WO2007063861A1 - 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法 - Google Patents

太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法 Download PDF

Info

Publication number
WO2007063861A1
WO2007063861A1 PCT/JP2006/323745 JP2006323745W WO2007063861A1 WO 2007063861 A1 WO2007063861 A1 WO 2007063861A1 JP 2006323745 W JP2006323745 W JP 2006323745W WO 2007063861 A1 WO2007063861 A1 WO 2007063861A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
filler
cell module
polyethylene
density
Prior art date
Application number
PCT/JP2006/323745
Other languages
English (en)
French (fr)
Inventor
Kasumi Ooi
Atsuo Tsuzuki
Katsuhiko Hayashi
Shigeyuki Okamoto
Yukihiro Yoshimine
Eiji Maruyama
Original Assignee
Dai Nippon Printing Co., Ltd.
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd., Sanyo Electric Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to US12/095,022 priority Critical patent/US20090173384A1/en
Priority to EP06833549A priority patent/EP1956661A4/en
Priority to CN2006800443588A priority patent/CN101317275B/zh
Publication of WO2007063861A1 publication Critical patent/WO2007063861A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0892Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms containing monomers with other atoms than carbon, hydrogen or oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • Filler for solar cell module solar cell module using the same, and method for producing filler for solar cell module
  • the present invention relates to a filler for a solar cell module that does not easily become clouded even when a temperature change occurs due to, for example, a hot spot phenomenon.
  • Solar cell elements are often manufactured using a single crystal silicon substrate or a polycrystalline silicon substrate. For this reason, solar cell elements are vulnerable to physical shock, and when solar cells are installed outdoors, it is necessary to protect them from rain and other forces.
  • a solar cell module is usually manufactured by connecting a plurality of solar cell elements and enclosing them with a transparent substrate and a filler.
  • a solar cell module is manufactured by using a lamination method or the like in which a transparent front substrate, a filler, a solar cell element, a filler, a back surface protection sheet, and the like are sequentially laminated, and these are vacuum-sucked and heat-pressed.
  • the most common filler used in solar cell modules is ethylene-vinyl acetate copolymer resin (EVA) from the viewpoint of processability, workability, manufacturing cost, etc. It is used as However, the ethylene-acetic acid copolymer copolymer has a strong filler and does not have sufficient adhesive strength with the solar cell element. There were problems such as foaming and foaming. Therefore, as a method for imparting adhesiveness to the filler and eliminating the generation of vinegar, there has been proposed a method of polymerizing a silanic compound on the resin (see, for example, Patent Document 1 and Patent Document 2).
  • the temperature rise of the solar cell module and the solar cell element can be suppressed, the temperature rise of the filler can be suppressed as a result, and it is considered possible to suppress the cloudiness of the filler.
  • the prevention of clouding of the filler due to the occurrence of the hot spot phenomenon is described.
  • the ethylene-vinyl acetate copolymer resin is mainly used as a conventional filler, and a copolymer resin obtained by polymerizing a silane compound to a resin having good adhesiveness.
  • a copolymer resin obtained by polymerizing a silane compound to a resin having good adhesiveness At present, no proposal has been made to prevent white turbidity of the filler used.
  • Patent Document 1 Japanese Patent Publication No. 62-14111
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-214641
  • Patent Document 3 JP-A-6-181333
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004 327630
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a solar cell module filler that can suppress white turbidity of the filler when a hot spot phenomenon occurs.
  • the present invention provides a filler resin containing a silane-modified resin obtained by polymerizing an ethylenically unsaturated silane compound and a polyethylene for polymerization, an ultraviolet absorber, a light
  • a master batch including a stabilizer, a heat stabilizer, and a masterbatch polyethylene, wherein the polymerization polyethylene and the masterbatch polyethylene are 0.895-0.
  • a filler for a solar cell module which is a meta-octene linear low-density polyethylene having a density in the range of 910 g / cm 3 .
  • the density of the polyethylene for polymerization and the polyethylene for masterbatch is relatively low, even if there is a temperature change due to a hot spot phenomenon or the like, crystallization of polyethylene is hindered. It is possible to suppress cloudiness.
  • the solar cell module filler is a sheet having a thickness of 600 ⁇ 15 ⁇ m
  • the peak area in the wavelength range of 6000 nm to 25000 nm is 12000 or less. I prefer to be there.
  • the wavelength distribution of the heat that the cell is supposed to emit when it obtains heat of C to hundreds of degrees Celsius is in the range of about 6000 nm to 25000 nm.
  • the temperature characteristic power generation efficiency may decrease, but it is about 6000 ⁇ ! If the peak area at ⁇ 25000nm is low, the endothermic property is low!
  • the temperature characteristic power A decrease in power generation efficiency can be suppressed.
  • the filler since the filler stores the heat generated by the hot spot phenomenon, the cloudiness of the filler can be suppressed, and the appearance can be prevented from being damaged.
  • a filler using the solar cell module filler described above is provided.
  • a solar cell module comprising a layer is provided.
  • the present invention since it has the filler layer using the above-described filler for solar cell module, it has a beautiful appearance with good adhesion to the transparent front substrate and the solar cell element. Togashi.
  • the density of the polymerization polyethylene and the masterbatch polyethylene contained in the solar cell module filler is relatively low, so even if there is a temperature change due to a hot spot phenomenon or the like, There is an effect that the cloudiness can be suppressed.
  • FIG. 1 is a schematic cross-sectional view showing an example of a solar cell module of the present invention.
  • FIG. 2 is an infrared absorption spectrum of the solar cell module filler of Example 1.
  • the solar cell module filler according to the present invention, a solar cell module using the same, and a method for manufacturing the solar cell module filler will be described.
  • the filler for solar cell module of the present invention comprises an ethylenically unsaturated silane compound and a polyethylene for polymerization.
  • a solar cell module comprising a filler resin containing a silane-modified resin obtained by polymerizing styrene and a master notch comprising a UV absorber, a light stabilizer, a heat stabilizer, and a master notch polyethylene.
  • a filler, wherein the polyethylene for polymerization and the polyethylene for the masterbatch is from 0.895 to 0. that have a density in the range of 910GZcm 3 meta spout based linear low density polyethylene It is what.
  • the temperature is increased by the heat generated by the hot spot phenomenon and the like, and then cooled by the decrease of the outside air temperature. Even when the temperature changes as in the case, the crystallization of the polyethylene is hindered, and the cloudiness of the filler can be suppressed. As a result, an increase in haze (cloudiness) when the filler for solar cell modules whose temperature has risen is cooled is suppressed, so that the change in haze due to temperature change is reduced and the appearance is not easily damaged. ⁇ A filler for solar cell modules can be obtained.
  • meta-octene-based linear low density polyethylene is used as the polymerization polyethylene and the masterbatch polyethylene.
  • Meta-orthocene linear low-density polyethylene is synthesized using a meta-orthocene catalyst that is a single-site catalyst, and is known to have a small molecular weight distribution.
  • the use of polyethylene having a small molecular weight distribution and a low density can suppress white turbidity of the filler.
  • polyethylene with a large molecular weight distribution causes a high melting point and crystallization.
  • the force that is thought to cause the turbidity of the filler to easily occur because the polyethylene crystallizes first and becomes a nucleus.
  • the molecular weight distribution is small and the density is low as in the case of the meta-octene-type linear low-density polyethylene.
  • the silane-modified resin contained in the filler resin in the present invention is excellent in adhesion to a transparent front substrate and a back surface protective sheet such as glass, and the main chain is polyethylene. It also has the advantage that it does not generate harmful gases and does not harm the work environment.
  • the solar cell module filler of the present invention comprises an ultraviolet absorber, a light stabilizer and a heat. Since it contains a stabilizer, it can provide stable mechanical strength, adhesive strength, yellowing prevention, crack prevention, and excellent moldability suitable for a long period of time.
  • the filler resin used in the present invention includes a silane-modified resin obtained by polymerizing an ethylenically unsaturated silane compound and a predetermined polymerization polyethylene. Furthermore, it is preferable that the said resin fat for filler contains the polyethylene for an addition as needed. Since the silane-modified resin has a high cost, it is possible to reduce the cost by using the additive polyethylene together.
  • silane-modified resin and the additive polyethylene contained in the filler resin and other points of the filler resin will be described.
  • the silane-modified resin contained in the filler resin in the present invention is obtained by polymerizing an ethylenically unsaturated silane compound and a predetermined polymerization polyethylene.
  • a silane-modified resin is prepared by, for example, mixing an ethylenically unsaturated silane compound, a polyethylene for polymerization, and a radical generator, melting and kneading at a high temperature, and converting the ethylenically unsaturated silane compound into a polyethylene for polymerization. It can be obtained by graft polymerization.
  • the polyethylene for polymerization from 0.895 to 0.
  • Meth port Sen systems have a density of within the limits of 910 g / cm 3 linear low-density polyethylene is used.
  • Such a meta-octene-based linear low-density polyethylene has a relatively low density and a small molecular weight distribution, which prevents crystallization of the polyethylene due to temperature changes and suppresses the cloudiness of the filler. .
  • the polyethylene for polymerization has a density in the range of 0.895 to 0.910 gZcm 3 , and among these, the density is in the range of 0.898-0.905 gZcm 3 . Preferably there is.
  • Such a polyethylene for polymerization is not particularly limited as long as it is a linear polyethylene synthesized using a meta-cene catalyst and has the above density.
  • a common meta-mouth cene linear low-density polyethylene can be used.
  • the above polyethylene for polymerization may be used alone or in combination of two or more.
  • the ethylenically unsaturated silane compound used in the silane-modified resin is not particularly limited as long as it is graft-polymerized with the polymerization polyethylene.
  • the ethylenically unsaturated silane compound used in the silane-modified resin is not particularly limited as long as it is graft-polymerized with the polymerization polyethylene.
  • vinyltrimethoxysilane is preferably used.
  • the content of the ethylenically unsaturated silane compound in the solar cell module filler of the present invention is preferably 10 ppm or more, more preferably 10 ppm or more.
  • a transparent front substrate or a back sheet is obtained when a solar cell module is formed using a filler for a solar cell module by using an ethylenically unsaturated silane compound polymerized with the above-described polymerization polyethylene.
  • adhesion with glass or the like is realized.
  • adhesion to glass or the like is insufficient.
  • the content of the ethylenically unsaturated silane compound is preferably 4000 ppm or less, more preferably 3000 ppm or less.
  • the upper limit is not limited from the viewpoint of adhesion to glass or the like, but if it exceeds the above range, the adhesion to glass or the like does not change and the cost increases.
  • the silane-modified resin is preferably contained in the solar cell module filler in the range of 1 to 80 wt%, and more preferably in the range of 5 to 70 wt%.
  • the filler for a solar cell module of the present invention has high adhesion to glass or the like by containing the silane-modified resin. Therefore, the above range is preferable in terms of adhesion to glass and the like and cost.
  • the silane-modified resin has a melt mass flow rate at 190 ° C of 0.5 to: LOgZlO What is a minute is preferable. What is 1-8 gZlO minute is more preferable. This is because the moldability of the solar cell module filler of the present invention and the adhesiveness to the transparent front substrate and the back surface protective sheet are excellent.
  • the melting point of the silane-modified resin is preferably 110 ° C or lower.
  • the above range is also suitable for the surface force such as the caloric property.
  • the melting point is a value measured by differential scanning calorimetry (DSC) in accordance with the plastic transition temperature measurement method CFIS K 7121). At this time, if there are two or more melting points, the higher temperature is taken as the melting point.
  • radical generator to be added to the silane-modified resin examples include hydroperoxides such as diisopropylbenzene hydroperoxide, 2,5 dimethyl-2,5 di (hydroperoxy) hexane, and di-t-butyl peroxide.
  • Di-silver oxides such as bis 3, 5, 5-trimethylhexanoyl peroxide, otatanyl peroxide, benzoyl peroxide, o-methyl benzoyl peroxide, 2,4-dichlorobenzoyl peroxide; t -Butylperoxyacetate, t-butylperoxy-2-ethylhexyl Sanoate, t-butyl peroxypivalate, t-butyl peroxyoctate, t-butyl peroxyisopropyl carbonate, t-butyl peroxybenzoate, di-t-butyl dioxyphthalate, 2, 5 dimethinole 2, 5 di Peroxyesters such as (benzoylperoxy)
  • the radical generator is preferably contained in the silane-modified resin in an amount of 0.001% by weight or more. If the amount is less than the above range, radical polymerization between the ethylenically unsaturated silane compound and the polymerization polyethylene hardly occurs.
  • the silane-modified resin used in the present invention can also be used for laminated glass. It is. Laminated glass is produced by applying heat and pressure between a glass and glass with a flexible and tough resin, etc. From the viewpoint of adhesion to glass, the above silane-modified resin is used. Can be used.
  • the method for preparing the silane-modified resin is not particularly limited.
  • a mixture of an ethylenically unsaturated silane compound, a polymerization polyethylene, and a radical generator is heated.
  • examples thereof include a method of melt-mixing and graft-polymerizing an ethylenically unsaturated silane compound to polyethylene for polymerization.
  • the heating temperature is preferably 300 ° C or lower, and more preferably 270 ° C or lower, and the most preferable temperature is 230 ° C or lower.
  • the filler coagulant contains polyethylene for addition as necessary.
  • the polyethylene for addition is the same as the polyethylene for polymerization used in the silane-modified resin, that is, a meta-orthocene series having a density in the range of 0.895 to 0.910 gZcm 3 .
  • a chain low density polyethylene can be mentioned.
  • the additive polyethylene is the same polyethylene as the above-described polymerization polyethylene.
  • the content of polyethylene for addition is preferably from 0.01 parts by weight to 9900 parts by weight, more preferably from 90 parts by weight to 9,900 parts by weight, with respect to 100 parts by weight of the silane-modified resin. Further, when two or more kinds of the above silane-modified resin are used, the content of the polyethylene for added calories is preferably within the above range with respect to 100 parts by weight of the total amount.
  • the polyethylene for additive is preferably one having a melt mass flow rate at 190 ° C of 0.5 to: LOg ZlO, preferably 1 to 8 gZlO. This is because the moldability and the like of the filler for the solar battery module of the present invention are excellent.
  • the melting point of the additive polyethylene is preferably 130 ° C or lower.
  • the above range is also suitable for the surface force such as workability at the time of manufacturing a solar cell module using the solar cell module filler of the present invention.
  • the melting point is a value measured by the method described above.
  • the filler resin used in the present invention preferably has a melt mass flow rate at 190 ° C. of 0.5 to lOgZlO, more preferably 1 to 8 gZlO. This is because the formability of the solar cell module filler and the adhesiveness to the transparent front substrate and the back surface protection sheet are excellent.
  • the melting point of the filler resin is preferably 130 ° C or lower.
  • the above range is also suitable for the surface force such as workability.
  • the constituent members of the solar cell module for example, the solar cell element or the transparent front substrate are reused, if the melting point is about this level, they can be easily reused.
  • the melting point is a value measured by the method described above.
  • the masterbatch used in the present invention contains an ultraviolet absorber, a light stabilizer, a heat stabilizer and polyethylene for masterbatch.
  • a metamouth linear linear low density polyethylene having a density in the range of 0.895 to 0.910 g / cm 3 is used.
  • Such a meta-octene-based linear low-density polyethylene has a relatively low density and a small molecular weight distribution, which prevents crystallization of the polyethylene due to temperature changes and suppresses the cloudiness of the filler. .
  • the same polyethylene as the polymerization polyethylene described in "1. Filler resin" can be used, and the description thereof is omitted here.
  • the ultraviolet absorber used in the present invention absorbs harmful ultraviolet rays in sunlight and is innocuous heat energy in the molecule. This is to prevent the activation of the photodegradation active species in the solar cell module filler.
  • the content of the ultraviolet absorber in the filler for the solar cell module is a force that varies depending on the particle shape, density, etc. Specifically, it is in the range of 0.075 wt% to 0.3 wt%. More preferably, it is in the range of 0.1% by weight to 0.2% by weight.
  • the content of the ultraviolet absorber in the master batch is not particularly limited. Force The content of the ultraviolet absorber in the filler for the solar cell module is in the above range so that the content of the ultraviolet absorber is in the above range. It is preferable to select the content of the ultraviolet absorber.
  • the light stabilizer used in the present invention captures the active species at the start of photodegradation in the solar cell module filler and prevents photoacidification.
  • Specific examples include light stabilizers such as hindered amine compounds and hindered piperidine compounds.
  • the content of the light stabilizer in the filler for the solar cell module is a force that varies depending on the particle shape, density, etc. Specifically, the content is in the range of 0.1 wt% to 0.4 wt%. More preferably, it is in the range of 0.15% by weight to 0.3% by weight.
  • the content of the light stabilizer in one master batch is not particularly limited, but the content of the light stabilizer in the solar cell module filler is within the above range. It is preferable to select the content of the light stabilizer in the master batch.
  • the heat stabilizer used in the present invention is for preventing the deterioration of acid and soot in the solar cell module filler.
  • the heat stabilizer used in the present invention is for preventing the deterioration of acid and soot in the solar cell module filler.
  • Rataton-based heat stabilizers such as: phenol-based heat stabilizers; amine-based heat stabilizers; sulfur-based heat stabilizers; These can be used alone or in combination of two or more. Among them, it is preferable to use a phosphorus heat stabilizer and a rataton heat stabilizer in combination.
  • the content of the thermal stabilizer in the filler for the solar cell module is a force that varies depending on the particle shape, density, etc. Specifically, it is in the range of 0.01 wt% to 0.16 wt%. More preferably, it is in the range of 0.01% by weight to 0.17% by weight.
  • the content of the heat stabilizer in the master batch is not particularly limited, but the content of the heat stabilizer in the solar cell module filler is within the above range. It is preferable to select the content of the heat stabilizer in the master batch.
  • a method for measuring the content of the heat stabilizer a method in which pretreatment by a refluxing / reprecipitation method is performed and qualitative analysis and quantitative analysis are performed is used. Specifically, (1) A solvent is added to the solar cell module filler and reflux extraction is performed to dissolve the resin component and the additive component. (2) A poor solvent is added to the solution to precipitate the resin component, followed by filtration. (3) Use a concentrated and constant volume of the filtrate as the test solution. (4) Qualitative analysis and quantitative analysis are performed on the obtained test solution.
  • GCZMS gas chromatograph Z mass spectrometer
  • HPL CZUVD high-performance liquid chromatograph Z ultraviolet detector
  • GC gas chromatograph Z hydrogen flame ion detector
  • instrument density of the filler for a solar cell module is 0. 895gZcm 3 ⁇ 0. 910gZcm 3 about is about 0. 898gZcm 3 ⁇ 0. 905g / cm 3.
  • the density of the entire solar cell module filler is preferably within the above range. .
  • the above density is a value measured by the density gradient tube method specified in JIS K 7112. Specifically, the sample was put into a test tube containing liquids with different specific gravities, and the density was measured by reading the stopped position.
  • the solar cell module filler when the solar cell module filler is in the form of a sheet having a thickness of 600 ⁇ 15 ⁇ m, the peak area within the wavelength range of 6000 nm to 25000 nm is 12,000 or less, and especially 10700 or less. It is preferable.
  • the above peak area is determined by measuring the infrared absorption spectrum from 6000 nm to 25000 nm by infrared spectroscopy using FT-IR610 (manufactured by JASCO Corporation). The area is calculated. In the present invention, the peak area was calculated using commercially available software (Spectra Manager for Windows (registered trademark) 95 / NT spectrum analysis versionl.50.00 [Build8] manufactured by JASCO Corporation).
  • the solar cell module filler preferably has high light transmittance.
  • the total light transmittance of the filler for solar cell modules is preferably in the range of 70% to 100%, more preferably in the range of 80% to 100%, and most preferably in the range of 90% to Within 100% range.
  • the total light transmittance can be measured by an ordinary method, and can be measured by, for example, a color computer.
  • the thickness thereof is preferably in the range of 50 to 2000 ⁇ m. S is preferable, particularly in the range of 100 to 1250 ⁇ m. It is preferably within the range. If it is thinner than the above range, the cell cannot be supported and the cell is likely to be damaged.If it is thicker than the above range, the module becomes heavy and the workability such as installation is poor. It may be disadvantageous.
  • the manufacturing method of the filler for solar cell modules of this invention is described in the column of "C. Manufacturing method of filler for solar cell modules” mentioned later, description here is abbreviate
  • the solar cell module of the present invention is characterized by having a filler layer using the above-described filler for solar cell module.
  • FIG. 1 is a schematic cross-sectional view showing an example of the solar cell module of the present invention.
  • Example in Figure 1 As shown, a plurality of solar cell elements 1 are arranged in the same plane, and a wiring electrode 2 and an extraction electrode 3 are arranged between the solar cell elements 1. Both sides of the solar cell element 1 are sandwiched between a front-side filler layer 4a and a back-side filler layer 4b.
  • a transparent front substrate 5 is laminated on the outer side of the front-side filler layer 4a, and the outer side of the back-side filler layer 4b.
  • the back protective sheet 6 is laminated on the top.
  • This solar cell module T may be fixed by an outer frame 7 such as aluminum.
  • the above-mentioned filler for solar cell module can be used for at least one of the front filler layer 4a and the back filler layer 4b, and among these, it is preferable to use the filler for the surface filler layer 4a.
  • the solar cell module having the above-described advantages can be obtained because the filler layer using the solar cell module filler described above is provided. Specifically, it is possible to suppress the white turbidity of the filler due to the influence of a temperature change due to a hot spot phenomenon or the like, and it is possible to prevent the appearance from being damaged.
  • the filler layer used in the present invention is formed using the filler described in “A. Solar Cell Module Filler”. Since the filler layer has a role of bonding the solar cell element and the transparent front substrate or the back surface protective sheet, it is preferable that the adhesive layer has high adhesion to the transparent front substrate or the back surface protective sheet.
  • the peel strength with the transparent front substrate or the back surface protective sheet measured in the 180 ° peel test in a 25 ° C atmosphere of the filler layer is preferably in the range of lNZl5mm to 150NZl5mm. More preferably, it is within the range of 3NZ15mm width to 150NZ15mm width, most preferably 10NZ15mm width to 150N / 15mm width.
  • the peel strength is a value obtained by the following test method.
  • the filler layer retains adhesion for a long period of time. Peeling with a transparent front substrate or back surface protection sheet measured in a 180 ° peel test in a 25 ° C atmosphere after being left in a hot and humid state at 85 ° C and 85% humidity for 1000 hours
  • the strength is preferably in the range of 0.5 NZl5 mm width to 140 NZl5 mm width, more preferably 3 NZl5 mm width to 140 NZl5 mm width, and even more preferably in the range of 10 N Zl5 mm width to 140 NZl5 mm width. Note that the same measurement method as described above is used.
  • the thickness of the filler layer is preferably in the range of 50 to 2000 ⁇ m, and more preferably in the range of 100 to 1250 m. If the thickness is smaller than the above range, the cell cannot be supported, and the cell is likely to be damaged. If the thickness is larger than the above range, the module weight becomes heavy, and if the workability such as installation is poor, it is disadvantageous in terms of cost. It is a force that can be.
  • the solar cell element used in the present invention is not particularly limited as long as it has a function as a photovoltaic power, and those generally used as solar cell elements can be used.
  • crystalline silicon solar cell elements such as single crystal silicon type solar cell elements, polycrystalline silicon type solar cell elements, amorphous silicon solar cell elements such as single bond type or tandem structure type, gallium arsenide (GaAs) and indium III-V compound semiconductor solar cell elements such as Murin (InP), II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe), etc.
  • a thin film polycrystalline silicon solar cell element a thin film microcrystalline silicon solar cell element, a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, an hybrid element, and the like can also be used.
  • These solar cell elements are formed on a substrate such as a glass substrate, a plastic substrate, or a metal substrate, such as a crystalline silicon such as a pn junction structure, an amorphous silicon such as a p-in junction structure, or a compound semiconductor.
  • a substrate such as a glass substrate, a plastic substrate, or a metal substrate, such as a crystalline silicon such as a pn junction structure, an amorphous silicon such as a p-in junction structure, or a compound semiconductor.
  • An electric power portion is formed and configured.
  • FIG. 1 a plurality of solar cell elements 1 are arranged.
  • this solar cell element 1 is illuminated by sunlight, electrons (one) and holes
  • the transparent front substrate has a function of protecting the inside of the module with wind, rain, external impact, fire and the like, and ensuring long-term reliability of the solar cell module when exposed outdoors.
  • Such a transparent front substrate is not particularly limited as long as it has sunlight permeability and electrical insulation and is excellent in mechanical, chemical or physical strength.
  • those used as a transparent front substrate for a solar cell module can be used.
  • a glass plate, a fluorinated resin sheet, a cyclic polyolefin resin sheet, a polycarbonate resin sheet, a poly (meth) acrylic resin sheet, a polyamide resin sheet, or a polyester resin sheet. can be mentioned.
  • the glass plate is excellent in heat resistance, and can be set to a sufficiently high heating temperature when separating the components of the used solar cell module and removing the front-side filler adhering to the glass plate surface. Therefore, reuse or recycling is easy.
  • the back surface protection sheet is a weather resistant film that protects the back surface of the solar cell module from external forces.
  • the back surface protection sheet used in the present invention include a metal plate or metal foil such as aluminum, a fluorine-based resin sheet, a cyclic polyolefin resin sheet, a polycarbonate resin sheet, and a poly (meth) acrylic resin sheet.
  • the thickness of the back surface protective sheet used in the present invention is preferably in the range of 20 ⁇ m to 500 ⁇ m, more preferably in the range of 60 ⁇ m to 350 ⁇ m.
  • an outer frame is provided to fix each layer as an integral molded body.
  • the method for producing a solar cell module of the present invention is not particularly limited, and a method generally used as a method for producing a solar cell module can be used.
  • a transparent front substrate, a solar cell module filler, a solar cell element, a solar cell module filler, and a back surface protection sheet are stacked in this order, and other components are stacked if necessary.
  • thermocompression-molding each of these constituent members as an integral molded body by utilizing a normal molding method such as a lamination method in which these are integrated by vacuum suction or the like and heat-pressed.
  • the laminating temperature when using such a lamination method is preferably in the range of 90 ° C to 230 ° C, particularly in the range of 110 ° C to 190 ° C. It is preferable that This is because if the temperature is lower than the above range, it does not melt sufficiently, and the adhesion to the transparent front substrate, auxiliary electrode, solar cell element, back surface protective sheet, etc. may deteriorate.
  • the laminating time is preferably in the range of 5 to 60 minutes, particularly preferably in the range of 8 to 40 minutes. This is because if the laminating time is too short, it does not melt sufficiently and the adhesion to each component may deteriorate. In addition, the lamination time may be too long, which may cause a problem in the process.
  • the outer frame for fixing the integral molded body in which these respective structural members are laminated can be attached after the respective structural members are laminated and before thermocompression bonding, but is attached after the thermocompression bonding. Also good.
  • the method for producing a filler for a solar cell module of the present invention comprises an ethylenically unsaturated silane compound, a density within the range of 0.895 to 0.910 gZcm 3 , and a meta-octene-based linear low density. Containing silane-modified rosin obtained by polymerizing polyethylene for polymerization, which is polyethylene.
  • the unfilled material for ⁇ , an ultraviolet absorber, a light stabilizer, a heat stabilizer, in the range density of 0. 895 ⁇ 0. 910gZcm 3, and meta opening sensor based linear A masterbatch polyethylene which is a low density polyethylene, and a step of heating and melting the masterbatch.
  • additives such as a heat stabilizer
  • polyethylene powder prepared by pulverizing polyethylene for master notch may be mixed.
  • the mainstream was to use relatively high density polyethylene. This is because high-density polyethylene is easier to grind and has better processability, and can be manufactured at low cost.
  • the high-density polyethylene has the disadvantage of being easily crystallized, which causes the filler to become cloudy.
  • the density of the polyethylene for the master notch is relatively low, crystallization of the polyethylene is hindered even when there is a temperature change due to a hot spot phenomenon or the like, and the cloudiness of the filler can be suppressed. Therefore, it is possible to manufacture a solar cell module filler that does not easily become clouded due to temperature changes.
  • the filler resin used in the present invention is an ethylenically unsaturated silane, a polymer having a density in the range of 0.895 to 0.910 gZcm 3 and a meta-octene-based linear low-density polyethylene. It contains a silane-modified resin obtained by polymerizing polyethylene. Such a filler resin is the same as that described in “A. Solar Cell Module Filler”, and thus the description thereof is omitted here.
  • the masterbatch used in the present invention has a UV absorber, a light stabilizer, a heat stabilizer, a density within the range of 0.895-0.910 gZcm 3 , and a And a masterbatch polyethylene which is a chain low density polyethylene.
  • a masterbatch is the same as that described in “A. Solar Cell Module Filler”, and therefore the description is omitted here.
  • the filler for solar cell modules is produced by performing the process which heat-melts the said masterbatch to the said resin fat for fillers.
  • the filler resin containing the additive polyethylene and the masterbatch may be heated and melted, or the filler resin not containing the additive polyethylene, the additive polyethylene, and the masterbatch are heated. It can be melted.
  • Heating temperature is 3
  • the solar cell module filler may be formed into a sheet after being heated and melted. In this case, existing methods such as T-die and inflation can be used after heating and melting.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is merely an example, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical scope of the present invention.
  • a powder of ground low-density polyethylene with a density of 0.900 gZcm 3 is mixed with 100 parts by weight of 3.75 parts by weight of a benzotriazole UV absorber and 5 parts by weight of a hindered amine light stabilizer. Mixed with 0.5 parts by weight of a phosphorus heat stabilizer and melted and processed Thus, a pelletized master batch was obtained.
  • a meta-octene linear low-density polyethylene having a density of 0.905 gZcm 3 as addition polyethylene are mixed.
  • a solar cell module filler with an extrusion temperature of 230 ° C and a take-off speed of 2.3mZmin and a total thickness of 600 / zm was prepared.
  • a 3 mm thick glass plate transparent front substrate
  • a 600 m thick filler for solar cell modules a solar cell element made of polycrystalline silicon
  • a 600 m thick solar cell module filler a thickness of 38 a laminated sheet (back protection sheet) consisting of a ⁇ m polyvinyl fluoride resin sheet (PVF), a 30 ⁇ m thick polyethylene terephthalate sheet and a 38 ⁇ m thick polyvinyl fluoride resin sheet (PVF);
  • Example 1 With respect to 40 parts by weight of the silane-modified resin used in Example 1, 5 parts by weight of the above masterbatch, and 60 parts by weight of meta-octene linear low density polyethylene having a density of 0.900 gZcm 3 as polyethylene for addition And a solar cell module filler was produced in the same manner as in Example 1.
  • a master batch was prepared by melting, processing, and pelletizing.
  • Example 1 For 10 parts by weight of the silane-modified resin used in Example 1, 5 parts by weight of the masterbatch, and 90 parts by weight of meta-octene linear low-density polyethylene having a density of 0.900 gZcm 3 as polyethylene for addition And a solar cell module filler was produced in the same manner as in Example 1.
  • a solar cell module filler was prepared in the same manner as in Example 1. Further, a solar cell module was produced in the same manner as in Example 1.
  • a powder obtained by pulverizing meta-octene linear low density polyethylene with a density of 0.896 g / cm 3 is 100 parts by weight and 3.75 parts by weight of a benzotriazole UV absorber, and a hindered amine light stabilizer 20 Part by weight and 0.5 part by weight of a phosphorus-based heat stabilizer were mixed and melted and added to prepare a masterbatch with a pellet.
  • a solar cell module filler was produced in the same manner as in Example 1. Further, a solar cell module was produced in the same manner as in Example 1.
  • a material was prepared.
  • Example 1 Of the silane-modified ⁇ 10 parts by weight used in Example 1, the weathering agent masterbatch 5 parts by weight, a density of 0. 900gZcm 3 as the polyethylene for addition meth port Sen-based linear low density polyethylene 90 wt
  • the solar cell module filler was prepared in the same manner as in Example 1.
  • a master batch was prepared in the same manner as in Comparative Example 1.
  • Example 1 With respect to 20 parts by weight of the silane-modified resin used in Example 1, 5 parts by weight of the above master batch and 80 parts by weight of ethylene acetate resin copolymer resin (EVA) having a butyl acetate (VA) content of 12% After mixing, a filler for a solar cell module was produced in the same manner as in Example 1.
  • EVA ethylene acetate resin copolymer resin
  • Example 2 a commercially available EVA sheet for solar cell module (thickness 600 m) was used, and after pressure bonding at 150 ° C for 5 minutes with a vacuum laminator, 150 ° C A solar cell module was produced in the same manner as in Example 1 except that it was left for 30 minutes in the oven held in the above. [0099] [Evaluation of characteristics]
  • haze (%) was measured with an SM color computer (SM-C) manufactured by Suga Test Instruments Co., Ltd. Specifically, the solar cell module filler is sandwiched between blue and white float glass with a total light transmittance of 91%, haze of 0.2%, and thickness of 3mm, and 150 ° C using a vacuum laminator for manufacturing solar cell modules. After pressure bonding for 15 minutes, the sample was cooled by being allowed to stand at room temperature (25 ° C) to prepare a sample for haze measurement, and the haze was measured for this sample.
  • SM-C SM color computer
  • SM-C SM color computer
  • the peel strength (NZl 5 mm width) between the filler layer for the solar cell module and the transparent front substrate at room temperature (25 ° C) was measured.
  • the solar cell module was subjected to a hot spot test based on JIS standard C8917! And the appearance after the test was evaluated.
  • the solar cell module was placed on a sunny outdoor stand and exposed for 1 hour at a temperature of about 32 ° C. Then, the temperature of the solar cell module was measured.
  • Example 15 As is clear from Table 1, the haze of the solar cell module filler in Example 15 was less likely to cause white turbidity after the hot spot test with little difference depending on the cooling rate. It was also confirmed that the absorption of heat rays with a small peak area was low. Furthermore, it was confirmed that the temperature of the solar cell module when exposed outdoors was low.
  • the solar cell module filler in Comparative Example 14 became cloudy after the hot spot test in which the difference in haze depending on the cooling rate was large. Furthermore, it was confirmed that the solar cell module filler in Comparative Example 34 has a large absorption of heat rays with a large peak area. Furthermore, it was confirmed that the temperature of the solar cell module when exposed outdoors was high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 本発明は、ホットスポット現象が発生したときに充填材の白濁を抑制することができる太陽電池モジュール用充填材を提供することを主目的とする。  上記目的を達成するために、本発明は、エチレン性不飽和シラン化合物および重合用ポリエチレンを重合させてなるシラン変性樹脂を含む充填材用樹脂と、紫外線吸収剤、光安定化剤、熱安定化剤およびマスターバッチ用ポリエチレンを含むマスターバッチと、を有する太陽電池モジュール用充填材であって、上記重合用ポリエチレンおよび上記マスターバッチ用ポリエチレンが、0.895~0.910g/cm3の範囲内の密度を有するメタロセン系直鎖状低密度ポリエチレンであることを特徴とする太陽電池モジュール用充填材を提供する。

Description

明 細 書
太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール 、ならびに太陽電池モジュール用充填材の製造方法
技術分野
[0001] 本発明は、例えばホットスポット現象等に伴う温度変化が生じた場合であっても、白 濁しにくい太陽電池モジュール用充填材に関するものである。
背景技術
[0002] 近年、環境問題に対する意識の高まりから、クリーンなエネルギー源としての太陽 電池が注目されている。
太陽電池素子は単結晶シリコン基板や多結晶シリコン基板を用いて作製することが 多い。このため太陽電池素子は物理的衝撃に弱ぐまた屋外に太陽電池を取り付け た場合に雨など力もこれを保護する必要がある。また、太陽電池素子 1枚では発生す る電気出力が小さいため、複数の太陽電池素子を直並列に接続して、実用的な電 気出力が取り出せるようにする必要がある。このため複数の太陽電池素子を接続し透 明基板および充填材で封入して太陽電池モジュールを作製することが通常行われて いる。一般に太陽電池モジュールは、透明前面基板、充填材、太陽電池素子、充填 材および裏面保護シート等を順次積層し、これらを真空吸引して加熱圧着するラミネ ーシヨン法等を利用して製造される。
[0003] 太陽電池モジュールに用いられる充填材としては、その加工性、施工性、製造コス ト、その他等の観点から、エチレン—酢酸ビニル共重合体榭脂 (EVA)が、最も一般 的なものとして使用されている。しかしながら、エチレン—酢酸ビュル共重合体榭脂 力 なる充填材は、太陽電池素子との接着強度が必ずしも十分ではなぐ長時間使 用により剥離を生じたり、加熱時に酢ビガスが発生し異臭の元となったり発泡したりす る等の問題があった。そこで、充填材に接着性を付与し、酢ビガスの発生をなくす方 法として、榭脂にシランィ匕合物を重合させる方法が提案されている(例えば特許文献 1、特許文献 2参照)。
[0004] 屋外に設置された太陽電池モジュールでは、発電中の太陽電池モジュールの複数 の太陽電池素子のうち、ある 1つの太陽電池素子が何かの影になって発電が不十分 になった場合、この太陽電池素子は抵抗となる。このときこの太陽電池素子の両電極 にはその抵抗値と流れる電流との積の電位差が発生する。すなわち、太陽電池素子 に逆方向のバイアス電圧が力かることとなり、この太陽電池素子は発熱するようになる
。このような現象はホットスポットと呼ばれて!/、る。
[0005] そして、ホットスポット現象が発生して太陽電池素子の温度が上昇すると、これに伴 い充填材の温度も上昇する。充填材として、ポリエチレン系榭脂を用いた場合に、充 填材の融点を超える温度変化があった場合、ポリエチレン系榭脂が一旦融解し、再 度固化する際、その一部が結晶化し、白濁してしまい、外観が著しく損なわれる。
[0006] ホットスポット現象が発生したときの太陽電池モジュールの温度上昇を抑制する方 法としては、例えば太陽電池モジュールの裏面側に表面が凹凸状の熱放射率の高 いフィルムを設けることや太陽電池モジュールの周囲に配設されるモジュール枠に通 風口を設けることが提案されている (例えば特許文献 3参照)。また、裏面側充填材に アルミナやジルコユアなどの熱伝導率を大きくする粒子を含有させることで、ホットス ポット現象が発生したときでも太陽電池モジュール内部の熱伝導率を向上させて太 陽電池素子の温度上昇を抑制する方法が提案されて!、る(例えば特許文献 4参照) 。太陽電池モジュールや太陽電池素子の温度上昇を抑えることができれば、結果的 に充填材の温度上昇も抑えられるので、充填材の白濁を抑制することが可能である と考えられる。し力しながら、いずれの特許文献においてもホットスポット現象の発生 に伴う充填材の白濁を防止することにつ 、ては述べられて 、な 、。
[0007] また、従来の充填材としては上述したようにエチレン 酢酸ビニル共重合体榭脂が 中心であり、接着性のよい、榭脂にシランィ匕合物を重合させた共重合体榭脂を用い た充填材の白濁防止にっ 、ての提案は行われて ヽな 、のが現状である。
[0008] 特許文献 1 :特公昭 62— 14111号公報
特許文献 2:特開 2004— 214641号公報
特許文献 3 :特開平 6— 181333号公報
特許文献 4:特開 2004 327630号公報
発明の開示 発明が解決しょうとする課題
[0009] 本発明は、上記実情に鑑みてなされたものであり、ホットスポット現象が発生したとき に充填材の白濁を抑制することができる太陽電池モジュール用充填材を提供するこ とを主目的とする。
課題を解決するための手段
[0010] 上記目的を達成するために、本発明は、エチレン性不飽和シランィ匕合物および重 合用ポリエチレンを重合させてなるシラン変性榭脂を含む充填材用榭脂と、紫外線 吸収剤、光安定化剤、熱安定化剤およびマスターバッチ用ポリエチレンを含むマスタ 一バッチと、を有する太陽電池モジュール用充填材であって、上記重合用ポリエチレ ンおよび上記マスターバッチ用ポリエチレンが、 0. 895〜0. 910g/cm3の範囲内 の密度を有するメタ口セン系直鎖状低密度ポリエチレンであることを特徴とする太陽 電池モジュール用充填材を提供する。
[0011] 本発明によれば、重合用ポリエチレンおよびマスターバッチ用ポリエチレンの密度 が比較的低いので、ホットスポット現象などで温度変化があった場合でも、ポリエチレ ンの結晶化を妨げるので、充填材の白濁を抑制することが可能である。
[0012] また、上記発明においては、上記太陽電池モジュール用充填材を厚みが 600 ± 1 5 μ mのシート状としたとき、波長 6000nm以上 25000nm以下の範囲内におけるピ ーク面積が 12000以下であることが好まし 、。
プランクの法則より、太陽熱、もしくはホットスポット現象によりセルが数十。 C〜百数 十 °Cの熱を得た場合に、セルが放射すると考えられる熱の波長分布は約 6000nm 〜25000nmに含まれる。太陽光の輻射熱や太陽電池の発電時に発生する熱等に より太陽電池素子の温度が上昇するとその温度特性力 発電効率が低下する場合 があるが、約 6000ηπ!〜 25000nmにおけるピーク面積が低ければ吸熱性が低!ヽ充 填材となり、太陽光の輻射熱や太陽電池の発電時に発生する熱等により太陽電池素 子の温度が上昇した場合に、その温度特性力 発電効率が低下することを抑制する ことができる。また、ホットスポット現象などで発生した熱を充填材が蓄えに《なるの で、充填材の白濁を抑制することができ、外観が損なわれることを防ぐことができる。
[0013] また、本発明にお 、ては、上述した太陽電池モジュール用充填材を用いた充填材 層を有することを特徴とする太陽電池モジュールを提供する。
[0014] 本発明によれば、上述した太陽電池モジュール用充填材を用いた充填材層を有す るので、透明前面基板や太陽電池素子との密着性が良ぐ外観の美しいものとするこ とがでさる。
発明の効果
[0015] 本発明においては、太陽電池モジュール用充填材に含まれる重合用ポリエチレン およびマスターバッチ用ポリエチレンの密度が比較的低いので、ホットスポット現象な どで温度変化があった場合でも、充填材の白濁を抑制することができるという効果を 奏する。
図面の簡単な説明
[0016] [図 1]本発明の太陽電池モジュールの一例を示す概略断面図である。
[図 2]実施例 1の太陽電池モジュール用充填材の赤外吸収スペクトルである。
符号の説明
1 · ·· 太陽電池素子
2 · ·· 配線電極
3 · ·· 取り出し電極
4a … 表側充填材層
4b … 裏側充填材層
5 · - 透明 面 ¾板
6 · ··裏面保護シート
T · ·· 太陽電池モジュ
発明を実施するための最良の形態
[0018] 以下、本発明の太陽電池モジュール用充填材、およびこれを用いた太陽電池モジ ユール、ならびに太陽電池モジュール用充填材の製造方法にっ 、て説明する。
[0019] A.太陽電池モジュール用充填材
まず、本発明の太陽電池モジュール用充填材について説明する。本発明の太陽電 池モジュール用充填材は、エチレン性不飽和シラン化合物および重合用ポリエチレ ンを重合させてなるシラン変性榭脂を含む充填材用榭脂と、紫外線吸収剤、光安定 ィ匕剤、熱安定化剤およびマスターノツチ用ポリエチレンを含むマスターノツチと、を 有する太陽電池モジュール用充填材であって、上記重合用ポリエチレンおよび上記 マスターバッチ用ポリエチレンが、 0. 895〜0. 910gZcm3の範囲内の密度を有す るメタ口セン系直鎖状低密度ポリエチレンであることを特徴とするものである。
[0020] 本発明によれば、重合用ポリエチレンおよびマスターバッチ用ポリエチレンの密度 が比較的低いので、ホットスポット現象などで発生した熱により温度が上昇し、その後 、外気温の降下などで冷却された場合のように温度変化があった場合でも、ポリェチ レンの結晶化が妨げられ、充填材の白濁を抑制することができる。その結果、温度が 上昇した太陽電池モジュール用充填材が冷却された場合のヘイズ (曇度)の上昇が 抑制されるので、温度の変化によるヘイズの変化が少なくなり、外観が損なわれにく Vヽ太陽電池モジュール用充填材を得ることができる。
[0021] さらに、本発明においては、重合用ポリエチレンおよびマスターバッチ用ポリエチレ ンとして、メタ口セン系直鎖状低密度ポリエチレンが用いられる。メタ口セン系直鎖状 低密度ポリエチレンは、シングルサイト触媒であるメタ口セン触媒を用いて合成される ものであり、分子量分布が小さいことが知られている。本発明においては、分子量分 布が小さぐかつ低密度であるポリエチレンを用いることで、充填材の白濁等を抑制 することができる。すなわち、ホットスポット現象などで発生した熱により温度が上昇し 、その後、外気温の降下などで冷却された場合に、分子量分布が大きぐ密度の高 V、ポリエチレンを用いると、融点が高く結晶化しやす 、ポリエチレンが先に結晶化し、 それが核となることで、充填材の白濁が生じ易くなると考えられる力 メタ口セン系直 鎖状低密度ポリエチレンのように分子量分布が小さく、かつ低密度であるポリェチレ ンを用いることによって、充填材の白濁を抑制することができる。
[0022] また、本発明における充填材用榭脂に含まれるシラン変性榭脂は、上述したように 透明前面基板や裏面保護シート、例えばガラス等との密着性に優れ、かつ主鎖がポ リエチレン力もなるものであることから有害なガスを発生させず、作業環境を悪ィ匕させ ないという利点を有する。
[0023] さらに、本発明の太陽電池モジュール用充填材は紫外線吸収剤と光安定化剤と熱 安定化剤と含有するので、長期にわたり安定した機械強度、接着強度、黄変防止、 ひび割れ防止、優れたカ卩工適性を得ることができる。
以下、本発明の太陽電池モジュール用充填材の各構成について説明する。
[0024] 1.充填材用榭脂
まず、本発明に用いられる充填材用榭脂について説明する。本発明に用いられる 充填材用榭脂は、エチレン性不飽和シランィ匕合物および所定の重合用ポリエチレン を重合させてなるシラン変性榭脂を含むものである。さらに、上記充填材用榭脂は、 必要に応じて、添加用ポリエチレンを含有することが好ましい。上記シラン変性榭脂 はコストが高いため、添加用ポリエチレンを併用することでコストの低減を図ることがで さるカゝらである。
以下、充填材用榭脂に含まれるシラン変性榭脂および添加用ポリエチレン、ならび に充填材用榭脂のその他の点について説明する。
[0025] (1)シラン変性榭脂
本発明における充填材用榭脂に含まれるシラン変性榭脂は、エチレン性不飽和シ ランィ匕合物および所定の重合用ポリエチレンを重合させてなるものである。このような シラン変性榭脂は、例えばエチレン性不飽和シランィ匕合物と重合用ポリエチレンとラ ジカル発生剤とを混合し、高温で溶融、混練し、エチレン性不飽和シラン化合物を重 合用ポリエチレンにグラフト重合させることにより得ることができる。
[0026] 本発明においては、上記重合用ポリエチレンとして、 0. 895〜0. 910g/cm3の範 囲内の密度を有するメタ口セン系直鎖状低密度ポリエチレンが用いられる。このような メタ口セン系直鎖状低密度ポリエチレンは、密度が比較的低ぐ分子量分布が小さい ことから、温度変化によるポリエチレンの結晶化を妨げ、充填材の白濁を抑制するこ とがでさる。
[0027] また、上記重合用ポリエチレンは、上述したように 0. 895〜0. 910gZcm3の範囲 内の密度を有するものであるが、中でも密度が 0. 898-0. 905gZcm3の範囲内で あることが好ましい。
[0028] このような重合用ポリエチレンとしては、メタ口セン触媒を用いて合成された直鎖状 のポリエチレンであって、上記密度を有するものであれば特に限定されるものではな ぐ一般的なメタ口セン系直鎖状低密度ポリエチレンを用いることができる。また、上 記重合用ポリエチレンは 1種単独で用 、てもよく 2種以上を併用してもょ 、。
[0029] 一方、上記シラン変性榭脂に用いられるエチレン性不飽和シランィ匕合物としては、 上記重合用ポリエチレンとグラフト重合するものであれば特に限定されるものではなく 、例えばビュルトリメトキシシラン、ビュルトリエトキシシラン、ビュルトリプロポキシシラ ン、ビュルトリイソプロポキシシラン、ビュルトリブトキシシラン、ビュルトリペンチロキシ シラン、ビニルトリフエノキシシラン、ビニルトリベンジルォキシシラン、ビニルトリメチレ ンジォキシシラン、ビュルトリエチレンジォキシシラン、ビュルプロピオ二ルォキシシラ ン、ビニルトリァセトキシシラン、および、ビニルトリカルボキシシラン力 なる群力 選 択される少なくとも 1種類のものを用いることができる。中でも、ビニルトリメトキシシラン が好適に用いられる。
[0030] 本発明の太陽電池モジュール用充填材中のエチレン性不飽和シランィ匕合物の含 有量は、 lOppm以上が好ましぐより好ましくは 20ppm以上である。本発明において は、上述した重合用ポリエチレンと重合させたエチレン性不飽和シランィ匕合物を用い ることにより、太陽電池モジュール用充填材を用いて太陽電池モジュールとした場合 に透明前面基板や裏面シート、例えばガラス等との密着性が実現するものである。上 記エチレン性不飽和シランィ匕合物の含有量が上記範囲に満たな 、場合は、ガラス等 との密着性が不足する。
一方、エチレン性不飽和シランィ匕合物の含有量は、 4000ppm以下が好ましぐより 好ましくは 3000ppm以下である。上限値は、ガラス等との密着性の観点からは限定 されるものではないが、上記範囲を超えるとガラス等との密着性は変わらずコストが高 くなる。
[0031] 上記シラン変性榭脂は、太陽電池モジュール用充填材中に好ましくは 1〜80重量 %の範囲内、さらに 5〜70重量%の範囲内で含有されることが好ましい。本発明の太 陽電池モジュール用充填材は、上記シラン変性榭脂を含有することによりガラス等と の密着性が高くなる。したがって、ガラス等との密着性、かつコストの点から、上記範 囲内が好適である。
[0032] また、上記シラン変性榭脂は、 190°Cでのメルトマスフローレートが 0. 5〜: LOgZlO 分であるものが好ましぐ l〜8gZlO分であるものがより好ましい。本発明の太陽電 池モジュール用充填材の成形性、および透明前面基板や裏面保護シートとの接着 性等に優れるからである。
さらに、上記シラン変性榭脂の融点は、 110°C以下であることが好ましい。本発明の 太陽電池モジュール用充填材を用いた太陽電池モジュールの製造時にぉ 、て、カロ ェ性等の面力も上記範囲が好適である。なお、上記融点は、プラスチックの転移温 度測定方法 CFIS K 7121)に準拠し、示差走査熱量分析 (DSC)により測定した値 とする。この際、融点ピークが 2つ以上存在する場合は高い温度の方を融点とする。
[0033] 上記シラン変性榭脂に添加するラジカル発生剤としては、例えばジイソプロピルべ ンゼンヒドロパーオキサイド、 2, 5 ジメチルー 2, 5 ジ(ヒドロパーォキシ)へキサン 等のヒドロパーオキサイド類;ジー t ブチルパーオキサイド、 t ブチルタミルバーオ キサイド、ジクミルパーオキサイド、 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ )へキサン、 2, 5 ジメチルー 2, 5 ジ(t—パーォキシ)へキシンー3等のジアルキ ルパーオキサイド類;ビス 3, 5, 5—トリメチルへキサノィルパーオキサイド、オタタノ ィルパーオキサイド、ベンゾィルパーオキサイド、 o メチルベンゾィルパーオキサイド 、 2, 4ージクロ口ベンゾィルパーオキサイド等のジァシルバーオキサイド類; tーブチ ルパーォキシアセテート、 t ブチルパーォキシ 2—ェチルへキサノエート、 tーブ チルパーォキシピバレート、 t ブチルパーォキシォクトエート、 t ブチルパーォキ シイソプロピルカーボネート、 t ブチルパーォキシベンゾエート、ジー tーブチルバ 一ォキシフタレート、 2, 5 ジメチノレー 2, 5 ジ(ベンゾィルパーォキシ)へキサン、 2 , 5 ジメチルー 2, 5 ジ(ベンゾィルパーォキシ)へキシン 3等のパーォキシエス テル類;メチルェチルケトンパーオキサイド、シクロへキサノンパーオキサイド等のケト ンパーオキサイド類等の有機過酸ィ匕物、または、ァゾビスイソブチ口-トリル、ァゾビス (2, 4 ジメチルバレ口-トリル)等のァゾ化合物等が挙げられる。
[0034] 上記ラジカル発生剤は、上記シラン変性榭脂中に 0. 001重量%以上含まれること が好ましい。上記範囲未満では、エチレン性不飽和シランィ匕合物と重合用ポリエチレ ンとのラジカル重合が起こりにく 、からである。
[0035] なお、本発明に用いられるシラン変性榭脂は、合わせガラス用途にも使用できるも のである。合わせガラスは、ガラスとガラスとの間に柔軟で強靭な榭脂等をはさんで加 熱圧着して作製されるものであるので、ガラスとの密着性の点から、上記シラン変性 榭脂を用いることができる。
[0036] また、上記シラン変性榭脂の調製方法としては、特に限定されるものではないが、 例えばエチレン性不飽和シランィ匕合物と重合用ポリエチレンとラジカル発生剤との混 合物を、加熱溶融混合し、エチレン性不飽和シランィ匕合物を重合用ポリエチレンにグ ラフト重合させる方法を挙げることができる。この際、加熱温度は 300°C以下が好まし ぐさらには 270°C以下が好ましぐ最も好ましい温度は 230°C以下である。
[0037] (2)添加用ポリエチレン
次に、本発明に用いられる添加用ポリエチレンについて説明する。上述したように、 上記充填材用榭脂は、必要に応じて、添加用ポリエチレンを含有することが好ましい 。上記添加用ポリエチレンとしては、具体的には、上記シラン変性榭脂に用いられる 重合用ポリエチレンと同様のもの、すなわち、 0. 895〜0. 910gZcm3の範囲内の 密度を有するメタ口セン系直鎖状低密度ポリエチレンを挙げることができる。本発明 においては、特に、添加用ポリエチレンが上記重合用ポリエチレンと同一のポリェチ レンであることが好ましい。
[0038] 添加用ポリエチレンの含有量は、上記シラン変性榭脂 100重量部に対し、 0. 01重 量部〜 9900重量部が好ましぐ 90重量部〜 9, 900重量部がより好ましい。また、上 記シラン変性榭脂を 2種以上用いる場合には、その合計量 100重量部に対し、添カロ 用ポリエチレンの含有量が上記範囲となることが好ましい。
[0039] また、上記添カ卩用ポリエチレンは、 190°Cでのメルトマスフローレートが 0. 5〜: LOg ZlO分であるものが好ましぐ l〜8gZlO分であるものがより好ましい。本発明の太 陽電池モジュール用充填材の成形性等に優れるからである。
さらに、上記添加用ポリエチレンの融点は、 130°C以下であることが好ましい。本発 明の太陽電池モジュール用充填材を用いた太陽電池モジュールの製造時における 加工性等の面力も上記範囲が好適である。なお、上記融点は、上述した方法により 測定した値とする。
[0040] (3)その他 本発明に用いられる充填材用榭脂は、 190°Cでのメルトマスフローレートが 0. 5〜 lOgZlO分であるものが好ましぐ l〜8gZlO分であるものがより好ましい。太陽電 池モジュール用充填材の成形性、透明前面基板および裏面保護シートとの接着性 等に優れるからである。
また、充填材用榭脂の融点は 130°C以下であることが好ましい。本発明の太陽電 池モジュール用充填材を用いた太陽電池モジュールの製造時にぉ 、て、加工性等 の面力も上記範囲が好適である。また、太陽電池モジュールの構成部材、例えば太 陽電池素子や透明前面基板を再利用する場合に、融点がこの程度であれば容易に 再利用することができるからである。なお、上記融点は、上述した方法により測定した 値とする。
[0041] 2.マスターバッチ
次に、本発明に用いられるマスターバッチについて説明する。本発明に用いられる マスターバッチは、紫外線吸収剤、光安定化剤、熱安定化剤およびマスターバッチ 用ポリエチレンを含むものである。
以下、マスターノ《ツチに含まれるマスターバッチ用ポリエチレン、紫外線吸収剤、光 安定化剤および熱安定化剤について説明する。
[0042] (1)マスターバッチ用ポリエチレン
まず、本発明に用いられるマスターバッチ用ポリエチレンについて説明する。本発 明においては、マスターバッチ用ポリエチレンとして、 0. 895〜0. 910g/cm3の範 囲内の密度を有するメタ口セン系直鎖状低密度ポリエチレンが用いられる。このような メタ口セン系直鎖状低密度ポリエチレンは、密度が比較的低ぐ分子量分布が小さい ことから、温度変化によるポリエチレンの結晶化を妨げ、充填材の白濁を抑制するこ とがでさる。
[0043] 上記マスターバッチ用ポリエチレンとしては、上記「1.充填材用榭脂」に記載した重 合用ポリエチレンと同様のものを用いることができるので、ここでの説明は省略する。
[0044] (2)紫外線吸収剤
次に、本発明に用いられる紫外線吸収剤について説明する。本発明に用いられる 紫外線吸収剤は、太陽光中の有害な紫外線を吸収して、分子内で無害な熱エネル ギーへと変換し、太陽電池モジュール用充填材中の光劣化開始の活性種が励起さ れるのを防止するものである。具体的には、ベンゾフエノン系、ベンゾトリアゾール系、 サルチレート系、アクリル二トリル系、金属錯塩系、ヒンダードアミン系、あるいは、超 微粒子酸化チタン (粒子径: 0. 01 μ m〜0. 06 μ m)および超微粒子酸化亜鉛 (粒 子径: 0. Ol ^ m-0. 04 /z m)等の無機系などの紫外線吸収剤が挙げられる。
[0045] 太陽電池モジュール用充填材中の紫外線吸収剤の含有量としては、その粒子形 状、密度等によって異なる力 具体的には 0. 075重量%〜0. 3重量%の範囲内で あることが好ましぐより好ましくは 0. 1重量%〜0. 2重量%の範囲内である。なお、 マスターバッチ中の紫外線吸収剤の含有量としては、特に限定されるものではない 力 太陽電池モジュール用充填材中の紫外線吸収剤の含有量が上記の範囲となる ように、マスターバッチ中の紫外線吸収剤の含有量を選択することが好ましい。
[0046] (3)光安定化剤
次に、本発明に用いられる光安定化剤について説明する。本発明に用いられる光 安定化剤は、太陽電池モジュール用充填材中の光劣化開始の活性種を捕捉し、光 酸ィ匕を防止するものである。具体的には、ヒンダードアミン系化合物、ヒンダードピぺ リジン系化合物などの光安定化剤が挙げられる。
[0047] 太陽電池モジュール用充填材中の光安定化剤の含有量としては、その粒子形状、 密度等によって異なる力 具体的には 0. 1重量%〜0. 4重量%の範囲内であること が好ましぐより好ましくは 0. 15重量%〜0. 3重量%の範囲内である。なお、マスタ 一バッチ中の光安定化剤の含有量としては、特に限定されるものではないが、太陽 電池モジュール用充填材中の光安定化剤の含有量が上記の範囲となるように、マス ターバッチ中の光安定化剤の含有量を選択することが好ましい。
[0048] (4)熱安定化剤
次に、本発明に用いられる熱安定化剤について説明する。本発明に用いられる熱 安定化剤は、太陽電池モジュール用充填材の酸ィ匕劣化を防止するものである。具体 的には、トリス(2, 4 ジ一 tert—ブチルフエ-ル)フォスファイト、ビス [2, 4 ビス(1 , 1ージメチルェチル) 6 メチルフエ-ル]ェチルエステル亜リン酸、テトラキス(2, 4 ジ一 tert ブチルフエ-ル) [1, 1—ビフエ-ル]— 4, 4'—ジィルビスホスフォナ イト、および、ビス(2, 4 ジ tert ブチルフエ-ル)ペンタエリスリトールジフォスフ アイト等のリン系熱安定化剤; 8 ヒドロキシ—5, 7 ジ—tert ブチルーフランー2— オンと o キシレンとの反応生成物等のラタトン系熱安定化剤;フエノール系熱安定ィ匕 剤;アミン系熱安定化剤;硫黄系熱安定化剤;などを挙げることができる。また、これら を 1種または 2種以上を用いることもできる。中でも、リン系熱安定化剤およびラタトン 系熱安定化剤を併用して用いることが好ま 、。
[0049] 太陽電池モジュール用充填材中の熱安定化剤の含有量としては、その粒子形状、 密度等によって異なる力 具体的には 0. 01重量%〜0. 16重量%の範囲内である ことが好ましぐより好ましくは 0. 01重量%〜0. 17重量%の範囲内である。なお、マ スターバッチ中の熱安定化剤の含有量としては、特に限定されるものではないが、太 陽電池モジュール用充填材中の熱安定化剤の含有量が上記の範囲となるように、マ スターバッチ中の熱安定化剤の含有量を選択することが好ましい。
[0050] なお、上記熱安定化剤の含有量の測定方法としては、還流'再沈殿法による前処 理を行い、定性分析および定量分析を行う方法を用いるものとする。すなわち、(1) 太陽電池モジュール用充填材に溶媒を加えて還流抽出を行 、、榭脂成分および添 加剤成分を溶解させる。 (2)この溶解液に貧溶媒を加えて榭脂成分を沈殿させた後 、ろ過を行う。(3)ろ液を濃縮、定容したものを供試液とする。(4)得られた供試液に ついて、定性分析および定量分析を行う。この際、定性分析には、ガスクロマトグラフ Z質量分析装置 (GCZMS)、および高速液体クロマトグラフ Z紫外線検出器 (HPL CZUVD)を用い、定量分析には、ガスクロマトグラフ Z水素炎イオンィ匕検出器 (GC ZFID)を用いるものとする。
[0051] 3.太陽電池モジュール用充填材
本発明においては、太陽電池モジュール用充填材の密度が 0. 895gZcm3〜0. 910gZcm3程度であることが好ましぐより好ましくは 0. 898gZcm3〜0. 905g/c m3程度である。上述したように、本発明においては、重合用ポリエチレンおよびマス ターバッチ用ポリエチレンの密度が所定の範囲であることから、太陽電池モジュール 用充填材全体の密度としては上記範囲内であることが好ましいのである。
[0052] なお、上記密度は、 JIS K 7112に規定の密度勾配管法により測定した値とする 。具体的には、比重の異なる液体を入れた試験管の中へサンプルを投入し、止まつ た位置を読み取ることにより密度を測定した。
[0053] 本発明においては、太陽電池モジュール用充填材を厚みが 600± 15 μ mのシート 状としたとき、波長 6000nm以上 25000nm以下の範囲内におけるピーク面積が 12 000以下、中でも 10700以下であることが好ましい。
なお、上記ピーク面積は、 FT— IR610 (日本分光株式会社製)を用いて、赤外分 光法により 6000nmから 25000nmの赤外吸収スペクトルを測定し、得られた赤外吸 収スペクトルから、ピーク面積が算出される。なお、本発明においては、上記ピーク面 積を市販のソフトウェア(Spectra Manager for Windows (登録商標) 95/NTスペクトル 解析 versionl.50.00[Build8] 日本分光株式会社製)を用いて算出した。
[0054] さらに、太陽電池モジュール用充填材は、光線透過性が高いことが好ましい。具体 的には、太陽電池モジュール用充填材の全光線透過率力 70%〜100%の範囲内 であることが好ましぐより好ましくは 80%〜100%の範囲内、最も好ましくは 90%〜 100%の範囲内である。なお、上記全光線透過率は、通常の方法により測定すること ができ、例えばカラーコンピュータにより測定することができる。
[0055] また、太陽電池モジュール用充填材がシート状に成形されたものである場合、その 厚みは、 50〜2000 μ mの範囲内であること力 S好ましく、特に 100〜1250 μ mの範 囲内であることが好ましい。上記範囲より薄い場合はセルを支持することができずセ ルの破損が生じやすくなり、上記範囲より厚い場合はモジュール重量が重くなり設置 時などの作業性が悪いば力りでなぐコスト面でも不利となる場合もあるからである。 なお、本発明の太陽電池モジュール用充填材の製造方法については、後述する「 C.太陽電池モジュール用充填材の製造方法」の欄に記載するので、ここでの説明 は省略する。
[0056] B.太陽電池モジュール
次に、本発明の太陽電池モジュールについて説明する。本発明の太陽電池モジュ ールは、上述した太陽電池モジュール用充填材を用いた充填材層を有することを特 徴とするちのである。
[0057] 図 1は、本発明の太陽電池モジュールの一例を示す概略断面図である。図 1に例 示するように、複数個の太陽電池素子 1が同一平面状に並べられており、太陽電池 素子 1間には配線電極 2および取り出し電極 3が配置されている。太陽電池素子 1は 、その両面が表側充填材層 4aと裏側充填材層 4bにより挟持されており、表側充填材 層 4aの外側には透明前面基板 5が積層され、裏側充填材層 4bの外側には裏面保 護シート 6が積層されて 、る。この太陽電池モジュール Tはアルミニウムなどの外枠 7 で固定されていてもよい。本発明においては、表側充填材層 4aおよび裏面充填材 層 4bの少なくとも一方に、上述した太陽電池モジュール用充填材を用いることができ 、中でも表面充填材層 4aに用いることが好ま U、。
[0058] 本発明によれば、上述した太陽電池モジュール用充填材を用いた充填材層を有す るので、上述した利点を有する太陽電池モジュールとすることができる。具体的には 、ホットスポット現象等による温度変化の影響による充填材の白濁を抑制することがで き、外観が損なわれるのを防ぐことができる。
以下、本発明の太陽電池モジュールの構成について説明する。
[0059] 1.充填材層
本発明に用いられる充填材層は、「A.太陽電池用モジュール用充填材」に記載の 充填材を用いてなるものである。上記充填材層は、太陽電池素子と透明前面基板ま たは裏面保護シートとを接着させる役割をもつものであるため、透明前面基板または 裏面保護シートとの密着性が高いことが好ましい。具体的には、充填材層の 25°C雰 囲気下における 180° 剥離試験において測定された透明前面基板または裏面保護 シートとの剥離強度が、 lNZl5mm幅〜 150NZl5mm幅の範囲内であることが好 ましぐより好ましくは 3NZl5mm幅〜 150NZl5mm幅、最も好ましくは 10NZ15 mm幅〜 150N/ 15mm幅の範囲内である。
[0060] なお、上記剥離強度は以下の試験方法により得た値とする。
試験機:エー'アンド ·ディー (A&D)株式会社製の弓 Iつ張り試験機〔機種名:テンシロ ン〕
測定角度: 180° 剥離
剥離速度: 50mm/min
[0061] また、充填材層は、密着性を長期間保持していることが好ましぐ太陽電池モジユー ルを温度 85°C、湿度 85%の高温多湿状態にて 1000時間放置した後の 25°C雰囲 気下における 180° 剥離試験において測定された透明前面基板または裏面保護シ ートとの剥離強度が、 0. 5NZl5mm幅〜 140NZl5mm幅の範囲内であることが 好ましぐより好ましくは 3NZl5mm幅〜 140NZl5mm幅、さらに好ましくは 10N Zl5mm幅〜 140NZl5mm幅の範囲内である。なお、測定方法は上述した方法と 同様の方法が用いられる。
[0062] 充填材層の厚みは、 50〜2000 μ mの範囲内であることが好ましぐ特に 100〜12 50 mの範囲内であることが好ましい。上記範囲より薄い場合はセルを支持すること ができずセルの破損が生じやすくなり、上記範囲より厚い場合はモジュール重量が 重くなり設置時などの作業性が悪いば力りでなぐコスト面でも不利となる場合もある 力 である。
[0063] 2.太陽電池素子
本発明に用いられる太陽電池素子としては、光起電力としての機能を有するもので あれば特に限定されるものではなぐ一般に太陽電池素子として使用されているもの を使用することができる。例えば、単結晶シリコン型太陽電池素子、多結晶シリコン型 太陽電池素子等の結晶シリコン太陽電池素子、シングル結合型もしくはタンデム構 造型等カゝらなるアモルファスシリコン太陽電池素子、ガリウムヒ素(GaAs)やインジゥ ムリン (InP)等の III V族化合物半導体太陽電池素子、カドミウムテルル (CdTe)や 銅インジウムセレナイド (CuInSe )等の II VI族化合物半導体太陽電池素子などが
2
挙げられる。また、薄膜多結晶性シリコン太陽電池素子、薄膜微結晶性シリコン太陽 電池素子、薄膜結晶シリコン太陽電池素子とアモルファスシリコン太陽電池素子との ノ、イブリツド素子等も使用することができる。
[0064] これらの太陽電池素子は、例えば、ガラス基板、プラスチック基板、金属基板等の 基板上に、 pn接合構造等の結晶シリコン、 p—i-n接合構造等のアモルファスシリコ ン、化合物半導体等の起電力部分が形成されて構成される。
[0065] 本発明の太陽電池モジュールにおいては、図 1に示すように、太陽電池素子 1が複 数個並べられている。この太陽電池素子 1が太陽光に照らされると、電子(一)と正孔
(+ )が発生し、太陽電池素子間に配置された配線電極 2および取り出し電極 3により 電流が流れ出す仕組みである。
[0066] 3.透明前面基板
本発明において、透明前面基板は、モジュール内部を風雨や外部衝撃、火災など 力 保護し、太陽電池モジュールの屋外暴露における長期信頼性を確保する機能を 有する。
このような透明前面基板としては、太陽光の透過性、電気絶縁性を有し、かつ、機 械的もしくは化学的ないし物理的強度に優れているものであれば特に限定されるも のではなぐ一般に太陽電池モジュール用の透明前面基板として用いられているも のを使用することができる。例えば、ガラス板、フッ素系榭脂シート、環状ポリオレフィ ン系榭脂シート、ポリカーボネート系榭脂シート、ポリ (メタ)アクリル系榭脂シート、ポリ アミド系榭脂シート、またはポリエステル系榭脂シートなどが挙げられる。これらの中 でも、本発明における透明前面基板としては、ガラス板を用いるのが好ましい。ガラス 板は、耐熱性に優れており、使用済みの太陽電池モジュール力 各構成部材を分離 し、ガラス板表面に付着した表側充填材を除去する際の加熱温度を十分に高く設定 することができるため、リユースもしくはリサイクルが容易なものとなるからである。
[0067] 4.裏面保護シート
裏面保護シートは、太陽電池モジュール裏面を外界力 保護する耐候性フィルム である。本発明に用いられる裏面保護シートとしては、例えばアルミニウム等の金属 板もしくは金属箔、フッ素系榭脂シート、環状ポリオレフイン系榭脂シート、ポリカーボ ネート系榭脂シート、ポリ (メタ)アクリル系榭脂シート、ポリアミド系榭脂シート、ポリエ ステル系榭脂シート、または耐候性フィルムとバリアフィルムとをラミネート積層した複 合シートなどが挙げられる。
本発明に用いられる裏面保護シートの厚みは、 20 μ m〜500 μ mの範囲内が好ま しく、より好ましくは 60 μ m〜350 μ mの範囲内である。
[0068] 5.その他の構成部材
本発明においては、上記のほか、太陽光の吸収性、補強、その他の目的のもとに、 さらに他の層を任意に加えて積層することもできる。
また、各構成部材を積層した後、各層を一体成形体として固定するために外枠を設 ける
こともできる。外枠としては、上記裏面保護シートに用いた材料と同様のものを使用で さ
る。
[0069] 6.太陽電池モジュールの製造方法
本発明の太陽電池モジュールの製造方法は、特に限定されるものではなぐ一般 に太陽電池モジュールの製造方法として用いられている方法が使用できる。例えば、 透明前面基板、太陽電池モジュール用充填材、太陽電池素子、太陽電池モジユー ル用充填材、および裏面保護シートを対向させてこの順に積層し、さらに必要な場合 はその他の構成部材を積層して、次 、でこれらを真空吸引等により一体化して加熱 圧着するラミネーシヨン法等の通常の成形法を利用し、これらの各構成部材を一体成 形体として加熱圧着成形する方法が挙げられる。
[0070] 本発明において、このようなラミネーシヨン法を用いた際のラミネート温度は、 90°C 〜230°Cの範囲内であることが好ましぐ特に 110°C〜190°Cの範囲内とすることが 好ましい。上記範囲より温度が低いと十分に溶融せず、透明前面基板、補助電極、 太陽電池素子、裏面保護シートなどとの密着性が悪くなる可能性があるからである。
[0071] ラミネート時間は、 5〜60分の範囲内が好ましぐ特に 8〜40分の範囲内が好まし い。ラミネート時間が短すぎると十分に溶融せず、各構成部材との密着性が悪くなる 可能性があるからである。また、ラミネート時間が長すぎる、工程上の問題となる場合 がある。
なお、これらの各構成部材を積層させた一体成形体を固定ィ匕するための外枠は、 各構成部材を積層した後、加熱圧着する前に取り付けることもできるが、加熱圧着後 に取り付けてもよい。
[0072] C.太陽電池モジュール用充填材の製造方法
次に、本発明の太陽電池モジュール用充填材の製造方法について説明する。本 発明の太陽電池モジュール用充填材の製造方法は、エチレン性不飽和シラン化合 物と、密度が 0. 895〜0. 910gZcm3の範囲内であり、かつ、メタ口セン系直鎖状低 密度ポリエチレンである重合用ポリエチレンと、を重合させてなるシラン変性榭脂を含 む充填材用榭脂に、紫外線吸収剤と、光安定化剤と、熱安定化剤と、密度が 0. 895 〜0. 910gZcm3の範囲内であり、かつ、メタ口セン系直鎖状低密度ポリエチレンで あるマスターバッチ用ポリエチレンと、を含むマスターバッチを加熱溶融させる工程を 有することを特徴とするものである。
[0073] 従来、マスターバッチを作製する際には、熱安定化剤等の添加剤の分散性をよくす るために、添加剤とマスターノツチ用ポリエチレンを粉碎したポリエチレンパウダーと を混合する場合が多ぐこの際には比較的密度の高いポリエチレンを用いるのが主 流であった。これは、高密度のポリエチレンの方が粉砕しやすく加工性に優れており 、低コストィ匕が図れるからである。し力しながら、高密度のポリエチレンは結晶化しや すいという欠点があり、充填材が白濁する要因となっていた。
本発明によれば、マスターノツチ用ポリエチレンの密度が比較的低いので、ホットス ポット現象などで温度変化があった場合でもポリエチレンの結晶化を妨げられ、充填 材の白濁を抑えることができる。したがって、温度変化により白濁しにくい太陽電池モ ジュール用充填材を製造することができる。
以下、本発明の太陽電池モジュール用充填材の製造方法について、構成ごとに説 明する。
[0074] 1.充填材用榭脂
本発明に用いられる充填材用榭脂は、エチレン性不飽和シランと、密度が 0. 895 〜0. 910gZcm3の範囲内であり、かつ、メタ口セン系直鎖状低密度ポリエチレンで ある重合用ポリエチレンと、を重合させてなるシラン変性榭脂を含むものである。この ような充填材用榭脂としては、「A.太陽電池モジュール用充填材」に記載したものと 同様であるので、ここでの説明は省略する。
[0075] 2.マスターバッチ
本発明に用いられるマスターバッチは、紫外線吸収剤と、光安定化剤と、熱安定ィ匕 剤と、密度が 0. 895-0. 910gZcm3の範囲内であり、かつ、メタ口セン系直鎖状低 密度ポリエチレンであるマスターバッチ用ポリエチレンと、を含むものである。このよう なマスターバッチとしては、「A.太陽電池モジュール用充填材」に記載したものと同 様であるので、ここでの説明は省略する。 [0076] 3.太陽電池モジュール用充填材の作製方法
次に、太陽電池モジュール用充填材の作製方法について説明する。本発明にお いては、上記充填材用榭脂に上記マスターバッチを加熱溶融させる工程を行うことに よって、太陽電池モジュール用充填材を作製する。
この際、添加用ポリエチレンを含む充填材用榭脂と、マスターバッチとを加熱溶融さ せても良いし、添加ポリエチレンを含まない充填材用榭脂と、添加用ポリエチレンと、 マスターバッチとを加熱溶融させても良 、。
[0077] また、これらの加熱溶融方法としては、特に限定されるものではな 、。加熱温度は 3
00°C以下が好ましぐさらには 270°C以下が好ましぐ最も好ましい温度は 230°C以 下である。また、本発明においては、加熱溶融した後に、太陽電池モジュール用充 填材をシート状に成形してもよい。この場合には、加熱溶融後に Tダイ、インフレなど の既存の方法を用いることができる。
[0078] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 範囲に包含される。
実施例
[0079] 以下に実施例および比較例を示し、本発明をさらに説明する。
[実施例 1]
(シラン変性樹脂の調製)
密度 0. 898gZcm3のメタ口セン直鎖状低密度ポリエチレン 100重量部に対し、ビ -ルトリメトキシシラン 2. 5重量部と、ラジカル発生剤 (反応触媒)としてのジクミルバ 一オキサイド 0. 1重量部とを混合し、 200°Cで溶融、混練し、シラン変性榭脂を得た
[0080] (マスターバッチの調製)
密度 0. 900gZcm3のメタ口セン直鎖状低密度ポリエチレンを粉砕したパウダー 10 0重量部に対して、ベンゾトリアゾール系紫外線吸収剤 3. 75重量部と、ヒンダードァ ミン系光安定化剤 5重量部と、リン系熱安定化剤 0. 5重量部とを混合して溶融、加工 し、ペレット化したマスターバッチを得た。
[0081] (太陽電池モジュール用充填材の作製)
上記シラン変性榭脂 20重量部に対して、上記マスターバッチ 5重量部と、添加用ポ リエチレンとしての密度 0. 905gZcm3のメタ口セン直鎖状低密度ポリエチレン 80重 量部とを混合し、 φ 150mm押出し機、 1000mm幅の Tダイスを有するフィルム成形 機を用いて、押出し温度 230°C、引き取り速度 2. 3mZminで総厚 600 /z mの太陽 電池モジュール用充填材を作製した。
[0082] (太陽電池モジュールの作製)
厚み 3mmのガラス板 (透明前面基板)と、厚み 600 mの太陽電池モジュール用 充填材と、多結晶シリコンからなる太陽電池素子と、厚み 600 mの太陽電池モジュ ール用充填材と、厚み 38 μ mのポリフッ化ビニル系榭脂シート(PVF)、厚み 30 μ m のポリエチレンテレフタレートシートおよび厚み 38 μ mのポリフッ化ビュル系榭脂シ一 ト (PVF)からなる積層シート (裏面保護シート)とをこの順に積層し、太陽電池素子面 を上に向けて、太陽電池モジュールの製造用の真空ラミネータにて 150°Cで 15分間 圧着して、太陽電池モジュールを作製した。
[0083] [実施例 2]
(マスターバッチの調製)
密度 0. 898gZcm3のメタ口セン直鎖状低密度ポリエチレンを粉砕したパウダー 30 重量部に対して、密度 0. 900gZcm3のメタ口セン直鎖状低密度ポリエチレンレジン 70重量部と、ベンゾトリアゾール系紫外線吸収剤 7重量部と、ヒンダードアミン系光安 定化剤 10重量部と、リン系熱安定化剤 1重量部とを混合して溶融、加工し、ペレット 化したマスターバッチを作製した。
[0084] (太陽電池モジュール用充填材の作製)
実施例 1で用いたシラン変性榭脂 40重量部に対して、上記マスターバッチ 5重量 部と、添加用ポリエチレンとしての密度 0. 900gZcm3のメタ口セン直鎖状低密度ポリ エチレン 60重量部とを混合し、実施例 1と同様の方法で太陽電池モジュール用充填 材を作製した。
さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。 [0085] [実施例 3]
(マスターバッチの調製)
密度 0. 896g/cm3のメタ口セン直鎖状低密度ポリエチレンを粉砕したパウダー 10
0重量部に対して、ベンゾトリアゾール系紫外線吸収剤 3. 75重量部と、ヒンダードァ ミン系光安定化剤 2. 5重量部と、リン系熱安定化剤 0. 25重量部とを混合して溶融、 加工し、ペレツトイ匕したマスターバッチを作製した。
[0086] (太陽電池モジュール用充填材の作製)
実施例 1で用いたシラン変性榭脂 10重量部に対して、上記マスターバッチ 5重量 部と、添加用ポリエチレンとしての密度 0. 900gZcm3のメタ口セン直鎖状低密度ポリ エチレン 90重量部とを混合し、実施例 1と同様の方法で太陽電池モジュール用充填 材を作製した。
さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。
[0087] [実施例 4]
(シラン変性樹脂の調製)
密度 0. 896gZcm3のメタ口セン直鎖状低密度ポリエチレン 100重量部に対し、ビ -ルトリメトキシシラン 2. 5重量部と、ラジカル発生剤 (反応触媒)としてのジクミルバ 一オキサイド 0. 1重量部とを混合し、 200°Cで溶融、混練し、シラン変性榭脂を得た
[0088] (マスターバッチの調製)
密度 0. 904gZcm3のメタ口セン直鎖状低密度ポリエチレンを粉砕したパウダー 10 0重量部に対して、ベンゾトリアゾール系紫外線吸収剤 1. 88重量部と、ヒンダードァ ミン系光安定化剤 10重量部と、リン系熱安定化剤 0. 5重量部とを混合して溶融、加 ェし、ペレツトイ匕したマスターバッチを作製した。
[0089] (太陽電池モジュール用充填材の作製)
上記シラン変性榭脂 20重量部に対して、上記マスターバッチ 5重量部と、添加用ポ リエチレンとしての密度 0. 898gZcm3のメタ口セン直鎖状低密度ポリエチレン 80重 量部とを混合し、実施例 1と同様の方法で太陽電池モジュール用充填材を作製した さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。
[0090] [実施例 5]
(シラン変性樹脂の調製)
密度 0. 904gZcm3のメタ口セン直鎖状低密度ポリエチレン 100重量部に対し、ビ -ルトリメトキシシラン 2. 5重量部と、ラジカル発生剤 (反応触媒)としてのジクミルバ 一オキサイド 0. 1重量部とを混合し、 200°Cで溶融、混練し、シラン変性榭脂を得た
[0091] (マスターバッチの調製)
密度 0. 896g/cm3のメタ口セン直鎖状低密度ポリエチレンを粉砕したパウダー 10 0重量部に対して、ベンゾトリアゾール系紫外線吸収剤 3. 75重量部と、ヒンダードァ ミン系光安定化剤 20重量部と、リン系熱安定化剤 0. 5重量部とを混合して溶融、加 ェし、ペレツトイ匕したマスターバッチを作製した。
[0092] (太陽電池モジュール用充填材の作製)
上記シラン変性榭脂 20重量部に対して、上記マスターバッチ 5重量部と、添加用ポ リエチレンとしての密度 0. 898gZcm3のメタ口セン直鎖状低密度ポリエチレン 80重 量部とを混合し、実施例 1と同様の方法で太陽電池モジュール用充填材を作製した さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。
[0093] [比較例 1]
(マスターバッチの調製)
密度 0. 940gZcm3の中密度ポリエチレンを粉砕したパウダー 100重量部に対して 、ベンゾトリアゾール系紫外線吸収剤 3. 75重量部と、ヒンダードアミン系光安定化剤
10重量部と、リン系熱安定化剤 1重量部とを混合して溶融、加工し、ペレツトイ匕したマ スターバッチを作製した。
[0094] (太陽電池モジュール用充填材の作製)
実施例 1で用いたシラン変性榭脂 10重量部に対して、上記マスターバッチ 5重量 部と、添加用ポリエチレンとして密度 0. 900gZcm3のメタ口セン系直鎖状低密度ポリ エチレン 90重量部とを混合し、実施例 1と同様の方法で太陽電池モジュール用充填 材を作製した。
さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。
[0095] [比較例 2]
(マスターバッチの調製)
密度 0. 910gZcm3のチーグラー触媒系直鎖状低密度ポリエチレンを粉砕したパ ウダ一 100重量部に対して、ベンゾトリアゾール系紫外線吸収剤 3. 75重量部と、ヒン ダードアミン系光安定化剤 5重量部と、リン系熱安定化剤 0. 5重量部とを混合して溶 融、加工し、ペレツトイ匕した耐候剤マスターバッチを作製した。
[0096] (太陽電池モジュール用充填材の作製)
実施例 1で用いたシラン変性榭脂 10重量部に対して、上記耐候剤マスターバッチ 5重量部と、添加用ポリエチレンとして密度 0. 900gZcm3のメタ口セン系直鎖状低密 度ポリエチレン 90重量部とを混合し、実施例 1と同様の方法で太陽電池モジュール 用充填材を作製した。
さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。
[0097] [比較例 3]
(太陽電池モジュール用充填材の作製)
比較例 1と同様の方法でマスターバッチを作製した。
実施例 1で用いたシラン変性榭脂 20重量部に対して、上記マスターバッチ 5重量 部と、酢酸ビュル (VA)含量 12%のエチレン 酢酸ビュル共重合体榭脂(EVA) 80 重量部とを混合し、実施例 1と同様の方法で太陽電池モジュール用充填材を作製し た。
さらに、実施例 1と同様の方法で太陽電池モジュールを作製した。
[0098] [比較例 4]
(太陽電池モジュールの作製)
実施例 1の太陽電池モジュール用充填材の代わりに、市販の太陽電池モジュール 用 EVAシート(厚さ 600 m)を用いたこと、および真空ラミネータにて 150°Cで 5分 圧着した後に 150°Cに保持したオーブンに 30分放置したこと以外は、実施例 1と同 様の方法で太陽電池モジュールを作製した。 [0099] [特性の評価]
実施例 1〜5および比較例 1〜4における太陽電池モジュール用充填材および太 陽電池モジュールについて、下記の試験を行った。各試験の測定結果を下記表 1に 示す。
[0100] (1)ヘイズの測定
(室温放置)
太陽電池モジュール用充填材につ 、て、スガ試験機 (株)製 SMカラーコンビユー タ(SM— C)によりヘイズ (%)を測定した。具体的には、太陽電池モジュール用充填 材を、表裏全光線透過率 91%、ヘイズ 0. 2%、厚み 3mmの青板フロートガラスで挟 みこみ、太陽電池モジュール製造用の真空ラミネータにより 150°Cで 15分間圧着し た後、室温(25°C)で放置することにより冷却して、ヘイズ測定用のサンプルを作製し 、このサンプルについてヘイズを測定した。
[0101] (急冷)
上記のヘイズ測定用のサンプルを 150°Cのオーブンに 1時間投入し、取出した後、 即座に 20°Cの冷凍庫に投入して 10分間放置した。冷凍庫から取り出し、室温(25 °C)で放置し、サンプル温度が室温になった後にスガ試験機 (株)製 SMカラーコン ピュータ(SM— C)によりヘイズを測定した。
[0102] (徐冷)
上記のヘイズ測定用のサンプルを 150°Cのオーブンに 1時間投入した後、オーブ ンの設定温度を徐々に下げ、冷却速度 CZminで室温(25°C)まで冷却した。その 後、スガ試験機 (株)製 SMカラーコンピュータ(SM— C)によりヘイズを測定した。
[0103] (2)密着性の測定
太陽電池モジュールの製造後、太陽電池モジュール用充填材層と透明前面基板と の室温(25°C)下での剥離強度 (NZl5mm幅)を測定した。
[0104] (3)ホットスポット試験
太陽電池モジュールにつ 、て JIS規格 C8917に基づ!/、てホットスポット試験を行!ヽ 、試験後の外観を評価した。
[0105] (4)ピーク面積 FT— IR610 (日本分光株式会社製)を用いて、赤外分光法により 6000nmから 25 OOOnmの赤外吸収スペクトルを測定し、得られた赤外吸収スペクトルから、ピーク面 積を算出した。一例として実施例 1の赤外吸収スペクトルを図 2に示す。斜線部が求 めたピーク面積である。
[0106] (5)太陽電池モジュール温度
太陽電池モジュールを日当たりの良い屋外の架台に設置し、気温約 32°Cの条件 で 1時間暴露し、その後、太陽電池モジュールの温度を測定した。
[0107] [表 1]
Figure imgf000027_0001
[0108] 表 1から明らかなように、実施例 1 5における太陽電池モジュール用充填材のヘイ ズは冷却速度による違いが少なぐホットスポット試験後に白濁が生じにくかった。ま た、ピーク面積が小さぐ熱線の吸収が低いことが確認できた。更に、屋外暴露時の 太陽電池モジュールの温度が低いことが確認できた。
これに対し、比較例 1 4における太陽電池モジュール用充填材では、冷却速度に よるヘイズの差が大きぐホットスポット試験後に白濁した。更に、比較例 3 4におけ る太陽電池モジュール用充填材ではピーク面積が大きぐ熱線の吸収が高いことが 確認できた。更に、屋外暴露時の太陽電池モジュールの温度が高いことが確認でき た。
尚、以上の効果については、上記実施例及び比較例で挙げた透明前面基板、裏 面保護シートの構成によらず他の構成においても同様な効果がある。

Claims

請求の範囲
[1] エチレン性不飽和シランィ匕合物および重合用ポリエチレンを重合させてなるシラン 変性榭脂を含む充填材用榭脂と、紫外線吸収剤、光安定化剤、熱安定化剤および マスターバッチ用ポリエチレンを含むマスターバッチと、を有する太陽電池モジユー ル用充填材であって、前記重合用ポリエチレンおよび前記マスターバッチ用ポリェチ レンが、 0. 895〜0. 910gZcm3の範囲内の密度を有するメタ口セン系直鎖状低密 度ポリエチレンであることを特徴とする太陽電池モジュール用充填材。
[2] 前記太陽電池モジュール用充填材を厚みが 600± 15 mのシート状としたとき、 波長 6000nm以上 25000nm以下の範囲内におけるピーク面積が 12000以下であ ることを特徴とする請求の範囲第 1項に記載の太陽電池モジュール用充填材。
[3] 請求の範囲第 1項または第 2項に記載の太陽電池モジュール用充填材を用いた充 填材層を有することを特徴とする太陽電池モジュール。
PCT/JP2006/323745 2005-11-29 2006-11-28 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法 WO2007063861A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/095,022 US20090173384A1 (en) 2005-11-29 2006-11-28 Encapsulant for photovoltaic module, photovoltaic module using same and production method of photovoltaic module
EP06833549A EP1956661A4 (en) 2005-11-29 2006-11-28 FILLER FOR A SOLAR CELL MODULE, SOLAR CELL MODULE THEREFOR AND METHOD FOR PRODUCING A FILLER FOR A SOLAR CELL MODULE
CN2006800443588A CN101317275B (zh) 2005-11-29 2006-11-28 太阳电池组件用填充材料及使用其的太阳电池组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005344050A JP4662151B2 (ja) 2005-11-29 2005-11-29 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法
JP2005-344050 2005-11-29

Publications (1)

Publication Number Publication Date
WO2007063861A1 true WO2007063861A1 (ja) 2007-06-07

Family

ID=38092194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323745 WO2007063861A1 (ja) 2005-11-29 2006-11-28 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法

Country Status (7)

Country Link
US (1) US20090173384A1 (ja)
EP (1) EP1956661A4 (ja)
JP (1) JP4662151B2 (ja)
KR (1) KR20080078816A (ja)
CN (1) CN101317275B (ja)
TW (1) TW200733410A (ja)
WO (1) WO2007063861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521006A (zh) * 2017-04-14 2019-11-29 梅耶博格(瑞士)股份公司 光伏模块,光伏密封剂和生产光伏模块的方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
JP2007150094A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用充填材の製造方法
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
JP5374807B2 (ja) * 2006-05-15 2013-12-25 大日本印刷株式会社 太陽電池モジュールおよびその製造方法
JP2009043842A (ja) * 2007-08-07 2009-02-26 Sharp Corp 太陽電池モジュール
JP5177752B2 (ja) * 2007-11-29 2013-04-10 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
CN101984772A (zh) * 2008-03-17 2011-03-09 夏普株式会社 太阳能电池模块和太阳能电池模块的制造方法
US20110214716A1 (en) * 2009-05-12 2011-09-08 Miasole Isolated metallic flexible back sheet for solar module encapsulation
US7960643B2 (en) * 2009-05-12 2011-06-14 Miasole Isolated metallic flexible back sheet for solar module encapsulation
EP2439239B1 (en) * 2009-06-01 2014-06-25 Mitsui Chemicals Tohcello, Inc. Encapsulant material for solar cells comprising an ethylene resin composition
FR2948230B1 (fr) * 2009-07-16 2011-10-21 Saint Gobain Plaque transparente texturee et procede de fabrication d'une telle plaque
US20110036390A1 (en) * 2009-08-11 2011-02-17 Miasole Composite encapsulants containing fillers for photovoltaic modules
US20110036389A1 (en) * 2009-08-11 2011-02-17 Miasole Cte modulated encapsulants for solar modules
US20110139224A1 (en) * 2009-12-16 2011-06-16 Miasole Oriented reinforcement for frameless solar modules
US8507792B2 (en) 2009-08-25 2013-08-13 3M Innovative Properties Company Solar panels with adhesive layers
KR101324175B1 (ko) * 2009-11-13 2013-11-06 듀폰-미츠이 폴리케미칼 가부시키가이샤 아몰퍼스 실리콘 태양전지 모듈
FR2953525B1 (fr) 2009-12-03 2013-01-25 Arkema France Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle
JPWO2011118353A1 (ja) * 2010-03-23 2013-07-04 東洋アルミニウム株式会社 太陽電池用裏面保護シートとそれを備えた太陽電池モジュール
JP2011238817A (ja) * 2010-05-12 2011-11-24 Toyo Aluminium Kk 太陽電池用裏面保護シートとそれを備えた太陽電池モジュール
DE112011102313T5 (de) * 2010-07-09 2013-06-06 Du Pont-Mitsui Polychemicals Co., Ltd. Herstellungsverfahren des Solarzellenmoduls
KR101314496B1 (ko) 2010-11-26 2013-10-07 주식회사 엘지화학 봉지재 조성물 및 광전지 모듈
KR20130143068A (ko) * 2010-11-30 2013-12-30 미쓰비시 쥬시 가부시끼가이샤 태양 전지용 다층체 및 그것을 이용하여 제작된 태양 전지 모듈
FR2969532B1 (fr) 2010-12-23 2013-06-28 Arkema France Encapsulant d'un module photovoltaïque
WO2012105331A1 (ja) * 2011-01-31 2012-08-09 三洋電機株式会社 太陽電池モジュール及びその製造方法
JP2012195561A (ja) * 2011-03-01 2012-10-11 Dainippon Printing Co Ltd 太陽電池モジュール用封止材シート
KR101289234B1 (ko) * 2012-04-20 2013-07-26 미우실업 주식회사 태양전지 모듈용 충전재 및 그 제조방법
JP6106945B2 (ja) * 2012-04-20 2017-04-05 大日本印刷株式会社 太陽電池モジュール用の封止材シートの製造方法
CN107987369A (zh) * 2012-06-01 2018-05-04 埃克森美孚化学专利公司 光伏模块及其制造方法
JP6197277B2 (ja) * 2012-10-25 2017-09-20 大日本印刷株式会社 太陽電池モジュール
KR101477499B1 (ko) * 2013-03-29 2014-12-31 에스디엔 주식회사 경량 태양광 모듈 및 그 제조방법
KR20150031885A (ko) * 2013-09-17 2015-03-25 엘지이노텍 주식회사 태양전지 모듈
JP5995104B2 (ja) * 2013-11-07 2016-09-21 パナソニックIpマネジメント株式会社 太陽電池モジュール
WO2015194146A1 (ja) 2014-06-18 2015-12-23 パナソニックIpマネジメント株式会社 太陽電池モジュール
JP2018198236A (ja) * 2017-05-23 2018-12-13 パナソニック株式会社 太陽電池モジュール
JP6884661B2 (ja) * 2017-07-26 2021-06-09 株式会社豊田自動織機 太陽電池モジュール及びその製造方法
WO2022085668A1 (ja) * 2020-10-20 2022-04-28 大日本印刷株式会社 面発光装置、表示装置、面発光装置用封止部材シートおよび面発光装置の製造方法
WO2023229581A1 (en) * 2022-05-24 2023-11-30 Amcor Flexibles North America, Inc. Encapsulant film and photovoltaic module comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214111A (ja) 1985-07-11 1987-01-22 Canon Inc 実体顕微鏡
JPH06181333A (ja) 1992-12-14 1994-06-28 Sharp Corp 太陽電池モジュール
JP2003046105A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル用充填剤層
JP2003524532A (ja) * 1997-07-24 2003-08-19 エバーグリーン ソーラー, インコーポレイテッド ソーラーセルモジュールおよび積層ガラスアプリケーションのためのカプセル材料
JP2004214641A (ja) 2002-12-16 2004-07-29 Dainippon Printing Co Ltd 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール
JP2004327630A (ja) 2003-04-23 2004-11-18 Kyocera Corp 太陽電池モジュール
JP2005019975A (ja) * 2003-06-03 2005-01-20 Dainippon Printing Co Ltd 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
JP2005119160A (ja) * 2003-10-17 2005-05-12 Dainippon Printing Co Ltd ガスバリアフィルム及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792560A (en) * 1995-09-28 1998-08-11 Norton Performance Plastics Corporation Thermoplastic interlayer film
US6114046A (en) * 1997-07-24 2000-09-05 Evergreen Solar, Inc. Encapsulant material for solar cell module and laminated glass applications
JP2003046104A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル
CN100481524C (zh) * 2003-09-10 2009-04-22 大日本印刷株式会社 太阳能电池组件用填充材料层、太阳能电池组件
EP1584652A1 (en) * 2004-04-07 2005-10-12 Total Petrochemicals Research Feluy Blends of chromium-based and bimodal ziegler-natta polyethylenes
JP2007150094A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用充填材の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214111A (ja) 1985-07-11 1987-01-22 Canon Inc 実体顕微鏡
JPH06181333A (ja) 1992-12-14 1994-06-28 Sharp Corp 太陽電池モジュール
JP2003524532A (ja) * 1997-07-24 2003-08-19 エバーグリーン ソーラー, インコーポレイテッド ソーラーセルモジュールおよび積層ガラスアプリケーションのためのカプセル材料
JP2003046105A (ja) * 2001-08-02 2003-02-14 Dainippon Printing Co Ltd 太陽電池モジュ−ル用充填剤層
JP2004214641A (ja) 2002-12-16 2004-07-29 Dainippon Printing Co Ltd 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール
JP2004327630A (ja) 2003-04-23 2004-11-18 Kyocera Corp 太陽電池モジュール
JP2005019975A (ja) * 2003-06-03 2005-01-20 Dainippon Printing Co Ltd 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
JP2005119160A (ja) * 2003-10-17 2005-05-12 Dainippon Printing Co Ltd ガスバリアフィルム及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1956661A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521006A (zh) * 2017-04-14 2019-11-29 梅耶博格(瑞士)股份公司 光伏模块,光伏密封剂和生产光伏模块的方法
CN110521006B (zh) * 2017-04-14 2023-12-15 梅耶博格(瑞士)股份公司 光伏模块,光伏密封剂和生产光伏模块的方法

Also Published As

Publication number Publication date
KR20080078816A (ko) 2008-08-28
CN101317275A (zh) 2008-12-03
CN101317275B (zh) 2011-03-23
US20090173384A1 (en) 2009-07-09
JP4662151B2 (ja) 2011-03-30
EP1956661A4 (en) 2009-05-06
JP2007150069A (ja) 2007-06-14
TW200733410A (en) 2007-09-01
EP1956661A1 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
WO2007063861A1 (ja) 太陽電池モジュール用充填材、およびそれを用いた太陽電池モジュール、ならびに太陽電池モジュール用充填材の製造方法
JP5594959B2 (ja) 太陽電池素子封止材
CN111423824B (zh) 胶膜及包含其的电子器件
JP2006210405A (ja) 太陽電池モジュール
JP2009094320A (ja) 太陽電池モジュール用裏面充填材シート
JP2008159856A (ja) 太陽電池用封止膜及びこの封止膜を用いた太陽電池
JP5785794B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP4762377B2 (ja) アモルファスシリコン太陽電池モジュール
JP2007150094A (ja) 太陽電池モジュール用充填材の製造方法
KR101794213B1 (ko) 태양 전지 모듈
JP2010093119A (ja) 太陽電池モジュール用充填材層およびそれを用いた太陽電池モジュール
CN113801584B (zh) 一种光伏封装胶膜及光伏组件
JP4890752B2 (ja) 太陽電池モジュール
JP2011077089A (ja) 太陽電池用裏面側封止材及び太陽電池モジュール
JP5374807B2 (ja) 太陽電池モジュールおよびその製造方法
JP2007318008A (ja) 太陽電池モジュール用充填材、太陽電池モジュール用充填材層、および太陽電池モジュール
JP2005347721A (ja) 太陽電池モジュール用充填材層およびこれを用いた太陽電池モジュール
JP5591564B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2011073348A (ja) 太陽電池モジュール用充填材シートおよびそれを用いた太陽電池モジュール
EP3164892B1 (en) Co-extruded backsheet for solar cell modules
WO2016001279A1 (en) Mono-backsheet for solar cell modules
JP2006066761A (ja) 太陽電池モジュール
WO2011108434A1 (ja) 太陽電池モジュール用封止材シート及び太陽電池モジュール
JP5034620B2 (ja) 太陽電池モジュール用充填材シートの品質検査方法、および太陽電池モジュールの製造方法
JP2014107289A (ja) 太陽電池モジュール用封止材シート及び太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044358.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006833549

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087013353

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12095022

Country of ref document: US