WO2007060744A1 - 太陽電池セルおよびその製造方法 - Google Patents

太陽電池セルおよびその製造方法 Download PDF

Info

Publication number
WO2007060744A1
WO2007060744A1 PCT/JP2005/021783 JP2005021783W WO2007060744A1 WO 2007060744 A1 WO2007060744 A1 WO 2007060744A1 JP 2005021783 W JP2005021783 W JP 2005021783W WO 2007060744 A1 WO2007060744 A1 WO 2007060744A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thickness
aluminum
silver
substrate
Prior art date
Application number
PCT/JP2005/021783
Other languages
English (en)
French (fr)
Inventor
Shoichi Karakida
Takahiko Nishida
Mitsunori Nakatani
Hiroaki Morikawa
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/597,108 priority Critical patent/US7910823B2/en
Priority to CNB2005800137728A priority patent/CN100490183C/zh
Priority to EP05809119A priority patent/EP1887632B1/en
Priority to JP2006519668A priority patent/JP4425917B2/ja
Priority to ES05809119T priority patent/ES2357665T3/es
Priority to DE602005026059T priority patent/DE602005026059D1/de
Priority to PCT/JP2005/021783 priority patent/WO2007060744A1/ja
Publication of WO2007060744A1 publication Critical patent/WO2007060744A1/ja
Priority to US13/023,910 priority patent/US8450602B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar battery cell and a method for manufacturing the solar battery cell, and more particularly to a solar battery cell in which occurrence of peeling of an electrode is prevented and a method for manufacturing the solar battery cell.
  • Solar power generation is a clean power generation method that generates power using light energy, which is infinite energy, and does not emit harmful substances.
  • This solar power generation uses solar cells that are photoelectric conversion elements that generate electric power by converting light energy from the sun into electrical energy.
  • an electrode on the back surface of a light receiving surface in a generally produced solar cell is obtained by printing silver paste and aluminum paste on the back surface of a silicon substrate by screen printing, and then drying and firing. It is formed.
  • aluminum formed on almost the entire back surface of the silicon substrate serves as a positive electrode.
  • a silver electrode force is formed on the back surface of the silicon substrate as an output output electrode so that the silver electrode and the aluminum electrode partially overlap (for example, see Patent Document 1 and Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-273378
  • Patent Document 2 Japanese Patent Laid-Open No. 10-335267
  • the aluminum electrode for increasing the output and the silver electrode for taking out the output are formed so as to partially overlap each other. And in the part where this aluminum electrode and silver electrode overlap, a part of three kinds of metals, silicon of silicon substrate, aluminum of aluminum electrode, silver of silver electrode, is alloyed.
  • the overlapping portion (alloyed portion) is abrupt during firing. Due to the stress that appears to be caused by the difference in the coefficient of thermal expansion of each member during intense heating and cooling, it is very fragile. For this reason, after firing at the time of electrode formation, for example, when the silver electrode is overlapped on the aluminum electrode, the aluminum electrode is peeled off together with the silver electrode in the overlapped portion, and then the tab wire is formed in the module manufacturing process. Can not be properly joined to the electrode!
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a solar battery cell in which electrode peeling is effectively prevented and a method for manufacturing the solar battery cell.
  • a solar battery cell includes a photoelectric conversion layer, a first electrode provided on one side of the photoelectric conversion layer, and a photoelectric conversion.
  • the second electrode provided on the other surface side of the layer and the other surface side of the photoelectric conversion layer are provided with an outer edge portion overlapping the second electrode in the in-plane direction of the photoelectric conversion layer, and output from the second electrode.
  • a solar battery cell includes a substrate having a photoelectric transformation capacity, a first electrode provided on one side of the substrate, a second electrode provided on the other side of the substrate, In the solar cell, the outer surface of the substrate is provided with an outer edge portion overlapping the second electrode in the in-plane direction of the substrate, and a third electrode for taking out the output from the second electrode cover.
  • the substrate having photoelectric conversion while preventing defective formation of the electrode, and the second electrode partially alloyed with the third electrode are provided. . , Are securely bonded to achieve a solar cell that effectively prevents electrode peeling (alloy peeling). There is an effect that it can be.
  • the tab wire can be normally joined to the electrode, so that it is possible to reduce the tab attachment failure and improve the production yield.
  • FIG. 1-1 is a cross-sectional view showing a schematic configuration of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 1-2 is a plan view showing a schematic configuration of the front surface side ((light receiving surface side) of the solar cell according to the first embodiment of the present invention.
  • FIG. 1-3 is a plan view showing a schematic configuration of the back surface side (the surface side opposite to the light receiving surface) of the solar cell according to the first embodiment of the present invention.
  • Fig. 1-4 shows an enlarged view of the periphery of an alloy part in which three types of metals, silicon, aluminum, and silver, are partially alloyed in the solar cell according to the first embodiment of the present invention. It is a figure.
  • FIG. 2 is an enlarged cross-sectional view showing a peripheral portion of region B ′ and region C ′ in which an aluminum electrode provided on the back surface of a conventional solar battery cell and a back surface silver electrode partially overlap each other. It is.
  • Figure 3 shows the difference in thickness between the fired aluminum electrode and the backside silver electrode (a value obtained by subtracting the backside silver electrode thickness after firing from the aluminum electrode thickness) and the frequency of electrode (alloy) peeling. It is a characteristic view which shows the relationship between and.
  • Figure 4 shows the difference in thickness between the aluminum electrode after firing and the backside silver electrode (a value obtained by subtracting the backside silver electrode thickness after firing from the aluminum electrode thickness) and the frequency of occurrence of printing defects. It is a characteristic diagram showing the relationship.
  • FIG. 5-1 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 5-2 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIGS. 5-3 illustrate a method for manufacturing the solar battery cell according to the first embodiment of the present invention.
  • FIG. 5-3 illustrate a method for manufacturing the solar battery cell according to the first embodiment of the present invention.
  • FIG. 5-4 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 5-5 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 5-6 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 5-7 is a plan view showing an example of a screen mask used for printing silver paste in the production of the solar cell according to the first embodiment of the present invention.
  • FIG. 5-8 is a cross-sectional view showing an example of a screen mask used for printing silver paste in the production of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 5-9 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 5-10 is a cross-sectional view for explaining the method for manufacturing the solar cell according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the solar battery cell according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of another solar battery cell according to the second embodiment of the present invention.
  • FIGS. 1-1 to 1-3 are diagrams showing a schematic configuration of the solar cell according to the first embodiment of the present invention
  • FIG. 1-1 shows a schematic configuration of the solar cell according to the first embodiment
  • FIG. FIG. 1-2 is a plan view showing a schematic configuration of the front surface side (light-receiving surface side) of the solar cell according to the first embodiment
  • FIG. 1-3 is a back surface of the solar cell according to the first embodiment.
  • It is a top view which shows schematic structure of the side (surface side facing a light-receiving surface).
  • Figure 11 is a cross-sectional view taken along line AA in Figure 1-3.
  • the solar cell according to the present embodiment includes a p-type layer 11 which is a p-type silicon substrate as a semiconductor substrate, and the surface of the p-type layer 11.
  • An antireflection film 15 provided on the light receiving surface of the semiconductor layer 10 to prevent reflection of incident light, and a substantially rod
  • the surface silver electrode 21 which is a light receiving surface electrode portion provided in the shape of an aluminum electrode and the aluminum electrode which is a back surface electrode portion provided on almost the entire back surface of the semiconductor layer portion 10 for the purpose of extracting power and reflecting incident light 17 and a back surface silver electrode 19 which is an extraction electrode part for extracting electric power from the aluminum electrode 17.
  • FIG. 1-4 is an enlarged view showing the periphery of the back surface silver electrode 19 in the cross-sectional view of Fig. 1-1.
  • the aluminum electrode 17 and the back surface silver electrode 19 provided on the back surface of the solar battery cell are partially shown.
  • FIG. 4 is an enlarged cross-sectional view showing a peripheral portion of overlapping region B and region C.
  • the outer edge portion of the back surface silver electrode 19 is provided so as to overlap the aluminum electrode 17 in the in-plane direction of the semiconductor layer portion 10 as shown in FIG.
  • the thickness t of the aluminum electrode 17 is larger than the thickness t of the back surface silver electrode 19
  • the difference between the thickness t of the aluminum electrode 17 and the thickness t of the back surface silver electrode 19 is 10 m or more. It is 0 ⁇ m or less.
  • the outer edge portion of the back surface silver electrode 19 is provided so as to overlap the aluminum electrode 17 in the in-plane direction of the semiconductor layer portion 10, and the aluminum electrode is formed.
  • the thickness of 17 is made larger than the thickness of the back surface silver electrode 19. Therefore, in the conventional solar cell as well, as shown in FIG. 2, the region B ′ and the region C where the aluminum electrode 17 and the back surface silver electrode 19 partially overlap as shown in FIG. Have '.
  • regions B and C, where the aluminum electrode 17 and the backside silver electrode 19 partially overlap the silicon of the p + layer 14 of the silicon substrate, the aluminum of the aluminum electrode 17 and the silver of the backside silver electrode 19 Three types of metals are partly alloyed.
  • region B in Fig. 2 is partially alloyed with three types of metals: silicon of the p + layer 14 of the silicon substrate, aluminum of the aluminum electrode 17, and silver of the back surface silver electrode 19, This shows a state in which partly alloyed aluminum electrode 17 and backside silver electrode 19 do not peel (alloy peeling).
  • region C the force of partial alloying of three types of metals, silicon in the p + layer 14 of the silicon substrate, aluminum in the aluminum electrode 17 and silver in the backside silver electrode 19, is partially alloyed. It shows a state where peeling (alloy peeling) of the formed aluminum electrode 17 and backside silver electrode 19 occurs.
  • the boundary between each metal (silicon, aluminum, silver) is clear due to drawing. Of course, this part is partly alloyed, so it is actually unclear. It has become.
  • the overlapping portion (partially an alloyed portion) of the conventional solar battery cell is subjected to rapid heating and cooling during firing during production.
  • the stress that appears to be caused by the difference in thermal expansion coefficient makes it extremely brittle and decreases the bondability.
  • the aluminum electrode 17 peels off along with the back surface silver electrode 19 as shown in the region C ′ of FIG. There is a match. In this case, a problem arises in that the tab wire cannot be normally joined to the electrode in the subsequent module manufacturing process.
  • the present inventors have found that in the solar cell in which the outer edge portion of the back surface silver electrode 19 overlaps the aluminum electrode 17 in the in-plane direction of the semiconductor layer portion 10, The thickness t of the aluminum electrode 17 is made larger than the thickness t of the back surface silver electrode 19
  • the difference between the thickness t of the aluminum electrode 17 and the thickness t of the back surface silver electrode 19 is 10 / z m or more.
  • the silicon substrate (p + layer 14) and the aluminum electrode 17 (-part, alloyed with the backside silver electrode 19) were securely bonded, and electrode peeling (alloy peeling) was prevented. It came to invention that a photovoltaic cell can be obtained.
  • Figure 3 shows the difference in thickness between the aluminum electrode 17 after firing in the electrode formation step and the backside silver electrode 19 (thickness t force of the aluminum electrode 17 t thickness t of the backside silver electrode 19 after firing).
  • FIG. 5 is a characteristic diagram showing a correlation between Al Ag subtracted value) and the frequency of occurrence of alloy peeling.
  • the frequency of alloy peeling indicates how many cells have undergone alloy peeling relative to the number of cells evaluated.
  • FIG. 4 shows the aluminum electrode 17 and the back surface silver electrode 1 after firing in the electrode forming step. Difference in thickness from 9 (thickness of aluminum electrode 17 t force thickness of backside silver electrode 19 after firing t
  • FIG. 5 is a characteristic diagram showing a correlation between a value obtained by subtracting Al Ag and a frequency of printing defects.
  • the defective printing is a state in which the application of paste such as printing rubbing is insufficient in the alloy formation region and its peripheral region, and a defective formation of the electrode has occurred.
  • the frequency of defective printing represents the power of how many defective printing cells exist with respect to the number of cells evaluated.
  • the difference in thickness between the sintered aluminum electrode 17 and the back surface silver electrode 19 in the electrode formation step (the thickness t force of the aluminum electrode 17 is also subtracted from the thickness t of the back surface silver electrode 19 after firing).
  • the frequency of print defects increases sharply when the thickness (t) is 30 m or more.
  • the interface between the silicon substrate and the electrode under the end of the overlapping region of the aluminum electrode 17 and the back surface silver electrode 19 (partially, the aluminum electrode 17 and the back surface silver electrode 19 are alloyed). It has been found from other experiments and evaluations that peeling occurs in the vicinity, and electrode peeling (alloy peeling) tends to occur as the silver concentration at the interface increases.
  • the present inventors have made a back surface in the in-plane direction of the semiconductor layer portion 10.
  • the thickness t of the aluminum electrode 17 is made larger than the thickness t of the back surface silver electrode 19.
  • the difference between the thickness t of the aluminum electrode 17 and the thickness t of the backside silver electrode 19 is 10 m or more and 30 m.
  • the substrate bonding force at the interface between the silicon substrate (p + layer 14) and the aluminum electrode 17 is improved and good. Can be obtained.
  • electrode peeling alloy peeling
  • Effective printing defects electrode formation defects due to the difference in thickness between the aluminum electrode 17 and the back surface silver electrode 19 (the thickness force of the aluminum electrode 17 is also the value obtained by subtracting the thickness of the back surface silver electrode 19 after firing). Can be prevented.
  • the silicon substrate (p + layer 14) and the aluminum electrode 17 (-part, the aluminum electrode 17 and the back surface silver are prevented while preventing electrode formation failure. It is possible to realize a solar battery cell that can reliably prevent electrode peeling (alloy peeling) by securely joining the electrode 19 (which is alloyed with the electrode 19).
  • a method for manufacturing a solar battery cell that works as described above in the present embodiment will be described.
  • low-cost solar cells use a silicon substrate to generate solar power with a simple pn junction, and a group V element such as phosphorus (P) is applied to a ⁇ -type silicon substrate 1 that is several hundred ⁇ m thick.
  • An n layer with a thickness of several hundred nm is formed by diffusion or the like.
  • the p-type silicon substrate may be either a single crystal or a polycrystal.
  • a single crystal substrate having a (100) plane orientation will be described as an example.
  • a p-type silicon substrate surface with a specific resistance of 0.1 to 5 ⁇ 'cm is provided with a texture of an uneven structure that confines light on the n layer and the substrate side, and an antireflection film is disposed thereon.
  • a silver electrode is disposed on the front side of the substrate.
  • an aluminum electrode is placed on the back side of the substrate, and a p + layer is provided in anticipation of the BSF (Back Surface Field) effect. Try to increase the electron concentration.
  • BSF Back Surface Field
  • the aluminum electrode is also expected to have a BSR (Back Surface Reflection) effect that reflects long-wavelength light that passes through the silicon substrate and reuses it for power generation.
  • the aluminum electrode may be removed after the P + layer is formed by heat treatment because the substrate warpage becomes prominent and induces substrate cracking.
  • a solar cell is completed by placing a silver electrode on the back side of the substrate.
  • a method for manufacturing a solar battery cell according to the present embodiment will be described in detail with reference to the drawings.
  • a solar cell that is effective in the present embodiment, first, as shown in FIG. 51, for example, a p-type single crystal silicon ingot manufactured by a pulling method or a forging method is manufactured.
  • a p-type silicon substrate 11 ′ is sliced from the polycrystalline silicon ingot.
  • caustic soda or carbonated caustic soda of several wt% to 20 wt% is etched away to a thickness of about 10 m to 20 m to remove the damage layer and contamination on the silicon surface that occurs when slicing.
  • the substrate is washed with a mixed solution of hydrochloric acid and hydrogen peroxide to remove heavy metals such as iron adhering to the substrate surface.
  • anisotropic etching is performed with a solution obtained by adding IPA (isopropyl alcohol) to a similar alkali low-concentration solution to form a texture so that, for example, the silicon (111) surface appears.
  • IPA isopropyl alcohol
  • the n-type diffusion layer 13a is formed in order to form a pn junction.
  • oxyphosphorus chloride (POC1) is used, and a nitrogen gas of 800 ° C to 900 ° C is used.
  • n-type diffusion layer 13a in which the conductivity type is reversed by thermally diffusing the phosphorus as shown in Fig. 5-2 is a silicon substrate Form on the entire surface of 11 '.
  • the sheet resistance of the n-type diffusion layer 13a is, for example, several tens (30 to 80 to ⁇ well, and the depth of the ⁇ -type diffusion layer 13a is, for example, about 0.3 ⁇ m to 0.5 ⁇ m. .
  • a polymer resist paste is printed and dried by a screen printing method to form a resist. Then, for example, the n-type diffusion layer 13a formed on the back and side surfaces of the silicon substrate 11 ′ is removed by immersing in a 20 wt% potassium hydroxide solution for several minutes. After that, the resist is removed with an organic solvent and shown in Figure 5-3. Thus, a silicon substrate 11 ′ having the n-type diffusion layer 13 formed on the entire surface (light receiving surface) is obtained.
  • an antireflection film 15 such as a silicon oxide film, a silicon nitride film, or an oxide titanium film is formed on the surface of the n-type diffusion layer 13 with a uniform thickness.
  • the antireflection film 15 is a source of SiH gas and NH gas by plasma CVD.
  • the film is formed under reduced pressure at a heating temperature of 300 ° C or higher.
  • the refractive index is, for example, about 2.0 to 2.2, and the optimum film thickness of the antireflection film 15 is 70 ⁇ ! ⁇ 90nm. It should be noted that the antireflection film formed in this way is an insulator, and simply forming the surface electrode thereon does not act as a solar cell.
  • an aluminum paste containing glass is printed and dried on the entire back surface of the silicon substrate 11 '(the surface facing the light receiving surface) as shown in Fig. 5-5.
  • An aluminum paste layer 17a is formed on the entire back surface of the silicon substrate 11.
  • an opening is provided corresponding to the site where the back surface silver electrode 19 is formed.
  • the coating thickness of the aluminum paste can be adjusted by the diameter of the screen mask and the thickness of the emulsion.
  • a silver paste for the back surface silver electrode 19 is formed on the back surface (surface opposite to the light receiving surface) of the silicon substrate 11 'on which the aluminum electrode 17 is formed, as shown in Fig. 5-6. Is dried to form a silver paste layer 19a.
  • the thickness t of the fired aluminum electrode 17 is made larger than the thickness t of the back surface silver electrode 19, and the thickness t of the aluminum electrode 17
  • the silver paste can be printed using a screen mask formed by patterning the emulsion 25 on the mesh 25 as shown in FIGS. 5-7 and 5-8, for example.
  • a mask frame is formed on the outer periphery of the surface of the mesh 25 facing the emulsion 27.
  • aluminum paste can be printed using a screen mask patterned with emulsion 27 on mesh 25.
  • the coating thickness of the aluminum paste can be adjusted by the wire diameter for forming the screen mask and the emulsion thickness.
  • the coating thickness of the silver paste is adjusted by the diameter of the mesh forming the screen mask, the emulsion thickness, etc. Is possible.
  • the emphasis was on optimizing the amount of aluminum paste applied, which affects the amount of warpage of the substrate and the characteristics of the solar cell (the aforementioned BSF effect and BSR effect).
  • the thickness of the back aluminum electrode after firing and the thickness of the back silver electrode were almost the same.
  • silver paste printing for the surface silver electrode 21 is dried on the surface (light-receiving surface) of the silicon substrate 11 'on which the antireflection film 15 is formed, and is shown in FIG. 5-9.
  • a silver paste layer 21a is formed.
  • the coating thickness of the silver paste can also be adjusted according to the wire diameter of the mesh forming the screen mask and the emulsion thickness.
  • the front and back electrode paste layers are simultaneously fired at 600 ° C to 900 ° C for several minutes to ten and several minutes.
  • the silver base layer is baked to form the surface silver electrode 21 as shown in FIG. 5-10, but the antireflection film 15 is melted.
  • the silver material contained in the silver paste comes into contact with the silicon of the silicon substrate 11 ′ and resolidifies. As a result, conduction between the surface silver electrode 21 and silicon is ensured.
  • a fire-through method is commonly called a fire-through method.
  • the aluminum paste layer is baked to form aluminum electrode 17 as shown in FIG. 5-10, and the silver paste layer is baked. As shown in Figure 5-10, this is the back silver electrode 19.
  • aluminum in the aluminum paste reacts with silicon on the silicon substrate 11 to form a p + layer 14 immediately below the aluminum electrode 17.
  • This layer is generally called the BSF (Back Surface Field) layer and contributes to improving the energy conversion efficiency of solar cells.
  • the region force type layer 11 is sandwiched between the n-type diffusion layer 13 and the p + layer 14.
  • the silver paste reacts directly with the silicon of the silicon substrate 11 where it is in direct contact with the silicon substrate 11, and the silicon paste of the silicon substrate 11 and the aluminum paste when it is in contact with the aluminum paste.
  • (Aluminum electrode 17) Aluminum, backside silver electrode 19 silver 3 types of metal force Partly forms an alloy.
  • the cell is completed by the solar cell manufacturing process.
  • a copper tab wire for taking out the output to the outside is arranged on the silver electrode 3.
  • the aluminum electrode 17 and the back surface silver electrode 19 partially overlap each other as shown in FIG.
  • the substrate bonding force at the interface between the silicon substrate (p + layer 14) and the aluminum electrode 17 (partially, the aluminum electrode 17 and the back surface silver electrode 19 are alloyed) is improved. Good bondability can be obtained. As a result, electrode peeling (alloy peeling) can be effectively prevented.
  • printing defects (defects in electrode formation) due to the difference in thickness between the aluminum electrode 17 and the backside silver electrode 19 (thickness of the aluminum electrode 17 minus the thickness of the backside silver electrode 19 after firing) are effective. Can be prevented.
  • the silicon substrate (P + layer 14) and the aluminum electrode 17 (-part, aluminum In this way, it is possible to realize a solar cell in which the electrode electrode 17 and the back surface silver electrode 19 are alloyed with each other and the electrode peeling (alloy peeling) is effectively prevented.
  • the thickness of the back surface silver electrode 19 when the thickness of the back surface silver electrode 19 is fixed, it is necessary to increase the thickness of the aluminum electrode 17. At this time, the consumption of the aluminum paste is increased and the manufacturing cost is increased. In addition, there is a problem that warpage of the substrate increases due to stress generated during heating or cooling due to the increase in thickness of the aluminum electrode 17.
  • the aluminum electrode thickness is increased only in the overlapping region 31 between the aluminum electrode 17 and the back surface silver electrode 19 as shown in FIG. 6, or the aluminum electrode as shown in FIG. It is effective to increase the aluminum electrode thickness only in the overlapping region of 17 and the backside silver electrode 19 and the peripheral region 33 thereof.
  • Fig. 6 and Fig. 7 Since the basic structure of the solar battery cell that is effective in the present embodiment is the same as that of the solar battery cell according to the first embodiment described above except for the overlapping state of the aluminum electrode 17 and the back surface silver electrode 19, the above-mentioned Refer to
  • the aluminum electrode 17 is formed in such a manner that the thickness of the emulsion of the screen mask for electrode formation described in Embodiment 1 is adjacent to the overlapping region 31 between the aluminum electrode 17 and the back surface silver electrode 19. This can be realized by thickening only the region, or by thickening only the region adjacent to the overlapping region of the aluminum electrode 17 and the back surface silver electrode 19 and its peripheral region 33.
  • the solar cell according to the present invention is useful for a solar cell having a structure in which an aluminum electrode and a silver electrode for output extraction partially overlap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光電変換機能を有する基板と、前記基板の一面側に設けられた第一電極と、前記基板の他面側に設けられた第二電極と、前記基板の他面側に、前記基板の面内方向において外縁部が前記第二電極と重なって設けられ前記第二電極から出力を取り出すための第三電極と、を備えた太陽電池セルにおいて、前記第二電極の厚みを前記第三電極の厚みよりも大とし、且つ前記第二電極の厚みと前記第三電極の厚みとの差を10μm以上30μm以下とすることにより、電極剥離(合金剥離)を効果的に防止した太陽電池セルを得る。

Description

明 細 書
太陽電池セルおよびその製造方法
技術分野
[0001] 本発明は、太陽電池セルおよびその製造方法に関するものであり、特に、電極の 剥離の発生が防止された太陽電池セルおよびその製造方法に関するものである。 背景技術
[0002] 太陽発電は、無限のエネルギーである光エネルギーを用いて発電し、有害物質を 排出しないクリーンな発電方法である。この太陽発電には、太陽からの光エネルギー を電気エネルギーに変換して電力を発生する光電変換素子である太陽電池セルが 用いられている。
[0003] 従来、一般的に生産されている太陽電池セルにおける受光面の裏面の電極は、シ リコン基板の裏面に銀ペーストおよびアルミニウムペーストをスクリーン印刷により印 刷して、乾燥、焼成することにより形成される。ここで、シリコン基板の裏面のほぼ全面 に形成されるアルミニウムは正電極としての役割を果たす。しかし、太陽電池モジュ ールを作製する際に、アルミニウムで形成されたアルミニウム電極には出力取り出し 用のタブ線を直接はんだ付けすることができない。このため、出力取り出し用の電極 として銀電極力 該銀電極とアルミニウム電極とが部分的に重なり合うようにシリコン 基板の裏面に形成されている(たとえば、特許文献 1、特許文献 2参照)。
[0004] 特許文献 1:特開 2003— 273378号公報
特許文献 2:特開平 10— 335267号公報
発明の開示
発明が解決しょうとする課題
[0005] このように太陽電池セルの基板の裏面では、高出力化のためのアルミニウム電極と 出力取り出し用の銀電極とが、部分的に重なり合うように形成されている。そして、こ のアルミニウム電極と銀電極とが重なった部分では、シリコン基板のシリコン、アルミ- ゥム電極のアルミニウム、銀電極の銀、の 3種類の金属が一部、合金化している。
[0006] し力しながら、この重なり合った部分 (合金化して 、る部分)は、焼成時における急 激な加熱および冷却において各部材の熱膨張率の差に起因して発生すると思われ る応力により、非常に脆弱になっている。このため、電極形成時の焼成後、たとえば アルミニウム電極上に銀電極が重なっている場合には、この重なり合った部分におい てアルミニウム電極が銀電極ごと剥離し、その後の、モジュール作製工程で、タブ線 を正常に電極に接合できな!/、と 、う問題が発生する。
[0007] 本発明は、上記に鑑みてなされたものであって、電極の剥離が効果的に防止され た太陽電池セルおよびその製造方法を得ることを目的とする。
課題を解決するための手段
[0008] 上述した課題を解決し、目的を達成するために、本発明にカゝかる太陽電池セルは、 光電変換層と、光電変換層の一面側に設けられた第一電極と、光電変換層の他面 側に設けられた第二電極と、光電変換層の他面側に、光電変換層の面内方向にお いて外縁部が第二電極と重なって設けられ、第二電極から出力を取り出すための第 三電極と、を備えた太陽電池セルであって、第二電極の厚みが第三電極の厚みより も大であり、且つ第二電極の厚みと第三電極の厚みとの差が 10 μ m以上 30 μ m以 下であることを特徴とする。
発明の効果
[0009] 本発明にかかる太陽電池セルは、光電変浦能を有する基板と、基板の一面側に 設けられた第一電極と、基板の他面側に設けられた第二電極と、基板の他面側に、 基板の面内方向において外縁部が第二電極と重なって設けられ第二電極カゝら出力 を取り出すための第三電極と、を備えた太陽電池セルにおいて、第二電極の厚みを 第三電極の厚みよりも大とし、且つ第二電極の厚みと第三電極の厚みとの差を 10 μ m以上 30 m以下とすることにより、基板と、一部が第三電極と合金化している第二 電極と、の界面での接合力を向上させ、良好な接合性を得ることができる。その結果 、電極剥離 (合金剥離)を効果的に防止することができる。また、第二電極と第三電極 との厚みの差に起因した電極の形成不良を効果的に防止することができる。
[0010] したがって、本発明に力かる太陽電池セルによれば、電極の形成不良を防止しつ つ、光電変 能を有する基板と、一部が第三電極と合金化している第二電極と、 を確実に接合して電極剥離 (合金剥離)を効果的に防止した太陽電池セルを実現す ることができる、という効果を奏する。
[0011] そして、太陽電池セル製造後のモジュール作製時において、タブ線を正常に電極 に接合することができるため、タブ付け不良を低減し、生産歩留まりを向上させること ができる、という効果を奏する。
図面の簡単な説明
[0012] [図 1-1]図 1—1は、本発明の実施の形態 1にかかる太陽電池セルの概略構成を示す 断面図である。
[図 1-2]図 1—2は、本発明の実施の形態 1にかかる太陽電池セルの表面側((受光 面側)の概略構成を示す平面図である。
[図 1-3]図 1—3は、本発明の実施の形態 1にかかる太陽電池セルの裏面側(受光面 に相対する面側)の概略構成を示す平面図である。
[図 1-4]図 1—4は、本発明の実施の形態 1にかかる太陽電池セルにおいてシリコン、 アルミニウム、銀、の 3種類の金属が一部合金化した合金部周辺を拡大して示す図 である。
[図 2]図 2は、従来の太陽電池セルの裏面に設けられたアルミニウム電極と裏面銀電 極とが部分的に重なった領域 B'および領域 C'の周辺部を拡大して示す断面図であ る。
[図 3]図 3は、焼成後のアルミニウム電極と裏面銀電極との厚みの差 (アルミニウム電 極厚から焼成後の裏面銀電極厚を引いた値)と、電極 (合金)剥離の発生頻度と、の 関係を示す特性図である。
[図 4]図 4は、焼成後のアルミニウム電極と裏面銀電極との厚みの差 (アルミニウム電 極厚から焼成後の裏面銀電極厚を引いた値)と、印刷不良の発生頻度と、の関係を 示す特性図である。
[図 5-1]図 5—1は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5-2]図 5— 2は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5-3]図 5— 3は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5-4]図 5— 4は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5-5]図 5— 5は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5-6]図 5— 6は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5-7]図 5— 7は、本発明の実施の形態 1にかかる太陽電池セルの製造において銀 ペーストの印刷に用いるスクリーンマスクの一例を示す平面図である。
[図 5-8]図 5— 8は、本発明の実施の形態 1にかかる太陽電池セルの製造において銀 ペーストの印刷に用いるスクリーンマスクの一例を示す断面図である。
[図 5-9]図 5— 9は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を説明 する断面図である。
[図 5- 10]図 5— 10は、本発明の実施の形態 1にかかる太陽電池セルの製造方法を 説明する断面図である。
[図 6]図 6は、本発明の実施の形態 2にかかる太陽電池セルの概略構成を示す断面 図である。
[図 7]図 7は、本発明の実施の形態 2にかかる他の太陽電池セルの概略構成を示す 断面図である。
符号の説明
10 半導体層部
11 シリコン基板
13 n型拡散層
13a n型拡散層
14 p層
15 反射防止膜
17 アルミニウム電極
17a アルミニウムペースト層 19 裏面銀電極
19a 銀ペースト層
21 表面銀電極
21a 銀ペースト層
23 合金部
25 メッシュ
27 乳剤
29 マスク枠
31 アルミニウム電極と裏面銀電極との重なり領域
33 アルミニウム電極と裏面銀電極との重なり領域およびその周辺領域 発明を実施するための最良の形態
[0014] 以下に、本発明にかかる太陽電池セルおよびその製造方法の実施の形態を図面 に基づいて詳細に説明する。なお、本発明は以下の記述により限定されるものでは なぐ本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下の 図面においては、各図面間の縮尺および各部材間の縮尺は理解の容易のため実際 とは異なる場合がある。
[0015] 実施の形態 1.
図 1—1〜図 1—3は、本発明の実施の形態 1にかかる太陽電池セルの概略構成を 示す図であり、図 1— 1は実施の形態 1にかかる太陽電池セルの概略構成を示す断 面図である。また、図 1—2は実施の形態 1にかかる太陽電池セルの表面側(受光面 側)の概略構成を示す平面図であり、図 1—3は実施の形態 1にかかる太陽電池セル の裏面側 (受光面に相対する面側)の概略構成を示す平面図である。なお、図 1 1 は図 1—3の線分 A— Aにおける断面図である。
[0016] 本実施の形態に力かる太陽電池セルは、図 1 1〜図 1 3に示すように、半導体 基板としての p型シリコン基板である p型層 11と、該 p型層 11の表面の導電型が反転 した n型拡散層 13と、高濃度不純物を含んだ p+層(BSF層: Back Surface Field) 14と 、力もなる光電変換層である半導体層部 10と、この半導体層部 10の受光面に設けら れて入射光の反射を防止する反射防止膜 15と、この半導体層部 10の受光面に略棒 状に設けられた受光面電極部である表面銀電極 21と、電力取り出しと入射光の反射 を目的として半導体層部 10の裏面のほぼ全面に設けられた裏面電極部であるアルミ -ゥム電極 17と、このアルミニウム電極 17から電力を取り出すための取り出し電極部 である裏面銀電極 19と、を備えて構成されている。
[0017] このように構成された本実施の形態に力かる太陽電池セルでは、太陽光が太陽電 池セルの受光面側 (反射防止膜 15側)力も照射されて、内部の pn接合面 (p型層 11 と n型拡散層 13との接合面)に到達すると、この pn接合面において合体していたホー ルと電子が分離する。分離した電子は n型拡散層 13に向かって移動する。一方、分 離したホールは P+層 14に向力つて移動する。これにより、 n型拡散層 13と p+層 14との 間に、 p+層 14の電位が高くなるようにして電位差が発生する。その結果、 n型拡散層 13に接続した表面銀電極 21がマイナス極、 p+層 14に接続したアルミニウム電極 17 がプラス極となって、外部回路(図示せず)に電流が流れる。
[0018] つぎに、本実施の形態に力かる太陽電池セルの特徴について説明する。図 1—4 に示すように本実施の形態に力かる太陽電池セルでは、 p+層 14上にぉ 、てアルミ- ゥム電極 17と裏面銀電極 19とが部分的に重なっている。図 1—4は図 1—1の断面図 おける裏面銀電極 19周辺を拡大して示す図であり、太陽電池セルの裏面に設けら れたアルミニウム電極 17と裏面銀電極 19とが部分的に重なった領域 Bおよび領域 C の周辺部を拡大して示す断面図である。
[0019] このアルミニウム電極 17と裏面銀電極 19とが部分的に重なっている領域 Bおよび 領域 Cでは、シリコン基板の p+層 14のシリコン、アルミニウム電極 17のアルミニウム、 裏面銀電極 19の銀、の 3種類の金属が一部合金化して図 1—4に示すように合金部 23を形成している。なお、図 1—1および図 1—4においては、作図の関係上、領域 B および領域 Cについて各金属(シリコン、アルミニウム、銀)の境界が明確となっている 力 当然、この部分は一部合金化されているため、実際には、不明瞭となっている。
[0020] ここで、本実施の形態に力かる太陽電池セルでは、図 1 4に示すように半導体層 部 10の面内方向において裏面銀電極 19の外縁部がアルミニウム電極 17と重なって 設けられ、アルミニウム電極 17の厚み t が裏面銀電極 19の厚み t よりも大とされると
Al Ag
ともにアルミニウム電極 17の厚み t と裏面銀電極 19の厚み t との差が 10 m以上 3 0 μ m以下であることを特徴とする。
[0021] これにより、本実施の形態に力かる太陽電池セルでは、図 1—5に示すようにアルミ -ゥム電極 17と裏面銀電極 19とが部分的に重なった領域 Bおよび領域 Cにおいて 合金部 23が確実に形成され、合金部 23のアルミニウム電極 17と裏面銀電極 19とが 確実に接合されるとともに、アルミニウム電極 17および裏面銀電極 19が確実にシリコ ン基板の P+層 14に接合されて ヽる。
[0022] 従来の太陽電池セルにおいては、図 2に示すように半導体層部 10の面内方向に おいて裏面銀電極 19の外縁部がアルミニウム電極 17と重なって設けられ、アルミ- ゥム電極 17の厚みが裏面銀電極 19の厚みよりも大とされている。したがって、従来の 太陽電池セルにおいても本実施の形態に力かる太陽電池セルと同様に、図 2に示す ようにアルミニウム電極 17と裏面銀電極 19とが部分的に重なった領域 B'および領域 C'を有する。そして、アルミニウム電極 17と裏面銀電極 19とが部分的に重なってい る領域 B,および領域 C,では、シリコン基板の p+層 14のシリコン、アルミニウム電極 17 のアルミニウム、裏面銀電極 19の銀、の 3種類の金属が一部合金化している。
[0023] ここで、図 2において領域 B,は、シリコン基板の p+層 14のシリコン、アルミニウム電 極 17のアルミニウム、裏面銀電極 19の銀、の 3種類の金属が一部合金化しており、 一部が合金化したアルミニウム電極 17および裏面銀電極 19の剥離 (合金剥離)が生 じていない状態を示している。一方、領域 C,は、シリコン基板の p+層 14のシリコン、ァ ルミ-ゥム電極 17のアルミニウム、裏面銀電極 19の銀、の 3種類の金属が一部合金 化している力 一部が合金化したアルミニウム電極 17および裏面銀電極 19の剥離( 合金剥離)が生じている状態を示している。なお、図 2においては作図の関係上、各 金属(シリコン、アルミニウム、銀)の境界が明確となっている力 当然、この部分は一 部合金化されているため、実際には、不明瞭となっている。
[0024] し力しながら、従来の太陽電池セルにぉ 、ては、この重なり合った部分 (一部、合金 化している部分)は、製造途中の焼成時における急激な加熱および冷却において各 部材の熱膨張率の差に起因して発生すると思われる応力により、非常に脆弱になり、 接合性が低下している。このため、電極形成時の焼成後、この重なり合った部分にお いて図 2の領域 C'に示すようにアルミニウム電極 17が裏面銀電極 19ごと剥離する場 合がある。この場合には、後のモジュール作製工程において、タブ線を正常に電極 に接合できな 、と 、う問題が発生する。
[0025] 本発明者らの研究により、太陽電池セルの製造工程における電極の焼成工程後の セルを観察すると、電極剥離 (合金剥離)と呼ばれるアルミニウム電極 17と裏面銀電 極 19との重なり領域において「アルミニウム電極 17および裏面銀電極 19電極のシリ コン基板 (P+層 14)からのめくれあがり」力 時折発生していることがわ力つた(図 2の 領域 C'参照)。そして、この「アルミニウム電極 17および裏面銀電極 19電極のシリコ ン基板 (P+層 14)カゝらのめくれあがり」がモジュール作製工程において、電極に対する タブ線の取り付け不良の一因となることが分力 た。また、電極剥離 (合金剥離)につ いては、図 2に示されるように、アルミニウム電極 17と裏面銀電極 19との重なり領域 の端部下のシリコン基板と電極界面 (一部、アルミニウムと銀が合金化)付近で剥離し ていることが、観察により分力つた。
[0026] そこで、本発明者らは鋭意研究を進めた結果、半導体層部 10の面内方向におい て裏面銀電極 19の外縁部がアルミニウム電極 17と重なって設けられた太陽電池セ ルにおいて、アルミニウム電極 17の厚み tを裏面銀電極 19の厚み t よりも大とする
Al Ag
とともにアルミニウム電極 17の厚み t と裏面銀電極 19の厚み t との差を 10 /z m以上
Al Ag
30 m以下とすることにより、シリコン基板 (p+層 14)とアルミニウム電極 17 (—部、裏 面銀電極 19と合金化している)とを確実に接合され電極剥離 (合金剥離)が防止され た太陽電池セルを得ることができるとの発明に至った。
[0027] 図 3および図 4に、半導体層部 10の面内方向において裏面銀電極 19の外縁部が アルミニウム電極 17と重なって設けられた太陽電池セルにおいて、アルミニウム電極 17の厚みおよび裏面銀電極 19の厚みを変化させた実験した場合の特性データを示 す。図 3は、電極形成工程における焼成後のアルミニウム電極 17と裏面銀電極 19と の厚みの差(アルミニウム電極 17の厚み t力 焼成後の裏面銀電極 19の厚み t を
Al Ag 引いた値)と、合金剥離の発生頻度と、の相関関係を示した特性図である。ここで、合 金剥離の頻度とは、評価したセル枚数に対して、どれくらい合金剥離が発生したセル があるのか、を表している。
[0028] 一方、図 4は、電極形成工程における焼成後のアルミニウム電極 17と裏面銀電極 1 9との厚みの差(アルミニウム電極 17の厚み t力 焼成後の裏面銀電極 19の厚み t
Al Ag を引いた値)と、印刷不良の頻度と、の相関関係を示した特性図である。ここで、印刷 不良とは、合金形成領域およびその周辺領域で、印刷擦れ等、ペーストの塗布が不 充分となった状態であり、電極の形成不良が生じた状態である。また印刷不良の頻 度とは、評価したセル枚数に対してどれくらい印刷不良のセルがあるの力、を表して いる。
[0029] 図 3より、電極形成工程における焼成後のアルミニウム電極 17と裏面銀電極 19との 厚みの差(アルミニウム電極 17の厚み t力も焼成後の裏面銀電極 19の厚み t を引
Al Ag いた値)が 10 m以上である場合に、合金剥離の頻度が大幅に低下していることが 分かる。一方、図 4より、電極形成工程における焼成後のアルミニウム電極 17と裏面 銀電極 19との厚みの差(アルミニウム電極 17の厚み tから焼成後の裏面銀電極 19
A1
の厚み t を引いた値)が 30 m以上である場合に、印刷不良の頻度が急激に上昇
Ag
していることが分かる。
[0030] また、合金剥離については、アルミニウム電極 17と裏面銀電極 19との重なり領域の 端部下のシリコン基板と電極との界面(一部、アルミニウム電極 17と裏面銀電極 19と が合金化して 、る)付近で剥離しており、その界面での銀濃度が高 、ほど電極剥離( 合金剥離)が生じやすいことが、他の実験と評価により判明した。
[0031] なお、アルミニウム、あるいは、銀が直接シリコンと接触する領域では、このような界 面での電極剥離 (合金剥離)は認められず、良好な接合性を有している。したがって 、ある一定の割合で、アルミニウムとシリコンとの合金に銀が取り込まれると、熱膨張 係数の変化など何らかの作用で、接合性を低下させることが予想される。
[0032] 以上の結果から、電極剥離 (合金剥離)を防止するためには、シリコン基板 (p+層 14 )と電極 (合金)との界面付近における銀濃度を下げることが必要であり、アルミニウム 電極 17の厚み tを厚くする、または裏面銀電極 19の厚み t を薄くすることが、有効
Al Ag
であると言える。そして、上記の実験結果はこれを裏付けるものである。一方、印刷不 良については、アルミニウム電極 17の厚み t と裏面銀電極 19の厚み t の違いによ
Al Ag
る段差に起因して、ペーストが上手くカバレッジできないことによるものである。
[0033] そこで、以上のことから、本発明者らは、半導体層部 10の面内方向において裏面 銀電極 19の外縁部がアルミニウム電極 17と重なって設けられた太陽電池セルにお いて、アルミニウム電極 17の厚み tを裏面銀電極 19の厚み t よりも大とするとともに
Al Ag
アルミニウム電極 17の厚み t と裏面銀電極 19の厚み t との差を 10 m以上 30 m
Al Ag
以下とすることにより、シリコン基板 (P+層 14)とアルミニウム電極 17 (—部、裏面銀電 極 19と合金化している)とを確実に接合され電極剥離 (合金剥離)が防止された太陽 電池セルを得ることができるとの発明に至った。
[0034] 以上のように構成された本実施の形態に力かる太陽電池セルによれば、図 1—4に 示すようにアルミニウム電極 17と裏面銀電極 19とが部分的に重なった領域 Bおよび 領域 Cにおいて、シリコン基板 (p+層 14)とアルミニウム電極 17との界面(一部、アルミ -ゥム電極 17と裏面銀電極 19とが合金化している)での基板接合力が向上し、良好 な接合性を得ることができる。その結果、電極剥離 (合金剥離)を効果的に防止する ことができる。また、アルミニウム電極 17と裏面銀電極 19との厚みの差(アルミニウム 電極 17の厚み力も焼成後の裏面銀電極 19の厚みを引いた値)に起因した印刷不良 (電極の形成不良)を効果的に防止することができる。
[0035] したがって、本実施の形態に力かる太陽電池セルによれば、電極の形成不良を防 止しつつ、シリコン基板 (p+層 14)とアルミニウム電極 17 (—部、アルミニウム電極 17と 裏面銀電極 19とが合金化して ヽる)とを確実に接合して電極剥離 (合金剥離)を効果 的に防止した太陽電池セルを実現することができる、という効果を奏する。
[0036] つぎに、上記のように構成された本実施の形態に力かる太陽電池セルの製造方法 について説明する。一般的に、低価格の太陽電池セルは、シリコン基板を使用して 単純な pn接合で太陽光発電させ、数百 μ m厚の ρ型シリコン基板 1にリン (P)等の V 族元素を拡散等で数百 nm厚の n層を形成する。本発明においては、 p型シリコン基 板は単結晶、多結晶のいずれでも良いが、以下では(100)面方位の単結晶基板を 例に説明する。
[0037] まず、太陽電池セルの製造工程の概略にっ 、て簡単に説明する。太陽電池セル の製造工程では、比抵抗 0.1〜5 Ω 'cmの p型シリコン基板表面に、 n層と基板側の 光を閉じ込める凹凸構造のテクスチャーを設け、その上に反射防止膜を配置する。 つづいて、基板表側に銀電極を配置する。 [0038] つ!、で、基板裏側にアルミニウム電極を配置し、 BSF (Back Surface Field)効果を 期待して p+層を設けて p層中の電子が消滅しないようにバンド構造の電界で p層電子 濃度を高めるようにする。また、アルミニウム電極にはシリコン基板を通過する長波長 光を反射させて発電に再利用する BSR (Back Surface Reflection)効果も期待してい る。ただし、アルミニウム電極は、基板反りが顕著になり、基板割れを誘発するため、 熱処理で P+層が形成された後に除去する場合もある。最後に、基板裏側に銀電極を 配置して太陽電池セルが完成する。
[0039] 以下、図面を参照して本実施の形態に力かる太陽電池セルの製造方法について 詳細に説明する。本実施の形態に力かる太陽電池セルを製造するには、まず、図 5 1に示すように、たとえば引き上げ法により製造される p型の単結晶シリコンインゴッ ト、または铸造法により製造される多結晶シリコンインゴットから p型のシリコン基板 11 'をスライスする。そして、たとえば数 wt%〜20wt%程度の苛性ソーダや炭酸苛性ソ ーダで 10 m〜20 m程度の厚みだけエッチング除去し、スライスした際に発生す るシリコン表面のダメージ層や汚染を取り除く。
[0040] さらに、必要に応じて、塩酸と過酸化水素との混合溶液で洗浄し、基板表面に付着 した鉄等の重金属類を除去する。その後、同様のアルカリ低濃度液に IPA (イソプロ ピルアルコール)を添カ卩した溶液で異方性エッチングを行な ヽ、たとえばシリコン(11 1)面が出るようにテクスチャーを形成する。
[0041] っ 、で、 pn接合を形成するために n型拡散層 13aを形成する。この n型拡散層 13a の形成工程では、たとえばオシキ塩化リン(POC1 )を使用し、 800°C〜900°Cの窒
3
素、酸素の混合ガス雰囲気中で数十分間の拡散処理を施し、図 5— 2に示すようにリ ンを熱的に拡散させて導電型を反転させた n型拡散層 13aをシリコン基板 11 'の全面 に形成する。なお、この n型拡散層 13aのシート抵抗はたとえば数十(30〜80〜ΩΖ 口程度であり、 η型拡散層 13aの深さはたとえば 0. 3 μ m〜0. 5 μ m程度である。
[0042] つぎに、また、受光面側の n型拡散層 13aを保護するため、高分子レジストペースト をスクリーン印刷法で印刷'乾燥させてレジストを形成する。そして、たとえば 20wt% 水酸化カリウム溶液中へ数分間浸漬してシリコン基板 11 'の裏面や側面に形成され た n型拡散層 13aを除去する。その後、レジストを有機溶剤で除去して、図 5— 3に示 すように n型拡散層 13が表面 (受光面)全面に形成されたシリコン基板 11 'を得る。
[0043] ついで、図 5—4に示すようにシリコン酸ィ匕膜、シリコン窒化膜や酸ィ匕チタン膜など の反射防止膜 15を n型拡散層 13面に一様な厚みで形成する。反射防止膜 15は、た とえば、シリコン酸ィ匕膜の場合にはプラズマ CVD法で SiHガスおよび NHガスを原
4 3 材料として、 300°C以上の加熱温度で、減圧下で成膜形成する。屈折率はたとえば 2 . 0〜2. 2程度であり、反射防止膜 15の最適な膜厚は 70ηπ!〜 90nm程度である。 なお、このようにして形成される反射防止膜は絶縁体であることに注意すべきであり、 表面電極をこの上に単に形成しただけでは、太陽電池として作用しない。
[0044] つぎに、スクリーン印刷法を用いて、シリコン基板 11 'の裏面 (受光面に相対する面 )の全面に、図 5— 5に示すようにガラスを含むアルミニウムペーストを印刷 ·乾燥し、 シリコン基板 11,の裏面全面にアルミニウムペースト層 17aを形成する。このアルミ- ゥムペースト層 17aにおいては、裏面銀電極 19の形成部位に対応して開口が設けら れている。アルミニウムペーストの塗布厚は、スクリーンマスクを形成する線径や、乳 剤厚などで調整可能である。
[0045] ついで、スクリーン印刷法を用いて、アルミニウム電極 17が形成されたシリコン基板 11 'の裏面 (受光面に相対する面)に図 5— 6に示すように裏面銀電極 19用銀ぺー ストを印刷'乾燥し、銀ペースト層 19aを形成する。ここで、アルミニウムペースト層 17 aおよび銀ペースト層 19aの形成工程において、焼成後のアルミニウム電極 17の厚 み t を裏面銀電極 19の厚み t よりも大とするとともにアルミニウム電極 17の厚み t と
Al Ag A1 裏面銀電極 19の厚み t との差を 10 μ m以上 30 μ m以下となるようにそれぞれの厚
Ag
みを調整する。
[0046] なお、銀ペーストの印刷は、たとえば図 5— 7におよび図 5— 8に示すようにメッシュ 25に対して乳剤 27によりパターン形成したスクリーンマスクを用いて行うことができる 。メッシュ 25の乳剤 27と相対する面の外周にはマスク枠が形成されている。また、ァ ルミ-ゥムペーストの印刷も、同様にメッシュ 25に対して乳剤 27によりパターン形成し たスクリーンマスクを用いて行うことができる。そして、アルミニウムペーストの塗布厚 は、スクリーンマスクを形成する線径や、乳剤厚などで調整可能である。同様に、銀 ペーストの塗布厚も、スクリーンマスクを形成するメッシュの線径、乳剤厚などで調整 可能である。
[0047] 従来は、基板の反り量や太陽電池の特性 (前述の BSF効果や BSR効果)に影響を 与えるアルミニウムペーストの塗布量の最適化に重点を置いていたため、銀ペースト の塗布量については、最適化が図られたことはなぐ焼成後の裏アルミニウム電極厚 と、裏銀電極厚については、ほぼ同じ厚さとしていた。
[0048] さらに、スクリーン印刷法を用いて、反射防止膜 15が形成されたシリコン基板 11 'の 表面 (受光面)に表面銀電極 21用の銀ペースト印刷'乾燥し、図 5— 9に示すように 銀ペースト層 21aを形成する。銀ペーストの塗布厚も、スクリーンマスクを形成するメッ シュの線径、乳剤厚などにより調整可能である。
[0049] つぎに、電極形成のための焼成工程で、表裏電極用ペースト層を同時に 600°C〜 900°Cで数分間〜十数分焼成する。シリコン基板 11 'の表面 (受光面)側では、銀べ 一スト層が焼成されて図 5— 10に示すように表面銀電極 21となるが、反射防止膜 15 が溶融して 、る間に銀ペースト中に含まれて 、るガラス材料で銀材料がシリコン基板 11 'のシリコンと接触し、再凝固する。これにより、表面銀電極 21とシリコンの導通が 確保される。このようなプロセスは一般にフアイヤースルー法と呼ばれて 、る。
[0050] 一方、シリコン基板 11,の裏面 (受光面に相対する面)側では、アルミニウムペースト 層が焼成されて図 5— 10に示すようにアルミニウム電極 17となり、銀ペースト層が焼 成されて図 5— 10に示すように裏面銀電極 19となる。ここで、アルミニウムペーストの アルミニウムがシリコン基板 11,のシリコンと反応してアルミニウム電極 17の直下に p+ 層 14を形成する。この層は、一般に BSF (Back Surface Field)層と呼ばれ、太陽電 池のエネルギー変換効率の向上に寄与するものである。そして、シリコン基板 11 'の うち、 n型拡散層 13と p+層 14とに挟まれた領域力 ¾型層 11となる。
[0051] また、銀ペーストは、シリコン基板 11,と直接接する箇所では、直接シリコン基板 11 ,のシリコンと反応し、また、アルミニウムペーストと接触する箇所では、シリコン基板 1 1,のシリコン、アルミニウムペースト(アルミニウム電極 17)のアルミニウム、裏面銀電 極 19の銀の 3種の金属力 一部、合金を形成する。以上の工程により、太陽電池セ ル製造プロセスによりセルは、完成する。なお、セル作製工程後のモジュール作製ェ 程では、この銀電極 3上に出力を外部へ取り出すための銅製のタブ線が配置される [0052] 以上のように構成された本実施の形態に力かる太陽電池セルの製造方法によれば 、図 1—4に示すようにアルミニウム電極 17と裏面銀電極 19とが部分的に重なった領 域 Bおよび領域 Cにおいて、シリコン基板 (p+層 14)とアルミニウム電極 17との界面( 一部、アルミニウム電極 17と裏面銀電極 19とが合金化している)での基板接合力が 向上し、良好な接合性を得ることができる。その結果、電極剥離 (合金剥離)を効果 的に防止することができる。また、アルミニウム電極 17と裏面銀電極 19との厚みの差 (アルミニウム電極 17の厚み力も焼成後の裏面銀電極 19の厚みを引いた値)に起因 した印刷不良 (電極の形成不良)を効果的に防止することができる。
[0053] したがって、本実施の形態に力かる太陽電池セルの製造方法によれば、電極の形 成不良を防止しつつ、シリコン基板 (P+層 14)とアルミニウム電極 17 (—部、アルミ-ゥ ム電極 17と裏面銀電極 19とが合金化している)とを確実に接合して電極剥離 (合金 剥離)を効果的に防止した太陽電池セルを実現することができる、という効果を奏す る。
[0054] 実施の形態 2.
実施の形態 2においては、本発明に力かる太陽電池セルの他の形態について説明 する。上述した実施の形態 1においては、アルミニウム電極 17がー様に同じ厚みを 有する場合にっ 、て説明した力 本発明にお 、てはアルミニウム電極 17は必ずしも 一様に同じ厚みを有する必要はない。
[0055] 本発明において、たとえば裏面銀電極 19の厚みを固定した場合には、アルミ-ゥ ム電極 17の厚みを厚くする必要がある力 この際、アルミニウムペーストの消費量が 増え、製造コストが高くなる、また、アルミニウム電極 17の厚みを厚くすることに起因し て加熱時または冷却時に発生する応力による基板の反りが増大するという問題が発 生する。
[0056] これらの問題を防ぐためには、図 6に示すようにアルミニウム電極 17と裏面銀電極 1 9との重なり領域 31のみ、アルミニウム電極厚を増やすこと、または、図 7に示すよう にアルミニウム電極 17と裏面銀電極 19との重なり領域およびその周辺領域 33にお いてのみ、アルミニウム電極厚を増やすことが有効である。なお、図 6および図 7に示 した本実施の形態に力かる太陽電池セルの基本的な構造は、アルミニウム電極 17と 裏面銀電極 19との重なり状態以外は上述した実施の形態 1にかかる太陽電池セルと 同様であるため、上記を参照することとする。
[0057] このようなアルミニウム電極 17の形成は、実施の形態 1において説明した電極形成 用のスクリーンマスクの乳剤厚の厚みを、アルミニウム電極 17と裏面銀電極 19との重 なり領域 31に隣接する部位のみ厚くする、またはアルミニウム電極 17と裏面銀電極 1 9との重なり領域およびその周辺領域 33に隣接する部位のみ厚くすることで、実現可 能である。
産業上の利用可能性
[0058] 以上のように、本発明に力かる太陽電池セルは、アルミニウム電極と出力取り出し 用の銀電極とが部分的に重なり合う構造の太陽電池セルに有用である。

Claims

請求の範囲
[1] 光電変換機能を有する基板と、
前記基板の一面側に設けられた第一電極と、
前記基板の他面側に設けられた第二電極と、
前記基板の他面側に、前記基板の面内方向にお!ヽて外縁部が前記第二電極と重 なって設けられ、前記第二電極力 出力を取り出すための第三電極と、
を備えた太陽電池セルであって、
前記第二電極の厚みが前記第三電極の厚みよりも大であり、且つ前記第二電極の 厚みと前記第三電極の厚みとの差が 10 μ m以上 30 μ m以下であること
を特徴とする太陽電池セル。
[2] 前記第二電極において、前記第三電極と重なる部分の厚みのみが前記第三電極 の厚みよりも大であること
を特徴とする請求 1に記載の太陽電池セル。
[3] 前記第二電極が、アルミニウム電極であり、
前記第三電極が、銀電極であること、
を特徴とする請求項 1に記載の太陽電池セル。
[4] 光電変換機能を有する基板の一面側に第一電極を形成する第一電極形成工程と 前記基板の他面側に第二電極を形成する第二電極工程と、
前記基板の他面側に、前記基板の面内方向にお!ヽて外縁部が前記第二電極と重 なるように前記第二電極力 出力を取り出すための第三電極を形成する第三電極ェ 程と、
を含む太陽電池セルの製造方法であって、
前記第二電極の厚みを前記第三電極の厚みよりも大とし、且つ前記第二電極の厚 みと前記第三電極の厚みとの差を 10 m以上 30 μ m以下とすること
を特徴とする太陽電池セルの製造方法。
[5] 前記第二電極における該第二電極と前記第三電極とが重なる重なり部の厚みのみ を前記第三電極の厚みよりも大きくすること を特徴とする請求 4に記載の太陽電池セルの製造方法。 前記第二電極が、アルミニウム電極であり、
前記第三電極が、銀電極であること、
を特徴とする請求項 4に記載の太陽電池セルの製造方法。
PCT/JP2005/021783 2005-11-28 2005-11-28 太陽電池セルおよびその製造方法 WO2007060744A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/597,108 US7910823B2 (en) 2005-11-28 2005-11-28 Solar cell and manufacturing method thereof
CNB2005800137728A CN100490183C (zh) 2005-11-28 2005-11-28 太阳能电池单元及其制造方法
EP05809119A EP1887632B1 (en) 2005-11-28 2005-11-28 Solar battery cell and method for manufacturing same
JP2006519668A JP4425917B2 (ja) 2005-11-28 2005-11-28 太陽電池セルおよびその製造方法
ES05809119T ES2357665T3 (es) 2005-11-28 2005-11-28 Célula de pila solar y su procedimiento de fabricación.
DE602005026059T DE602005026059D1 (de) 2005-11-28 2005-11-28 Solarbatteriezelle und verfahren zu ihrer herstellung
PCT/JP2005/021783 WO2007060744A1 (ja) 2005-11-28 2005-11-28 太陽電池セルおよびその製造方法
US13/023,910 US8450602B2 (en) 2005-11-28 2011-02-09 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021783 WO2007060744A1 (ja) 2005-11-28 2005-11-28 太陽電池セルおよびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/597,108 A-371-Of-International US20070249916A1 (en) 2004-01-15 2005-01-15 Wearable Glucometer
US13/023,910 Division US8450602B2 (en) 2005-11-28 2011-02-09 Solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2007060744A1 true WO2007060744A1 (ja) 2007-05-31

Family

ID=38066986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021783 WO2007060744A1 (ja) 2005-11-28 2005-11-28 太陽電池セルおよびその製造方法

Country Status (7)

Country Link
US (2) US7910823B2 (ja)
EP (1) EP1887632B1 (ja)
JP (1) JP4425917B2 (ja)
CN (1) CN100490183C (ja)
DE (1) DE602005026059D1 (ja)
ES (1) ES2357665T3 (ja)
WO (1) WO2007060744A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208233A1 (en) * 2007-10-12 2010-07-21 OTB Solar B.V. Method for manufacturing a photovoltaic cell and a photovoltaic cell obtained with such a method
JP2012216646A (ja) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp 太陽電池の製造方法
JP2012531044A (ja) * 2009-06-17 2012-12-06 イノヴァライト インコーポレイテッド 亜臨界剪断減粘性iv族系ナノ粒子流体
JPWO2013183132A1 (ja) * 2012-06-06 2016-01-21 株式会社日本マイクロニクス 固体型二次電池の電極構造

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354400T3 (es) 2007-05-07 2011-03-14 Georgia Tech Research Corporation Formación de un contacto posterior de alta calidad con un campo en la superficie posterior local serigrafiada.
US20090286349A1 (en) * 2008-05-13 2009-11-19 Georgia Tech Research Corporation Solar cell spin-on based process for simultaneous diffusion and passivation
US8207444B2 (en) * 2008-07-01 2012-06-26 Sunpower Corporation Front contact solar cell with formed electrically conducting layers on the front side and backside
KR101135591B1 (ko) * 2009-03-11 2012-04-19 엘지전자 주식회사 태양 전지 및 태양 전지 모듈
DE102009056308A1 (de) * 2009-11-30 2011-06-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallisch kontaktiertes Substrat sowie Verfahren zu dessen Herstellung
US8535971B2 (en) * 2010-02-12 2013-09-17 Heraeus Precious Metals North America Conshohocken Llc Method for applying full back surface field and silver busbar to solar cell
KR101714780B1 (ko) * 2011-06-08 2017-03-09 엘지전자 주식회사 태양전지 모듈
JP2013165160A (ja) * 2012-02-10 2013-08-22 Shin Etsu Chem Co Ltd 太陽電池の製造方法及び太陽電池
KR101349454B1 (ko) * 2012-03-05 2014-01-10 엘지이노텍 주식회사 태양광 발전장치
US9029692B2 (en) * 2012-04-17 2015-05-12 Heraeus Precious Metals North America Conshohocken Llc Tellurium inorganic reaction systems for conductive thick film paste for solar cell contacts
KR20150028811A (ko) * 2012-06-12 2015-03-16 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 접착 강화제를 가진 전기전도성 페이스트
US9312406B2 (en) 2012-12-19 2016-04-12 Sunpower Corporation Hybrid emitter all back contact solar cell
DE102013111748A1 (de) * 2013-10-24 2015-04-30 Hanwha Q Cells Gmbh Solarmodul und Solarmodulherstellungsverfahren
CN105489664A (zh) * 2015-12-03 2016-04-13 中国电子科技集团公司第十八研究所 太阳电池的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005587A1 (en) 1990-09-24 1992-04-02 Mobil Solar Energy Corporation Electrical contacts and method of manufacturing same
WO1992022929A1 (en) 1991-06-11 1992-12-23 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
WO1993024961A1 (en) * 1992-05-27 1993-12-09 Mobil Solar Energy Corporation Improved solar cell and method of making same
JPH10144943A (ja) * 1996-11-12 1998-05-29 Sharp Corp 太陽電池セルおよびその製造方法
JPH10335267A (ja) 1997-05-30 1998-12-18 Mitsubishi Electric Corp 半導体装置の製造方法
JP2002217435A (ja) * 2001-01-22 2002-08-02 Sharp Corp 太陽電池セルおよびその製造方法
JP2003273379A (ja) * 2002-03-15 2003-09-26 Kyocera Corp 太陽電池素子
JP2004179336A (ja) * 2002-11-26 2004-06-24 Kyocera Corp 太陽電池素子の形成方法
JP2005183457A (ja) * 2003-12-16 2005-07-07 Sharp Corp 太陽電池およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69224965T2 (de) * 1991-06-11 1998-10-29 Ase Americas Inc Verbesserte solarzelle und verfahren zu ihrer herstellung
JP2003273378A (ja) 2002-03-15 2003-09-26 Kyocera Corp 太陽電池素子
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005587A1 (en) 1990-09-24 1992-04-02 Mobil Solar Energy Corporation Electrical contacts and method of manufacturing same
WO1992022929A1 (en) 1991-06-11 1992-12-23 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
WO1993024961A1 (en) * 1992-05-27 1993-12-09 Mobil Solar Energy Corporation Improved solar cell and method of making same
JPH10144943A (ja) * 1996-11-12 1998-05-29 Sharp Corp 太陽電池セルおよびその製造方法
JPH10335267A (ja) 1997-05-30 1998-12-18 Mitsubishi Electric Corp 半導体装置の製造方法
JP2002217435A (ja) * 2001-01-22 2002-08-02 Sharp Corp 太陽電池セルおよびその製造方法
JP2003273379A (ja) * 2002-03-15 2003-09-26 Kyocera Corp 太陽電池素子
JP2004179336A (ja) * 2002-11-26 2004-06-24 Kyocera Corp 太陽電池素子の形成方法
JP2005183457A (ja) * 2003-12-16 2005-07-07 Sharp Corp 太陽電池およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887632A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208233A1 (en) * 2007-10-12 2010-07-21 OTB Solar B.V. Method for manufacturing a photovoltaic cell and a photovoltaic cell obtained with such a method
JP2012531044A (ja) * 2009-06-17 2012-12-06 イノヴァライト インコーポレイテッド 亜臨界剪断減粘性iv族系ナノ粒子流体
US9496136B2 (en) 2009-06-17 2016-11-15 Innovalight, Inc. Group IV nanoparticle fluid
JP2012216646A (ja) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp 太陽電池の製造方法
JPWO2013183132A1 (ja) * 2012-06-06 2016-01-21 株式会社日本マイクロニクス 固体型二次電池の電極構造

Also Published As

Publication number Publication date
JPWO2007060744A1 (ja) 2009-05-07
CN100490183C (zh) 2009-05-20
US20110126901A1 (en) 2011-06-02
DE602005026059D1 (de) 2011-03-03
EP1887632A1 (en) 2008-02-13
EP1887632B1 (en) 2011-01-19
US8450602B2 (en) 2013-05-28
ES2357665T3 (es) 2011-04-28
US20070256733A1 (en) 2007-11-08
EP1887632A4 (en) 2010-01-20
CN101107719A (zh) 2008-01-16
JP4425917B2 (ja) 2010-03-03
US7910823B2 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
JP4425917B2 (ja) 太陽電池セルおよびその製造方法
EP2215665B1 (en) Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US8945976B2 (en) Method for making solar cell having crystalline silicon P—N homojunction and amorphous silicon heterojunctions for surface passivation
JP4343225B2 (ja) 太陽電池セル
US20090211623A1 (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
JP2009290235A (ja) 太陽電池セルおよびその製造方法
JPH05315628A (ja) 光電変換装置の製造方法
WO2010150606A1 (ja) 光起電力装置およびその製造方法
JP2006339499A (ja) 太陽電池の製造方法
JP5363666B2 (ja) 太陽電池セルおよびその製造方法
JP2006041209A (ja) 半導体装置の製造方法およびそれによって製造された半導体装置
JP2007207989A (ja) 太陽電池セル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519668

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005809119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580013772.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11597108

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11597108

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005809119

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE