WO2007058221A1 - 多価アルコールの脱水方法 - Google Patents

多価アルコールの脱水方法 Download PDF

Info

Publication number
WO2007058221A1
WO2007058221A1 PCT/JP2006/322777 JP2006322777W WO2007058221A1 WO 2007058221 A1 WO2007058221 A1 WO 2007058221A1 JP 2006322777 W JP2006322777 W JP 2006322777W WO 2007058221 A1 WO2007058221 A1 WO 2007058221A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
acrolein
producing
glycerin
reaction
Prior art date
Application number
PCT/JP2006/322777
Other languages
English (en)
French (fr)
Inventor
Bo-Qing Xu
Song-Hai Chai
Tsukasa Takahashi
Masahide Shima
Satoshi Sato
Ryouji Takahashi
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005330481A external-priority patent/JP2007137785A/ja
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Publication of WO2007058221A1 publication Critical patent/WO2007058221A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively

Definitions

  • the present invention relates to a method for producing a dehydration product using a compound having three or more hydroxyl groups as a raw material, and a catalyst for gas phase dehydration. More specifically, the present invention relates to a method for producing a dehydrated product suitable for producing acrolein or an acrolein aqueous solution by contacting glycerol with a catalyst in the gas phase to dehydrate, and a gas phase dehydrating catalyst used therefor.
  • the present invention also relates to a catalyst for producing acrolein and a method for producing acrolein using the same, and is suitable for a method for producing acrolein using glycerin not derived from petroleum as a raw material. More specifically, the present invention relates to an acrolein production catalyst suitable for producing acrolein or an acrolein aqueous solution by dehydrating glycerin using a catalyst, and an acrolein production method using the same.
  • a method for producing a dehydrated product using a compound having three or more hydroxyl groups as a raw material is useful as a method for producing industrial raw materials such as glycerin-acrolein, and various methods have been studied.
  • the production of acrolein by dehydration of glycerin has the following advantages.
  • acrolein is usually produced by propylene gas-phase acid, but the raw material propylene is a fossil resource, and there are concerns about future resource depletion and increased carbon dioxide in the atmosphere. is there.
  • glycerin used as a raw material can be obtained from vegetable oil.
  • Non-Patent Document 1 “Industrial Science”, 1934, 37th (Suppl, binding), p. See 538;).
  • the catalyst include iron phosphate, activated clay, KHSO K S
  • Non-Patent Document 5 “Preblind'Ob'Paper's American'Chemical'Society 1, Tyhi, Chillon '”
  • “Fuenore” Chemistry (Preprints of Papers-American Chemical Society, Division of Fuel Chemistry;) (USA), 1985, No. 30, No. 3, pp. 78-87
  • Non-Patent Document 6 "Energy from Biomass and Wastes;” (USA), 1987, No. 10, p. 865-877, and Non-Patent Document 7; "Fuel", (United Kingdom), 1987, 66, No. 10, pp. 13 64–1371 etc.).
  • the method of using supercritical water is an industrial practice. ⁇ It is difficult to say that it is economically advantageous.
  • Patent Document 3 United Kingdom
  • Patent Document 4 Chinese Patent No. 1272495
  • Patent Document 4 Chinese Patent No. 1272495
  • the glycerin used as a raw material can be obtained from vegetable oil, and it can also be used as a biodiesel fuel by transesterification of plant oil and as a by-product in the production of sarcophagus. Obtainable. Therefore, in the method in which glycerin can be used as a raw material, it can be regenerated because glycerin is derived from a plant, and the carbon source for which there is no concern about resource depletion is that it is carbon dioxide in the atmosphere. Therefore, it has the advantage that it does not contribute to the increase of carbon dioxide in the atmosphere.
  • Patent Document 2 Japanese Patent Laid-Open No. 6-211724
  • Patent Document 4 Chinese Patent No. 1272495
  • Non-Patent Document 3 Koichi ISHIKAWA et al., “Analytical Chemistry (BUN SEKI KAGAKU)”, 1983, No. 32, No. 10, pp. E321—E325
  • Non-Patent Document 4 Lee H. Dao et al., “Reactions' Ob 'Model Compound' Ob 'Biomass Pyrolysis Inenoles' Over ⁇ ⁇ ZSM-5 Zeolite Catalysts (Reactions of Model and ompounas of Biomass- PyrolysisOiis over ZSM-5 z-eolite Catalysts) —American Chemical Society Symposium Series (USA), 1988, No. 376 (Pyrolysis Oils Biomass), pp. 328—341
  • Non-Patent Document 5 "Preprints of Papers-American Chemical Society, Division of FudChemistry” (USA), 1985, 30th, No. 3, pp. 78—87
  • Non-Patent Document 7 “Fuel” (UK), 1987, 66th, No. 10, PP. 136 4-1371
  • the present inventors As a result of searching for a catalyst for obtaining a dehydrated product and various methods for producing the dehydrated product, the present inventors, for example, when acrolein is obtained by glycerin force dehydration reaction, the raw material is contacted with the catalyst. Focusing on the fact that the gas phase dehydration reaction to be carried out is advantageous in terms of resources and the environment, if a catalyst using a group 6 element is essential, the desired dehydration product can be obtained with high selectivity. I found it advantageous. It was also found that such a catalyst has high stability over time, and it is difficult for the catalyst activity to decrease even in a reaction using a high-concentration glycerin solution. Thus, the inventors have arrived at the present invention by conceiving that the above-mentioned problems can be solved by specifying the essential elements contained in the catalyst in the gas phase dehydration reaction.
  • acrolein obtained by dehydrating glycerin is a highly reactive substance, and so many reactions are known.
  • Japanese Patent Laid-Open No. 4 266884 describes a method of obtaining acrolein glycerin acetal by reacting glycerin as a raw material of the present application with acrolein as a product.
  • various reactions such as Michael addition and Diels-Alder reaction may occur.
  • the method for producing a dehydrated product by vapor-phase dehydration using a compound having 3 or more hydroxyl groups that can generate acrolein as a raw material is a regioselectivity of a reaction that is not limited to simple dehydration power. Suitable catalysts are difficult to predict because sequential reactions have a major impact.
  • the present inventor studied the production of acrolein using glycerin that can be easily obtained from naturally derived oils and fats as a raw material.
  • the inventors have found that acrolein can be obtained more efficiently by the method for producing acrolein in which glycerin is reacted in the presence of a heteropolyacid catalyst, and the present invention has been completed.
  • the present invention is also a method for producing a dehydrated product by dehydrating a compound having 3 or more hydroxyl groups, wherein the production method comprises reacting glycerin in the presence of a heteropolyacid catalyst to produce acrolein. It is also a method for producing a dehydrated product.
  • the method for producing a dehydrated product is preferably a method for producing a dehydrated product, which is a method for producing acrolein by dehydrating glycerin.
  • the catalyst is preferably a method for producing a dehydrated product in which the Group 6 element is at least one element selected from the group consisting of tungsten, chromium, and molybdenum.
  • the catalyst is preferably a method for producing a dehydrated product in which the Group 6 element is tungsten.
  • the heteropolyacid catalyst is preferably a method for producing a dehydrated product having a Keggin structure.
  • the catalyst is preferably a method for producing a dehydrated product supported on an inorganic carrier.
  • the inorganic carrier is preferably a method for producing a dehydrated product having at least one element selected from the group consisting of silicon, aluminum, titanium, and zirconium.
  • a method for producing a dehydrated product by dehydrating a compound having three or more hydroxyl groups wherein the production method comprises a step of contacting with a catalyst containing at least one group 6 element
  • this method is also referred to as a method for producing a dehydrated product using a catalyst containing at least one group 6 element.
  • the production method comprises dehydration by reacting glycerin in the presence of a heteropolyacid catalyst to produce acrolein.
  • the production method of the product is also referred to as acrolein production method.
  • the content of the Group 6 element is preferably 1 or more, more preferably 20 or more, and still more preferably 60, out of all 1000 atoms excluding oxygen and hydrogen from the catalyst constituents including the support. More than one.
  • the upper limit of the content of the Group 6 element is not particularly limited, but even if it contains 80% or more of the catalyst weight, no effect can be expected.
  • elements other than Group 6 elements are not particularly limited, but vanadium increases by-products and decreases the acrolein yield, so that the amount of vanadium atoms exceeds the number of tungsten atoms. Saddle is not preferred.
  • the catalyst having the Group 6 element only needs to contain at least one group 6 element, and its form is not specified.
  • an amorphous compound, a single oxide, or a complex oxide may be used. included.
  • the source of addition of elements in Group 6 is not specified, but inorganic salts such as nitrates, sulfates, hydrochlorides, phosphates and carbonates, and organic acid salts such as oxalates, citrates and tartrates, Complex salts or acid compounds can be used.
  • Heteropolyacids such as phosphotungstic acid can also be suitably used. Of these, heteropolyacids are particularly preferred.
  • the gas phase dehydration catalyst may be one in which a Group 6 element is supported on an inorganic carrier.
  • a supported catalyst By using a supported catalyst, the active substance can be used effectively and the shape of the catalyst can be easily provided.
  • the shape of the catalyst may be an indefinite shape such as a crushed product, but preferably a spherical shape, ring shape, cylindrical shape, saddle shape, half ring shape or the like generally used for a gas phase reaction is preferably used.
  • the inorganic carrier includes at least one element selected from the group consisting of zirconium, aluminum, and silicon, such oxides, hydrated oxides, nitrides, carbides, and the like. Available. Further, it is particularly preferable to contain zirconium.
  • zirconium for example, as such an inorganic carrier, industrially used oxides such as zirconium, alumina and silica, and powders and molding carriers made of complex oxides or mixtures thereof can be used.
  • these precursors such as hydroxides, hydrated oxides and salts can be used.
  • a solution containing at least one group 6 element is supported by impregnating a solution containing at least one group 6 element using a composition carrier made of an inorganic oxide containing one or more of zirconium, aluminum, and silicon as a constituent element. Also good.
  • a salt solution containing any one of zirconium, aluminum, and silicon may be used. Even if it is a method of adding at least one group 6 element, precipitating by neutralization method, etc., then drying and firing, the form in which group 6 element finally exists on the surface of these inorganic oxides If the method becomes! /, The method of deviation can also be used.
  • Hammett's acidity function is defined by the degree of discoloration of an indicator using a specific indicator group of neutral base (B) and the tendency of an oxide to transfer protons to these indicators. is there. If the dissociation constant of the acid form BH + of the indicator is K,
  • the degree function H is defined by the following equation.
  • the method for producing a dehydrated product of the present invention is a method for producing a dehydrated product by dehydrating a compound having 3 or more hydroxyl groups.
  • the compound having 3 or more hydroxyl groups as a raw material for production may be a compound such as a polyhydric alcohol having at least 3 hydroxyl groups in one molecule.
  • a compound having 3 hydroxyl groups is used. It is preferable to use some glycerin.
  • glycerin In the dehydration reaction using glycerin as a raw material, acrolein is obtained as a dehydrated product.
  • the reaction pressure is not particularly specified but is preferably 1 atm or less.
  • the temperature in the gas phase dehydration is preferably 200 to 500 ° C. If the temperature is lower than 200 ° C, the reaction rate may extremely decrease, and if it exceeds 500 ° C, the degradation of dariselin or the sequential reaction of the generated acrolein may increase, leading to a decrease in selectivity. There is. More preferably, it is 200-450 degreeC.
  • the lower limit of the reaction temperature is also limited by the vapor pressure of glycerin, and it is preferable that all of the supplied glycerin be at or above the temperature at which it can exist in a gaseous state.
  • the feed rate of the raw material gas to the catalyst is preferably about 100 to 5000 Zhr as the space velocity. If it is less than lOOZhr, the yield may decrease due to the sequential reaction, and if it exceeds 5000 Zhr, the reaction does not proceed sufficiently. The conversion rate may be reduced.
  • a catalyst layer can be formed by filling a catalyst in a reaction tube.
  • the ratio of glycerin to an inert condensable substance such as water is preferably 0 to 12 mol of inert condensable substance with respect to 1 mol of glycerin, for example. . That is, the glycerin concentration is preferably 7.7 to: LOOmol%. More preferably, the glycerin concentration is 23 to: LOOmol%, and still more preferably the glycerin concentration is 31 to: LOOmol%.
  • acrolein can be obtained in a high yield even when such a high-concentration glycerin solution is used, and thus a high-concentration acrolein solution can be obtained directly.
  • the reaction product gas can be cooled and condensed to be acrolein or an acrolein solution, used as a raw material for producing acrylic acid or methionine, and acrolein obtained by condensation can be used.
  • Acrylic acid can be obtained by vaporizing again and mixing with a suitable amount of air or water vapor using a known method of gas phase oxidation to oxidize. Also, omitting the condensation step, for example, tandem, which is currently used in the production of acrylic acid by propylene two-stage gas phase acid, is directly acrylic acid using a method using a single reactor. Can also be obtained.
  • the two-stage gas phase acid is a reaction site that mainly generates acrolein by oxidizing propylene and a reaction site force that generates acrylic acid by oxidizing the generated acrolein.
  • the above-described production method is an example of a method for producing a dehydrated product, and can be applied to other methods for producing a dehydrated product.
  • the catalyst of the present invention is preferably applied to a gas phase dehydration reaction for dehydrating a compound having 3 or more hydroxyl groups in the gas phase to obtain a dehydrated product.
  • the preferred form of the catalyst for vapor phase dehydration of the present invention is as described above, and is suitably applied to a method for producing acrolein by vapor phase dehydration of glycerin.
  • the group 6 element is preferably at least one element selected from the group consisting of tungsten, chromium, and molybdenum, and more preferably the group 6 element is tungsten.
  • the Group 6 element is supported on an inorganic carrier.
  • the inorganic carrier preferably has at least one element selected from the group consisting of zirconium, aluminum, and silicon. Better ,.
  • both the conversion rate and the selectivity are high, but it is more important that the selectivity is high.
  • the reason is that the selectivity is largely related to the quality of the product. If the conversion rate is low but the selectivity is high, the final yield can be improved by recovering and reusing unreacted raw materials. It is also the power that can bring the selection rate close.
  • the present invention is also a method for producing acrolein in which glycerin is reacted in the presence of a heteropolyacid catalyst.
  • the method for producing a product is a method for producing acrolein in which the glycerin is reacted in the presence of a heteropolyacid catalyst.
  • the catalyst support that the heteropolyacid preferably contains at least one of silicon, phosphorus, tungsten, and molybdenum is at least silica, alumina, titanium, and zircoure. Although it is desirable to contain any of the acids, it is not limited to these.
  • glycerin is used for producing glycerin acrolein which is desired to be subjected to the reaction as glycerin water having a water content of 95% by weight or less.
  • a second means is a method for producing acrolein in which glycerin is reacted in the presence of a catalyst having a heteropolyacid and a catalyst carrier.
  • the catalyst for producing acrolein according to the present embodiment preferably has a heteropolyacid and a catalyst carrier.
  • the raw material glycerin can be dehydrated to produce acrolein.
  • the dehydration reaction of glycerin is a reaction in which glycerin is converted to acrolein, and the raw material (glycerin or glycerin water) is vaporized into gaseous form, and this gaseous raw material is brought into gas phase contact with the catalyst to be reacted. This is preferred.
  • the present invention provides a further excellent effect by using a catalyst having a heteropolyacid and a catalyst carrier as in the first means, but is not limited to a form having a catalyst carrier, and a single catalyst A sufficiently high effect can be obtained even if it is used.
  • the raw material can be used as a catalyst by adhering and supporting the raw material on a catalyst carrier.
  • SiO, Al 2 O, TiO, or ZrO can be used as the catalyst carrier. These are usually
  • the reaction apparatus used in the production of acrolein is not particularly limited.
  • the reaction temperature in the process for producing acrolein using this catalyst is preferably in the temperature range of 150 ° C or higher and 450 ° C or lower.
  • a temperature of 150 ° C or higher is a preferred by-product This is because 450 ° C. or lower is preferable in order to suppress the formation of the product and improve the selectivity of acrolein as the target product.
  • the reaction temperature in the above acrolein production method means the reaction temperature in the dehydration reaction step of producing acrolein by dehydrating glycerin.
  • the temperature is 0 ° C to 400 ° C.
  • the supply rate of the raw material gas to the catalyst is preferably about 100 to 5000 Zhr as the space velocity. If it is less than lOOZhr, the yield may decrease due to the sequential reaction, and if it is 5000 Zhr or more, the reaction is sufficient. There is a possibility that the conversion does not proceed and the conversion rate decreases.
  • a catalyst layer can be formed by filling a catalyst in a reaction tube.
  • the glycerin solution used is water-soluble A liquid can be used suitably.
  • an organic solvent may be used if it is a substance that dissolves glycerin and does not inhibit the reaction.
  • a glycerin solution in which glycerin is dissolved in an organic solvent can also be used.
  • concentration of the glycerin solution is not particularly limited, and may be 100% by mass of glycerin.
  • Condensable substance, CO in order to adjust the gas concentration and the space velocity with respect to the catalyst, Condensable substance, CO
  • the two-stage gas-phase acid has a reaction site that mainly generates acrolein by oxidizing propylene and a reaction site that generates acrylic acid by oxidizing the generated acrolein.
  • the catalyst of the present application By installing the catalyst of the present application at the site where acidification occurs, the raw material is converted into propylene power and glycerin, so that acrolein that also generates glycerin power Acrylic acid can also be produced directly by feeding it to the reaction site to obtain acrylic acid by acidification.
  • air or oxygen which is the oxidant necessary for the oxidation reaction, may be supplied from the first-stage dewatering reaction inlet force, or supplied to the second-stage oxidation reaction inlet!
  • the acrolein production method described above is an example of a dehydrated product production method, and can be applied to other dehydrated product production methods.
  • a structure with 12 coordinate elements is sometimes referred to as A-type.
  • X represents a hetero element and is not particularly limited as long as it is an element capable of forming a heteropolyacid.
  • M represents a coordination element and is not particularly limited as long as it is an element capable of forming heteropolyacid as a coordination element, and examples thereof include molybdenum, tungsten, niobium, and vanadium.
  • O represents an oxygen atom.
  • the hetero element is phosphorus, silicon, gel Manium and arsenic are preferred.
  • the hetero element is preferably cerium or thorium.
  • the hetero element is preferably phosphorus, arsenic, or germanium.
  • the heteropolyacid has a Dawson structure, the hetero element is preferably phosphorus or arsenic.
  • the heteropolyacid has an Anderson structure, it is preferable that the hetero element is tellurium, iodine, connort, aluminum, or chromium.
  • the heteropolyacid catalyst has a Keggin structure. Since the heteropolyacid catalyst has a Keggin structure, thermal stability is increased.
  • the heteropolyacid catalyst having a Keggin structure preferably has a structure represented by the above general formula (1).
  • the yield and selectivity of acrolein can be improved.
  • the method for producing acrolein having the above embodiment is, in other words, a method for producing a dehydrated product by dehydrating a compound having 3 or more hydroxyl groups, wherein the production method comprises converting glycerol to a heteropolyacid catalyst.
  • the heteropolyacid catalyst has the above form, the yield and selectivity of acrolein can be improved. More preferably, the coordination element is tungsten.
  • the active ingredient heteropolyacid is uniformly highly dispersed, which makes it more suitable for the production of acrolein and improves the yield and selectivity of acrolein.
  • the inorganic carrier has at least one element selected from the group consisting of zirconium, aluminum and silicon, or these oxides, hydrated oxides, nitrides, carbides and the like can be used. In particular, it is preferable to contain silicon.
  • industrially used powders such as silica, alumina, titer, and zirconium oxide, and composite powders and mixtures of these oxides and mixtures are used. be able to.
  • These precursors such as hydroxides, hydrates and salts can also be used.
  • the inorganic carrier contains silicon oxide as a main component. It is.
  • the inorganic carrier is one prepared using tetraethoxysilane as a raw material, and is also one preferred embodiment of the present invention.
  • tetraethoxysilane which is substantially free of sodium element
  • the inorganic carrier preferably includes a portion prepared using tetraethoxysilane as a raw material.
  • the inorganic carrier preferably has a weight ratio of 50% by weight or more occupied by a portion prepared using tetraethoxysilane in 100% by weight of the inorganic carrier. The weight ratio is more preferably 80% by weight or more. More preferably, it is 90% by weight or more, and particularly preferably 95% by weight or more.
  • the inorganic carrier has a specific surface area of 30 to 1500 m 2 / g.
  • the specific surface area is preferably 50 to: L000m 2 / g. More preferably, it is 100 to 800 m 2 Zg.
  • the specific surface area is more preferably 200 to 700 m 2 / g. Particularly preferred is 250 to 600 m 2 Zg. Most preferably, it is 300 to 500 m 2 Zg.
  • the inorganic carrier has binary pores.
  • the binary pore is an inorganic porous material having both macropores having a pore size in the micrometer region and nanopores having a pore size in the nanometer region.
  • the inorganic carrier having binary pores as described above is a macropore having excellent mass transporting ability, and In addition, it has both nanopores with a high specific surface area, has sufficient mechanical strength, and has little pressure loss. Therefore, it is suitable as a catalyst support used in the above production method, and further, acrolein selectivity and yield are obtained. The rate can be improved.
  • the macropores preferably have a pore diameter of 0.5 to 200 m. More preferably, 1 to: LOO / z m.
  • the nanopore is preferably 1 to 50 nm, and preferably has a structure in which the through holes are entangled in a three-dimensional network.
  • the macropores can be measured by mercury porosimetry or direct observation with an electron microscope. The nanopores can be confirmed by mercury porosimetry or nitrogen adsorption.
  • the inorganic carrier having binary pores is preferably in the form of particles having an average particle diameter of 5 to 10 mm.
  • the pore volume of the inorganic carrier is preferably 0.3 to 4 cm 3 per lg of carrier. In consideration of the ease of production, it is preferably 1 to 3 cm 3 .
  • the method for producing the inorganic carrier having the binary pores is not particularly limited.
  • the inorganic carrier having the binary pores includes a structure having through holes entangled in a three-dimensional network.
  • the inorganic carrier having the above-mentioned binary pores is an inorganic carrier having binary pores indispensable for macropores and nanopores. It is one of the preferred embodiments of the present invention that the pore diameter is 0.5 to 200 / ⁇ ⁇ and the pore diameter of the nanopore is 1 to 50 nm.
  • the inorganic carrier having the above-mentioned binary pores has a specific surface area of 300 to L000m 2 Zg.
  • the specific surface area of the inorganic carrier having binary pores is preferably 400 to 900 m 2 Zg, more preferably 500 to 850 m 2 / g. More preferably, it is 550 to 800 m 2 / g. Particularly preferred is 650 to 800 m 2 Zg.
  • the present invention is also a heteropolyacid catalyst used in the above production method. That is, the heteropolyacid catalyst of the present invention is applied to a gas phase dehydration reaction for dehydrating glycerol in the gas phase to obtain acrolein.
  • a preferred form of the heteropolyacid catalyst is as described in the above production method.
  • the heteropolyacid catalyst of the present invention is useful from the viewpoint of activity, selectivity, and productivity in the production of industrial dehydration products, and its operational effects can be sufficiently enhanced by the above preferred embodiments. Is.
  • the method for producing the dehydrated product and the method for producing acrolein are common in the means and effects of dehydrating a compound having 3 or more hydroxyl groups to obtain the desired dehydrated product with high selectivity.
  • preferred embodiments and reaction conditions in the acrolein production method are preferred embodiments for the dehydration product production method, and can be appropriately applied to the dehydration product production method.
  • preferred embodiments, reaction conditions, and the like in the method for producing the dehydrated product are also preferred embodiments for the method for producing acrolein, and can be appropriately applied to the method for producing acrolein. .
  • the activity is higher than when a conventional acidic oxide catalyst is used. It exhibits excellent characteristics in both selectivity and suppresses the decrease in activity and selectivity over time, which is economically advantageous in industrial implementation. Moreover, it is economically advantageous in industrial implementation in that acrolein can be obtained without being derived from petroleum. In particular, glycerin can also be obtained with high selectivity by gas phase dehydration reaction.
  • acrolein can be obtained in a high yield, whereby a high-concentration acrolein solution can be obtained directly, and further, there is little deterioration of the catalyst over time.
  • the form can be provided.
  • a catalyst suitable for acrolein production can be provided, and acrolein can be obtained using V and raw materials not derived from petroleum. Compared to the case of using a conventional catalyst, it shows excellent characteristics in both activity (conversion rate, yield) and selectivity, and suppresses the decrease in activity and selectivity over time, making it economical in industrial implementation. Is advantageous.
  • gas phase dehydration By the reaction glycerin can also obtain acrolein with high selectivity. In this case, even when a high-concentration glycerin solution is used, acrolein can be obtained in a high yield, whereby a high-concentration acrolein solution can be obtained directly, and the catalyst deterioration over time can be reduced. Less form can be provided.
  • acrylic acid can be produced by reacting acrolein obtained by the production method of the present invention with an acid reaction.
  • the present invention is also a method for producing acrylic acid by an industrially advantageous method starting from glycerin.
  • the selectivity of acrolein is 60 mol% or more.
  • the acrolein selectivity is preferably 65 mol% or more. More preferably, it is 70 mol% or more, still more preferably 75 mol% or more, particularly preferably 80 mol% or more, and most preferably 85 mol% or more.
  • the selectivity is high Rukoto of Akurorein production method of the above-mentioned Akurorein is still becomes good industrially more efficient, and the selectivity of Akurorein is 60 mole 0/0 above, i.e., the Akurorein It means that the yield (mole) is 60 mol% or more with respect to the amount (mole) of glycerin converted in the above production method.
  • the acrolein selectivity is preferably obtained, for example, as follows.
  • acrolein and the amount of glycerin using a gas chromatography analyzer, for example, using a Shimadzu GC-8A, TC-WAX capillary column, can do.
  • the method for producing the Akurorein, it Akurorein yield is 40 mol 0/0 above is one preferred embodiment of the present invention.
  • the yield of acrolein is preferably 70 mol% or more. More preferably, it is 74% or more, more preferably 77% by mole or more, particularly preferably 80% or more, most preferably 83% by mole or more, and most preferably 85% or more. More than mol% It is.
  • the yield of acrolein is preferably determined, for example, as follows.
  • the conversion rate and selectivity in industrial production, it is preferable that both the conversion rate and the selectivity are high, but it is more important that the selectivity is high. The reason is that the selectivity is largely related to the quality of the product. If the conversion rate is low but the selectivity is high, the final yield can be improved by recovering and reusing unreacted raw materials. It is also the power that can bring the selection rate close.
  • the ability to recover and reuse unreacted glycerin means that the conversion of glycerin to a byproduct that is not acrolein requires that glycerin be recovered and reused. Means you can no longer do.
  • the amount of glycerin transferred to a by-product that is not acrolein is an amount of waste of glycerin. Therefore, from the viewpoint of reducing costs by reducing the amount of wasted glycerin, it is preferable to reduce as much as possible the amount of glycerin transferred to a byproduct that is not acrolein.
  • the yield of by-products produced by glycerin force is 55 mol% or less.
  • the yield of by-products produced by converting the glycerin power is preferably 45 mol% or less. More preferably, it is 35 mol% or less, more preferably 25 mol% or less, particularly preferably 20 mol% or less, and most preferably 15 to 10 mol%.
  • the by-product generated by the conversion of the glycerin force is, in other words, a compound formed by the conversion of glycerin, and is a compound that is not acrolein.
  • the yield of the by-product produced by the above glycerin force conversion is preferably obtained, for example, as follows.
  • acrylic acid can be produced by reacting acrolein obtained by the above acrolein production method with an acid reaction. That is, the present invention is also a method for producing acrylic acid comprising a step of acidifying acrolein obtained by the above production method and converting it to acrylic acid.
  • a catalyst for gas phase dehydration When producing a dehydrated product using the catalyst of the present invention (particularly preferably, a catalyst for gas phase dehydration), activity (conversion rate, yield) and selectivity are compared with the case of using a conventional acidic oxide catalyst. Both exhibit excellent properties and suppress the decrease in activity and selectivity over time, which is economically advantageous in industrial implementation. Moreover, it is economically advantageous in industrial implementation in that acrolein can be obtained without being derived from petroleum. In particular, glycerin can also be obtained with high selectivity by gas phase dehydration reaction.
  • acrolein can be obtained in a high yield, whereby a high-concentration acrolein solution can be obtained directly, and further, there is little deterioration of the catalyst over time.
  • the form can be provided.
  • a catalyst suitable for acrolein production can be provided, and acrolein can be obtained using V and raw materials not derived from petroleum. Compared to the case of using a conventional catalyst, it shows excellent characteristics in both activity (conversion rate, yield) and selectivity, and suppresses the decrease in activity and selectivity over time, making it economical in industrial implementation. Is advantageous.
  • glycerin can also be obtained with high selectivity by gas phase dehydration reaction. In this case, even when a high-concentration glycerin solution is used, acrolein can be obtained in a high yield, whereby a high-concentration acrolein solution can be obtained directly, and the catalyst deterioration over time can be reduced. Less form can be provided.
  • acrylic acid can be produced by reacting acrolein obtained by the production method of the present invention with an acid reaction.
  • the present invention is also a method for producing acrylic acid by an industrially advantageous method starting from glycerin.
  • the catalyst dehydrated by heating was kept in dry benzene, the Hammett indicators of +6.8, -3.0, -8.2 were added in order, the maximum acid strength was measured, and then each indicator was added.
  • the dehydrated catalyst was added to dry benzene, and titration was performed with an n-butylamine benzene solution with a known concentration until the color disappeared, and the acid amount in each acid strength range was also measured.
  • the finished catalyst A has a Hammett acidity of ⁇ 8.2 ⁇ H and ⁇ 3, and 0.099m per lg of catalyst.
  • the Hammett acidity was measured by the same method.
  • the ⁇ -alumina powder was added and kneaded, dried in air at 110 ° C for 1 hour, and further dried in vacuum at 150 ° C for 4 hours. After lightly crushing, it was adjusted to 20-40 mesh (mesh) using a sieve.
  • the finished catalyst B has a Hammett acidity of ⁇ 8.2 ⁇ H and ⁇ 3 and 0.008 m per lg of catalyst.
  • the resulting catalyst C has a Met acidity of ⁇ 8.2 ⁇ H and ⁇ 3 and a catalyst of 0.007 m per lg.
  • a quartz reaction tube with an inner diameter of 10.4 mm was installed in an electrothermal annular furnace with a total length of 400 mm installed vertically and controlled at 315 ° C. Nitrogen was circulated at a standard state of 8.5 mlZ, and 0.63 ml of catalyst A was charged in the isothermal part obtained by measuring the temperature distribution in the reaction tube. Both ends of the catalyst layer were filled with 5 mm quartz wool and the top was filled with 30 mm quartz sand. A 36 mass% glycerin aqueous solution was introduced from the upper part of the reaction tube at a rate of 0.58 gZ time (hr).
  • the reaction was performed in the same manner as in Example 1 except that the catalyst C was used as the catalyst.
  • the conversion of glycerin was 70 mol%
  • the yield of acrolein was 41 mol%
  • the selectivity was 59 mol%.
  • the product gas collected 3 to 5 hours after the start of glycerin introduction and analyzed by gas chromatography showed that the conversion rate of glycerin was 88 mol%, the yield of acrolein was 51 mol%, and the selectivity Was 58 mol%, and both the activity and selectivity decreased with time. Further, 14 mol% of hydroxyacetone was produced.
  • Example 2 Comparative Examples 2 to 6
  • the reaction was conducted in the same manner as in Example 1 except that Catalyst B and Catalysts D and F to H were used as catalysts, and the produced gas was collected for 8 to 10 hours after the introduction of glycerin and analyzed by gas chromatography. . Since the yield of catalyst E was too low, the reaction was stopped in 4 hours, and the product gas was collected for 3 to 4 hours and analyzed by gas chromatography. The result was 3 ⁇ 4kl.
  • the reaction was conducted in the same manner as in Example 1 except that Catalyst I was used as a catalyst and a 36 mass% glycerin aqueous solution was used as a raw material at an introduction rate of 2.9 g Z time (hr).
  • the conversion rate of glycerin was 100 mol% and the selectivity of acrolein was 70 mol%.
  • the conversion rate of glycerin was 70 mol% and the selectivity of acrolein was 72 mol%.
  • a catalyst having a tungsten composition which is zircoure and a group 6 element, showed a conversion rate of 100 mol%, a selectivity of 63 mol%, and a yield of 63 mol% even after 10 hours, indicating that the activity and the selection were high. It showed excellent characteristics in terms of sex, and there was no decrease in activity or selectivity over time.
  • the selectivity after time was 70 mol%, and the selectivity with time was not decreased.
  • Other acid oxides SO / ZrO, B 2 O 3 / ZrO, Nb 2 O, H-type ZSM-5 (SiO 2 / Al
  • the conversion rate is 100 mol% and the selectivity is 38 mol%.
  • the conversion rate is 25 mol% and the selectivity is 53 mol%, and the selectivity of the catalyst containing the Group 6 element is high. It has been shown.
  • the fixed bed atmospheric pressure gas flow reactor used in the examples and comparative examples is mainly composed of a reactor having an inner diameter of 18 mm and a total length of 300 mm.
  • the reactor has a reaction gas collection vessel with a carrier gas inlet and a raw material inlet at the upper end and a gas outlet at the lower end.
  • the reactor has a vaporization layer between the raw material inlet and the reaction layer.
  • the crude reaction liquid collected in a collection container at 78 ° C was measured with gas chromatography (Shimadzu GC-8A, TC—WAX Kiri-Kiri Ichiram), and after calibration curve correction, The yield and the remaining amount of raw materials were determined, and the conversion rate (%; molar basis) and the selectivity (%; molar basis) were determined from these values.
  • the conversion rate is (the amount of raw material minus the remaining amount of raw material) the amount of Z raw material
  • the selectivity is the target product yield Z (the amount of raw material equal to the remaining amount of raw material).
  • the average value for the first 5 hours. A conversion of 100% means that the catalytic activity did not decrease during the reaction for 5 hours.
  • Dodecatungstokeic acid H SiW 2 O, purity 99.0% or more
  • 14 g of support consisting mainly of silica (Fujishirishi CARiACT Q-6 specific surface area 466 m 2 Zg) 6. 100 ml of Og
  • dodecamolybdophosphoric acid H PMo O purity 99.0% or more
  • the reaction was carried out in the same manner as in Example 6 except that the charge amount of the Q6-SiW-30 catalyst prepared in Example 5 was 0.3 g and the reaction temperature was changed.
  • the reaction temperature is 225 except 325 ° C. C, 250. C, 275. C, 300. C, and 350.
  • Table 3 shows the glycerin conversion, acrolein selectivity and hydroxyacetone selectivity depending on the reaction temperature.
  • the Q6—SiW-30 catalyst prepared in Example 5 above was packed into a fixed bed gas phase flow reactor.
  • the upper force of the fixed bed atmospheric pressure gas flow reactor with the catalyst layer Nitrogen gas was flowed at a flow rate of 1.8 lZh as the carrier gas.
  • glycerin manufactured by Wako Pure Chemical Co., Ltd., 10% by weight
  • 1.67 ml Zh was vaporized in the vaporization layer and supplied.
  • the reaction was performed at 275 ° C.
  • the catalyst loading was 0.6 g and 0.9 g in addition to 0.3 g.
  • Table 4 shows the glycerin conversion, acrolein selectivity, and hydroxyacetone selectivity according to the difference in catalyst loading.
  • CARIACT Q-3 (specific surface area of 733m 2 Zg) manufactured by Fujishiriya as the catalyst support silica Except that it was used, the same procedure as in Example 6 was carried out with 30% by weight of dodecatan dust key acid.
  • the catalyst was dried in a dryer at 110 ° C. to obtain a catalyst (B6—SiW-30) having a dodecatan dust key acid loading ratio of 30% by weight.
  • the reaction was carried out in the same manner as in Example 6 except that the amount of B6-SiW-30 catalyst prepared in Example 11 was changed to 0.3 g and the reaction temperature was changed. In addition to 325 ° C, the reaction temperatures were 225 ° C, 250 ° C, 275 ° C and 300 ° C. Table 7 shows the glycerin conversion, acrolein selectivity, and hydroxyacetone selectivity for different reaction temperatures.
  • Example 1 with the exception of using silica (B10) having a dual pore structure with a specific surface area of 698 m 2 Zg
  • the reaction was carried out with 30% by weight of dodecatan dust caustic acid (BIO—SiW-30).
  • the macropores and mesopores of the catalyst (BIO—SiW-30) used in Example 14 were 2 / zm in macropores and 10 nm in mesopores.
  • Catalyst (Type of support) (Element symbol of heteroelement ⁇ Element symbol of coordination element) (Catalyst loading (wt%))
  • TEOS tetraethoxysilane
  • Q3 means a CARiACT Q-3 (specific surface area of 733 m 2 Zg) carrier manufactured by Fujishirishia.
  • Q6 means a carrier (Fujishirishi CARiACT Q-6 specific surface area 466 m 2 / g).
  • Q10 means a CARiACT Q10 (specific surface area 310 m 2 Zg) carrier manufactured by Fujishirishia.
  • B3 means a silica (specific surface area 548 m 2 Zg) support having binary pores.
  • B6 means a silica (specific surface area 780 m 2 Zg) support having binary pores.
  • B10 means a silica (specific surface area 698 m 2 / g) support having binary pores.
  • B6-SiW-30 means a catalyst prepared as in Example 7 above.

Abstract

本発明は、上記現状に鑑みてなされたものであり、気相脱水反応によって脱水生成物を製造する際に用いられる触媒であって、収率や選択率に優れ、工業的な実施において経済的に有利となるような脱水生成物の製造方法及びそれに用いられる気相脱水用触媒を提供することを目的とするものである。また本発明の好ましい形態として、気相脱水反応によりグリセリンからアクロレインを高選択率で得ることができる形態を提供することも目的とする。この場合、高濃度のグリセリン溶液を用いた場合でも高収率でアクロレインを得ることができ、それによって高濃度のアクロレイン溶液を直接得ることができるような形態、更に、経時的な触媒劣化の少ない形態を提供することも目的とする。本発明の目的はまた、石油に由来しない原料であるグリセリンを用いてアクロレインを得ることができる新規なアクロレインの製造に適した触媒と、アクロレインを効率よく製造する方法を提供することでもある。水酸基を3個以上有する化合物を気相脱水して脱水生成物を製造する方法であって、少なくとも1種の6族元素を含有する気相脱水用触媒と接触させる工程を含む脱水生成物の製造方法である。

Description

多価アルコールの脱水方法
技術分野
[0001] 本発明は、水酸基を 3個以上有する化合物を原料とする脱水生成物の製造方法及 び気相脱水用触媒に関する。より詳しくは、グリセリンを気相で触媒に接触させて脱 水することにより、ァクロレイン又はァクロレイン水溶液を製造するのに好適な脱水生 成物の製造方法及びそれに用いられる気相脱水用触媒に関する。本発明は、ァクロ レイン又はァクロレイン水溶液を製造する場合、原料であるグリセリンが再生可能資 源である植物油由来の物も使用できるため、アクリル酸やメチォニン等の重要な化学 物質の原料であるァクロレインを再生可能資源から効率よく製造する方法を提供する ことができる。
[0002] 本発明はまた、ァクロレイン製造用触媒及びそれを用いたァクロレイン製造方法に関 し、石油に由来しないグリセリンを原料に用いてァクロレインを製造する方法に好適 なものである。より詳しくは、グリセリンを触媒を用いて脱水することによりァクロレイン 又はァクロレイン水溶液を製造するのに好適なァクロレイン製造用触媒及それを用い たァクロレイン製造方法に関する。本発明は、ァクロレイン又はァクロレイン水溶液を 製造する場合、原料であるグリセリンが再生可能資源である植物油由来の物も使用 できるため、アクリル酸やメチォニン等の重要な化学物質の原料であるァクロレインを 再生可能資源力 効率よく製造する方法を提供することができる。
背景技術
[0003] 水酸基を 3個以上有する化合物を原料とする脱水生成物の製造方法は、グリセリン 力 ァクロレイン等の工業原料を製造する方法として有用であり、種々の方法が検討 されている。このように、グリセリンの脱水によってァクロレインを製造する場合、次の ような利点がある。すなわち、ァクロレインは、通常、プロピレンの気相酸ィ匕により製造 されているが、原料のプロピレンは化石資源であり、将来的な資源枯渴や、大気中の 二酸化炭素増大等が懸念されるところである。一方、グリセリンの脱水によってァクロ レインを製造する場合、原料として用いるグリセリンは、植物油から得ることができ、ま た植物油のエステル交換によるバイオディーゼル燃料や、石鹼製造の際の副生成物 として得ることができる。したがって、グリセリンを原料とすることができる方法において は、グリセリンが植物由来であることから再生可能であり、資源枯渴の心配がなぐそ の炭素源は大気中の 2酸ィ匕炭素であることから実質的に大気中の 2酸ィ匕炭素増大に 寄与しな!、と!/、つた利点を有することになる。
[0004] 従来の脱水生成物の製造方法として、例えば、グリセリン力 ァクロレインを生成する 方法としては、以下のような方法が開示されている。
すなわち、酸性物質を触媒としてグリセリン力 ァクロレインを生成する方法が開示さ れている(例えば、非特許文献 1 ;「工業ィ匕学」雑誌、 1934年、第 37卷 (Suppl,binding ) , p. 538参照。;)。これには、 340°Cから 650°Cに保持された固定床の触媒にグリセ リンを滴下する方法が開示され、触媒としては、燐酸鉄、活性白土、 KHSO K S
4 2
Oの混合物が使用でき、燐酸鉄を用いた場合、最高 51%の収率が得られることが記
4
載されている。また、この中で先行技術として紹介されているシエーリング'カールバ ゥム社の特許には、燐酸リチウム、燐酸銅等の燐酸塩が有効であることが記載されて いると述べられている。し力しながら、これらの触媒で得られる収率は、工業的生産に は充分と言えるものではな力つた。
[0005] ベンゼンスルホン酸を触媒、無水フタル酸を脱水剤として用いてグリセリンを脱水して ァクロレインが得られることが開示されている(例えば、非特許文献 2 ;「ケミツシェ 'ベリ ヒッテ(Chemische Berichte)」(独国)、 1950年、第 83卷、 pp.287— 291参照。)。し 力しながら、得られるァクロレインより用いる無水フタル酸の方が多ぐ工業的に実用 的な技術とは言えなかった。
また、石油に由来しない原料を用いるァクロレイン製造方法として、グリセリンの脱水 反応をもちいる方法が提案されている。たとえば、リン酸を触媒担体に担持させた触 媒をもちいるァクロレインの製造法について、 H PO 、 HPO 、 H P O又は P Oを
3 4 3 4 2 7 2 5 担体に担持した触媒を用い、高沸点の有機溶媒中で 250— 325°Cで脱水反応させ ることにより、グリセリンの 72. 3%がァクロレインとなって得られることが開示されてい る(例えば、特許文献 1 ;米国特許第 2558520号明細書参照。 ) 0この脱水反応にお いては、比較的高い収率でァクロレインが得られたことが記載されている。しかしなが ら、この方法では、反応液にタールが蓄積していくことが避けられず、タールと触媒の 混合された廃液が生成することになる。また、収率面でも充分とは言い難ぐ改良の 余地があった。このように、多価アルコールの脱水反応に適した触媒は見いだされて おらず、ァクロレインを効率よく製造できる有効かつ安定な触媒ではな力つた。
ガスクロマトグラフィー中でグリセリンからァクロレインが生成すること、すなわち、気相 脱水反応によってァクロレインが生成することが開示されている(例えば、非特許文 献 3 ;コゥイチ ·イシカヮ(Koichi ISHIKAWA)他、「分析化学(英語文献: BUNSEKI K AGAKU)」、 1983年、第 32卷、第 10号、 pp.E321— E325参照。 )。しかしながら、 特殊な条件下であり、ァクロレインの生成量も少なぐ工業的実施の可能性があるよう な技術ではない。また、バイオマスの熱分解検討において、プロトン型 ZSM— 5を触 媒に用いることにより、グリセリンカもァクロレインが生成することも開示されている(例 えば、非特許文献 4 ;リ一' Η ·ダォ(Lee H. Dao)他、 「リアクションズ'ォブ'モデルコ ンパウンズ ·ォブ ·バイオマス -パイ口リシスォイノレズ ·オーバ^ ~ · ZSM-5 ゼォライト ャタリスト (Reactions of Model Compounds of Biomass- Pyrolysis Oils over Z SM-5 Zeolite Catalysts)—アメリカン 'ケミカル 'ソサイエティ一,シンポジウムシリー ズ (American し hemical Society Symposium Series)」 (米国)、 1988年、第 376卷( パイロリシス オイノレズ バイオマス (Pyrolysis Oils Biomass))ゝ pp. 328— 341参照
。 ί ァクロレインの収率が明示されていない上、ノ、イド口カーボンやタール等多数 の副生成物が生成することが示されており、工業的に有利な技術とは言えないもので ある。
更に、超臨界水中でグリセリンカもァクロレインが得られることが開示されている(例え ば、非特許文献 5 ;「プレブリンツ'ォブ'ぺーパ一一アメリカン'ケミカル'ソサイエティ 一, ティヒ、、シヨン '才フ 'フューェノレ'ケミストリー (Preprints of Papers - American Chemical Society, Division of Fuel Chemistry;)」(米国)、 1985年、第 30卷、第 3 号、 pp. 78— 87、非特許文献 6 ;「ェナジ一'フロム'バイオマス'アンド'ウェスト(Ener gy from Biomass and Wastes;)」(米国)、 1987年、第 10卷、 p. 865— 877、及び 、非特許文献 7 ;「フューエル (Fuel)」、(英国)、 1987年、第 66卷、第 10号、 pp. 13 64— 1371等を参照。 )。し力しながら、超臨界水を用いる方法は、工業的な実施に ぉ 、て経済的に有利とは言 、難 、ものである。
[0007] グリセリン Z水混合物を液相又は気相中で 180°C以上の温度で固体触媒に接触さ せて反応させることにより、ァクロレイン又はァクロレイン水溶液を製造する方法が開 示されている(例えば、特許文献 2 ;特開平 6— 211724号公報参照。 ) 0この中で、 a -A1 Oを燐酸溶液と混合して調製した触媒を用いて、気相中 300°Cで脱水を行
2 3
うことにより、ァクロレイン濃度 10重量%で実施して最高 75%の収率でァクロレインを 得たことが記載されている。しかしながら、高濃度のグリセリン水溶液を用いると、反応 の選択率及び触媒の寿命の両方がかなり低下することが記載されており、したがって 、低濃度のァクロレイン水溶液し力得られず、この点において効果的な製造方法とす るための工夫の余地があった。またヒドロキシアセトン等の副生物も多ぐァクロレイン 収率も充分なものとは言い難カゝつた。更に、 a -A1 O
2 3を燐酸溶液と混合して触媒を 調製しているが、リンを含ませると、経時変化に対する安定性が低下し、固体触媒の 性能低下が生じやす力つた。経時変化に対する触媒の安定性は、経済的な生産性 の点における重要な要素であり、これが損なわれると工業生産の経済面において不 利益を来すことになる。このように、固体触媒に接触させて反応させると特定するだけ では、収率や選択率、経時安定性等の特性に有利であると言えるものではな力つた
[0008] ところで、従来のアルコールの脱水反応には酸触媒が有効とされ、例えば、田部等の 著書には、種々の固体酸塩基が有効で、特に固体酸が優れていることが記載されて おり、酸ィ匕タングステンも有効な固体酸の 1つとして挙げられている(例えば、非特許 文献 8 ;コゥゾゥ 'タナベ (Kozo Tanabe)他、「ニューソリッド'ァシッズ'アンド'ベーシ ズ(NEWSOLID ACIDS AND BASES) (ISBN 0-444- 988000- 9)」 1989年、第 7章 「ディハイドレイシヨン (DEHYDRATION)」、 pp. 260— 272、(KODANSHA、 ELSEVIE R)参照。 ) oまた、その他にも、タングステン (W)を含有する触媒を用いた報告がすで になされており、例えば、酸ィ匕タングステンと酸ィ匕チタン力 なる触媒を用いてェタノ 一ルカゝらエチレン及びエーテルを製造する技術が開示されている(例えば、特許文 献 3 ;英国特許第 650475号明細書参照。 )0また複数ヒドロキシキル基をもつ多価ァ ルコールの脱水反応についても、 1, 4 ブタンジオールから THF (テトラヒドロフラン )を製造する例が示されている(例えば、特許文献 4 ;中国特許第 1272495号明細 書参照。;)。しかしながら、田部等の著書にも、 2価アルコールの脱水までの記載まで で、 3価のアルコールの脱水反応については記載がなぐ上述の特許文献において も、得られるものがォレフィンであったり、エーテルであり、ァクロレインを生成するよう な反応とは相違するものである。また 1段の脱水反応による生成物でもある。すなわ ち、これらの反応は、グリセリン力 ァクロレインを生成する脱水反応のように、水酸基 を 3個以上有する化合物を原料とする脱水生成物の製造方法とは反応形態が全く異 なるものであった。
[0009] 水酸基を 3個以上有する化合物を原料とする脱水生成物の製造方法のなかでも、特 に、グリセリンを原料とするァクロレインの製造方法は、工業原料を製造する方法とし て有用である。グリセリンの脱水によってァクロレインを製造する場合、次のような利 点がある。すなわち、ァクロレインは、通常、プロピレンの気相酸化により製造されて いるが、原料のプロピレンは化石資源であり、将来的な資源枯渴や、大気中の二酸 化炭素増大等が懸念されるところである。一方、グリセリンの脱水によってァクロレイ ンを製造する場合、原料として用いるグリセリンは、植物油から得ることができ、また植 物油のエステル交換によるバイオディーゼル燃料や、石鹼製造の際の副生成物とし て得ることができる。したがって、グリセリンを原料とすることができる方法においては、 グリセリンが植物由来であることから再生可能であり、資源枯渴の心配がなぐその炭 素源は大気中の二酸ィ匕炭素であることから実質的に大気中の二酸ィ匕炭素増大に寄 与しな 、と!/、つた利点を有することになる。
[0010] ァクロレインの製造方法としては、触媒を用いてプロピレンを気相酸化する方法が一 般的であり、現在では工業的にもこの方法が一般に採用されている (例えば、特許文 献 5 ;特開平 8— 3093号公報、及び、特許文献 6 ;特開平 8— 40969号公報参照。) 。しカゝしながら、上記文献で示されるようなプロピレンを気相酸化する方法は、石油由 来のプロピレンを原料とするものであるため、石油資源の枯渴と大気中の CO濃度
2 増加による地球温暖化を抑制するためには、化石資源に依存しない原料を用いてァ クロレインを製造する方法が要望されて 、る。
[0011] また、超臨界水中の酸触媒によりァクロレインを製造する方法も検討されている(例え ば、非特許文献 7 ;Fuel66卷 1987年 1364頁〜 1371項参照。)。しかしながら、 多価アルコールの脱水反応に適した触媒は見 、だされておらず、ァクロレインを効率 よく製造できる有効かつ安定な触媒は未だ報告されて 、な 、。
また、ハメット酸度 Hが— 9から— 18である強酸固体触媒の存在下でグリセロールを
0
気相脱水することによってァクロレインを製造する技術が開示されている(例えば、特 許文献 7 ;国際出願 WO2006Z087083、及び、特許文献 8 ;国際出願 WO2006Z 087084。;)。
国際出願 WO2006Z087083には、反応中に酸素を入れることで触媒の寿命を延 ばすことが記載されており、国際出願 WO2006Z087084には、触媒が酸強度を示 す H関数で— 9く HOく— 18であるものが記載されている。また、実施例には、タン
0
ダステン—ジルコユア触媒が記載されており、 H =— 14. 5とする記載がある。しかし
0
ながら、これらの技術においては、 H関数や触媒形態等の種々の点において最適
0
化するための工夫の余地があり、特にァクロレインの選択率を向上する等、工業的に 効率のよいものとする工夫の余地があった。なお、付言すれば、国際出願 WO2006
/087083及び国際出願 WO2006/087084iま、 ヽずれも、 2006年 1月 6日【こ出 願されたものであり、また、国際公開日は、いずれも、本願の基礎出願(日本国特許 出願第 2005— 330481号、日本国特許出願第 2006— 000004号、及び、日本国 特許出願第 2006— 244504号)の出願日よりも後の 2006年 8月 24日である。 特許文献 1:米国特許第 2558520号明細書
特許文献 2:特開平 6— 211724号公報
特許文献 3:英国特許第 650475号明細書
特許文献 4:中国特許第 1272495号明細書
特許文献 5:特開平 8— 3093号公報
特許文献 6:特開平 8—40969号公報
特許文献 7:国際公開第 06Z087083号パンフレット
特許文献 8:国際公開第 06Z087084号パンフレット
非特許文献 1 :「工業化学」雑誌、 1934年、第 37卷 (Suppl,binding) , p. 538 非特許文献 2 :「ケミッシュ 'ベリヒッテ(Chemische Berichte)」(独国)、 1950年、第 83 卷、 pp. 287- 291
非特許文献 3 :コゥイチ'イシカヮ(Koichi ISHIKAWA)他、「分析化学 (英語文献: BUN SEKI KAGAKU)」、 1983年、第 32卷、第 10号、 pp. E321— E325
非特許文献 4 :リ一' Η ·ダォ(Lee H. Dao)他、「リアクションズ'ォブ'モデルコンパゥン ズ'ォブ'バイオマスーパイロリシスォイノレズ'オーバ^ ~ · ZSM-5ゼォライトキヤタリスト (Reactions of Model し ompounas of Biomass- PyrolysisOiis over ZSM-5 z-eolite Cata lysts)—アメリカン 'ケミカル 'ソサイエティ一,シンポジウムシリーズ (American Chemical Society Symposium Series)] (米国)、 1988年、第 376卷 (パイロリシス オイルズ ノ ィォマス (Pyrolysis Oils Biomass))、 pp. 328— 341
非特許文献 5:「プレブリンツ ·ォブ ·ぺーパ一一アメリカン ·ケミカル ·ソサイエティー, ティヒ、'シヨン'才フ 'フューェノレ 'ケミストリー (Preprints of Papers - American Chemical Society, Division of FudChemistry)」(米国)、 1985年、第 30卷、第 3号、 pp. 78— 87
非特許文献 6 :「エナジ^ ~ ·フロム'バイオマス'アンド'ウェスト(Energy from Biomass a nd Wastes)」(米国)、 1987年、第 10卷、 p. 865— 877
非特許文献 7 :「フューエル(Fuel)」、(英国)、 1987年、第 66卷、第 10号、 PP. 136 4- 1371
非特許文献 8 :コゥゾゥ 'タナベ (Kozo Tanabe)他、「ニューソリッド'ァシッズ 'アンド'ベ ーシズ (NEWSOLID ACIDS AND BASES) (ISBN 0-444- 988000- 9)」 1989年、第 7 章「ディハイドレイシヨン (DEHYDRATION)」、 pp.260- 272、(KODANSHA、 ELSEVIER )
発明の開示
発明が解決しょうとする課題
本発明は、上記現状に鑑みてなされたものであり、脱水反応 (特に、気相脱水反応) によって脱水生成物を製造する際に用いられる触媒であって、収率や選択率に優れ 、工業的な実施において経済的に有利となるような脱水生成物の製造方法及びそれ に用いられる触媒 (特に、気相脱水用触媒)を提供することを目的とするものである。 本発明の目的はまた、石油に由来しない原料であるグリセリンを用いてァクロレインを 得ることができる新規なァクロレインの製造に適した触媒、及び、ァクロレインを効率よ く製造する方法を提供することにもある。また本発明の好ましい形態として、気相脱水 反応によりグリセリン力 ァクロレインを高選択率で得ることができる形態を提供するこ とも目的とする。この場合、高濃度のグリセリン溶液を用いた場合でも高収率でァクロ レインを得ることができ、それによつて高濃度のァクロレイン溶液を直接得ることができ るような形態、更に、経時的な触媒劣化の少ない形態を提供することも目的とする。 課題を解決するための手段
[0014] 本発明者等は、脱水生成物を得るための触媒を探索し、脱水生成物の製造方法を 種々検討した結果、例えば、ァクロレインをグリセリン力 脱水反応によって得る場合 、原料を触媒と接触させる気相脱水反応によれば、資源'環境面で有利となること〖こ 着目し、 6族元素を用いた触媒を必須とすれば、高選択率で目的とする脱水生成物 を得るのに有利であることを見いだした。また、このような触媒は、経時的な安定性も 高く、高濃度のグリセリン溶液を用いた反応にぉ ヽても触媒活性の低下が起こりにくく なることも見いだした。このように、気相脱水反応において触媒に含まれる必須の元 素を特定することにより、上記課題をみごとに解決することができることに想到し、本 発明に到達したものである。
[0015] なお、グリセリン力 ァクロレインを製造する方法において、グリセリンの気相脱水反 応に固体酸を用いることができ、この場合、燐酸若しくは燐酸化合物、硫酸カリウム、 硫酸水素カリウム、活性白土を単独又は担体に担持したものを触媒として用いること ができる。また上述したように特開平 6— 211724号公報には、 40重量%以下のダリ セリン水溶液を原料として用いる場合は酸強度がノ、メット酸度関数として + 2以下が 有効であることが記載されており、酸性を持つ公知の固体物質が示されている。しか しながら、これらの触媒は、充分な選択性を持っているとは言えず、更に高い選択性 が望まれていた。本発明者等は、脱水生成物を得るための触媒について、特にダリ セリンの気相脱水反応に広い範囲で各種固体物質を適用して検討した結果、 6族元 素を含有する触媒が高選択性を有することを見出し、また高選択性と高活性を両立 し、経時安定性にも優れるものを見 、だしたものである。
[0016] また上述したように、従来のアルコールの脱水反応には酸触媒が有効とされ、タンダ ステン (w)を含有する触媒を用いた報告がすでになされているが、本発明の水酸基 を 3個以上有する化合物を原料とする脱水生成物の製造方法とは反応形態が全く異 なるものである。すなわち、水酸基を 3個以上有する化合物を原料とする脱水生成物 の製造方法においては、例えば、グリセリン力 ァクロレインを生成する脱水反応は、 1分子のグリセリンから 2分子の水を脱水してォレフィンとカルボ-ルを生成する反応 であり、前述の脱水反応は、ォレフィンのみやエーテルが生成し、カルボ-ルは生成 せず、生成物の官能基が全く異なる。また、このことにより、逐次反応の影響も全く異 なり、例えばグリセリンを脱水して得られるァクロレインはきわめて反応性の高い物質 であり非常に多くの反応が知られている。例えば、特開平 4 266884では、本願の 原料であるグリセリンと生成物であるァクロレインを反応させてァクロレイングリセリンァ セタールを得る方法が記載されている。また、ァセタールイ匕の他にもマイケル付加や ディールスアルダー反応等の各種の反応が起こる可能性があり、例えば、水と反応し て 3—ヒドロキシプロパナールを生成する反応もあり、グリセリン力らァクロレインを製 造するのに好適な触媒は、これら逐次反応に対する活性が低い必要があり、単に脱 水反応能力が高いだけでは、優れた触媒は得られない。また、脱水反応自体につい ても、グリセリンには末端の OHと中央の OHがあり、どちらの OHが先に脱離するか によって生成物が異なるため、これらの OHを区別して選択的に脱水反応を行うこと が重要であり、 1つの OH基しか持たないエチルアルコールや、 1, 4 ブタンジォー ルの脱水のように、どちらの OH基が脱離しても同じ生成物が生成する反応とは反応 の選択性に影響する要因が異なったものとなると考えられる。
以上のようにグリセリンカもァクロレインを生成するような水酸基を 3個以上有するィ匕 合物を原料として気相脱水する脱水生成物の製造方法は、単純な脱水力のみでは なぐ反応の位置選択性や逐次反応が大きな影響をもっため、好適な触媒は予測し 難いものである。
本発明は、少なくとも 1つの 6族元素が、グリセリン等の水酸基を 3個以上有する化合 物の脱離に特に優れた選択性や活性を示すことを見いだしてなされたものであり、同 時に経時劣化も少な 、ことを見 、だして達成されたものである。上述したように経時 変化に対する触媒の安定性は、工業生産の経済的な面における重要な要素であり、 本発明は、この点においても際立った効果を奏することになる。
また、本発明者は、上記課題を解決するべく鋭意検討を行った結果、天然由来の油 脂から容易に得ることができるグリセリンを原料としてァクロレインを製造することを検 討した。そして、グリセリンを、ヘテロポリ酸触媒の存在下で反応させるァクロレインの 製造方法により、更に効率よくァクロレインが得られることを見出し、本発明を完成し た。
[0017] すなわち本発明は、水酸基を 3個以上有する化合物を脱水して脱水生成物を製造 する方法であって、上記製造方法は、少なくとも 1種の 6族元素を含有する触媒と接 触させる工程を含む脱水生成物の製造方法である。
本発明はまた、水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方 法であって、上記製造方法は、グリセリンを、ヘテロポリ酸触媒の存在下で反応させ てァクロレインを製造する脱水生成物の製造方法でもある。
更に、本発明は、上記脱水生成物の製造方法に用いられる触媒でもある。
[0018] 上述したすべての本発明における好ましい実施形態はとしては、以下の実施形態が 挙げられる。
上記水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法であつ て、上記製造方法は、少なくとも 1種の 6族元素を含有する触媒と接触させる工程を 含む脱水生成物の製造方法であることが好ま 、。
上記脱水生成物の製造方法は、グリセリンを脱水してァクロレインを製造する方法で ある脱水生成物の製造方法であることが好ま 、。
上記触媒は、 6族元素がタングステン、クロム及びモリブデン力 なる群より選択され る少なくとも 1種の元素である脱水生成物の製造方法であることが好ましい。
上記触媒は、 6族元素がタングステンである脱水生成物の製造方法であることが好ま しい。
上記へテロポリ酸触媒は、ケギン構造を有する脱水生成物の製造方法であることが 好ましい。
上記へテロポリ酸触媒は、ヘテロ元素がリン及び Z又は珪素である脱水生成物の製 造方法であることが好ま 、。 上記へテロポリ酸触媒は、配位元素がタングステン及び z又はモリブデンである脱水 生成物の製造方法であることが好まし 、。
上記触媒は、無機質担体に担持されたものである脱水生成物の製造方法であること が好ましい。
上記無機質担体は、珪素、アルミニウム、チタニウム、及び、ジルコニウム力もなる群 より選択される少なくとも 1種の元素を有するものである脱水生成物の製造方法であ ることが好ましい。
上記無機質担体は、酸化珪素を主成分とする脱水生成物の製造方法であることが好 ましい。
上記無機質担体は、二元細孔を持つ脱水生成物の製造方法であることが好ま 、。 なお、本発明の製造方法は、上記の例示された実施形態に限られない。また、上記 実施形態の技術的な意義は、後述するとおりである。
以下に本発明を詳述する。
上記水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法であつ て、上記製造方法は、少なくとも 1種の 6族元素を含有する触媒と接触させる工程を 含む脱水生成物の製造方法を、以下では、少なくとも 1種の 6族元素を含有する触媒 を用いる脱水生成物の製造方法とも称する。
また、上記水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法で あって、上記製造方法は、グリセリンを、ヘテロポリ酸触媒の存在下で反応させてァク ロレインを製造する脱水生成物の製造方法を、以下では、ァクロレインの製造方法と も称する。
本明細書では、上記ァクロレインの製造方法、及び、上記少なくとも 1種の 6族元素を 含有する触媒を用いる脱水生成物の製造方法を、脱水生成物の製造方法とも総称 する。また、本明細書中において、本発明の製造方法、又は、脱水生成物の製造方 法という場合、特に断らない限り、上記ァクロレインの製造方法、及び、上記少なくと も 1種の 6族元素を含有する触媒を用いる脱水生成物の製造方法をも意味する。 したがって、上記脱水生成物の製造方法に用いられる触媒とは、言い換えれば、上 記少なくとも 1種の 6族元素を含有する触媒を用いる脱水生成物の製造方法に用い られる触媒、及び、上記ァクロレインの製造方法に用いられる触媒をも意味すること になる。
上記少なくとも 1種の 6族元素を含有する触媒を用いる脱水生成物の製造方法とは、 より具体的には、水酸基を 3個以上有する化合物を気相脱水して脱水生成物を製造 する方法であって、少なくとも 1種の 6族元素を含有する気相脱水用触媒と接触させ る工程を含む脱水生成物の製造方法である。
本発明における触媒 (特に好ましくは、気相脱水用触媒)は、少なくとも 1種の 6族元 素を含有するものである。このような気相脱水用触媒は、 6族元素がタングステン (W) 、クロム(Cr)及びモリブデン (Mo)力 なる群より選択される少なくとも 1種の元素であ ることが好ましい。また気相脱水用触媒は、より好ましい形態としては、 6族元素がタ ングステン (W)である形態である。 Wを用いた気相脱水用触媒は、例えば、 P O /
2 5
Al Oのような触媒と比較して、ヒドロキシアセトンのような副生成物ができる割合を抑
2 3
制し選択率を高めると同時に、経時安定性を向上することができる。また、 6族元素の 含有量としては、担体を含めた触媒構成成分から酸素、水素を除いた全原子 1000 個中 1個以上あることが好ましぐより好ましくは 20個以上、更に好ましくは 60個以上 である。 6族元素の含有量が上記範囲より少ない場合は、触媒活性が不足したり、経 時的な活性低下が大きくなる可能性があるので好ましくな 、。 6族元素の含有量の上 限は特に問わないが、触媒重量の 80%以上含有しても効果が期待できない。また、 6族元素以外に含む元素は特に制限しないが、バナジウムは副生成物が増加してァ クロレイン収率が低下するので、バナジウムの原子数がタングステンの原子数を上回 るような多量の添カ卩は好ましくない。
上記 6族元素を有する触媒は、 6族元素の少なくとも 1種を含有すればよくその存在 形態は特定されないが、例えば無定形化合物の形態や単独酸化物、複合酸化物の 形態となったものが含まれる。 6属元素の添加源は特に規定しないが、硝酸塩、硫酸 塩、塩酸塩、リン酸塩、炭酸塩等の無機塩や、蓚酸塩、クェン酸塩、酒石酸塩等の有 機酸塩類の他、錯塩、あるいは酸ィ匕物等が使用可能である。リンタングステン酸等の ヘテロポリ酸も好適に用いることができる。これらの中でも特に、ヘテロポリ酸が好まし い。 [0021] 上記気相脱水用触媒は、 6族元素が無機質担体に担持されたものであってもよい。 担持型触媒とすることにより、活性物質を有効に利用することができ、触媒の形状付 与も容易となる。触媒の形状としては破砕品のような不定形でもよいが、好ましくは気 相反応に一般的な球状、リング状、円柱状、サドル状、ハーフリング状等の形状が好 適に用いられる。
上記無機質担体は、ジルコニウム、アルミニウム及び珪素力もなる群より選択される少 なくとも 1種の元素を有するものであることが好ましぐこれらの酸化物、水和酸化物 や窒化物、炭化物等が利用できる。また、特にジルコニウムを含有することが好まし い。例えばこのような無機質担体としては、工業的に用いられているジルコユア、アル ミナ、シリカの様な酸化物及びこれらの複合酸化物や混合物からなる粉末や成形担 体を用いることができる。また、これらの前駆体である水酸ィ匕物、水和酸化物や塩類 ち用いることがでさる。
[0022] 上記 6族元素が無機質担体に担持された触媒の調製法は特に問わず、最終的に無 機担体上に 6族元素を含んでなる活性物質が存在する形態となればよぐ公知の一 般的触媒調製方法が用いられる。例えば、簡便には無機質担体の粉末と少なくとも 1 種の 6族元素を有する化合物を液状媒体中で混合した後、液状媒体を除去して乾燥 し、得られた固形物を適度な粒径に粉砕することによって行うことができる。液状媒体 としては、水やエタノール等の親水性溶媒を好適に用いることができる力 非水性溶 媒も用いることができ、特に用いる 6族元素化合物を溶解できる物が好ましい。溶存 する水を除去した脱水溶媒を用いることも好ましぐ例えば無水エタノールに溶解し たへテロポリ酸を水酸ィ匕ジルコ-ル粉末に担持したのち焼成した触媒は好適な結果 を与える。なお、焼成条件としては、不活性ガスの雰囲気下、例えば、窒素雰囲気下 で行うことも好ましい。また、 6族元素の溶液と無機酸化物粉体の混合物を練り物とし て押し出し法により成形したり、スラリー状とした後、別の成形された担体の表面にコ 一ティングする等、一般的な触媒の調製法を用いることができる。また、ジルコニウム 、アルミニウム、珪素のいずれか一種以上を構成元素とする無機酸ィ匕物カゝらなる成 形担体を用い、少なくとも 1種の 6族元素を含む溶液を含浸することにより担持しても よい。更には、ジルコニウム、アルミニウム、珪素のいずれか一種を含む塩溶液に少 なくとも 1種の 6族元素を加え、中和法等によって沈殿させた後、乾燥焼成する方法 であっても、最終的にこれらの無機酸ィ匕物の表面に 6族元素が存在する形態となる 方法であれば!/、ずれの方法も用いることができる。
[0023] 上記気相脱水用触媒は、ハメット滴定により酸強度を測定した場合、 H関数で表す
0
と 8· 2≤H ≤+ 6. 8にあるものが好ましい。
0
上記ハメットの酸度関数は、例えば、ノ、メット指示薬法を用いて測定することが好適で ある。ハメット指示薬法を用いて測定する場合は、例えば、加熱により脱水した触媒を 乾燥ベンゼン中に保持し、 + 6. 8, - 3. 0, - 8. 2のノ、メット指示薬を順に添力卩し最 高酸強度を測定し、次に各指示薬を添加した乾燥ベンゼンに脱水した触媒を投入し 、呈色がなくなるまで濃度既知の n—プチルァミン'ベンゼン溶液で滴定し各酸強度 範囲での酸量も測定することが好適である。
なお、上記ハメットの酸度関数は、中性塩基 (B)の特定の指示薬群を用いて、ある酸 化物がこれらの指示薬にプロトンを移動させる傾向を、その指示薬の変色の度合で 定義したものである。指示薬の酸型 BH +の解離定数を K とすると、ノ、メットの酸
BH +
度関数 H は、下記式で定義される。
o
h =K (C /C )
O BH+ BH+ B
H = logh
O 0
(式中、 hは、酸化物の酸度であり、 C /Cは、指示薬の共役酸 BH +とその共
0 BH+ B
役塩基 Bの濃度比である。 )
[0024] 本発明の脱水生成物の製造方法は、水酸基を 3個以上有する化合物を脱水して脱 水生成物を製造する方法である。製造原料となる水酸基を 3個以上有する化合物と しては、 1つの分子内に水酸基を少なくとも 3個有する多価アルコール等の化合物で あればよぐ本発明においては、水酸基を 3個有する化合物であるグリセリンを用いる ことが好ましい。グリセリンを原料とする脱水反応においては、ァクロレインが脱水生 成物として得られることになる。この場合には、上述したようにグリセリンが植物由来で あることから再生可能であり、資源枯渴の心配がなぐその炭素源は大気中の 2酸ィ匕 炭素であることから実質的に大気中の 2酸ィ匕炭素増大に寄与しないといった利点を 有することになる。したがって、上記脱水生成物の製造方法は、グリセリンを気相脱水 してァクロレインを製造する方法であることが好適である。
[0025] 本発明の脱水生成物の製造方法において、反応圧は特に規定しないが 1気圧以下 が好ましい。気相脱水における温度としては、 200〜500°Cであることが好ましい。 2 00°C未満であると、反応率が極度に低下するおそれがあり、 500°Cを超えると、ダリ セリンの分解や生成したァクロレインの逐次反応が増加し、選択率の低下を招くおそ れがある。より好ましくは、 200〜450°Cである。また、反応温度の下限はグリセリンの 蒸気圧によっても制限され、供給するグリセリンがすべて気体状態で存在できる温度 以上とすることが好ましぐ例えば 1気圧条件で反応を行う場合は 290°C以上が好ま しい。また、触媒に対する原料ガスの供給量としては、空間速度として 100〜5000 Zhr程度が好ましぐ lOOZhr未満では、逐次反応によって収率が低下するおそれ があり、 5000Zhr以上では、反応が充分進行せず、転化率が低下するおそれがあ る。また触媒を気相脱水反応に供する方法としては、例えば、反応管の中に触媒を 充填することによって触媒層を形成して行うことができる。
例えば、グリセリンの気相脱水反応の場合は、グリセリン及び Z又はグリセリン溶液を 気化して得たグリセリン含有ガスを 200°C力も 600°Cの触媒層に通じて行うことが好ま しい。用いるグリセリン溶液としては、水溶液を好適に用いることができる。また、ダリ セリンを溶解し反応を阻害しない物質であれば有機溶媒を用いてもよぐしたがって、 グリセリンを有機溶媒に溶解したグリセリン溶液も用いることができる。グリセリン溶液 の濃度としては特に限定されず、グリセリン 100質量%でもよいが、ガス濃度及び触 媒に対する空間速度を調節する目的で、水や反応温度でガス状であり反応に不活 性な有機物のような凝縮性の物質、 COや窒素等の不活性ガスを用いて希釈しても
2
よい。
[0026] 上記脱水生成物の製造方法の脱水反応 (特に好ましくは、気相脱水反応)にお 、て 、不活性ガスを用いる場合、ァクロレインの沸点が低いため不活性ガスに同伴してァ クロレインが排出され、反応ガス力 のァクロレインの回収率が低下する場合があるの で、水等の不活性な凝縮性の物質 (不活性凝縮性物質)を用いて凝縮性物質とァク ロレインを同時に捕集した後分離する方法によって行うことが好ましい。一方、不活性 凝縮性物質を多量に用いた場合は、得られるァクロレインの濃度が低下し、回収した 不活性凝縮性物質の量が増えて処理費用が増大するため、不活性ガスと不活性凝 縮性物質を併用する方法が好ま Uヽ。
[0027] 上記脱水生成物の製造方法において、グリセリンと水等の不活性凝縮性物質との比 率としては、例えば、グリセリン lmolに対して、不活性凝縮性物質 0〜12molとする ことが好ましい。すなわち、グリセリン濃度を 7. 7〜: LOOmol%とすることが好ましい。 より好ましくは、グリセリン濃度 23〜: LOOmol%であり、更に好ましくは、グリセリン濃度 31〜: LOOmol%である。本発明においては、このように高濃度のグリセリン溶液を用 V、た場合でも高収率でァクロレインを得ることができ、それによつて高濃度のァクロレ イン溶液を直接得ることができる。
[0028] 上記反応生成ガスは、冷却して凝縮させることにより、ァクロレイン又はァクロレイン溶 液とすることができ、アクリル酸やメチォニン製造用の原料として用いることができ、凝 縮させて得たァクロレインを再度気化して、公知の気相酸ィ匕による方法を用いて適量 の空気や水蒸気と混合して酸化することによりアクリル酸を得ることが出来る。また、 凝縮工程を省いて、例えば、現在プロピレンの 2段気相酸ィ匕によるアクリル酸の製造 で用いられて 、る様な、タンデムある 、はシングル反応器を用いる方法を用いて直接 アクリル酸を得ることも出来る。すなわち、前記 2段気相酸ィ匕はプロピレンを酸ィ匕して 主にァクロレインを生成する反応部位と、生成したァクロレインを酸ィ匕してアクリル酸 を得る反応部位力 なる力 このプロピレンを酸ィ匕する部位に本願触媒を設置して、 原料をプロピレン力もグリセリンに変換することにより、グリセリン力も生成したァクロレ インを酸ィ匕してアクリル酸を得る反応部位に供給して直接アクリル酸を製造することも できる。
上述した製造方法は、脱水生成物の製造方法の一例であり、他の脱水生成物の製 造方法においても適用することができる。
[0029] 本発明はまた、上記脱水生成物の製造方法に用いられる気相脱水用触媒でもある。
すなわち、本発明の触媒は、気相において水酸基を 3個以上有する化合物を脱水し て脱水生成物を得るための気相脱水反応に適用されることが好適である。
本発明の気相脱水用触媒の好ましい形態は上述したとおりであり、グリセリンを気相 脱水してァクロレインを製造する方法に好適に適用されることになる。触媒形態として は、 6族元素がタングステン、クロム及びモリブデン力もなる群より選択される少なくと も 1種の元素であることが好ましぐ更に 6族元素がタングステンであることが好ましい 。また 6族元素が無機質担体に担持されたものであることが好ましぐ更に無機質担 体は、ジルコニウム、アルミニウム及び珪素力 なる群より選択される少なくとも 1種の 元素を有するものであることが好まし 、。
本発明の気相脱水用触媒は、工業的な脱水生成物の製造にお!ヽて活性や選択性、 生産性の点力 有用なものであり、上記好ましい形態によってその作用効果を充分 に高めることができるものである。
なお、転化率、選択率のうち、工業的生産においては、転化率、選択率共に高いこと が好ましいが、選択率が高いことがより重要である。その理由は、選択率が製品の品 質に大きく関係し、また、転ィ匕率が低くても選択率が高い場合は、未反応原料を回収 再使用することにより、最終的な収率を選択率まで近づけることが可能だ力もである。
[0030] 本発明また、グリセリンを、ヘテロポリ酸触媒の存在下で反応させるァクロレインの製 造方法でもある。
なお、上記水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法で あって、上記製造方法は、グリセリンを、ヘテロポリ酸触媒の存在下で反応させてァク ロレインを製造する脱水生成物の製造方法とは、言い換えれば、上記グリセリンを、 ヘテロポリ酸触媒の存在下で反応させるァクロレインの製造方法である。
下記の第一及び第二の手段を採用することは、本発明の好適な実施形態であるが、 本発明の実施形態は、これらに限られるものではない。第一の手段として、ヘテロポリ 酸と触媒担体とを有する触媒とする。
[0031] またこの手段において、ヘテロポリ酸はケィ素、リン、タングステン、モリブデンの少な くともいずれかを含有していることが望ましぐ触媒担体は、シリカ、アルミナ、チタ-ァ 、ジルコユアの少なくともいずれかの酸ィ匕物を含有していることが望ましいが、これら に限定されない。
[0032] またこの手段において、グリセリンは、水の含量が 95重量%以下のグリセリン水として 反応に供されることが望ましぐグリセリン力 ァクロレインを製造するために用いられ ることも望まし 、。 [0033] また第二の手段として、グリセリンを、ヘテロポリ酸と触媒担体とを有する触媒の存在 下で反応させるァクロレインの製造方法とする。
[0034] 本実施形態に係るァクロレイン製造用触媒 (以下単に「触媒」ともいう)は、ヘテロポリ 酸と触媒担体とを有するものが好適である。そしてこの触媒を用いることにより原料の グリセリンを脱水し、ァクロレインを製造することができる。ここでグリセリンの脱水反応 は、グリセリンをァクロレインに転ィ匕する反応であり、原料 (グリセリンもしくはグリセリン 水)を気化してガス状にし、このガス状の原料を触媒に気相接触させて反応させるこ とが好適である。本発明は、上記第一の手段のようにへテロポリ酸と触媒担体とを有 する触媒を用いることによって更に優れた効果を奏するものであるが、触媒担体を有 する形態に限られず、触媒単体で用いても充分に高い効果を得ることができる。
[0035] 上記触媒原料となるヘテロポリ酸とは、二種以上の酸素酸が縮合した無機酸素酸を いい、以下に限定されるわけではないが、具体的な例としては、ドデカタンダストリン 酸、ドデカモリブドリン酸、ドデカタンダストケィ酸が該当する。触媒原料となるヘテロ ポリ酸を含有する化合物としては一般に市販されて ヽるものを用いることができ、また H PW O 、 H PMo O 、 H SiW O の化学式で表される試薬を使用し、触媒
3 12 40 3 12 40 4 12 40
原料を触媒担体に付着担持させることで触媒として使用することができる。一方、触 媒担体としては、 SiO、 Al O、 TiO、 ZrOを用いることができる。これらは、通常、
2 2 3 2 2
球形、柱状、リング状、鞍状等の形状として用いることが好ましぐ既に成形された担 体に含浸あるいは表面に塗布するなどして用いてもよい。また、触媒担体がシリカで ある場合、例えば特開 2004— 250387号公報に記載の二元細孔を有するシリカも 好適に用いることができる。なお、二元細孔を有する触媒担体については後述する。
[0036] 上記触媒中に含有されるへテロポリ酸の含有量は、触媒活性を良好に保っために触 媒全体の 50重量%以下が好ましい。より好ましくは触媒全体の 35重量%以下の範 囲である。触媒担体に好適に用いられる金属酸化物等の成分は、ケィ素、アルミニゥ ム、チタニウム、ジルコニウムなどの酸化物が挙げられるがこれらに限定されない。
[0037] 上記ァクロレインの製造で使用される反応装置は特に限定されない。本触媒を用い るァクロレインの製造方法における反応温度は 150°C以上 450°C以下の温度範囲が 好ましい。原料グリセリンの転ィ匕率を向上させるためには 150°C以上が好ましぐ副生 成物の生成を抑制し、目的生成物でおるァクロレインの選択率を向上させるために は 450°C以下が好ましいためである。なお、上記ァクロレインの製造方法における反 応温度とは、グリセリンを脱水してァクロレインを製造する脱水反応工程における反応 温度を意味する。
したがって、上記ァクロレインの製造方法は、脱水反応工程における反応温度が 15
0°C〜400°Cであることは、本発明の好適な実施形態の 1つである。
上記ァクロレインの製造方法は、上記温度範囲で脱水反応工程を行うことにより、ァ クロレインの選択率を更に向上することができ、また、副生成物の生成をより抑制でき る。
またより好ま 、温度範囲は 200°C以上 400°C以下の温度範囲である。触媒反応は 、具体的には、例えば、原料を気化してガス状にし、このガスを、触媒充填され上記 の反応温度に制御された反応器に流通させるようにすればよ!ヽ。反応器に流通させ る際のガスの流量は、特に制限されない。また、本発明の脱水生成物の製造方法に おいて、反応圧は特に規定しないが、モル数が増加する反応であり、圧力が低いこと が平衡的に有利であることから、 1気圧以下が好ましい。
上記反応温度は、 220°C以上であることが好ましい。より好ましくは、 245°C以上であ り、更に好ましくは、 275°C以上である。また、上記反応温度は、 500°C以下であるこ とが好ましい。より好ましくは、 450°C以下であり、更に好ましくは、 400°C以下である
[0038] 上記反応温度と触媒重量 Z原料流量の比の関係は、反応温度が低温の場含は触 媒重量 Z原料流量の比が大きい方が好ましぐ反応温度が高温の場合は触媒重量 Z原料流量の比が小さい方が好ましい。目的生成物の選択率を向上させるためには 低温で、触媒重量 Z原料流量の比を大きく取ることが好ましい。
[0039] また、触媒に対する原料ガスの供給量としては、空間速度として 100〜5000Zhr程 度が好ましぐ lOOZhr未満では、逐次反応によって収率が低下するおそれがあり、 5000Zhr以上では、反応が充分進行せず、転化率が低下するおそれがある。また 触媒を気相脱水反応に供する方法としては、例えば、反応管の中に触媒を充填する ことによって触媒層を形成して行うことができる。用いるグリセリン溶液としては、水溶 液を好適に用いることができる。また、グリセリンを溶解し反応を阻害しない物質であ れば有機溶媒を用いてもよぐしたがって、グリセリンを有機溶媒に溶解したグリセリン 溶液も用いることができる。グリセリン溶液の濃度としては特に限定されず、グリセリン 100質量%でもよいが、ガス濃度及び触媒に対する空間速度を調節する目的で、水 や反応温度でガス状であり反応に不活性な有機物のような凝縮性の物質、 COゃ窒
2 素等の不活性ガスを用いて希釈してもよ ヽ。
[0040] 上記気相脱水反応にお!、て、不活性ガスを用いる場合、ァクロレインの沸点が低 ヽ ため不活性ガスに同伴してァクロレインが排出され、反応ガス力 のァクロレインの回 収率が低下する場合があるので、水等の不活性な凝縮性の物質 (不活性凝縮性物 質)を用いて凝縮性物質とァクロレインを同時に捕集した後分離する方法によって行 うことが好ましい。一方、不活性凝縮性物質を多量に用いた場合は、得られるァクロ レインの濃度が低下し、回収した不活性凝縮性物質の量が増えて処理費用が増大 するため、不活性ガスと不活性凝縮性物質を併用する方法が好ましい。
[0041] 原料のグリセリンは、 0〜95重量%の水等の不活性凝縮性物質を含んでもよぐ反応 に関与しない溶媒などが存在してもよい。原料のグリセリンの濃度は、 5〜: L00重量 %であることが好ましい。より好ましくは、 10〜80重量%である。本発明においては、 このように高濃度のグリセリン溶液を用いた場合でも高収率でァクロレインを得ること ができ、それによつて高濃度のァクロレイン溶液を直接得ることができる。
[0042] 上記反応生成ガスは、冷却して凝縮させることにより、ァクロレイン又はァクロレイン溶 液とすることができ、アクリル酸やメチォニン製造用の原料として用いることができ、凝 縮させて得たァクロレインを再度気化して、公知の気相酸ィ匕による方法で適量の空 気や水蒸気と混合して酸ィ匕することによりアクリル酸を得ることが出来る。また、凝縮 工程を省いて、例えば、現在プロピレンの 2段気相酸ィ匕によるアクリル酸の製造で用 V、られて 、る様な、タンデムある 、はシングル反応器を用いる方法を用いて直接ァク リル酸を得ることも出来る。すなわち、前記 2段気相酸ィ匕はプロピレンを酸ィ匕して主に ァクロレインを生成する反応部位と、生成したァクロレインを酸ィ匕してアクリル酸を得る 反応部位力もなるが、このプロピレンを酸ィ匕する部位に本願触媒を設置して、原料を プロピレン力もグリセリンに変換することにより、グリセリン力も生成したァクロレインを 酸ィ匕してアクリル酸を得る反応部位に供給して直接アクリル酸を製造することもできる 。この場合、酸化反応に必要な酸化剤である空気あるいは酸素の供給は 1段目の脱 水反応入口力 でもよ 、が、 2段目の酸化反応入口に供給してもよ!、。
上述したァクロレインの製造方法は、脱水生成物の製造方法の一例であり、他の脱 水生成物の製造方法においても適用することができる。
[0043] 上記製造方法においてへテロポリ酸が有効な理由は、一般的な固体酸触媒である S ίθ ·Α1 Οに比べて酸強度が強いことが多価アルコールの活性ィ匕に寄与することが
2 2 3
1つの理由として考えられる。超強酸と呼ばれる SO 2"/ZrOなどに代表される固体
4 2
では活性は高 、ものの酸強度が強すぎて副反応が進行し、結果的には適度な酸強 度を持ったヘテロポリ酸が有効に働いているものと考えられる。また、ヘテロポリ酸は 、熱的に安定であることに起因し、上記製造方法で長時間加熱して反応を行っても 触媒活性が失われず、高!ヽ転化率及び選択率で反応を行うことが可能となると考え られる。
[0044] 上記へテロポリ酸触媒としては、例えば、下記一般式(1)〜 (4);
(1) ケギン構造; H Xn+Mm+ O 、
80— 12m— n 12 40
又は、 H Xn+Mm+ O
78— 11m— n 11 39
(2) B型シルバートン構造; H X4+Mm+ O
80- 12m 12 42
(3) ドーソン構造; H X5+ Mm+ O
114— 18m 2 18 62
(4) アンダーソン構造; H Xn+Mm+ O
48-6m-n 6 24
で表される構造を有するものが好適である。
上記(1)ケギン構造に関しては、配意元素数が 12の構造を、特に A型と称することが ある。上記一般式(1)〜(4)において、 Xは、ヘテロ元素を示し、ヘテロポリ酸を形成 できる元素であれば特に限られないが、例えば、リン、珪素、ゲルマニウム、ヒ素、トリ ゥム、マンガン、ニッケル、テルル、ヨウ素、コノルト、アルミニウム、及び、クロム等が 挙げられる。 Mは、配位元素を示し、配位元素としてへテロポリ酸を形成できる元素 であれば特に限られないが、例えば、モリブデン、タングステン、ニオブ、バナジウム 等が挙げられる。 Oは、酸素原子を表す。
上記へテロポリ酸が A型ケギン構造である場合には、ヘテロ元素がリン、珪素、ゲル マニウム、ヒ素であることが好適である。上記へテロポリ酸力 ¾型シルバートン構造を 有する場合は、ヘテロ元素がセリウム、トリウムであることが好適である。上記へテロポ リ酸がケギン構造を有する場合は、ヘテロ元素がリン、ヒ素、又は、ゲルマニウムであ ることが好適である。上記へテロポリ酸がドーソン構造を有する場合は、ヘテロ元素が リン、ヒ素であることが好適である。上記へテロポリ酸がアンダーソン構造を有する場 合は、ヘテロ元素がテルル、ヨウ素、コノルト、アルミニウム、又は、クロムであることが 好適である。
[0045] 上記へテロポリ酸触媒がケギン構造を有することは、本発明の好適な実施形態の 1 つである。上記へテロポリ酸触媒がケギン構造を有することにより、熱的安定性が高く なるため、
更にァクロレインの製造に適したものとなる。ケギン構造を有するヘテロポリ酸触媒と しては、上記一般式(1)で表される構造を有することが好ま 、。
[0046] 上記へテロポリ酸触媒は、ヘテロ元素がリン及び Z又は珪素であることも本発明の好 適な実施形態の 1つである。
上記へテロポリ酸触媒が上記形態を有することにより、ァクロレインの収率及び選択 率を向上することができる。
[0047] 上記へテロポリ酸触媒は、少なくとも 1種の 6族元素を含有することは、本発明の好適 な実施形態の 1つである。
上記実施形態を有するァクロレインの製造方法とは、言い換えれば、水酸基を 3個以 上有する化合物を脱水して脱水生成物を製造する方法であって、上記製造方法は、 グリセリンを、ヘテロポリ酸触媒の存在下で反応させてァクロレインを製造する脱水生 成物の製造方法であり、上記へテロポリ酸触媒は、少なくとも 1種の 6族元素を含有 する脱水生成物の製造方法である。
また、実施形態を有するァクロレインの製造方法とは、更に言い換えれば、水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法であって、上記製造方 法は、少なくとも 1種の 6族元素を含有する触媒と接触させる工程を含み、上記触媒 は、ヘテロポリ酸触媒であり、上記水酸基を 3個以上有する化合物は、グリセリンであ り、上記脱水生成物は、ァクロレインである脱水生成物の製造方法である。 また、上記実施形態を有するァクロレインの製造方法において、上記 6族元素は、へ テロポリ酸の配位元素として含まれることが好まし 、。
[0048] 上記へテロポリ酸触媒は、配位元素がタングステン及び Z又はモリブデンであること も本発明の好適な実施形態の 1つである。
上記へテロポリ酸触媒が上記形態を有することにより、ァクロレインの収率及び選択 率を向上することができる。上記配位元素としてより好ましくは、タングステンである。
[0049] 上記へテロポリ酸触媒は、ヘテロポリ酸が無機質担体に担持されたものであることも 本発明の好適な実施形態の 1つである。
上記へテロポリ酸触媒が担持型触媒となることにより、活性物質を有効に利用するこ とができ、触媒の形状付与も容易となるため、更にァクロレインの選択率を向上させる ことができる。上記へテロポリ酸が無機質担体に担持されたものである場合にぉ 、て 、触媒成分の担持量は 1〜50重量%であることが好ましい。より好ましくは 5〜30重 量%である。
触媒の形状としては破砕品のような不定形でもよいが、好ましくは気相反応に一般的 な球状、リング状、円柱状、サドル状、ハーフリング状等の形状が好適に用いられる。
[0050] 上記無機質担体は、珪素、アルミニウム、チタニウム、及び、ジルコニウム力もなる群 より選択される少なくとも 1種の元素を有するものであることも本発明の好適な実施形 態の 1つである。
上記無機質担体が上記形態を有することにより、活性成分のへテロポリ酸が均一に 高分散されることとなるため、更にァクロレインの製造に適したものとなり、ァクロレイン の収率及び選択率を向上することが可能となる。上記無機質担体は、ジルコニウム、 アルミニウム及び珪素力 なる群より選択される少なくとも 1種の元素を有するもので あるか、又は、これらの酸化物、水和酸化物や窒化物、炭化物等が利用できる。また 、特に珪素を含有することが好ましい。例えばこのような無機質担体としては、工業的 に用いられているシリカ、アルミナ、チタ-ァ、及び、ジルコユアの様な酸化物及びこ れらの複合酸化物や混合物からなる粉末や成形担体を用いることができる。また、こ れらの前駆体である水酸ィ匕物、水和酸ィ匕物や塩類も用いることができる。
[0051] 上記無機質担体は、酸化珪素を主成分とすることも本発明の好適な実施形態の 1つ である。
上記無機質担体が上記形態を有することにより、更に分散性が向上するため、更に ァクロレインの製造に適したものとなり、ァクロレインの収率及び選択率を向上するこ とが可能となる。
なお、酸化珪素が主成分とするとは、上記無機質担体のうち酸ィ匕珪素が占める重量 比が少なくとも 50重量%以上であることを意味する。上記重量比は、 80重量%以上 であることが好ましい。より好ましくは 90重量%以上であり、更に好ましくは 95重量% 以上である。
[0052] 上記無機質担体は、原料としてテトラエトキシシランを用いて調製されたものであるこ ともまた、本発明の好適な実施形態の 1つである。上記無機質担体の原料として、ナ トリウム元素を実質的に含まないテトラエトキシシランを原料として用いることにより、上 記製造方法における脱水生成物の選択率及び収率を更に向上することができる。 上記無機質担体は、原料としてテトラエトキシシランを用いて調製された部位を含む ことが好ましい。上記無機質担体は、上記無機質担体 100重量%中、テトラエトキシ シランを用いて調製された部位が占める重量比が 50重量%以上であることが好まし い。上記重量比としてより好ましくは、 80重量%以上である。更に好ましくは、 90重量 %以上であり、特に好ましくは、 95重量%以上である。
[0053] 上記無機質担体は、比表面積が 30〜1500m2/gであることもまた、本発明の好適 な実施形態の 1つである。上記比表面積を有する無機質担体を用いることにより、上 記製造方法における脱水生成物の選択率及び収率を更に向上することができる。 上記無機質担体が後述する二元細孔を持たな 、ものである場合には、上記比表面 積は、 50〜: L000m2/gであることが好ましい。より好ましくは、 100〜800m2Zgで ある。上記比表面積は、 200〜700m2/gであることが更に好ましい。特に好ましくは 、 250〜600m2Zgである。最も好ましくは、 300〜500m2Zgである。
[0054] 上記無機質担体は、二元細孔を持つことも本発明の好適な実施形態の 1つである。
上記二元細孔とは、マイクロメートル領域の細孔径を有するマクロ細孔、及び、ナノメ 一トル領域の細孔径を有するナノ細孔の両者をあわせ持つ無機多孔質材料である。 上記のような二元細孔を持つ無機質担体は、物質輸送能に優れるマクロ細孔、及び 、高い比表面積を持つナノ細孔の両者をあわせ持ち、機械的強度が充分であり、圧 力損失も少ないため、上記製造方法に用いる触媒担体として好適であり、更にァクロ レインの選択率及び収率を向上することが可能となる。
上記マクロ細孔は、 0. 5〜200 mの細孔径であることが好適である。より好ましくは 、 1〜: LOO /z mである。上記ナノ細孔は、 l〜50nmであることが好適であり、貫通孔 が三次元網目状に絡み合った構造を有していることが好ましい。上記マクロ細孔は、 水銀圧入法又は電子顕微鏡による直接観察により測定可能である。上記ナノ細孔は 、水銀圧入法又は窒素吸着法により確認することができる。
上記二元細孔を持つ無機質担体は、平均粒子径が 5 〜 10mmの粒子状であるで あることが好ましい。上記無機質担体の細孔容積は、担体 lgあたり 0. 3〜4cm3であ ることが好ましい。製造の容易さを考慮した場合には、 l〜3cm3であることが好適で ある。
上記二元細孔を持つ無機質担体を製造する方法は特に限定されないが、例えば、 特開 2005— 281012及び特開 2005— 162504に記載の方法で製造することが好 ましい。
したがって、上記二元細孔を持つ無機質担体は、三次元網目状に絡み合った貫通 孔を有する構造を含んでなることも、本発明の好適な実施形態の 1つである。
また、上記二元細孔を持つ無機質担体は、マクロ細孔及びナノ細孔を必須とする二 元細孔を有する無機質担体であり、上記二元細孔を持つ無機質担体は、マクロ細孔 の細孔径が 0. 5〜200 /ζ πιであり、ナノ細孔の細孔径が l〜50nmであることも、本 発明の好適な実施形態の 1つである。
上記二元細孔を持つ無機質担体は、比表面積が 300〜: L000m2Zgであることも本 発明の好適な実施形態の 1つである。
上記比表面積を有する二元細孔を持つ無機質担体を用いることにより、上記製造方 法における脱水生成物の選択率及び収率を更に向上することができる。
上記二元細孔持つ無機質担体の比表面積は、 400〜900m2Zgであることが好まし より好ましく ίま、 500〜850m2/gである。更【こ好ましく ίま、 550〜800m2/gであ る。特に好ましくは、 650〜800m2Zgである。 [0055] 本発明はまた、上記製造方法に用いられるヘテロポリ酸触媒でもある。 すなわち、本発明のへテロポリ酸触媒は、気相においてグリセリンを脱水してァクロレ インを得るための気相脱水反応に適用されるものである。上記へテロポリ酸触媒とし て好ましい形態は、上述した製造方法において述べたとおりである。本発明のへテロ ポリ酸触媒は、工業的な脱水生成物の製造において活性や選択性、生産性の点か ら有用なものであり、上記好ましい形態によってその作用効果を充分に高めることが できるものである。
[0056] なお、上記脱水生成物の製造方法と上記ァクロレインの製造方法とは、水酸基を 3個 以上有する化合物を脱水して目的物の脱水生成物を高い選択率で得るという手段 及び効果において共通する。そのため、上記ァクロレインの製造方法における好適 な実施形態及び反応条件等は、上記脱水生成物の製造方法にとっても好ま 、実 施形態であり、上記脱水生成物の製造方法に適宜適用することができる。また、逆に 、上記脱水生成物の製造方法における好適な実施形態及び反応条件等は、上記ァ クロレインの製造方法にとっても好ましい実施形態であり、上記ァクロレインの製造方 法に適宜適用することができる。
[0057] 本発明の触媒 (特に好ましくは、気相脱水用触媒)を用いて脱水生成物を製造する 場合、従来の酸性酸化物触媒を用いる場合に比べて、活性 (転化率、収率)と選択 性共に優れた特性を示し、経時的な活性低下や選択率の低下が抑制されて、工業 的な実施において経済的に有利となる。また、石油に由来せずにァクロレインを得る ことができる点において、工業的な実施において経済的に有利である。特に、気相脱 水反応によりグリセリンカもァクロレインを高選択率で得ることができる。この場合、高 濃度のグリセリン溶液を用いた場合でも高収率でァクロレインを得ることができ、それ によって高濃度のァクロレイン溶液を直接得ることができるような形態、更に、経時的 な触媒劣化の少な 、形態を提供することができる。
また、ァクロレイン製造に適した触媒を提供することができるとともに、石油に由来しな V、原料を用いてァクロレインを得ることができる。従来の触媒を用いる場合に比べて、 活性 (転化率、収率)と選択性共に優れた特性を示し、経時的な活性低下や選択率 の低下が抑制されて、工業的な実施において経済的に有利となる。特に、気相脱水 反応によりグリセリンカもァクロレインを高選択率で得ることができる。この場合、高濃 度のグリセリン溶液を用いた場合でも高収率でァクロレインを得ることができ、それに よって高濃度のァクロレイン溶液を直接得ることができるような形態、更に、経時的な 触媒劣化の少ない形態を提供することができる。また、本発明の製造方法により得ら れたァクロレインを酸ィ匕反応させることにより、アクリル酸を製造することができる。本 発明は、グリセリンを出発物質とする工業的に有利な方法によるアクリル酸の製造方 法でもある。
[0058] 上記ァクロレインの製造方法は、ァクロレインの選択率が 60モル%以上であることは 、本発明の好適な実施形態の 1つである。
上記ァクロレインの選択率は、 65モル%以上であることが好ましい。より好ましくは、 7 0モル%以上であり、更に好ましくは、 75モル%以上であり、特に好ましくは、 80モル %以上であり、最も好ましくは、 85モル%以上である。ァクロレインの選択率が高くな ることによって、上記ァクロレインの製造方法は、工業的に更に効率の良いものとなる なお、ァクロレインの選択率が 60モル0 /0以上であるとは、すなわち、ァクロレインの収 量 (モル)が、上記製造方法において転ィ匕されたグリセリンの量 (モル)に対して、 60 モル%以上であることを意味する。
ァクロレインの選択率は、例えば、下記のようにして求ることが好適である。
選択率 (モル%) = {反応後に得られたァクロレインの収量 (モル) Z [反応に供したグ リセリンの量 (モル) 反応後に残存したグリセリンの量 (モル)] } X 100
なお、ァクロレインの量、及び、グリセリンの量は、ガスクロマトグラフィー分析装置を 用いて測定することが好ましぐ例えば、島津製作所製 GC— 8A, TC— WAXキヤピ ラリーカラムを用いて、柳』定することができる。
[0059] 上記ァクロレインの製造方法は、ァクロレインの収率が 40モル0 /0以上であることは、 本発明の好適な実施形態の 1つである。
上記ァクロレインの収率は、 70モル%以上であることが好ましい。より好ましくは、 74 %以上であり、更に好ましくは、 77モル%以上であり、特に好ましくは、 80%モル以 上であり、最も好ましくは、 83モル%以上であり、更に最も好ましくは、 85モル%以上 である。
なお、ァクロレインの収率力 0モル0 /0以上であるとは、すなわち、ァクロレインの収量
(モル)力 上記製造方法に供したグリセリン (モル)に対して、 40モル%以上であるこ とを意味する。
ァクロレインの収率は、例えば、下記のようにして求ることが好適である。
ァクロレインの収率(モル%) = {ァクロレインの収量(モル) Z反応に供したグリセリン の量(モル)} x ioo
なお、転化率、選択率のうち、工業的生産においては、転化率、選択率共に高いこと が好ましいが、選択率が高いことがより重要である。その理由は、選択率が製品の品 質に大きく関係し、また、転ィ匕率が低くても選択率が高い場合は、未反応原料を回収 再使用することにより、最終的な収率を選択率まで近づけることが可能だ力もである。 上記ァクロレインの製造方法においては、未反応のグリセリンを回収して再使用する ことができる力ら、グリセリンがァクロレインではない副生物へ転ィ匕することは、グリセリ ンを回収して再使用することができなくなくなることを意味する。言い換えれば、上記 ァクロレインの製造方法において、グリセリンがァクロレインではない副生物へ転ィ匕す る量は、グリセリンが無駄になる量である。そのため、無駄になるグリセリンの量を低減 してコスト削減する観点から、グリセリンがァクロレインではない副生物へ転ィ匕する量 をできる限り低減することが好まし 、。
したがって、上記ァクロレインの製造方法は、グリセリン力 転ィ匕して生成する副生物 の収率が 55モル%以下であることは、本発明の好適な実施形態の 1つである。
上記グリセリン力も転ィ匕して生成する副生物の収率は、 45モル%以下であることが好 ましい。より好ましくは、 35モル%以下であり、更に好ましくは、 25モル%以下であり、 特に好ましくは、 20モル%以下であり、最も好ましくは、 15〜10モル%である。
なお、上記グリセリン力も転ィ匕して生成する副生物とは、言い換えれば、グリセリンが 転ィ匕して生成する化合物であって、ァクロレインではな 、ィ匕合物である。
上記グリセリン力 転ィ匕して生成する副生物の収率は、例えば、下記のようにして求 ることが好適である。
グリセリン力 転ィ匕して生成する副生物の収率 (モル%) = [{反応後に残存するダリ セリンの量(モル)ーァクロレインの収量(モル) }Z反応に供するグリセリンの量(モル ) ] χ ιοο
また、上記ァクロレインの製造方法により得られたァクロレインを酸ィ匕反応させること により、アクリル酸を製造することができる。すなわち、本発明はまた、上記製造方法 によって得られるァクロレインを酸ィ匕してアクリル酸に転ィ匕する工程を含むアクリル酸 の製造方法でもある。
発明の効果
本発明の触媒 (特に好ましくは、気相脱水用触媒)を用いて脱水生成物を製造する 場合、従来の酸性酸化物触媒を用いる場合に比べて、活性 (転化率、収率)と選択 性共に優れた特性を示し、経時的な活性低下や選択率の低下が抑制されて、工業 的な実施において経済的に有利となる。また、石油に由来せずにァクロレインを得る ことができる点において、工業的な実施において経済的に有利である。特に、気相脱 水反応によりグリセリンカもァクロレインを高選択率で得ることができる。この場合、高 濃度のグリセリン溶液を用いた場合でも高収率でァクロレインを得ることができ、それ によって高濃度のァクロレイン溶液を直接得ることができるような形態、更に、経時的 な触媒劣化の少な 、形態を提供することができる。
また、ァクロレイン製造に適した触媒を提供することができるとともに、石油に由来しな V、原料を用いてァクロレインを得ることができる。従来の触媒を用いる場合に比べて、 活性 (転化率、収率)と選択性共に優れた特性を示し、経時的な活性低下や選択率 の低下が抑制されて、工業的な実施において経済的に有利となる。特に、気相脱水 反応によりグリセリンカもァクロレインを高選択率で得ることができる。この場合、高濃 度のグリセリン溶液を用いた場合でも高収率でァクロレインを得ることができ、それに よって高濃度のァクロレイン溶液を直接得ることができるような形態、更に、経時的な 触媒劣化の少ない形態を提供することができる。また、本発明の製造方法により得ら れたァクロレインを酸ィ匕反応させることにより、アクリル酸を製造することができる。本 発明は、グリセリンを出発物質とする工業的に有利な方法によるアクリル酸の製造方 法でもある。
発明を実施するための最良の形態 [0062] 以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例 のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「% 」は「質量%」を意味するものとする。
[0063] (触媒 Aの調製)
150ccのなす型フラスコに 1. 6質量0 /0のタングステン酸アンモ-ゥム lOOccをカロえ、 ここに 10gの水酸ィ匕ジルコ-ル (ZrO (OH) )粉末を加えて 50〜60°Cで 4時間攪拌
2
した後、 60〜80°Cの水浴を用いロータリーエバポレーターで水を除去した。得られ た粉体を 110°C空気中で 1晚乾燥した後 900°Cで 4時間焼成した。軽く砕いた後、篩 を用いて 20〜40メッシュ(mesh)にそろえた。
(ハメット酸度の測定)
加熱により脱水した触媒を乾燥ベンゼン中に保持し、 + 6. 8, - 3. 0, - 8. 2のハメ ット指示薬を順に添加し最高酸強度を測定し、次に各指示薬を添加した乾燥べンゼ ンに脱水した触媒を投入し、呈色がなくなるまで濃度既知の n—プチルァミン'ベンゼ ン溶液で滴定し各酸強度範囲での酸量も測定した。
出来上がった触媒 Aのハメット酸度は、—8. 2< Hく— 3で触媒 lgあたり 0. 099m
0
mol、 - 3< Η < + 6· 8で角虫媒 lgあたり 0. 227mmolであった。
o
なお、下記の触媒についても、同様の方法でハメット酸度を測定した。
[0064] (触媒 Bの調製)
lOOccのなす型フラスコに 2. 1質量0 /0の H PW O 水溶液 25ccを加え、ここに 10g
3 12 40
の α—アルミナ粉末を加えて混練した後、 110°C空気中で 1晚乾燥し、更に真空中 で 150°Cで 4時間乾燥した。軽く砕いた後、篩を用いて 20〜40メッシュ(mesh)にそ ろえた。
出来上がった触媒 Bのハメット酸度は、—8. 2< Hく— 3で触媒 lgあたり 0. 008m
0
mol、 - 3< Η < + 6· 8で角虫媒 lgあたり 0. 173mmolであった。
o
[0065] (触媒 Cの調製)
lOOccのなす型フラスコに 19gの α—アルミナ粉末をカ卩え、ここに 3質量0 /0の燐酸水 溶液 33mlをカ卩えてー晚攪拌した後、 60〜80°Cの水浴を用いロータリーエバポレー ターで水を除去した。得られた粉体を 120°C空気中で 24時間乾燥し軽く砕いた後、 篩を用いて 20〜40メッシュ(mesh)にそろえた。
出来上がった触媒 Cのノ、メット酸度は、—8. 2<Hく— 3で触媒 lgあたり 0. 007m
0
mol、 - 3<Η < +6· 8で角虫媒 lgあたり 0. O13mmolであった。
o
[0066] (触媒 Dの調製)
lOOccのなす型フラスコに 3. 1質量0 /0の硫酸アンモ-ゥム((NH ) SO )水溶液 25
4 2 4 ccを加え、ここに 10gの水酸ィ匕ジルコニル粉末を加えて 50〜60°Cで 4時間攪拌した 後、 60〜80°Cの水浴を用いロータリーエバポレーターで水を除去した。得られた粉 体を 110°C空気中で 1晚乾燥した後 600°Cで 4時間焼成した。軽く砕いた後、篩を用 いて 20〜40メッシュ(mesh)にそろえた。
出来上がった触媒 Dのハメット酸度は、 H < -8. 2で触媒 lgあたり 0. 2982mmol、
0
-8. 2<Hく— 3で触媒 lgあたり 0. 057mmol、— 3<H < +6. 8で触媒 lgあた
0 0
り 0. 128mmolであった。
[0067] (触媒 Eの調製)
lOOccのなす型フラスコに 4. 0質量0 /0の硼酸水溶液 50ccをカ卩え、ここに 10gの水酸 化ジルコ-ル粉末をカ卩えて 50〜60°Cで 4時間攪拌した後、 60〜80°Cの水浴を用い ロータリーエバポレーターで水を除去した。得られた粉体を 110°C空気中で 1晚乾燥 した後 700°Cで 4時間焼成した。軽く砕いた後、篩を用いて 20〜40メッシュ(mesh) にそろえた。
出来上がった触媒 Eのハメット酸度は、—8. 2<Hく— 3で、触媒 lgあたり 0. 091
0
mmol、 一 3<Η < +6· 8で 0· 117mmolであった。
o
[0068] (触媒 F、 Gの調製)
Nb O ·ηΗ 0 (CBMM社製、「HY— 340」商品名) 50gを 350°Cで焼成して触媒 F
2 5 2
を、 600°Cで焼成で焼成して触媒 Gを得た。
出来上がった触媒 Fのハメット酸度は、 H < -8. 2で触媒 lgあたり 0. 0224mmol、
0
-8. 2<Hく— 3で触媒 lgあたり 0. 157mmol、— 3く H < +6. 8で触媒 lgあた
0 0
り 0. 112mmolであった。
また、触媒 Gのハメット酸度は、—8. 2<Hく— 3で触媒 lgあたり 0. 022mmol、 -
0
3<H < +6. 8で虫媒 lgあたり 0. 050mmolであった。 [0069] (触媒 Hの調製)
南開大学触媒研究所 (天津 Z中華人民共和国)より入手した H型 ZSM— 5 (SiO /
2
Al O = 38)を触媒 Hとした。
2 3
[0070] (触媒 Iの調製)
lOOccのなす型フラスコに H PW O を 4. 3質量0 /0含有する無水エタノール溶液 5
3 12 40
Occを加え、ここに 10gの水酸化ジルコ-ル (ZrO (OH) )を加えて室温で 4時間攪
2
拌した後、 30〜35°Cの水浴を用い、ロータリーエバポレーターでエタノールを除去し た。得られた粉末を 110°C真空で一晩乾燥した後、窒素流通 650°Cで 4時間焼成し た。軽く砕いた後、篩いを用いて 20〜40メッシュ (mesh)にそろえた。得られた触媒 を熱天秤を用いて測定したところ、未焼成品の触媒前駆体で見られた発熱ピークは なぐ室温から 800°Cに発熱ピークは見られな力つた。
[0071] 実施例 1
縦向きに設置した全長 400mmの電熱式環状炉に内径 10. 4mmの石英製反応管 を設置し 315°Cに制御した。窒素を標準状態として 8. 5mlZ分で流通して反応管内 の温度分布を測定して得た等温部に触媒 Aを 0. 63ml充填した。触媒層の両端には 5mmの石英ウールを詰め、上部には石英砂を 30mm充填した。反応管上部より 36 質量%のグリセリン水溶液を 0. 58gZ時間(hr)の速度で導入した。グリセリン導入開 始後 8時間から 10時間の生成ガスを捕集してガスクロマトグラフにより分析した結果、 グリセリンの転化率は 100mol%あり、ァクロレインの収率は 63mol%であった。また 、ヒドロキシアセトンの生成は 3mol%にとどまった。同触媒 (触媒 A)に 36質量0 /0のグ リセリン水溶液を導入速度 2. 9gZ時間(hr)で導入し、反応開始後 8時間から 10時 間の生成ガスを捕集してガスクロマトグラフにより分析した結果、グリセリンの転ィ匕率 は 50mol%であり、ァクロレインの選択率は 75mol%であった。反応原料の供給量( 空間速度)を高くしても、より高選択率でァクロレインの生成する結果が得られた。
[0072] 比較例 1
触媒として触媒 Cを用いた以外は実施例 1と同様にして反応を行った。グリセリン導入 開始後 8時間ら 10時間の生成ガスを捕集してガスクロマトグラフにより分析した結果、 グリセリンの転化率は 70mol%であり、ァクロレインの収率は 41mol%であり、選択率 は 59mol%であった。なお、グリセリン導入開始後 3時間から 5時間の生成ガスを捕 集してガスクロマトグラフにより分析した結果はグリセリンの転ィ匕率は 88mol%であり、 ァクロレインの収率は 51mol%であり、選択率は 58mol%であり、経時による活性、 選択性双方の低下が見られた。また、ヒドロキシアセトンが 14mol%生成した。
[0073] 実施例 2、比較例 2〜6
触媒として触媒 B及び触媒 D、 F〜Hを用いた以外は実施例 1と同様に反応を行い、 グリセリン導入開始後 8時間から 10時間の生成ガスを捕集してガスクロマトグラフによ り分析した。触媒 Eについては、あまりに収率が低いため、 4時間で反応を打ち切り、 3時間から 4時間の生成ガスを捕集してガスクロマトグラフィーにより分析した。結果を ¾klに した。
[0074] [表 1]
Figure imgf000035_0001
[0075] 実施例 3
縦向きに設置した全長 400mmの電熱式環状炉に内径 10. 4mmの石英製反応管 を設置し 350°Cに制御した。窒素を標準状態として 30. 8mlZ分で流通して反応管 内の温度分布を測定して得た等温部に触媒 Aを 2. 1ml充填した。触媒層の両端に は 5mmの石英ウールを詰め、上部には石英砂を 30mm充填した。反応管上部より 1 00質量%のグリセリンを 0. 70gZ時間(hr)、窒素を 28mlZminの速度で導入した 。グリセリン導入開始後 8時間ら 10時間の生成ガスを捕集してガスクロマトグラフによ り分析した結果、グリセリンの転化率は 100mol%であり、ァクロレインの収率は 63m ol%であった。 100質量%グリセリンを用いた場合もグリセリン水溶液を用いた場合と 同じ収率でァクロレインが得られた。
[0076] 実施例 4
触媒として触媒 Iを用い、原料として 36質量%のグリセリン水溶液を導入速度 2. 9g Z時間 (hr)とした以外は実施例 1と同様に反応を行った。グリセリン導入開始後 4時 間から 5時間の生成ガスを捕集して分析した結果、グリセリンの転ィ匕率は 100mol% であり、ァクロレインの選択率は 70mol%であった。なお、グリセリンの導入開始後 8 時間から 10時間の生成ガスを捕集して分析した結果、グリセリンの転ィ匕率は 70mol %、ァクロレインの選択率も 72mol%であった。触媒前駆体としてへテロポリ酸を用い ることにより、選択性、寿命ともに向上した。
[0077] 上記の実施例、比較例の結果をまとめると、以下のようになる。
例えば、グリセリン lmolに対して水が 9molの組成の原料ガスを用い、アルミナ担体 に燐酸を担持した触媒に接触させた場合 (比較例 1)は、初期転化率 88mol%、初 期選択率 59mol%、初期収率 51mol%であった力 経時 10時間後には転ィ匕率 70 mol%、選択率 59mol%、収率 41mol%となり、転化率が低下した。これに対して、 ジルコユアと 6族元素であるタングステン組成とする触媒にぉ 、ては、経時 10時間後 も転ィ匕率 100mol%、選択率 63mol%、収率 63mol%を示し、活性と選択性共に優 れた特性を示し、経時的な活性低下や選択率の低下が見られなかった。また、 H P
3
W O をアルミナ担体に担持した触媒においても、転ィ匕率は 28%と低いものの、 10
12 40
時間後の選択率が 70mol%を示し、経時的選択率の低下も見られな力つた。他の酸 性酸化物である、 SO /ZrOや B O /ZrO、 Nb O、 H型 ZSM— 5 (SiO /Al
4 2 2 3 2 2 4 2 2
O = 38)を用いた場合の経時 10時間後性能は、 SO /ZrOが転ィ匕率 100mol%、
3 4 2
選択率 34mol%、 B Oにおいては転化率 100mol%、選択率 10mol%、 Nb Oに
2 3 2 4 おいては転化率 100mol%、選択率 38mol%であり、 ZSM— 5においては転化率 2 5mol%、選択率 53mol%であり、 6族元素を含有する触媒の選択率が高いことが示 された。
[0078] このように、実施例と比較例から、単に固体酸触媒(P O ZA1 O、 SO /ZrO、 B
2 5 2 3 4 2 2
O /ZrO、 Nb O、 ZSM— 5)に接触させて反応させるとするだけでは、収率や選
3 2 2 5
択率等の特性に有利であるとは言えないが、本発明のように 6族元素を有する化合 物によって構成される気相脱水用触媒と接触させることにより、収率や選択率に優れ 、工業的な実施において経済的に有利となることが明らかである。
[0079] (ヘテロポリ酸触媒を用いた試験)
実施例、比較例に用いた固定床常圧気相流通反応装置は、内径 18mm、全長 300 mmの反応器を中心に構成される。反応器の上端にキャリアガス導入口と原料流入 口があり、下端にガス抜け口を有する反応粗液捕集容器を有する。予め原料を加熱 して気化させるために、反応器中には、原料流入口と反応層の間に気化層がある。 捕集容器に— 78°Cで摘集された反応粗液は、ガスクロマトグラフィー(島津製作所製 GC-8A, TC— WAXキヤビラリ一力ラム)にて測定し、検量線補正後、 目的物の収 量、原料の残量を決定し、この値から転化率(%;モル基準)、選択率(%;モル基準) を求めた。転化率は (原料の量一原料の残量) Z原料の量であり、選択率は目的物 の収量 Z (原料の量一原料の残量)であり、転化率および選択率はそれぞれ反応開 始後 5時間の平均値である。転化率 100%は、 5時間の反応中に触媒活性の低下が な力つたことを意味する。
[0080] (実施例 5)
(触媒調製)
シリカ(フジシリシァ製 CARiACT Q-6 比表面積 466m2Zg)を主成分とする担 体 14gにドデカタングストケィ酸(H SiW O 、純度 99. 0%以上) 6. Ogを 100mlの
4 12 40
水溶液から含浸させた後、乾燥機中 110°Cで乾燥させて、ドデカタンダストケィ酸の 担持率が 30重量%である触媒 (Q6— SiW— 30)を得た。同様に、ドデカタンダストリ ン酸 (H PW O 、純度 99. 0%以上)を上記シリカゲルに担持した触媒 (Q6— PW
3 12 40
— 30)を得た。また同様に、ドデカモリブドリン酸 (H PMo O 純度 99. 0%以上)
3 12 40、
を上記シリカゲルに担持した触媒 (Q6— PMo - 30)を得た。
[0081] (実施例 6)
(脱水反応)
上述実施例 5にて調製した Q6— SiW— 30触媒 0. 3gを固定床気相流通反応装置 に充填した。触媒層がある固定床常圧気相流通反応装置の上部力 キャリアガスと して窒素ガスを 11. 8lZhの流速で流した。この窒素ガスと共に、グリセリン (和光純 薬製、特級) 10重量%水溶液 1. 67mlZhを気化層で気化させて供給した。反応は 325°Cで行った。触媒は、 Q6— SiW—30以外に、 Q6— PW—30、及び、 Q6— PM o— 30とした。触媒の相違によるグリセリンの転ィ匕率、ァクロレインの選択率およびヒド ロキシアセトンの選択率を表 2に示す。
[表 2]
Figure imgf000039_0001
Figure imgf000039_0002
上述実施例 5にて調製した Q6— SiW— 30触媒の充填量を 0. 3gとして、反応温度 を変更した以外は実施例 6に準じた方法で反応を行った。反応温度は、 325°C以外 に、 225。C、 250。C、 275。C、 300。C、および 350。Cとした。反応温度のネ目違によるグ リセリンの転ィ匕率、ァクロレインの選択率およびヒドロキシアセトンの選択率を表 3に示 す。
[表 3]
反応温度 触媒重量 ク、'リセリン ァクロレイン 匕ト "口キジアセトン ァゥロレイン ゲリセリンから転化して生成した 触媒
(°C) ω 転化率 (%) 選択率 (%) 選択率 (%) 収率 (¾) 副生物の収率(¾)
Q6-Si -30 225 0.3 88.9 79.3 5.9 70.5 18.4
Q6-SiW-30 250 0.3 90.3 81.7 7.1 73.8 16.5
Figure imgf000041_0001
Q6-Si -30 275 0.3 91.6 82.6 7.7 75.7 15.9
Q6-SiW-30 300 0.3 91.5 82.2 8.6 75.2 16.3
Q6-Si -30 325 0.3 100 70.7 6.7 70.7 29.3
Q6-SiW-30 350 0.3 100 65.4 4.0 65.4 34.6
上述実施例 5にて調製した Q6— SiW— 30触媒を固定床気相流通反応装置に充填 した。触媒層がある固定床常圧気相流通反応装置の上部力 キャリアガスとして窒素 ガスを 1. 8lZhの流速で流した。この窒素ガスと共に、グリセリン (和光純薬製、特級 ) 10重量%水溶液 1. 67mlZhを気化層で気化させて供給した。反応は 275°Cで行 つた。触媒の充填量は、 0. 3g以外に、 0. 6gおよび 0. 9gとした。触媒の充填量の相 違によるグリセリンの転ィ匕率、ァクロレインの選択率およびヒドロキシアセトンの選択率 を表 4に示す。
[表 4]
Figure imgf000043_0002
Figure imgf000043_0001
(実施例 9)
触媒担体のシリカとしてフジシリシァ製 CARiACT Q-3 (比表面積 733m2Zg)を 用いた以外は、実施例 6と同様にドデカタンダストケィ酸を 30重量%担持として行つ た。
これらの結果を表 5に示す。
[表 5]
室)¾00810
Figure imgf000045_0002
Figure imgf000045_0001
は実施例 6と同様にドデカタンダストケィ酸を 30重量%担持として行った。 これらの結果を表 6に示す。
[表 6]
Figure imgf000046_0001
[0091] (実施例 11)
(触媒調製)
二元細孔構造を有するシリカ(B6;比表面積 780m2Zg)担体 14gに、ドデカタンダス トケィ酸(H SiW O 、純度 99. 0%以上) 6. Ogを 100mlの水溶液から含浸させた
4 12 40
後、乾燥機中 110°Cで乾燥させて、ドデカタンダストケィ酸の担持率が 30重量%であ る触媒 (B6— SiW- 30)を得た。
[0092] (実施例 12)
(脱水反応)
上記実施例 11にて調製した B6— SiW— 30触媒の充填量を 0. 3gとして、反応温度 を変更した以外は実施例 6に準じた方法で反応を行った。反応温度は、 325°C以外 に、 225°C、 250°C、 275°Cおよび 300°Cとした。反応温度の相違によるグリセリンの 転化率、ァクロレインの選択率およびヒドロキシアセトンの選択率を表 7に示す。
[0093] [表 7]
^ Τ¾い, 室)〕009413
Figure imgf000048_0002
Figure imgf000048_0001
同様に操作して B3— SiW— 30を得た。
得られた触媒を用いて、下記表 8に示されるように反応条件で、実施例 12に準拠して 試験を行った。
これらの結果を下記表 8に示す。
[表 8]
Figure imgf000050_0001
(実施例 14)
比表面積 698m2Zgの二元細孔構造を有するシリカ(B10)を用いる以外は実施例 1 2と同様にドデカタンダストケィ酸を 30重量%担持 (BIO— SiW— 30)として行った。 実施例 14で用いた触媒 (BIO— SiW— 30)のマクロ孔及びメソ孔の大きさは、マクロ 孔が 2 /z m、メソ孔が 10nmであった。これらの結果を下記表 9に示す。
[表 9]
Figure imgf000052_0001
(実施例 15)
下記表 10に示されるように反応条件を変更した以外は、実施例 6に準拠して試験を
Figure imgf000053_0002
Figure imgf000053_0001
S¾S0091 [0100] (実施例 16)
下記表 11に示されるように反応条件を変更した以外は、実施例 6に準拠して試験を 行った。これらの結果を下記表 11に示す。
[0101] [表 11]
Figure imgf000055_0001
(実施例 17)
下記表 12に示されるように反応条件を変更した以外は、実施例 6に準拠して試験を
Figure imgf000056_0001
Figure imgf000056_0003
Figure imgf000056_0002
[0104] (実施例 18)
下記表 13に示されるように反応条件を変更した以外は、実施例 12に準拠して試験 を行った。これらの結果を下記表 13に示す。
[0105] [表 13]
Figure imgf000058_0001
(実施例 19)
下記表 14に示されるように反応条件を変更した以外は、実施例 12に準拠して試験
Figure imgf000059_0001
Figure imgf000059_0003
Figure imgf000059_0002
[0108] (実施例 20)
下記表 15に示されるように反応条件を変更した以外は、実施例 12に準拠して試験 を行った。これらの結果を下記表 15に示す。
[0109] [表 15]
Figure imgf000061_0001
(実施例 21)
下記表 16に示されるように反応条件を変更した以外は、実施例 12に準拠して試験
Figure imgf000062_0003
Figure imgf000062_0001
Figure imgf000062_0002
SSI [0112] 上記表 2〜16において、触媒を下記方法で表記するものとする。
触媒 = (担体の種類) (ヘテロ元素の元素記号 ·配位元素の元素記号) (触媒の 担持量 (重量%) )
更に、珪素としてナトリウムを大量に含む水ガラスに代えてナトリウムを含まな 、テトラ エトキシシラン (TEOS)を用いたものには、上記触媒の表記の後に「Na— Free」を 付加するものとする。ただし、容器や他の試薬力ゝらの混入があるため、完全にナトリウ ムを含まな 、と 、う意味ではな 、。
Q3とは、フジシリシァ製 CARiACT Q— 3 (比表面積 733m2Zg)担体を意味する。 Q6とは、(フジシリシァ製 CARiACT Q-6 比表面積 466m2/g)担体を意味する 。 Q10とは、フジシリシァ製 CARiACT Q10 (比表面積 310 m2Zg)担体を意味す る。
B3とは、二元細孔を有するシリカ(比表面積 548m2Zg)担体を意味する。 B6とは、 二元細孔を有するシリカ(比表面積 780m2Zg)担体を意味する。 B10とは、二元細 孔を有するシリカ(比表面積 698m2/g)担体を意味する。上記表記方法によれば、 例えば、 B6— SiW— 30とは、上記実施例 7のように調製された触媒を意味する。
[0113] (比較例 7)
(脱水反応)
市販の酸化物触媒試料として、酸ィ匕アルミニウム (DC2282 :ダイアキャタリスト製)( 下記 17表中では、 Al Oと表記する。)、シリカアルミナ (N632HN ;日揮ィ匕学製) (
2 3
下記 17表中では、 SiO -Al Oと表記する。)、シリカ(CariacteQ— 6 :フジシリシァ
2 2 3
) (下記 17表中では、 SiOと表記する。)、酸化チタニウム (和光純薬製:特級)(下記
2
17表中では、 TiOと表記する。)、及び、第一希元素化学工業製の RSC100 (下記
2
17表中では、 ZrOと表記する。 )に触媒を変更した以外は実施例 6に準じて反応を
2
行った。触媒の相違によるグリセリンの転ィ匕率、ァクロレインの選択率およびヒドロキ シアセトンの選択率を表 17に示す。
[0114] [表 17] §〔〕0115
Figure imgf000064_0002
Figure imgf000064_0001
載される触媒は、比較例 7に記載される触媒と同様である。これらの結果を表 18に示 す。
[表 18]
Figure imgf000065_0001
[0117] (比較例 9)
(触媒調製)
シリカゲル (比表面積 350m2/g)を主成分とする担体 10gに、リン酸 (H PO、純度
3 4
85%) 2. lgを 70mlの水溶液力も含浸させた後、乾燥機中 110°Cで乾燥させて、リ ン酸の担持率が 15重量%である触媒 (PSiO)を得た。同様に、リン酸をアルミナ(比 表面積 200m2Zg)に担持したリン酸の担持率が 15重量%である触媒 (PAIO)を得 た。また、同様に、ホウ酸をアルミナ(比表面積 200m2Zg)に担持したホウ酸の担持 率が 15重量%である触媒 (BAIO)を得た。
[0118] (比較例 10)
(脱水反応)
上述の比較例 9にて調製した PSiO触媒 0. 3gを固定床気相流通反応装置に充填し た。使用した触媒以外は実施例 6に準じて反応を行った。反応は 325°Cで行った。 その後、反応温度を 325°C及び 350°Cに変更して反応を行った。また、触媒を PAIO および BAIOに変更したとき、反応温度を 300°Cで行った。触媒および反応温度の 相違によるグリセリンの転ィ匕率、ァクロレインの選択率およびヒドロキシアセトンの選択 率を表 19に示す。
[0119] [表 19]
Figure imgf000067_0001
この結果により、ヘテロポリ酸触媒を使った場合も、比較例 7 8、及び、 10に記載し た 6族元素を含まない種々の固体酸触媒を使った場合よりも、目的生成物のァクロレ インの選択率が高 、ことが見て取れる。
本願は、 2005年 11月 15日に出願された日本国特許出願第 2005— 330481号「多 価アルコールの脱水方法」、 2006年 1月 4日に出願された日本国特許出願第 2006 — 000004号「ァクロレイン製造用触媒及びそれを用いたァクロレイン製造方法」、及 び、 2006年 9月 8日に出願された日本国特許出願第 2006— 244504号「ァクロレイ ン製造用触媒及びそれを用いたァクロレイン製造方法」を基礎として、優先権を主張 するものである。該出願の内容は、その全体が本願中に参照として組み込まれてい る。

Claims

請求の範囲
[I] 水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法であって、該 製造方法は、少なくとも 1種の 6族元素を含有する触媒と接触させる工程を含む ことを特徴とする脱水生成物の製造方法。
[2] 前記脱水生成物の製造方法は、グリセリンを脱水してァクロレインを製造する方法で あることを特徴とする請求項 1記載の脱水生成物の製造方法。
[3] 前記触媒は、 6族元素がタングステン、クロム及びモリブデン力 なる群より選択され る少なくとも 1種の元素である
ことを特徴とする請求項 1又は 2記載の脱水生成物の製造方法。
[4] 前記触媒は、 6族元素がタングステンである
ことを特徴とする請求項 3に記載の脱水生成物の製造方法。
[5] 水酸基を 3個以上有する化合物を脱水して脱水生成物を製造する方法であって、該 製造方法は、グリセリンを、ヘテロポリ酸触媒の存在下で反応させてァクロレインを製 造することを特徴とする脱水生成物の製造方法。
[6] 前記へテロポリ酸触媒は、ケギン構造を有する
ことを特徴とする請求項 5に記載の脱水生成物の製造方法。
[7] 前記へテロポリ酸触媒は、ヘテロ元素がリン及び Z又は珪素である
ことを特徴とする請求項 5又は 6に記載の脱水生成物の製造方法。
[8] 前記へテロポリ酸触媒は、配位元素がタングステン及び Z又はモリブデンである ことを特徴とする請求項 5〜7のいずれかに記載の脱水生成物の製造方法。
[9] 前記触媒は、無機質担体に担持されたものである
ことを特徴とする請求項 1〜8のいずれかに記載の脱水生成物の製造方法。
[10] 前記無機質担体は、珪素、アルミニウム、チタニウム、及び、ジルコニウム力もなる群 より選択される少なくとも 1種の元素を有するものである
ことを特徴とする請求項 9に記載の脱水生成物の製造方法。
[II] 前記無機質担体は、酸化珪素を主成分とする
ことを特徴とする請求項 9又は 10に記載の脱水生成物の製造方法。
[12] 前記無機質担体は、二元細孔を持つ ことを特徴とする請求項 9〜 11のいずれかに記載の脱水生成物の製造方法。 請求項 1〜12のいずれかに記載の脱水生成物の製造方法に用いられる ことを特徴とする触媒。
PCT/JP2006/322777 2005-11-15 2006-11-15 多価アルコールの脱水方法 WO2007058221A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005330481A JP2007137785A (ja) 2005-11-15 2005-11-15 多価アルコールの脱水方法
JP2005-330481 2005-11-15
JP2006000009 2006-01-04
JP2006-000009 2006-01-04
JP2006-244504 2006-09-08
JP2006244504 2006-09-08

Publications (1)

Publication Number Publication Date
WO2007058221A1 true WO2007058221A1 (ja) 2007-05-24

Family

ID=38048606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322777 WO2007058221A1 (ja) 2005-11-15 2006-11-15 多価アルコールの脱水方法

Country Status (1)

Country Link
WO (1) WO2007058221A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057305A (ja) * 2007-08-30 2009-03-19 Nippon Shokubai Co Ltd グリセリンからのアクロレインの製造方法
WO2009136537A1 (ja) 2008-04-16 2009-11-12 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造方法
WO2009029536A3 (en) * 2007-08-24 2009-12-10 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
WO2010047405A1 (ja) 2008-10-24 2010-04-29 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
US7872158B2 (en) 2007-08-24 2011-01-18 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
US7951978B2 (en) 2006-12-01 2011-05-31 Nippon Shokubai Co., Ltd. Process for producing acrolein and glycerin-containing composition
JP2011518111A (ja) * 2008-04-16 2011-06-23 アルケマ フランス グリセリンからアクロレインを製造する方法
WO2011083254A1 (fr) 2009-12-21 2011-07-14 Adisseo France S.A.S. Procede de preparation d'acroleine a partir de glycerol ou de glycerine
JP2011522015A (ja) * 2008-06-03 2011-07-28 アルケマ フランス グリセロールを脱水してアクロレインを製造する方法
WO2012005348A1 (ja) 2010-07-09 2012-01-12 日本化薬株式会社 新規なグリセリン脱水用触媒とその製造方法
WO2012010923A1 (en) 2010-07-19 2012-01-26 Arkema France Process for manufacturing acrolein from glycerol
WO2012035540A1 (en) 2010-09-16 2012-03-22 Ganapati Dadasaheb Yadav Process for the production of acrolein and reusable catalyst thereof
WO2012056166A1 (fr) 2010-10-26 2012-05-03 Adisseo France S.A.S. Procédé d'obtention d'acroléine par déshydratation catalytique de glycérol ou de glycérine
JP2012512236A (ja) * 2008-12-16 2012-05-31 アディッソ・フランス・エス.エー.エス. グリセロールまたはグリセリンからアクロレインを調製する方法
WO2013008279A1 (en) 2011-07-14 2013-01-17 Nippon Kayaku Kabushiki Kaisha Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
WO2013017942A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013018752A2 (ja) 2011-07-29 2013-02-07 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
CN102989515A (zh) * 2012-12-17 2013-03-27 江南大学 一种二氧化钛/杂多酸复合光催化剂的制备方法
CN103242149A (zh) * 2013-05-15 2013-08-14 常州工学院 一种选择性制备丙烯醛和羟基丙酮的方法
US8530703B2 (en) 2009-12-18 2013-09-10 Battelle Memorial Institute Multihydric compound dehydration systems, catalyst compositions, and methods
EP2695672A2 (en) 2009-09-18 2014-02-12 Nippon Kayaku Kabushiki Kaisha Process for preparing acrolein by dehydration of glycerin in the presence of a catalyst
US9079841B2 (en) 2010-06-17 2015-07-14 Adisseo France S.A.S. Process for preparing acrolein from glycerol or glycerin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192147A (ja) * 1992-11-14 1994-07-12 Degussa Ag 1,2−及び1,3−プロパンジオールの同時製造方法
JPH06211724A (ja) * 1992-11-14 1994-08-02 Degussa Ag アクロレインまたはアクロレイン水溶液の製造方法および1,3−プロパンジオールの製造方法
WO2006087084A2 (en) * 2005-02-15 2006-08-24 Arkema France Process for dehydrating glycerol to acrolein
WO2006087083A2 (en) * 2005-02-15 2006-08-24 Arkema France Process for dehydrating glycerol to acrolein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192147A (ja) * 1992-11-14 1994-07-12 Degussa Ag 1,2−及び1,3−プロパンジオールの同時製造方法
JPH06211724A (ja) * 1992-11-14 1994-08-02 Degussa Ag アクロレインまたはアクロレイン水溶液の製造方法および1,3−プロパンジオールの製造方法
WO2006087084A2 (en) * 2005-02-15 2006-08-24 Arkema France Process for dehydrating glycerol to acrolein
WO2006087083A2 (en) * 2005-02-15 2006-08-24 Arkema France Process for dehydrating glycerol to acrolein

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951978B2 (en) 2006-12-01 2011-05-31 Nippon Shokubai Co., Ltd. Process for producing acrolein and glycerin-containing composition
US7872158B2 (en) 2007-08-24 2011-01-18 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
WO2009029536A3 (en) * 2007-08-24 2009-12-10 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
US7872159B2 (en) 2007-08-24 2011-01-18 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
JP2009057305A (ja) * 2007-08-30 2009-03-19 Nippon Shokubai Co Ltd グリセリンからのアクロレインの製造方法
WO2009136537A1 (ja) 2008-04-16 2009-11-12 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造方法
JP2011518111A (ja) * 2008-04-16 2011-06-23 アルケマ フランス グリセリンからアクロレインを製造する方法
US8252960B2 (en) 2008-04-16 2012-08-28 Arkema France Process for manufacturing acrolein or acrylic acid from glycerin
JP5297450B2 (ja) * 2008-04-16 2013-09-25 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
JP2011522015A (ja) * 2008-06-03 2011-07-28 アルケマ フランス グリセロールを脱水してアクロレインを製造する方法
WO2010047405A1 (ja) 2008-10-24 2010-04-29 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
US9447009B2 (en) 2008-12-16 2016-09-20 Adisseo France S.A.S. Method for preparing acrolein from glycerol or glycerine
JP2012512236A (ja) * 2008-12-16 2012-05-31 アディッソ・フランス・エス.エー.エス. グリセロールまたはグリセリンからアクロレインを調製する方法
US9162954B2 (en) 2009-09-18 2015-10-20 Arkema France Catalyst and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
EP2695672A2 (en) 2009-09-18 2014-02-12 Nippon Kayaku Kabushiki Kaisha Process for preparing acrolein by dehydration of glycerin in the presence of a catalyst
US8530703B2 (en) 2009-12-18 2013-09-10 Battelle Memorial Institute Multihydric compound dehydration systems, catalyst compositions, and methods
US8907135B2 (en) 2009-12-18 2014-12-09 Battelle Memorial Institute Multihydric compound dehydration systems, catalyst compositions, and methods
WO2011083254A1 (fr) 2009-12-21 2011-07-14 Adisseo France S.A.S. Procede de preparation d'acroleine a partir de glycerol ou de glycerine
US8604234B2 (en) 2009-12-21 2013-12-10 Adisseo France S.A.S. Method for preparing acrolein from glycerol by catalytic dehydration of glycerol using a heteropolyacid catalyst
US9079841B2 (en) 2010-06-17 2015-07-14 Adisseo France S.A.S. Process for preparing acrolein from glycerol or glycerin
WO2012005348A1 (ja) 2010-07-09 2012-01-12 日本化薬株式会社 新規なグリセリン脱水用触媒とその製造方法
WO2012010923A1 (en) 2010-07-19 2012-01-26 Arkema France Process for manufacturing acrolein from glycerol
WO2012035540A1 (en) 2010-09-16 2012-03-22 Ganapati Dadasaheb Yadav Process for the production of acrolein and reusable catalyst thereof
WO2012056166A1 (fr) 2010-10-26 2012-05-03 Adisseo France S.A.S. Procédé d'obtention d'acroléine par déshydratation catalytique de glycérol ou de glycérine
WO2013008279A1 (en) 2011-07-14 2013-01-17 Nippon Kayaku Kabushiki Kaisha Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
WO2013017942A3 (en) * 2011-07-29 2013-04-04 Arkema France Improved process of dehydration reactions
WO2013017942A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013018752A2 (ja) 2011-07-29 2013-02-07 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
WO2013018915A3 (en) * 2011-07-29 2013-04-04 Arkema France Improved process of dehydration reactions
WO2013017904A1 (en) * 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
US9914699B2 (en) 2011-07-29 2018-03-13 Arkema France Process of dehydration reactions
CN102989515A (zh) * 2012-12-17 2013-03-27 江南大学 一种二氧化钛/杂多酸复合光催化剂的制备方法
CN103242149A (zh) * 2013-05-15 2013-08-14 常州工学院 一种选择性制备丙烯醛和羟基丙酮的方法
CN103242149B (zh) * 2013-05-15 2015-07-15 常州工学院 一种选择性制备丙烯醛和羟基丙酮的方法

Similar Documents

Publication Publication Date Title
WO2007058221A1 (ja) 多価アルコールの脱水方法
KR101399376B1 (ko) 글리세린의 탈수 반응에 의한 아크롤레인 및/또는 아크릴산의 제조용 촉매 및 방법
KR101818242B1 (ko) 글리세린으로부터의 아크롤레인 또는 아크릴산의 제조방법
Zhu et al. Alkaline metals modified Pt–H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1, 3-propanediol
JP5638019B2 (ja) 4〜6個の炭素原子を有するイソオレフィンの製造法
JP2008088149A (ja) アクロレイン製造用触媒及びそれを用いたアクロレイン製造方法
JP5684818B2 (ja) グリセリンの脱水反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造するのに使用する触媒の製造方法と、この方法で得られる触媒
WO2007142727A1 (en) Supported polyoxometalates, process for their preparation and use in oxidation of alkanes
WO2009136537A1 (ja) グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造方法
Tang et al. Efficient and selective conversion of lactic acid into acetaldehyde using a mesoporous aluminum phosphate catalyst
JP2007137785A (ja) 多価アルコールの脱水方法
WO2013018752A2 (ja) グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
Vasconcelos et al. Activity of nanocasted oxides for gas-phase dehydration of glycerol
JPH01279854A (ja) メチル―t―ブチルエーテルの一段階合成方法
Zhang et al. Enhanced selectivity in the conversion of glycerol to pyridine bases over HZSM-5/11 intergrowth zeolite
Chen et al. Study on the selective oxidation of methane over highly dispersed molybdenum-incorporated KIT-6 catalysts
JP6721567B2 (ja) 1,3−ブタジエン合成用触媒、1,3−ブタジエン合成用触媒の製造方法、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
Shen et al. Ordered WOx/mesoporous SnO2 catalysts with excellent acetalization performance for producing bio-additives from glycerol
Yu et al. Tuning the acidity of montmorillonite by H3PO4-activation and supporting WO3 for catalytic dehydration of glycerol to acrolein
Parida et al. Freeze-dried promoted and unpromoted sulfated zirconia and their catalytic potential
JP2013040179A (ja) グリセリンの脱水反応によってアクロレインおよび/またはアクリル酸を製造するための触媒および方法
Han et al. Nickel substituted tungstophosphoric acid supported on Y-ASA composites as catalysts for the dehydration of gas-phase glycerol to acrolein
Klinthongchai et al. Synthesis and characteristics of mesoporous carbon catalysts via sulfonation process from surfactant residue and their catalytic properties toward gas-phase ethanol dehydrogenation
JP7262189B2 (ja) 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823425

Country of ref document: EP

Kind code of ref document: A1