第 1の受光部と、
この第 1の受光部の一方の端部に接続され、受光するレーザ光の光量に比例する 電気信号に変換する第 1の電気信号変換素子と、
前記第 1の受光部の他方の端部に接続され、受光するレーザ光の光量に比例する 電気信号に変換する第 2の電気信号変換素子と、
前記第 1の受光部と光一電気特性において同一であって、その受光部と結合した 第 2の受光部と、
この第 2の受光部の一方の端部に接続され、受光するレーザ光の光量に比例する 電気信号に変換する第 3の電気信号変換素子と、
この第 2の受光部の他方の端部に接続され、受光するレーザ光の光量に比例する 電気信号に変換する第 4の電気信号変換素子と、
前記第 1の電気信号変換素子において発生する第 1の電気信号と、前記第 2の電 気信号変換素子において発生する第 2の電気信号と、前記第 3の電気信号変換素 子において発生する第 3の電気信号と、前記第 4の電気信号変換素子において発生 する第 4の電気信号とを受信するコンピュータであって、前記コンピュータは、
前記第 1の電気信号と前記第 2の電気信号とに基づいて、前記第 1の電気信号と 前記第 2の電気信号との比を求める演算を行うる演算解析処理部と、 前記演算により求められた結果と、前記複数の受光素子の配列の原点位置にお ける信号の比とを比較する比較解析処理部とを有することを特徴とするレベルセンサ
[9] 前記第 1の受光部と前記第 2の受光部とが所定の量の重複部分を有することを特 徴とする請求項 8に記載のレベルセンサ。
[10] 前記第 2の受光部に対して所定の量の重複部分を有するように結合した第 3の受 光部と、
前記第 3の受光部に対して所定の量の重複部分を有するように結合した第 4の受 光部とを、更に、有することを特徴とする請求項 9に記載のレベルセンサ。
PCT/JP2006/323804 2005-11-29 2006-11-29 レベルセンサ WO2007063893A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/095,482 US8044335B2 (en) 2005-11-29 2006-11-29 Level sensor implemented with a plurality of light receiving elements
EP06833608A EP1956340A4 (en) 2005-11-29 2006-11-29 LEVEL SENSOR
JP2007547969A JP5096925B2 (ja) 2005-11-29 2006-11-29 レベルセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-343360 2005-11-29
JP2005343360 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063893A1 true WO2007063893A1 (ja) 2007-06-07

Family

ID=38092226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323804 WO2007063893A1 (ja) 2005-11-29 2006-11-29 レベルセンサ

Country Status (5)

Country Link
US (1) US8044335B2 (ja)
EP (1) EP1956340A4 (ja)
JP (1) JP5096925B2 (ja)
CN (1) CN101317071A (ja)
WO (1) WO2007063893A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972890A2 (en) 2007-03-20 2008-09-24 Kabushiki Kaisha TOPCON Detection sensor to detect receiving position of laser light and level device employing the detection sensor to detect receiving position of laser light

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932021B2 (en) 2010-12-21 2015-01-13 Hamilton Sundstrand Corporation Fan rotor for air cycle machine
US11674801B2 (en) 2016-06-17 2023-06-13 Laser Elevations, Llc Sensor rod assembly for measuring elevations
US10871373B1 (en) 2016-06-17 2020-12-22 Laser Elevations, Llc Sensor rod assembly for measuring elevations
USD1032607S1 (en) 2017-06-19 2024-06-25 Laser Elevations, Llc Controller for electronic grade rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100415A (ja) * 1987-10-13 1989-04-18 Hamamatsu Photonics Kk 距離検出装置
JPH0552560A (ja) * 1991-08-29 1993-03-02 Olympus Optical Co Ltd 測距装置
JPH06112523A (ja) * 1992-09-28 1994-04-22 Yamatake Honeywell Co Ltd 光電変換装置
JPH08338706A (ja) * 1995-06-13 1996-12-24 I Denshi Kogyo:Kk 受光位置検出装置
JPH09210673A (ja) * 1996-01-30 1997-08-12 Sanyo Electric Co Ltd 受光位置検出回路及びこれを用いた距離検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1915935B2 (de) * 1969-03-28 1971-09-02 Vorrichtung zur messung der lagekoordinaten eines punktes mittels eines horizontierten laserstrahls
US5969338A (en) * 1998-03-18 1999-10-19 Sanyo Electric Co., Ltd. Light-received position detecting circuit and distance detecting apparatus using the same
FR2795271B1 (fr) * 1999-06-15 2001-08-31 Commissariat Energie Atomique Procede de polarisation des photodiodes d'un capteur matriciel par leurs pixels connexes
US6873413B2 (en) * 2001-09-27 2005-03-29 Trimble Navigation Limited Laser receiver using pin diode photodetector elements
US7019278B2 (en) * 2001-09-27 2006-03-28 Trimble Navigation Limited Laser receiver using multiple arrays of photodetector elements
JP4201180B2 (ja) 2003-04-10 2008-12-24 株式会社ニコン・トリンブル ビーム中心検出装置
US7119316B2 (en) * 2004-09-08 2006-10-10 Trimble Navigation Limited Strobe light and laser beam detection for laser receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100415A (ja) * 1987-10-13 1989-04-18 Hamamatsu Photonics Kk 距離検出装置
JPH0552560A (ja) * 1991-08-29 1993-03-02 Olympus Optical Co Ltd 測距装置
JPH06112523A (ja) * 1992-09-28 1994-04-22 Yamatake Honeywell Co Ltd 光電変換装置
JPH08338706A (ja) * 1995-06-13 1996-12-24 I Denshi Kogyo:Kk 受光位置検出装置
JPH09210673A (ja) * 1996-01-30 1997-08-12 Sanyo Electric Co Ltd 受光位置検出回路及びこれを用いた距離検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1956340A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972890A2 (en) 2007-03-20 2008-09-24 Kabushiki Kaisha TOPCON Detection sensor to detect receiving position of laser light and level device employing the detection sensor to detect receiving position of laser light
EP1972890A3 (en) * 2007-03-20 2009-01-14 Kabushiki Kaisha TOPCON Detection sensor to detect receiving position of laser light and level device employing the detection sensor to detect receiving position of laser light
US7982171B2 (en) 2007-03-20 2011-07-19 Kabushiki Kaisha Topcon Detection sensor to detect receiving position of laser light and level device employing the detection sensor to detect receiving position of laser light

Also Published As

Publication number Publication date
JPWO2007063893A1 (ja) 2009-05-07
JP5096925B2 (ja) 2012-12-12
EP1956340A1 (en) 2008-08-13
EP1956340A4 (en) 2011-09-28
US8044335B2 (en) 2011-10-25
US20090244548A1 (en) 2009-10-01
CN101317071A (zh) 2008-12-03

Similar Documents

Publication Publication Date Title
WO2007063893A1 (ja) レベルセンサ
JP2007121116A (ja) 光学式測距装置
JP2004512505A (ja) 測距器における信号検知装置および信号検知方法
JPH06235634A (ja) 測距装置
US6586719B1 (en) Device for detecting the positional change between two bodies moving in relation to one another
CN211783480U (zh) 一种大面积激光接收电路
JP2004361411A (ja) 受光装置
EP1777496B1 (en) Level detector
US7982171B2 (en) Detection sensor to detect receiving position of laser light and level device employing the detection sensor to detect receiving position of laser light
JP4201180B2 (ja) ビーム中心検出装置
JP2674468B2 (ja) 距離検出装置
KR100817683B1 (ko) 정전기 측정 장치 및 표면 전위 센서
CN110553625B (zh) 一种倾角传感器及其检测方法
JPH0830653B2 (ja) 距離検出装置
US20050271398A1 (en) Photo-detector arrangement and process for the calibration thereof
KR100983788B1 (ko) 다종의 센서 어레이용 신호 처리 회로
JP2918738B2 (ja) 測距装置用光電変換回路
JPH0688726A (ja) 測距センサ
JP2024031117A (ja) 光電センサ
JP2581480B2 (ja) 距離センサ
US20200287063A1 (en) Locating and detecting device comprising a plurality of photodiodes
JP2012233755A (ja) 光学式エンコーダおよび光学式エンコーダの絶対位置検出方法
JP3515999B2 (ja) 測距式光電センサ
JP2901747B2 (ja) 距離測定装置
JP2006226855A (ja) アンプ部分離型光電センサー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044399.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007547969

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006833608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12095482

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE