WO2007058005A1 - 配線板の製造方法および配線板 - Google Patents

配線板の製造方法および配線板 Download PDF

Info

Publication number
WO2007058005A1
WO2007058005A1 PCT/JP2006/316299 JP2006316299W WO2007058005A1 WO 2007058005 A1 WO2007058005 A1 WO 2007058005A1 JP 2006316299 W JP2006316299 W JP 2006316299W WO 2007058005 A1 WO2007058005 A1 WO 2007058005A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
wiring board
etching
resistor
Prior art date
Application number
PCT/JP2006/316299
Other languages
English (en)
French (fr)
Inventor
Kaoru Ono
Mitsuhiro Watanabe
Original Assignee
Ain Co., Ltd.
Multi Inc.
Kanto Gakuin University Surface Engineering Resarch Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ain Co., Ltd., Multi Inc., Kanto Gakuin University Surface Engineering Resarch Institute filed Critical Ain Co., Ltd.
Priority to JP2007545165A priority Critical patent/JPWO2007058005A1/ja
Publication of WO2007058005A1 publication Critical patent/WO2007058005A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0361Stripping a part of an upper metal layer to expose a lower metal layer, e.g. by etching or using a laser
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0384Etch stop layer, i.e. a buried barrier layer for preventing etching of layers under the etch stop layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0733Method for plating stud vias, i.e. massive vias formed by plating the bottom of a hole without plating on the walls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs

Definitions

  • the present invention relates to a method for manufacturing a wiring board and a wiring board.
  • Patent Document 1 discloses a resistance built-in wiring board.
  • this resistance built-in wiring board an undercoat using an insulating material, a conductor with metal plating, and a resistance electrode using a metal paste are formed in a gap formed by a base board and an insulating layer provided separately. And a resistor is disposed on them.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-307542 (summary, etc.)
  • the present invention provides a method of manufacturing a wiring board that can easily form a resistor without using a complicated manufacturing process and can efficiently release heat from one surface to the other surface. And it aims at obtaining a wiring board.
  • a method for manufacturing a wiring board according to the present invention comprises etching a clad material in which two or more kinds of metals including a conductive first metal and a second metal are laminated in three or more layers.
  • a step of forming a columnar portion on the first metal and the plate-shaped portion having the second metal force, an insulating resin layer penetrating the columnar portion, the second metal being the first metal, and the second metal A step of forming a resistor sandwiched between the first and second layers, and a step of forming a resistor made of the second metal and directly connected to the columnar portion after the insulating resin layer is formed, It has something.
  • the second metal formed on the surface of the insulating resin layer and the first metal of the plate-like portion having the first metal force are etched, whereby the resistor is applied to the wiring board. Can be formed. For this reason, it is possible to easily form the resistor on the wiring board without using a complicated manufacturing process.
  • the columnar portion allows the heat on one side to efficiently escape to the other side. Also, since the columnar part and the resistor are directly connected to each other, the heat transmitted through the columnar part is reliably transmitted to the resistor and diffuses to the resistor having a large area. On the contrary, the heat of the resistance force is surely transmitted to the columnar part.
  • Another method for manufacturing a wiring board according to the present invention includes a clad material in which two or more kinds of metals including a conductive first metal and a second metal are laminated in three or more layers.
  • the process of forming the columnar part on the plate-shaped part made of the first metal and the second metal and the insulating resin layer penetrating the columnar part from the first metal to the first metal are etched.
  • the first metal and the second metal are made to remain in accordance with the wiring pattern and the resistor formation pattern after the formation of the insulating resin layer.
  • a step of etching the pattern portion of the first metal according to the formation pattern of the resistor after the etching is
  • the resistor is applied to the wiring board by etching the second metal formed on the surface of the insulating resin layer and the first metal of the wiring layer having the first metal force. Can be formed. For this reason, it is possible to easily form the resistor on the wiring board without using a complicated manufacturing process. In addition, the columnar portion allows the heat on one side to efficiently escape to the other side. In addition, it is possible to easily form a wiring board having a resistor by simply performing a simple process of etching the pattern portion of the first metal in accordance with the resistor forming pattern during the wiring board forming process. Can do.
  • a third method for manufacturing a wiring board according to the present invention includes a clad formed by laminating two or more kinds of metals including a conductive first metal and a second metal in three or more layers. The material is etched to form a columnar portion on the first metal and the plate-shaped portion having the second metal force, and the insulating resin layer penetrating the columnar portion is used as the first metal.
  • the resistor is applied to the wiring board by etching the second metal formed on the surface of the insulating resin layer and the first metal of the wiring layer having the first metal force. Can be formed. For this reason, it is possible to easily form the resistor on the wiring board without using a complicated manufacturing process. In addition, the columnar portion allows the heat on one side to efficiently escape to the other side. In addition, it is possible to easily form a wiring board having a resistor by simply performing a simple process of etching the pattern portion of the first metal in accordance with the resistor forming pattern during the wiring board forming process. Can do.
  • the first metal of the clad material is copper, silver, aluminum, and at least one of them.
  • the medium force of the alloy containing one or more selected metals, and the second metal is also selected for the medium force of the alloy containing nickel, aluminum, tin and at least one of them, and the first One or more metals that can be selectively etched with other metals.
  • the wiring board according to the present invention is an interlayer wiring that is manufactured by each manufacturing method according to the above-described invention, and in which the columnar portion penetrates the insulating resin layer.
  • this configuration can be easily formed as a wiring board having a resistor without using a complicated manufacturing process, and the heat on one side can be efficiently released to the other side. it can.
  • Another wiring board according to the present invention is a clad material in which two or three or more kinds of metals including a conductive first metal and a second metal are laminated in three or more layers.
  • a columnar part formed on a plate-like part made of the first metal and the second metal by etching, and a plate-like part By etching the insulating resin layer penetrated by the columnar part on the part, the first metal formed by etching the plate-like part, the wiring layer having the second metal force, and the plate-like part. It has a second metal force to be formed and a resistor directly connected to the columnar part.
  • the clad material is etched to form a columnar portion on the plate-shaped portion made of the first metal and the second metal, and an insulating resin layer is laminated.
  • a wiring layer can be formed by etching.
  • the resistor can be formed by etching the plate-like portion. Therefore, it can be easily formed as a wiring board having a resistor that uses a complicated manufacturing process, and heat from one side can be efficiently released to the other side. Since the columnar part and the resistor are directly connected to each other, the heat transmitted through the columnar part is reliably transmitted to the resistor and diffuses to the resistor having a large area. Conversely, the heat from the resistor is reliably transmitted to the columnar part.
  • the wiring board according to the present invention is a heat sink that uses at least a part of the columnar portion as a heat diffusion path, and does not function as a current path, in addition to the above-described configurations of the invention. is there.
  • a resistor can be easily incorporated in a wiring board without using a complicated manufacturing process, and heat from one surface can be efficiently released to the other surface.
  • FIG. 1 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a production process of the double-sided wiring board of FIG. 1 (until the production of the wiring board substrate).
  • FIG. 3 is a diagram showing a manufacturing process of the double-sided wiring board of FIG. 1 (until a wiring pattern is formed on the substrate of the wiring board).
  • FIG. 4 shows the manufacturing process of the double-sided wiring board of Fig. 1
  • FIG. 6 is a diagram showing a process until a resistor is formed.
  • FIG. 5 is a partial cross-sectional view of a double-sided wiring board as a modification of FIG.
  • FIG. 6 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing a manufacturing process of the double-sided wiring board of FIG. 6 (until the production of the wiring board base material).
  • a method for manufacturing a wiring board and a wiring board according to the present invention will be described based on the drawings.
  • the wiring board a double-sided wiring board having wiring patterns on both sides is taken as an example, and the manufacturing method of the wiring board is explained by taking the manufacturing method of the double-sided wiring board as an example.
  • FIG. 1 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 1 of the present invention.
  • the double-sided wiring board includes an insulating resin layer 1, a surface wiring layer 2 as a wiring layer, an interlayer wiring 3, and a back wiring layer 4 as a wiring layer consisting of a first metal and a second metal cover.
  • a resistor 5 is formed on the back surface of the insulating resin layer 1.
  • the resistor 5 is formed from one of a plurality of layers constituting the back wiring layer 4.
  • the light emitting diode 6 is mounted on the double-sided wiring board.
  • the light emitting diode 6 is of a surface mount type, and its terminal 7 is connected to the surface wiring layer 2.
  • table A pad is formed at a portion where the terminal 7 of the surface wiring layer 2 is connected.
  • the insulating resin layer 1 is an insulating resin material formed into a flat plate shape.
  • the insulating resin material include paper phenol resin material, paper epoxy resin material, glass epoxy resin material, Teflon (registered trademark) resin material, and the like.
  • the surface wiring layer 2 is a wiring layer formed on one surface of the insulating resin layer 1.
  • the surface wiring layer 2 has a structure in which conductive metals are laminated.
  • the surface wiring layer 2 has a two-layer structure of copper.
  • the surface wiring layer 2 may have a structure in which different kinds of metals are laminated or a structure having three or more layers. Examples of the metal that can be used for the surface wiring layer 2 include copper, silver, tin, aluminum, and alloys containing at least one of them.
  • the back wiring layer 4 is a wiring layer formed on the other surface of the insulating resin layer 1.
  • the back surface wiring layer 4 has a structure in which a plurality of conductive metals are laminated.
  • the back wiring layer 4 has a three-layer structure in which two layers of copper are stacked on a nickel layer. Nickel and copper can be etched separately with different etching solutions.
  • the back wiring layer 4 may have a structure of three or more layers. Examples of metals that can be used for the backside wiring layer 4 include nickel, copper, silver, tin, aluminum, and alloys containing at least one of them.
  • the interlayer wiring 3 is a conductive layer formed so as to penetrate the insulating resin layer 1. In Fig. 1, the interlayer wiring 3 can only be used with copper.
  • the interlayer wiring 3 may have a structure in which different metals such as copper and nickel are laminated in two layers or three or more layers.
  • the resistor 5 is made of a metal having a higher resistance value than the surface side portion of the back wiring layer 4.
  • the resistor 5 is formed by using a part of the back surface wiring layer 4 and is composed only of nickel.
  • the resistor 5 may have a structure having two or more layers or a structure in which different metals are stacked in two or more layers.
  • the double-sided wiring board of FIG. 1 has a surface wiring layer 2 having a two-layer structure of copper, and a rear surface wiring layer 4 having a three-layer structure including a nickel layer and a copper layer.
  • the interlayer wiring 3 By configuring the interlayer wiring 3 with only copper, most of the energized portion can be configured with copper.
  • the electrical characteristics of this double-sided wiring board are substantially the same as those of a general wiring board.
  • FIG. 2 is a diagram showing a manufacturing process of the double-sided wiring board shown in FIG. 1 (until the production of the wiring board substrate).
  • FIG. 3 is a diagram showing a manufacturing process of the double-sided wiring board shown in FIG. 1 (until a wiring pattern is formed on the substrate of the wiring board).
  • FIG. 4 is a diagram showing a manufacturing process of the double-sided wiring board of FIG. 1 (until the resistor 5 is formed on the substrate of the wiring board after the wiring pattern is formed).
  • FIG. 2 (A) is a diagram showing a partial cross section of a clad material (composite material) used for manufacturing the double-sided wiring board of FIG.
  • the clad material has a three-layer structure in which copper layers 11 and 13 are laminated on both surfaces of a flat nickel layer 12 (hereinafter referred to as an intermediate nickel layer 12).
  • the intermediate nickel layer 12 has a thickness of 2 micrometers.
  • the upper copper layer of the intermediate nickel layer 12 (hereinafter simply referred to as the upper copper layer) 13 has a thickness of 400 micrometers.
  • the lower copper layer 11 (hereinafter simply referred to as the lower copper layer) 11 of the intermediate nickel layer 12 has a thickness of 18 micrometers.
  • the upper copper layer 13 may have a thickness of about 500 micrometers.
  • the nickel layer 12 is a second metal layer
  • the lower copper layer 11 is a first metal layer.
  • the clad material is a laminate of dissimilar metals. When dissimilar metals are stacked, the surface of each metal is first mirror-finished by sputtering in a vacuum. Next, the clad material can be formed by sandwiching these dissimilar metals between rolls and pressing them with the pressure of the rolls. In addition, for example, the clad material may be formed by activating the mirror surface of each metal by plasma cleaning and pressing the activated dissimilar metal with a roll.
  • a resist layer is formed on the surface of the upper copper layer 13 with a pattern corresponding to the through-hole pattern of the double-sided wiring board as shown in FIG. 2 (B). 1 4 forms.
  • FIG. 2B two resist layers 14 are formed.
  • a resist layer 15 is formed on the back surface of the double-sided wiring board so as to cover the entire surface.
  • the resist layers 14 and 15 may be made of a metal that does not melt by the alkali etching process described later, such as tin.
  • a dry film such as photosensitive resin may be used.
  • the resist layer 15 can be omitted depending on the etching method.
  • alkali etching is performed.
  • an ammonia alkali solution is used.
  • Ammonia alkaline liquid does not melt nickel or tin.
  • the resist layers 14 and 15 are removed. Thereby, as shown in FIG. 2C, the portion of the upper copper layer 13 that is not covered with the resist layer 14 is etched by erosion.
  • FIG. 2 (C) the upper copper layer 13 is covered with the resist layer 14, and the portion is formed into two trapezoidal columnar shapes.
  • the columnar part 16 having a trapezoidal cross section made of copper is formed on the flat intermediate nickel layer 12.
  • the columnar portion 16 may be a conical columnar portion, a pyramid-shaped columnar portion, or various columnar portions such as a columnar portion extending in a direction perpendicular to the paper surface of FIG.
  • erosion by the etching solution proceeds from the top to the bottom of Fig. 2 (B) and in the same way in the horizontal direction. Therefore, the columnar portion 16 formed by etching has a smaller head (upper surface in FIG. 2C) than the bottom (lower surface in FIG. 2C).
  • the width of the head of the columnar portion 16 formed by etching is narrower than the width of the bottom by an amount corresponding to about twice the height of the columnar portion.
  • Laminate insulating grease 17 for build-up After the clad material is formed on the lower copper layer 11 and the intermediate nickel layer 12 having a flat plate shape and the columnar portion 16 made of copper, as shown in FIG. Laminate insulating grease 17 for build-up.
  • the insulating grease 17 for build-up is laminated to a thickness greater than the height of the columnar part 16.
  • epoxy resin As the insulating resin material 17 for buildup, for example, epoxy resin is adopted.
  • the intermediate nickel layer 12 is sandwiched between the insulating resin material 17 and the lower copper layer 11.
  • the surface of the resin is polished. As shown in FIG. 2E, the build-up insulating grease 17 is polished until the tip of the columnar portion 16 is exposed. Thereby, the insulating resin layer 1 is formed.
  • the surface flattened by the polishing is roughened, and then copper plating is performed.
  • the surface roughening may be performed at least with respect to the build-up insulating resin material 17 or may be performed by aligning the tips of the columnar portions 16.
  • the copper plating may be performed by, for example, an electrolytic plating method.
  • the surface of the build-up insulating resin material 17 and the tip surface of the columnar portion 16 are As shown in FIG. 2 (F), a copper plating layer 18 as a part of the metal layer is laminated.
  • the copper plating layer 18 formed by this plating is connected to the columnar portion 16.
  • the flat insulating resin layer 1 is covered with a copper plating layer 18 on its front surface and with a conductive layer (intermediate nickel layer 12, lower copper layer 11) made of copper and nickel on its back surface. It becomes a state.
  • the metal layer (copper plating layer 18) and the metal layer (intermediate nickel layer 12, lower copper layer 11) on both sides are electrically connected by a columnar portion 16.
  • the base material for forming a double-sided wiring board is formed. This base material is also a kind of wiring board.
  • the copper layers on both sides of the insulating resin layer 1 force the base material connected by the columnar portions 16 corresponding to the through-hole pattern of the double-sided wiring board.
  • the wiring pattern forming process of the double-sided wiring board is started.
  • Resist layers 21 and 22 are formed on the front and back surfaces of the film.
  • the resist layers 21 and 22 are formed on both surfaces of the base material with a portion where the front surface wiring layer 2 and the back surface wiring layer 4 are formed and a portion where the resistor 5 is formed.
  • a plating process is performed.
  • a copper plating is first performed, and then a nickel plating is performed.
  • FIG. 3 (B) copper plating layers 23 and 24 and nickel plating layers 25 and 26 are laminated at portions not covered with the resist layers 21 and 22.
  • the copper plating layer 24 becomes a part of the metal layer.
  • the resist layers 21 and 22 are peeled off.
  • wiring and resistors are provided on the surface of the copper plating layer 18 on the front side.
  • a copper plating layer 24 and a nickel plating layer 26 are laminated in a pattern.
  • a copper plating layer 23 and a nickel plating layer 25 are laminated in a wiring and resistor arrangement pattern.
  • a copper plating layer 18 and a copper plating layer 24 are formed in a pattern of the surface wiring layer 2 on the surface of the insulating resin material 17.
  • an intermediate nickel layer 12, a lower copper layer 11 and a copper plating layer 23 are formed in a pattern of the back wiring layer 4 and the resistor 5.
  • a wiring pattern and a resistor pattern are formed on the substrate of the wiring board.
  • the process of forming the resistor 5 is started.
  • the formation process of the resistor 5 first, as shown in FIG. 4 (A), according to the formation pattern of the resistor 5, there are resist layers 31 and 32 on the front and back surfaces of the substrate, which are empty portions of the pattern shape. Form.
  • the resist layers 31 and 32 are formed on both surfaces of the base material with a portion where the resistor 5 is formed.
  • the resist layer 31 on the surface side is formed on the entire surface.
  • the resist layers 31 and 32 are peeled off.
  • a resistor 5 having only the intermediate nickel layer 12 is formed on a part of the back surface of the substrate.
  • the columnar portion 16 is formed on the plate-shaped portion including the intermediate nickel layer 12 and the backside copper layer 11 by etching the clad material, and the insulating plate
  • the wiring layer 4 can be formed by laminating the grease material 17 and etching the plate-like portion.
  • the resistor 5 can be formed by etching the plate-like portion. Therefore, the wiring board having the resistor 5 can be easily formed by a manufacturing process equivalent to that of a general wiring board.
  • the manufacturing method of Embodiment 1 and the double-sided wiring board manufactured thereby have the following various characteristics.
  • the columnar part 16 having a height of several hundred micrometers can be formed by one etching process.
  • the width of the resist layer 14 at the time of etching it can be formed in a shape having a width wider than a through hole used in a general wiring board. By making the shape wide, the resistance value of the interlayer wiring 3 can be lowered.
  • the height of the columnar portion 16 is substantially uniform. Further, since the columnar portion 16 is formed by etching the clad material, the columnar portion 16 is not mixed with impurities like a metal paste used for bump formation. it can. By using a metal that does not contain impurities in this way, the reliability of the interlayer wiring 3 is increased.
  • the interlayer wiring is formed by bumps or the like
  • a metal paste mixed with impurities should be used.
  • the resistance value of a metal paste is higher by the amount of impurities mixed.
  • the intermediate nickel layer 12 formed as the resistor 5 includes the copper layer 11 of the back surface wiring layer 4 and the columnar portion 16 as the interlayer wiring 3 as a cladding material before forming the wiring board. It is united. Therefore, the unity of the three layers, that is, the three layers of copper, nickel, and copper, is extremely strong. Therefore, the bonding strength between the resistor 5 and the interlayer wiring 3 and the back wiring layer 4 is high.
  • the columnar portion 16 may have a columnar structure having a height and a width. Then, by making the columnar portion 16 a columnar structure having a height and a width, a large current can be passed through the interlayer wiring 3 or heat can be diffused by the interlayer wiring 3.
  • the interlayer wiring 3 capable of diffusing heat functions as a heat sink.
  • the heat of the electronic components mounted on the surface wiring layer 2 is efficiently diffused to the back side of the mounting surface by this interlayer wiring 3, and the back side of the mounting surface (the back side wiring layer) 4) efficiently dissipates heat.
  • the backside wiring layer 4 may be used as a component mounting surface.
  • the resistor 5 can be incorporated in a double-sided wiring board having the same electrical characteristics as a general wiring board.
  • the double-sided wiring board in which the resistor 5 is built can pass a larger current than a general wiring board or can have a heat sink function.
  • the heat sink function refers to a function for releasing the heat generated by the light emitting diode 6 to the back side through the terminal 7 and the columnar portion 16, for example.
  • FIG. 5 is a partial cross-sectional view of a double-sided wiring board as a modification of FIG.
  • a heat sink post 8 is formed at a portion where the light emitting diode 6 is mounted.
  • the heat sink post 8 shown in FIG. 5 is formed of copper plating layers 24 and 18, a columnar portion 16, an intermediate nickel layer 12, a lower copper layer 11, and a copper plating layer 23.
  • the heat sink post 8 is formed so as to be exposed on the surface on which the light emitting diode 6 is mounted between the nodes of the surface wiring layer 2 to which the terminal 7 of the light emitting diode 6 is connected.
  • a silver paste 9 or the like is applied between the heat sink post 8 and the light emitting diode 6, for example. Thereby, for example, even if the amount of heat generated by the light emitting diode 6 is large, the heat can be diffused to the back side of the substrate through the silver paste 9 and the heat sink post 8. The heat generated by the light emitting diode 6 is diffused efficiently. Since the heat sink bump 8 is not connected to the terminal 7 of the light emitting diode 6 or the like, no current flows.
  • the resistor 5 and the heat sink can be provided on the double-sided wiring board.
  • a thin circuit board can be formed by taking advantage of the low profile of surface-mount type electronic circuit elements.
  • heat tends to stay between the surface-mount type electronic circuit element and the double-sided wiring board, but heat can be efficiently dissipated by forming the heat sink post 8 in the portion where the heat stays. Therefore, such heat retention can be effectively suppressed.
  • a resistor (not shown) disposed on the surface on which the light-emitting diode 6 is mounted is connected to the heat sink post installed at a position away from the heat sink post 8 or the light-emitting diode 6. If it continues, the heat
  • copper plating may be further executed from the state of Fig. 2 (F).
  • FIG. 6 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 2 of the present invention.
  • Figure 7 is a partial cross-sectional view of a double-sided wiring board according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram illustrating a manufacturing process of a double-sided wiring board (until the production of a wiring board substrate). The process of forming the wiring pattern on the substrate of the wiring board and the process of forming the resistor 5 on the substrate of the wiring board after the wiring pattern is formed are the same as in FIGS. 3 and 4 of the first embodiment. Yes, illustration is omitted.
  • the double-sided wiring board according to the second embodiment is similar to the double-sided wiring board shown in FIG. 1 in that the insulating resin layer 1, the surface wiring layer 2, the interlayer wiring 3 and the like.
  • the back wiring layer 4 and the resistor 5 are included.
  • the insulating resin layer 1, the front surface wiring layer 2, the interlayer wiring 3, the back surface wiring layer 4, and the resistor 5 are the same as those in the first embodiment, and the description thereof is omitted.
  • the surface wiring layer 2 has a three-layer structure of copper, and a portion of the surface wiring layer 2 that comes into contact with the interlayer wiring 3 has an outer shape that is recessed by compression.
  • the back wiring layer 4 has a structure in which copper is laminated in three layers on the intermediate nickel layer 12.
  • steps (A) to (C) are the same as the steps shown in FIGS. 2 (A) to (C), and a description thereof will be omitted.
  • columnar portions 16 made of copper are formed in a trapezoidal columnar shape on the intermediate nickel layer 12 by the alkali etching process.
  • a pre-preder sheet 41 and a copper foil 42 are laminated as shown in FIG.
  • the pre-preda sheet 41 is a sheet obtained by soaking an insulating resin material in a sheet made of glass fiber. This is a so-called B-stage seat. Then, a cushion material such as kraft paper or Teflon (registered trademark) plate is placed on the copper foil 42, and the upper force of the cushion material is also pressed by a hydraulic press or the like while sucking air. As a result, the prepreg sheet 41 becomes liquid and becomes an insulating resin material part 43.
  • the copper foil 42 comes into contact with the tip of the columnar portion 16, and as shown in FIG. Press until the part that contacts the tip of the shaped part 16 is deformed. The portion of the copper foil 42 that comes into contact with the columnar portion 16 rises.
  • the insulating resin material portion 43 made of an insulating resin material is formed between the copper foil 42 and the flat intermediate nickel layer 12. Fills without gaps. Further, the copper foil 42 is electrically connected to the columnar portion 16. The intermediate nickel layer 12 and the copper foil 42 on both sides of the insulating resin material part 43 are electrically connected by the columnar part 16. While the tip of the columnar part 16 is in contact with the copper foil 42, the liquid insulating insulating material part 43 is hardened. Thereby, the insulating resin layer 1 is formed.
  • the tip of the columnar portion 16 may break through the copper foil 42.
  • the tip of columnar portion 16 in the second embodiment is flat like a table. Therefore, conversely, the columnar portion 16 may not be able to break through the pre-preder sheet 41.
  • a through-hole may be formed in a part corresponding to the columnar part 16 of the pre-preder sheet 41 in advance, and then laminated together with the copper foil 42.
  • the size of the through hole formed at this time may be, for example, larger than the area of the tip of the columnar portion 16.
  • the surface of the copper foil 42 is polished. As a result, the surface of the copper foil 42 becomes flat as shown in FIG. After the surface of the copper foil 42 is flattened, the surface flattened by the polishing is roughened, and then copper plating is performed. For example, copper plating can be performed by the electrolytic plating method.
  • a copper plating layer 44 is laminated on the surface of the copper foil 42 as shown in FIG. 7 (G).
  • a copper plating layer 45 is also formed on the back surface.
  • the front surface is a two-layer structure of copper (that is, copper foil 42 and copper plating layer 44), and the rear surface is a three-layer structure of nickel and copper (that is, intermediate nickel layer 12, lower copper layer 11 and copper plating layer 45)
  • a substrate is formed.
  • the method for forming the double-sided wiring pattern on the substrate and the method for forming the resistor 5 are the same as the steps shown in FIGS. 3 and 4 of the first embodiment, and a description thereof will be omitted. As a result, the double-sided wiring board shown in FIG. 6 is formed.
  • the front-side wiring layer 2 of the double-sided wiring board according to Embodiment 2 includes a copper foil 42, a copper plating layer 44, and a copper plating layer 24.
  • Back side wiring layer 4 consists of intermediate nickel layer 12, lower copper layer 1 1. It consists of a copper plating layer 45 and a copper plating layer 23.
  • each embodiment As a manufacturing technique for forming an interlayer wiring having a height of several hundred micrometers, there is a so-called build-up method.
  • this build-up method first, conductive paste is printed on the copper foil surface of each wiring board to form conical bumps, and then the insulating resin board is sandwiched between the conical bumps. A wiring board is formed. The bumps formed on each wiring board are thrust against the insulating resin board and come into contact with each other within the insulating resin board. Thereby, wiring boards are electrically connected.
  • the conical bump can also be formed by repeating plating and etching. However, repeating plating and etching is very time consuming and costly, which is disadvantageous in manufacturing compared to printing a conductive paste.
  • the bump needs to be formed in a conical shape in order to protrude from the insulating resin plate. For this reason, it is technically difficult to make the bump wide in the entire height direction. Therefore, with this build-up method, it is extremely difficult to form a wide interlayer wiring that efficiently diffuses heat as in each of the embodiments described above.
  • the columnar portion 16 is formed on the plate-shaped portion including the intermediate nickel layer 12 and the back-side copper layer 11 by etching the clad material.
  • the back wiring layer 4 can be formed by forming the insulating resin material portion 43 made of the pre-preder sheet 41 and etching the plate-like portion.
  • the resistor 5 can be formed by etching the plate-like portion. Therefore, the wiring board having the resistor 5 can be easily formed by a manufacturing process equivalent to that of a general wiring board.
  • the pre-preder sheet 41 and the copper foil 42 are pressed onto the flat intermediate nickel layer 12 on which the columnar portions 16 are formed, and further the copper plating 34 is obtained. By doing so, the wiring layers 2 and 4 and the interlayer wiring 3 are electrically connected.
  • Such a wiring layer
  • connection method between 2 and 4 and the interlayer wiring 3 is highly reliable because of their high bonding strength. Therefore, as a double-sided wiring board, high reliability similar to that of a general wiring board can be ensured. As a result, the double-sided wiring board having the same reliability and electrical characteristics as a general wiring board is provided with a resistor 5, a current larger than that of a general wiring board is passed, Can have a function.
  • a part of surface wiring layer 2 is formed using copper foil 42.
  • the copper foil 42 has a uniform thickness. Further, since the columnar portions 16 are formed by etching, they are aligned at a uniform height. As a result, the thickness of the double-sided wiring board is substantially uniform. And since it has a uniform surface thickness, it is possible to create a structure that efficiently releases heat in the use of a heat dissipation board that required complicated height adjustment with a separate heat sink and a separate heat sink. This eliminates the need for a heat sink and expensive countersink process, and provides a high heat dissipation wiring board at a low price.
  • the force resistor showing the wiring board in which the resistor 5 is formed only on the back surface side may be provided on the front surface side or only on the front surface side.
  • the same material as the intermediate nickel layer 12 and the lower copper layer 11 may be provided on the upper side (surface side), or after the state shown in FIG. Can be used.
  • electronic components such as the light-emitting diode 6 may be arranged on the back wiring layer 4 side, not on the side where the surface wiring layer 2 is formed!
  • a clad material in which both surfaces of nickel are covered with copper is used as a starting material for forming a double-sided wiring board.
  • aluminum, tin, stainless steel, brass, or an alloy containing them may be used instead of nickel.
  • a clad material in which one surface of nickel is coated with copper and the other surface is coated with silver, aluminum, or an alloy containing them, or a clad material in which both surfaces of aluminum are coated with copper are used. Also good.
  • a clad material having a two-layer structure in which one surface of nickel nickel is coated with copper, silver, aluminum or an alloy containing them may be used as a starting material. In the case of this two-layered clad material, for example, the columnar portion 16 may be formed of only copper or silver.
  • a double-sided wiring board in which wiring layers 2 and 4 are formed on both sides of the insulating resin layer 1 is illustrated.
  • a wiring layer (for example, wiring layer 4 Can be formed by using the manufacturing method of the present invention.
  • the third wiring layer and the insulating resin layer on which the third wiring layer is laminated are, for example, a metal film and an insulating resin in a conventional multilayer wiring board. If it is formed by various manufacturing techniques that laminate materials.
  • the formation of the front surface wiring layer 2 and the back surface wiring layer 4 may employ a physical vapor deposition method such as PVD, which is not performed by force-mesh processing using a plating process. Furthermore, it is not a force clad material that uses a clad material as a starting material.
  • a member in which nickel and copper are laminated on one side of a plate-like upper copper layer 13 by physical vapor deposition, or both sides of a nickel layer A member with a conductive layer formed by the physical vapor deposition method may be used as a starting material.
  • the resistor 5 is made of only nickel.
  • the resistor 5 may be formed only of a nickel-based alloy such as nickel phosphorus or nickel chrome.
  • the resistor 5 may be formed of a nickel-based alloy such as nickel phosphorus or nickel chromium and an alloy including two or more nickel-containing metals in nickel. These metals and alloys can be selectively etched with copper and are used as materials constituting resistors.
  • the resistance film as the resistor 5 formed of nickel or the like can be formed by various methods such as electroless plating, electrolytic plating, and vapor deposition. Further, the thickness of the resistor 5 needs to function as a barrier film at the time of etching, so it is desirable to set it to about 100 to 5000 angstroms.
  • a wiring board on which an electronic component such as a light emitting diode is mounted and its production can be used for IJ.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

 複雑な製造工程を用いることなく抵抗体を簡単に形成することができるとともに、一方側の面の熱を効率良く他方面側に逃がすこと。  この配線板の製造方法では、まず、導電性の第一の金属11と第二の金属12とを含む2種類あるいは3種類以上の金属が3層以上に積層されてなるクラッド材をエッチングして、第一の金属11および第二の金属12からなる板状部上に柱状部16を形成する。次に、柱状部16により貫通される絶縁樹脂層17を、第二の金属12が第一の金属11とそれ17との間に挟まれるように形成する。次に、絶縁樹脂層17の形成後に、第一の金属11をエッチングして第二の金属12からなり、柱状部16に直接つながる抵抗体5を形成する。

Description

配線板の製造方法および配線板
技術分野
[0001] 本発明は、配線板の製造方法および配線板に関する。
背景技術
[0002] 特許文献 1は、抵抗内蔵配線板を開示する。この抵抗内蔵配線板では、ベース基 板と分離して設けた絶縁層とで構成される間隙部に、絶縁材を用いるアンダーコート と、金属めつきによる導体と、金属ペーストを用いる抵抗用電極とを形成し、さらにそ れらの上に、抵抗体を配設している。
[0003] 特許文献 1:特開平 7— 307542号公報(要約など)
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1にあるように、配線板に抵抗体を内蔵しょうとする場合、その抵抗体を設 けるがために一般的な配線板を形成する場合と異なる複雑な製造方法によらなけれ ばならない。また、実装密度が高まるにつれて、発熱対策がより重要となってきている
[0005] 本発明は、複雑な製造工程を用いることなく抵抗体を簡単に形成することができる とともに、一方側の面の熱を効率良く他方面側に逃がすことができる配線板の製造方 法および配線板を得ることを目的とする。
課題を解決するための手段
[0006] 本発明に係る配線板の製造方法は、導電性の第一の金属と第二の金属とを含む 2 種類あるいは 3種類以上の金属が 3層以上に積層されてなるクラッド材をエッチング して、第一の金属および第二の金属力 なる板状部上に柱状部を形成する工程と、 柱状部により貫通される絶縁榭脂層を、第二の金属が第一の金属とそれとの間に挟 まれるように形成する工程と、絶縁榭脂層の形成後に、第一の金属をエッチングして 第二の金属からなり、上記柱状部に直接つながる抵抗体を形成する工程と、を有す るものである。 [0007] この方法を採用すれば、絶縁榭脂層の表面に形成される第二の金属および第一 の金属力 なる板状部の第一の金属をエッチングすることで、配線板に抵抗体を形 成することができる。このため、複雑な製造工程を用いることなく配線板に抵抗体を簡 単に形成することができる。また、柱状部が、一方側の面の熱を効率良く他方面側に 逃がすことを可能としている。し力も、柱状部と抵抗体とは、直接につながっているの で、柱状部を伝わってきた熱は抵抗体に確実に伝わり、広い面積を有する抵抗体へ 拡散していく。また、逆に、抵抗体力もの熱は、確実に柱状部に伝わることになる。
[0008] 本発明に係る他の配線板の製造方法は、導電性の第一の金属と第二の金属とを 含む 2種類あるいは 3種類以上の金属が 3層以上に積層されてなるクラッド材をエツ チングして、第一の金属および第二の金属からなる板状部上に柱状部を形成するェ 程と、柱状部により貫通される絶縁榭脂層を、第二の金属が第一の金属とそれとの間 に挟まれるように形成する工程と、絶縁榭脂層の形成後に、第一の金属および第二 の金属を、配線パターンおよび抵抗体の形成パターンにしたがってそのパターンが 残るようにエッチングする工程と、そのエッチングの後にさらに、第一の金属を抵抗体 の形成パターンにしたがってそのパターン部分をエッチングする工程と、を有するも のである。
[0009] この方法を採用すれば、絶縁榭脂層の表面に形成される第二の金属および第一 の金属力 なる配線層の第一の金属をエッチングすることで、配線板に抵抗体を形 成することができる。このため、複雑な製造工程を用いることなく配線板に抵抗体を簡 単に形成することができる。また、柱状部が、一方側の面の熱を効率良く他方面側に 逃がすことを可能としている。また、配線板の形成工程中に、第一の金属を抵抗体の 形成パターンにしたがってそのパターン部分をエッチングするという単純な工程を入 れるだけで、抵抗体を有する配線板を簡単に形成することができる。
[0010] 本発明に係る第三の配線板の製造方法は、導電性の第一の金属と第二の金属と を含む 2種類あるいは 3種類以上の金属が 3層以上に積層されてなるクラッド材をェ ツチングして、第一の金属および第二の金属力 なる板状部上に柱状部を形成する 工程と、柱状部により貫通される絶縁榭脂層を、第二の金属が第一の金属とそれとの 間に挟まれるように形成する工程と、絶縁榭脂層の板状部とは反対側の面に、柱状 部と接続される導電性の金属層を形成する工程と、第一の金属、第二の金属および 金属層を、配線パターンおよび抵抗体の形成パターンにしたがってそのパターンが 残るようにエッチングする工程と、そのエッチングの後にさらに、第一の金属を抵抗体 の形成パターンにしたがってそのパターン部分をエッチングする工程と、を有するも のである。
[0011] この方法を採用すれば、絶縁榭脂層の表面に形成される第二の金属および第一 の金属力 なる配線層の第一の金属をエッチングすることで、配線板に抵抗体を形 成することができる。このため、複雑な製造工程を用いることなく配線板に抵抗体を簡 単に形成することができる。また、柱状部が、一方側の面の熱を効率良く他方面側に 逃がすことを可能としている。また、配線板の形成工程中に、第一の金属を抵抗体の 形成パターンにしたがってそのパターン部分をエッチングするという単純な工程を入 れるだけで、抵抗体を有する配線板を簡単に形成することができる。
[0012] 本発明に係る配線板の製造方法は、上述した発明に係る各特定事項に加えて、ク ラッド材の第一の金属が、銅、銀、アルミニウムおよびそれらの内の少なくとも 1つを含 む合金の中力 選択された 1つ以上の金属とされ、第二の金属が、ニッケル、アルミ ユウム、すずおよびそれらの内の少なくとも 1つを含む合金の中力も選択され、且つ、 第一の金属との間で選択的なエッチングが可能な 1つ以上の金属とされているもの である。
[0013] この構成によれば、配線としての性能、抵抗体としての性能が良いものを製造でき るとともに、目的、用途に応じた最適なものを製造することができる。
[0014] 本発明に係る配線板は、上述した発明に係る各製造方法により製造され、柱状部 が絶縁榭脂層を貫通する層間配線であるものである。
[0015] この構成を採用すれば、複雑な製造工程を用いることなぐ抵抗体を有する配線板 として簡単に形成することができるとともに、一方側の面の熱を効率良く他方面側に 逃がすことができる。
[0016] 本発明に係る他の配線板は、導電性の第一の金属と第二の金属とを含む 2種類あ るいは 3種類以上の金属が 3層以上に積層されてなるクラッド材をエッチングすること により第一の金属および第二の金属からなる板状部上に形成される柱状部と、板状 部上において柱状部により貫通される絶縁榭脂層と、板状部をエッチングすることで 形成される第一の金属および第二の金属力 なる配線層と、板状部をエッチングす ることで形成される第二の金属力 なり、上記柱状部に直接つながる抵抗体と、を有 するものである。
[0017] この構成を採用すれば、クラッド材をエッチングすることで第一の金属および第二の 金属からなる板状部上に柱状部を形成し、絶縁榭脂層を積層し、板状部をエツチン グすることで配線層を形成することができる。また、これに加えて、板状部をエツチン グすることで抵抗体を形成することができる。したがって、複雑な製造工程を用いるこ となぐ抵抗体を有する配線板として簡単に形成することができるとともに、一方側の 面の熱を効率良く他方面側に逃がすことができる。し力も、柱状部と抵抗体とは、直 接につながっているので、柱状部を伝わってきた熱は抵抗体に確実に伝わり、広い 面積を有する抵抗体へ拡散していく。また、逆に、抵抗体からの熱は、確実に柱状部 に伝わることになる。
[0018] 本発明に係る配線板は、上述した発明の各構成にカ卩えて、柱状部の中の少なくと も一部を熱の拡散路として利用するヒートシンクとし、電流路として機能させないもの である。
[0019] この構成を採用すれば、 1つの配線板に、熱を逃がす柱状部と、配線と、抵抗体と、 ヒートシンクとを形成することができる。
発明の効果
[0020] 本発明は、複雑な製造工程を用いることなぐ配線板に簡単に抵抗体を内蔵するこ とができるとともに、一方側の面の熱を効率良く他方面側に逃がすことができる。 図面の簡単な説明
[0021] [図 1]図 1は、本発明の実施の形態 1に係る両面配線板の部分断面図である。
[図 2]図 2は、図 1の両面配線板の製造工程 (配線板の基材作成まで)を示す図であ る。
[図 3]図 3は、図 1の両面配線板の製造工程 (配線板の基材に配線パターンを形成す るまで)を示す図である。
[図 4]図 4は、図 1の両面配線板の製造工程 (配線パターン形成後の配線板の基材に 抵抗体を形成するまで)を示す図である。
[図 5]図 5は、図 1の変形例としての両面配線板の部分断面図である。
[図 6]図 6は、本発明の実施の形態 2に係る両面配線板の部分断面図である。
[図 7]図 7は、図 6の両面配線板の製造工程 (配線板の基材作成まで)を示す図であ る。
符号の説明
[0022] 1 絶縁榭脂層
2 表面配線層(配線層)
3 層間配線
4 裏面配線層(第一の金属および第二の金属力 なる配線層)
5 抵抗体
8 ヒートシンクポスト(ヒートシンク)
11 下側銅層(第一の金属の層)
12 中間ニッケル層(第二の金属の層)
16 柱状部
18, 24 銅メツキ層(金属層)
発明を実施するための最良の形態
[0023] 以下、本発明に係る配線板の製造方法および配線板を、図面に基づ!/、て説明する 。配線板は、両面に配線パターンが施される両面配線板を例とし、また、配線板の製 造方法は、その両面配線板の製造方法を例として説明する。
[0024] 実施の形態 1.
図 1は、本発明の実施の形態 1に係る両面配線板の部分断面図である。両面配線 板は、絶縁榭脂層 1と、配線層としての表面配線層 2と、層間配線 3と、第一の金属お よび第二の金属カゝらなる配線層としての裏面配線層 4と、を有する。また、絶縁榭脂 層 1の裏面には、抵抗体 5が形成される。なお、この実施の形態 1では、抵抗体 5は、 裏面配線層 4を構成する複数層の中の 1層から形成されている。
[0025] また、両面配線板の上には、発光ダイオード 6が実装されて 、る。発光ダイオード 6 は、表面実装タイプのものであり、その端子 7が、表面配線層 2に接続されている。表 面配線層 2の端子 7が接続される部位には、パッドが形成される。
[0026] 絶縁榭脂層 1は、絶縁榭脂材を平板形状に形成したものである。絶縁榭脂材として は、たとえば紙フエノール榭脂材、紙エポキシ榭脂材、ガラスエポキシ榭脂材、テフ口 ン (登録商標)榭脂材などがある。
[0027] 表面配線層 2は、絶縁榭脂層 1の一方の表面に形成される配線層である。表面配 線層 2は、導電性の金属が積層された構造を有する。図 1では、表面配線層 2は、銅 の 2層構造を有する。なお、この表面配線層 2は、異種金属を積層した構造であって も、 3層以上の構造であってもよい。表面配線層 2に使用可能な金属としては、たとえ ば銅、銀、すず、アルミニウム、あるいはそれらの内の少なくとも 1つを含む合金など がある。
[0028] 裏面配線層 4は、絶縁榭脂層 1の他方の表面に形成される配線層である。裏面配 線層 4は、導電性の複数の金属が積層された構造を有する。図 1では、裏面配線層 4 は、ニッケル層の上に、銅が 2層に積層された 3層構造を有する。ニッケルと銅とは、 互いに異なるエッチング溶液により別々にエッチングすることが可能である。なお、こ の裏面配線層 4は、 3層以上の構造であってもよい。裏面配線層 4に使用可能な金 属としては、たとえばニッケル、銅、銀、すず、アルミニウム、あるいはそれらの内の少 なくとも 1つを含む合金などがある。
[0029] 層間配線 3は、絶縁榭脂層 1を貫通するように形成される導電層である。図 1では、 層間配線 3は、銅のみ力もなる。なお、層間配線 3は、たとえば銅およびニッケルなど の異種金属を 2層あるいは 3層以上に積層した構造であってもよい。
[0030] 抵抗体 5は、裏面配線層 4の表面側部分より抵抗値が高い金属からなる。図 1では 、抵抗体 5は、裏面配線層 4の一部を利用して形成されており、ニッケルのみで構成 されている。なお、抵抗体 5は、 2層以上の構造であっても、異種金属を 2層以上に積 層した構造であってもよい。
[0031] そして、以上のように、図 1の両面配線板は、表面配線層 2を銅の 2層構造とし、裏 面配線層 4をニッケル層および銅カゝらなる 3層構造とし、且つ、層間配線 3を銅のみ で構成することで、その殆どの通電部分を銅で構成することができる。その結果、この 両面配線板の電気的特性は、一般的な配線板と略同じ電気的特性となる。 [0032] 図 2は、図 1の両面配線板の製造工程 (配線板の基材作成まで)を示す図である。 図 3は、図 1の両面配線板の製造工程 (配線板の基材に配線パターンを形成するま で)を示す図である。図 4は、図 1の両面配線板の製造工程 (配線パターン形成後の 配線板の基材に抵抗体 5を形成するまで)を示す図である。
[0033] 図 2 (A)は、図 1の両面配線板の製造に使用するクラッド材 (複合材料)の部分断面 を示す図である。クラッド材は、平板形状のニッケル層 12 (以下、中間ニッケル層 12 とよぶ)の両面に、銅層 11, 13が積層された 3層構造を有する。中間ニッケル層 12は 、 2マイクロメートルの厚さを有する。図 2 (A)において中間ニッケル層 12の上側の銅 層(以下、単に上側銅層と記載する。 ) 13は、 400マイクロメートルの厚さを有する。 図 2 (A)において中間ニッケル層 12の下側の銅層(以下、単に下側銅層と記載する 。)11は、 18マイクロメートルの厚さを有する。なお、上側銅層 13は、 500マイクロメ 一トルの厚さ程度であってもよい。ニッケル層 12は、第二の金属の層であり、下側銅 層 11は、第一の金属の層である。
[0034] なお、クラッド材は、異種金属を積層したものである。異種金属を積層する場合、ま ず、真空中でスパッタリングにより各金属の表面を鏡面加工する。次に、それら異種 金属をロールに挟み、ロールの圧力で圧着することで、クラッド材を形成することがで きる。この他にもたとえば、プラズマクリーニングにより各金属の鏡面表面を活性ィ匕し 、活性済みの異種金属をロールで圧着することで、クラッド材を形成してもよい。
[0035] 図 1の両面配線板を製造するにあたって、まず、両面配線板のスルーホールパター ンに対応するパターンにて、図 2 (B)に示すように、上側銅層 13の表面にレジスト層 1 4を形成する。図 2 (B)では、 2つのレジスト層 14が形成されている。また、両面配線 板の裏面には、その一面全体を被覆するようにレジスト層 15を形成する。なお、レジ スト層 14, 15は、後述するアルカリエッチング処理により溶融しない金属、たとえばす ずなどを使用すればよい。この他にもたとえば、感光性榭脂などのドライフィルムを使 用してもよい。また、レジスト層 15は、エッチング処理の方法によっては設けないよう にすることができる。
[0036] 上側銅層 13および下側銅層 11の表面にレジスト層 14, 15を形成した後、アルカリ エッチングを実行する。アルカリエッチングでは、アンモニアアルカリ液を使用する。 アンモニアアルカリ液は、銅を溶融する力 ニッケルやすずを溶融しない。アンモニア アルカリ液による選択エッチング処理後に、レジスト層 14, 15を剥離する。これにより 、図 2 (C)に示すように、上側銅層 13の中の、レジスト層 14で被覆されていない部位 が侵食によりエッチングされる。図 2 (C)では、上側銅層 13は、レジスト層 14で被覆さ れて 、た部位が、 2つの台形柱形状に形成されて 、る。
[0037] 以上の処理により、平板形状の中間ニッケル層 12の上に、銅からなる断面台形の 柱状部 16が形成される。柱状部 16は、円錐状の柱状部としたり、角錐状の柱状部と してり、図 2の紙面に垂直な方向に伸びる柱状部などの種々の柱状部とすることがで きる。なお、エッチング液による侵食は、図 2 (B)の上から下側へ進むとともに、横方 向にも同様に進む。そのため、エッチングにより形成した柱状部 16は、その底部(図 2 (C)で下側の面)よりその頭部(図 2 (C)で上側の面)が小さくなる。一般的に、エツ チングにより形成した柱状部 16の頭部の幅は、その底部の幅よりも、柱状部の高さの 約 2倍に相当する分だけ狭くなる。
[0038] クラッド材を、平板形状の下側銅層 11および中間ニッケル層 12と、銅からなる柱状 部 16とに形成した後、図 2 (D)に示すように、絶縁榭脂材としてのビルドアップ用絶 縁榭脂材 17を積層する。ビルドアップ用絶縁榭脂材 17は、柱状部 16の高さ以上の 厚さに積層する。ビルドアップ用絶縁榭脂材 17としては、たとえばエポキシ榭脂が採 用される。液状あるいはシート状のエポキシ榭脂を用いて、ビルドアップ用絶縁榭脂 材 17を積層する。これ〖こより、中間ニッケル層 12は、絶縁榭脂材 17と下側銅層 11と の間に挟まれる。
[0039] ビルドアップ用絶縁榭脂材 17を積層し、硬化させた後、榭脂表面を研磨する。ビル ドアップ用絶縁榭脂材 17は、図 2 (E)に示すように、柱状部 16の先端が露出するま で研磨される。これにより、絶縁榭脂層 1が形成される。
[0040] 柱状部 16の先端が露出するまでビルドアップ用絶縁榭脂材 17を研磨した後、その 研磨により平らになった面を表面粗ィ匕した上で、銅メツキを実行する。表面粗化は、 少なくともビルドアップ用絶縁榭脂材 17につ 、て行うか、柱状部 16の先端を合わせ て行うようにしてもよい。銅メツキは、たとえば電解メツキ法で実施すればよい。
[0041] これにより、ビルドアップ用絶縁榭脂材 17の表面および柱状部 16の先端表面には 、図 2 (F)に示すように、金属層の一部としての銅メツキ層 18が積層される。このメツキ により形成される銅メツキ層 18は、柱状部 16と接続される。また、平らな絶縁榭脂層 1 は、その表面が銅メツキ層 18により被覆され、且つ、その裏面が銅およびニッケルか らなる導電層(中間ニッケル層 12,下側銅層 11)により被覆された状態となる。この両 面の金属層(銅メツキ層 18)と金属層(中間ニッケル層 12,下側銅層 11)とは、柱状 部 16により電気的に接続される。これにより、両面配線板を形成するための基材が形 成される。この基材も一種の配線板である。
[0042] このように、絶縁榭脂層 1の両面の銅層(下側銅層 11,銅メツキ層 18)力 両面配線 板のスルーホールパターンに対応する柱状部 16により接続された基材を形成した後 、両面配線板の配線パターンの形成処理に入る。
[0043] 配線パターンの形成処理では、まず、図 3 (A)に示すように、両面配線板の配線パ ターンおよび抵抗体 5の形成パターンにしたがって、そのパターン形状の空き部分で あって基材の表面および裏面にレジスト層 21, 22を形成する。レジスト層 21, 22は、 表面配線層 2および裏面配線層 4を形成する部位と、抵抗体 5を形成する部位とを空 けて、基材の両面に形成される。
[0044] 基材の表面および裏面に、配線パターンおよび抵抗体形成パターンに対応するレ ジスト層 21, 22を形成した後、メツキ処理を行う。このメツキ処理では、まず、銅メツキ を実施し、次に、ニッケルメツキを実施する。これにより、図 3 (B)に示すように、レジス ト層 21, 22により被覆されていない部位には、銅メツキ層 23, 24と、ニッケルメツキ層 25, 26とが積層される。銅メツキ層 24は、金属層の一部となる。
[0045] メツキ処理により銅メツキ層 23, 24およびニッケルメツキ層 25, 26とを積層した後、 レジスト層 21, 22を剥離する。これにより、図 3 (C)に示すように、表面側の銅メツキ 層 18の表面には、配線および抵抗体 (この実施の形態 1では裏面側には抵抗体は 存在しないが)の配設パターンにて、銅メツキ層 24およびニッケルメツキ層 26が積層 される。裏側の下側銅層 11の表面には、配線および抵抗体の配設パターンにて、銅 メツキ層 23およびニッケルメツキ層 25が積層される。
[0046] レジスト層 21, 22を剥離した後、アルカリエッチングを実行する。これにより、露出し た銅は、エッチングにより除去される。図 3 (D)では、下側銅層 11の中の、露出する 部位が除去されている。下側銅層 11が除去された部位には、中間ニッケル層 12が 露出する。
[0047] アルカリエッチング後、露出するニッケルをエッチングより除去する。これにより、図 3
(E)に示すように、絶縁榭脂材 17の表面には、銅メツキ層 18および銅メツキ層 24が 表面配線層 2のパターンに形成される。絶縁榭脂材 17の裏面には、中間ニッケル層 12、下側銅層 11および銅メツキ層 23が裏面配線層 4および抵抗体 5のパターンに 形成される。この結果、配線板の基材には、配線パターンおよび抵抗体パターンが 形成される。
[0048] 配線板の基材の両面に配線および抵抗体のパターンからなる配線層を形成した後 、抵抗体 5の形成工程に入る。抵抗体 5の形成工程では、まず、図 4 (A)に示すよう に、抵抗体 5の形成パターンにしたがって、そのパターン形状の空き部分であって基 材の表面および裏面にレジスト層 31, 32を形成する。レジスト層 31, 32は、抵抗体 5 を形成する部位を空けて、基材の両面に形成される。図 4 (A)では、基材の表面には 抵抗体が設けられないため、表面側のレジスト層 31は、その全面に形成されている。
[0049] 基材の表面および裏面に抵抗体形成パターンに対応するレジスト層 31, 32を形成 した後、アルカリエッチングを実行する。これにより、露出した銅は、エッチングにより 除去される。図 4 (B)では、下側銅層 11および銅メツキ層 23の中の、露出する部位 が除去されている。下側銅層 11が除去された部位には、中間ニッケル層 12が露出 する。
[0050] アルカリエッチング後、レジスト層 31, 32を剥離する。これにより、図 4 (C)に示すよ うに、基材の裏面の一部には、中間ニッケル層 12のみ力もなる抵抗体 5が形成される
[0051] 以上のように、この実施の形態 1によれば、クラッド材をエッチングすることで中間二 ッケル層 12および裏側銅層 11からなる板状部上に柱状部 16を形成し、絶縁榭脂材 17を積層し、板状部をエッチングすることで配線層 4を形成することができる。またさ らに、板状部をエッチングすることで抵抗体 5を形成することができる。したがって、一 般的な配線板と同等の製造工程により、抵抗体 5を有する配線板を簡単に形成する ことができる。 [0052] また、この実施の形態 1の製造方法およびそれにより製造される両面配線板には、 以下のような各種の特徴を有する。
[0053] 第一に、ニッケルを銅で挟んだ 3層構造のクラッド材をエッチングして、絶縁榭脂層 1の両側の配線層 2, 4を電気的に接続する層間配線 3としての柱状部 16を形成して いる。エッチングの場合、そのエッチング時間などを調整することで、 1回のエツチン グ処理により数百マイクロメートルの高さの柱状部 16を形成することができる。しかも 、エッチングの際のレジスト層 14の幅などを調整することで、一般的な配線板で使用 されるスルーホールより幅がある形状に形成することができる。幅がある形状とするこ とで、層間配線 3の抵抗値を低くすることができる。また、柱状部 16の高さは、略均一 になる。さらに、クラッド材をエッチングすることで柱状部 16を形成しているので、柱状 部 16には、バンプ形成に用いる金属ペーストのように不純物が混じって 、るものでは ない、金属を使用することができる。このように不純物が混じっていない金属を使用す ることで層間配線 3としての信頼性が高くなる。
[0054] これに対して、たとえば層間配線をバンプなどで形成する場合には、層間配線の最 終的な高さを得るためにバンプを繰り返し積層する必要があったり、そのパンプを形 成するための材料として不純物が混じった金属ペーストを使用したりしなければなら ない。一般的に、金属ペーストの抵抗値は、不純物が混ざった分だけ高い。本実施 の形態の製造方法およびその方法で形成した両面配線板には、それらの不利益が 生じない。
[0055] また、抵抗体 5として形成される中間ニッケル層 12は、配線板を形成する前に、クラ ッド材として、裏面配線層 4の銅層 11および層間配線 3としての柱状部 16と一体ィ匕さ れている。したがって、この三者、すなわち銅、ニッケル、銅の三層の一体性はきわめ て強い。よって、抵抗体 5と、層間配線 3および裏面配線層 4との接合強度は高い。
[0056] また、柱状部 16は、高さおよび幅のある柱状構造とすることができる。そして、柱状 部 16を高さおよび幅のある柱状構造とすることで、層間配線 3に大電流を流したり、 層間配線 3により熱を拡散したりすることができる。熱を拡散することができる層間配 線 3は、ヒートシンクとして機能する。表面配線層 2に実装される電子部品の熱は、こ の層間配線 3により効率良く実装面の裏側へ拡散し、実装面の裏側 (の裏面配線層 4)から効率良く放熱される。なお、裏面配線層 4を部品の実装面としてもよい。
[0057] その結果、一般的な配線板と同等の電気的特性などを有する両面配線板に、抵抗 体 5を内蔵することができる。また、抵抗体 5が内蔵される両面配線板に、一般的な配 線板以上の大電流を流したり、ヒートシンク機能を持たせたりすることができる。ヒート シンク機能とは、たとえば発光ダイオード 6で発熱した熱を端子 7、柱状部 16を介して 裏面側へ逃がす機能のことを 、う。
[0058] なお、両面配線板には、ヒートシンクそのものを形成してもよい。図 5は、図 1の変形 例としての両面配線板の部分断面図である。図 5の両面配線板では、発光ダイォー ド 6が実装される部位に、ヒートシンクポスト 8が形成される。図 5のヒートシンクポスト 8 は、銅メツキ層 24, 18、柱状部 16、中間ニッケル層 12、下側銅層 11および銅メツキ 層 23により形成される。ヒートシンクポスト 8は、発光ダイオード 6の端子 7が接続され る表面配線層 2のノ¾ドの間において、発光ダイオード 6が実装される表面に露出す るように形成されている。
[0059] ヒートシンクポスト 8と、発光ダイオード 6との間には、たとえば銀ペースト 9などが塗 布される。これにより、たとえば発光ダイオード 6が発生する熱量が大きくても、その熱 を銀ペースト 9およびヒートシンクポスト 8を介して基板の裏側へ拡散することができる 。発光ダイオード 6が発生する熱は、効率良く拡散される。なお、このヒートシンクボス ト 8は、発光ダイオード 6の端子 7などに接続されていないので、電流が流れない。
[0060] このようにヒートシンクポスト 8を形成することで、両面配線板に、抵抗体 5およびヒー トシンクを設けることができる。この結果、両面配線板に実装される発光ダイオード 6な どの電子回路素子に、別体の大きなヒートシンクを取り付けないで済ますことが可能と なる。表面実装タイプの電子回路素子の低背の特徴を生力して、薄い回路基板を形 成することができる。また、表面実装タイプの電子回路素子と両面配線板との間には 熱が滞留しやす 、が、その熱が滞留する部分にヒートシンクポスト 8を形成することに より熱を効率良く放熱することができるので、そのような熱の滞留を効果的に抑制する ことができる。
[0061] このヒートシンクポスト 8または発光ダイオード 6から離れた位置に設置されるヒートシ ンクポストに、発光ダイオード 6が実装された面に配設される抵抗体(図示省略)を接 続すると、発光ダイオード 6側の面で発生した熱、たとえば抵抗体の熱、発光ダイォ ード 6の熱などを反対側の面へ効率良くにがすことができる。
[0062] なお、この実施の形態 1では、図 2 (F)の状態からさらに、銅メツキを実行してもよい
。これにより、銅メツキ層 18および下側銅層 11の上には、銅メツキ層が積層される。
[0063] 実施の形態 2.
図 6は、本発明の実施の形態 2に係る両面配線板の部分断面図である。図 7は、図
6の両面配線板の製造工程 (配線板の基材作成まで)を示す図である。なお、配線板 の基材に配線パターンを形成する工程と、配線パターン形成後の配線板の基材に 抵抗体 5を形成する工程とは、実施の形態 1の図 3および図 4と同様であり、図示を省 略する。
[0064] 図 6に示すように、実施の形態 2に係る両面配線板は、図 1に示す両面配線板と同 様に、絶縁榭脂層 1と、表面配線層 2と、層間配線 3と、裏面配線層 4と、抵抗体 5と、 を有する。絶縁榭脂層 1、表面配線層 2、層間配線 3、裏面配線層 4および抵抗体 5 は、実施の形態 1と同様であり同一の符号を付して説明を省略する。但し、表面配線 層 2は、銅の 3層構造であり、その中の、層間配線 3と当接する部位が圧縮により凹ん だ外形形状になっている。また、裏面配線層 4は、中間ニッケル層 12の上に銅が 3層 に積層された構造を有する。
[0065] 次に、図 6の両面配線板の製造工程を、図 7に基づいて説明する。図 7において、( A)から (C)の工程は、図 2 (A)から (C)に示す工程と同一であり、説明を省略する。 アルカリエッチング処理により、図 5 (C)に示すように、中間ニッケル層 12の上に、銅 からなる柱状部 16が台形柱形状に形成される。
[0066] 柱状部 16を形成した後、図 7 (D)に示すように、プリプレダシート 41と、銅箔 42とを 積層する。プリプレダシート 41は、ガラス繊維カゝらなるシートに絶縁榭脂材を染み込 ませ、乾燥したものである。いわゆる Bステージのシートである。そして、銅箔 42の上 に、たとえばクラフト紙やテフロン (登録商標)板などのクッション材を載せ、空気を吸 引しながら、そのクッション材の上力も油圧プレスなどで押圧する。これにより、プリプ レグシート 41は液状ィ匕し、絶縁榭脂材部 43となる。
[0067] 銅箔 42が柱状部 16の先端と当接し、さらに図 7 (E)に示すように、銅箔 42のこの柱 状部 16の先端と当接する部位が変形するまで、押圧する。銅箔 42のうち、柱状部 16 と当接する部位は、盛り上がる。
[0068] このようにクッション材を用いて空気を吸引しながら押圧することで、銅箔 42と平板 形状の中間ニッケル層 12との間に、絶縁榭脂材からなる絶縁榭脂材部 43が隙間無 く充填される。また、銅箔 42は、柱状部 16と電気的に接続される。絶縁榭脂材部 43 の両面の中間ニッケル層 12と銅箔 42は、柱状部 16により電気的に接続される。柱 状部 16の先端が銅箔 42に当接した状態のままで、液ィ匕した絶縁榭脂材部 43を硬 化させる。これにより、絶縁榭脂層 1が形成される。
[0069] なお、図 7 (E)において、柱状部 16の先端は、銅箔 42を突き破つていてもよい。本 実施の形態 2での柱状部 16は、その先端がテーブル状に平らである。そのため、逆 に、柱状部 16は、プリプレダシート 41を突き破ることができない可能性もある。そのよ うな場合には、事前に、プリプレダシート 41の柱状部 16に対応する部位に貫通孔を 形成し、その後に銅箔 42とともに積層するようにしてもよい。このときに形成する貫通 孔の大きさは、たとえば柱状部 16の先端の面積以上の大きさとすればよい。これによ り、柱状部 16の先端がテーブル状であったとしても、柱状部 16によりプリプレダシー ト 41を確実に貫通させることができる。
[0070] 絶縁榭脂層 1を形成した後、銅箔 42の表面を研磨する。これにより、図 7 (F)に示 すように、銅箔 42の表面は、平らになる。銅箔 42の表面を平らにした後、その研磨に より平らになった面を表面粗ィ匕した上で、銅メツキを実行する。銅メツキは、たとえば 電解メツキ法で実施すればょ ヽ。
[0071] これにより、銅箔 42の表面には、図 7 (G)に示すように、銅メツキ層 44が積層される 。また、裏面にも、銅メツキ層 45が形成される。表面が銅の 2層構造 (すなわち銅箔 4 2と銅メツキ層 44)で、裏面がニッケルおよび銅の 3層構造 (すなわち中間ニッケル層 12、下側銅層 11および銅メツキ層 45)である基材が形成される。基材に対する両面 配線パターンの形成方法と、抵抗体 5の形成方法とは、実施の形態 1の図 3および図 4に示す工程と同一であり、その説明を省略する。これにより、図 6に示す両面配線板 が形成される。実施の形態 2に係る両面配線板の表側配線層 2は、銅箔 42、銅メツキ 層 44および銅メツキ層 24からなる。裏側配線層 4は、中間ニッケル層 12、下側銅層 1 1、銅メツキ層 45および銅メツキ層 23からなる。
[0072] なお、各実施の形態と同様に、数百マイクロメートルの高さのある層間配線を形成 する製造技術として、いわゆるビルドアップ法がある。このビルドアップ法では、まず、 各配線板の銅箔面に、導電性ペーストを印刷して円錐状のバンプを形成し、次に、 円錐状のバンプ同士で絶縁榭脂板を挟み込むことで、配線板を形成する。各配線板 に形成されたバンプは、絶縁榭脂板に突き立てられ、絶縁榭脂板内で互いに接触す る。これにより、配線板同士は電気的に接続される。なお、円錐状のバンプは、メツキ とエッチングとを繰り返すことで形成することもできる。ただし、メツキとエッチングとを 繰り返す場合、非常に時間とコストがかかり、導電性ペーストを印刷する場合に比べ て製造上不利である。
[0073] また、このビルドアップ法では、バンプは、絶縁榭脂板に突き立てるために円錐状 に形成する必要がある。そのため、バンプをその高さ方向全体において幅広とするこ とは、技術的に困難である。したがって、このビルドアップ法では、高さのある層間配 線は形成できる力 上述した各実施の形態のように、幅広で効率良く熱を拡散する層 間配線を形成することは極めて困難である。
[0074] 以上のように、この実施の形態 2では、実施の形態 1と同様に、クラッド材をエツチン グすることで中間ニッケル層 12および裏側銅層 11からなる板状部上に柱状部 16を 形成し、プリプレダシート 41からなる絶縁榭脂材部 43を形成し、板状部をエッチング することで裏面配線層 4を形成することができる。またさらに、板状部をエッチングする ことで抵抗体 5を形成することができる。したがって、一般的な配線板と同等の製造ェ 程により、抵抗体 5を有する配線板を簡単に形成することができる。
[0075] また、この実施の形態 2の両面配線板では、柱状部 16が形成された平板状の中間 ニッケル層 12の上に、プリプレダシート 41および銅箔 42を押圧し、さらに銅メツキ 34 をすることで、配線層 2, 4と層間配線 3とを電気的に接続している。このような配線層
2, 4と層間配線 3との接続方法は、それらの接合強度が高ぐ高い信頼性がある。し たがって、両面配線板として、一般的な配線板と同様の高い信頼性を確保することが できる。その結果、一般的な配線板と同等の信頼性および電気的特性を有する両面 配線板に、抵抗体 5を設けたり、一般的な配線板以上の大電流を流したり、ヒートシン ク機能を持たせたりすることができる。
[0076] また、この実施の形態 2では、銅箔 42を用いて表面配線層 2の一部を形成している 。銅箔 42は、均一な厚みを有する。また、柱状部 16は、エッチングにより形成されて いるので均一な高さに揃う。その結果、両面配線板の厚さは、略均一な厚さとなる。 そして、均一な表面厚みである事から、座繰り面と別体のヒートシンクで複雑な高さ調 整が必要であった放熱基板の用途で効率的に熱を逃がす構造が作成できると共に 、別体のヒートシンク及び高価な座繰りの工程を必要としなくなり、低価格にて高放熱 配線板を提供できる。
[0077] 以上の各実施の形態は、本発明の好適な実施の形態の例であるが、本発明は、こ れに限定されるものではなぐ発明の要旨を逸脱しない範囲において種々の変形、 変更が可能である。
[0078] たとえば、各実施の形態では、抵抗体 5が裏面側にのみ形成された配線板を示し た力 抵抗体が表面側にもまたは表面側のみに設けられるものとしてもよい。抵抗体 を表面側に設ける場合、中間ニッケル層 12や下側銅層 11と同じものを上側 (表面側 )に設けるようにしたり、図 4 (C)の状態後、メツキにより抵抗体を形成したりする方法 が採用され得る。また、発光ダイオード 6のような電子部品を表面配線層 2が形成され た側に配置するのではなく、裏側配線層 4側に配置するようにしてもよ!、。
[0079] また、上述の各実施の形態では、ニッケルの両面を銅で被覆したクラッド材 (複合材 料)を、両面配線板を形成するための出発材料として利用している。この他にもたとえ ば、ニッケルの替わりに、アルミニウム、すず、ステンレス、真鍮あるいはそれらを含む 合金などを使用しても良い。また、ニッケルの一方の面を銅で被覆し、他方の面を銀 あるいはアルミニウムあるいはそれらを含む合金で被覆したクラッド材ゃ、アルミ-ゥ ムの両面を銅で被覆したクラッド材などを使用してもよい。さらに他にもたとえば、ニッ ケルゃアルミニウムの一方の面を銅、銀、アルミニウムあるいはそれらを含む合金で 被覆した二層構造のクラッド材を出発材料として使用してもよい。この二層構造のクラ ッド材の場合、たとえば柱状部 16は、銅のみあるいは銀のみで形成すればよい。
[0080] 各実施の形態では、絶縁榭脂層 1の両面に配線層 2, 4を形成した両面配線板を 例示している。この他にもたとえば、絶縁榭脂層 1の片面に配線層(たとえば配線層 4 )を形成する片面配線板や、 3つ以上の配線層を有する多層基板であっても、本発 明の製造方法を利用して形成することができる。 3つ以上の配線層を有する多層基 板において、 3層目の配線層およびその 3層目の配線層が積層される絶縁榭脂層は 、たとえば従前の多層配線板における金属膜および絶縁榭脂材を積層する各種の 製造技術で形成すればょ 、。
[0081] また、表面配線層 2や裏面配線層 4の形成には、メツキ処理を使用している力 メッ キ処理ではなぐ PVDなどの物理気相成長法を採用してもよい。さらに、出発材料と してクラッド材を使用している力 クラッド材ではなく、たとえば板状の上側銅層 13の 片面にニッケル、銅を物理気相成長法で積層した部材や、ニッケル層の両面にメッ キゃ物理気相成長法で導電層を形成した部材を、出発材料としてもょ ヽ。
[0082] 各実施の形態では、抵抗体 5は、ニッケルのみにより形成されている。この他にもた とえば、抵抗体 5は、ニッケルリン、ニッケルクロムなどのニッケル系合金のみにより形 成されていてもよい。この他にもたとえば、抵抗体 5は、ニッケルリン、ニッケルクロムな どのニッケル系合金およびニッケルの中の 2つ以上のニッケル含有金属を含む合金 により形成されていてもよい。これらの金属や合金は、銅との選択エッチングが可能 であり、且つ、抵抗を構成する材料として利用されているものである。なお、ニッケルリ ンなどで形成する抵抗体 5としての抵抗膜は、無電解メツキ、電解メツキ、蒸着などの 各種の方法で形成することができる。また、抵抗体 5の厚さは、エッチングの際のバリ ァ膜として機能させる必要があるので、 100〜5000オングストローム程度とするのが 望ましい。
産業上の利用可能性
[0083] 本発明では、発光ダイオードなどの電子部品を実装する配線板およびその製造に 禾 IJ用することがでさる。

Claims

請求の範囲
[1] 導電性の第一の金属と第二の金属とを含む 2種類あるいは 3種類以上の金属が 3 層以上に積層されてなるクラッド材をエッチングして、第一の金属および第二の金属 からなる板状部上に柱状部を形成する工程と、
上記板状部の上に上記柱状部により貫通される絶縁榭脂層を、上記第二の金属が 上記第一の金属との間に挟まれるように形成する工程と、
上記絶縁榭脂層の形成後に、上記第一の金属をエッチングして上記第二の金属 カゝらなり、上記柱状部に直接つながる抵抗体を形成する工程と、
を有することを特徴とする配線板の製造方法。
[2] 導電性の第一の金属と第二の金属とを含む 2種類あるいは 3種類以上の金属が 3 層以上に積層されてなるクラッド材をエッチングして、第一の金属および第二の金属 からなる板状部上に柱状部を形成する工程と、
上記板状部の上に上記柱状部により貫通される絶縁榭脂層を、上記第二の金属が 上記第一の金属との間に挟まれるように形成する工程と、
上記絶縁榭脂層の形成後に、上記第一の金属および上記第二の金属を、配線パ ターンおよび抵抗体の形成パターンにしたがってそのパターンが残るようにエツチン グする工程と、
そのエッチングの後にさらに、上記第一の金属を上記抵抗体の形成パターンにした 力 Sつてそのパターン部分をエッチングする工程と、
を有することを特徴とする配線板の製造方法。
[3] 導電性の第一の金属と第二の金属とを含む 2種類あるいは 3種類以上の金属が 3 層以上に積層されてなるクラッド材をエッチングして、第一の金属および第二の金属 からなる板状部上に柱状部を形成する工程と、
上記板状部の上に上記柱状部により貫通される絶縁榭脂層を、上記第二の金属が 上記第一の金属との間に挟まれるように形成する工程と、
上記絶縁榭脂層の上記板状部とは反対側の面に、上記柱状部と接続される導電 性の金属層を形成する工程と、
上記第一の金属、上記第二の金属および上記金属層を、配線パターンおよび抵抗 体の形成パターンにしたがってそのパターンが残るようにエッチングする工程と、 そのエッチングの後にさらに、上記第一の金属を上記抵抗体の形成パターンにした 力 Sつてそのパターン部分をエッチングする工程と、
を有することを特徴とする配線板の製造方法。
[4] 前記クラッド材の前記第一の金属は、銅、銀、アルミニウムおよびそれらの内の少な くとも 1つを含む合金の中から選択された 1つ以上の金属とされ、前記第二の金属は 、ニッケル、アルミニウム、すずおよびそれらの内の少なくとも 1つを含む合金の中力 ら選択され、且つ、前記第一の金属との間で選択的なエッチングが可能な 1つ以上 の金属とされて!/、ることを特徴とする請求項 1から 3の中の 、ずれか 1項記載の配線 板の製造方法。
[5] 請求項 1から請求項 4の中のいずれか 1項の製造方法により製造され、前記柱状部 が絶縁榭脂層を貫通する層間配線であることを特徴とする配線板。
[6] 導電性の第一の金属と第二の金属とを含む 2種類あるいは 3種類以上の金属が 3 層以上に積層されてなるクラッド材をエッチングすることにより上記第一の金属および 上記第二の金属力 なる板状部上に形成される柱状部と、
上記板状部上において上記柱状部により貫通される絶縁榭脂層と、
上記板状部をエッチングすることで形成される上記第一の金属および上記第二の 金属からなる配線層と、
上記板状部をエッチングすることで形成される上記第二の金属からなり、上記柱状 部に直接つながる抵抗体と、
を有することを特徴とする配線板。
[7] 前記柱状部の中の少なくとも一部を熱の拡散路として利用するヒートシンクとし、電 流路として機能させないことを特徴とする請求項 5または 6記載の配線板。
PCT/JP2006/316299 2005-11-16 2006-08-21 配線板の製造方法および配線板 WO2007058005A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545165A JPWO2007058005A1 (ja) 2005-11-16 2006-08-21 配線板の製造方法および配線板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005331048 2005-11-16
JP2005-331048 2005-11-16

Publications (1)

Publication Number Publication Date
WO2007058005A1 true WO2007058005A1 (ja) 2007-05-24

Family

ID=38048396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316299 WO2007058005A1 (ja) 2005-11-16 2006-08-21 配線板の製造方法および配線板

Country Status (2)

Country Link
JP (1) JPWO2007058005A1 (ja)
WO (1) WO2007058005A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108733A (ja) * 2009-11-13 2011-06-02 Casio Computer Co Ltd 半導体装置及びその製造方法
JP2017073513A (ja) * 2015-10-09 2017-04-13 シチズン電子株式会社 発光装置及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110084B2 (ja) * 2012-07-06 2017-04-05 株式会社 大昌電子 プリント配線板およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019533A1 (fr) * 1998-09-30 2000-04-06 Toyo Kohan Co., Ltd. Substrat plaque, destine a des cadres de montage, cadre de montage mettant en oeuvre un tel substrat, et procede de fabrication de ce cadre
JP2003243794A (ja) * 2002-02-18 2003-08-29 Toyo Kohan Co Ltd 抵抗板積層材および抵抗板積層材を用いた部品
JP2004235667A (ja) * 2004-04-28 2004-08-19 Hitachi Chem Co Ltd 柱状パターン付キャリヤ金属箔
JP2005283852A (ja) * 2004-03-29 2005-10-13 Kyocera Corp 液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019533A1 (fr) * 1998-09-30 2000-04-06 Toyo Kohan Co., Ltd. Substrat plaque, destine a des cadres de montage, cadre de montage mettant en oeuvre un tel substrat, et procede de fabrication de ce cadre
JP2003243794A (ja) * 2002-02-18 2003-08-29 Toyo Kohan Co Ltd 抵抗板積層材および抵抗板積層材を用いた部品
JP2005283852A (ja) * 2004-03-29 2005-10-13 Kyocera Corp 液晶表示装置
JP2004235667A (ja) * 2004-04-28 2004-08-19 Hitachi Chem Co Ltd 柱状パターン付キャリヤ金属箔

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108733A (ja) * 2009-11-13 2011-06-02 Casio Computer Co Ltd 半導体装置及びその製造方法
JP2017073513A (ja) * 2015-10-09 2017-04-13 シチズン電子株式会社 発光装置及びその製造方法

Also Published As

Publication number Publication date
JPWO2007058005A1 (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
TWI336225B (en) Wiring board, multilayer wiring board, and method for manufacturing the same
JP2009088469A (ja) 印刷回路基板及びその製造方法
JPWO2007010758A1 (ja) 配線基板、配線材料、及び銅張積層板、及び配線基板の製造方法
JP2001015920A (ja) 多層プリント配線板及びその製造方法
JPH1079579A (ja) 印刷配線板、および印刷配線板の製造方法
JP2005079402A (ja) 回路基板およびその製造方法
WO2007058005A1 (ja) 配線板の製造方法および配線板
JP3474894B2 (ja) 印刷配線板およびその製造方法
CN110999547B (zh) 印刷线路板
JP2004265930A (ja) 多層配線基板及びその製造方法
JPH06350250A (ja) 印刷配線板の製造方法
JP3609126B2 (ja) 印刷配線板および印刷配線板製造用部材の製造方法
WO2007037075A1 (ja) 配線板の製造方法および配線板
JPH06350258A (ja) 印刷配線板の製造方法
JP3694708B2 (ja) 印刷配線板の製造方法および印刷配線板
JP3862454B2 (ja) 金属ベース多層回路基板
JP4574310B2 (ja) リジッド−フレキシブル基板の製造方法
JPH08264939A (ja) 印刷配線板の製造方法
JP3474896B2 (ja) 印刷配線板およびその製造方法
JP2007035716A (ja) プリント基板の製造方法
JP2002374068A (ja) 多層プリント配線板の製造方法
JP4821276B2 (ja) 多層プリント配線板の製造方法及び多層プリント配線板
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JPH06224561A (ja) 放熱構造プリント配線板及びその製造方法
JP2003198086A (ja) 回路基板及び積層回路基板並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007545165

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 06782853

Country of ref document: EP

Kind code of ref document: A1