WO2007055362A1 - ポリペプチドの検出又は定量方法、及び装置 - Google Patents

ポリペプチドの検出又は定量方法、及び装置 Download PDF

Info

Publication number
WO2007055362A1
WO2007055362A1 PCT/JP2006/322593 JP2006322593W WO2007055362A1 WO 2007055362 A1 WO2007055362 A1 WO 2007055362A1 JP 2006322593 W JP2006322593 W JP 2006322593W WO 2007055362 A1 WO2007055362 A1 WO 2007055362A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
phase
mobile phase
sample
organic solvent
Prior art date
Application number
PCT/JP2006/322593
Other languages
English (en)
French (fr)
Inventor
Ryoya Goda
Original Assignee
Daiichi Sankyo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Sankyo Company, Limited filed Critical Daiichi Sankyo Company, Limited
Priority to JP2007544226A priority Critical patent/JP5144273B2/ja
Publication of WO2007055362A1 publication Critical patent/WO2007055362A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Definitions

  • the present invention relates to a highly sensitive polypeptide detection or quantification method and apparatus using reverse phase liquid chromatography.
  • Reversed-phase liquid chromatography is liquid chromatography that uses a substance that is less polar than the mobile phase as the stationary phase, and is most widely used in the quantification of low-molecular compounds such as drugs.
  • RP-LC Reversed-phase liquid chromatography
  • reversed-phase liquid chromatography has been used as an important technique for the detection and quantification of polypeptides, and plays an important role in proteomics research.
  • Non-Patent Document 1 Polypeptide adsorption becomes more intense at low concentrations (Non-Patent Documents 1 to 3), and as a result, quantification in the low concentration region is considered to be difficult.
  • a polypeptide surfactant such as albumin
  • Non-Patent Document 1 Mass Spectrom. 1998, 33, 967-983
  • Non-Patent Document 2 Anal. Biochem. 1994, 222, 149-155
  • Non-Patent Document 3 Yes. Chromatogr. B 2002, 775, 247-255
  • Non-Patent Document 4 Pharmaceutical Research 2000, 17, 1551-1557 Invention Disclosure
  • An object of the present invention is to detect or quantify a polypeptide by reversed-phase liquid chromatography, which eliminates the influence of polypeptide adsorption by a simple technique and enables accurate quantification of the polypeptide even in a low concentration region. It is to provide a method and apparatus.
  • the present inventors have intensively studied to solve the above problems, and have the ability of adsorbing water and a polypeptide dissolved in one kind of organic solvent-powered mixed solution to the reversed-phase column packing material.
  • the phase transition critical value of the adsorption ability of the polypeptide to the reverse phase column packing material simply the phase transition criticality of the polypeptide
  • It may be called a value
  • the polypeptide Becomes a polypeptide that does not substantially adsorb to the reversed-phase column packing material (OFF-phase polypeptide), and conversely, when the volume ratio is lower than the phase transition critical value of the adsorption capacity to the reversed-phase column packing material.
  • OFF-phase polypeptide a polypeptide that does not substantially adsorb to the reversed-phase column packing material
  • the volume ratio is lower than the phase transition critical value of the adsorption capacity to the reversed-phase column packing material.
  • the present inventors also provide a reverse-phase column packing material for substances (excluding the reverse-phase column packing material) that come into contact with the polypeptide when the polypeptide sample is diluted and measured using a reverse-phase liquid chromatograph.
  • the polypeptide showed the same behavior as that for, and it was found that the phase transition critical value of the adsorptive capacity to these substances and the phase transition critical value of the adsorbing capacity to the column packing were approximate (see Example 1). .
  • the present inventors have determined that the phase transition critical value of the adsorption ability of the polypeptide to the reversed-phase column packing material is the kind of the organic solvent contained in the solution in which the polypeptide is dissolved (see Example 2) and While it is highly dependent on the polypeptide (see Example 5), the stationary phase of the reversed phase column (see Example 8) and the temperature of the reversed phase column (see Example 9) adsorb the polypeptide to the reversed phase column packing.
  • the effect on the phase transition of Noh was small compared to the effect of organic solvents.
  • organic solvent 1, organic solvent 2, ..., organic solvent n (n is an integer of 1 or more)
  • XI is the critical value of phase transition of polypeptide A in a mixed solution of water and organic solvent (%)
  • Xn is the critical value of phase transition of polypeptide A in a mixed solution of water and organic solvent n) (%)
  • Xl is the volume ratio (%) of the organic solvent 1 in the mixed solution Mx
  • xn is the volume ratio (%) of the organic solvent n in the mixed solution Mx)
  • polypeptide A polypeptide A
  • OFF-phase polypeptide A which is a phase that does not substantially interact (that is, a phase that does not substantially interact with the substance that is contacted during preparation).
  • the present invention provides a method for detecting or quantifying a certain polypeptide (polypeptide A) using a reverse phase liquid chromatograph, which includes the following steps. To do.
  • the present invention is a method for quantifying a polypeptide that is capable of high-sensitivity quantification comparable to or higher than conventional quantification methods for immunological techniques widely used as quantification methods for minute amounts of polypeptides, such as ELISA. It is an epoch-making invention that can be used in a wide range of fields such as medicine, biochemistry, and molecular biology.
  • FIG. 1 is a diagram showing an example of a reverse phase liquid chromatograph system for polypeptide quantification.
  • Fig.2 Different amounts of acetonitrile and acid added using C column and conventional system
  • FIG. 4 is a conceptual diagram of elution behavior of a polypeptide sample solution introduced by a conventional system.
  • FIG. 6 is a diagram showing a power law between a gradient gradient and a retention time of urocortin.
  • FIG. 8-1 is a diagram showing a mask mouth matogram at the lower limit of quantification of each polypeptide.
  • FIG. 8-2 is a diagram showing a mask mouth matogram at the lower limit of quantification of each polypeptide.
  • FIG. 10 Total mask mouthmatogram when measuring 18 kinds of polypeptide mixed solution (1, 10 and ⁇ ) with different solution composition
  • Solution composition (A) Water, (B) Acetic acid-water (4: 96, vZv), (C) Acetic acid-water-acetonitrile (4:66:30, vZvZv), (D) Acetic acid-water-acetonitrinole (4:46:50, v / v / v;).
  • FIG. 11 Isopolyethyl-ceryl bradykinin (top) and urocortin when 18 mixed polypeptide solutions (1, 10 and ⁇ ) with different solution compositions were measured using the conventional system (left) and the developed system (right) It is a figure which shows the peak area of (lower).
  • FIG. 12 Urocortin in water-acetonitrile mixed solution (volume ratio: 90: 10, 80: 20, 70: 30, 60: 40 or 50: 50) at 20 ° C (A) and 40 ° C (B) It is a figure which shows CD spectrum.
  • FIG. 13 150161 in water-acetonitrile mixed solution (volume ratio: 100: 0, 95: 5, 90:10, 85:15 or 80:20) at 20 ° C (A) and 40 ° C (B) ⁇ 1-56 1-1 ⁇ & (1 is a diagram showing 0 spectrum of 1 1 ⁇ 11.
  • the present invention is a method for detecting or quantifying a polypeptide using a reverse phase liquid chromatograph.
  • reverse-phase liquid chromatography includes all mobile phases (eluents) that are liquids and stationary phases that are weaker than the mobile phase (eluent).
  • the stationary phase include a hydrophobic group such as a hydrocarbon group, for example, a triacontyl group (C30), an octadecyl group (C18) octyl group (C8), a butyl group (C4), or a trimethyl group.
  • the support include inorganic porous polymers such as silica gel, polystyrene, methacrylic, butyl alcohol, hydroxyapatite, and titanium oxide. Graphite force can be used as a filler. A person skilled in the art can appropriately select a filler according to the test polypeptide.
  • a liquid chromatograph Z mass spectrometer is preferably exemplified as the liquid chromatograph.
  • LC MS liquid chromatograph Z mass spectrometer
  • LC MSZMS liquid chromatograph Z tandem mass spectrometer
  • the test polypeptide is not limited to molecular weight, isoelectric point, function, structure, and the like, and includes all polypeptides. Of these, when performing high-sensitivity quantification using LC MSZMS, the number of multiply charged ions generated in the ESI ion source is large and it is difficult to achieve high sensitivity, so the molecular weight is about 10,000 Da or less. Polypeptides are preferred.
  • the test polypeptide includes either a known polypeptide or an unknown polypeptide.
  • the polypeptide is a generic term including any of protein, polypeptide and oligopeptide, and its minimum size is 2 amino acids.
  • test polypeptide is derived from various tissues, cells, bacteria, viruses, Polypeptides synthesized by known synthesis methods, polypeptides obtained by known genetic engineering techniques, polypeptides of certain proteins generated by enzyme digestion with various proteases It includes both fragments and polypeptides that can be purchased as preparations.
  • the test polypeptide is known per se such as a preparation method known per se, such as centrifugation, denaturation, fractionation using ammonium sulfate, dialysis, ultrafiltration, purification using ion chromatography, etc. It may be a polypeptide contained in a sample prepared by the preparation method.
  • test polypeptide contained in the test polypeptide sample may be one type or two or more types. That is, using this method, it is possible to simultaneously detect or quantify multiple analyte polypeptides (see Example 13).
  • a polypeptide comprising the first and the 24th amino acid sequence of adrenocorticotropic hormone, a polypeptide comprising the first to the 16th amino acid sequence of ⁇ -amyloid, and the first force of the ⁇ -amyloid amino acid sequence Polypeptide consisting of the 28th, ⁇ -amyloid amino acid sequence 1st force and 38th polypeptide, ⁇ -amyloid amino acid sequence 1st force also consisting of the 40th polypeptide, ⁇ -amyloid amino acid sequence 1 Polypeptide consisting of No. 42, amino acid sequence of ⁇ -amyloid No. 1, No.
  • polypeptide growth hormone-releasing factor, Iso-Isyl-Ceryl-Brazikin, brain natriuretic peptide ( ⁇ -32) , Insulin, type C natriuretic peptide (CNP-53), Polypeptides, neuromedin C, neuropeptide ⁇ , nociceptin, oxytocin, urocortin, mitocaine, interferon- ⁇ , atrial natriuretic peptide ( ⁇ (1-28)), rat neutrophil Tranquility factor—1 (CINC—lZgro), parathyroid hormone ( ⁇ (1--84)), ovalbumin amino acid sequence No. 323, also 339th polypeptide, ovalbumin, angiotensin II, amino acid sequence Examples include angiotensin II in which the fourth tyrosine is phosphorylated (see Examples 5 to 6).
  • the OFF phase polypeptide means a polypeptide in the OFF phase state.
  • the OFF phase state means the adsorption capacity of the reversed phase liquid chromatograph column to the packing material. It means that the polypeptide is present in the solution in a state where it is lost.
  • the state in which the adsorptive capacity is substantially lost means a state in which it is not adsorbed at all or a state in which it is hardly adsorbed as compared with a polypeptide in an ON phase state.
  • sample preparation the solid phase
  • reverse phase column packing material the reverse phase column packing material
  • the introduction of the polypeptide sample into the reverse phase liquid chromatograph It was also found that the same behavior was exhibited for the containers used). Furthermore, it was suggested that the adsorption capacity of the polypeptide to the container used during sample preparation is substantially equal to or slightly lower than the adsorption capacity to the silica-based column packing (Example 1). See also), and OFF-phase polypeptides are considered to have substantially lost their adsorptive capacity even for containers used for sample preparation.
  • containers and the like used during sample preparation include chips, sample vials, sample injectors, syringes, and liquid feeders.
  • these materials include polypropylene, polytetrafluoroethylene, silicone, stainless steel, glass, PEEK resin, ceramic, Vespel, and Tefzel.
  • the present inventors packed a column in a mixed solution of water-acetonitrile mixed solution, water-ethanol mixed solution, water-methanol mixed solution, and water-acetic acid mixed solution.
  • the approximate value of the phase transition critical value of the adsorption capacity to the agent was determined (see Example 5).
  • water-acetonitrile nitrile mixed solution having a volume ratio of acetonitrile of 50% or more, water-ethanol mixed solution having a volume ratio of ethanol of 60% or more, water having a volume ratio of methanol of 70% or more
  • water-acetonitrile mixed solution having a volume ratio of acetonitrile of 50% or more
  • water-ethanol mixed solution having a volume ratio of ethanol of 60% or more
  • water having a volume ratio of methanol of 70% or more In the mixed solution of methanol and the mixed solution of water and acetic acid in which the volume ratio of acetic acid is 70% or more, it became clear that all 27 kinds of test polypeptides were in the OFF phase. Similarly, other polypeptides are considered to be in the OFF phase in these mixed solutions.
  • the volume ratio of acetonitrile is 50% or more
  • the volume ratio of ethanol is 60% or more
  • the volume ratio of methanol is 70% or more
  • the volume ratio of Z or acetic acid is 70% or more
  • Acetonitrile, methanol, ethanol and acetic acid power Solution containing one or more organic solvents selected, for example, water-acetonitrile (volume ratio of water to acetonitrile is 1: 1).
  • an OFF-phase polypeptide sample can be prepared.
  • the OFF-phase polypeptide sample can also be prepared, for example, according to the method described in the Examples. Specifically, (1) one or more organic solvents are selected from organic solvents that can be used for reverse phase liquid chromatography.
  • phase transition critical value of the test polypeptide in the mixed solution of water and the organic solvent is determined.
  • the test polypeptide is added to a mixed solution of water and the organic solvent in which the volume ratio of the organic solvent sufficiently exceeds the determined phase transition critical value.
  • an OFF phase polypeptide sample can be prepared.
  • An OFF phase polypeptide sample can be prepared.
  • Examples of the organic solvent that can be used in the reverse phase liquid chromatograph include acetonitrile, methanol, ethanol, isopropyl alcohol, acetone, DMSO, THF, acetic acid, formic acid, TFA, and the like. Of these, acetonitrile, methanol, ethanol, isopropyl alcohol, acetic acid, formic acid, and TFA are preferred. These can be used in combination with one or more.
  • the type of solvent used as the mobile phase and the type of solvent of the test polypeptide sample may be the same or different.
  • a water-acetonitrile mixed solvent may be used as the mobile phase V
  • the solvent of the test polypeptide sample may be a mixed solvent of water-methanol and acetonitrile containing about several percent of acetic acid.
  • the phase transition critical value of the polypeptide decreases when isopropyl alcohol> acetonitrile and ethanol> methanol and acetic acid are used as organic solvents in this order. (See Example 15).
  • a method for determining the critical value of the phase transition of the test polypeptide will be specifically described in the case of selecting acetonitrile as the organic solvent.
  • Multiple water-acetonitrile mixed solutions with different volume ratios of water and acetonitrile eg, water: acetonitrile volumetric ratio 10: 0, 9: 1, 8: 2, 7: 3, 6: 4, 5: 5, 4 : 6,3: 7,2: 8,1: 9,0: 10) in which the test polypeptide is dissolved and the volume ratio of water and acetonitrile is different.
  • each test polypeptide sample was subjected to reverse phase liquid chromatography (Fig.
  • the mobile phase for introduction is preferably an aqueous mobile phase.
  • the mobile phase for elution is preferably an organic solvent-based mobile phase.
  • the aqueous mobile phase is a mobile phase containing no organic solvent or slightly containing an organic solvent. Examples of the aqueous mobile phase include an organic acid aqueous solution of about 0.01 to 6%.
  • An organic solvent-based mobile phase means a mobile phase that has only one or more types of organic solvent or a mobile phase that also has one or more types of organic solvent that contains a little water.
  • an organic solvent-based mobile phase for example, an acetonitrile-methanol mixture containing about 0.01 to 6% organic acid, an acetonitrile solution containing about 0.01 to 6% organic acid, about 0.01 to 6%
  • examples include methanol solutions containing organic acids, ethanol solutions containing about 0.01 to 6% organic acids, and the like.
  • Preferred examples of the organic acid include acetic acid, formic acid, and TFA.
  • An example of the organic solvent mobile phase is a 100% acetic acid solution.
  • the polypeptide contained in each test polypeptide sample is OFF.
  • the phase transition critical value of the test polypeptide in the water-acetonitrile mixed solution can be determined to be 30 to 40%.
  • an OFF-phase polypeptide sample can be prepared by dissolving the polypeptide in a water-acetonitrile mixed solution having a acetonitrile power of 0% or more.
  • phase transition critical value of a test polypeptide in a water-acetonitrile mixed solution is determined to be 30-40% and the phase transition critical value of the test polypeptide in a water-methanol mixed solution is determined to be 40-50%
  • the present inventors analyzed a test polypeptide sample by a conventional reversed-phase liquid chromatograph (Fig. 1 (A)) using two types of mobile phases (aqueous mobile phase and organic solvent-based mobile phase). It was found that a power law is established between the retention time of the test polypeptide and the gradient gradient (see Example 6). Furthermore, the following equation (b) is established between the elution time of two types of gradient gradients, their gradient gradients, and the mobile phase (eluent) composition at the time of elution of the test polypeptide by each gradient gradient. (See Example 6).
  • the aqueous mobile phase is a mobile phase that hardly contains an organic solvent and an organic acid
  • V one (T -T 2 ) ... Formula (b)
  • r is a gradient gradient (% Zmin), and r is a gradient that differs from r.
  • T is the elution time of test polypeptide with gradient gradient r (min)
  • T is the elution time of test polypeptide with gradient gradient r (min)
  • V is the test polyp
  • the volume ratio (%) of the organic solvent-based mobile phase in the mobile phase (eluent) during peptide elution is shown.
  • an OFF-phase polypeptide sample can be prepared by dissolving the test polypeptide in a mixed solution in which the volume ratio of the aqueous mobile phase to the organic solvent-based mobile phase is (100-V): V.
  • the present inventors analyzed a test polypeptide sample by a conventional reversed-phase liquid chromatograph (Fig. 1 (A)) using two types of mobile phases (an aqueous mobile phase and an organic solvent mobile phase).
  • the power law should be established between the retention time of the test polypeptide and the gradient.
  • Found see Example 6
  • the constant B is the retention time (elution) where the gradient slope is l% Zmin. Time).
  • the elution time of the test polypeptide with a gradient gradient of 1% Zmin is the same as the time when the test polypeptide is introduced and the elution time of the test polypeptide is the mobile phase (in the eluent). (% Is an approximate value because the increase includes dead volume). Taking advantage of this property, for example, using an aqueous solution that does not contain an organic solvent as the aqueous mobile phase and one organic solvent selected as the organic mobile phase, the mixing ratio of these mobile phases at the start of the measurement is the aqueous mobile phase.
  • test polypeptide polypeptide A
  • the OFF phase polypeptide A is then phase-converted.
  • phase transition of OFF-phase polypeptide A to ON-phase polypeptide A and (3) ON-phase polypeptide A is allowed to interact with column packing by interacting with the ON-phase polypeptide A.
  • ON-phase polypeptide A held in the column is phase-transduced to convert ON-phase polypeptide to OFF-phase polypeptide A, and (5) OFF-phase polypeptide A Elute, and (6) detect or quantify the eluted polypeptide A.
  • steps (1) to (6) will be described.
  • Step (1) is a step of introducing OFF-phase polypeptide A into a reverse-phase liquid chromatograph.
  • conventional reversed-phase liquid chromatography no investigation has been made as to whether the test polypeptide is in the OFF phase state or the ON phase state.
  • urocortin has a very weak adsorption capacity to the column packing in a solution (40% or more) having a high acetonitrile content, whereas it rapidly increases when the acetonitrile content is less than 30%.
  • urocorti in water-acetonitrile solution It is considered that the critical value of phase transition of the adsorption capacity of the column to the column packing is between 30% and 40%.
  • the adsorption ability of the polypeptide to the container or the like used during the sample preparation is substantially equal to or slightly lower than the adsorption ability to the silica-based column packing.
  • the peak area was almost constant when the acetonitrile content in the sample solution was 30% or more. Therefore, the acetonitrile content in the sample solution was 30%.
  • step (1) the test polypeptide
  • adsorption to a container or the like can be avoided by setting the test polypeptide contained in the test polypeptide sample to the OFF phase.
  • the OFF-phase polypeptide sample can be prepared according to the preparation method of the sample described above.
  • the phase transition critical value of the polypeptide is about 5 to 95%. More preferably, it is about ⁇ 90%.
  • the critical value of phase transition of the polypeptide is not within this range, it is preferable to change the type of organic solvent, column packing material, column temperature, etc. in the sample or mobile phase. Such changes can be appropriately made by those skilled in the art.
  • the sample can be introduced into a reverse phase liquid chromatograph with the help of a sample injector.
  • the mobile phase for introducing this sample is not particularly limited, but an organic solvent type mobile phase is preferable. It is preferably an organic solvent-based mobile phase in which the test polypeptide becomes an OFF phase when the test polypeptide is dissolved in the mobile phase.
  • an organic solvent-based mobile phase for example, a acetonitrile-methanol mixed solution containing about 0.01 to 6% organic acid, a acetonitrile solution containing about 0.01 to 6% organic acid, about 0.01 to 6% Examples thereof include methanol solutions containing organic acids, ethanol solutions containing about 0.01 to 6% organic acids, and the like.
  • the step (2) is a step of performing phase transition of the OFF phase polypeptide A to the ON phase polypeptide A by executing a means for phase transition of the OFF phase polypeptide A.
  • the phase transition produces ON phase polypeptide A.
  • the produced ON phase polypeptide A is adsorbed on the column packing material.
  • step (2) is preferred to be stationary phase, that is, just before the column (Fig. 1 (C) and (D)).
  • the means for causing phase transition of the OFF phase polypeptide A means means for producing or promoting the production of the ON phase polypeptide from the OFF phase polypeptide A contained in the mobile phase.
  • OFF-phase polypeptide A means for phase transition is the mobile phase in which OFF-phase polypeptide A exists (the organic solvent contained in the mobile phase is organic solvent 1, 2, ..., organic solvent n (n is 1 The above integer)) is a means for making the f value in the above-mentioned formula (a) relating to the test polypeptide smaller than 1.
  • the f value can be made smaller than 1.
  • the mobile phase in which polypeptide A is present is added to the mobile phase that is different from the mobile phase (sometimes referred to as the mobile phase for polypeptide A phase transition) and stirred, so that the OFF phase
  • the type of solvent and Z or the composition of the solvent contained in the mobile phase in which polypeptide A is present can be varied.
  • the mobile phase in which the OFF-phase polypeptide A before this change exists may be referred to as a polypeptide A-introducing mobile phase.
  • the mobile phase for polypeptide A phase transition is a mobile phase (ON phase solution) in which polypeptide A becomes an ON phase when polypeptide A is dissolved in the mobile phase.
  • the f-value can be made smaller than 1.
  • the OFF phase polypeptide A contained in the mobile phase undergoes a phase transition to produce the ON phase polypeptide A.
  • the OFF-phase polypeptide A sample is a sample in which polypeptide A is dissolved in a mixed solvent of water, organic solvent X, organic solvent Y, and organic solvent Z, and the mobile phase for introducing polypeptide A is water, organic A mobile phase consisting of solvent L, organic solvent M and organic solvent N, and when the mobile phase for polypeptide A phase transition is a mobile phase consisting of water, organic solvent 0, organic solvent P and organic solvent Q. explain.
  • the organic solvent used for the mobile phase is an organic solvent that can be used for the reverse phase liquid chromatograph to be used, such as acetonitrile, methanol, ethanol, isopropyl alcohol, acetone, DMSO, THF, acetic acid, formic acid and TFA.
  • the force can also be appropriately selected. These can be used alone or in combination of two or more.
  • the addition and stirring of the mobile phase for polypeptide A phase transition can be carried out, for example, with a mixer (FIGS. 1C and 1D) provided in a reverse phase liquid chromatograph.
  • phase transition critical value of polypeptide ⁇ ⁇ ⁇ ⁇ in each mixture of organic solvent ⁇ mixed solution, water-organic solvent ⁇ mixed solution, water-organic solvent ⁇ mixed solution and water-one organic solvent Q mixed solution respectively, X (%), Y (%), Z (%), L (%), M (%), N (%), O (%), P (%), and Q (%).
  • phase transition critical values can be determined by the aforementioned method for determining the phase transition critical value.
  • polypeptide A present in the mobile phase for introducing polypeptide A is in the OFF phase (that is, when the mobile phase for introducing polypeptide A is the OFF phase solution), lZL + mZM + nZN> 1 Is established.
  • the polypeptide A sample introduced into the reversed-phase liquid chromatograph is transferred for subsequent polypeptide A introduction in the pipe while diffusing before and after, unless it is stirred and mixed with the mobile phase for polypeptide A introduction using a mixer.
  • polypeptide A becomes the ON phase, and the mobile phase for introducing polypeptide A and the polypeptide A phase.
  • polypeptide A must be in the ON phase even in a solution where the transfer mobile phase is mixed 1: a.
  • Polypeptide ⁇ When polypeptide A present in the mobile phase for introduction is the ON phase (that is, when the mobile phase for introduction of polypeptide A is the ON phase solution), l / L + m / M + n / N ⁇ 1 is true.
  • urocortin is taken as an example and the mixing ratio will be further described.
  • the urocortin phase transition critical value in the water-acetonitrile mixed solution is about 35%
  • the urocortin phase transition critical value in the water-ethanol mixed solution is about 45%
  • urocortin in the water-acetic acid mixed solution It became clear that the phase transition critical value of was about 65% (see Example 3). Therefore, the solvent of the OFF phase urocortin sample is a solvent composed of water, acetonitrile, and ethanol, wherein the volume ratio of water: acetonitrile: ethanol is 20%: 35%: 45%.
  • a mobile phase for introducing urocortin is a solvent that also has water, acetic acid, acetonitrile, and ethanol, and the volume ratio of water: acetic acid: acetonitrile: ethanol is 16.75%: 3.25%: 35%: 45% Can be illustrated.
  • j8 is about 1.1 and ⁇ is about 1.05. Accordingly, ⁇ can be calculated to be about 1.1 or more.
  • the mobile phase for introducing urocortin and the mobile phase for urocortin phase transition may be mixed and stirred at a mixing ratio of 1: 2.
  • examples of means for causing phase transition of the OFF phase polypeptide can include means for reducing the organic solvent content in the mobile phase containing the OFF phase polypeptide. By increasing the water content of the mobile phase containing the OFF phase polypeptide, the organic solvent content in the mobile phase containing the OFF phase polypeptide can be reduced.
  • the present inventors used 27 kinds of test polypeptides as a target, using a water isopropyl alcohol mixed solution, a water-acetonitrile mixed solution, a water-ethanol mixed solution, a water-methanol mixed solution, and a water-acetic acid mixed solution.
  • a water isopropyl alcohol mixed solution As a result of calculating the approximate value of the phase transition critical value in each organic solvent (including acetic acid), it was found to be about 5 to 70% (see Example 15).
  • the phase transition critical value is about 1 to 5%.
  • At least a mobile phase supply (mobile phase 1 supply) that supplies a mobile phase (mobile phase 1), a mobile phase supply (mobile phase 2) that supplies a mobile phase (mobile phase 2) different from mobile phase 1 ( Mobile phase 2 supply), mobile phase 1 sample injector connected to the supply pipe via a liquid feed pipe, mobile phase 2 mobile phase connecting the sample injector to the sample injection pipe via a liquid feed pipe
  • a reversed-phase liquid chromatograph having a mixer, a reversed-phase analysis column connected to the mobile-phase mixer via a liquid feeding tube, and a polypeptide detection or quantification device connected to the reversed-phase analysis column (FIG. 1 ( Explain step (2) when C)) is used.
  • Step (2) is performed by mixing and stirring mobile phase 1 and mobile phase 2 by a mobile phase mixer.
  • the mobile phase 1 may be any mobile phase in which the test polypeptide is turned off when the test polypeptide is dissolved in the mobile phase 1.
  • isopropyl alcohol is 0% or more
  • acetonitrile volume ratio is 50% or more
  • ethanol volume ratio is 50% or more
  • methanol volume ratio is 80% or more
  • Z or acetic acid volume ratio is 80%.
  • Step (2) can be carried out by mixing and stirring the mobile phase 1 and the mobile phase 2 with a mobile phase mixer at a mixing ratio of 1: 100 to 1: 1, preferably 1: 100 to 1: 2. .
  • mobile phase 1 which is a mixed solution of acetonitrile, nitrile and methanol (volume ratio 1: 1) containing acetic acid at a volume ratio of 4%, and an aqueous acetic acid solution at a volume ratio of 4%.
  • Step (2) can be carried out by mixing and stirring mobile phase 2 at a mixing ratio of 2: 8 (see Example 1).
  • the stationary phase of the column and the column temperature also affect the retention time of the polypeptide in the stationary phase (see Examples 8 and 9), the filling of the column of the polypeptide in the polypeptide solution. Compared to the effect of the phase transition of the adsorption capacity on the filler, it is slight.
  • increasing the column temperature shortens the retention time of the polypeptide in the stationary phase, so the transition critical value of the polypeptide decreases.
  • decreasing the column temperature decreases the polypeptide stationary phase. Since the retention time in the polypeptide becomes longer, the critical value of phase transition of the polypeptide increases.
  • graphite carbon fillers have a stronger retention of the polypeptide than silica gel fillers, so that for a certain polypeptide, the phase transition of the polypeptide when silica gel filler is used.
  • the critical value is low compared to the phase transition critical value of the polypeptide when graphite carbon filler is used!
  • Step (3) is a step of allowing ON-phase polypeptide A to interact with the column filler.
  • the test polypeptide is in a state capable of being adsorbed to ON-phase polypeptide A, that is, the column packing material, so that it is reliably adsorbed to the entire packing material.
  • the polypeptide introduced in the OFF phase state does not adsorb to the column packing material. In some cases, two peaks were generated (see Example 1).
  • the polypeptide introduced in the ON phase is surely adsorbed to the column packing material, but part of it is lost due to adsorption to the container before introduction, resulting in loss of quantitativeness and high sensitivity quantification. It was difficult.
  • Step (4) is a step of producing OFF-phase polypeptide A by causing phase transition of ON-phase polypeptide A adsorbed on the filler.
  • This step is carried out by changing the concentration of the organic solvent monohydrate in the mobile phase, that is, applying a gradient.
  • the organic solvent content in the mobile phase may be increased according to the above idea until the mobile phase is turned off.
  • retention of polypeptides in column packing is most affected by adsorption capacity in the presence of various interactions such as hydrophobic interactions. Is a feature.
  • the adsorption ability of this polypeptide is characterized by a significant change at the boundary of the phase transition critical value, and the ON-phase polypeptide adsorbed on the column packing interacts with the force ram packing. Compared to low molecular weight compounds, it has the property of hardly moving in the column under isocratic conditions. Using this property, the steps (1) to (3) can be repeatedly executed, and then the step (4) can be executed. As a result, column packing The polypeptide can be adsorbed to the column packing material to the limit of the polypeptide loading amount of the agent, and highly sensitive quantification becomes possible.
  • Step (5) is a step of eluting OFF-phase polypeptide A. Elution may be performed using an eluent that increases the concentration of the organic solvent in the eluent, that is, has a solution composition in which the polypeptide becomes an OFF-phase polypeptide.
  • Step (6) is a step of detecting or quantifying the eluted polypeptide A, and the detection may be any of UV, fluorescence, photodiode array and the like.
  • mass spectrometry especially tandem mass spectrometry, is preferred.
  • the present invention includes at least a mobile phase supply device (mobile phase 1 supply device) for supplying a certain mobile phase (mobile phase 1) and a mobile phase (mobile phase 2) different from mobile phase 1.
  • Mobile phase supply device mobile phase 2 supply device
  • mobile phase 1 supply device and sample injector connected via a liquid delivery tube
  • a mobile phase mixer connected via a reverse phase analysis column connected to the mobile phase mixer via a liquid feeding tube
  • a chromatograph is also provided (Fig. 1 (C)).
  • This reverse phase liquid chromatograph can be used in the present detection or quantification method.
  • the reversed-phase analysis column and the polypeptide detection or quantification device can be connected via a liquid feeder.
  • a polypeptide detection or quantification device is a detection or quantification device capable of detecting or quantifying a polypeptide.
  • a liquid chromatograph Z mass spectrometer As the reversed-phase liquid chromatograph, a liquid chromatograph Z mass spectrometer (LC MS) is preferably exemplified.
  • a liquid chromatograph Z tandem mass spectrometer (LC MSZMS) is preferably exemplified as the liquid chromatograph Z mass spectrometer (LC MS).
  • a reversed-phase liquid chromatograph having three or more mobile phase feeders is preferable (Fig. 1 (D)). Therefore, at least a mobile phase supply (mobile phase 1 supply) that supplies a mobile phase (mobile phase 1), mobile phase 1 and Is a mobile phase supply (mobile phase 2 supply) that supplies a different mobile phase (mobile phase 2), and a mobile phase supply (mobile phase 3) that supplies a different mobile phase (mobile phase 3) from mobile phases 1 and 2.
  • Phase 3 supply), mobile phase 1 supply and mobile phase 2 supply are connected via a liquid supply tube mobile phase mixer (mixer A), sample connected to mixer A via a liquid supply tube A mobile phase mixer (mixer B) that connects the injector, the mobile phase 3 supply device, and the sample injector via a liquid feeding tube, and a reverse-phase analysis column that connects the mixer B via a liquid feeding tube
  • LC MS liquid chromatograph Z mass spectrometer
  • LC MS / MS liquid chromatograph Z tandem mass spectrometer
  • the mass spectrometer is connected to the switching valve instead of the mass spectrometer and the analytical column being connected via the liquid feeding tank, and the switching valve is connected to the reverse-phase analytical force ram via the liquid feeding tank. May be.
  • the switching valve can determine whether or not the force to move the eluate of the analytical column power to the mass spectrometer. For example, after the detection or quantification of the polypeptide is completed, when washing impurities adsorbed on the analytical column, the switching valve is operated to stop the eluent of analytical column force from transferring to the mass spectrometer. be able to.
  • FIG. 1 shows a comparison of the system of the present invention (FIGS. 1 (C) and (D)) and a conventional system (FIGS. 1 (A) and (B)).
  • a polypeptide sample having a solution composition capable of avoiding adsorption to a container or the like can be quantified without loss. Therefore, it is possible to measure up to the detection limit of the device, and depending on the amount of sample introduced into the system, polypeptides below fM order can be accurately quantified.
  • biological samples include plasma, urine, tissue homogenates, and the like, but plasma-derived samples are preferred.
  • acetic acid improves the solubility of polypeptides in biological samples is not clear, but it inhibits the interaction between polypeptides in plasma and certain polypeptides, This is thought to be due to inhibition of aggregation between a polypeptide in plasma and a polypeptide. That is, by adding acetic acid, the interaction between the same or different polypeptides can be inhibited in the in vitro mouth, and their aggregation can be inhibited.
  • the action of improving the solubility of a polypeptide by adding acetic acid is particularly effective when an organic solvent is added to a biological sample containing the polypeptide.
  • the organic solvent is preferably one or more selected from acetonitrile, methanol, ethanol and isopropyl alcohol. That is, the solubility of a certain polypeptide (polypeptide A) in the sample can be improved by adding an organic solvent and acetic acid to the plasma-derived sample.
  • the sample having improved solubility in this manner is OFF phase polypeptide A.
  • the polypeptide may have a molecular weight of 10,000 Da or more. In particular, it is useful for improving the solubility of ⁇ -amyloid or its partial polypeptide in biological samples.
  • Examples of the partial polypeptide of j8 amyloid include the following (1) to (4).
  • a polypeptide comprising the first amino acid sequence up to the 43rd amino acid sequence of ⁇ -amyloid.
  • the amount of the organic solvent is preferably 10% or more, and the amount of acetic acid is preferably 50% or more.
  • TSA Trifluoroacetic acid
  • Ultrapure water low total organic carbon water: Low TOC water
  • polypeptides were purchased from Peptide Institute and used.
  • Atrial natriuretic peptide (1-28)
  • polypeptides were purchased from American Peptide Company, Inc. and used
  • Polypeptides marked with * are referred to as 18 types of polypeptides in the examples below.
  • polypeptides were purchased from Sigma and used.
  • polypeptides were purchased from BACHEM and used.
  • polypeptides were purchased from Calbiochem and used.
  • Preparation of polypeptide stock solution GRF and insulin were dissolved in an acetic acid aqueous solution having a volume ratio of 0.1% to prepare a stock solution (100 ⁇ ).
  • a urocortin stock solution (100 ⁇ ) was prepared by dissolving urocortin in an acetic acid aqueous solution with a volume ratio of 1%.
  • Amyloid ⁇ protein (1-28), (1 38), (1-40), (1-42) and (1-43) were dissolved in DMSO to prepare a stock solution (100 ⁇ ).
  • [Tvr (PO H) 4 ] -angiotensin II and ovalbumin (323-339) are soluble in water.
  • polypeptide stock solution (ImM) was prepared, and angiotensin II was dissolved in water to prepare a polypeptide stock solution (50 mM). Further, midkine, CINC-1 / gro and PTH (1-84) were dissolved in water to prepare a polypeptide stock solution (10 M).
  • ovalbumin was dissolved in water to prepare a polypeptide stock solution (10 mgZmL; about 200 M).
  • a polypeptide stock solution (100 M) was prepared by dissolving in water.
  • Polypeptide stock solution (100 M) L is mixed with acetic acid monohydrate-acetonitrile methanol mixture (volume ratio 2: 80: 10: 10, 4: 80: 10: 10, 2: 50: 25: 25 or 4:50:25: 25) 490 L or 990 ⁇ L, or acetic acid-water-acetonitrile mixture (volume ratio 2: 80:20, 4: 80: 20, 2: 50: 50 or ⁇ 4:50: 50) 490 L or ⁇
  • add 990 L to prepare a polypeptide sample solution (1 or 2 kg).
  • Ovalbumin stock solution (10 mgZmL; approx. 200 i uM) 10 i uL is mixed with acetic acid / water / acetonitrile / methanol mixture (volume it4: 80: 10: 10 or ⁇ or 4: 50: 25: 25) 490 ⁇ L or ⁇ Then, add 990 ⁇ L to prepare a polypeptide sample solution (1 or 2 mgZmL).
  • Multivalent ions were observed in all the polypeptides used for the study. One of these polyions was selected as the parent ion, and daughter ions were selected for MSZMS measurement. At that time, parameters related to MS conditions were optimized. Table 1 and Table 2 show examples of monitor ions for each polypeptide used in the measurement.
  • NPY 4272 36 pskpdnpgedapaedmar ysalrhyinlitrqry 713 or 855 70 amyloid ⁇ -protein (1-40) 4330 40 daefrhdsgyevhhqklvffaedvgsnkgaiiglmvggw 723 or 867 86 amyloid ⁇ -protein (1-42) 4514 42 daefrhdsgyedvggg 43) 4615 43 daefrhdsgyevhhqklvf aedvgsnkgauglmvggwiat 770 or 924 86 urocortin 4696 40 dnpslsidltfhllrtllelartqsqreraeqnriifdsv 940 70
  • Insulin 4 5808 51 1163 136
  • Example 1 Phase transition phenomenon of adsorption ability of urocortin to column packing material
  • a urocortin sample solution (10 M) was prepared by adding urocortin stock solution (100 M) L to 90 L of a 2% volumetric acetic acid aqueous solution. Furthermore, 10 ⁇ L of this urocortin sample solution was added to 990 L of water-acetonitrile mixture (volume ratio 10: 0, 8: 2, 7: 3, 6: 4, 4: 6 or 2: 8) to prepare a urocortin sample solution ( ⁇ ).
  • water-acetonitrile mixed solution containing 4% formic acid by volume instead of 4% by volume or 0.1% TFA by volume ratio (volume ratio 10: 0, 8: 2, 7: 3, 6 : 4, 4: 6, 2: 8) and acid-free water-acetonitrile mixtures (volume ratios 10: 0, 8: 2, 7: 3, 6: 4, 4: 6, 2: 8)
  • urocortin samples ( ⁇ ) with different acetonitrile content were prepared.
  • an InM urocortin sample solution was prepared by diluting 10 L of ⁇ urocortin sample solution with 990 L of the same composition solution.
  • Mobile phase A Acetic acid monohydrate mixture (volume ratio 4: 100)
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4:50:50)
  • the flow rate was set to 0.6 mLZmin from 0.1 minutes to 3 minutes.
  • the peak area of urocortin showed the maximum value when the acetonitrile content in the sample solution was 30%.
  • the force at which the urocortin peak area shows the maximum value the peak area at that time is the peak area when using other acids. The power was almost the same. Therefore, the acid to give to the peak area of urocortin The effect was considered to be less than the effect of the acetonitrile content in the sample solution.
  • urocortin in the solution can interact with the column.
  • urocortin in the sample solution is present in the solution while maintaining the adsorption capacity to the column packing (hereinafter, strongly applied to the column packing).
  • the interacting phase urocortin is sometimes referred to as the ON phase urocortin).
  • the sample solution introduced into the reverse phase chromatograph is As shown in FIG. 4, since the acetonitrile content is maintained until it is introduced into the column, urocortin in the solution interacts with the column and is retained in the column.
  • urocortin in the case of urocortin, it is possible to introduce a urocortin sample in a state where the adsorption capacity to the column packing material has been lost (acetonitrile content exceeding the critical value, that is, a solution composition having 40% or more acetonitrile content) into the system.
  • the mobile phase A: B ratio to the ratio A: B that can restore the affinity of urocortin to the column stationary phase
  • the ability of urocortin to adsorb to the column packing material can be generated instantaneously by phase transition. As a result, it was thought that all urocortin could be retained on the column.
  • the urocortin peak corresponding to a retention time of 1.5 minutes recognized by the conventional method was a force not recognized in the system of the present invention (Fig. 5 (B).
  • A) White circle The acetonitrile content in the urocortin sample solution is 20%.
  • the urocortin peak area with a retention time of 6.5 minutes becomes smaller compared to when the acetonitrile content in the sample solution is 30% or more, and further in the sample solution.
  • the peak area of urocortin was about 40%, and this decrease in the urocortin peak area was due to the equipment and containers from which urocortin samples were prepared (Eppendorf tips and tubes). ), And the amount of urocortin introduced into the column due to adsorption to the equipment (syringe for injection), which is used in liquid chromatographs. Since the acetonitrile content was 30% or more and the peak area was almost constant, when the acetonitrile content in the sample solution was 30% or more, it was used during sample preparation and storage.
  • Example 2 Phase transition of adsorption ability of urocortin to column packing material by factors other than acetonitrile
  • the Urokoruchin stock (100 M) 10 L, of 990 mu L acetate - water - Asetonitoriru mixture (volume ratio of 4: 50: 50) was added to prepare a Urokoruchin sample solution (1 mu Micromax). Further, this urocortin sample solution 10; zL was added to 990 L of the following mixed solution to prepare an urocortin sample solution ( ⁇ ).
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4:50:50)
  • phase transition of the adsorption capacity of urocortin to the column packing was caused by all the solutions studied with only the aforementioned acetonitrile (Table 5).
  • the phase transition critical value in each solution is 40% to 50% by volume when ethanol is used, 60 to 70% by volume when using methanol and acetic acid, and 80% to 80% by volume when using formic acid. It was considered to exist between 90%.
  • the results indicate that the strength of the organic solvent contained in the solution that affects the phase transition of adsorption capacity of urocortin to the column packing is in the order of acetonitrile> ethanol> methanol and acetic acid> formic acid.
  • Example 3 Phase Transition Phenomenon of Adsorption Capacity of Urocortin in Solution Containing Two Kinds of Organic Solvents on Column Filler
  • the Urokoruchin stock 100 M 10 L, of 990 mu L acetate - water - Asetonitoriru mixture (volume ratio of 4: 50: 50) was added to prepare a Urokoruchin sample solution (1 mu Micromax). Further, 10 L of this urocortin sample solution was added to 990 L of the mixed solution shown in Table 6 and Table 7 to prepare urocortin sample solution ( ⁇ ).
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4:50:50)
  • Tables 9 and 10 show the peak area values of urocortin that were not retained on the column and measured when urocortin samples containing two organic solvents were measured using the conventional method.
  • Acetonitrile Sample contains formic acid! :%
  • Methanol sample contains formic acid! : 3 ⁇ 4
  • the critical content (%) of each organic solvent used in the calculation is the median value of the organic solvent content before and after the peak is split into two on the chromatogram (acetonitrile: 35%, ethanol: 45%, methanol: 65% Acetic acid: 65%, formic acid: 85%).
  • a urocortin sample solution (1 ⁇ ) was prepared by adding 10 uL of urocortin stock solution (100 j M) to 990 ⁇ L of oxalic acid-water-acetonitrile mixture (volume ratio 4:50:50). . In addition, add 10 L of urocortin sample solution to 990 L of the mixture shown in Table 13 A rutin sample solution ( ⁇ ) was prepared.
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4:50:50)
  • Example 5 Phase transition of adsorption ability of various polypeptides to C4 column packing materials by each organic solvent (including organic acids)
  • each polypeptide (lmM, 100 ⁇ , 10 ⁇ , or 10 mg / mL) excluding angiotensin II and ovalbumin (323-339) 10
  • Each ⁇ L was added to 990 ⁇ L of the following mixed solution to prepare each polypeptide sample solution (10 M, 1 kg, ⁇ or 0.1 mg / mL).
  • the strength of the organic solvent that causes the phase transition of the adsorption ability of the polypeptide to the column packing material is almost the same for each polypeptide, but is almost equal to acetonitrile and ethanol, followed by methanol. It was. On the other hand, it was suggested that the strength of the effect of acetic acid, an organic acid, on the phase transition of the adsorption capacity of each polypeptide to the column packing material was almost the same as or slightly weaker than that of methanol. In addition, since a positive correlation was observed between the maximum organic solvent content in these solutions and the retention time of each polypeptide, the polypeptides were affected by organic solvents such as acetonitrile and organic acids contained in the lysate.
  • ANP (1-28) 3080 5 5 10 20 4.4 amyloid ⁇ -protein (1-28) 3263 10 10 20 20 4.5
  • PTH (l-84) 9425 20 20 30 30 5.3 midkine 13 240 5 5 10 10 4.2 interferon- ⁇ 17kD 20 30 50 50 6.6 ovalbumin 45kD 40 50 60 60 7.5
  • Mobile phase A Acetic acid monohydrate (volume ratio 4: 100)
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4: 50: 50)
  • equation (3) force is also used to calculate the dead volume of the entire measurement system.
  • Table 19 Regardless of the gradient, it was shown that the dead volume of each polypeptide was constant at approximately 3 minutes and was independent of the polypeptide. As the molecular weight decreased, the tendency for the dead volume to increase slightly was observed, but this was thought to be due to the fact that these peptides could reach the interior of the column pores.
  • Phase transition of adsorption capacity to column packing material and included in eluent As shown in Example 3, the relationship with each organic solvent indicates the relationship between the phase transition of the adsorption ability of the polypeptide to the column filler in the sample containing a plurality of organic solvents and the content of each organic solvent. It was suggested that this is the same as the equation (a).
  • polypeptide A was “the phase transition of the adsorption capacity to the column packing material.
  • the total organic solvent content in the eluent at the moment when polypeptide A is eluted is constant, that is, the eluent at the moment when polypeptide A is eluted, regardless of the gradient gradient.
  • the ratio of the mobile phases A and B that make up the peptide is considered to be constant, the ratio% (V) of the mobile phase B that makes up the eluent at the moment when the polypeptide A is eluted
  • V C + (T t) -r
  • V C + (T t) -r
  • T Retention time of polypeptide A as measured by gradient gradient r
  • T Retention time of polypeptide A as measured by gradient gradient r
  • V (T -t) ⁇
  • V ( ⁇ -t) ⁇
  • ANP (1-28) 3080 4.8 5.5 6.6 3.3 3.0 2.7 3.0 0.3 amyloid ⁇ -protein (1-28) 3263 4.8 5.5 6,7 3.1 2.9 2.7 2.9 0.2
  • the retention time in the case of a gradient gradient of 1% Zmin is considered to be equivalent to the volume of organic solvent increased in the eluent until the polypeptide is eluted (retention time x gradient gradient).
  • dead volume is included.
  • the proportion of organic solvent at the start of measurement is only 4% volume ratio of acetic acid contained in aqueous mobile phase A, and the dead volume of the entire measurement system is about 3 minutes. Therefore, the obtained constant B is an approximate value of the organic solvent content that is the phase transition critical value of each polypeptide (the difference between the 4% acetic acid content and the dead volume is considered to be approximately 1 minute). It was thought that Thus, when compared with the ratio% (V) of the mobile phase B constituting the eluent at the moment when the polypeptide A was eluted, the results were almost identical.
  • the retention time force obtained by measuring the organic solvent content at the start of measurement at 0% and the gradient gradient at 1% Zmin is an approximation of the organic solvent content, which is the phase transition critical value of each polypeptide. It was shown to show the value. Therefore, when determining the critical value (content) of the phase transition caused by a single organic solvent of each polypeptide, confirm the phenomenon that the peak of the polypeptide to be measured is divided into two as in Examples 1-5. Even if such a complicated measurement is not performed, it is possible to obtain an approximate value of the phase transition critical value of each polypeptide by performing a single measurement using a single organic solvent as the organic solvent-based mobile phase. It was considered. With this measurement method, it was possible to measure a sample to which a plurality of polypeptides were added. As a result, it was considered possible to simultaneously measure the phase transition critical values of a plurality of polypeptides.
  • Constant B of the power function, retention time when the gradient is 1% Zmin, and percentage of mobile phase B constituting the eluent at the moment when each polypeptide is eluted (v B )
  • BNP-32 3464 10.0 9.7 10.1 amyloid ⁇ -protein (1-38) 4132 27.1 26.5 25.7
  • NPY 4272 33.4 32.9 31.9 amyloid ⁇ -protein (1-40) 4330 30.1 29.6 29.2 amyloid ⁇ -protein (1-42) 4514 32.4 31.9 31.2 amyloid ⁇ -protein (1-43) 4615 32.9 32.3 32.3 urocortin 4696 46.7 46.1 46.7
  • Mobile phase A Acetic acid monohydrate (volume ratio 4: 100)
  • Mobile phase B Acetic acid-acetonitrile mixed solution (volume ratio 4: 100), acetic acid-methanol mixed solution (volume ratio 4: 100), acetic acid-ethanol mixed solution (volume ratio 4: 100), or 100% acetic acid column: C Reversed-phase column (Develosil300C4—HG—5: Inner diameter 2.0 mm, Length 100 mm, Particle diameter
  • each retention time at a gradient gradient of 1% Zmin obtained under the measurement conditions used here is the phase transition criticality of each polypeptide as described in Example 6. It was suggested to show an approximate value of the content of organic solvent. So mobile phase B organic The retention time indicated by each polypeptide when the solvent type was changed and the gradient was 1% Zmin was compared with the phase transition critical value range estimated from the phenomenon that the peak was split into two in Example 5. However, as expected, most of the obtained retention time was within the estimated critical value range and showed almost the same tendency (Table 23). Therefore, it was suggested that the adsorption ability phase transition caused by the change in the organic solvent content in the polypeptide solution and the adsorption ability phase change caused by the change in the organic solvent content in the eluent were the same.
  • the retention time is
  • the method of estimating the critical value indicated by each organic solvent from the retention time under the measurement conditions used this time is Also, in terms of sample preparation, it was considered simpler and more accurate than the method of estimating from the phenomenon that the peak splits into two.
  • Oxytocin 11.0 10.2 12.6 12.6 10-20 10-20 10-20 20-30 angiotensin ⁇ 10.8 9.9 12.1 11.7 10-20 5-10 10-20 20-30 neuromedin C 9.3 8.4 9.8 10.5 ⁇ 5 5 5- 10 20-30
  • a P (1-28) 12.6 12.3 16.7 16.8 5-10 5-10 10-20 20-30 amyioid ⁇ -protein (1-28) 13.1 13.2 18.1 18.3 10-20 10-20 20-30 20-30
  • BNP-32 9.1 8.6 11.2 11.9 5 ⁇ 5 5-10 10-20 amyloid ⁇ -protein (1-38) 21.6 23.8 32.9 33.8 20-30 20-30 30-40 40-50
  • PTH (l-84) 22.9 25.9 36.9 37.8 20-30 20-30 30-40 30-40 midkine 11.5 11.6 16.2 17.5 5-10 5-10 10-20 10-20 interferon- ⁇ 32.0 37,5 52.3 51.8 20- 30 30-40 50-60 50-60 ovalbumin 40.1 45.6 63.1 62.1 40-50 60-70 60-70
  • Example 8 (Effect of column stationary phase on polypeptide retention time) o ⁇ Sample preparation>
  • each polypeptide was found to be the force column stationary phase that showed the shortest retention time when the C column was used.
  • amyloid ⁇ -nrotein Cl-16 1.6 5.6 6.0 6.9
  • amyloid ⁇ -protein (1-28) 10.4 12.6 14.0 14.2
  • amyloid ⁇ -protein (1-38) 16.1 18.4 20.0 20.0
  • amyloid ⁇ -protein (1-40) 17.7 19.9 21.8 21.6
  • amyloid ⁇ -protein (1-42) 18.8 20.9 22.8 22.6
  • amyloid ⁇ -protein (1-43) 18.8 20.9 22.8 22.6
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4:50:50)
  • amyloid ⁇ -protein (1-28) 12.5 11.7 11.1 10.4
  • amyloid ⁇ -protein (1-38) 18.2 17.5 16.9 16.1
  • amyloid ⁇ -protein (1-40) 19.7 19.0 18.4 17.7
  • amyloid ⁇ -protein (1-42) 20.8 20.2 19.5 18.8
  • amyloid ⁇ -protein (1-43) 20.8 20.2 19.5 18.8
  • Example 10 (Accuracy comparison between the conventional system and the system of the present invention when measuring urocortin samples) ⁇ Sample preparation>
  • Mobile phase A Monoacetic acid (volume ratio 4: 100)
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4: 50: 50)
  • Mobile phase C Acetic acid
  • each mobile phase and the organic solvent mobile phase (mixed solution of mobile phases B and C) that forms the mobile phase in the line into which the polypeptide is introduced are measured. Based on the mixing ratio and the organic solvent content in the sample containing each polypeptide, the ratio of the aqueous mobile phase to the organic mobile mobile phase to be mixed in the mixer V is given by the above formula (a). Calculated based on (Table 29). However, the retention time obtained in Example 7 was used as the phase transition critical value of urocortin in water and each organic solvent.
  • Tables 30, 31 and 32 show the peak area, standard deviation and coefficient of variation (%) when urocortin samples of the same concentration (0.lnM, InM and ⁇ ) were measured three times by the conventional method and the present invention method.
  • the coefficient of variation (%) of the peak area of urocortin contained in a sample solution containing acetonitrile with a volume ratio of 30% or more is within 15% regardless of the urocortin concentration and the injection amount. In this concentration range, it was considered that adsorption to the container or the like did not occur, or that the concentration range examined did not cause a problem. Trial When the acetonitrile content in the sample solution was 0% and 20%, the coefficient of variation was often more than 15%, suggesting that there was norack probably due to adsorption to containers and syringes for injection. .
  • Table 33 shows the peak area ratio (400 ⁇ L / 100 ⁇ L) obtained when the urocortin sample solution was injected into the LC system at 100 ⁇ L and 400 ⁇ L.
  • both the conventional method and the method of the present invention showed the possibility of increasing the sensitivity by increasing the injection amount.
  • the rate of increase is affected by the content of acetonitrile in the sample solution. It was shown that.
  • the peak area Z-height ratio when a 0. InM urocortin sample was measured by the conventional method tended to increase as the injection volume increased. Since the peak area Z height ratio is assumed to correspond to the peak width at peak height 1Z2, assuming that the peak shape of urocortin is triangular, this result shows that the peak width of urocortin is widened. (Table 34). Therefore, with the conventional method, it was considered difficult to increase the sensitivity in proportion to the increase in injection volume.
  • Example 11 Comparison of both systems in the preparation of a calibration curve for urocortin
  • a calibration curve sample of urocortin concentration force Sio, 30, 100, 300pM, 1, 3 and ⁇ was added to 990 ⁇ L of acetic acid monohydrate-acetonitrile mixture (volume ratio 4: 100: 0, 4:80: 20, 4: 70:30, 4:60:40, 4:50:50, 4:40:60 or 4:20:80).
  • Mobile phase B Acetic acid-acetonitrile-methanol mixture (volume ratio 4:50:50)
  • the ratio of the aqueous mobile phase until the sample containing urocortin was introduced into the column was about 90% (Table 35), which was higher than 47% or 57% shown in Table 36. Since it has a large proportion, it was judged that all the u-Si corcortin introduced into the system was retained on the column.
  • Aqueous mobile phase to organic solvent% Organic solvent phase ratio in the mixer ( ⁇ ) * Aqueous mobile phase Acetoni ⁇ In mobile phase In aqueous mobile phase Ratio in sample solution (%) Acetic acid
  • the flow rate was set to 0.6 mL / min from 0.1 minutes to 8 minutes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 簡便な手法でポリペプチドの吸着の影響を排除し、低濃度領域でも正確にポリペプチドの定量を可能とする逆相液体クロマトグラフィーによるポリペプチドの検出又は定量方法、及び装置を提供する。  逆相液体クロマトグラフを用いるあるポリペプチド(ポリペプチドA)の検出又は定量方法であって、以下の工程を含むポリペプチドの検出又は定量方法; (1)OFF相ポリペプチドAを逆相液体クロマトグラフに導入する工程、 (2)(1)で導入したOFF相ポリペプチドAを相転移させる手段により、ON相ポリペプチドAを生成する工程、 (3)(2)で生成したON相ポリペプチドAとカラム充填剤を相互作用させる工程、 (4)(3)で相互作用したON相ポリペプチドAを相転移させ、OFF相ポリペプチドAを生成する工程、 (5)(4)で生成したOFF相ポリペプチドAを溶出する工程、及び (6)(5)で溶出したポリペプチドAを検出又は定量する工程。

Description

明 細 書
ポリペプチドの検出又は定量方法、及び装置
技術分野
[0001] 本発明は、逆相液体クロマトグラフィーを用いた、高感度なポリペプチドの検出又は 定量方法、及び装置に関する。
背景技術
[0002] 逆相液体クロマトグラフィー (RP— LC)は、固定相に移動相よりも極性の弱い物質 を用いる液体クロマトグラフィーであり、薬物等の低分子化合物の定量において最も 広く用いられている。近年、逆相液体クロマトグラフィーは、ポリペプチドの検出、定量 にお 、ても重要な技術として用いられており、プロテオミクス研究にぉ 、ても重要な 役割を果たしている。
[0003] 逆相液体クロマトグラフィーによるポリペプチドの高感度定量を困難とする大きな問 題点の一つが、ポリペプチドの吸着である。ポリペプチドの吸着は、低濃度でより激し くなり(非特許文献 1〜3)、その結果、低濃度領域での定量を困難にしていると考え られる。この低濃度での吸着を解決するために、アルブミンのようなポリペプチドゃ界 面活性剤の添カ卩 (非特許文献 1)が、これら吸着を抑制するのに効果的であることが 示されてきた。しかし、測定対象となるポリペプチド毎に、添カ卩による吸着防止効果を 確認する必要があるのにカ卩えて、添加した界面活性剤などが測定時に夾雑ピークと して現れる等の問題が発生しないことを確認する必要がある。一般的に、多量のポリ ペプチドの逆相液体クロマトグラフへの導入は、カラムが詰まる一因となる。また、ポリ ペプチド試料の容量がカラム容量を越えた場合、被験ポリペプチドのカラムへの十分 な保持及びその分離が困難であり、結果、再現性が失われ、定量困難になる場合が 存在する。
[0004] 一方、分析時に多量の界面活性剤が存在すると、カラムを劣化させ、マススぺクトロ メトリー等の装置を汚し、再現性が失われる場合が存在し、カロえて、マススペクトル分 析時に夾雑ピークとして現れ、解析を困難とする場合が存在する。そのため、カラム スイッチング法を用いたオンラインで界面活性剤を除去するシステムも考案されて ヽ る力 個々のポリペプチドについて界面活性剤の効果を確認しなければならないなど 、極めて煩雑な検討が必要となる。
非特許文献 1 : Mass Spectrom. 1998, 33, 967- 983
非特許文献 2 : Anal. Biochem. 1994, 222, 149 - 155
非特許文献 3 :了. Chromatogr. B 2002, 775, 247- 255
非特許文献 4 Pharmaceutical Research 2000, 17, 1551 - 1557 発明の開示
発明が解決しょうとする課題
[0005] 本発明の課題は、簡便な手法でポリペプチドの吸着の影響を排除し、低濃度領域 でも正確にポリペプチドの定量を可能とする逆相液体クロマトグラフィーによるポリべ プチドの検出又は定量方法、及び装置を提供することにある。
課題を解決するための手段
[0006] 本発明者らは、上記課題解決のため鋭意研究し、水及び実質的にある 1種類の有 機溶媒力 なる混合溶液に溶解するポリペプチドの逆相カラム充填剤への吸着能が 、該混合溶液における該有機溶媒の容積比(%)に依存し、かつ一定の容積比 (ポリ ペプチドの逆相カラム充填剤への吸着能の相転移臨界値、単にポリペプチドの相転 移臨界値と称呼することもある)を境に著しく変化すること (ポリペプチドの逆相カラム 充填剤への吸着能の相転移)を見出した。具体的には、発明者らは、ポリペプチドが 溶解する該混合溶液における該有機溶媒の容積比が逆相カラム充填剤への吸着能 の相転移臨界値を超過する場合には、該ポリペプチドは実質的に逆相カラム充填剤 への吸着能を示さないポリペプチド (OFF相ポリペプチド)となり、逆に、該容積比が 逆相カラム充填剤への吸着能の相転移臨界値を下回る場合には、逆相カラム充填 剤への吸着能を示すポリペプチド (ON相ポリペプチド)となることを見出した。また、 本発明者らは、ポリペプチド試料の希釈時及び逆相液体クロマトグラフを用いた測定 時にポリペプチドが接触する物質 (逆相カラム充填剤は除く)に対しても逆相カラム充 填剤に対する場合と同様の挙動をポリペプチドが示し、これら物質への吸着能の相 転移臨界値とカラム充填剤への吸着能の相転移臨界値が近似であることを見出した (実施例 1参照)。 [0007] 更に、本発明者らは、ポリペプチドの逆相カラム充填剤への吸着能の相転移臨界 値は、ポリペプチドが溶解する溶液に含まれる有機溶媒の種類 (実施例 2参照)及び ポリペプチド (実施例 5参照)に大きく依存する一方、逆相カラムの固定相(実施例 8 参照)及び逆相カラムの温度(実施例 9参照)がポリペプチドの逆相カラム充填剤へ の吸着能の相転移に与える影響は、有機溶媒が与える影響と比較して小さいことを 見出した。
[0008] また、本発明者らは、水及び 1種類以上の有機溶媒 (有機溶媒 1、有機溶媒 2、 · · · •、有機溶媒 n(nは 1以上の整数) )カゝらなる混合溶液 Mxに溶解するポリペプチドの 逆相カラム充填剤への吸着能は、下記式 (a)に従うことを見出した (実施例 1〜4参照
) o
[0009] [数 1] xl n
f = + ··· + …式 (a)
XI Xn f > 1の場合は、 OFF相ポリぺプチド
xl xn
+ ·■· + > 1 …式 (1)
XI Xn fく 1の場合は、 ON相ポリペプチド
xl xn
+ · ·· + く 1 …式 (2)
XI Xn
[0010] (式 (a)において、 XIは水一有機溶媒 1混合溶液におけるポリペプチド Aの相転移 臨界値(%)、 Xnは水一有機溶媒 n混合溶液におけるポリペプチド Aの相転移臨界 値(%)、 xlは混合溶液 Mxにおける有機溶媒 1の容積比(%)、 xnは混合溶液 Mx における有機溶媒 nの容積比(%)をそれぞれ示す)
[0011] そこで、本発明者らは、力かる知見を利用し、逆相液体クロマトグラフを用いるある ポリペプチド(ポリペプチド A)の定量法において、ポリペプチド Aを、逆相カラム充填 剤に対して実質的に相互作用しない相(つまり、調製時に接触する物質とも実質的 に相互作用しない相)であるポリペプチド A (OFF相ポリペプチド A)としておき、これ を該逆相液体クロマトグラフに導入し、導入された OFF相ポリペプチド Aの相を該逆 相カラム充填剤と相互作用する相に相転移させ、次いで相転移により生成した該カ ラム充填剤と相互作用する相である ON相ポリペプチド Aを該カラム充填剤と相互作 用させることにより、容器等への吸着が問題となるような低濃度での微量ポリペプチド を、簡便、精度良ぐ且つ、試料注入量の制限なく定量できることを見出し、本発明を 完成させた。
[0012] すなわち、本発明は、逆相液体クロマトグラフを用いるあるポリペプチド (ポリべプチ ド A)の検出又は定量方法であって、以下の工程を含むポリペプチドの検出又は定 量方法を提供するものである。
( 1) OFF相ポリペプチド Aを逆相液体クロマトグラフに導入する工程、
(2) (1)で導入した OFF相ポリペプチド Aを相転移させる手段により、 ON相ポリぺプ チド Aを生成する工程、
(3) (2)で生成した ON相ポリペプチド Aとカラム充填剤を相互作用させる工程、
(4) (3)で相互作用した ON相ポリペプチド Aを相転移させ、 OFF相ポリペプチド Aを 生成する工程、
(5) (4)で生成した OFF相ポリペプチド Aを溶出する工程、及び
(6) (5)で溶出したポリペプチド Aを検出又は定量する工程。
発明の効果
[0013] 本発明を実施することにより、微量のポリペプチド、例えば低 pM程度のポリべプチ ドを定量的に操作可能であると同時に、簡便且つ精度良く定量可能である。本発明 は、従来の微量ポリペプチドの定量方法として広く利用されている免疫学的手法、例 えば ELISA等の方法による定量方法に匹敵、又は、それ以上の高感度定量が可能 なポリペプチド定量法であって、医学、生化学、分子生物学など幅広い分野で利用 可能な画期的な発明である。
図面の簡単な説明
[0014] [図 1]ポリペプチド定量のための逆相液体クロマトグラフシステムの例を示す図である 。ポンプ (移動相供給器) 2台を用いた場合の従来システム (A)と本発明システム(C) 、ポンプ 3台を用いた場合の従来システム (B)と本発明システム (D)。 [図 2]C カラム及び従来システムを用いてァセトニトリル含量及び添加した酸の異な
30
る InMゥロコルチン試料溶液を測定した場合のゥロコルチンピーク面積。
[図 3]Cカラム及び従来システムを用いてァセトニトリル含量の異なるゥロコルチン試
4
料溶液 (容積比 4%の酢酸を含む)を測定した場合のマスク口マトグラム。試料溶液中 ァセトニトリル含量:(A) 0%、(B) 20%、(C) 30%、(D) 40%、 (E) 60%、及び (F) 80%。
[図 4]従来システムにて導入されたポリペプチド試料溶液の溶出挙動の概念図である
[図 5]従来システム(黒丸)又は本発明システム(白丸)を用いてァセトニトリル含量が 異なる試料溶液を測定した場合の保持時間 1. 5分のピーク面積及び保持時間 6. 5 分のピーク面積を示す図である。
[図 6]グラジェント勾配とゥロコルチンの保持時間とのべき乗則を示す図である。
圆 7]従来システム (左)及び本発明法 (右)を用いて測定したゥロコルチンのベースラ イン付近でのピーク形状。試料溶液中ァセトニトリル含量:(A) 0%、(B) 20%、 (C) 3
0%、(D) 40%、(E) 50%、(F) 60%、及び(G) 80%。
[図 8-1]各ポリペプチドの定量下限でのマスク口マトグラムを示す図である。
[図 8-2]各ポリペプチドの定量下限でのマスク口マトグラムを示す図である。
[図 9]溶液組成の異なる 18種ポリペプチド混合溶液(1、 10及び ΙΟΟηΜ)のトータル マスク口マトグラム (従来システム)溶液組成:(A)水、(B)酢酸—水 (4 : 96, vZv)、 (
C)酢酸—水—ァセトニトリル(4 : 66 : 30, vZvZv)、 (D)酢酸—水—ァセトニトリル(
4 :46 : 50, vZvZv)。
[図 10]溶液組成の異なる 18種ポリペプチド混合溶液 ( 1、 10及び ΙΟΟηΜ)測定時の トータルマスク口マトグラム (本発明システム)溶液組成: (A)水、(B)酢酸-水(4: 96 , vZv)、 (C)酢酸—水—ァセトニトリル(4 : 66 : 30, vZvZv)、 (D)酢酸—水—ァセ トニトリノレ(4 :46 : 50, v/v/v;)。
[図 11]従来システム (左)及び本開発システム (右)を用いて溶液組成の異なる 18種 のポリペプチド混合溶液 ( 1、 10及び ΙΟΟηΜ)測定時のイソ口イシルーセリル ブラ ジキニン (上)及びゥロコルチン(下)のピーク面積を示す図である。 [図 12]20°C (A)及び 40°C (B)の水—ァセトニトリル混合溶液 (容積比: 90 : 10, 80 : 20, 70 : 30, 60 :40又は 50 : 50)中のゥロコルチンの CDスペクトルを示す図である。
[図 13]20°C (A)及び 40°C (B)の水—ァセトニトリル混合溶液 (容積比: 100 : 0, 95 : 5, 90 : 10, 85 : 15又は80 : 20)中の150161^ 1—56 1—1^&(1 1^11のじ0スぺクト ルを示す図である。
発明を実施するための最良の形態
[0015] 本発明は、逆相液体クロマトグラフを用いるポリペプチドの検出又は定量方法であ る。
[0016] ここで、逆相液体クロマトグラフィーには、移動相(溶離液)が液体であり、固定相が 移動相(溶離液)よりも極性の弱 ヽ物質であればすべて含まれる。固定相としては、 炭化水素基などの疎水性基、例えば、トリアコンチル基 (C30)、ォクタデシル基 (C1 8)ォクチル基 (C8)、ブチル基 (C4)又はトリメチル基が例示される。支持体としては 、シリカゲルなどの無機系ポーラスポリマー、ポリスチレン、メタアクリル、ビュルアルコ ール、ヒドロキシアパタイト、酸化チタンなどが例示される。充填剤としてグラフアイト力 一ボンを用いることもできる。当業者であれば、被験ポリペプチドに応じて適宜充填 剤を選択することができる。
[0017] 液体クロマトグラフとして、液体クロマトグラフ Z質量分析計 (LC MS)が好ましく 例示される。液体クロマトグラフ Z質量分析計 (LC MS)として、液体クロマトグラフ Zタンデム質量分析計 (LC MSZMS)が好ましく例示される。ポリペプチドの検出 又は定量装置としての質量分析装置が接続されている逆相液体クロマトグラフを用 いることにより、高感度なポリペプチドの検出又は定量が可能となる。
[0018] 被験ポリペプチドは、分子量、等電点、機能、構造等に限定されず、全てのポリべ プチドを含む。このうち、 LC MSZMSを用いて高感度定量を実施する場合、 ESI イオン源にて生じる多価イオンの数が多 、と高感度化が難 、ことから、分子量が約 1万 Da程度以下であるポリペプチドが好ましい。被験ポリペプチドは、既知のポリべ プチド又は未知のポリペプチドのいずれをも含む。ここで、ポリペプチドとは、蛋白質 、ポリペプチド及びオリゴペプチドのいずれを含む総称用語であり、その最小サイズ は 2アミノ酸である。被験ポリペプチドは、各種組織、細胞、細菌、ウィルスなど生体由 来ポリペプチドに限らず、自体公知の合成方法により合成されたポリペプチド、自体 公知の遺伝子工学的手法により取得されるポリペプチド、各種プロテアーゼにより酵 素消化されることにより生じたあるタンパク質のポリペプチド断片及び標品として購入 できるポリペプチドのいずれをも含む。また、被験ポリペプチドは、自体公知の調製方 法、例えば、遠心処理、変性処理、硫安などによる分画処理、透析処理、限外ろ過、 イオンクロマトグラフィー等を用いた精製処理などの自体公知の調製方法により調製 された試料中に含まれるポリペプチドであり得る。更に、生体試料、例えば、血液、尿 、唾液、精液、髄液、組織、細胞などの試料カゝらポリペプチドを取得する場合には、 試料に対し自体公知の前処理を行うことができる。被験ポリペプチド試料に含まれる 被験ポリペプチドは 1種又は 2種以上であり得る。すなわち、本方法を用いて同時に 多検体のポリペプチドを検出又は定量することができる(実施例 13参照)。
[0019] 例えば、副腎皮質刺激ホルモンのアミノ酸配列第 1番目力も第 24番目からなるポリ ペプチド、 βアミロイドのアミノ酸配列第 1番目から第 16番目力もなるポリペプチド、 βアミロイドのアミノ酸配列第 1番目力も第 28番目からなるポリペプチド、 βアミロイド のアミノ酸配列第 1番目力も第 38番目からなるポリペプチド、 βアミロイドのアミノ酸配 列第 1番目力も第 40番目からなるポリペプチド、 βアミロイドのアミノ酸配列第 1番目 力も第 42番目からなるポリペプチド、 βアミロイドのアミノ酸配列第 1番目力も第 43番 目からなるポリペプチド、成長ホルモン放出因子、イソ口イシルーセリル一ブラジキ- ン、脳性ナトリウム利尿ペプチド (ΒΝΡ— 32)、インスリン、 C型ナトリウム利尿ペプチド (CNP- 53)、ミツドカインのアミノ酸配列第 60番目から第 121番目力もなるポリぺプ チド、ニューロメジン C、ニューロペプチド Ύ、ノシセプチン、ォキシトシン、ゥロコルチ ン、ミツドカイン、インターフェロン— γ、心房性ナトリウム利尿ペプチド(ΑΝΡ ( 1— 28 ) )、ラット好中球走ィ匕性因子— 1 (CINC— lZgro)、副甲状腺ホルモン (ΡΤΗ (1— 84) )、ォバルブミンのアミノ酸配列第 323番目力も第 339番目からなるポリペプチド 、ォバルブミン、アンジォテンシン II、アミノ酸配列第 4番目のチロシンがリン酸化され たアンジォテンシン IIなどが例示される(実施例 5〜6参照)。
[0020] 本発明にお!/、て、 OFF相ポリペプチドとは、 OFF相状態のポリペプチドを意味する 。 OFF相状態とは、逆相液体クロマトグラフのカラムの充填剤に対する吸着能を実質 的に失った状態で溶液中にポリペプチドが存在することをいう。吸着能を実質的に失 つた状態とは、全く吸着しない状態又は ON相状態のポリペプチドと比較して殆ど吸 着しない状態を意味する。
[0021] 本発明者らは、ポリペプチドが、逆相カラム充填剤のみならずポリペプチド試料の 調製やポリペプチド試料の逆相液体クロマトグラフへの導入時に接触する固体 (以下 、試料調製中に用いる容器等と称することもある)に対しても同様の挙動を示すことを 見出した。更に、試料調製中に用いる容器等へのポリペプチドの吸着能が、シリカを 基材とするカラム充填剤への吸着能と実質的に等しい又は若干低いことが示唆され たことから(実施例 1参照)、 OFF相ポリペプチドは、試料調製に用いる容器等に対し ても吸着能を実質的に失っていると考える。試料調製中に用いる容器等として、チッ プ類、サンプルバイアル、試料注入器、シリンジ、送液菅などが例示される。これらの 材質として、ポリプロピレン、ポリテトラフルォロエチレン、シリコーン、ステンレス、ガラ ス、 PEEK榭脂、セラミック、ベスペル、テフゼルなどが挙げられる。
[0022] 本発明者らは、 27種類の各被験ポリペプチドについて、水—ァセトニトリル混合溶 液、水—エタノール混合溶液、水—メタノール混合溶液、水—酢酸混合溶液の各々 の混合溶液におけるカラム充填剤への吸着能の相転移臨界値の近似値を決定した (実施例 5参照)。本結果から、ァセトニトリルの容積比が 50%以上である水—ァセト 二トリル混合溶液、エタノールの容積比が 60%以上である水—エタノール混合溶液 、メタノールの容積比が 70%以上である水—メタノール混合溶液、及び酢酸の容積 比が 70%以上である水—酢酸混合溶液の各々の混合溶液においては、 27種類の 各被験ポリペプチド全てが OFF相であることが明ら力となった。他のポリペプチドに ついても同様にこれらの混合溶液においては OFF相であると考えられる。従って、簡 便には、ァセトニトリルの容積比が 50%以上、エタノールの容積比が 60%以上、メタ ノールの容積比が 70%以上及び Z又は酢酸の容積比が 70%以上であって、かつ、 ァセトニトリル、メタノール、エタノール及び酢酸力 選ばれる 1種又は 2種以上の有 機溶媒を含む溶液、例えば、水ーァセトニトリル (水とァセトニトリルの容積比は 1 : 1) 混合溶液に被験ポリペプチドを溶解することにより、 OFF相ポリペプチド試料を調製 することができる。 [0023] また、 OFF相ポリペプチド試料は、例えば、実施例に記載の方法に従って調製す ることもできる。具体的には、(1)逆相液体クロマトグラフに使用可能な有機溶媒から 1種又は 2種以上の有機溶媒を選択する。次に、(2)選択した各有機溶媒について、 水ー該有機溶媒の混合溶液における被験ポリペプチドの相転移臨界値 (又は相転 移臨界値を超過する値)を決定する。選択した有機溶媒が 1種類の場合には、(3)該 有機溶媒の容積比が決定した相転移臨界値を十分に超過する容積比である水ー該 有機溶媒の混合溶液に被験ポリペプチドを溶解させることによって、 OFF相ポリぺプ チド試料を調製することができる。選択した有機溶媒が 2種類以上の場合には、 (3) 前記式 (a) (f> l)の考えに従って算出した各有機溶媒の容積比を示す混合溶液に 被験ポリペプチドを溶解させることによって、 OFF相ポリペプチド試料を調製すること ができる。
[0024] 逆相液体クロマトグラフに使用可能な有機溶媒は、例えば、ァセトニトリル、メタノー ル、エタノール、イソプロピルアルコール、アセトン、 DMSO、 THF、酢酸、ギ酸、 TF Aなどが例示される。このうち、ァセトニトリル、メタノール、エタノール、イソプロピルァ ルコール、酢酸、ギ酸、 TFAが好ましい。これらは 1種又は 2種以上を組み合せて用 V、られる。移動相として用いる溶媒の種類と被験ポリペプチド試料の溶媒の種類は同 一であっても異なっても良い。例えば、移動相として水ーァセトニトリル混合溶媒を用 V、、被験ポリペプチド試料の溶媒が酢酸を数%程度含有する水 メタノール及びァ セトニトリルの混合溶媒であってもよい。一般的には、あるポリペプチドについて、イソ プロピルアルコール >ァセトニトリル及びエタノール >メタノール及び酢酸の順で、そ れらを有機溶媒として用いた場合の該ポリペプチドの相転移臨界値は減少する(実 施例 15参照)。
[0025] 有機溶媒としてァセトニトリルを選択した場合について、被験ポリペプチドの相転移 臨界値の決定方法を具体的に説明する。水とァセトニトリルの容積比が異なる複数の 水—ァセトニトリル混合溶液 (例えば、水:ァセトニトリルの容積比力 10 : 0, 9 : 1, 8 : 2, 7 : 3, 6 :4, 5 : 5, 4 : 6, 3 : 7, 2 : 8, 1 : 9, 0 : 10である混合溶液)のそれぞれに被 験ポリペプチドを溶解させ、水とァセトニトリルの容積比が異なる複数の被験ポリぺプ チド試料を調製する。次に、各被験ポリペプチド試料を逆相液体クロマトグラフ(図 1 ( A)又は (B)に記載の従来の逆相液体クロマトグラフ構成を例示することができる)に 導入し、各被験ポリペプチド試料に含まれる被験ポリペプチドが OFF相カゝ否かを判 定する。導入用の移動相は水系移動相が好ましぐ溶出用の移動相は有機溶媒系 移動相が好ま ヽ。水系移動相とは有機溶媒を含有しな!ヽ又は僅かに有機溶媒を 含有する移動相である。水系移動相として、例えば、 0. 01〜6%程度の有機酸水溶 液を例示できる。有機溶媒系移動相とは 1種類以上の有機溶媒のみ力もなる移動相 又は僅かに水を含む 1種類以上の有機溶媒力もなる移動相を意味する。有機溶媒 系移動相として、例えば、 0. 01〜6%程度の有機酸を含むァセトニトリル—メタノー ル混合液、 0. 01〜6%程度の有機酸を含むァセトニトリル溶液、 0. 01〜6%程度の 有機酸を含むメタノール溶液、 0. 01〜6%程度の有機酸を含むエタノール溶液など を例示できる。有機酸としては酢酸、ギ酸、 TFAを好ましく例示できる。また、有機溶 媒系移動相として、 100%酢酸溶液を例示できる。被験ポリペプチドが OFF相の場 合、被験ポリペプチド (又はその一部)はカラム充填剤へ吸着しない為、サンプルル ープ以後のデッドボリュームに相当する保持時間に溶出ピークが検出される(実施例 1参照)。例えば、水:ァセトニトリルの容積比が 6 :4, 5 : 5, 4 : 6, 3 : 7, 2 : 8, 1 : 9, 0 : 10である各被験ポリペプチド試料に含まれるポリペプチドが OFF相の場合には、水 —ァセトニトリル混合溶液における被験ポリペプチドの相転移臨界値は 30〜40%と 判定することができる。この場合、ァセトニトリル力 0%以上である水—ァセトニトリル 混合溶液にポリペプチドを溶解させ、 OFF相ポリペプチド試料を調製することができ る。
有機溶媒として、ァセトニトリル及びメタノールを選択した場合にっ 、て、 OFF相ポ リペプチド試料の調製方法を具体的に説明する。前記の方法に従って、水 ァセト 二トリル混合溶液、及び、水—メタノール混合溶液それぞれにおける被験ポリべプチ ドの相転移臨界値を決定する。次に、前記式 (a)の考えに従って、試料におけるァセ トニトリル及びメタノールの容積比を決定する。例えば、水—ァセトニトリル混合溶液 における被験ポリペプチドの相転移臨界値が 30〜40%、水—メタノール混合溶液に おける被験ポリペプチドの相転移臨界値が 40〜50%と決定された場合、水:ァセト 二トリル:メタノールの容積比が 1: 1 : 8である水—ァセトニトリル及びメタノール混合溶 液における被験ポリペプチドに関する前記式 (a)の値は 1を超過するため、該混合溶 液に被験ポリペプチドを溶解することにより、 OFF相ポリペプチド試料を調製すること ができる。
[0027] 本発明者らは、 2種の移動相(水系移動相及び有機溶媒系移動相)を用いる従来 の逆相液体クロマトグラフ(図 1 (A) )によって被験ポリペプチド試料を分析する際、被 験ポリペプチドの保持時間とグラジェント勾配との間にべき乗法則が成り立つことを 見出した (実施例 6参照)。更に、 2種類のグラジェント勾配による溶出時間、それらの グラジェント勾配、及び各グラジェント勾配による被験ポリペプチドの溶出時の移動 相 (溶離液)組成との間に、下記式 (b)が成立することを見出した (実施例 6参照)。た だし、この時、水系移動相は、有機溶媒及び有機酸をほとんど含まない移動相であり 、有機溶媒系移動相は水を含まない移動相であり、かつ、これら移動相の測定開始 時の混合比が水系移動相:有機系移動相 = 100: 0となる条件下で測定した場合に あてはまる。
[0028] [数 2]
— iy r2
V = 一 (T -T2) …式 (b)
ri一 r2
[0029] (式 (b)にお 、て、 rはあるグラジェント勾配(%Zmin)、 rは rと異なるあるグラジェ
1 2 1
ント勾配(%Zmin)、Tはグラジェント勾配 rによる被験ポリペプチドの溶出時間(mi n)、 Tはグラジェント勾配 rによる被験ポリペプチドの溶出時間(min)、 Vは被験ポリ
2 2
ペプチドの溶出時の移動相 (溶離液)における有機溶媒系移動相の容積比(%)をそ れぞれ示す。 )
[0030] 溶出された被験ポリペプチドは溶出時の移動相(溶離液)にお!/、てカラム充填剤へ の吸着能を有していないと考えられる。従って、水系移動相と有機溶媒系移動相の 容積比が(100— V): Vである混合溶液に被験ポリペプチドを溶解することによって、 OFF相ポリペプチド試料を調製することも可能である。
[0031] 本発明者らは、 2種の移動相(水系移動相及び有機溶媒系移動相)を用いる従来 の逆相液体クロマトグラフ(図 1 (A) )によって被験ポリペプチド試料を分析する際、被 験ポリペプチドの保持時間とグラジェント勾配との間にべき乗法則が成り立つことを 見出した (実施例 6参照)。べき乗関数^ y=Bx_t(y :保持時間、 X:グラジェント勾配 、 t:べき指数、ただし t>0)で近似する場合、定数 Bはグラジェント勾配が l%Zmin である保持時間(溶出時間)に相当する。また、グラジェント勾配 l%Zminによる被 験ポリペプチドの溶出時間は、被験ポリペプチド導入時力もその溶出時までの間に、 被験ポリペプチド溶出用移動相が移動相 (溶離液中)にお 、て増加した割合 (%)を 示す (ただし、増加分にはデッドボリュームが含まれるため近似値である)。この性質 を利用して、例えば、水系移動相として有機溶媒を含まない水溶液、有機溶媒系移 動相として選択した 1種類の有機溶媒を用い、これら移動相の測定開始時の混合比 が水系移動相:有機系移動相 = 100: 0となる条件下で測定した場合には、グラジェ ント勾配 l%Zminによる被験ポリペプチドの溶出時間を、水ー該有機溶媒混合溶 液における被験ポリペプチドの相転移臨界値(%)と近似することも可能である(実施 例 7参照)。本知見を利用して、簡便に、 OFF相ポリペプチド試料を調製することがで きる。
[0032] 本発明においては、前述の如ぐまず(1)被験ポリペプチド (ポリペプチド A)を OFF 相状態として逆相液体クロマトグラフに導入し、(2)次いで、 OFF相ポリペプチド Aを 相転移させる手段を実行することにより、 OFF相ポリペプチド Aを ON相ポリペプチド Aに相転移させ、 (3)当該 ON相ポリペプチド Aをカラム充填剤と相互作用させること により ON相ポリペプチド Aをカラムに保持させ、(4)カラムに保持された ON相ポリべ プチド Aを相転移させることにより、 ON相ポリペプチドを OFF相ポリペプチド Aに変 換し、(5) OFF相ポリペプチド Aを溶出し、(6)溶出したポリペプチド Aを検出又は定 量する。以下、前記(1)〜 (6)の工程毎に説明する。
[0033] 工程(1)は、 OFF相ポリペプチド Aを逆相液体クロマトグラフに導入する工程である 。従来の逆相液体クロマトグラフィーにおいては、被験ポリペプチドが OFF相状態に あるのか、 ON相状態にあるのかについては、何ら検討されていない。例えば、後述 の実施例 1のように、ゥロコルチンはァセトニトリル含量が高い溶液 (40%以上)中で は、カラム充填剤への吸着能も極めて弱いのに対し、ァセトニトリル含量が 30%未満 の場合急激にカラム充填剤への吸着能が強くなることが、本発明者の検討で初めて 見出された(実施例 1参照)。このことから、水一ァセトニトリル溶液におけるゥロコルチ ンのカラム充填剤への吸着能の相転移臨界値は 30%から 40%の間にあると考えら れる。また、試料調製中に用いる容器等へのポリペプチドの吸着能が、シリカを基材 とするカラム充填剤への吸着能と実質的に等しい又は若干低いことが示唆された。 例えば、後述の実施例 1のように、ゥロコルチンについては、試料溶液中のァセトニト リル含量が 30%以上の場合にそのピーク面積がほぼ一定であったことから、試料溶 液中のァセトニトリル含量が 30%以上の場合には試料調製中に用いる容器等への 吸着が、試料調製直後力も測定開始時までほとんど起こらな力つたと考えられた。た だし、ァセトニトリル含量が 30%の場合でも、容器等に長時間放置された場合に容器 等への吸着が起こる可能性が考えられる。従って、吸着能の相転移臨界値より低い 有機溶媒含量を有するポリペプチド試料は、容器等への吸着によりその一部が失わ れ、定量性を失うことから、工程(1)において、被験ポリペプチドを導入前にロスなく 逆相液体クロマトグラフに導入するには、被験ポリペプチド試料に含まれる被験ポリ ペプチドを OFF相にしておけば、容器等への吸着も回避できると考えられる。
[0034] OFF相ポリペプチド試料は前述の本試料の調整方法に従って調製することができ る。なお、本方法によってあるポリペプチドを検出又は定量する場合には、該ポリべ プチドの相転移臨界値が 5〜95%程度であることが好ましぐ該ポリペプチドの相転 移臨界値が 10〜90%程度であることがより好ましい。該ポリペプチドの相転移臨界 値が本範隨こ位置しない場合には、試料中又は移動相中の有機溶媒の種類、カラ ム充填剤、カラム温度などを変更することが好ましい。このような変更は、当業者であ れば、適宜行うことができる。
[0035] 本試料は試料注入器力ゝら逆相液体クロマトグラフに導入され得る。本試料を導入す るための移動相は特に制限されないが、有機溶媒系移動相が好ましい。被験ポリべ プチドを該移動相に溶解した際に被験ポリペプチドが OFF相となるような有機溶媒 系移動相であることが好ましい。有機溶媒系移動相として、例えば、 0. 01〜6%程 度の有機酸を含むァセトニトリル—メタノール混合液、 0. 01〜6%程度の有機酸を 含むァセトニトリル溶液、 0. 01〜6%程度の有機酸を含むメタノール溶液、 0. 01〜 6%程度の有機酸を含むエタノール溶液などを例示できる。有機酸として酢酸を好ま しく例示できる。また、有機溶媒系移動相として、 100%酢酸溶液を例示できる。 [0036] 工程(2)は、 OFF相ポリペプチド Aを相転移させる手段を実行することにより、 OFF 相ポリペプチド Aを ON相ポリペプチド Aに相転移させる工程である。相転移により O N相ポリペプチド Aが生成する。生成した ON相ポリペプチド Aはカラム充填剤に吸着 する。
[0037] ON相ポリペプチドは、カラム充填剤のみならず試料調製中に用いる容器等へ吸着 する場合も存在する。従って、工程 (2)は、固定相、すなわちカラムの直前が好まし い(図 1 (C)及び (D) )。
[0038] 本発明において、 OFF相ポリペプチド Aを相転移させる手段とは、移動相に含まれ る OFF相ポリペプチド Aから ON相ポリペプチドを生成又はその生成を促進する手段 を意味する。
[0039] OFF相ポリペプチド Aを相転移させる手段について、具体的に説明する。 OFF相 ポリペプチド Aを相転移させる手段とは、 OFF相ポリペプチド Aが存在する移動相( 移動相に含まれる有機溶媒を、有機溶媒 1、 2、 · · ·、有機溶媒 n(nは 1以上の整数) とする)において、被験ポリペプチドに関する前述の式 (a)における f値を 1より小さく する手段である。 OFF相ポリペプチド Aが存在する移動相に含まれる溶媒の種類及 び Z又は溶媒の組成を変化させることにより、 f値を 1より小さくすることができる。 OF F相ポリペプチド Aが存在する移動相に対して該移動相とは異なる移動相(ポリぺプ チド A相転移用移動相と称呼することもある)を添加、攪拌することにより、 OFF相ポリ ペプチド Aが存在する移動相に含まれる溶媒の種類及び Z又は溶媒の組成を変化 させることができる。本変化前の OFF相ポリペプチド Aが存在する移動相をポリぺプ チド A導入用移動相と称呼することもある。ポリペプチド A相転移用移動相は、該移 動相にポリペプチド Aを溶解した場合にポリペプチド Aが ON相となる移動相(ON相 溶液)である。
[0040] OFF相ポリペプチド Aを相転移させる手段を実施することにより、 f値を 1より小さく することができる。 f値を 1より小さくすることにより、移動相に含まれる OFF相ポリぺプ チド Aが相転移し、 ON相ポリペプチド Aが生成する。
[0041] ポリペプチド A導入用移動相に対してポリペプチド A相転移用移動相を添加、攪拌 することによる OFF相ポリペプチド Aを相転移させる手段について、より具体的に説 明する。ただし、 OFF相ポリペプチド A試料が水、有機溶媒 X、有機溶媒 Y及び有機 溶媒 Zカゝらなる混合溶媒にポリペプチド Aが溶解する試料であり、ポリペプチド A導入 用移動相が水、有機溶媒 L、有機溶媒 M及び有機溶媒 Nからなる移動相であり、ポリ ペプチド A相転移用移動相が水、有機溶媒 0、有機溶媒 P及び有機溶媒 Qからなる 移動相である場合にっ 、て説明する。
[0042] 移動相に用いる有機溶媒は、使用する逆相液体クロマトグラフに使用可能な有機 溶媒、例えば、ァセトニトリル、メタノール、エタノール、イソプロピルアルコール、ァセ トン、 DMSO、 THF、酢酸、ギ酸及び TFAなど力も適宜選択することができる。これ らは 1種又は 2種以上を組み合せて用いることができる。
[0043] ポリペプチド A相転移用移動相の添加、攪拌は、例えば、逆相液体クロマトグラフに 備わる混合器(図 1 (C) (D) )によって実施することができる。
[0044] ポリペプチド A導入用移動相とポリペプチド A相転移用移動相の混合比(ポリぺプ チド A導入用移動相:ポリペプチド A相転移用移動相 = 1: αとする)の決定方法につ いて、具体的に説明する。
[0045] 本例にお ヽて、水 有機溶媒 X混合溶液、水 有機溶媒 Υ混合溶液、水一有機 溶媒 Ζ混合溶液、水一有機溶媒 L混合溶液、水一有機溶媒 Μ混合溶液、水一有機 溶媒 Ν混合溶液、水一有機溶媒 Ο混合溶液、水一有機溶媒 Ρ混合溶液及び水一有 機溶媒 Q混合溶液の各々の混合溶液におけるポリペプチド Αの相転移臨界値はそ れぞれ、 X (%)、 Y (%)、 Z (%)、 L (%)、 M (%)、 N (%)、 O (%)、 P (%)、 Q (%)と する。これらの相転移臨界値は、前述の相転移臨界値の決定方法により決定されうる 。本例において、 OFF相ポリペプチド A試料における水、有機溶媒 X、有機溶媒 γ、 有機溶媒 Ζの容積比は、それぞれ、 wl (%) , x (%) , y(%) , z (%) (ただし、 wl +x +y + z= 100)とする。本例において、ポリペプチド A導入用移動相における水、有 機溶媒 L、有機溶媒 M及び有機溶媒 Nの容積比は、それぞれ、 w2 (%) , 1 (%) , m ( %) , n(%) (ただし、 w2+l+m+n= 100)とする。本例において、ポリペプチド A相 転移用移動相における水、有機溶媒 0、有機溶媒 P及び有機溶媒 Qの容積比は、そ れぞれ、 w3 (%) , o (%) , p (%) , q (%) (ただし、 w3 + o + p + q= 100)とする。
[0046] OFF相ポリペプチド A試料に存在するポリペプチド Aは OFF相であるため、前述の 式(a)の考えに従うと、 xZX+yZY+zZZ> lが成立している。
[0047] ポリペプチド A相転移用移動相にポリペプチド Aを溶解させた場合には、ポリぺプ チド Aは ON相となるため、前述の式 (a)の考えに従うと、 oZO + pZP + qZQ< lが 成立している。当業者は、このようなポリペプチド A相転移用移動相を容易に調製で きる。例えば、 0 = 20%, P=40%, Q = 50%の場合には、 o, p, q全て 5%にすれ ばよい。
[0048] ポリペプチド A導入用移動相に存在するポリペプチド Aが OFF相である場合 (すな わち、ポリペプチド A導入用移動相が OFF相溶液の場合)、 lZL+mZM+nZN > 1が成立している。当業者は、このようなポリペプチド A導入用移動相を容易に調 製できる。例えば、 0 = 20%, P=40%, Q = 50%の場合には、 o, p, qを全て 20% にすればよい。逆相液体クロマトグラフに導入されたポリペプチド A試料は、混合器 等によりポリペプチド A導入用移動相と攪拌、混合されない限り、前後で拡散しながら 配管中を後から続くポリペプチド A導入用移動相に押されて流れており、ポリべプチ ド A近傍の移動相は導入されたポリペプチド A試料の溶媒組成をほぼ保持していると 考えられる(図 4B, C)。従って、ポリペプチド A試料とポリペプチド A相転移用移動相 を 1 : αで混合してなる溶液においてポリペプチド Aは ON相となり、かつ、ポリべプチ ド A導入用移動相とポリペプチド A相転移用移動相を 1: aで混合してなる溶液にお いてもポリペプチド Aは ON相となる必要があると考える。本考えから、 |8 = { (1/L + mZM+nZN)— 1}Z{ 1—(oZO+pZP + qZQMとして、 Ύ = { (x/X+y/Y + zZZ)— 1}Z{ 1— (oZO + pZP + qZQ) }とすると、 aは j8と γのうちより大きい 値( ι8と γが同一の場合は j8又は γ )以上の値となる。
[0049] ポリペプチド Α導入用移動相に存在するポリペプチド Aが ON相である場合 (すなわ ち、ポリペプチド A導入用移動相が ON相溶液の場合)、 l/L+m/M+n/N< 1 が成立している。当業者は、このようなポリペプチド A導入用移動相を容易に調製で きる。例えば、 O = 20%, P=40%, Q = 50%の場合には、 o, p, qを全て 5%にす ればよい。この場合には、ポリペプチド A試料とポリペプチド A相転移用移動相を 1: aで混合してなる溶液においてポリペプチド Aは ON相となる必要があると考える。本 考えから、 aは前記の γとなる。 [0050] 被験ポリペプチドとしてゥロコルチンを例に挙げて混合比にっ 、て更に説明する。 後述の実施例 1においては、水—ァセトニトリル混合溶液におけるゥロコルチンの相 転移臨界値が約 35%、水—エタノール混合溶液におけるゥロコルチンの相転移臨 界値が約 45%、水-酢酸混合溶液におけるゥロコルチンの相転移臨界値が約 65% であることが明ら力となった(実施例 3参照)。従って、 OFF相ゥロコルチン試料の溶 媒として、水、ァセトニトリル及びエタノールからなる溶媒であって、水:ァセトニトリル: エタノールの容積比が 20%: 35% :45%である溶媒を例示できる。ゥロコルチン導入 用移動相として、水、酢酸、ァセトニトリル及びエタノール力もなる溶媒であって、水: 酢酸:ァセトニトリル:エタノールの容積比が 16. 75% : 3. 25% : 35% :45%である 溶媒を例示できる。ゥロコルチン相転移用移動相として、 3. 25%酢酸水溶液を例示 できる。本 f列【こお ヽて、 j8 = { (3. 25/65 + 35/35+45/45) - 1 }/{ 1 - (3. 2 5/65) } , γ = { (35/35+45/45) - 1 }/{ 1 - (3. 25,65) }となる。すなわち 、 j8は約 1. 1、 γは約 1. 05となる。従って、 αは約 1. 1以上と算出することができ、 例えば、ゥロコルチン導入用移動相とゥロコルチン相転移用移動相を 1: 2の混合比 率で混合、攪拌すればよい。
[0051] すなわち、 OFF相ポリペプチド Αを相転移させる手段として、 OFF相ポリペプチドを 含有する移動相における有機溶媒含量を低下させる手段を例示することができる。 O FF相ポリペプチドを含有する移動相の水分含量を増加させることにより、 OFF相ポリ ペプチドを含有する移動相における有機溶媒含量を低下させることができる。
[0052] 本発明者らは、 27種類の被験ポリペプチドを対象に、水 イソプロピルアルコール 混合溶液、水—ァセトニトリル混合溶液、水—エタノール混合溶液、水—メタノール 混合溶液及び水 酢酸混合溶液を用いて、それぞれの有機溶媒 (酢酸も含む)にお ける相転移臨界値の概算を算出した結果、 5〜70%程度であることが明らかとなった (実施例 15参照)。今回用いた 27種のポリペプチド以外のポリペプチドについては、 1〜5%程度の相転移臨界値を示す場合も存在すると考えられる。従って、溶離液中 に含まれる各有機溶媒の含量を臨界値以下 (f< l)、例えば 0. 01〜1%程度以下、 好ましくは 0. 01〜0. 5%程度以下に低下させることによって、 OFF相ポリペプチドを 相転移させ、 ON相ポリペプチドを生成することができると考えられる。 一方で、カラム圧が高い場合に、保持時間の短いポリペプチドが、カラム力も早く溶 出する場合が存在することが判明した (実施例 7及び 15)。この原因としては、高い力 ラム圧によりポリペプチドの高次構造がより小さい臨界値を示す高次構造に変化する ためと推察された。
[0053] 少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移 動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移 動相 1供給器と送液管を介して接続する試料注入器、該移動相 2供給器と該試料注 入器とを送液管を介して接続する移動相混合器、該移動相混合器と送液管を介して 接続する逆相分析カラム、並びに該逆相分析カラムと接続されるポリペプチドの検出 又は定量器を有する逆相液体クロマトグラフ(図 1 (C) )を用いる場合の工程(2)を説 明する。
[0054] 工程 (2)は、移動相混合器による移動相 1と移動相 2の混合と攪拌により実行される 。移動相 1は、移動相 1に被験ポリペプチドを溶解させた場合に該被験ポリペプチド が OFF相となる移動相であればよい。このような移動相として、イソプロピルアルコー ルカ 0%以上、ァセトニトリルの容積比が 50%以上、エタノールの容積比が 50%以 上、メタノールの容積比が 80%以上及び Z又は酢酸の容積比が 80%以上であって 、かつ、イソプロピルアルコール、ァセトニトリル、メタノール、エタノール及び酢酸から 選ばれる 1種又は 2種以上の有機溶媒を含む溶液、例えば、水ーァセトニトリル (水と ァセトニトリルの容積比は 1 : 1)混合溶液を例示できる。移動相 2として、水又は数% の有機酸水溶液を例示できる。有機酸として好ましく酢酸、ギ酸、 TFAを例示できる 。工程(2)は、このような移動相 1と移動相 2を混合比 1: 100〜1: 1、好ましくは 1: 10 0〜1: 2で移動相混合器によって混合と攪拌により実行されうる。
より具体的には、例えば、移動相混合器において、容積比 4%の酢酸を含むァセト 二トリル メタノール混合液 (容積比 1: 1)である移動相 1と、容積比 4%の酢酸水溶 液である移動相 2を 2 : 8の混合比で混合、攪拌することにより工程 (2)を実行すること ができる (実施例 1参照)。
[0055] カラムの固定相やカラム温度もポリペプチドの固定相への保持時間に影響を与える が(実施例 8及び 9参照)、ポリペプチド溶液におけるそのポリペプチドのカラムの充 填剤に対する吸着能の相転移が与える影響と比較すると僅かである。一般的には、 カラム温度を上昇させると、ポリペプチドの固定相への保持時間が短くなることから、 ポリペプチドの転移臨界値は下がり、逆にカラム温度を低下させると、ポリペプチドの 固定相への保持時間が長くなることから、ポリペプチドの相転移臨界値は上昇する。 また、一般的に、グラフアイトカーボン充填剤はシリカゲル充填剤と比べてポリべプチ ドの保持力が強いことから、あるポリペプチドについて、シリカゲル充填剤を用いた場 合の該ポリペプチドの相転移臨界値は、グラフアイトカーボン充填剤を用いた場合の 該ポリペプチドの相転移臨界値と比べて低!、。
[0056] 工程 (3)は、 ON相ポリペプチド Aをカラム充填剤と相互作用させる工程である。ェ 程(2)により、被験ポリペプチドは、 ON相ポリペプチド A、すなわちカラム充填剤に吸 着できる状態になっているので、全量充填剤に確実に吸着する。従来は、前述の如 ぐポリペプチドの吸着能が OFF相と ON相とに相転移することが知られていないこと から、 OFF相の状態で導入されたポリペプチドはカラム充填剤に吸着せずに素通り してしまい、ピークが 2つに生じることもあった (実施例 1参照)。一方、 ON相の状態で 導入されたポリペプチドは、カラム充填剤に確実に吸着するが、導入前に容器等へ の吸着によってその一部が失われる結果、定量性が失われ、高感度定量を困難とし ていた。
[0057] 工程 (4)は、充填剤に吸着した ON相ポリペプチド Aを相転移させて、 OFF相ポリ ペプチド Aを生成する工程である。この工程は、移動相の有機溶媒一水の濃度を変 ィ匕させる、すなわちグラジェントをかけることにより行われる。移動相中の有機溶媒含 量を前記の考えに従って、該移動相が OFF相となるまで上昇させればよい。低分子 化合物のカラム充填剤への保持と比べて、ポリペプチドのカラム充填剤への保持は、 疎水的相互作用等の様々な相互作用が存在する中で、吸着能の影響を最も大きく 受ける点が特徴である。このポリペプチドの吸着能は、相転移臨界値を境界にして著 しく変化する点が特徴であり、カラム充填剤に吸着している ON相ポリペプチドは、力 ラム充填剤と相互作用している低分子化合物と比べて、イソクラテイク条件において カラム中を動き難いという性質を有している。この性質を利用して、工程(1)〜(3)を 繰り返し実行して、その後に工程 (4)を実行することもできる。その結果、カラム充填 剤が有するポリペプチドの負荷量限界までカラム充填剤にポリペプチドを吸着させる ことが可能となり、高感度な定量が可能となる。
[0058] 工程 (5)は、 OFF相ポリペプチド Aを溶出する工程である。溶離液中の有機溶媒濃 度を高くする、つまり、ポリペプチドが OFF相ポリペプチドとなる溶液組成となるような 溶出液を用いて、溶出すればよい。
[0059] 工程 (6)は、溶出したポリペプチド Aを検出又は定量する工程であり、検出は UV、 蛍光、フォトダイオードアレイ等いずれでもよい。高感度定量は、マススペクトル、特に タンデムマススぺタトロメトリーが好まし 、。
[0060] また、本発明には、少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移 動相 1供給器)、移動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移 動相 2供給器)、移動相 1供給器と送液管を介して接続する試料注入器、該移動相 2 供給器と該試料注入器とを送液管を介して接続する移動相混合器、該移動相混合 器と送液管を介して接続する逆相分析カラム、並びに該逆相分析カラムと接続される ポリペプチドの検出又は定量器を有する逆相液体クロマトグラフも提供する(図 1 (C) )。本逆相液体クロマトグラフは、本検出又は定量方法に用いることができる。該逆相 分析カラムとポリペプチドの検出又は定量器とは送液菅を介して接続され得る。ポリ ペプチドの検出又は定量器とは、ポリペプチドを検出又は定量することが可能な検出 又は定量器である。
[0061] 逆相液体クロマトグラフとして、液体クロマトグラフ Z質量分析計 (LC MS)が好ま しく例示される。液体クロマトグラフ Z質量分析計 (LC MS)として、液体クロマトグ ラフ Zタンデム質量分析計 (LC MSZMS)が好ましく例示される。ポリペプチドの 検出又は定量装置としての質量分析装置が接続されている逆相液体クロマトグラフ を用いることにより、高感度なポリペプチドの検出又は定量が可能となる。従って、ポ リペプチドの検出又は定量器として、質量分析計、好ましくは、タンデム質量分析計 を挙げることができる。
[0062] 移動相として 2種以上の有機溶媒と水の混合液を用いる場合などでは、移動相供 給器を 3つ以上有する逆相液体クロマトグラフが好ましい(図 1 (D) )。従って、少なく とも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移動相 1と は異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移動相 1及 び 2とはそれぞれ異なる移動相 (移動相 3)を供給する移動相供給器 (移動相 3供給 器)、移動相 1供給器と移動相 2供給器とを送液管を介して接続する移動相混合器( 混合器 A)、混合器 Aと送液管を介して接続する試料注入器、該移動相 3供給器と該 試料注入器とを送液管を介して接続する移動相混合器 (混合器 B)、混合器 Bと送液 管を介して接続する逆相分析カラム、該逆相分析カラムと送液管を介して接続される 質量分析計を有する、液体クロマトグラフ Z質量分析計 (LC MS)又は液体クロマ トグラフ Zタンデム質量分析計 (LC MS/MS)も本発明に含まれる。
[0063] また、質量分析計と分析カラムが送液菅を介して接続するのではなぐ質量分析計 がスイッチングバルブと接続し、該スイッチングノ レブが送液菅を介して逆相分析力 ラム接続してもよい。スイッチングバルブは、分析カラム力もの溶出液を質量分析計 へ移行させる力否かを切り分けることができる。例えば、ポリペプチドの検出又は定量 が完了した後、分析カラムに吸着する夾雑物を洗浄する際などに、スイッチングバル ブを操作し、分析カラム力 の溶出液が質量分析計に移行することを止めることがで きる。
[0064] 本発明システム(図 1 (C)及び (D) )と従来システム(図 1 (A)及び (B) )とを比較した 図を図 1に示す。
[0065] 本発明法によれば、容器等への吸着を回避できる溶液組成を有するポリペプチド 試料を、ロスすることなく定量することができる。従って、装置が有する検出限界まで 測定可能であり、システムへの試料導入量によっては、 fMオーダー以下のポリぺプ チドを正確に定量可能である。
[0066] 後記実施例(特に実施例 17〜22)に記載のように、本発明者は、ポリペプチドを含 有する生体由来試料に酢酸を添加すれば、該試料中のあるポリペプチドの溶解度を 向上させることができることを見出した。
[0067] 生体由来試料としては、血漿、尿、各組織ホモジネート等が挙げられるが、血漿由 来試料が好ましい。
酢酸の添加によって、生体由来試料中のポリペプチドの溶解度が向上する理由は 明らかではないが、血漿中のポリペプチドとあるポリペプチドとの相互作用を阻害し、 血漿中のポリペプチドとあるポリペプチドとの凝集を阻害することによるものと考えられ る。すなわち、酢酸の添カ卩により、インビト口において、同一又は異種のポリペプチド 間相互作用を阻害することができ、それらの凝集を阻害することができる。
[0068] また、この酢酸の添カ卩によるポリペプチドの溶解性向上作用は、ポリペプチドを含 有する生体由来試料に有機溶媒を添加した場合に、特に有効である。当該有機溶 媒としては、ァセトニトリル、メタノール、エタノール及びイソプロピルアルコールから選 ばれる 1種又は 2種以上が好ましい。すなわち、血漿由来試料に、有機溶媒と酢酸と を添加することにより、該試料中のあるポリペプチド (ポリペプチド A)の溶解性を向上 させることができる。このようにして溶解性を向上させた試料は、 OFF相ポリペプチド Aとなる。
[0069] 当該ポリペプチドとしては、分子量 1万 Da以上のものであってもよい。特に生体由 来試料中の βアミロイド又はその部分ポリペプチドの溶解性を向上させるのに有用で ある。 j8アミロイドの部分ポリペプチドとしては、次の(1)〜(4)が挙げられる。
(1) βアミロイドのアミノ酸配列第 1番目力も第 38番目までからなるポリペプチド、
(2) βアミロイドのアミノ酸配列第 1番目力も第 40番目までからなるポリペプチド、
(3) βアミロイドのアミノ酸配列第 1番目力も第 42番目までからなるポリペプチド、及 び
(4) βアミロイドのアミノ酸配列第 1番目力も第 43番目までからなるポリペプチド。 添加する酢酸の量は、 50%以上が好ましぐ有機溶媒と組み合せて使用する場合 には、有機溶媒量が、 10%以上であり、酢酸の量が 50%以上であるのが好ましい。 実施例
[0070] 次に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に何 ら限定されるものではない。
[0071] 実施例に用いた試薬、ポリペプチド等を以下に示す。
[0072] 試薬
HPLC用ァセトニトリル(関東ィ匕学)
HPLC用メタノール(関東ィ匕学)
HPLC用エタノーノレ (関東化学) HPLC用イソプロピルアルコール(2—プロパノール)(関東化学)
カラムクロマトグラム用 酢酸 (ナカライテスタ)
カラムクロマトグラム用 ギ酸 (ナカライテスタ)
トリフルォロ酢酸 (TFA;ナカライテスタ)
ジメチルスルホキシド(DMSO;ナカライテスタ)
超純水(低総有機炭素水: Low TOC水)
ポリペプチド(27種)
下記ポリペプチドをペプチド研究所より購入して使用した。
•副腎皮質刺激ホルモンのアミノ酸配列第 1番目力も第 24番目からなるポリペプチド ( ACTH (1— 24) ) *
• βアミロイドのアミノ酸配列第 1番目から第 16番目力もなるポリペプチド
amyloid β― protein ( 1— 1り ) *
• βアミロイドのアミノ酸配列第 1番目力も第 40番目力もなるポリペプチド
(amyloid β― protein ( 1― 40) ) *
• βアミロイドのアミノ酸配列第 1番目力 第 42番目からなるポリペプチド *
(amyloid β— protein (1—42) ) *
• βアミロイドのアミノ酸配列第 1番目力も第 43番目力もなるポリペプチド
(amyloid β— protein (1—43) ) *
•成長ホルモン放出因子(GRF) *
'イソ口イシノレーセリノレーブラジキニン (isoleucyl— seryl— bradykinin) *
•脳性ナトリウム利尿ペプチド (BNP— 32) *
•インスジン(insulin) *
•C型ナトリウム利尿ペプチド(CNP— 53) *
'ミツドカインのアミノ酸配列第 60番目から第 121番目力もなるポリペプチド (midkine (60- 121) ) *
•ニューロメジン C (neuromedin C) *
'ニューロペプチド Y(NPY) *
'ノシセプチン(nociceptin) * 'ォキシトシン(oxytocin) *
.ゥ口コルチン (urocortin) *
•心房性ナトリウム利尿ペプチド (ANP (1— 28) )
•ミツドカイン midkineノ
•ラット好中球走ィ匕性因子一 1 (CINC - 1/gro)
•副甲状腺ホルモン (PTH (1 -84) )
下記ポリペプチドを American Peptide Company, Inc.より購入して使用した
• βアミロイドのアミノ酸配列第 1番目力も第 28番目力もなるポリペプチド
(amyloid β 一 protein ( 1一 28) ) *
• βアミロイドのアミノ酸配列第 1番目力も第 38番目力もなるポリペプチド
(amyloid ;3— protein (1— 38) ) *
( *を付されたポリペプチドを、後述の実施例において、 18種のポリペプチドと称呼 する)
下記ポリペプチドを Sigmaより購入して使用した。
'インターフェロン一 γ (interferon— γ )
•ォ/くノレブミン (ovalbumin)
下記ポリペプチドを BACHEMより購入して使用した。
•ァンジ才テンシン II (angiotensin II)
.ォバルブミンのアミノ酸配列第 323番目力 第 339番目力もなるポリペプチド (ovalb umin(323- 339) )
下記ポリペプチドを Calbiochemより購入して使用した。
'アミノ酸配列第 4番目のチロシンがリン酸ィ匕されたアンジォテンシン II ( [Tyr (PO H
3
) ]— angiotensin II)
2
[0074] 装置
四重極型タンデム MS装置: API365 (アプライドバイォシステムズ)
LCシステム: LC600 (GLサイエンス)
[0075] ポリペプチド原液の調製 GRF及びインスリンは、容積比 0.1%の酢酸水溶液で溶解することで、原液(100 μ Μ)を調製した。ゥロコルチンは、容積比 1%の酢酸水溶液で溶解することで、ゥロ コルチン原液(100 μ Μ)を調製した。 amyloid β protein (1— 28)、(1 38)、 (1-40)、 (1-42)及び(1—43)は、 DMSOに溶解し、原液(100 μ Μ)を調製し た。 [Tvr(PO H )4]- angiotensin II 及び ovalbumin(323— 339)は、水に溶
3 2
解することでポリペプチド原液(ImM)を、 angiotensin IIは、水に溶解することでポ リペプチド原液(50mM)を調製した。また、 midkine、 CINC— 1/gro及び PTH(1 -84)は、水に溶解することでポリペプチド原液(10 M)を調製した。
更に、 ovalbuminは、水に溶解することでポリペプチド原液(lOmgZmL;約 200 M)を調製した。その他のポリペプチドは、水に溶解することでポリペプチド原液(1 00 M)を調製した。
ポリペプチドの多価イオン測定によるモニターイオンの設定
<試料調製 >
ポリペプチド原液(100 M) Lを、酢酸一水ーァセトニトリル メタノール混合 液(容積比 2 :80 :10 :10、 4:80:10:10、 2:50:25:25又は 4:50:25:25)490 L又は 990 μ L、又は酢酸—水—ァセトニトリル混合液 (容積比 2 :80:20,4:80: 20 、 2 :50 :50又 ίま 4 :50 :50) 490 L又 ίま 990 Lに添カロし、ポリペプチド試料溶液( 1又は 2 Μ)を調製した。ただし、 [Tyr(PO H ) 4] - angiotensin II 及び ovalb
3 2
umin(323— 339)原液を、水にて 10倍希釈した後(100 M)、その 10 Lを用い て同様に 1又は 2 Mの試料溶液を調製した。また、 angiotensin II原液を、水にて 50倍希釈した後(ImM)、その 10 Lを用いて 1又は 2 Mの試料溶液を調製した。 更に、 midkine、 CINC— lZgro及び PTH(1— 84)原液(10 M) 50 Lを、酢酸 —水—ァセトニトリル—メタノール混合液(容積比 4 :70:10: 10又は 4 :40:25: 25) 4 50 μ L〖こ添加し、ポリペプチド試料溶液(1又は 2 μ Μ)を調製した。 Ovalbumin原 液(10mgZmL;約200iuM)10iuLを、酢酸一水一ァセトニトリル一メタノール混合 液(容積 it4 :80:10: 10又 ίま 4 :50:25: 25) 490 μ L又 ίま 990 μ Lに添カロし、ポリべ プチド試料溶液(1又は 2mgZmL)を調製した。
<測定条件 > 測定モード: ESI positive
サンプル導入法:インフュージョン法
流速: 5 μ L/ min
<モニターイオン設定 >
検討に用いた全てのポリペプチドにおいて、多価イオンが認められた。この多価ィ オンのうちの一つを親イオンとして選択して、 MSZMS測定のための娘イオンの選 択を実施した。その際に、 MS条件に関わるパラメーターの最適化を実施した。今回 、測定に用いた各ポリペプチドのモニターイオン例を表 1及び表 2に示す。
[表 1]
各ポリペプチドのアミノ酸残基数、 分子量及び M S測定に用いたモェターイオン
全アミノ酸残 モニタ一"" Tオン( ペプチド 分子量 アミノ酸配列
基数 Qi Q3 oxytocin1) 1007 9 cyiqncplg 505 86 neuromedin C 1120 10 gnnwavghlm 374 110 lsoieucyl-seryl-bradykinin 1260 11 isrppgispft 421 86 nociceptin 1809 17 fggftgarksarklanq 453 or 604 120 amyloid β-protem (1-16) 1955 16 daeirndsg evhhqk 490 110
ACTH (1-24) 2934 24 ! svsmehfrwgkpvgkkrrpvkvyp 490 or 588 223 amyloid β-protein (1-28) 3263 28 daeirndsgyevh qklvfiaedvgsnk 654 120
B P-322) 3464 32 spkmvqgsgcfgrkmdrissssglgckvlnh 578 or 694 70 or 84 amyloid β-protein (1-38) 4132 38 daefrhdsgyevhhqklvffaedvgsnkgaiiglmvgg 690 or 827 86
NPY 4272 36 pskpdnpgedapaedmar ysalrhyinlitrqry 713 or 855 70 amyloid β-protein (1-40) 4330 40 daefrhdsgyevhhqklvffaedvgsnkgaiiglmvggw 723 or 867 86 amyloid β-protein (1-42) 4514 42 daefrhdsgyevh qklvf aedvgsnkgaiiglmvggwia 753 or 904 86 amyloid β-protein (1-43) 4615 43 daefrhdsgyevhhqklvf aedvgsnkgauglmvggwiat 770 or 924 86 urocortin 4696 40 dnpslsidltfhllrtllelartqsqreraeqnriifdsv 940 70
G F 5040 44 yadaiftns rkvlgqlsarkllqdimsrqqgesnqergararl 721 or 841 136
CNP-533) 5802 53 dlrvdtksraawarllqehpnarkykgankkglskgcfglkldrigsmsglgc 581, 646, 726, or 830 84
A chain: giveqcctsicslyqlenycn
Insulin4) 5808 51 1163 136
B chain: fvnqhlogshlvealylvcgergffytpkt
midkine (60-121)5) 6789 62 adckykfenwgacdggtgtkvrqgtlkkaiynaqcqetirvtkpctpktkakakakkgkgkd 680, 755, 850, or 971 84 or 129
1)ジスルフイド'結合 Cys^Cys6
2)ジスルフイド結合 Cys1Q-Cys26
3)ジスルフイド結合 Cys37-Cys53
4)ジスルフイド結合 CysA6-CysA11,
Figure imgf000028_0001
5)ジスルフイド、結合 CyS 62-Cys94, Cys72-Cys104
C6SZZC/900Zdf/X3d 83 Z9CSS0/.00Z OAV 各ポリペプチドのアミノ酸残基数、 分子量及び M S測定に用いた各ポリペプチドのモニターイオン
全アミノ酸残 モニターイオン、m/z) ペプチド 分子量 アミノ酸配列
基数 Q1 Q3 angiotensin Π 1046 8 drvyi pf 524 263 [Tyr(P03H2)4]-angiotensin Π 1126 8 drv (P)ihpf 564 263 ovalbumin (323-339) 1774 17 isqavha ahaeineagr 593 86
ANP (l-28)6) 3080 28 slrrsscfggrmdrigaqsglgcnsfiy 618 84 apvane Ircqclqtva gihfkniqsl kvmppgphctqteviatlkn greacldpea
CINC-l/gro^ 7845 72 982 129 pmvqkivqkm lkgvpk
svseiqhnhnlgkhlnsmervewlrkklqdvhnfValgaplaprdagsqrprkkednvlvesheks
PTH (1-84) 9425 84 654 120
Igeadkadvnvltkaksq
kldcdkvki ggpgsecaewawgpclpsskdcgvgfregtcgaqtqrircrvpcnwkkefg
midkine8) 13240 121 1020 84 adckykfenw gacdggtgtk vrqgtlkkar ynaqcqetir vtkpctpktk akakakkgkg kd
interferon-γ 17kD 143 845 84 ovalbumin 44kD 1275 86
6)ジスルフイド結合 Cys7-Cys23
7)ジスルフイド結合 Cys9-Cys35, Cysn-Cys51
8)ジスルフイド結合 Cys15-CyS 39, Cys23-Cys48, Cys3。- Cys52, CysS2-Cvs94, Cys^-Cys1'
[0079] 実施例 1 (ゥロコルチンのカラム充填剤への吸着能の相転移現象)
<試料調製 >
ゥロコルチン原液(100 M) Lを、 90 Lの容積比 2%の酢酸水溶液に添カロ し、ゥロコルチン試料溶液(10 M)を調製した。更に、このゥロコルチン試料溶液 10 μ Lを、容積比 4%の酢酸を含む 990 Lの水—ァセトニトリル混合液 (容積比 10:0 、 8:2、 7:3、 6:4、 4 :6又は 2 :8)に添加し、ゥロコルチン試料溶液(ΙΟΟηΜ)を調製 した。また、容積比 4%の酢酸の代わりに容積比 4%のギ酸、又は、容積比 0. 1%の TFAを含む水ーァセトニトリル混合液(容積比 10:0、 8:2、 7:3、 6:4、 4:6、 2:8)及 び酸を含まない水ーァセトニトリル混合液 (容積比 10:0、 8:2、 7:3、 6:4、 4:6、 2:8 )を用いて、同様にァセトニトリル含量の異なるゥロコルチン試料(ΙΟΟηΜ)を調製し た。更に、 ΙΟΟηΜのゥロコルチン試料溶液 10 Lを、 990 Lの同じ組成の溶液で 希釈することにより、 InMのゥロコルチン試料溶液を調製した。
[0080] 移動相 A:酢酸一水混合液 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C逆相カラム(Develosil300C4— HG— 5:内径 2. Omm、長さ 100mm、粒
4
子径 5 μ m)
C 逆相カラム(DevelosilC30— UG— 3:内径 2. Omm、長さ 100mm、粒子
30
径 3/zm)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0081] [表 3] 従来システム (図 1 (A) ) 6Vmin (C3„カラム)
時間 移動相
(分) A (%) B ( )
0 70 30
11.5 1 99
12.5 1 99
12.6 70 30
18 70 30
従来システム (図 1 (A) ) 6Vmin ( カラム)
時間 移動相
(分) A (%) B (%)
0 70 30
10 10 90
10.1 70 30
14 70 30
本発明システム (図 1 (C) ) 6%/min ( カラム)
時間 移動相
(分) A (%) B (%)
0 80 20
3 80 20
13 20 80
13.1 0 100
14 0 100
14.1 80 20
18 80 20
[0082] ただし、本発明システムでは、 0. 1分から 3分までの間、流速を 0. 6mLZminとし た。
[0083] ァセトニトリル含量及び添カ卩した酸の異なる InMのゥロコルチン試料溶液 500 μ L 又は 100 Lをシステムに導入した。
[0084] <結果 >
溶液中のァセトニトリル含量及び添加した酸は異なるが同濃度のゥロコルチン試料 を、従来、ポリペプチドの定量方法として用いられる逆相液体クロマトグラフ法(図 1 ( Α) )及び C カラムを用いて測定した。その結果、ゥロコルチンのピーク面積は、一定
30
ではなぐ図 2のように変化した。酸として TFAを用いた場合を除き、ゥロコルチンの ピーク面積は、試料溶液中のァセトニトリル含量が 30%で最大値を示した。一方、酸 として TFAを用いた場合は、試料溶液中のァセトニトリル含量力 0%の時に、ゥロコ ルチンピーク面積が最大値を示した力 その時のピーク面積は、他の酸を用いた時 のピーク面積とほぼ変わらな力つた。よって、ゥロコルチンのピーク面積に与える酸の 影響は、試料溶液中のァセトニトリル含量が与える影響よりも小さいと考えられた。
[0085] 前述のァセトニトリル含量の異なるゥロコルチン試料溶液 (容積比 4%の酢酸を含む )を、 Cカラムを用いて測定した時のマスク口マトグラムを比較した。その結果、溶液
4
中のァセトニトリル含量力 0%以上のゥロコルチン試料溶液を測定した場合に、保持 時間 6. 5分のゥロコルチンピークの他に、約 1. 5分の箇所に新たなピークが認めら れた(図 3)。ゥロコルチン試料溶液には、ゥロコルチン以外の被験物質が含まれてい ないことから、本ピークがゥロコルチンであると考えられた。しかし、約 1. 5分という保 持時間から、この新たに出現したピークがゥロコルチンであるためには、ゥロコルチン 力 Sカラムを素通りすることが必要である。そこで、これらの現象を説明するために、次 のような「ゥロコルチンのカラム充填剤への吸着能の相転移」が起きているとの仮説を たてた。すなわち、ゥロコルチン周辺のァセトニトリル含量力 ある特異的な値 (相転 移現象では一般的に臨界点又は臨界値と呼ばれているため、以降、臨界点又は臨 界値と呼ぶ)を超えた場合、ゥロコルチンのカラム充填剤への吸着能は失われるが、 反対に、ゥロコルチン周辺のァセトニトリル含量がその臨界値より小さい場合、ゥロコ ルチンのカラム充填剤への吸着能は、カラムに保持されるのに十分な吸着能を有す る、つまり臨界点を境に、ゥロコルチンのカラム充填剤への吸着能が急激に変化する ものと仮説を立てた。
[0086] 前述のように想定した場合、今回の現象は、以下のように説明できる。つまり、ゥロコ ルチン試料溶液中のァセトニトリル含量が 40%以上(臨界値を上回る)の場合、試料 溶液中のゥロコルチンは、カラム充填剤への吸着能を失った状態で溶液中に存在す る(以降、カラム充填剤へ全く相互作用しない、又は、著しく弱く相互作用する相のゥ 口コルチンを OFF相ゥロコルチンと称することもある)。その状態で、逆相クロマトダラ フに導入された試料溶液は、図 4が示す通り、カラムへ導入されるまで、そのァセトニ トリル含量を保っているため、その溶液中のゥロコルチンはカラムと相互作用できず、 カラムを素通りする。一方、ァセトニトリル含量が 30%以下(臨界値を下回る)の場合 、試料溶液中のゥロコルチンは、カラム充填剤への吸着能を保った状態で溶液中に 存在する(以降、カラム充填剤への強く相互作用する相のゥロコルチンを ON相ゥロコ ルチンと称することもある)。その状態で、逆相クロマトグラフに導入された試料溶液は 、図 4が示す通り、カラムへ導入されるまで、そのァセトニトリル含量を保っているため 、その溶液中のゥロコルチンはカラムと相互作用し、カラムで保持されることとなる。
[0087] ただし、ゥロコルチン試料溶液中のァセトニトリル含量力 0%以上(臨界値を上回る )の場合でも、カラムへ導入されるまでの間に起きる試料溶液の拡散(図 4 (B) )、つま り、試料溶液と移動相との混合が試料溶液前後で起こっていると考えられる。その拡 散 (特に試料溶液の後ろ側)により生じたゥロコルチン周辺の (試料溶液と移動相との 混合)溶液組成が、ゥロコルチンのカラム充填剤への吸着能を示す組成となることで 、保持時間 6. 5分のピークとして認められる結果となったと考えられた。
[0088] なお、今回の結果から「ゥロコルチンのカラム充填剤への吸着能の相転移」を引き 起こす試料溶液中ァセトニトリル含量臨界値は、 30%から 40%の間に存在すると考 えられる。
[0089] この仮説に基づき、図 1 (C)及び (D)に示すシステムを、ポリペプチド定量のための システムとして考案した。このシステムを用いた場合、ポリペプチド試料溶液を含む流 れである移動相 B (もしくは移動相 Bと移動相 C力 なる溶離液)と、別の流れである移 動相 Aは、カラム導入前に混合されることから、移動相 Aと Bの混合比を変化させるこ とで、カラム先端でのポリペプチド周辺溶液組成は、任意に変化させることができる。 例えば、図 1 (C)にて、移動相 Aを水、移動相 Bをァセトニトリルとし、その混合比を 8 : 2と設定した場合、混合後のカラム先端でのァセトニトリル含量は、ァセトニトリルのみ で調製されたポリペプチド試料溶液を測定した場合でも 20%のままとなる。一方、水 のみで調製されたポリペプチド試料溶液を測定した場合、混合後のカラム先端での ァセトニトリル含量は一時的に 0%となる。つまり、この移動相比を保つ限り、ポリぺプ チド試料溶液中のァセトニトリル含量に関わらず、カラム先端でのァセトニトリル含量 は、最大 20%までにしかならない。そのため、例えば、ゥロコルチンの場合、カラム充 填剤への吸着能を失った状態(臨界値を上回るァセトニトリル含量、つまり 40%以上 のァセトニトリル含量をもつ溶液組成)のゥロコルチン試料をシステムに導入しても、 移動相 A: B比をゥロコルチンのカラム固定相への親和力を回復させ得る比 A: Bに設 定することで、相転移によりゥロコルチンのカラム充填剤への吸着能を瞬時に生じさ せることができ、その結果、ゥロコルチン全てをカラムに保持させ得ると考えられた。 [0090] この仮説を検証するために、再度、溶液中のァセトニトリル含量は異なるが同濃度 のゥロコルチン試料溶液 (容積比 4%の酢酸を含む)を、 Cカラムを装備した従来シ
4
ステム図 1 (A)及び本発明システム図 1 (C)を用いて測定した(InM;注入量 100 μ D oその結果、従来システムを用いた場合、保持時間 6. 5分のゥロコルチンピーク面 積は前回とほぼ同様に変化し (図 5 (B)黒丸)、保持時間 1. 5分のゥロコルチンピーク は、溶液中のァセトニトリル含量力 0%以上の場合に認められ、その面積はァセトニ トリル含量が増えるに従って増力!]した(図 5 (A)黒丸)。一方、本発明システムを用い た場合、ゥロコルチン試料溶液中のァセトニトリル含量が 30%以上の場合、ゥロコル チンのピーク面積はほぼ一定であり(図 5 (B)白丸)加えて、従来法で認められた保 持時間 1. 5分に相当するゥロコルチンピークは、本発明システムでは全く認められな 力つた(図 5 (A)白丸)。また、ゥロコルチン試料溶液中のァセトニトリル含量が 20% 以下(臨界値を下回る)の場合、保持時間 6. 5分のゥロコルチンピーク面積は、試料 溶液中のァセトニトリル含量が 30%以上の場合と比較して、小さくなり、更に、試料溶 液中のァセトニトリル含量が 0%の場合、ゥロコルチンのピーク面積は、約 40分の 1で あった。このゥロコルチンピーク面積の減少は、ゥロコルチン試料を調製した器材及 び容器 (エツペンドルフチップ及びチューブ)や、液体クロマトグラフに用いられて 、る 器材(注入用シリンジ)への吸着によって、カラムに導入されるゥロコルチンの量が減 少したことに起因すると考えられた。また、ゥロコルチン試料溶液中のァセトニトリル含 量が 30%以上で、ピーク面積がほぼ一定であったことから、試料溶液中のァセトニト リル含量が 30%以上の場合に、試料調製'保存時に用いる容器及び試料導入時に 用いるシリンジ等への吸着が起こらな力つたと考えられた。このことから、ゥロコルチン の今回用いたカラム充填剤への吸着能の相転移臨界値(30%〜40%の間)より大き V、有機溶媒含量を含む溶液中でゥロコルチンを取り扱うことで、試料調製時及び試 料導入時のゥロコルチンの容器及び装置等への吸着による損失を回避できると考え られた。
[0091] この検討結果から、ゥロコルチンのカラム充填剤への吸着能の相転移が確かに起こ つていると考えられた。つまり、本発明システムへ導入された OFF相ゥロコルチンは、 水系移動相との混合により生じた溶液中で瞬時に相転移を起こすことによって、 ON 相ゥロコルチンとなり、全てのゥロコルチンがカラムと相互作用し得る状態となり、試料 導入前までに容器及びシリンジ等への吸着が認められない場合には、ほぼ同じピー ク面積として検出されたと考えられた。また、今回使用したようなシリカゲルを担体とす るカラムを用いてカラム充填剤への吸着能の相転移臨界値を把握することで、容器 及び装置等への吸着を防ぐァセトニトリル含量も大体把握できることが示唆された。
[0092] 実施例 2 (ァセトニトリル以外の因子によるゥロコルチンのカラム充填剤への吸着能の 相転移)
<試料調製 >
ゥロコルチン原液(100 M) 10 Lを、 990 μ Lの酢酸—水—ァセトニトリル混合 液 (容積比 4: 50: 50)に添加し、ゥロコルチン試料溶液(1 μ Μ)を調製した。更に、こ のゥロコルチン試料溶液 10 ;zLを、 990 Lの下記混合液に添加し、ゥロコルチン試 料溶液(ΙΟηΜ)を調製した。
水—ァセトニトリル混合液 (容積比 =7 :3、 6:4、 5:5、 4:6、 3:7、 2 :8又は 1:9) 水 エタノール混合液 (容積比 =7 :3、 6:4、 5:5、 4:6、 3:7、 2:8又は 1:9) 水 メタノール混合液 (容積比 =7 :3、 6:4、 5:5、 4:6、 3:7、 2 :8又は 1:9) 水 酢酸混合液 (容積比 =7 :3、 6:4、 5:5、 4:6、 3:7、 2:8又は 1:9) 水ーギ酸混合液 (容積比 =7 :3、 6:4、 5:5、 4:6、 3:7、 2:8又は 1:9) [0093] <測定条件 >
移動相 A:酢酸一水混合液 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C逆相カラム(Develosil300C4— HG— 5:内径 2. Omm、長さ 100mm、粒
4
子径 5 μ m)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0094] [表 4] 従来システム (図 1 (A) ) 6¾/iin
時間 移動相
(分) A (%) B (%)
0 80 20
13 2 98
13.1 80 20
23 80 20
[0095] ΙΟηΜの各ゥロコルチン試料溶液 100 μ Lをシステムに導入した。
[0096] <結果 >
ゥロコルチンのカラム充填剤への吸着能の相転移は、前述のァセトニトリルだけで なぐ検討したすべての溶液で引き起こされることが示された (表 5)。各溶液における 相転移臨界値は、エタノールを用いた場合、容積比 40%〜50%、メタノール及び酢 酸を用いた場合、容積比 60〜70%、ギ酸を用いた場合、容積比 80%〜90%の間 に存在すると考えられた。今回の結果から、ゥロコルチンのカラム充填剤への吸着能 の相転移に与える溶液中に含まれる有機溶媒の強さは、ァセトニトリル >エタノール >メタノール及び酢酸 >ギ酸の順であることが示された。ただし、高濃度のギ酸を用 いた場合、時間とともにゥロコルチンのピーク面積が小さくなる現象が認められ、ゥロ コルチンに存在するァミノ基のホルミル化が引き起こされていると考えられた。このこと から、高濃度のギ酸を試料中に用いることはあまり好ましくな 、と考えられた。
[0097] [表 5]
従来法を用いて測定した時のゥロコルチンのピーク面積
試料中有機溶媒含量(%)
有機溶媒
30 40 50 60 70 80 90 ァセトニトリル 90080 57514 45233 34666 55400 67939 29479 カラムに保持された エタノール 99277 102874 85929 78945 201368 196573 194342 ゥロコルチンの メタノーレ 1474 3030 58665 95573 80363 80434 56379 ピーク面積 酢酸 21616 30364 82435 95335 29674 25441 26834
ギ酸 76929 77155 88569 90502 69107 81004 18756 ァセトニトリル 0 73008 137942 123601 112907 133888 37866 カラムに保持されなかった エタノール 0 0 69479 124283 177267 188804 130798 ゥロコルチンの メタノール 0 0 0 0 40797 112375 189369 ピーク面積 酢酸 0 0 0 0 81633 98845 111122
ギ酸 0 0 0 0 0 0 10369
[0098] 実施例 3 (2種の有機溶媒を含む溶液中ゥロコルチンのカラム充填剤への吸着能の 相転移現象) ゥロコルチン原液(100 M) 10 Lを、 990 μ Lの酢酸—水—ァセトニトリル混合 液 (容積比 4: 50: 50)に添加し、ゥロコルチン試料溶液(1 μ Μ)を調製した。更に、こ のゥロコルチン試料溶液 10 Lを、 990 Lの表 6及び表 7に示す混合液に添カロし、 ゥロコルチン試料溶液(ΙΟηΜ)を調製した。
[表 6]
2種の有機溶媒を含むゥロコルチン試料の調製
溶液組成 有機溶媒 試料溶液中の各有機溶媒含量 (%)
ァセトニトリル 10 10 10 10 10 10 10 10 10 エタノール 0 10 20 30 40 50 60 70 80 ァセトニトリル一エタノー -ル ァセトニトリル 20 20 20 20 20 20 20 20 - エタノール 0 10 20 30 40 50 60 70 - ァセトニトリル 30 30 30 30 30 30 30 - - エタノール 0 10 20 30 40 50 60 - - ァセ卜二卜リル 10 10 10 10 10 10 10 10 10 メタノール 0 10 20 30 40 50 60 70 80 ァセトニトリル一メタノーリレ ァセ卜二トリル 20 20 20 20 20 20 20 20 - メタノー Jレ 0 10 20 30 40 50 60 70 - ァセトニトリル 30 30 30 30 30 30 30 - - メタノール 0 10 20 30 40 50 60 - 一 ァセトニトリル 10 10 10 10 10 10 10 10 10 酢酸 0 10 20 30 40 50 60 70 80 ァセトニド Jルー酢酸 ァセトニトリル 20 20 20 20 20 20 20 20 - 酢酸 0 10 20 30 40 50 60 70 - ァセトニ卜リル 30 30 30 30 30 30 30 - - 酢酸 0 10 20 30 40 50 60 - - ァセトニトリル 10 10 10 10 10 10 10 10 10 ギ酸 0 10 20 30 40 50 60 70 80 ァセトニトリル—ギ酸 ァセトニトリル 20 20 20 20 20 20 20 20 - ギ酸 0 10 20 30 40 50 60 70 - ァセトニトリル 30 30 30 30 30 30 30 - - ギ酸 0 10 20 30 40 50 60 - - エタノール 10 10 10 10 10 10 10 10 10 メタノール 0 10 20 30 40 50 60 70 80 エタノール 20 20 20 20 20 20 20 20 - ェタノ一 Jレーメタノ一 Jレ メタノーリレ 0 10 20 30 40 50 60 70 - エタノール 30 30 30 30 30 30 30 - - メタノーゾレ 0 10 20 30 40 50 60 - - エタノール 40 40 40 40 40 40 一 - - メタノーゾレ 0 10 20 30 40 50 - - - エタノール 10 10 10 10 10 10 10 10 10 酢酸 0 10 20 30 40 50 60 70 80 エタノール 20 20 20 20 20 20 20 20 - エタノール一酢酸 酢酸 0 10 20 30 40 50 60 70 - エタノール 30 30 30 30 30 30 30 - - 酢酸 0 10 20 30 40 50 60 - - エタノール 40 40 40 40 40 40 - - - 酢酸 0 10 20 30 40 50 - - - エタノ一ル 10 10 10 10 10 10 10 10 10 ギ酸 0 10 20 30 40 50 60 70 80 エタノール 20 20 20 20 20 20 20 20 - エタノールーギ酸 ギ酸 0 10 20 30 40 50 60 70 - エタノール 30 30 30 30 30 30 30 - - ギ酸 0 10 20 30 40 50 60 - - エタノール 40 40 40 40 40 40 - - - ギ酸 0 10 20 30 40 50 - - - [0100] [表 7]
2種の有機溶媒を含むゥロコルチン試料の調製
溶液組成 有機溶媒 試料溶液中の各有機溶媒含量 (%)
メタノール 10 10 10 10 10 10 10 10 10 酢酸 0 10 20 30 40 50 60 70 80 メタノーゾレ 20 20 20 20 20 20 20 20 - 酢酸 0 10 20 30 40 50 60 70 - メタノール 30 30 30 30 30 30 30 - - メタノール一酢酸 酢酸 0 10 20 30 40 50 60 - - メタノーゾレ 30 30 30 30 30 30 30 - - 酢酸 0 10 20 30 40 50 60 - - メタノー Jレ 40 40 40 40 40 40 - - - 酢酸 0 10 20 30 40 50 - - - メタノール 50 50 50 50 50 - - - - 酢酸 0 10 20 30 40 - - - - メタノール 10 10 10 10 10 10 10 10 10 ギ酸 0 10 20 30 40 50 60 70 80 メタノール 20 20 20 20 20 20 20 20 - ギ酸 0 10 20 30 40 50 60 70 - メタノ一ル 30 30 30 30 30 30 30 - - メタノールーギ酸 ギ酸 0 10 20 30 40 50 60 - - メタノール 30 30 30 30 30 30 30 - - ギ酸 0 10 20 30 40 50 60 - - メタノール 40 40 40 40 40 40 - - - ギ酸 0 10 20 30 40 50 - - - メタノー レ 50 50 50 50 50 - - - - ギ酸 0 10 20 30 40 - - - - 酢酸 10 10 10 10 10 10 10 10 10 ギ酸 0 10 20 30 40 50 60 70 80 酢酸 20 20 20 20 20 20 20 20 - ギ酸 0 10 20 30 40 50 60 70 - 酢酸 30 30 30 30 30 30 30 - - 酢酸ーギ酸 ギ酸 0 10 20 30 40 50 60 - - 酢酸 30 30 30 30 30 30 30 - - ギ酸 0 10 20 30 40 50 60 - - 酢酸 40 40 40 40 40 40 - - - ギ酸 0 10 20 30 40 50 - - - 酢酸 50 50 50 50 50 - - - - ギ酸 0 10 20 30 40 - - 一 -
[0101] <測定条件 >
移動相 A:酢酸一水混合液 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C逆相カラム(Develosil300C4— HG— 5 :内径 2. Omm、長さ 100mm、粒
4
子径 5 μ m)
カラム温度: 50°C
Figure imgf000039_0001
[0102] [表 8] 従来システム (図 1 (A) ) 6¾/min
時間 移動相
(分) A (%) B (%)
0 80 20
13 2 98
13.1 80 20
23 80 20
[0103] 各ポリペプチド混合試料溶液 100 μ Lをシステムに導入した。
[0104] <結果 >
従来法を用いて 2種の有機溶媒を含むゥロコルチン試料を測定した時に、カラムに 保持されず素通りしたゥロコルチンのピーク面積値を表 9及び表 10に示す。
[0105] [表 9]
従来法を用いて 2種の有機溶媒を含むゥロコルチン試料を測定した時に素通りした ゥロコルチンのピーク面積
ァセトニトリル 試料中エタノール含量%
含量(%) 0 10 20 30 40 50 60 70 80 90
0 69479 124283 177267 188804 130798
10 0 0 0 0 88019 230550 268011 293100 148695
20 0 0 0 16951 162425 189540 277111 164651
30 0 0 93965 136457 220466 195184 213015
40 73008
ァセトニトリル 試料中メタノール含量 ¾
含量 (%) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 40797 112375 189369
10 0 0 0 0 0 10950 46043 81399 113044
20 0 0 0 0 46564 72395 91370 124886
30 0 0 31400 73690 90902 92618 133920
40 73008
ァセトニ卜リル 試料中酢酸含量%
含量 (%) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 81633 98845 ΠΠ22
10 0 0 0 0 0 0 54994 52503 63563
20 0 0 0 0 17783 49796 50014 65652
30 0 0 0 37415 51194 59751 61278
40 73008
ァセトニトリル 試料中ギ酸含:!:%
含量(¾) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 0 0 10369
10 0 0 0 0 0 0 0 0 19367
20 0 0 0 0 0 0 10717 25393
30 0 0 0 0 0 16410 37791
40 73008
エタノール 試料中メタノール含量%
含量 (%) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 40797 112375 189369
10 0 0 0 0 0 0 68091 128843 190957
20 0 0 0 0 12587 62884 99244 265409
30 0 0 0 54503 103100 139354 240563
40 0 7071 79628 109217 179558 252639
50 69479
エタノール 試料中酢酸含量%
含量 (%) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 81633 98845 1 Π 122
10 0 0 0 0 0 57351 101374 123349 133703
20 0 0 0 0 79279 99722 117969 98730
30 0 0 24004 102935 117361 126183 129775
40 0 114750 119590 135981 148043 154613
50 69479 10] 従来法を用いて 2種の有機溶媒を含むゥ口コルチン試料を測定した時に素通りした ゥロコルチンのピ -ク面積
エタノ一ル 試料中ギ酸含量%
含量(%) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 0 0 10369
10 0 0 0 0 0 0 0 5646 14024
20 0 0 0 0 0 12672 14357 19053
30 0 0 0 33372 25651 25643 34725
40 0 24205 54725 36946 42582 46026
50 69479
メタノール 試料中酢酸含量%
含量 (¾) 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 81633 98845 111122
10 0 0 0 0 0 0 45605 52792 62216
20 0 0 0 0 0 46966 49848 68146
30 0 0 0 0 46457 57017 69970
40 0 0 0 55958 56124 60047
50 0 0 63151 62410 72928
60 0 69505 73873 71430
70 40797
メタノール 試料中ギ酸含!: ¾
含量 (%〕 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 0 0 10369
10 0 0 0 0 0 0 0 0 24124
20 0 0 0 0 0 0 14310 25784
30 0 0 0 0 23197 36650 39365
40 0 0 0 90270 71170 54104
50 0 0 43817 76533 84919
60 0 0 107769 100339
70 40797
酢酸 試料中ギ酸含量 ¾
含量 (%〕 0 10 20 30 40 50 60 70 80 90
0 0 0 0 0 0 0 0 0 0 10369
10 0 0 0 0 0 0 0 0 5520
20 0 0 0 0 0 0 11854 ]7146
30 0 0 0 0 0 21754 27589
40 0 0 0 0 15230 17045
50 0 0 20438 22216 18663
60 0 36775 38766 39323
70 40797
[0107] 今回の結果から、有機溶媒が 2種以上含まれる混合溶液中でのゥロコルチンのカラ ム充填剤への吸着能の相転移現象は下記式 (a)に従っていると考えた。実際に、ゥ 口コルチン試料に用いた各有機溶媒含量を式 (a)に代入して算出した値 fを表 11及 び表 12に示したところ、 fが 1となる前後で、ゥロコルチンのカラム充填剤への吸着能 の相転移が起きていることが確認された。ただし、計算に用いた各有機溶媒の臨界 含量(%)は、クロマトグラム上でピークが 2本に分かれる前後の有機溶媒含量の中間 値(ァセトニトリル: 35%、エタノール: 45%、メタノール: 65%、酢酸: 65%、ギ酸: 85 %)とした。
[0108] 2種以上の有機溶媒を含む試料中におけるポリペプチド Aのカラム充填剤への吸 着能の相転移現象と各有機溶媒含量との関係を表す式 (a)
[0109] [数 3]
X y z
= + + _一 · · (a)
X Y Z
f < 1の場合 ポリ-ぺプチド Aは吸着能を示す (ON相) f > 1の場合 ポリ-ペプチド Aは吸着能を失う (OFF相)
[0110] ある条件下における、
X:水—有機溶媒 A混合溶液中でのポリペプチド Aの相転移臨界値を示す容積% Y:水一有機溶媒 B混合溶液中でのポリペプチド Aの相転移臨界値を示す容積% Z:水 有機溶媒 C混合溶液中でのポリペプチド Aの相転移臨界値を示す容積% X:試料溶液中の有機溶媒 A含量%
y:試料溶液中の有機溶媒 B含量%
z:試料溶液中の有機溶媒 C含量%
[0111] [表 11]
Figure imgf000044_0001
κ κπο 式 (a ) から算出した値 f
Figure imgf000045_0001
メタノール 試料中酢酸含量%
含量(%) 0 10 20 30 40 50 60 70 80 90
0 0.00 0.15 0.31 0.46 0.62 0.77 0.92 1.23 1.38
10 0.15 0.31 0.46 0.62 0.77 0 92 1.08 1 23 J .38
20 0.31 0.46 0.62 0.77 0.92 1.08 1.23 1.38
30 0.46 0.62 0.77 0.92 1.08. 1.23 1.38
40 0.62 0.77 0.92 1.08 1.23 1.38 ::;:
50 0.77 0.92 1 .08 1.23 ::: iv38s
60 0.92 "丄 QS:'; 1.23 1.38
70 1.08 :;' '* ¾:«;:! メタノール 試料中ギ酸含量%
Figure imgf000045_0002
実施例 4 (3種の有機溶媒を含む溶液中ゥロコルチンのカラム充填剤への吸着能の 相転移現象)
<試料調製 >
ゥロコルチン原液(100 j M) 10 u Lを、 990 μ Lの齚酸—水—ァセトニトリル混合 液 (容積比 4: 50: 50)に添カ卩し、ゥロコルチン試料溶液(1 μ Μ)を調製した。更に、: のゥロコルチン試料溶液 10 Lを、 990 Lの表 13〖こ示す混合液に添加し、ゥロコ ルチン試料溶液 (ΙΟηΜ)を調製した。
[0114] [表 13]
3種の有機溶媒を含むゥロコルチン試料の調製
試料中の各有機溶媒含量 (%>)
酢酸 ァセトニトリル メタノー -ル
10 10 20 30 40 50 60 70
10 20 10 20 30 40 50 60 一
30 10 20 30 40 50 - -
10 10 20 30 40 50 60 一
20 20 10 20 30 40 50 - -
30 10 20 30 40 一
10 10 20 30 40 50 一 一
30 20 10 20 30 40 一 一 一
30 10 20 30 - - - 一
10 10 20 30 40 - 一 ―
40 20 10 20 30 - - ― ―
30 10 20 - - ― 一 ―
10 10 20 30 ― 一 一 一
50 20 10 20 - - 一 - -
30 10 - - - 一 一 一
10 10 20 一 一 _ 一
60
20 10 - - ― - - -
[0115] <測定条件 >
移動相 A:酢酸一水混合液 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C逆相カラム(Develosil300C4— HG— 5 :内径 2. Omm、長さ 100mm、粒
4
子径 5 μ m)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0116] [表 14] 従来システム (図 1 (A) ) 6%/min
時間 移動相
(分) A (%) B (%)
0 80 20
13 2 98
13.1 80 20
23 80 20 [0117] 各ポリペプチド混合試料溶液 100 μ Lをシステムに導入した。
[0118] <結果>
従来法を用いて 3種の有機溶媒 (ァセトニトリル、酢酸及びメタノール)を含むゥロコ ルチン試料を測定した時に、カラムに保持されず素通りしたゥロコルチンのピーク面 積値、及び、式(1)から算出した値 fを表 15に示す。今回の結果も、実施例 3と同様、 複数の有機溶媒を含む試料中のゥロコルチンのカラム充填剤への吸着能の相転移 が式 (a)に従っていることを示唆した。以上の結果から、水—各有機溶媒からなる混 合溶媒を用いた場合のゥロコルチンのカラム充填剤への吸着能の相転移臨界値 (容 積%)をあらかじめ把握しておくことで、相転移臨界値が把握されている複数の有機 溶媒を含む試料中のゥロコルチンのカラム充填剤への吸着能 (ON相又は OFF相状 態)の予測が可能であることが示された。
[0119] [表 15]
従来法を用いて 3種の有機溶媒を含むゥロコルチン試料を測定した時にカラムを
素通りしたゥロコルチンのピーク面積と式 (a ) から算出した値 f
Figure imgf000048_0001
実施例 5 (各有機溶媒 (有機酸も含む)による各種ポリペプチドの C4カラム充填剤へ の吸着能の相転移)
<試料調製 >
検討に用いた全 27種の各ポリペプチドのうち、 angiotensin II 及び ovalbumin ( 323— 339)を除いた 25種の各ポリペプチド原液(lmM、 100 μ Μ、 10 μ Μ又は 10 mg/mL) 10 μ Lを、それぞれ、 990 μ Lの下記混合液に添カ卩し、各ポリペプチド試 料溶液(10 M、 1 Μ、 ΙΟΟηΜ又は 0. 1 mg/mL)を調製した。 水ーァセトニトリル混合液(容積比 =95 :5, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6又は 3:7)
水 エタノール混合液(容積比 =95 :5, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6又は 3: 7)
水 メタノール混合液 (容積比 =95 :5, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6又は 3:7
)
水 酢酸混合液 (容積比 =95 :5, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6又は 3:7) また、 ovalbumin (323— 339)原液(ImM)を水にて 10倍希釈した溶液(100 μ Μ)及び angiotensin II原液(50mM)を水にて 50倍希釈した溶液(ImM) 10 L を 990 Lの前述の混合液に添カ卩し、各ポリペプチド試料溶液(1 μ Μ又は 10 Μ) を調製した。
[0121] 移動相 Α:酢酸一水混合液 (容積比 4: 100)
移動相 Β:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C逆相カラム(Develosil300C4— HG— 5:内径 2. 0mm、長さ 100mm、粒
4
子径 5 μ m)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0122] [表 16] 従来システム (図 1(A)) 6%/min
時間 移動相
(分) A ( ) B ( )
0 95 5
15 5 95
15.1 95 5
25 95 5
[0123] 1 μ Μのポリペプチド混合試料溶液 100 μ Lをシステムに導入した。
[0124] <結果>
従来システム(図 1 (Α) )を用いて各ポリペプチド溶液を測定した場合に認められた カラム充填剤への吸着能の相転移、つまり、測定対象ポリペプチドのピークが 2本に 分かれる現象が、検討に用いた全てのポリペプチドにおいて認められた。表 17に、 各ポリペプチドがクロマトグラム上で 1本のピークとして認められる溶液中最大有機溶 媒 (酢酸を含む)含量を示す (カラム充填剤への吸着能の相転移臨界値はこの値を やや上回ると考えられる)。ただし、今回の検討では水一有機溶媒混合液 (容積比 = 95: 5)を測定した場合でもクロマトグラム上で 1本のピークとして認められな力つた場 合、 5%以下(< 5%)と表記した。
今回の結果から、ポリペプチドのカラム充填剤への吸着能の相転移を引き起こす有 機溶媒の強さは、ポリペプチドによってほとんど変わらず、ァセトニトリル及びエタノー ルでほぼ等しぐ次いでメタノールの順であった。一方、有機酸である酢酸が各ポリべ プチドのカラム充填剤への吸着能の相転移に与える影響の強さは、メタノールとほぼ 同等もしくは若干弱いことが示唆された。また、これら溶液中最大有機溶媒含量と各 ポリペプチドの保持時間との間に正の相関が認められたことから、ポリペプチドは、溶 離液中に含まれるァセトニトリル等の有機溶媒及び有機酸によっても吸着能の相転 移を引き起こすと予想された。従って、カラムに保持されたポリペプチドは、溶離液中 に含まれる有機溶媒によって引き起こされる吸着能の相転移、つまり、カラム充填剤 への吸着及び脱着を繰り返しながら溶出されていると考えられた。
[表 17]
従来法で C 4カラムを用いた時の各ポリぺプチドの保持時間とクロマトグラム上に 1本のみのピークが認められる溶液中最大有機溶媒含量及び保持時間
ペプチド溶液中有機溶媒の種類
ペプチド - 保持時間
分子量
ァセ1 ^卜リ エタノール メタノール 酢酸 (mm) oxytocin 1007 10 10 10 20 4.7 angiotensin Π 1046 10 5 10 20 4.6 neuromedin C 1120 く 5 <5 5 20 4.4
[T r(P03H2)4]-angiotensin Π 1126 10 10 20 20 4.7 isoleucyl-seryl-bradykimn 1260 5 5 10 20 4.5 ovalbumin (323-339) 1774 <5 <5 5 5 3.9 nociceptin 1809 5 <5 <5 <5 3.6 amyloid β-protein (1-16) 1955 5 <5 <5 <5 4.0
ACTH (1-24) 2934 く 5 5 <5 10 4.1
ANP (1-28) 3080 5 5 10 20 4.4 amyloid β-protein (1-28) 3263 10 10 20 20 4.5
BNP-32 3464 く 5 く 5 5 10 4.1 amyloid β-protein (1-38) 4132 20 20 30 40 5.4 PY 4272 20 20 30 40 6.0 amyloid β- protein (1-40) 4330 20 20 30 40 5.7 amyloid β-protein (1-42) 4514 20 20 40 40 5.9 amyloid β-protein (1-43) 4615 20 20 40 40 6.0 nrocortin 4696 30 30 50 60 7.3
GRF 5040 20 20 30 40 5.6
CNP-53 5802 10 10 10 20 4.6
Insulin 5808 20 20 40 40 6.0 midkine (60-121) 6789 <5 5 <5 10 4.0
CINC-l/gro 7845 20 20 30 40 5.7
PTH (l-84) 9425 20 20 30 30 5.3 midkine 13240 5 5 10 10 4.2 interferon-γ 17kD 20 30 50 50 6.6 ovalbumin 45kD 40 50 60 60 7.5
[0126] 実施例 6 (各ポリペプチドの保持時間とグラジェント勾配のべき乗則)
<試料調製 >
各ポリペプチド(表 1の 18種の各ポリペプチド)原液(100 M) Lずつを、 820 μ Lの酢酸—水 (容積比 4 : 100)に添加し、ポリペプチド混合試料溶液 (各 1 ju M)を 調製した。更に、その他 9種のポリペプチド原液を酢酸—水 (容積比 4 : 100)に添カロ することで、各ポリペプチドの濃度が 1 Mとなるような別のポリペプチド混合試料溶 液 (各 1 μ Μ)を調製した。ただし、ォバルブミンの濃度は lmgZmLとなるように調製 した。
[0127] 移動相 A:酢酸一水 (容積比 4 : 100) 移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50) カラム: C逆相カラム(Develosil300C4— HG— 5 :内径 2. Omm、長さ 100mm、粒
4
子径 5 μ m)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0128] [表 18] 従来システム (図 1 (A) ) lOVmin
時間 移動相
(分) A (%) B ( )
0 100 0
9.6 4 96
10.6 4 96
10.7 100 0
21 100 0 従来システム (図 1 (A) ) 8, 6, 4, 2, 1 及び 0. 5%/min
時間 移動相
(分) A ( ) B (%)
0 100 0
X = 12, 16, 24, 48, 96, 192 4 96
X+1 4 100
X+1.1 100 0
X+11 100 0
[0129] 1 μ Μのポリペプチド混合試料溶液 10 μ Lをシステムに導入した。
[0130] <結果>
従来法(図 1 (A) )で、グラジェント勾配を 0. 5、 1、 2、 4、 6、 8、 10%Zminと変化 させた時のポリペプチドの保持時間を測定した結果、カラムに保持されたポリべプチ ドの保持時間とグラジェント勾配との間には、べき乗則が認められた (ただし、今回の 測定条件下ではカラムにほとんど保持されない nociceptin及び amyloid β prot ein (l— 16)を除く)。例として、ゥロコルチンの結果を図 6に示す。このべき乗則に従 つて溶出されるポリペプチドの特徴は、グラジェント勾配を限りなく 0%Zminに近づ けた場合 (図 6で X軸上を左に動いた場合)、その保持時間は限りなく無限大になる、 つまり、ポリペプチドは溶出されな 、と 、う点である。 次に、今回の測定条件下で、ポリペプチド Aが「カラム充填剤への吸着能の相転移 」によって溶出されると仮定すると、グラジェント勾配に関わらず、ポリペプチド Aが溶 出される瞬間の溶離液中の有機溶媒組成は一定、つまり、ポリペプチド Aが溶出され る瞬間の溶離液を構成する移動相 A及び Bの割合比は一定と考えられることから、測 定システム全体のデッドボリューム及びポリペプチド Aが溶出される瞬間の溶離液を 構成する移動相 Bの割合% (V )に関する式(3)及び (b)が成り立つと考えられる。
B
今回の検討で、グラジェント勾配が 4%Zmin、 6%Zmin及び 8%Zminの場合に 得られた各ポリペプチドの保持時間を用いて、式(3)力も測定システム全体のデッド ボリュームを算出した結果を表 19に示す。グラジェント勾配に関わらず、各ポリぺプ チドのデッドボリュームはほぼ 3分で一定であり、かつ、ポリペプチドによらないことが 示された。なお、分子量が小さくなるにつれて、デッドボリュームが若干大きくなる傾 向が認められるが、これは、これらのペプチドがよりカラム細孔の内部まで到達できる ことによるものと考えられた。
続いて、実施例 5の検討に用いた 27種のポリペプチドに関して、式 (b)から各ポリ ペプチドが溶出される瞬間の溶離液を構成する移動相 Bの割合% (V )を算出した
B
後、各ポリペプチドが溶出される瞬間の溶離液に含まれる各有機溶媒の含量を算出 し、その各有機溶媒含量を式 (a)に代入して算出した値 fを算出した結果を表 20に 示す。なお、計算に用いた臨界有機溶媒含量 (%)は、実施例 5での臨界値を下回る 最大有機溶媒含量 (%)とピークが 2本に分かれる最小有機溶媒含量 (%)の中間値 とした。ただし、臨界値を下回る最大有機溶媒含量 (%)が 5%以下の場合は、そのま ま 5%とした。計算の結果、各ポリペプチドは fがほぼ 1となる溶離液中に存在して溶 出されていることが示された。ペプチドの中には、 f値が 1. 30-2. 03と 1力ら大きく 外れている場合も存在した力 これらのほとんどが、実施例 5で臨界値を下回る最大 有機溶媒含量(%)が 5%以下を示したポリペプチドであり、式 (a)において用いられ ている臨界有機溶媒含量 (%)の 1%の差の影響が大きいためであると考えられた。 以上の結果から、一般的にポリペプチドは、溶離液に含まれる各有機溶媒によって 引き起こされる「ポリペプチドのカラム充填剤への吸着能の相転移」によってカラムか ら溶出されており、ポリペプチドのカラム充填剤への吸着能の相転移と溶離液に含ま れる各有機溶媒との関係は、実施例 3で示した「複数の有機溶媒を含む試料中にお けるポリペプチドのカラム充填剤への吸着能の相転移と各有機溶媒含量との関係を 表す式 (a)」と同様であることが示唆された。
[0131] 従来システムとある 2種の移動相(水系移動相 Aと有機溶媒移動相 B)を用いてポリ ペプチド Aを測定した場合、ポリペプチド Aが「カラム充填剤への吸着能の相転移」に よって溶出されると仮定すると、グラジェント勾配に関わらず、ポリペプチド Aが溶出さ れる瞬間の溶離液中の全有機溶媒含量が一定、つまり、ポリペプチド Aが溶出される 瞬間の溶離液を構成する移動相 A及び Bの割合比は一定と考えられることから、ポリ ペプチド Aが溶出される瞬間の溶離液を構成する移動相 Bの割合% (V )に関して
B
下記式が成り立つ。
V =C + (T t ) -r
l b 1 0 1
V =C + (T t ) -r
2 b 2 0 2
C:初期測定条件での移動相 Bの割合%
b
r及び r:グラジェント勾配(%Zmin)
1 2
T:グラジェント勾配 rで測定した時のポリペプチド Aの保持時間
T:グラジェント勾配 rで測定した時のポリペプチド Aの保持時間
2 2
t :デッドボリューム(カラムの空隙率と HPLCシステムのインジェクターより先の空隙
0
の和を流速で除した値)(分)
V =vとすると、
1 2
デッドボリューム tは、
0
[0132] 画 t0 = …式 (3 )
r「r2
[0133] 更に、ポリペプチド Aが溶出される瞬間の溶離液を構成する移動相 Bの割合%(V
B
)は、初期有機溶媒移動相 Bの割合% C =0の場合、
b
V = (T -t ) τ
Β 1 0 1
V = (Τ -t ) τ
Β 2 0 2 の両辺を加えた
2V = (T t ) -r + (T t ) -r
B 1 0 1 2 0 2
に、デッドボリューム t (式(3) )を代入した結果、
0
[0134] [数 5] 一 lyi
V, (T「 T2) …式 (b)
r となる。
[0135] [表 19] 各ポリぺプチドの保持時間から算出したデッドボリューム
保持時間 (分) t0 (min)
平均 ペプチド 分子量 グラジェント勾配 (%/min) ri = r, =4 r, = 6 SD
to (min)
8 6 4 Γ2 = 0 r2 - 8 r2 = 8
oxytocin 1007 5.1 5.8 6.6 4.2 3.6 3.0 3.6 0.6 angiotensin II 1046 5.0 5.5 6.5 3.5 3.5 3.5 3.5 0.0 neuromedin C 1120 4.6 5.2 5.8 4.0 3.4 2.8 3.4 0.6
[Tyr(P03H2)4]-angiotensin Π 1126 52 5.8 6.8 3.8 3.6 3.4 3.6 0.2 isoleucyl-ser l-bradykimn 1260 4.9 5.6 6.5 3.8 3.3 2.8 3.3 0.5 ovalbumin (323-339) 1774 4.0 4.2 4.6 3.4 3.4 3.4 3.4 0.0 nocice tin 1809 3.7 4.1 4.0 - - - - amyloid β-protein (1-16) 1955 1.6 1.6 1.6 - - - - -
ACTH (1-24) 2934 4.1 4.7 5.1 3.9 3.1 2.3 3.1 0.8
ANP (1-28) 3080 4.8 5.5 6.6 3.3 3.0 2.7 3.0 0.3 amyloid β-protein (1-28) 3263 4.8 5.5 6,7 3.1 2.9 2.7 2.9 0.2
BNP-32 3464 4.1 4.8 5.2 4.0 3.0 2.0 3.0 1.0 amyloid β-protein (1-38) 4132 6.2 7.3 9.4 3.1 3.0 2.9 3.0 0.1
NPY 4272 6.9 8.2 10.9 2.S 2.9 3.0 2.9 0.1 amyloid β -protein (1-40) 4330 6.5 7.8 10.1 3.2 2.9 2.6 2.9 0-3 amyloid β-protein (1-42) 4514 6.8 8.1 10.7 2.9 2.9 2.9 2.9 0.0 amyloid β- protein (1-43) 4615 6.8 8.2 10.8 3.0 2.8 2.6 2.8 0.2 urocortin 4696 8.4 10.4 14.2 2.8 2.6 2.4 2.6 0.2
GRF 5040 6.4 7.6 10.0 2.8 2.8 2.8 2.8 0.0
CNP-53 5802 5.2 6.0 7.6 2,8 2.8 2.8 2.8 0.0 insulin 5808 6.8 8.1 10.8 2.7 2.8 2.9 2.8 0.1 midkine (60-121) 6789 3.9 4.6 4.7 4.4 3.1 1.8 3.1 1.3
CINC-l/gro 7845 6.6 7.9 】0.4 2.9 2.8 2.7 2.8 0.1
PTH (l-84) 9425 6.2 7.4 9.8 2.6 2.6 2.6 2.6 0.0 midkine 13240 4.4 5.0 6.0 3.0 2.8 2.6 2.8 0.2 interferon^ 17kD 7.6 9.2 12.5 2.6 2.7 2.8 2.7 0.1 ovalbumin 45kD 8.7 .10.6 14.7 2.4 2.7 3.0 2.7 0.3
[0136] [表 20] した値 f
*
0.99
0.93
1.83
0.83
1.46
1.30
-
-
2.03
1.58
0.96
1.90
0.94
1.14
1.05
1.02
1.05
1.11
1.04
1.39
1.04
1.83
1.10
1.06
1.53
1.17
0.92
Figure imgf000056_0001
、更に、グラジェント勾配 l%Zminの場合の保持時間は、ポリペプチドが溶出される までに溶離液中で増カロした有機溶媒容積 (保持時間 Xグラジェント勾配)と同等であ ると考えられる (ただし、デッドボリューム分の容積を含む)。今回の検討条件下では、 測定開始時の有機溶媒の割合が、水系移動相 A中に含まれる容積比 4%の酢酸の みであり、また、測定システム全体のデッドボリュームが約 3分であることから、得られ た定数 Bは、各ポリペプチドの相転移臨界値である有機溶媒含量の近似値 (4%の 酢酸含量とデッドボリュームの差である約 1分の差が存在すると考えられる)を示して いると考えられた。そこで、前述のポリペプチド Aが溶出される瞬間の溶離液を構成 する移動相 Bの割合% (V )と比較したところ、ほぼ一致する結果が得られた。
B
よって、今回の結果から、測定開始時の有機溶媒含量を 0%、グラジェント勾配を 1 %Zminとして測定して得られた保持時間力 各ポリペプチドの相転移臨界値である 有機溶媒含量の近似値を示していることが示された。よって、各ポリペプチドの単独 有機溶媒によって引き起こされる相転移の臨界値 (含量)を求めるにあたって、実施 例 1〜5で行ったような、測定対象ポリペプチドのピークが 2本に分かれる現象を確認 するような煩雑な測定を実施しなくとも、単独の有機溶媒を有機溶媒系移動相として 用いて 1回測定することで、各ポリペプチドの相転移臨界値の近似値を得ることが可 能であると考えられた。この測定方法では、複数のポリペプチドを添加した試料を測 定することが可能であり、結果、複数のポリペプチドの相転移臨界値を同時に測定す ることが可能であると考えられた。
[表 21]
べき乗関数の定数 B、グラジェント勾配が 1 %Zm i nの時の保持時間及び各ポリ ぺプチドが溶出される瞬間の溶離液を構成する移動相 Bの割合% (vB)
べき乗関数
保持時間 平均 ペプチド 分子量 y = Bx"r (1%/min) vB (%)
の定数 B
oxytocin 100フ 11.7 11.6 12.8 angiotensin Π 1046 11.4 11.5 12.0 neuromedin C 1120 9.4 9.3 10.4
[Tyr(P03H2)4]-angiotensin Π 1126 12.6 12.6 13.1 isoleucyl-setyl-bradykinin 1260 12.8 12.6 13.5 ovalbumin (323-339) 1774 5.1 5.2 4.8 nociceptin 1809 - 3.7 3.6 amyloid β-protein (1-16) 1955 - 1.6 0.0
ACTH (l-24) 2934 9.2 8.9 9.1
AXP (1-28) 3080 14.8 14.4 14.8 amyloid β-protein (1-28) 3263 15.6 15.2 15.5
BNP-32 3464 10.0 9.7 10.1 amyloid β-protein (1-38) 4132 27.1 26.5 25.7
NPY 4272 33.4 32.9 31.9 amyloid β-protein (1-40) 4330 30.1 29.6 29.2 amyloid β-protein (1-42) 4514 32.4 31.9 31.2 amyloid β-protein (1-43) 4615 32.9 32.3 32.3 urocortin 4696 46.7 46.1 46.7
GRF 5040 30.2 29.7 28.8
CNP-53 5802 21.2 20.7 19.2 insulin 5808 33.3 32.8 31.9 midkine (60-121) 6789 8.5 8.2 8.1
CINC-l/gro 7845 32.7 32.3 30.5
PTH (1-84) 9425 30.0 29.5 28.8 midkine 13240 14.1 13.4 13.1 interferon-γ 17kD 42.8 42.4 39.1 ovalbumin 44kD 52.9 52.9 47.6 実施例 7 (グラジェント勾配 l%Zminで測定した時の各ポリペプチドの保持時間と相 転移臨界値との関係)
<試料調製 >
各ポリペプチド(表 1の 18種の各ポリペプチド)原液(100 M) Lずつを、 820 μ Lの酢酸—水混合液 (容積比 4 : 100)に添加し、ポリペプチド混合試料溶液 (各 1 μ Μ)を調製した。更に、その他 9種のポリペプチド原液を酢酸-水 (容積比 4 : 100) に添加することで、各ポリペプチドの濃度が 1 μ Μとなるような別のポリペプチド混合 溶液 (各 1 μ Μ)を調製した。ただし、オノ レブミンの濃度は lmgZmLとなるように調 製した。
[0140] 移動相 A :酢酸一水 (容積比 4 : 100)
移動相 B:酢酸—ァセトニトリル混合液 (容積比 4: 100)、酢酸—メタノール混合液 ( 容積比 4 : 100)、酢酸—エタノール混合液 (容積比 4 : 100)、又は 100%酢酸カラム : C逆相カラム(Develosil300C4— HG— 5 :内径 2. 0mm、長さ 100mm、粒子径
4
5 mノ
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0141] [表 22]
従来システム (図 1 (A) ) lOVmin
時間 移動相
(分) A (%) B (%)
0 100 0
9.6 4 96
10.6 4 96
10.7 100 0
21 100 0 従来システム (図 1 (A) ) 8, 6, 4, 2, 1及び 0. 5%/min
時間 移動相
(分) A (%) B (%)
0 100 0
X = 12, 16, 24, 48, 96, 192 4 96
X+1 4 100
X+1.1 100 0
Χ+Π 100 0
[0142] 1 μ Μのポリペプチド混合試料溶液 10 μ Lをシステムに導入した。
[0143] <結果>
従来法 (図 1 (Α) )を用い、今回用いた測定条件下で得られるグラジェント勾配 1 % Zminの時の各保持時間は、実施例 6で述べた通り、各ポリペプチドの相転移臨界 値である有機溶媒含量の近似値を示すことが示唆された。そこで、移動相 Bの有機 溶媒の種類を変更し、グラジェント勾配 l%Zminの時の各ポリペプチドが示す保持 時間を、実施例 5でピークが 2本に分かれる現象カゝら推定された相転移臨界値範囲 と比較したところ、予想通り、得られた保持時間の大部分が推定臨界値範囲内に存 在しており、ほぼ同じ傾向を示していた (表 23)。従って、ポリペプチド溶液中の有機 溶媒含量の変化によって惹起される吸着能の相転移と溶離液中の有機溶媒含量の 変化によって惹起される吸着能の相転移は同質であることが示唆された。
今回の検討では、測定開始時に水系移動相に容積比約 4%の酢酸が含まれてい ることと、検出される保持時間には約 3分のデッドボリュームが含まれていることから、 保持時間の短 、ポリペプチドでは、得られた値の取扱いに若干注意が必要であるが 、今回用いたような測定条件下での保持時間から各有機溶媒が示す臨界値を推定 する方法は、測定回数や、試料調製等の点で、ピークが 2本に分かれる現象から推 定する方法より簡便で正確であると考えられた。
[表 23]
グラジェント勾配 l%Zm i nの時の各ポリぺプチドの保持時間とクロマトグラム上でピ ークが 2本に分かれる現象から推定された相転移臨界値範囲
グラジェント勾配 1%/rnhの時の保持時間 推定臨界値範囲 (%)* ペプチド ァセトニトリ
エタノール メタノール ァセトニド
酢酸 J エタノール メタノール
ル ル 酢酸 oxytocin 11.0 10.2 12.6 12.6 10-20 10-20 10-20 20-30 angiotensin Π 10.8 9.9 12.1 11.7 10-20 5-10 10-20 20-30 neuromedin C 9.3 8.4 9.8 10.5 <5 く 5 5-10 20-30
[Tyr(P03H2)4ト angiotensin II 11.6 10.9 13.6 13.1 10-20 10-20 20-30 20-30 isoleucyl-seryl-bradykinin 11.6 11.2 14.2 15.1 5-10 5-10 10-20 20-30 ovalbumin (323-339) 5.0 4.8 5.2 5.1 く 5 く 5 5-10 5-10 nociceptin 3.4 3.5 3.7 4.4 く 5 <5 く 5 <5 amyloid β-protein (1-16) 1.6 1.6 1.6 1.6 <5 5 . <5 <5
ACTH(1-24) 8.7 8.0 10.0 11.4 <5 <5 く 5 10-20
A P (1-28) 12.6 12.3 16.7 16.8 5-10 5-10 10 - 20 20-30 amyioid β- protein (1-28) 13.1 13.2 18.1 18.3 10-20 10-20 20-30 20-30
BNP-32 9.1 8.6 11.2 11.9 く 5 <5 5-10 10-20 amyloid β- protein (1-38) 21.6 23.8 32.9 33.8 20-30 20-30 30-40 40-50
NPY 26.3 29.2 40.7 40.6 20-30 20-30 30-40 40-50 amyloid β-protein (1-40) 23.9 26.6 36.8 37.9 20-30 20-30 30-40 40-50 amyloid β-protein (1-42) 25.5 28.8 39.9 41.4 20-30 20-30 40-50 40-50 amyloid β-protein (1-43) 25.6 29.2 41.5 41.9 20-30 20-30 40-50 40-50 urocortin 36,1 40.0 55.2 57.1 30-40 30-40 50-60 60-70
GRF 23.7 26.6 36.9 38.7 20-30 20-30 30-40 40-50
C P-53 17.0 18.4 25.9 27.9 10-20 10-20 10-20 insulin 26.4 27.6 39.6 41.4 20-30 20-30 40-50 40-50 midkine (60-121) 8.0 7.5 9.4 10.0 <5 <5 <5 10-20
CINC-l/gro 25.0 27.2 39.7 42.8 20-30 20-30 30-40 40 - 50
PTH(l-84) 22.9 25.9 36.9 37.8 20-30 20-30 30-40 30-40 midkine 11.5 11.6 16.2 17.5 5-10 5-10 10-20 10-20 interferon-γ 32.0 37,5 52.3 51.8 20-30 30-40 50-60 50-60 ovalbumin 40.1 45.6 63.1 62.1 40-50 60-70 60-70
*実施例 5で得られたデ一タ
[0145] 実施例 8 (ポリペプチドの保持時間に与えるカラム固定相の影響) o <試料調製 >
各ポリペプチド(表 1の 18種の各ポリペプチド)原液(100 μΜ)10μ Lづっを、 820 μ Lの酢酸—水混合液 (容積比 4: 100)に添加し、ポリペプチド混合試料溶液 (各 1 Μ)を調製した。
[0146] 移動相 Α:酢酸一水 (容積比 4: 100)
移動相 Β:齚酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C、C、C 及び C 逆相カラム
4 8 18 30
(Develosil300C4— HG— 5:内径 2. Omm、長さ 100mm、粒子径 5/zm) (Develosil300C8— HG— 5:内径 2. Omm、長さ 100mm、粒子径 5/zm) (Develosil300ODS— HG— 5:内径 2. Omm、長さ 100mm、粒子径
(Develosil RP AQUEOUS— AR— 3:内径 2. Omm、長さ 100mm、粒子径 3 μ m)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0147] [表 24] 従来システム (図 1 (A) ) 2¾/min
時間 移動相
(分) A (%) B (%)
0 100 0
50 0 100
50.1 100 0
60 100 0
[0148] 1 μ Μのポリペプチド混合試料溶液 10 μ Lをシステムに導入した。
[0149] <結果>
各ポリペプチドの保持時間に与えるカラム固定相の影響を検討した結果、各ポリべ プチドは、 Cカラムを用いた場合に最も短い保持時間を示した力 カラム固定相によ
4
らずほぼ一定の保持時間を有していることが示された (表 25)。今回の結果から、ポリ ペプチドの溶出が、低分子化合物の主要な分離要因であるカラム固定相との疎水性 相互作用よりも、移動相中に含まれるァセトニトリル等の有機溶媒 (有機酸を含む)に よって引き起こされる「ポリペプチドのカラム充填剤への吸着能の相転移」によって大 きく影響を受けて 、ることが示唆された。
[0150] [表 25]
従来法で様々な固定相力ラムを用いた時の各ポリぺプチドの保持時間
保持時間 (分)
ペプチド カラム固定相
C4 C8 G18 C30
oxytocin 9.3 12.4 13.4 14.9
neuromedin C 7.9 11.4 12.7 13.3
lsoleucyl-servi-bradykmm 9.4 12.1 13.4 14.1
nociceonn 4.7 7.4 8.6 9.3
amyloid β-nrotein Cl-16) 1.6 5.6 6.0 6.9
ACTH (l-24) 6.7 9.4 10.7 11.2
amyloid β-protein (1-28) 10.4 12.6 14.0 14.2
BNP-32 7.1 9.5 10.6 11.0
amyloid β-protein (1-38) 16.1 18.4 20.0 20.0
NPY 19.3 21.3 22.7 22.8
amyloid β-protein (1-40) 17.7 19.9 21.8 21.6
amyloid β-protein (1-42) 18.8 20.9 22.8 22.6
amyloid β-protein (1-43) 18.8 20.9 22.8 22.6
urocortin 26.0 27.5 28.9 28.6
GRF 17.5 19.6 20.8 20.7
CNP-53 12.8 15.2 16.6 16.6
insulin 19.0 21.2 23.0 22.9
midkine (60-121) 5.9 8.2 9.1 9.7
[0151] 実施例 9 (ポリペプチドの保持時間に与えるカラム温度の影響)
<試料調製 >
各ポリペプチド(表 1の 18種の各ポリペプチド)原液(100 M) Lづっを、 820 μ Lの酢酸—水混合液 (容積比 4 : 100)に添加し、ポリペプチド混合試料溶液 (各 1 Μ)を調製した。
[0152] <測定条件 >
移動相 Α:酢酸一水 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
カラム: C逆相カラム(Develosil300C4— HG— 5 :内径 2. Omm、長さ 100mm、粒
4
子径 5 μ m)
カラム温度: 20、 30、 40又は 50。C [0153] [表 26] 従来システム (図 1 (A) ) 2%/min
時間 移動相
(分) A (%) B (%)
0 100 0
50 0 100
50.1 100 0
60 100 0
[0154] 1 μ Μのポリペプチド混合試料溶液 10 μ Lをシステムに導入した。
[0155] <結果>
一般的に、低分子化合物の測定においては、カラム温度を低くするにつれて低分 子化合物とカラム固定相との疎水性相互作用が強くなり、保持時間が力なり長くなる 。しかし、今回検討に用いた各ポリペプチドでは、より低いカラム温度でより長い保持 時間を示した力 その差はほとんどの場合で小さ力つた (表 27)。今回の結果から、ポ リペプチドの溶出は、移動相中に含まれるァセトニトリル等の有機溶媒 (有機酸を含 む)によって引き起こされる「ポリペプチドのカラム充填剤への吸着能の相転移」によ つて大きく影響を受けると考えられた。一方、カラム温度を変化させることによつても「 ポリペプチドのカラム充填剤への吸着能の相転移」を引き起こすことが可能と考えら れたが、試料溶液中又は移動相中のァセトニトリル等の有機溶媒が与える影響と比 較すると極めて小さいと考えられた。
[0156] [表 27]
従来法で C 4カラムを用いた時の各ポリべプチドの保持時間に 与えるカラム温度の影響
保持時間 (分)
ペプチド カラム温度 (°c)
20 30 40 50
oxytocin 11.0 10.3 9.9 9.3
neuromedin C 9.8 9.1 8.5 7.9
isoleucyl-seryl-bradykinin 11.1 10.6 10.0 9.4
nociceptin 6.3 5.8 5.1 4.7
amyloid β-protein (1-16) 2.8 2.5 1.6 1.6
ACTH (1-24) 8.5 7.9 7.4 6.7
amyloid β-protein (1-28) 12.5 11.7 11.1 10.4
BNP-32 8.8 8.2 7.7 7.1
amyloid β-protein (1-38) 18.2 17.5 16.9 16.1
NPY 21.5 20.8 20.1 19.3
amyloid β-protein (1-40) 19.7 19.0 18.4 17.7
amyloid β-protein (1-42) 20.8 20.2 19.5 18.8
amyloid β-protein (1-43) 20.8 20.2 19.5 18.8
urocortin 28.6 27.8 27.0 26.0
GRF 19.7 19.0 18.4 17.5
CNP-53 14.8 14.1 13.5 12.8
insulin 21.2 20.4 19.8 19.0
midkine (60-121) 6.9 6.6 6.3 5.9
[0157] 実施例 10 (ゥロコルチン試料測定時の従来システムと本発明システムとの精度比較) <試料調製 >
ゥロコルチン原液(100 M) 10 Lを、 990 μ Lの酢酸—水—ァセトニトリル混合 液 (容積比 4: 50: 50)に添加し、ゥロコルチン試料溶液(1 μ Μ)を調製した。更に、こ のゥロコルチン試料溶液 10 Lを、 990/z Lの酢酸一水ーァセトニトリル混合液 (容 積比 4:100:0、 4:80:20、 4:70:30、 4:60:40、 4:50:50、 4:40:60又は 4:20: 80)〖こ添加し、ゥロコルチン試料溶液(ΙΟηΜ)を調製した。更に、同じ組成の水—ァ セトニトリル混合液を用いて 10倍の希釈系列のゥロコルチン試料溶液(0. InM及び InM)を調製した。
[0158] <測定条件 >
移動相 A:酢酸一水 (容積比 4: 100) 移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50) 移動相 C:酢酸
カラム: C 逆相カラム(RP AQUEOUS— AR— 3:内径 2. Omm、長さ 35mm、粒子
30
径 3/zm)
カラム温度: 50°C
流速: 0.2 L/ min
グラジェント:
[0159] [表 28] 従来シス: ム (図 1 (B)) 6 min
時間 移動相
(分) A(%) B(%) C( )
0 90 5 5
15 0 20 80
20 0 95 5
22 0 95 5
22.1 90 5 5
27 90 5 5 本発明システム (図 1 (D)) 6¾/min
時間 移動相
(分) A(%) B(%) C(%)
0 90 5 5
25 90 5 5
40 0 20 80
45 0 95 5
47 0 95 5
47.1 90 5 5
52 90 5 5
[0160] 新規法を用いる場合にあたって、各移動相組成、ポリペプチドが導入されるライン 中の移動相を形成する有機溶媒系移動相(移動相 B及び Cの混合溶液)の測定開 始時の混合比、及び、各ポリペプチドを含む試料中有機溶媒含量から、混合器にお V、て混合される有機溶媒系移動相に対する水系移動相の比率(ひ)を、前述の式 (a )に基づいて算出した (表 29)。ただし、ゥロコルチンの水—各有機溶媒における相 転移臨界値は実施例 7で得られた保持時間を用いた。今回の検討では、ゥロコルチ ンを含む試料がカラムに導入されるまでの間の水系移動相の割合が 90%程度であり (表 28)、表 29に示されている 52%又は 57%よりも大きい割合を有していることから 、システムに導入されたすベてのゥロコルチンはカラムへ保持したと判断された。
[表 29] 本発明法を用いてァセトニトリル含量の異なるゥロコルチン試料を測定する場 合に最低限必要な有機系移動相に対する水系移動相の比率 (α ) の算出 甲 i 有機溶媒系移動相
ϊ¾% _ お に対する水系移動 混合器におけ
Τ^Ι ¾¾ ΙΦ 水系移動相巾 試料溶液中 ^ a)*
4 0 2.01 OFF 0.07 ON 0.07 ON 1.1 -1.0::: > 52%
4 19 2.01 OFF 0.07 ON 0.60 ON 1.1 -0.4: > 52%
4 29 2.01 OFF 0.0フ ON 0.87 ON 1.1 -0.1 > 52%
4 38 2.01 OFF 0.0フ ON 1.12 OFF 1.1 : 0.1 > 52%
4 48 2,01 OFF 0.07 ON 1.40 OFF 1.1 0.4 > 52%
4 58 2.01 OFF 0.07 ON 1.68 OFF LI 0.7 > 52%
4 77 2.01 OFF 0.07 ON 2.20 OFF - . 1.1 1.3 > 57%
* P及び γのうち、より高い値以上が《
[0162] ァセトニトリル含量の異なる 0. 1ηΜ、 InM及び ΙΟηΜのゥロコルチン試料溶液 10 0 1^又は400 1^を、システムに導入した。両システムの精度比較をするために、同 じ組成及び濃度のゥロコルチン試料溶液を合計 3回測定し、得られたピーク面積の 平均値、標準偏差及び変動係数 (%)を算出した(日間変動)。
[0163] <結果 >
従来法及び本発明法で同濃度(0. lnM、 InM及び ΙΟηΜ)のゥロコルチン試料を 3回測定した場合のピーク面積、標準偏差及び変動係数 (%)を表 30、 31及び 32に 示す。
[0164] [表 30]
従来法と本発明法の精度比較 (0. InM)
(A)注入量 100 /xL
ゥロコルチンピー'ク面積 (濃度 0.1 πΜ、注入量 100 μ 方法 試料溶液中のァセトニ ■ Jル含量(%)
80 60 50 40 30 20 0
1 327 529 671 987 928 957 0 従来法 2 457 466 523 662 597 416 0
3 153 275 431 590 514 296 184 平均 312 423 542 746 680 556 61 標準偏差 153 132 121 212 219 352 106 変動係数% 49.0 31.2 22.3 28.4 32.2 63.3 173.8
1 753 1159 1067 1149 1012 782 278 本発明法 2 906 1181 1194 1205 1139 1068 0
3 940 1198 984 1070 1154 0 0 平均 866 1179 1082 1141 1102 617 93 標準偏差 100 20 106 68 78 553 161 変動係数% 11.5 1.7 9.8 6.0 7.1 89.6 173.1
(B)注入量 400 L
ゥロコルチンピー'ク面積 (濃度 0.1 ηΜ、注入量 400 μL 方法 試料溶液中のァセトニ .トリル含量(%)
80 60 50 40 30 20 0
1 501 994 1159 3638 4207 1135 149 従来法 2 980 974 1435 3166 4019 1340 165
3 713 837 985 2167 2462 2959 91 平均 731 935 1193 2990 3563 1811 135 標準偏差 240 85 227 751 958 999 39 変動係数% 32.8 9.1 19.0 25.1 26.9 55.2 28.9
1 3137 4690 4779 4685 3620 2709 334 本発明法 2 2884 4130 4073 4014 3706 564 336
3 3102 4760 4138 4008 4462 1870 0 平均 3041 4527 4330 4236 3929 1714 223 標準偏差 137 345 390 389 463 1081 193 変動係数% 4.5 7.6 9.0 9.2 11.8 63.1 86.5 31] 従来法と本発明法の精度比較 (I n M)
(A) 注入量 1 0 0 L
ゥロコルチンピーク面積 (濃度 1 nM、注入量 100 μϋ
方法 試料溶液中のァセトニト 'リル含量(%)
80 60 50 40 30 20 0
1 2748 3743 6433 8568 9490 10921 119 従来法 2 2530 3103 3861 4900 6433 5129 0
3 1538 2164 4496 4929 4912 3473 1448 平均 2272 3003 4930 6132 6945 6508 522 標準偏差 645 794 1340 2109 2332 3911 804 変動係数% 28.4 26.4 27.2 34.4 33.6 60.1 154.0
1 8572 10007 11965 10217 9494 7713 1805 本発明法 2 8133 10486 11703 10860 11390 10479 0
3 10394 11810 11452 10058 11823 2947 197 平均 9033 10768 11707 10378 10902 7046 667 標準偏差 1199 934 257 425 1239 3810 990 変動係数% 13.3 8.7 2.2 4.1 11.4 54.1 148.4
( Β ) 注入量 4 0 0
ゥロコルチンピーク面積 (濃度 1 nM、注入量 400 μΐ,)
方法 試料溶液中のァセトニト ■リル含量(%)
80 60 50 40 30 20 0
1 5969 8116 14725 49683 46568 18627 237 従来法 2 9489 8829 14299 31567 48626 26378 238
3 4628 6933 9405 31469 30922 26310 1147 平均 6695 7959 12810 37573 42039 23772 541 標準偏差 2511 958 2956 10488 9682 4456 525 変動係数% 37.5 12.0 23.1 27.9 23.0 18.7 97.0
1 29967 46074 46502 45798 37760 32456 902 本発明法 2 29486 38654 39577 39603 39618 15475 331
3 36181 46277 42765 39152 45171 14630 793 平均 31878 43668 42948 41518 40850 20854 675 標準偏差 3734 4344 3466 3714 3856 10057 303 変動係数% 11.7 9.9 8.1 8.9 9.4 48.2 44.9 32] 従来法と本発明法の精度比較 (1 0 n M)
(A) 注入量 1 0 0 zz L
ゥロコルチンピ一ク面積 (濃度 10 nM、注入量 100 μί)
方法 試料溶液中のァセトニ ■トリル含量(¾>)
80 60 50 40 30 20 0
1 29612 38172 58341 70384 99613 115431 1069 従来法 2 23273 27207 35713 55668 62194 65810 1902
3 14868 22632 45917 52943 50535 37027 20610 平均 22584 29337 46657 59665 70781 72756 7860 標準偏差 7396 7986 11332 9382 25641 39661 11049 変動係数% 32.7 27.2 24.3 15.7 36.2 54.5 140.6
1 75806 113391 119650 110355 113645 96941 35894 本発明法 2 92935 105918 113662 117240 110752 104409 34168
3 88117 109003 109485 110564 115649 96844 3475 平均 85619 109437 114266 112720 113349 99398 24512 標準偏差 8833 3755 5109 3916 2462 4340 18239 変動係数% 10.3 3.4 4.5 3.5 2.2 4.4 74.4
( B ) 注入量 4 0 0 L
ゥロコルチンピーク面積 (濃度 10 ηΜ、注入量 400 )
方法 試料溶液中のァセトニ ■ Jル含量(%)
80 60 50 40 30 20 0
1 64311 89200 134463 512882 530235 395727 6897 従来法 2 80695 85552 138058 310832 492582 433315 2805
3 50010 58453 88380 217039 373473 318432 32191 平均 65005 77735 120300 346918 465430 382491 13964 標準偏差 15354 16798 27702 151187 81832 58574 15917 変動係数% 23.6 21.6 23.0 43.6 17.6 15.3 114.0
1 347588 445743 489772 441493 450093 397250 144313 本発明法 2 312789 401958 410042 402986 419315 362429 22510
3 327043 412510 428704 431140 415869 395982 18771 平均 329140 420070 442839 425206 428426 385220 61865 標準偏差 17494 22851 41702 19927 18843 19748 71427 変動係数% 5.3 5.4 9.4 4.7 4.4 5.1 115.5 従来法を用いた場合、ゥロコルチンのピーク面積の変動係数(%)は、注入量及び ゥロコルチン濃度に関わらずほとんどの場合で 15%以上を示しバラツキが大きかつ た。一方、本発明法を用いた場合、容積比 30%以上のァセトニトリルを含む試料溶 液中に含まれるゥロコルチンのピーク面積の変動係数(%)は、ゥロコルチン濃度及 び注入量に関わらず 15%以内であり、この濃度範囲では容器等への吸着が起こつ ていない、もしくは検討した濃度範囲では問題とならない程度であると考えられた。試 料溶液中ァセトニトリル含量が容積比 0%及び 20%の場合、変動係数%が15%以 上を示すことが多ぐ容器及び注入用シリンジ等への吸着が原因と考えられるノラッ キが示唆された。
[0168] 以上の結果から、ゥロコルチンの容器及び注入用シリンジ等への吸着能は、ゥロコ ルチンのカラム充填剤への吸着能の相転移臨界値よりも弱 、と考えられ、その結果、 カラム充填剤への吸着能の相転移臨界値を上回るァセトニトリル含量を有する試料 溶液中に含まれるゥロコルチンのピーク面積は、従来法よりも本発明法にてバラツキ 力 、さぐ精度の点で本発明法が優っていると考えられた。
[0169] 次に、 LCシステムへのゥロコルチン試料溶液の注入量が 100 μ L及び 400 μ の 時に得られたピーク面積の比(400 μ L/100 μ L)を表 33に示す。
[0170] [表 33]
試料注入量のピーク面積に与える影響の比較 サンプル濃度 0.1 nM サンプル濃度 I nM サンプル濃度 10 nM ピーク面積 ピーク ピーク面積 ピーク ピーク面積 ピーク 試料溶液中
(平均値; n = 3) 面積比 (平均値; n = 3) 面積比 (平均値; n = 3) 面積比 ァセトニトリル 5式料注入里 400 式料 入: K 400 δ式 入里 400 μL 含量 (%) 100 μL 400 100 L 100 400 μΐ 100 μL· 100 μL 400 100
0 61 135 2.2 522 541 1.0 7860 13964 1.8
20 556 1811 3.3 6508 23772 3.7 72756 382491 5.3
30 680 3563 5.2 6945 42039 6.1 70781 465430 6.6 従来法 40 746 2990 4.0 6132 37573 6.1 59665 346918 5.8
50 542 1193 2.2 4930 12810 2.6 46657 120300 2.6
60 423 935 2.2 3003 7959 2.7 29337 77735 2.6
80 312 731 2.3 2272 6695 2.9 22584 65005 2.9
0 93 223 2.4 667 675 1.0 24512 61865 2.5
20 617 1714 2.8 7046 20854 3.0 99398 385220 3.9
30 1102 3929 3.6 10902 40850 3.7 113349 428426 3.8 本発明法 40 1141 4236 3.7 10378 41518 4.0 112720 425206 3.8
50 1082 4330 4.0 11707 42948 3.7 114266 442839 3.9
60 1179 4527 3.8 10768 43668 4.1 109437 420070 3.8
80 866 3041 3.5 9033 31878 3.5 85619 329140 3.8
[0171] 従来法を用いて、今回の条件下では容器等への吸着が起こらないと考えられる容 積比 30%以上のァセトニトリルを含む試料溶液を測定した場合、理論上 4を示すピ ーク面積比は、 1. 0〜6. 6の値を示し、理論値からの大きなバラツキが認められた。
[0172] 一方、容器等への吸着が起こらないと考えられる容積比 30%以上のァセトニトリル を含む試料溶液を本発明法にて測定した場合、ァセトニトリル含量及びゥロコルチン 濃度に関わらず、 3. 5〜4. 1の値を示し、ほぼ注入量に比例した結果が得られた。 試料溶液中のァセトニトリル含量が容積比 0又は 20%の場合は、本発明法を用いた としてもピーク面積比は 1. 0〜3. 9の値を示し、大きなバラツキが認められた。
[0173] 以上の結果から、従来法及び本発明法共に、注入量増加による高感度化の可能 性が示されたが、従来法では、試料溶液中ァセトニトリル含量によって、その増加率 が影響を受けることが示された。また、従来法にて 0. InMのゥロコルチン試料を測 定した場合のピーク面積 Z高さ比が、注入量増加に伴って大きくなる傾向が認めら れた。ピーク面積 Z高さ比は、ゥロコルチンのピーク形状が三角形であると仮定した 場合、ピーク高さ 1Z2でのピーク幅に相当すると考えられることから、この結果は、ゥ 口コルチンのピーク幅が広がったことを示していると考えられた(表 34)。よって、従来 法では、注入量増加に比例した高感度化が困難であると考えられた。一方、本発明 法を用いて、容積比 30%以上のァセトニトリル (容器等への吸着を起こさな 、ァセト 二トリル含量)を含む試料溶液を測定した場合、注入量に比例したピーク面積増加が 認められた。この時、ピーク面積 Z高さ比は注入量に関わらず、ほぼ一定の値を示し ていることから、注入量を増加させることによって、注入量に比例した高感度化が可 能であることが示された。また、この高感度化は試料溶液中のァセトニトリル含量に関 わらず可能であることから、ァセトニトリル以外の因子によってカラム充填剤への吸着 能の相転移臨界値が影響を受けた場合でも、本発明法を用いることによりゥロコルチ ンのピーク面積が一定に保たれることが予想されることから、本発明システムは従来 法と比較して堅牢性が高いことが示された。更に、今回の結果は、相転移理論から予 測される、新規法を用いた場合の試料注入量が無制限 (注入時間やカラム負荷量を 考慮しない場合)であることを支持するものと考えられた。
[0174] [表 34] 試料注入量とピーク面積/高さ比に与える影響の比較 サンプル濃度 0.1 nM サンプル濃度 I nM サンプル濃度 10 nM ピーク面積/^さ比 ピーク面積/高さ比 ピーク面積/高さ比 試料溶液中 比 比 比
(平均値; n = 3) (平均値; η = 3) (平均値; n = 3)
ァセ卜二卜リル §ι£料注入里 400 sii料注入里 400 式料注入更 400 含量 (%) 100 400 100 μΐ 100 μL· 400 100 μΐ^ 100 400 μL· 100
0 20.4 20.4 1.0 15.8 22.4 1.4 17.7 17.7 1.0
20 18.7 15.3 0.8 16.6 14.7 0.9 14.9 14.2 1.0
30 15.5 20.8 1.3 14.9 15.5 1.0 14.9 14.1 0.9 従来法 40 18.8 27.2 1.4 16.6 19.6 1.2 15.9 18.4 1.2
50 17.2 23.7 1.4 17.7 20.4 1.2 16.4 16.3 1.0
60 19.0 25.9 1.4 18.6 20.5 1.1 16.6 16.5 1.0
80 16.3 23.3 1.4 17.3 22.8 1.3 16.8 18.2 1.1
0 21.4 22.4 1.0 27.1 25.8 1.0 21.5 18.8 0.9
20 22.3 19.4 0.9 20.2 23.1 1.1 17.9 17.7 1.0
30 19.7 19.6 1.0 18.9 17.0 0.9 17.2 16.8 1.0 本発明法 40 18.1 19.6 1.1 16.6 16.5 1.0 15.7 17.4 1.1
50 21.3 20.0 0.9 17.4 18.7 1.1 15.2 18.5 1.2
60 20.5 18.3 0.9 17.5 17.3 1.0 16.1 17.7 1.1
80 24.1 27.1 1.1 19.4 19.2 1.0 16.9 21.4 1.3
[0175] 実施例 11 (ゥロコルチンの検量線作成における両システムの比較)
<試料調製 >
ゥロコルチン濃度力 Sio、 30、 100、 300pM、 1、 3及び ΙΟηΜの検量線試料を、 99 0 μ Lの酢酸一水ーァセトニトリル混合液(容積比 4 :100:0, 4:80: 20、 4:70: 30、 4:60:40、 4:50:50、 4 :40 :60又は 4 :20 :80)を用いて調製した。
[0176] <測定条件 >
移動相 Α:酢酸一水 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
移動相 C:酢酸
カラム: C 逆相カラム(RP AQUEOUS— AR— 3:内径 2.0mm、長さ 35mm、粒子
30
径 3/zm)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0177] [表 35]
従来システム (図 1(B)) 6¾/min
時間 移動相
(分) A(%) B(%) C(%)
0 90 1 9
.15 0 10 90
17 0 95 5
18 0 95 5
18.1 90 1 9
22 90 1 9
本発明システム (図 1(D) ) 6¾/min
時間 移動相
(分) A(%) B(%) C(%)
0 90 1 9
8 90 1 9
23 0 10 90
25 0 95 5
26 0 95 5
26.1 90 1 9
30 90 1 9 新規法を用いる場合にあたって、各移動相組成、ポリペプチドが導入されるライン 中の移動相を形成する有機溶媒系移動相(移動相 B及び Cの混合溶液)の測定開 始時の混合比、及び、各ポリペプチドを含む試料中有機溶媒含量から、混合器にお V、て混合される有機溶媒系移動相に対する水系移動相の比率(ひ)を、前述の式 (a )に従って算出した (表 36)。ただし、ゥロコルチンの各有機溶媒に対する相転移臨 界値は実施例 7で得られた保持時間を用いた。今回の検討では、ゥロコルチンを含 む試料がカラムに導入されるまでの間の水系移動相の割合が 90%程度であり(表 35 )、表 36に示されている 47%又は 57%よりも大きい割合を有していることから、システ ムに導入されたすベてのゥ Siロコルチンはカラムへ保持したと判断された。
[0179] [表 36] 本発明法を用いてァセ卜二トリル含量の異なるゥロコルチン試料を測定する場 合に最低限必要な有機系移動相に対する水系移動相の比率 (α ) の算出 試料溶液中 f
有機溶媒系移動相
有機溶媒% に対する水系移動 混合器におけ 有機溶媒系 相の比率( α)* る水系移動相 ァセトニ卜 移動相中 水系移動相中 試料溶液中 の割合(%) 酢酸
リル β Υ
4 0 1.81 OFF 0.07 ON 0.07 ON 0.9 > 47%
4 19 1.81 OFF 0.07 ON 0.60 ON 0.9 > 47%
4 29 1.81 OFF 0.07 ON 0.87 ON 0.9 > 47%
4 38 1.81 OFF 0.07 ON 1.12 OFF 0.9 HHI > 47%
4 48 1.81 OFF 0.07 ON 1.40 OFF 0.9 > 47%
4 58 1.81 OFF 0.0フ ON 1.68 OFF 0.9 > 47%
4 77 1.81 OFF 0.07 ON 2.20 OFF 1.3 > 57%
* β及び γのうち、より高い値以上が a
[0180] ただし、今回用いた本開発システムでは、 0. 1分から 8分までの間、流速を 0. 6mL / minとした。
本発明法及び従来法を用いて、 10、 30、 100、 300pM、 1、 3及び ΙΟηΜの検量 線試料を測定し、検量線の作成を行った。検量線は、低分子化合物定量法バリデー シヨン (非特許文献 4)のガイドラインの基準に従 ヽ、検量線各点を自身の検量線にて back calculateした値の真度を求め、検量線作成に用 、た検量線サンプル数の 7 5%以上の検量線サンプルにおいて、定量下限で ± 20%、その他で ± 15%以内と なることを、検量線作成の基準とした。ただし、検量線の定量下限及び定量上限は必 ず基準を満たすものとする。検量線の重み付けは濃度 2乗分の 1とし、最も定量下限 の低い検量線を作成した。真度の算出方法は下記の通りである。
[0181] [数 6] 真度 (%) = ( b a c k— c a 1 c u 1 a t e値) Z (理論値) X 1 0 0
[0182] <結果 >
従来法及び本発明法で作成した検量線を表 37及び表 38に示す。
[0183] [表 37]
従来法によるゥロコルチン検量線の作成
Figure imgf000078_0001
ゥロコルチン 試料溶液中ァセト二トリル含量
; 度 0% 20% 30% 40% 50% 60% 80%
(pM) 面積真度(%) 面積 寘度 (%) 面積 真度(%) 面積 真度 (%) 面積 真度 (¾) 面積 真度 (%) 面積 真度(%)
10 nd nc nd nc nd nc nd nc nd nc nd nc nd nc
30 nd nc nd nc 167 97.5 nd nc nd nc nd nc nd nc
100 nd nc 651 100.4 855 103.2 314 93.4 322 105.3 284 94.2
300 2626 101.0 1246 93.1 2102 90.1 626 79.8 * 883 116.6
1000 4618 98.4 8670 92.4 4240 97.3 7450 98.6 2853 93.0 2563 106.7
3000 12821 85.6 28414 98.3 13187 101.5 24299 108.1 7073 77.3 * 6455 90.9
10000 58763 114.5 104746 107.9 43054 99.7 35006 nc 20920 92.2 21527 91.6 y切片 ^70 -327 40.3 84.4 30.5 84.6 62.9 傾き 5.2 9.7 4.3 7.5 3.0 2.3 2.3 相関係数 0.990 0.998 0.998 0.996 0.979 0.988 0.992 nd:ピーク未検出、 nc:検量線に用いな力、つたサンプルのため真度算出せず
*真度が ±15%を超えた検量線サンプル ο
o
o 本発明法によるゥロコルチン検量線の作成
試料溶液中ァセトニトリル含量
20% 30% 40% 50% 60% 80%
(pM) 面積真度(%) 面積 真度 (%) 面積 真度 (%) 面積 真度(%) 面積 真度(%) 面積 真度(%) 面積 真度(%)
10 nd nc nd nc 125 100.3 144 102.2 139 99.4 123 102.4 129 101.8
30 nd nc nd nc 358 99.5 324 93.0 369 105.0 315 90.9 313 95.8
100 nd nc nd nc 1154 97.5 1070 101.2 984 89.2 1198 105.7 940 92.0
300 nd nc 258 nc 3689 104.4 3144 101.6 3246 100.4 3392 100.2 3271 109.0
1000 197 101.6 2947 103.3 11823 100.5 10058 98.4 11452 107.0 11810 104.8 10394 104.5
3000 822 93.9 17893 87.1 35125 99.6 29038 95.0 30922 96.5 33547 99.3 32168 108.0
10000 3475 104.6 96844 109.6 115649 98.4 110564 108.6 109485 102.6 109003 96.8 88117 88.8 y切片 -156 -6833 7.5 40.3 32.6 7.5 27.7 傾き 0.3 9.5 11.8 10.2 10.7 11.3 9.9 相関係数 0.99フ 0.989 1.000 0.998 0.998 0.998 0.996 nd:ピーク未検出、 nc:検量線に用いなかったサンプルのため真度算出せず
*真度が ±15o/0を超えた検量線サンプル
[0185] その結果、従来法を用いた場合、基準を満たす検量線は、試料溶液中ァセトニトリ ル含量が 50%の場合を除き作成可能であった (表 37)。このとき得られた定量下限 は 30pM〜300pMであった。し力し、ァセトニトリル含量が 0%のゥロコルチン試料を 測定した場合、検量線として用いることができる濃度は 4点しか存在しな力つたことに カロえて、検量線中に真度が基準を満たさない 1点を含む場合も多力つたことから、従 来法を用いた検量線の作成が困難であると示唆された。一方、本発明法を用いた場 合、ァセトニトリル含量が容積比 30%以上のゥロコルチン試料を測定して作成した基 準を満たす検量線は、 ΙΟρΜ〜: LOnMと広範囲の濃度範囲を有しており、その時の 真度はすべて ± 15%以内であった (表 38)。また、得られた検量線の傾きもほぼ同じ 値を示していたことから、本発明法は、従来法と比してより高感度かつ精度のよい定 量が可能であると考えられた。
[0186] また、図 7に示す通り、従来法を用いて測定した時のゥロコルチンのピーク形状は、 試料溶液中のァセトニトリル含量が容積比 30%以上の場合に立ち上がりの鋭いピー クが得られたが、容積比 40%以上のァセトニトリルを含む試料溶液を測定した場合、 そのピークはリーディングしており、ベースライン近傍ではブロードになっているのが 観察された。一方、本発明法を用いて測定したゥロコルチンのピーク形状は、試料溶 液中のァセトニトリル含量に関わらず、立ち上がりの鋭いピークが得られており、この ピーク形状の違いも、検量線作成時の精度に影響を与えていると考えられた。
[0187] 以上の結果から、本発明法にて、容器等への吸着を起こさせな 、ァセトニトリルを 含む試料を測定することにより、高い精度を有するポリペプチドの定量が可能である と考えられた。また、その精度の高さから本発明法を用いた場合に、より高感度な定 量 (検量線の定量下限が低 、)が可能であると考えられた。
[0188] 実施例 12 (本発明システムを用いたポリペプチド検量線の作成)
<試料調製 >
表 1の 18種のポリペプチドのうち、 amyloid j8—protein (1— 16)、 amyloid β — protein (1— 28)、 amyloid j8—protein (1— 38)、 amyloid j8—protein " -42)、 amyloid β protein (1— 43)及び insulinを除く 12種ポリペプチド原液( 100 M) 10 Lを、 990 Lの酢酸—水—ァセトニトリル混合液(容積比 4: 50: 50) に添加し、各ポリペプチド試料溶液(1 μ Μ)を調製した。更に、この各ポリペプチド試 料溶液 10 μ Lを、 990 μ Lの容積比 4%の酢酸を含む 990 μ Lの水一ァセトニトリル 混合液 (容積比 1: 1)に添加し、各ポリペプチド試料溶液(ΙΟηΜ)を調製した。更に、 同組成の溶液を用いて 10、 30、 100、 300pM、 1及び 3nMの検量線用試料を調製 した。
[0189] <測定条件 >
移動相 A:酢酸一水混合液 (容積比 4: 100)
移動相 B :酢酸—ァセトニトリル—メタノール混合液 (容積比 70 : 15 : 15)
カラム: C 逆相カラム(RP AQUEOUS— AR— 5 :内径 2. 0mm、長さ 35mm、粒子
30
径 5 /z m)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0190] [表 39] 本発明システム (図 1 (D) ) 10%/min
時間 移動相
(分) A (%) B (%)
0 95 5
30 95 5
39 5 95
40 5 95
40.1 95 5
45 95 5
[0191] 新規法を用いる場合にあたって、各移動相組成、及び、各ポリペプチドを含む試料 中有機溶媒含量から、混合器において混合される有機溶媒系移動相に対する水系 移動相の比率( ο; )を、前述の式 (a)に従って算出した (表 40)。ただし、各ポリぺプ チドの各有機溶媒に対する相転移臨界値は実施例 7 (C4カラムを用いた検討)で得 られた保持時間を用いた。
[0192] [表 40] 本発明法を用いて各ポリペプチド試料を測定する場合に最低限必要な有機系移動相に対する水系移動相の比率 ( の算出 _
水糸移 試料溶液中の有
有機溶媒系移動相中% 動相 有機溶媒系移動相に Ή
中% 機溶媒1 ½ 対する水麵相の
ペプチド
ァセトニ卜 ァセトニ卜 の割合(¾) メタノール 酢酸 酢酸 酢酸
リル リル β γ
oxvtocin 15 15 70 8.11 OFF 4 0.32 ON 48.1 3.8 4.67 OFF 10.5 5:4 > 91 % neuromedin C 15 】5 70 9.81 OFF 4 0.38 ON 48.1 3.8 5.53 OFF 14.2 7.3 > 93% isoleucyl-seryl-bradykinin 15 15 70 6.99 OFF 4 0.26 ON 48.1 3.8 4.40 OFF 8.1 4.6 > 89% nociccptin 15 15 70 24.37 OFF 4 0.91 ON 48.1 3.8 15.01 OFF 259.7 155.7 > 100%
ACTH (l-24) 15 15 70 936 OFF 4 0.35 ON 48.1 3.8 5.86 OFF 12.9 7.5 > 93%
BNP-32 15 15 70 8.87 OFF 4 0.34 ON 48.1 3.8 5.61 OFF 11.9 7.0 > 92%
NPY 15 15 70 2.66 OFF 4 0.10 ON 48.1 3.8 1.92 OFF 1.8 1.0 > 64% amyloid β-protein (1-40) 15 15 70 2.88 OFF 4 0.11 ON 48.1 3.8 2.11 OFF 2.1 1.2 > 68% urocortin 15 15 70 1.91 OFF 4 0.07 ON 48.1 3.8 1.40 OFF 1.0 0.4 > 50%
GRF 15 15 70 2.85 OFF 4 0.10 ON 48.1 3.8 2.13 OFF 2.1 1.3 > 68%
CNP-53 15 15 70 3.97 OFF 4 0.14 ON 48.1 3.8 2.97 OFF 3.5 2.3 > 78% midkine (60-121) 15 15 70 10.47 OFF 4 0.40 ON 48.1 3.8 6.39 OFF 15.8 9.0 1 > 94%
* β及ぴ γのうち、より高い値以上が α
[0193] 各ポリペプチド試料溶液 100 μ Lを本開発システムに導入した。検量線は、ノ リデ ーシヨンのガイドラインの基準に従い、検量線各点を自身の検量線にて back— calc ulateした値の真度を求め、定量下限で ± 20%、その他で ± 15%以内となる検量線 を作成した。ただし、検量線に用いた点のうち、 75%以上の点が基準を満たし、かつ 、定量下限及び定量上限は必ず基準を満たすものとした。検量線の重み付けは濃 度 2乗分の 1とした。
[0194] <結果 >
実際に各ポリペプチド試料を測定したところ、ノシセプチンとミツドカインのアミノ酸 配列第 60番目から第 121番目力もなるポリペプチドについては検量線が作成できな かったが、その他のポリペプチドでは、定量下限が ΙΟρΜ又は 30pMの検量線が作 成できた (表 41)。各検量線から求められたサンプル濃度の真度は、前項で述べた ± 15% (定量下限 ± 20%)の基準を満たしていた。各ポリペプチドの定量下限のク 口マトグラムを図 8— 1,図 8— 2に示す。ノシセプチンとミツドカインのアミノ酸配列第 6 0番目から第 121番目力もなるポリペプチドとをカラムに保持させるのに最低限必要 な水系移動相の割合%に、 94%を境に明確な差その他のポリペプチドの間には、本 発明法を用いて各ポリペプチドが認められた。従って、ノシセプチンとミツドカインのァ ミノ酸配列第 60番目から第 121番目力もなるポリペプチドの検量線が作成できなか つた原因として、今回用いた測定条件下ではこれらポリペプチドのカラムへの保持が 不十分であり、カラムに十分保持させるためには今回用いた測定条件より水系移動 相の割合を大きくすることが必要と考えられた。
[0195] [表 41]
本発明法による各ポリぺプチド検量線の作成
oxytocin neuromedin C isoleucyl-seryl-. 24) BNP-32
bradykinin '
(P ) ピーク 真度 ピーク 真度 ピーク 真度 ピーク 寘度 ピーク 真度 面積 面積 (%) 面積 (%) (%) H積 (%)
10 nd nc nd nc 337 99.9 nd nc nd nc
30 127 99.9 304 100.4 956 100.5 217 100.0 135 99.4
100 401 102.3 966 98.0 3057 98.5 711 101.6 448 103.1
300 1068 93.0 2995 102.0 9482 102.4 200 96.4 1236 95.9
1000 3881 102.3 9790 100.3 29297 95.2 6639 96.0 4506 105.4
3000 11331 99.8 29440 100.6 103791 112.5 20001 96.5 12069 94.2
10000 38852 102.7 96205 98.7 280147 91.1 75600 109.5 43553 102.0 y切片 14 11 29 10 7.4 傾き 3.8 9.7 31 6.9 4.3 相関係数 0.999 1.000 0.997 0.998 0.999
amvloid β- protein
PY urocortin GRF
(1-40) CNP-53
( M) ピーク 真度 ピーク 真度 ピーク 真度 ピーク 真度 ピーク 真度
(%) 面積 (%) 面積 (%) 面積 (%) 面積 (%)
10 204 97.3 139 99.7 197 100.5 198 102.6 nd nc
30 715 108.9 443 101.5 615 98.8 520 93.2 324 97.2
100 2177 98.2 1420 96.2 21 11 99.8 1768 96.5 1191 109.7
300 6495 97.3 4712 105.9 6129 96.1 5561 101.7 3304 102.1
1000 21496 96.5 14531 97.9 22044 103.4 17842 98.0 9874 91.7
3000 69541 104.0 45076 101.1 61189 95.7 55926 102.5 31001 96.1
10000 218156 97.8 145128 97.7 225585 105.8 191990 105.5 111016 103.2 y切片 -12.8 -9.5 -17 12 11 傾き 22 15 21 18 11 相関係数 0.999 0.999 0.999 0.999 0.998 nd:検出限界以下, nc:検量線範囲外のため真度未計算
[0196] 今回得られた定量下限は、試料注入量として 100 Lを用いた結果であり、試料注 入量を ImLに増加することで、 10倍の高感度化が可能である。また、今回測定に用 V、た MSZMS装置 (API365)は、現在の最新型 MSZMS装置 (API5000)と比較 すると、 50倍以上の感度の違いがあると言われている。以上のことから、試料注入量 及び装置の変更により、さらなる高感度化、つまり、数 pM fMでの定量が可能であ ると考えられ、免疫学的手法に匹敵もしくは凌駕する感度が得られると考えられた。
[0197] 実施例 13 (多検体同時定量における両システムの比較)
<試料調製 >
前述の 18種の各ポリペプチド原液(100 M) 10 Lずつを、下記溶液 (A)〜(D) 9. 82mLにそれぞれ添加し、ポリペプチド混合試料溶液(ΙΟΟηΜ)を調製した。
(A)水
(B)酢酸一水(4 : 96, v/v)
(C)酢酸一水ーァセトニトリル(4 : 66 : 30, v/v/v)
(D)酢酸一水ーァセトニトリル(4 :46 : 50, v/v/v) 更に、このポリペプチド混合試料溶液 100 Lを、同じ組成の溶液 900 Lに添カロ し、ポリペプチド混合試料溶液(ΙΟηΜ)を調製した。更に、同様の操作にて、 InMの ポリペプチド混合試料溶液を調製した。
[0198] <測定条件 >
移動相 A:酢酸一水混合液 (容積比 4: 100)
移動相 B:酢酸—ァセトニトリル—メタノール混合液 (容積比 4: 50: 50)
移動相 C:酢酸
カラム: C 逆相カラム(RP AQUEOUS— AR— 3:内径 2.0mm、長さ 35mm、粒子
30
径 3/zm)
カラム温度: 50°C
流速: 0. 2 L/ min
グラジェント:
[0199] [表 42] 従来システム (図 1(B)) 6¾/min
時間 移動相
(分) A( ) B(%) C(%)
0 95 1 4
15 5 10 85
15.1 95 1 4
20 95 1 4
25 5 90 5
26 5 90 5
26.1 95 1 4
30 95 1 4 本発明システム (図 1(D)) 6%/min
時間 移動相
(分) A(%) B(%) C(%)
0 95 1 4
30 95 1 4
45 5 10 85
45.1 95 1 4
50 95 1 4
55 5 90 5
56 5 90 5
56.1 95 1 4
60 95 1 4
[0200] 各ポリペプチド混合試料溶液 100 μ Lを両システムに導入した。 [0201] <結果 >
従来法を用いてァセトニトリル含量が 30%もしくは 50%のポリペプチド混合試料溶 液を測定した場合、ポリペプチド濃度に関わらずポリペプチド 18種全てはカラムにほ とんど保持されな力つた(図 9の C及び D)。一方、従来法を用いてァセトニトリルを含 まな 、ポリペプチド混合試料溶液を測定した場合、すべてのポリペプチドはカラムに 保持されたが、濃度の減少に伴い、保持の強いポリペプチドのピークが全く認められ なくなった(図 9の A及び B)。
次に、本発明法を用いてァセトニトリルを含まな ヽポリペプチド混合試料溶液を測 定した場合は、従来法とほぼ同様の結果が得られた(図 10の A及び B)。しかし、従 来法では全てのポリペプチドはほとんどカラムに保持されな力つたァセトニトリル含量 30%及び 50%のポリペプチド混合試料溶液を、本発明法にて測定した場合、 InM の低濃度試料においても、保持の強いポリペプチドのピークが認められ、その大きさ は、ほぼ濃度に比例していた(図 10の C及び D)。
[0202] この時、吸着のほとんど認められない例としてイソ口イシルーセリル ブラジキュン を、保持が強く吸着の影響が大き 、例としてゥロコルチンのピーク面積を図 11に示し た。
イソ口イシル一セリル一ブラジキュンのピーク面積は、ァセトニトリルを含まないポリ ペプチド混合試料溶液を測定した場合、従来法及び本発明法共に同じ値を示した。 一方、ァセトニトリル含量が 30%及び 50%のポリペプチド混合試料溶液を測定した 場合、従来法ではピーク面積の減少が認められたが、本発明法を用いた場合、ァセ トニトリルを含まないポリペプチド混合試料溶液を測定した場合と同様のピーク面積 が得られた。従来法でのピーク面積が小さくなつた原因としては、試料溶液中に含ま れる臨界値以上のァセトニトリルにより、カラム充填剤への吸着能を失ったままカラム に導入されたイソ口イシルーセリル ブラジキュンのほとんどがカラムを素通りしたた めであると考えられた。イソ口イシルーセリル ブラジキュンは、今回検討したポリべ プチドの中では、カラムでの保持が比較的弱いポリペプチドであり、低濃度での容器 等への吸着が比較的小さいと考えられた。
次に、従来法を用いて、ァセトニトリルを含まないポリペプチド混合試料溶液を測定 した場合のゥロコルチンのピーク面積は、濃度の減少に伴い極端に小さくなつた。特 に水だけを用いて調製した混合試料を測定した場合、 ΙΟΟηΜ以外ではピークが認 められな力つた。この原因としては、希釈系列調製時の容器等への吸着及び LC導 入時のシリンジへの吸着により、ゥロコルチンのほとんどが失われたと考えられた。ァ セトニトリル含量が 30%及び 50%のポリペプチド混合試料溶液(ΙΟΟηΜ)を測定し た場合、そのピーク面積は、ァセトニトリルを含まないポリペプチド混合試料溶液を測 定した場合と比較すると小さ力つたが、より低濃度(InM及び ΙΟηΜ)測定時にもゥロ コルチンのピークは認められ、し力も、ピーク面積はほぼ濃度に比例していた。
本発明法を用いて、ァセトニトリルを含まな 、ポリペプチド混合試料溶液を測定した 場合のゥロコルチンのピーク面積は、従来法同様、濃度の減少に伴い極端に小さく なった。しかし、ァセトニトリル含量が 30%及び 50%のポリペプチド混合試料溶液を 測定した場合、ゥロコルチンのピーク面積は、従来法にて得られたピーク面積よりも 大きぐかつ、濃度に比例していた。
以上の結果から、溶液中のポリペプチドが固体への吸着能を失った状態 (例えば、 臨界値以上のァセトニトリル含量を含む溶液中)で扱うことにより、低濃度でのポリべ プチドの吸着を回避することが可能であることが示された。また、この状態の試料溶 液を本発明法を用いて測定することにより、複数のポリペプチドを同時定量すること が可能であることが示された。
[0203] 実施例 14 (CDスペクトル解析)
<試料調製 >
4. OmLの水—ァセトニトリル(容積比 90 : 10, 80 : 20, 70 : 30, 60 : 50又は 50 : 50 )溶液に 0. l lmgのゥロコルチンを溶解して、 5. 9 Mのゥロコルチン溶液 (E)を調 製した。
一方、 isoleucyl— seryl— bradykinin 25mgを水 2. 5mLに溶解し、 7. 9mMの 保存溶液を調製した。この溶液 40 Lを、 4. OmLの水—ァセトニトリル (容積比 100 : 0, 95 : 5, 90 : 10, 85 : 15又 ίま 80 : 20)に添カロし、 79 mMの溶液を調製した。
[0204] <測定条件 >
Urocortin及び isoleucyl— seryl— bradvkininの 250— 200nMの CDスペクトル を得るために、試料を 10mm角型石英セル (JASCO ;東京)に移し、 J— 720型円二 色性分散計 (JASCO ;東京)を用いた。各試料とも 6回測定 (step resolution In m, Is each step)し、その平均化したスペクトルを得た。
[0205] <結果 >
ァセトニトリル含量の異なるゥロコルチン溶液の CDスペクトルを図 12に示す。 CDス ベクトルは、いずれの測定温度においても、溶液中ァセトニトリル含量が 10%力 40 %まで増加すると共に、 200— 240nMのスペクトル強度が大きく減少しており、特に 、 222nM付近のスペクトル強度の減少から、ゥロコルチンはへリックスな構造を取つ ていると考えられた。一方で、溶液中ァセトニトリル含量力 0%から 50%まで増加し ても、 CDスペクトルに大きな変化は認められなかった。このァセトニトリル含量 40% 以上における変化は、実施例 1で認められた保持時間 1. 5分のピークの出現と相関 していると考えられた。従って、ゥロコルチンの吸着能の相転移は、ァセトニトリルを含 めた様々な有機溶媒によってゥロコルチンの立体構造が変化することに伴って引き 起こされていると推察された。
[0206] 一方、ァセトニトリル含量の異なる isoleucyl—seryl—bradykinin溶液の CDスぺ タトルを図 13に示す。全体的に大きな変化がないように見える力 220— 240nm付 近のスペクトルに注目すると、そのスペクトル強度は溶液中ァセトニトリル含量の増加 と共に減少していた。特に、 222nmのスペクトル強度の減少から、 isoleucyl—seryl — bradykinin力 ァセトニトリル含量の増加に伴い、よりへリックス構造を取っている ことが示唆された。また、 40°Cでは、ァセトニトリル含量が 15%から 20%に増加しても 、スペクトルに大きな変化は認められなかった。この 40°Cでの結果は、実施例 7で得 られたグラジェント勾配が l%Zminの時の保持時間力も推定したァセトニトリルが示 す臨界含量、約 12%とほぼ一致していると考えられた。従って、 isoleucyl—seryl— bradykininの吸着能の相転移も、ァセトニトリルを含めた様々な有機溶媒によって引 き起こされる立体構造変化に起因することが推察された。
[0207] これらの結果から、逆相 HPLCにおけるポリペプチドの溶出は、グラジェント溶出時 の溶離液中有機溶媒含量の変化によって惹起される立体構造変化に伴うポリべプチ ドの吸着能の相転移により制御されていると考えられた。 [0208] 実施例 15 (クロモリスカラム使用時の各ポリペプチドの保持時間とグラジェント勾配の べき乗則)
<試料調製 >
100 ^ Mの 20種ポリペプチド原液 10 μ Lづっ、 10 Μ及び lOmgZmLの 4種ポ リペプチド原液 100 Lづっ、 [Tyr (PO H ) 4]— angiotensin II 及び ovalbumi
3 2
n (323 - 339)原液(各 ImM)を水にて 10倍希釈した溶液(100 M) 10 Lづっ、 及び、 angiotensin II原液(50mM)を水にて 50倍希釈した後に更に水で 10倍希 釈した溶液(100 M) 10 Lを 1本のエツペンドルフチューブに集め、更に 370 μ L の水に添加して、最終濃度が各 1 Μ (ただしォバルブミンの濃度は lmgZmL)とな るような 27種ポリペプチド混合試料溶液を調製した。
[0209] <測定条件 >
移動相 A:酢酸一水 (容積比 4: 100)
移動相 B:酢酸ーァセトニトリル (容積比 4: 100)、酢酸 メタノール (容積比 4: 100) 、酢酸 エタノール(容積比 4 : 100)、酢酸 イソプロピルアルコール(容積比 4 : 100 )、又は 100%酢酸
カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 3. 0mm、長
18
さ 100mm)
カラム温度: 60°C
流速: 0. 2 L/ min
グラジェント:
[0210] [表 43]
従来システム (図 1 (A) ) 10%/min
時間 移動相
(分) A (%) B (%)
0 100 0
9. 6 4 96
10. 6 4 96
10. 7 100 0
21 100 0 従来システム (図 1 (A) ) 8, 6, 4, 2, 1, 0. 5%/min
時間 移動相
(分) A (%) B (%)
0 100 0
X = 12, 16, 24, 48, 96, 192 4 96
X+1 4 100
X+1. 1 100 0
X+11 100 0
[0211] 27種ポリペプチド混合試料溶液 10 μ Lをシステムに導入した。
[0212] <結果 >
従来法(図 1 (A) )で、グラジェント勾配を 0. 5、 1、 2、 4、 6、 8、 10%Zminと変化 させた時のポリペプチドの保持時間を測定した結果、検討に用いた分子量 1007から 45kDの全てのポリペプチドについて、移動相に用いた有機溶媒の種類に関わらず 、カラムに保持されたポリペプチドの保持時間とグラジェント勾配との間に良好なべき 乗則が認められた (表 44)。
[0213] [表 44]
べき乗則関数の定 ¾B及び相関係数 oxytocin 19.0 0.996 17.4 0.994 26.2 0.997 12.5 0.991 26.9 0.998 angiotensin Π 17.8 0.995 16.8 0.994 25.1 0.997 12.1 0.989 26.8 0.997 neuromedin C 16.4 0.994 14.8 0.992 21.9 0.996 10.9 0.981 25.3 0.997
[T r(P03H2)4] -angiotens in 19.3 0.996 18.8 0.995 28.3 0.998 13.3 0.991 29.5 0.998 isoleucyl-seryl-bradykinin 17.7 0,994 162 0.992 25.1 0.996 11.6 0.983 28.2 0.997 ovalbumin (323-339) 10.8 0.988 9.6 0.978 13.7 0.993 7.7 0.988 14.1 0.993 nociceptin 11.0 0.988 9.7 0.977 13.9 0.993 7.8 0.986 15.4 0.994 amyloid β-protein (1-16) 7.9 0.951 7.0 0.971 7.9 0.994 7.4 0.999 7.8 0.990
ACTH (1- 24) 13.8 0.988 12.5 0.981 19.4 0.993 9.2 0.958 23.4 0.994
ANP (1-28) 17.1 0.991 16.2 0.989 25.6 0.996 11.3 0.972 28.2 0.996 amyloid β- protein (1-28) 17.9 0.992 17.1 0.991 27.1 0.996 12.0 0.977 29.3 0.996
BNP-32 13.8 0.988 12.5 0.981 19.5 0.993 9.2 0.960 22.2 0.994 amyloid β-protein (1-38) 25.6 0.995 26.5 0,995 41.2 0.998 18.4 0.992 45.3 0.998
NPY 28.7 0.996 29.7 0.996 46.5 0.998 20.4 0.992 48.2 0.998 amyloid β-protein (1-40) 27.8 0.996 29.4 0.996 44.9 0.998 20.5 0.993 49.3 0.998 amyloid β-protein (1-42) 29.1 0.996 31.2 0.996 47.3 0.998 21.9 0.993 50.0 0.999 amyloid p-protein (l-43) 29.2 0.996 31.5 0.996 47.9 0.998 22.0 0.994 50.1 0.999 urocortin 37.3 0.997 39.4 0.998 58.8 0.998 27.5 0.995 62.9 0.999
GRF 26.5 0.995 27.6 0.995 42.6 0.998 18.9 0.991 46.9 0.998
CNP-53 21.3 0.993 21.6 0.992 34.5 0.996 14.7 0.981 38. 0.997
Insulin 30.5 0.996 30.6 0.996 48.8 0.998 20.8 0.992 5Ί .8 0.998 midkine (60-121) 12.0 0.983 10.9 0.970 16.8 0.991 8.3 0.968 18.8 0.992
CINC-l/gro 28.2 0.995 29.0 0.995 46.9 0.998 19.0 0.990 51.6 0.998
PTH (l-84) 25.7 0.995 26.7 0.994 42.8 0.998 17.8 0.989 45.9 0.998 midkine 15.7 0.987 14.2 0.982 23.7 0.993 10.0 0.951 25.9 0.994 interferon-γ 34.8 0.996 37.2 0.996 58.9 0.998 25.1 0.993 58.4 0.998 ovalbumin 45.6 0.998 48.2 0.997 71.9 0,999 33.0 0.995 70.4 0.999
今回、カラム温度が 60°Cであったにも関わらず、 nociceptin及び amyloid β—ρ rotein(l— 16)は今回用いたカラム Chromolith Performance RP— 18eに十 分保持された結果、保持時間とグラジェント勾配との間に良好な相関係数を示すベ き乗則が認められた。一方、 nociceptin及び amyloid β -protein (1 - 16)は、実 施例 6で用いた Cカラム Develosil300C4— HG— 5にカラム温度が 50°Cの場合で
4
もほとんど保持されず、良好な相関係数を示すべき乗則を確認できなかった。実施 例 8 (カラム固定相の影響)及び実施例 9 (カラム温度の影響)の結果、及び、初期測 定条件下(100%移動相 A=酢酸一水(容積比 4 : 100)、流速 0. 2mLZmin)での DevelosU300C4— HG— 5が示すカラム圧(約 2. IMPa; 50°C)及び Chromolith Performance RP—18eが示すカラム圧(約 0. 5MPa ; 60°C)を考慮すると、この 保持の差は、カラム固定相及び温度の違いによるものではなぐ測定時のカラム圧の 違いが原因であると考えられた。従って、これまでに得られた知見を考慮すると、低力 ラム圧ではカラム充填剤に対して吸着能を示しているポリペプチドは、ある一定以上 のカラム圧が力かった場合に、その高次構造をより小さい臨界値を示す高次構造 (も しくは吸着能を示さない高次構造)に変化させ得ると考えられた。そのために、低カラ ム圧条件下でカラムに保持されて臨界値を示す溶離液 (f= l)中に溶出されていた ポリペプチドが、高カラム圧の条件下ではその臨界値以下 (f< l)を示す溶離液中に 溶出されていると考えられた。
[0215] Chromolith Performance RP— 18eは、カラム骨格と流路がー体となったシリ 力ロッドタイプのカラム (クロモリス型カラム)であり、従来の粒子充填型カラムと比較し て、同じ測定条件下で低カラム背圧を可能しており、今回の結果からもその低カラム 背圧が確認された。このように、クロモリス型カラムは、粒子充填型カラムを用いた場 合のカラム圧によってより小さい臨界値を示す高次構造 (もしくは吸着能を示さな!/、 高次構造)に変化し得るポリペプチドに対しても、その低カラム背圧により十分にカラ ムに保持させ得ると考えられ、このようなポリペプチドの定量分析において有効である と考えられた。
[0216] 一方、実施例 6と同様に、グラジェント勾配力 %Zmin、 6%Zmin及び 8%Zmi nの場合に得られた各ポリペプチドの保持時間を用いて、式(3)力 測定システム全 体のデッドボリュームを算出した結果 (平均値士 SD)を表 45に示す。移動相 Bに用い た有機溶媒の種類及びグラジェント勾配に関わらず、デッドボリュームはほぼ一定で あり、かつ、ポリペプチドによらないことが示された。ただし、ポリペプチドの分子量が 大きくなるにつれて、デッドボリュームが若干小さくなる傾向が認められた。これは、小 さな分子量のポリペプチド力 より深くカラム細孔内に入り込んでいることを示唆して いると考えられた。
[0217] [表 45] 各ポリペプチドの保持時間から算出したデッドボリューム
t0 (平均値 ± SD; min)
ァセ卜二トリル エタノール メタノール ^^コロ^ レ
oxytocin 4.3 士 0.2 4.8 ± 0.3 4.9 ± 0.1 4.6 ± 0.0 4.6 ± 0.1 angiotensin II 4.3 ± 0.2 4.5 ± 0.3 4.7 ± 0.3 4.5 ± 0.1 4.5 ± 0.3 neuromedin C 4.3 ± 0.1 4.5 ± 0.3 4.7 ± 0.2 4.9 ± 0.1 4.9 士 0.2
[T r(P03H2)4ト angiotensin 4.4 ± 0.0 4.6 土 0.3 4.9 ± 0.2 4.7 ± 0.0 4.7 ± 0.3 isoleucyl-seryl-bradykinin 4.2 ± 0.2 4.6 士 0.1 4.6 ± 0.1 4.7 ± 0.0 4.7 ± 0.3 ovalbumin (323-339) 4.4 士 0.0 4.7 ± 0.0 4.4 ± 0.1 4.9 ± 0.0 4.9 土 0.1 nociceptin 4.6 ± 0.2 4.8 土 0.3 4.4 ± 0.1 5.1 ± 0.1 5.1 ± 0.1 amyloid β-protein (1-16) 4.5 ± 0.0 5.2 ± 0.1 4.7 土 0.1 4.9 土 0.3 4.9 ± 0.2
ACTH (1-24) 4.3 ± 0.0 4.6 ± 0.0 4.4 ± 0.1 5.1 ± 0.1 5.1 ± 0.2
AMP (1-28) 4.1 ± 0.1 4.4 ± 0.0 4.4 士 0.1 5.0 ± 0.0 5.0 ± 0.1 amyloid β-protein (1-28) 4.2 ± 0.3 4.3 ± 0.1 4.3 ェ 0.1 4.9 ± 0.1 4.9 ± 0.1
BNP-32 4.3 ± 0.0 4.6 土 0.0 4.3 ± 0.1 5.1 土 0.1 5.1 士 0.3 amyloid β - protein (1-38) 4.1 ± 0.1 4.3 土 0.2 4.3 ± 0.0 4.3 ± 0.0 4.3 ± 0.3
NPY 4.0 ± 0.2 4.0 士 0.2 4.3 ± 0.0 4.2 ± 0.1 4.2 ± 0.2 amyloid β-protein (1-40) 4.2 ± 0.3 4.2 ± 0.3 4.4 ± 0.2 4.2 士 0.3 4.2 ± 0.2 amyloid β-protein (1-42) 4.1 ± 0.1 4.4 ± 0.2 4.5 ± 0.0 4.2 ± 0.1 4.2 ± 0.0 amyloid β-protein (1-43) 4.0 ± 0.0 4.3 ± 0.1 4.3 ± 0.1 4.2 ± 0.1 4.2 ± 0.0 urocortin 3.9 士 0.1 4.2 ± 0.3 4.1 ± 0.2 4.1 ± 0.0 4.1 ± 0.1
GRF 4.0 0.2 4.1 ± 0.0 4.0 ± 0.1 4.3 ± 0.0 4.3 ± 0.2
CNP-53 4.1 土 0.0 4.1 ± 0.2 4.2 ± 0.1 4.4 ± 0.0 4.4 ± 0.2
Insulin 3.8 ± 0.1 4.1 ± 0.2 4.3 ± 0.1 4.3 士 0.1 4.3 ± 0.2 midkine (60-121) 4.6 土 0.2 4.6 ± 0.2 4.2 ± 0.1 4.9 土 0.0 4.9 ± 0.1
CINC-l/gro 4.0 ± 0.0 4.0 ± 0.1 4.1 ± 0.0 4.2 士 0.0 4.2 ± 0.0
PTH (l-84) 3.9 ± 0.1 4.0 士 0.2 4.0 ± 0.2 4.3 0.1 4.3 ± 0.1 midkine 4.2 ± 0.2 4.4 ± 0.1 3.9 ± 0.1 5.3 士 0.1 5.3 ± 0.0 interferon-γ 3.9 ± 0.2 4.0 ± 0.1 3.9 ± 0.1 4.0 ± 0.1 4.0 ± 0.1 ovalbumin 3.5 ± 0.2 3.9 土 0.1 4.2 士 0.1 4.4 ± 0.3 4.4 ± 0.3
[0218] 続いて、グラジェント勾配を l%Zminで測定して得られた各ポリペプチドの保持時 間を表 46に示す。実施例 6及び 7で述べた通り、グラジェント勾配を l%Zminで測 定して得られた各ポリペプチドの保持時間は、各ポリペプチドの相転移臨界値である 有機溶媒含量の近似値を示していると考えられる。ただし、測定開始時に水系移動 相に 4%程度の齚酸が含まれていることと、検出される保持時間には約 4分程度のデ ッドボリュームが含まれていることから、保持時間の短いポリペプチドでは、得られた 値の取扱いに若干注意が必要である。
[0219] [表 46] グラジェント勾配が 1 % /m i nの時の各ポリべプチドの保持時間
ペプチド ァセトニトリル イソ
エタノール メタノール プロピ
酢酸 アルコール
oxvtocin 18.4 17.0 25.9 12.2 26.5 angiotensin Π 17.2 16.4 24.7 11.8 26.4 neuromedin C 15.8 14.5 21.5 10.6 24.9 r rOPC^Ha)4] -angiotensin 18.8 18.4 27.9 13.1 29.2 isoloicyl-seryl-bmdy nin 17.0 15.8 24.6 11.2 27.7 ovalbumin (323-339) 10.2 9.3 13.5 7.5 13.7 nociceptin 10.4 9.5 13.6 7.6 15.1 amyloid β -protein (1-16) 7.2 6.9 7.8 7.4 7.7
ACTH (1-24) 13.1 12.1 18.8 8.8 22.8
ANP (1-28) 16.3 15.7 25.0 10.9 27.6 amyldd β -^protein (1-28) 17.2 16.6 26.6 11.6 28.7
BNP-32 13.0 12.1 19.0 8.7 21.6 amyldd β -protein (1-38) 24.8 25.8 40.5 17.8 44.4
NPY 27.9 29.0 45.7 19.7 47.5 amyldd β -protein (1-40) 27.0 28.6 44.2 19.9 48.6 amyloid β -protein (1-42) 28.3 30.5 46.5 21.3 51.6 amyloid β -protein (1-43) 28.5 30.8 47.2 21.4 51.7 urocortin 36.4 38.7 58.1 26.8 62.2
GRF 25.7 26.8 41.9 18.3 46.1
CNP-53 20.6 20.9 33.8 14.2 37.9
Insulin 29.7 29.8 48.1 20.1 51.0 midkine (60-121) 11.3 10.4 16.2 8.0 18.2
CINC-l/gro 27.4 28.2 46.1 18.4 50.8
PTH (1-84) 24.9 26.0 42.1 17.1 44.9 midkine 14.9 13.7 23.0 9.5 25.2 interferon- 34.0 36.4 57.2 24.3 57.7 ovalbumin 44.5 47.4 70.9 32.0 69.5 このクロモリス型カラムを用いて得た保持時間を、粒子充填型カラムを用いて得られ た保持時間(実施例 7)とを比較したところ、保持の小さい、つまり臨界値の小さいポリ ペプチドにお 、て、デッドボリュームの違 、及びカラム背圧の違 、が原因と考えられ る比較的大きな差が認められたが、ゥロコルチンのようにカラムに十分保持されてい るポリペプチドでは、ほぼ同じ値を示していた。従って、保持時間の短いポリペプチド については、得られた値の取扱いに若干注意が必要であるものの、実施例 7で述べ た通り、グラジェント勾配を 1 %Zminで測定して得られた各ポリペプチドの保持時間 は、各ポリペプチドの相転移臨界値である有機溶媒含量の近似値を示して 、ると考 えられた。
[0221] 実施例 16 (血漿中 amyloid j8— protein定量のためのマウス血漿前処理法の検討 :有機溶媒による除タンパク質前処理法)
< amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β—protein混合溶液(各 1 M)を調製した。更に、この amyloid β -pr otein混合溶液 (各 1 μ Μ) 200 Lを 300 Lの酢酸—水—ァセトニトリル混合液 (容 積比 4: 50: 50)に添加し、 amyloid β—protein混合溶液(各 400nM)を調製した
[0222] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 10 Lを、 490 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid β—protein添加マウス血漿(20nM)を調製した。
[0223] <メタノール及びァセトニトリルによる除タンパク質法 >
ブランクマウス血漿及び amyloid β protein添カ卩マウス血漿(20nM) 100 μ L を、 400 Lのァセトニトリノレ又 ίまメタノーノレに添カロし、攪拌後、 20, 000 X gで 15分 間 (4°C)遠心し、上清を得た。
[0224] <マウス血漿試料の調製 >
amyloid β protein添加マウス血漿(20nM)を用いて得られた上清をマウス血 漿試料とした。
[0225] <リファレンス試料の調製 >
ブランクマウス血漿を用いて得られた上清 990 μ Lに、 amyloid β—protein混合 溶液(各 400nM) 10 μ Lを添カ卩し、リファレンス試料(各 4nM)を調製した。
[0226] <測定条件 >
移動相 A:酢酸一水 (容積比 4: 100)
移動相 B : 100%酢酸 移動相 C:水 酢酸ーァセトニトリル メタノール (容積比 20 :4 :40 :40)
カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 3. 0mm、長
18
さ 100mm)
カラム温度: 60°C
流速: 0. 2mLZmin (ただし、 30〜39. 9分の間 0. 6mL/min)
グラジェント:
[0227] [表 47] 本発明システム (図 1 (D) )
時間 移動相
(分) A (%) B ( ) c (%)
0 75 0 25
10 75 0 25
30 45 0 55
31 0 0 100
31. 1 75 0 25
33 0 100 0
33. 1 75 0 25
40 75 0 25
[0228] マウス血漿試料及びリファレンス試料 50 μ Lをシステムに導入した。
[0229] <回収率の算出方法 >
各 amyloid β—proteinのマウス血漿からの回収率は、リファレンス試料を測定し た時に得られたピーク面積に対するマウス血漿試料を測定した時に得られたピーク 面積の比(%)とした。
[0230] <結果 >
低分子化合物を分析する際に一般的に用いられているァセトニトリル又はメタノー ルを用いた除タンパク質前処理法にて amyloid β protein添加マウス血漿を処 理した場合、 4種の amyloid β—proteinのマウス血漿からの回収率は表 48の通り 低 ヽ値を示した。メタノールを用いた場合よりもァセトニトリルを用いた場合に回収率 はより低くなり、特に、 amyloid β—protein(l—42)及び(1—43)の回収率は 0% を示した。この各 amyloid β proteinの低回収率の原因は、有機溶媒を用いた除 タンパク質操作時にアルブミンにょうな高分子ポリペプチドの凝集過程に各 amyloid β proteinが取り込まれたため、又は、これら高分子ポリペプチドと各 amyloid β—proteinとの共沈が原因と考えられた。従って、このような有機溶媒による除タン パク質法を用いたマウス血漿中 amyloid β proteinの高感度定量は困難である と考えられた。
[0231] [表 48] 各 amyloid β -proteinのマウス血漿からの回収率(除タンパク質法) 回収率(%)
有機溶媒種 amyloid β- protein
1-38 1-40 1-42 1-43
ァセトニトリル 0.7 1.1 0.0 0
メタノーゾレ 13.2 13.8 4.0 2.0
[0232] 実施例 17 (amyloid j8— protein定量のためのマウス血漿前処理法の検討:酢酸 を含む有機溶媒による血漿希釈法'酢酸含量の影響)
< amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β—protein混合溶液(各 1 M)を調製した。更に、この amyloid β -pr otein混合溶液 (各 1 M) 50 Lを 450 μ Lの酢酸一水ーァセトニトリル混合液 (容 積比 4: 50: 50)に添加し、 amyloid β—protein混合溶液(各 ΙΟΟηΜ)を調製した
[0233] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 10 Lを、 490 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid β—protein添カ卩マウス血漿試料(20nM)を調製した。
[0234] <酢酸を含む有機溶媒による血漿希釈法 > 水、ブランクマウス血漿又は amyloid β protein添加マウス血漿 (20nM) 50 μ Lに対して、 950/zLの水一酢酸一メタノーノレ(容積 it20:70:10、 20:60:20、 20: 50: 30、 20:40: 40又は 20: 30: 50)をカ卩ぇ十分に攪拌した。その混合溶液 400 μ Lを市販のウルトラフリー MC遠心式フィルターユニット(バイオマックス ΡΒ限外ろ過 メンブレン装着フィルターユニット;分画分子量 10, 000)〖こ添加し、 6, 000 Xgで 60 分間以上(35°C)遠心し、ろ過液を得た。
[0235] <マウス血漿試料の調製 >
amyloid β protein添加マウス血漿(20nM)を用いて得られたろ過液 300 μ L に対して 300 Lの水ーァセトニトリル (容積比 20: 80)を添カ卩してマウス血漿試料を 調製した。
[0236] <リファレンス試料の調製 >
ブランクマウス血漿を用いて得られたろ過液 990 μ Lに、 amyloid β—protein混 合溶液(各 100nM) 10 μ Lを添カ卩した。このろ過液(各 InM) 300 μ Lに対して 300 μ Lの水—ァセトニトリル(容積比 20: 80)を添カ卩してリファレンス試料(各 0.5nM)を 調製した。
[0237] <コントロールろ過試料の調製 >
マウス血漿の代わりに水を用いて得られたろ過液 990 μ Lに、 amyloid β prot ein混合溶液(各 100nM) 10 Lを添加した。このろ過液(各 InM) 300 Lに対し て 300 μ Lの水—ァセトニトリル (容積比 20: 80)を添カ卩してコントロールろ過試料(各 0.5ηΜ)を調製した。
[0238] <コントロール試料の調製 >
水 を、 950 /zLの水一酢酸一メタノーノレ(容積 it20: 70: 10、 20:60:20、 2 0:50:30、 20 :40 :40又は 20 :30 :50)に添力!]した後、 amyloid β—protein混合 溶液(各 lOOnM O/zLを添カ卩した。更に、この溶液(各 InM) 300 Lに対して 30 0 μ Lの水—ァセトニトリル(容積比 20: 80)を添カ卩してコントロール試料(各 0.5ηΜ) を調製した。
[0239] <測定条件 >
移動相 A:水 移動相 B:酢酸—メタノール—ァセトニトリル (容積比 10: 45: 45)
移動相 C:水 酢酸 メタノールーァセトニトリル (容積比 40 : 20 : 20 : 20) カラム:ノンポーラス C 逆相カラム(N. P. C30— 5 :内径 2. Omm、長さ 100mm、粒
30
子経 5 μ m:野村ィ匕学による特注カラム)
カラム温度: 60°C
流速: 0. 2 L/ min
グラジェント:
[0240] [表 49] 本発明システム (図 1 (D ) )
時間 移動相
(分) A (%) B(%) c(%)
0 80 0 20
15 80 0 20
35 40 40 20
40 0 100 0
40.1 100 0 0
45 0 0 100
45.1 80 0 20
55 80 0 20
[0241] 各コントロール試料、コントロールろ過試料、リファレンス試料及びマウス血漿試料 4 00 μ Lをシステムに導入した。
[0242] <回収率の算出方法 >
前処理操作時に用いたバイオマックス ΡΒ限外ろ過メンブレン通過時の各 amyloi d β proteinの回収率 (透過率)は、コントロール試料を測定した時に得られたピ ーク面積に対するコントロールろ過試料を測定した時に得られたピーク面積の比(% )とした。一方、各 amyloid β—proteinのマウス血漿からの回収率は、リファレンス 試料を測定した時に得られたピーク面積に対するマウス血漿試料を測定した時に得 られたピーク面積の比(%)とした。
[0243] <結果 >
実施例 16の結果から、ァセトニトリル又はメタノール等の有機溶媒を用いてアルブミ ンのような高分子ポリペプチドを凝集させる一方で、 目的とするポリペプチドを効率よ く血漿力 回収することは困難と考えられた。そこで、血漿中の高分子ポリペプチドを 凝集させずに、かつ、目的のポリペプチドを OFF相とする前処理法として、酢酸と有 機溶媒とを組み合わせた血漿希釈法を検討した。これは、高含量の酢酸を含む溶液 中(血漿に対する希釈倍率にもよるが一般的に 20%程度以上)では、有機溶媒が含 まれて 、ても、血漿中ポリペプチドは凝集せず溶解した状態となると 、う新 、知見 を基に考案した方法である。今回検討に用いた混合溶液にて希釈された血漿は、全 て無色透明であり、血漿中ポリペプチドは凝集していないと考えられた。一方、血漿 を水とみなした場合の希釈されたマウス血漿試料 ( =ろ過液)中の酢酸及びメタノー ル含量から計算した値 fから、各 amyloid β proteinはその試料( =ろ過液)中で カラム充填剤に対する吸着能を失っていることが示唆された (表 50)。ただし、各ポリ ペプチドの各有機溶媒に対する相転移臨界値は実施例 15で得られたグラジェント 勾配 l%Zminの時の保持時間を用いた。従って、各 amyloid β proteinは、試 料調製時に接触するような容器等に対して吸着能を失っていると考えられることから 、ノィォマックス PB限外ろ過メンブレンに対しても吸着能も失っていると予想され た。
[表 50]
酢酸及びメタノール含量の異なる希釈されたマウス血漿試料中の各 a m y 1 o i d β— p r o t e i n力示す値 f
希釈されたマウス血漿 グラジェント勾配 1¾/minの時
amyloid β- f 試料中有機溶媒含量 (%) の保持時間(min)
protein - (希釈された
酢酸 メタノール 酢酸 メタノー レ マウス血漿試料中)
28.5 47.5 44.4 40.5 1.81 OFF
38.0 38.0 44.4 40.5 1.79 OFF
1-38 47.5 28.5 44.4 40.5 1.77 OFF
57.0 19.0 44.4 40.5 1.75 OFF
66.5 9.5 44.4 40.5 1.73 OFF
28.5 47.5 48.6 44.2 1.66 OFF
38.0 38.0 48.6 44.2 1.64 OFF
1-40 47.5 28.5 48.6 44.2 1.62 OFF
57.0 19.0 48.6 44.2 1.60 OFF
66.5 9.5 48.6 44.2 1.58 OFF
28.5 47.5 51.6 46.5 1.57 OFF
38.0 38.0 51.6 46.5 1.55 OFF
1-42 47.5 28.5 51.6 46.5 1.53 OFF
57.0 19.0 51.6 46.5 1.51 OFF
66.5 9.5 51.6 46.5 1.49 OFF
28.5 47.5 51.7 47.2 1.56 OFF
38.0 38.0 51.7 47.2 1.54 OFF
1-43 47.5 28.5 51.7 47.2 1.52 OFF
57.0 19.0 51.7 47.2 1.51 OFF
66.5 9.5 51.7 47.2 1.49 OFF
[0245] 一方、本発明法を用いる場合にあたって、各移動相組成、及び、ポリペプチドが導 入される有機溶媒系移動相 (移動相 B及び Cの混合溶液)の測定開始時の混合比、 及び、各試料中有機溶媒含量から、各 amyloid /3 proteinをカラムへ保持させる のに必要な混合器において混合される有機溶媒系移動相に対する水系移動相の比 率(α )を、前述の式 (a)に従って算出した (表 51)。ただし、各ポリペプチドの各有機 溶媒に対する相転移臨界値は実施例 15で得られたグラジェント勾配 1 %/minの時 の保持時間を用いた。システムに導入された全ての amyloid β—proteinをカラム へ保持させるのに必要な水系移動相の割合を α力 算出した結果、 66%より大きい ことが示された。今回の検討では、 amyloid j3 proteinを含む試料がカラムに導 入されるまでの間の水系移動相の割合が 88%程度であり、システムに導入された全 ての amyloid β proteinはカラムへ保持したと判断された。
[0246] [表 51] 本発明法を用いて酢酸及び有機溶媒含量の異なる溶液中の a m y 1 o i d )8— p r o t e i nをカラムに保持させる のに必要な有機系移動相に対する水系移動相の比率 (a ) の算出
最終試料中有機溶媒含量 有機溶媒系移動相 Ή Λ amyloid β- (%) に対する水系移動 混合器におけ 有機溶媒系
protein 相の比率 (c * る水糸移動相 メタノ一 ァセトニ卜 移動相中 水系移動相中 最終試料中
酢酸 の割合(%) ル リル (測定開始時)
β 7
14.3 23.8 50 1.75 OFF 0 ON 2.92 OFF > 66%
19.0 19.0 50 1.75 OFF 0 ON 2.91 OFF > 66%
1-38 23.8 14.3 50 1.75 OFF 0 ON 2.90 OFF > 66%
28.5 9.5 50 1.75 OFF 0 ON 2.89 OFF > 66%
33.3 4.8 50 1.75 OFF 0 ON 2.88 OFF > 66%
14.3 23.8 50 1.60 OFF 0 ON 2.68 OFF > 63%
19.0 19.0 50 1.60 OFF 0 ON 2.67 OFF > 63%
1-40 23.8 14.3 50 1.60 OFF 0 ON 2.66 OFF > 63%
28.5 9.5 50 1.60 OFF 0 ON 2.65 OFF > 63%
33.3 4.8 50 1.60 OFF 0 ON 2.64 OFF > 62%
14.3 23.8 50 1.52 OFF 0 ON 2.55 OFF > 62%
19.0 19.0 50 1.52 OFF 0 ON 2.54 OFF > 60%
1-42 23.8 14.3 50 1.52 OFF 0 ON 2.53 OFF > 60%
28.5 9.5 50 1.52 OFF 0 ON 2.52 OFF > 60%
33.3 4.8 50 1.52 OFF 0 ON 2.51 OFF > 60%
14.3 23.8 50 1.51 OFF 0 ON 2.53 OFF > 60%
19.0 19.0 50 1.51 OFF 0 ON 2.52 OFF > 60%
1-43 23.8 14.3 50 1.51 OFF 0 ON 2.52 OFF > 60%
28.5 9.5 50 1.51 OFF 0 ON 2.51 OFF > 60%
33.3 4.8 50 1.51 OFF 0 ON 2.50 OFF > 60%
* β及び γのうち、より高い値以上が α
(=ろ過液)中に存在する各 amyloid β proteinのバイオマックス ΡΒ限外ろ過 メンブレンからの回収率は、予想通りほぼ 100% ± 15%であった (表 52)。従って、 各 amyloid /S—proteinが OFF相(f > 1)を示す溶液中でバイオマックス PB限 外ろ過メンブレンに対しても吸着能を失っていることが示唆された。
[0248] [表 52]
各 a m y l o i d p r o t e i nのバイオマックス一 P B限外ろ過メンブレン及び マウス血漿からの回収率
ピーク面積(平均値; n = 3)
amyloid β- 希釈用溶液
- メンブレンからの マウス血槳からの 中 Bf¾含量
Drotein コント口一ル コン卜口一ノレ リファレンス マウス血漿 回収率(%)
(%) 回収率 (¾>) 料 ろ過試料 試料 試料
30 12267 11494 10843 3744 93.7 34.5
40 13460 13277 12722 4607 98.6 36.2
1-38 50 12424 12874 11231 4136 103.6 36.8
60 10203 11325 10542 4421 111.0 41.9
70 11375 11546 11631 6034 101.5 51.9
30 7964 7279 7306 2107 91.4 28.8
40 9375 8813 8471 2474 94.0 29.2
1-40 50 8224 8206 8046 2587 99.8 32.2
60 7705 7543 7394 2817 97.9 38.1
70 8766 7402 8059 3843 84.4 47,7
30 10875 10564 9475 — 995 97.1 10.5
40 13010 12229 11186 1946 94.0 17.4
1-42 50 12612 11381 10374 2067 90.2 19.9
60 10586 10469 9635 3199 98.9 33.2
70 11938 10950 10291 4851 91.7 47.1
30 7906 7595 6729 363 96.1 5.4
40 10040 9933 9068 891 98.9 9.8
1-43 50 10266 10160 9089 1247 99.0 13.7
60 9840 9293 8751 2067 94.4 23.6
70 10385 9461 9289 3839 91.1 41.3
[0249] 一方、各 amyloid β proteinのマウス血漿からの回収率は、マウス血漿を希釈 する際に用いた溶液中の酢酸含量の増加と共に増加した。全ての溶液中で各 amyl old β proteinが物質に対する吸着能を失っているにも関わらず、このように回収 率が変化した一因として、各 amyloid /3 proteinがメンブレンで分画される分子 量 10, 000以上の高分子ポリペプチドと強く相互作用しているためにろ過液に回収 されなかったと考えられた。従って、酢酸には、ポリペプチドの物質に対する吸着能を 相転移させる効果の他に、ポリペプチド間の相互作用を阻害する効果をも有すると考 えられた。
[0250] 実施例 18 (amyloid j8— protein定量のためのマウス血漿前処理法の検討:酢酸 を含む有機溶媒による血漿希釈法'希釈倍率の影響)
< amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β protein混合溶液(各 1 M)を調製した。まず、この amyloid β -pr otein混合溶液 (各 1 M) 50 Lを 200 μ Lの酢酸—水—ァセトニトリル混合液 (容 積比 4: 50: 50)に添加し、 amyloid β—protein混合溶液(各 200nM)を調製した 。次に、 amyloid β—protein混合溶液(各 1 M) 50 Lを 450 μ Lの酢酸—水— ァセトニトリル混合液 (容積比 4: 50: 50)に添加し、 amyloid β—protein混合溶液 (各 100nM)を調製した。加えて、 amyloid β—protein混合溶液(各 1 M) 40 Lを 960 μ Lの酢酸一水 ァセトニトリル混合液 (容積比 4 : 50 : 50)〖こ添加し、 amylo id j8— protein混合溶液(各 40nM)を調製した。更に、 amyloid j8— protein混 合溶液 (各 1 μ Μ) 20 Lを 980 Lの酢酸—水—ァセトニトリル混合液 (容積比 4 : 5 0: 50)に添加し、 amyloid β protein混合溶液(各 20nM)を調製した。
[0251] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 20 Lを、 980 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid β—protein添加マウス血漿(20nM)を調製した。
[0252] <酢酸を含む有機溶媒による血漿希釈法 >
100倍希釈:ブランクマウス血漿及び amyloid β protein添カ卩マウス血漿(20η Μ) 10 ^ ^ 990 Lの水—酢酸—ァセトニトリル (容積比 19 :40 :40)に添加した。 50倍希釈:ブランクマウス血漿及び amyloid β protein添カ卩マウス血漿(20ηΜ) を、 980 /z Lの水一酢酸一ァセトニトリノレ(容積 itl8 :40 :40)に添カロした。 20 倍希釈:ブランクマウス血漿及び amyloid β protein添加マウス血漿(20nM) 50 /z Lを、 950 Lの水—酢酸—ァセトニトリル (容積比 15 :40 :40)に添カ卩した。 10倍 希釈:ブランクマウス血漿及び amyloid β protein添加マウス血漿 (20nM) 100 μ Lを 900 μ Lの水―酢酸―ァセトニトリル (容積比 10: 40: 40)に添加した。 希釈されたマウス血漿を十分に攪拌後、その 400 Lを市販のウルトラフリー MC遠 心式フィルターユニット(バイオマックス PB限外ろ過メンブレン装着フィルターュ- ット;分画分子量 10, 000)に添加し、 6, OOO X gで 60分間以上(35°C)遠心し、ろ過 液を得た。必要に応じて、フィルターユニットの本数を増やした。
[0253] <マウス血漿試料の調製 >
amyloid β protein添加マウス血漿(20nM)を用いて得られた各ろ過液をマウ ス血漿試料とした(100倍希釈マウス血漿試料、 50倍希釈マウス血漿試料、 20倍希 釈マウス血漿試料及び 10倍希釈マウス血漿試料)。
[0254] <リファレンス試料の調製 >
100倍希釈リファレンス試料:ブランクマウス血漿を用いて得られた 100倍希釈ろ過 液 990 μ Lに、 amyloid β—protein混合溶液(各 20nM) 10 μ Lを添カ卩して調製 した(各 0. 2nM) 0 50倍希釈リファレンス試料:ブランクマウス血漿を用いて得られた 50倍希釈ろ過液 990 μ Lに、 amyloid β—protein混合溶液(各 40nM) 10 μ Lを 添加して調製した (各 0. 4nM)。 20倍希釈リファレンス試料:ブランクマウス血漿を用 V、て得られた 20倍希釈ろ過液 990 Lに、 amyloid β—protein混合溶液(各 100 nM) Lを添カ卩して調製した(各 1ηΜ)。 10倍希釈リファレンス試料:ブランクマウ ス血漿を用いて得られた 10倍希釈ろ過液 990 Lに、 amyloid β protein混合 溶液(各 200nM) 10 μ Lを添カ卩して調製した(各 2nM)。
[0255] <測定条件 >
移動相 A:酢酸一水(4: 100; v/v)
移動相 B : 100%酢酸
移動相 C:水 酢酸ーァセトニトリル メタノール(20: 4: 40: 40 ;v/v/v/v) カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 3. 0mm、長
18
さ 100mm)
カラム温度: 60°C
流速: 0. 2mLZmin (ただし、 30〜39. 9分の間 0. 6mL/min)
グラジェント:
[0256] [表 53] 本発明システム (図 1 (D) )
時間 移動相
(分) A (%) B(%) c(%)
0 75 0 25
10 75 0 25
30 45 0 55
31 0 0 100
31.1 75 0 25
33 0 100 0
33.1 75 0 25
40 75 0 25
[0257] 100倍希釈マウス血漿試料及び 100倍希釈リファレンス試料 500 μ L、 50倍希釈 マウス血漿試料及び 50倍希釈リファレンス試料 250 L、 20倍希釈マウス血漿試料 及び 20倍希釈リファレンス試料 100 L、及び、 10倍希釈マウス血漿試料及び 10倍 希釈リファレンス試料 50 μ Lをシステムに導人した。
[0258] <回収率の算出方法 >
各 amyloid β proteinのマウス血漿からの回収率を、リファレンス試料を測定し た時に得られたピーク面積に対するマウス血漿試料を測定した時に得られたピーク 面積の比(%)として算出した。
[0259] 血漿を水とみなした場合の希釈されたマウス血漿試料 ( =ろ過液)中の酢酸及びァ セトニトリル含量力 計算した値 fから、各 amyloid β proteinはその試料(=ろ過 液)中でカラム充填剤に対する吸着能を失っており、更に、ノィォマックス— PB限外 ろ過メンブレンや試料調製時に用いる容器等の固体に対しても吸着能も失っている と考えられた (表 54)。ただし、各ポリペプチドの各有機溶媒に対する相転移臨界値 は実施例 15で得られたグラジェント勾配 1 %Zminの時の保持時間を用いた。
[0260] [表 54] 齚酸及びァセトニトリル含量の異なる希釈されたマウス血漿試料中で各 a m y 1 o i d p r o t e i n力 S示す値 f
! · , R 希釈されたマウス血漿中 グラジェント勾酉 31 ¾/minの時の保 f
■=η β- 擁謙 ¾% 持時間 (mW (希釈されたマウス血漿 酢酸 ァセトニトリル 酢酸 ァセトニトリル 中)
1-38 40 40 44.4 24.8 2.51 OFF
1-40 40 40 48.6 27.0 2.30 OFF
1-42 40 40 51.6 28.3 2.19 OFF
1 - 43 40 40 51.7 28.5 2.18 OFF
[0261] 一方、本発明法を用いる場合にあたって、各移動相組成、及び、ポリペプチドが導 入される有機溶媒系移動相 (移動相 B及び Cの混合溶液)の測定開始時の混合比、 及び、各試料中有機溶媒含量から、各 amyloid β proteinをカラムへ保持させる のに必要な混合器において混合される有機溶媒系移動相に対する水系移動相の比 率(ひ)を、前述の式 (a)に従って算出した (表 55)。ただし、各ポリペプチドの各有機 溶媒に対する相転移臨界値は実施例 15で得られたグラジェント勾配 1 %Zminの時 の保持時間を用いた。システムに導入された全ての amyloid β—proteinをカラム へ保持させるのに必要な水系移動相の割合を α力 算出した結果、 63%より大きい ことが示された。今回の検討では、 amyloid β proteinを含む試料がカラムに導 入されるまでの間の水系移動相の割合が 75%程度であり、システムに導入された全 ての amyloid β proteinはカラムへ保持したと判断された。
[0262] [表 55] 本発明法を用いて酢酸及びァセトニトリル含量の異なる希釈されたマウス血漿 試料中の a my 1 o i d — p r o t e i nをカラムに保持させるのに必要 な有機系移動相に対する水系移動相の最低比率 (α ) の算出
Figure imgf000107_0001
1-38 40 40 2.56 OFF 0.09 ON 2.51 OFF 1.7 1.7 > 63%
1-40 40 40 2.35 OFF 0.08 ON 2.30 OFF 1.5 : Ί > 60%
1-42 40 40 2.24 OFF 0.08 ON 2.19 OFF 1.3 1.3 > 57%
1-43 40 40 2.22 OFF 0.0S ON 2.18 OFF 1.3 1.3 > 57%
* β及ぴ γのうち、より高い値以上が
[0263] <結果 > 希釈倍率の異なる各試料を測定した結果、各 amyloid β proteinのマウス血漿 力もの回収率は、希釈倍率の増加と共に増加した (表 56)。全てのマウス血漿試料中 で各 amyloid β proteinが物質に対する吸着能を失っているにも関わらず、この ように回収率が変化した原因として、実施例 17での考察と同様に、各 amyloid β - protein力メンブレンで分画される分子量 10, 000以上の高分子ポリペプチドと強く 相互作用しているためにろ過液に回収されな力つたことが考えられた。今回の結果か ら、希釈倍率を増カロさせることで (ポリペプチド濃度を低下させることで)、ポリべプチ ド間の相互作用が弱くなると考えられた。
[0264] [表 56] 各 a m y l o i d — p r o t e i nのマウス血漿からの回収率 (希釈倍率の影藝) 回収率(%)
希釈倍率 amyloid β-protem
1-38 1-40 1-42 1-43
10 46.1 45.6 29.4 19.2
20 71.4 62.9 48.1 38.5
50 88.6 76.5 58.8 52.0
100 97.4 88.3 83.8 63.8
[0265] 実施例 19 (amyloid j8— protein定量のためのマウス血漿前処理法の検討:酢酸 を含む有機溶媒による血漿希釈法'有機溶媒の種類の影響)
< amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β protein混合溶液(各 1 μ Μ)を調製した。この amyloid β -protein 混合溶液 (各 1 μ Μ) 20 Lを 980 Lの酢酸—水—ァセトニトリル混合液 (容積比 4 : 50: 50)に添加し、 amyloid β—protein混合溶液(各 20nM)を調製した。
[0266] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 10 Lを、 490 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid β—protein添加マウス血漿(20nM)を調製した。
[0267] <酢酸を含む有機溶媒による血漿希釈法 >
ブランクマウス血漿及び amyloid β protein添カ卩マウス血漿(20nM) 10 μ Lを 、 990 /z Lの表 57に示す希釈用混合溶液に添加した。希釈された血漿を十分に攪 拌後、その 400 μ Lを市販のウルトラフリー MC遠心式フィルターユニット(バイオマツ タス ΡΒ限外ろ過メンブレン装着フィルターユニット;分画分子量 10, 000)に添加し 、 6, OOO X gで 60分間以上(35°C)遠心し、ろ過液を得た。必要に応じて、フィルタ 一ユニットの本数を増やした。
[0268] [表 57] 希釈用混合溶液組成
含量(%)
水 10 10 10 10 10 10 10 酢酸 30 40 50 60 70 80 90 有機溶媒 * 60 50 40 30 20 10 0
水 20 20 20 20 20 20 酢酸 30 40 50 60 70 80 有機溶媒 * 50 40 30 20 10 0
水 30 30 30 30 30
酢酸 30 40 50 60 70
有機溶媒 * 40 30 20 10 0
水 40 40 40 40
酢酸 30 40 50 60
有機溶媒 * 30 20 10 0
*有機溶媒:ァセトニトリル、エタノール、メタノール又はイソプロピルアルコール
[0269] <マウス血漿試料の調製 >
amyloid β protein添加マウス血漿(20nM)を用いて得られたろ過液をマウス 血漿試料とした。
[0270] <リファレンス試料の調製 >
ブランクマウス血漿を用いて得られた 100倍希釈ろ過液 990 μ Lに、 amyloid β protein混合溶液(各 20ηΜ) 10 /z Lを添カ卩し、リファレンス試料(各 0. 2nM)を調 製した。
[0271] <測定条件 > 移動相 A:酢酸一水(4: 100; v/v)
移動相 B :酢酸
移動相 C:水―酢酸—メタノール—ァセトニトリル混合液 (容積比 20 :4 :40 :40) カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 2. lmm、長
18
さ 100mm)
カラム温度: 60°C
流速: 0. 2mLZmin (ただし、 30〜39. 9分の間 0. 6mL/min)
グラジェント:
[0272] [表 58] 本発明システム (図 1 (D) )
時間 移動相
(分) A (%) B ( ) C (%)
0 75 0 25
10 75 0 25
30 45 0 55
31 0 0 100
31. 1 75 0 25
33 0 100 0
33. 1 75 0 25
40 75 0 25
[0273] マウス血漿試料及びリファレンス試料 500 μ Lをシステムに導入した。
[0274] <回収率の算出方法 >
各 amyloid β proteinのマウス血漿からの回収率を、リファレンス試料を測定し た時に得られたピーク面積に対するマウス血漿試料を測定した時に得られたピーク 面積の比(%)として算出した。
[0275] 血漿を水とみなした場合の希釈されたマウス血漿試料 ( =ろ過液)中の酢酸及び有 機溶媒含量から計算した値 fから、各 amyloid β proteinは希釈されたマウス血 漿試料(=ろ過液)中でカラム充填剤に対する吸着能を失っていることが示唆された 。実施例 17の結果から、この時、各 amyloid β proteinはバイオマックス ΡΒ限 外ろ過メンブレンや試料調製時に用いる容器等の固体に対しても吸着能も失ってい ると考えられた (表 59)。
[0276] [表 59] 酢酸及び有機溶媒含量の異なる希釈されたマウス血漿試料中の各 a m y 1 o i d jS— p r o t e i nが示す値 f 希釈されたマウ ァセトニトリル ェタノ- —ル メタノ- -ル イソプロピル了ルコ - -ル amyloid β- ス血漿中酢酸含 水含量 (%) 水含量(%) 水含量 (%) 水含量(%) fragment 量 (%) 10 20 30 40 10 20 30 40 10 20 ― 30 40 10 20 30 40
30 3.10 2.69 2.29 1.89 3.00 2.61 2.23 1.84 2.16 1.91 1.66 1.42 4.05 3.48 2.92 2.36
40 2.92 2.51 2.11 1.71 2.84 2.45 2.06 1.68 2.14 1.89 1.64 1.39 3.71 3.15 2.59 2.02
50 2.74 2.34 1.93 1.53 2.68 2.29 1.90 1.51 2.11 1.87 1.62 1.37 3.37 2.81 2.25 1.69
1-38 60 2.56 2.16 1.75 1.35 2.51 2.13 1.74 1.35 2.09 1.85 1.60 1.35 3.04 2.47 1.91 1.35
70 2.38 1.98 1.58 - 2.35 1.96 1.58 - 2.07 1.82 1.58 - 2.70 2.14 1.58 -
80 2.21 1.80 - - 2.19 1.80 - - 2.05 1.80 - - 2.36 1.80 - -
90 2.03 - - - 2.03 - - - 2.03 - - - 2.03 - - -
30 2.84 2.47 2.10 1.73 2.72 2.37 2.02 1.67 1.97 1.75 1.52 1.30 3.63 3.13 2.63 2.12
40 2.67 2.30 1.93 1.56 2.57 2.22 1.87 1.52 1.95 1.73 1.50 1.28 3.34 2.83 2.33 1.83
50 2.51 2.14 1.77 1.40 2.43 2.08 1.73 1.38 1.93 1.71 1.48 1.26 3.04 2.54 2.03 1.53
1-40 60 2.35 1.98 1.60 1.23 2.28 1.93 1.58 1.23 1.91 1.69 1.46 1.23 2.74 2.24 1.74 1.23
70 2.18 1.81 1.44 - 2.14 1.79 1.44 - 1.89 1.67 1.44 - 2.45 1.94 1.44 -
80 2.02 1.65 - - 2.00 1.65 - - 1.87 1.65 - - 2.15 1.65 - -
90 1.85 - - - 1.85 - - - 1.85 - - - 1.85 - - -
30 2.70 2.35 1.99 1.64 2.55 2.22 1.89 1.57 1.87 1.66 1.44 1.23 3.40 2.93 2.46 1.99
40 2.54 2.19 1.84 1.48 2.41 2.09 1.76 1.43 1.85 1.64 1.42 1.21 3.12 2.65 2.18 1.71
50 2.38 2.03 1.68 1.32 2.28 1.95 1.62 1.30 1.83 1.61 1.40 1.18 2.85 2.38 1.91 1.44
1-42 60 2.22 1.87 1.52 1.16 2.15 1.82 1.49 1.16 1.81 1.59 1.38 1,16 2.57 2.10 1.63 1.16
70 2.06 1.71 1.36 - 2.01 1.68 1.36 - 1.79 1.57 1.36 - 2.30 1.83 1.36 -
80 1.90 1.55 - - 1.88 1.55 - - 1.77 1.55 - - 2.02 1.55 - -
90 1.74 - - - 1.74 - - - 1.74 - - - 1.74 - - -
30 2.69 2.33 1.98 1.63 2.53 2.20 1.88 1.55 1.85 1.64 1.43 1.22 3.38 2.92 2.45 1.98
40 2.53 2.18 1.83 1.48 2.40 2.07 1.75 1.42 1.83 1.62 1.41 1.20 3.11 2.64 2.18 1.71
50 2.37 2.02 1.67 1.32 2.27 1.94 1.62 1.29 1.81 1.60 1.39 1.18 2.84 2.37 1.90 1.43
1-43 60 2.21 1.86 1.51 1.16 2.13 1.81 1.49 1.16 1.80 1.58 1.37 1.16 2.56 2.10 1.63 1.16
70 2.06 1.70 1.35 - 2.00 1.68 1.35 - 1.78 1.57 1.35 - 2.29 1.82 1.35 -
80 1.90 1.55 - - 1.87 1.55 - - 1.76 1.55 - - 2.01 1.55 - -
90 1.74 一 1.74 1.74 一 1.74 -
[0277] 一方、本発明法を用いる場合にあたって、各移動相組成、及び、ポリペプチドが導 入される有機溶媒系移動相 (移動相 B及び Cの混合溶液)の測定開始時の混合比、 及び、各試料中有機溶媒含量から、各 amyloid β proteinをカラムに保持させる のに必要な有機系移動相に対する水系移動相の比率( ι8 )及び有機溶媒及び酢酸 含量の異なる希釈されたマウス血漿試料中の amyloid β proteinをカラムに保持 させるのに必要な有機系移動相に対する水系移動相の比率( γ )を、前述の式 (a) に基づいて算出した (表 60及び表 61)。ただし、各ポリペプチドの各有機溶媒に対 する相転移臨界値は実施例 15で得られたグラジェント勾配 1 %Zminの時の保持時 間を用いた。算出された j8及び γのうち、より高い値以上が αであり、この値を用い てシステムに導入された各 amyloid β proteinがカラムへ保持するのに必要な水 系移動相の割合を算出した (表 62)。その結果、水 酢酸 イソプロピルアルコール 混合溶液(容積比 10 : 30 : 60及び 10 :40 : 50)中の amyloid β -protein (1 - 38 )をカラムに保持させるための水系移動相の割合として 75%より大きいことが示された 力 その他の混合溶液に対しては全 amyloid β—proteinで 74%以下であること が示された。今回の検討では、 amyloid β proteinを含む試料がカラムに導入さ れるまでの間の水系移動相の割合が 75%程度であり、前述の 2種の溶液を測定する 場合に、 amyloid β protein (1— 38)のカラムへの不十分な保持が予想された 力 その他の場合では、システムに導入された全ての amyloid β proteinはカラ ムへ保持したと考えられた。
[0278] [表 60]
本発明法を用いて今回用いた移動相条件下で a m y l o i d — p r o t e i ムに保持させるのに必要な有機系移動相に対する水系移動相の比率 ( ) の算出 測定開始時の有機溶媒系移動相 f 有機溶媒系移
βから算出した amyloid β- 水系移動 中各有機溶媒含量 (%) 動相に対する 相中酢酸 測定開始時の有 水系移動相の混合器における protein 含量 (%) ァセ卜: 水系移動相中 機溶媒系移動相
酢酸 :卜 メタノー Jレ 比率 水系移動相の リル 中 割合 (%) β
1-38 4 4 38 38 0.09 ON 2.56 OFF 1.フ > 63%
1-40 4 4 38 38 0.08 ON 2.35 OFF 1.5 > 60%
1-42 4 4 38 38 0.08 ON 2.24 OFF 1.3 > 57%
1-43 4 4 38 38 0.08 ON 2.22 OFF 1.3 > 57%
[0279] [表 61] Ss0286 本発明法を用いて有機溶媒及び酢酸含量の異なる希釈されたマウス血漿試料中の a p r o e i nをカラムに保持させるのに必要な有機系移動相に対する水系移動相
ァセトニトリル エタノール メタノール am β- w m
fraament
10 30 10 20
.4 .3
40 2 .0 .3
50 .4 '•6 .2 .7
-3: 60 .2 '•4 2
70 .1
80 L9
Figure imgf000113_0001
70 '.7 0.4 ■4 80
90
〔〕0281
Figure imgf000114_0001
は、希釈用溶液中の酢酸含量の増加と共に増加した (表 65)。一方で、希釈用混合 溶液中の酢酸含量が低い(30%〜40%程度)場合、希釈混合溶液中の水含量が増 加すると共に、回収率が増加する傾向が認められた。しかし、酢酸含量が高く(60% 以上)、水含量が 20%以上の場合に、回収率に大きな差は認められな力つた。今回 の結果からも、希釈用混合溶液中の酢酸が、ポリペプチドの物質に対する吸着能を 相転移させつつも、ポリペプチド間の相互作用をも阻害することで、各 amyloid β proteinマウス血漿力 の回収率が上昇したと考えられた。
[表 63]
Figure imgf000116_0001
評価)
< amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β protein混合溶液 (各 1 M)を調製した。
[0284] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 10 Lを、 490 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid j8—protein添カ卩マウス血漿(20nM)を調製した。この amyloid β - protein添カ卩マウス血漿(20ηΜ) 100 μ Lにブランクマウス血漿 100 μ Lをカ卩えて、 a myloid j8— protein添カ卩マウス血漿(10nM)を調製した。同様に、 amyloid β - protein添カ卩マウス血漿(10ηΜ) 150 Lにブランクマウス血漿 150 μ Lをカ卩えて am yloid j8—protein添カ卩マウス血漿(5nM)を、 amyloid j8— protein添カ卩マウス 血漿(5nM) 100 ^ Lにブランクマウス血漿 100 μ Lを加えて amyloid β -protein 添加マウス血漿(2. 5nM)を、 amyloid β—protein添加マウス血漿(2. 5nM) 15 0 μ Lにブランクマウス血漿 150 μ Lを加えて amyloid β—protein添カ卩マウス血漿 (1. 25nM)を、 amyloid j8—protein添カ卩マウス血漿(1. 25nM) 100 Lにブラ ンクマウス血漿 100 μ Lを加えて amyloid β—protein添カ卩マウス血漿(0. 625nM )を調製した。
[0285] く水—酢酸 イソプロピルアルコール混合溶液を用 、た血漿希釈法 >
amyloid β protein添カ卩マウス血漿 30 μ Lを、 1500 μ Lの水—酢酸 イソプロ ピルアルコール混合溶液 (容積比 30 : 60 : 10)に添カ卩した。この水—酢酸—イソプロ ピルアルコール混合溶液 (容積比 30: 60: 10)には、内部標準 (IS)ポリペプチドとし て NPY(lOnM)が含まれている。希釈されたマウス血漿を十分に攪拌後、その 400 μ L以下を市販のウルトラフリー MC遠心式フィルターユニット(バイオマックス ΡΒ 限外ろ過メンブレン装着フィルターユニット;分画分子量 10, 000)〖こ添加し、 6, 000 X gで 60分間以上(35°C)遠心し、ろ過液を得た。必要に応じて、フィルターユニット の本数を増やし、 1. 2mL以上のろ過液を得た。
[0286] <検量線試料の調製 >
amyloid β—protein添加マウス血漿(0. 625、 1. 25、 2. 5、 5、 10及び 20nM
)を用いて得られたろ過液を検量線用マウス血漿試料として測定した (n= 1)。
[0287] <オートサンプラー中安定性評価用試料の調製 >
amyloid j8— protein添カ卩マウス血漿(1. 25及び 5nM)を用いて得られたろ過 液を、それぞれ、オートサンプラー中安定性評価用試料として調製した (n= 3)。
[0288] <測定条件 >
移動相 A:酢酸一水(4: 100; v/v)
移動相 B :酢酸
移動相 C:水—酢酸—メタノール—ァセトニトリル混合液 (容積比 20 : 20 : 30 : 30) カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 2. lmm、長
18
さ 100mm)
カラム温度: 60°C
流速: 0. 2mLZmin (ただし、 30. 1〜39. 9分の間 0. 6mL/min)
グラジェント:
[0289] [表 64] 本発明システム (図 1 (D) )
時間 移動相
(分) A (%) B (%) c (%)
0 75 0 25
10 75 0 25
30 45 0 55
31 0 0 100
31. 1 75 0 25
34 0 100 0
34. 1 75 0 25
40 75 0 25
[0290] マウス血漿試料 1000 μ Lをシステムに導入した。
[0291] <検量線の作成 >
検量線は、 y軸に ISである ΝΡΥのピーク面積に対する各 amyloid β—proteinの ピーク面積を、 X軸に amyloid β protein濃度(ηΜ)を用い、濃度分の 1 (lZx) を重み付けとして用いた最小二乗法にて作成した。検量線の作成では、作成した検 量線を用いて算出(back— calculate)した検量線試料濃度の理論値に対する割合 を真度(%)として表し、定量下限 (LLOQ)以外で真度が ± 15%以内、定量下限 (L LOQ)では ± 20%となることを許容基準とした。更に、用いた検量線ポイントの 75% 以上 (この中に LLOQ及び定量上限が含まれる)がこの基準を満たすこととした。
[0292] <オートサンプラー中の安定性 >
オートサンプラー中安定性評価用試料(1. 25及び 5nM各 n= 3)は、調製直後か ら 20°Cに設定したオートサンプラー中に放置し、放置後 28時間及び 37時間に測定 を実施した。安定性 (%)は、検量線から得られた濃度の理論値に対する割合 (真度) (%)として表した。
[0293] <結果 >
濃度に比例した各 amyloid β—proteinのピーク面積が得られ、また、 LLOQを 含めて理論値の ± 15%以内の良好な真度を有する濃度範囲が 40倍の検量線が得 られた (表 65)。
[0294] [表 65]
疆髌^Ψ ϊ P ΐαί aβ 9 o j o ΑΧΗΒ I .
Figure imgf000120_0001
に、オートサンプラー中安定性評価用試料(1. 25及び 5ηΜ)を測定した結果、 前処理後のろ過液中に存在する各 amyloid β proteinは、 20°Cのオートサンプ ラー中で 37時間まで安定 (理論値の ± 15%)であることが示された (表 66)。
[表 66] 血漿試料中の各 a m y l o i d j3— p r o t e i nのオートサンプラー中安定性 存 ォ— -トサンプラー •中安定性(%)
;辰 ί¾ 保
(ηΜ) 期間 amyloid β - protein
(時間) 1-38 1-40 1-42 1-43
0 87.3 96.7 105.1 111.5
1.25 28 111.3 86.2 88.5 97.3
37 86.7 91.3 87.8 102.0
0 107.9 102.6 103.0 107.4
5 28 90.2 91.5 98.6 103.2
37 111.3 94.6 94.2 96.6
[0297] 実施例 21 (マウス血漿中 amyloid β proteinの安定性評価)
< amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β protein混合溶液 (各 1 M)を調製した。
[0298] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 20 Lを、 980 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid j8—protein添カ卩マウス血漿(20nM)を調製した。この amyloid β - protein添カ卩マウス血漿(20ηΜ) 100 μ Lにブランクマウス血漿 100 μ Lをカ卩えて、 a myloid j8— protein添カ卩マウス血漿(ΙΟηΜ)を調製した。同様に、 amyloid β - protein添カ卩マウス血漿(ΙΟηΜ) 100 μ Lにブランクマウス血漿 100 μ Lをカ卩えて am yloid j8—protein添カ卩マウス血漿(5nM)を、 amyloid j8— protein添カ卩マウス 血漿(5nM) 100 ^ Lにブランクマウス血漿 150 μ Lを加えて amyloid β -protein 添加マウス血漿 (2nM)を、 amyloid β protein添加マウス血漿 (2nM) 100 μ L にブランクマウス血漿 100 μ Lを加えて amyloid β protein添カ卩マウス血漿(In M)を、 amyloid β protein添カ卩マウス血漿(ΙηΜ) 100 μ Lにブランクマウス血漿 100 μ Lを加えて amyloid β—protein添カ卩マウス血漿(0. 5nM)を調製した。一 方、安定性評価用試料として、 amyloid β protein添カ卩マウス血漿(20ηΜ) 450 μ Lにブランクマウス血漿 150 μ Lを加えた amyloid β protein添カ卩マウス血漿( 15nM)を 2本調製した。
[0299] く水—酢酸 イソプロピルアルコール混合溶液を用 、た血漿希釈法 >
amyloid β protein添カ卩マウス血漿 30 μ Lを、 1500 μ Lの水—酢酸 イソプロ ピルアルコール混合溶液 (容積比 30 : 60 : 10)に添カ卩した。この水—酢酸—イソプロ ピルアルコール混合溶液 (容積比 30: 60: 10)には、内部標準 (IS)ポリペプチドとし て NPY(lOnM)が含まれている。希釈されたマウス血漿を十分に攪拌後、各溶液 4 00 μ L以下を市販のウルトラフリー MC遠心式フィルターユニット(バイオマックス Ρ Β限外ろ過メンブレン装着フィルターユニット;分画分子量 10, 000)〖こ添加し、 6, 00 O X gで 60分間以上(35°C)遠心し、ろ過液を得た。必要に応じて、フィルターュ-ッ トの本数を増やし、 1. 2mL以上のろ過液を得た。
[0300] <検量線試料の調製 >
amyloid β—protein添カ卩マウス血漿(0. 5、 1、 2、 5、 10及び 20nM)を用いて 得られたろ過液を検量線用マウス血漿試料として測定した (n= 1)。
[0301] <オートサンプラー中安定性評価用試料の調製 >
安定性評価用マウス血漿(15nM)は、調製直後から、氷冷 (4°C)及び室温下で放 置し、調製後 0. 5時間、 1時間、 2時間及び 4時間に、水—酢酸 イソプロピルアルコ ール混合溶液を用いた血漿希釈法を用いて血漿中安定性評価用試料を調製した ( n= l)。
[0302] <測定条件 >
移動相 A:酢酸一水(4: 100; v/v)
移動相 B :酢酸
移動相 C:水—酢酸—メタノール—ァセトニトリル混合液 (容積比 20 : 20 : 30 : 30) カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 2. lmm、長
18
さ 100mm) 2本直列
カラム温度: 60°C 流速: 0. 2mLZmin (ただし、 33. 1〜44. 9分の間 0. 6mL/min) グラジェント:
[0303] [表 67] 本発明システム (図 1 (D ) )
時間 移動相
(分) A (%) B (%) c (%)
0 75 0 25
10 75 0 25
34 39 0 61
35 0 0 100
35. 1 75 0 25
38 0 100 0
38. 1 75 0 25
45 75 0 25
[0304] マウス血漿試料 1000 μ Lをシステムに導入した。
[0305] <検量線の作成 >
検量線は、 y軸に ISである ΝΡΥのピーク面積に対する各 amyloid β—proteinの ピーク面積を、 X軸に amyloid β protein濃度(ηΜ)を用い、濃度分の 1 (lZx) を重み付けとして用いた最小二乗法にて作成した。検量線の作成では、作成した検 量線を用いて算出(back— calculate)した検量線試料濃度の理論値に対する割合 を真度(%)として表し、定量下限 (LLOQ)以外で真度が ± 15%以内、定量下限 (L LOQ)では ± 20%となることを許容基準とした。更に、用いた検量線ポイントの 75% 以上 (この中に LLOQ及び定量上限が含まれる)がこの基準を満たすこととした。
[0306] <血漿中安定性 >
マウス血漿中 amyloid β proteinの安定性は、検量線から得られた濃度の理論 値に対する割合 (真度)(%)として表した。
[0307] <結果 >
今回用いた測定条件下では、 amyloid β protein(l— 38)の溶出位置に夾雑 ピークが認められたことから、その他の 3種の amyloid β—proteinについて評価し た。その結果、濃度に比例した各 amyloid β—proteinのピーク面積が得られ、ま た、 LLOQを含めて理論値の ± 15%以内の良好な真度を有する濃度範囲が 40倍 の検量線が得られた (表 68)。 [0308] [表 68] マウス血漿中 a n 1 y 1 ο i d β — r o t e i nの検量線
理論' amyloid β-Drotem (1-40) amyloid β-protein (1-42) amyioid β-protein (1-43) ピーク 辰 観測値 真度 ピーク 観測値 真度 ピーク 観測値 真度 ピーク 面積
(nM) 放期時 (nM) (%) 面積 (nM) (%) 面積 (nM) (%) 面積 (IS)
0.5 置間間 0.52 104.0 346 0.55 110.0 261 0.49 98.0 247 442768
1 0.99 99.0 680 1.08 108.0 508 0.95 95.0 434 423405
2 2.04 102.0 1508 1.77 88.5 867 2.22 111.0 1005 435122
5 4.69 93.8 3445 4.65 93.0 2235 5.06 101.2 2196 422416
10 10.09 100.9 7579 9.48 94.8 4642 9.19 91.9 4015 427875
20 20.18 100.9 13236 20.96 104.8 8949 20.59 103.0 7798 372295 y切片 一 0.000138 -0.000045 0.000062
傾き 0.0018 0.0011 0.001
相関係数 L000 0.999 0.999
[0309] 血漿中安定性評価用試料(15nM)を測定したところ、室温に放置した血漿力 得 られた試料を測定した時に得られた各 amyloid β protein濃度の真度(%)は 1 時間後に約 70%程度、 4時間後に 26. 7〜50% .程 4 o
3 o度にまで減少していた。一方、氷 冷 (4°C)下に放置した血漿力 得られた試料を測定した時に得られた各 amyloid β protein濃度の真度(%)は、 4時間後も 98. 2〜105. 0%を示し、氷冷 (4°C) 下に放置した血漿中で各 amyloid β proteinが安定であることが示唆された(表 69)。
[0310] [表 69]
血'娥中各 m y o i d — p r o t e i nの安定性
血漿中安定性 (%)
保存 amyloid β-protein
条件
1-42
0 103.9 102.7 102.0
0.5 102.3 104.0 103.6
4。C 1 102.7 99.4 99.3
2 102.5 104.6 97.1
4 98.2 103.0 105.0
0 106.4 103.1 98.9
0.5 95.4 87.3 97.6
主皿 1 70.9 74.6 72.3
51.6 61.0
4 26.7 40.0
[0311] 実施例 22 (マウス血漿中 amyloid j8— protein定量法の真度及び精度) < amyloid β protein標準溶液の調製 >
amyloid j8—protein (1— 38)、 amyloid j8—protein (1—40)、 amyloid β protein (1— 42)及び amyloid j8— protein (1— 43)保存溶液(0. ImM)各 1 O /z Lを、 960 /z Lの酢酸一水ーァセトニトリル混合液 (容積比 4 : 50 : 50)に添加し、 a myloid β protein混合溶液 (各 1 M)を調製した。
[0312] < amyloid j8— protein添カ卩マウス血漿の調製 >
amyloid β—protein混合溶液(各 1 M) 10 Lを、 490 μ Lのブランクマウス血 漿 (Non— Sterile Mouse Plasma in Heparin, Sodium; Rockland)に添刀口 し、 amyloid j8—protein添カ卩マウス血漿(20nM)を調製した。この amyloid β - protein添カ卩マウス血漿(20ηΜ) 200 μ Lにブランクマウス血漿 200 μ Lをカ卩えて、 a myloid j8— protein添カ卩マウス血漿(10nM)を調製した。同様に、 amyloid β - protein添カ卩マウス血漿(10ηΜ) 200 μ Lにブランクマウス血漿 200 μ Lをカ卩えて am yloid j8—protein添カ卩マウス血漿(5nM)を、 amyloid j8— protein添カ卩マウス 血漿(5nM) 200 μ Lにブランクマウス血漿 300 μ Lを加えて amyloid β -protein 添加マウス血漿 (2nM)を、 amyloid β protein添加マウス血漿 (2nM) 200 μ L にブランクマウス血漿 200 μ Lを加えて amyloid β protein添カ卩マウス血漿(In M)を、 amyloid β protein添カ卩マウス血漿(ΙηΜ) 200 μ Lにブランクマウス血漿 200 μ Lを加えて amyloid β—protein添カ卩マウス血漿(0. 5nM)を調製した。 QC 試料用として、 amyloid β—protein添カ卩マウス血漿(20ηΜ) 150 μ Lにブランク マウス血漿 50 μ Lをカ卩えて、 amyloid β protein添カ卩マウス血漿(15ηΜ)を調製 した。
[0313] く水—酢酸 イソプロピルアルコール混合溶液を用 、た血漿希釈法 >
amyloid β protein添カ卩マウス血漿 30 μ Lを、 1500 μ Lの水—酢酸 イソプロ ピルアルコール混合溶液 (容積比 30 : 60 : 10)に添カ卩した。この水—酢酸—イソプロ ピルアルコール混合溶液 (容積比 30: 60: 10)には、内部標準 (IS)ポリペプチドとし て NPY(lOnM)が含まれている。希釈されたマウス血漿を十分に攪拌後、各溶液 4 00 μ L以下を市販のウルトラフリー MC遠心式フィルターユニット(バイオマックス Ρ Β限外ろ過メンブレン装着フィルターユニット;分画分子量 10, 000)〖こ添加し、 6, 00 O X gで 60分間以上(35°C)遠心し、ろ過液を得た。必要に応じて、フィルターュ-ッ トの本数を増やし、 1. 2mL以上のろ過液を得た。
[0314] <検量線試料の調製 >
amyloid β—protein添カ卩マウス血漿(0. 5、 1、 2、 5、 10及び 20nM)を用いて 得られたろ過液を検量線用マウス血漿試料として測定した (n= 1)。
[0315] く QC試料の調製 >
amyloid β protein添カ卩マウス血漿(0. 5、 1、 5及び 15nM)を用いて得られた ろ過液を、それぞれ、 LLOQ、 LQC、 MQC及び HQC試料として調製した(n= 5)。
[0316] <測定条件 >
移動相 A:酢酸一水(4: 100; v/v)
移動相 B :酢酸
移動相 C:水—酢酸—メタノール—ァセトニトリル混合液 (容積比 20 : 20 : 30 : 30) カラム: C 逆相カラム(Chromolith Performance RP— 18e :内径 2. lmm、長
18
さ 100mm) 2本直列
カラム温度: 60°C
流速: 0. 2mL/min (ただし 0. 1〜10分の間 0. 25mL/min、 30〜39. 9分の間 0
. 6mLz mm)
グラジェント:
[0317] [表 70] 本発明システム (図 1 (D ) )
時間 移動相
(分) A (%) B (%) c (%)
0 80 0 20
10 80 0 20
45 45 0 55
46 0 0 100
46. 1 80 0 20
49 0 100 0
49. 1 80 0 20
54 80 0 20
[0318] マウス血漿試料 1000 μ Lをシステムに導入した。
[0319] <検量線の作成 > 検量線は、 y軸に ISである NPYのピーク面積に対する各 amyloid β—proteinの ピーク面積を、 X軸に amyloid β protein濃度(ηΜ)を用い、濃度分の 1 (lZx) を重み付けとして用いた最小二乗法にて作成した。検量線の作成では、作成した検 量線を用いて算出(back— calculate)した検量線試料濃度の理論値に対する割合 を真度(%)として表し、定量下限 (LLOQ)以外で真度が ± 15%以内、定量下限 (L LOQ)では ± 20%となることを許容基準とした。更に、用いた検量線ポイントの 75% 以上 (この中に LLOQ及び定量上限が含まれる)がこの基準を満たすこととした。
[0320] <真度及び精度の算出 >
真度(%)は、 QC試料 (n= 5)を測定した時に得られた平均濃度の理論濃度に対 する割合 (%)として表し、精度は、変動係数 (CV%)として表した。真度 (%)の許容 基準は、定量下限 (LLOQ)以外で理論値 ± 15%以内、定量下限 (LLOQ)では理 論値 ± 20%となることとした。精度の許容基準は、 CV%が定量下限 (LLOQ)以外 で 15%以内、定量下限 (LLOQ)で 20%以内とした。
[0321] <結果 >
今回用いた測定条件下では、 amyloid β protein(l— 38)の溶出位置に夾雑 ピークが認められたことから、その他の 3種の amyloid β—proteinについて評価し た。その結果、濃度に比例した amyloid β—protein (1—40)、(1 42)及び(1 —43)のピーク面積が得られ、また、 LLOQを含めて理論値の ± 15%以内の良好な 真度を有する濃度範囲が 40倍の検量線が得られた (表 71)。更に、 QCサンプルを 測定したところ、許容基準を満たす真度及び精度が得られた (表 72)。
[0322] [表 71]
マウス血漿中 a m y 1 o i d — p r o t e i nの検量線
ϊ 論 amyloid β-protein (1-40) amyloid β-protem (1-42) amyloid β-protein (1-43) ピーク
Ϊ辰/ 観測値 真度 ピーク 観測値 真度 ピーク 観測値 真度 ピーク 面積
(ηΜ) (n ) (%) 面積 (nM) (%) 面積 (nM) (%) m^. (IS)
0.5 0.48 96.0 160 0.53 106.0 127 0.51 102.0 143 935364
1 1.07 107.0 367 1.05 105.0 235 0.97 97.0 217 889219
2 2.01 100.5 720 1.95 97.5 432 1.94 97.0 388 893435
5 4.88 97.6 1901 4.32 86.4 1011 5.33 106.6 1051 952091
10 9.71 97.1 3738 10.46 104.6 2399 9.87 98.7 1868 934786
20 20.35 101.8 7654 20.19 101.0 4500 19.89 99.5 3616 909914 y切片 -0.000029 0.000007 0.000052
傾き 0.0004 0.0002 0.0002
相関係数 1.000 0.999 1.000 [0323] [表 72] マウス血漿中 a m y l o i d p r o t e i n定量法の精度及ぴ真度
定量値(nM)
ar nyioid β-protein (1-40) ai nyioid β-protein (1-42) ar nyioid β-protein (1-43) サンプル
LLOQ LQC MQC HQC LLOQ LQC MQC HQC LLOQ LQC MQC HQC
0.5 nM I nM 5 nM 15 nM 0.5 nM I nM 5 nM 15 nM 0.5 nM I nM 5 nM 15 nM nl 0.58 0.99 4.81 13.30 0.61 0.92 5.32 14.08 0.46 1.08 4.81 13.35 n2 0.49 1.10 4.60 14.11 0.50 0.93 4.46 14.46 0.45 0.85 5.25 14.96 n3 0.54 0.96 4.95 14.39 0.53 0.92 4.59 14.00 0.44 1.05 5.29 14.25 n4 0.60 1.12 4.28 13.25 0.46 0.99 4.54 13.98 0.44 0.89 4.32 13.10 n5 0.44 1.07 5.11 12.91 0.45 0.92 4.39 13.47 0.45 1.13 5.14 12.99 平均値 0.53 1.05 4.75 13.59 0.51 0.94 4.66 14.00 0.45 1.00 4.96 13.73 精度 (%〕 12.37 6.66 6.79 4.61 12.63 3.26 8.09 2.52 1.87 12.29 8.17 6.17 真度 (%〕 106.0 104.8 95.0 90.6 102.0 93.6 93.2 93.3 89.6 100.0 99.2 91.5
[0324] 今回用いた測定条件下で、マウス血漿中の amyloid β -protein (1 -40) , (1 —42)及び(1—43)を精度良く定量できることが確認されたことから、アミロイド前駆 体タンパク (ΑΡΡ)を組み換え導入したトランスジエニックマウス (Tgマウス)の血漿中 a myloid β—protein濃度測定を実施した。その結果を表 73に示す。本発明法で 得られた amyloid β protein (1— 40)の濃度は、別途 ELISA法で得られた値と ほぼ相関していた。一方、 amyloid β—protein (1—42)濃度は、ピークが検出さ れたものの定量下限以下であった。検量線を外挿して得られた濃度を参考値として E LISA法で得られた値と比較すると、ほぼ相関していると考えられた。従って、本発明 法によって血漿中等の生体試料中 amyloid β proteinの定量が可能であること が示された。
[0325] [表 73]
本発明法及び E L I S A法によって得られた T gマウス血漿中 a m y 1 o i d β - P r o t e i n濃度
定量値(nM)
+サ)■ノ、 ン f
1-40 143
レ No.
本発明法 ELISA 本発明法 ELISA 本発明法 ELISA
1 1.54 1.01 0.48 nd nt
2 1.95 1.47 0.21 * 0.37 nd nt
3 1.52 1.33 0.28* 0.45 nd nt
4 1.99 1.37 0.26* 0.70 nd nt
5 1.64 1.34 0.40* 0.50 nd nt
o
6 1.53 1.24 0.29* 0.45 nd nt
7 1.37 1.16 0.32* * 0.35 nd nt
8 1.48 1.13 nd 0.38 nd nt
9 2.09 1.55 0.37* 0.60 nd nt
10 1.85 1.23 0.39* 0.43 nd nt
11 1.28 1.43 0.29* 0.51 nd nt
12 1.70 1.62 0.32* 0.62 nd nt
13 4.15 1.77 0.73 0.66 nd nt
14 1.36 1.39 nd 0.55 nd nt
15 1.27 1.22 0.40* 0.56 nd nt
nd:ピーク検出不可、 nt:測定未実施
*定量下限以下だが、検量線を外揷して求めた値 今回用いた前処理法及び分析法は、 amyloid j8— protein以外のポリペプチド にも応用可能な方法であり、更に、保持時間とグラジェント勾配との間に認められる べき乗則を考慮すると、本発明法では、試料導入時間及びカラム負荷量が許す限り の試料量の導入に比例した高感度化も可能であることにカ卩えて、今回の試験で用い た API365よりも約 50倍以上高感度な MSZMS、例えば API5000を用いることに より、さらなる高感度定量が可能であると考えられる。従って、本発明法は、最新の M SZMSと組み合わせることにより、免疫学的手法に匹敵もしくは凌駕する感度を有 する生体試料中ポリペプチドの高感度定量法を可能とすると考えられた。更に、今回 の実施例からも明らかな通り、本発明法では、 ELISA法と異なり、臨界値の異なる複 数のポリペプチドを一斉に定量できることから、現在プロテオミクス研究で行われて ヽ るような網羅的なポリペプチド検出によるバイオマーカー探索研究においても有効で あると考えられた。

Claims

請求の範囲 [1] 逆相液体クロマトグラフを用いるあるポリペプチド (ポリペプチド A)の検出又は定量 方法であって、以下の工程を含むポリペプチドの検出又は定量方法; ( 1) OFF相ポリペプチド Aを逆相液体クロマトグラフに導入する工程、 (2) (1)で導入した OFF相ポリペプチド Aを相転移させる手段により、 ON相ポリぺプ チド Aを生成する工程、 (3) (2)で生成した ON相ポリペプチド Aとカラム充填剤を相互作用させる工程、(4) (3)で相互作用した ON相ポリペプチド Aを相転移させ、 OFF相ポリペプチド Aを 生成する工程、 (5) (4)で生成した OFF相ポリペプチド Aを溶出する工程、及び (6) (5)で溶出したポリペプチド Aを検出又は定量する工程。 [2] OFF相ポリペプチド A力 ァセトニトリル、メタノール、エタノール、イソプロピルアル コール、アセトン、 DMSO、 THF、酢酸、ギ酸及び TFAから選ばれる 1種又は 2種以 上の有機溶媒 (有機溶媒 1、 · · ·、有機溶媒 n (nは 1以上 7以下の整数))を含む溶液 に存在するポリペプチド Aであって、下記式(1)が成立して ヽる溶液 (OFF相溶液) に存在するポリペプチド Aである、請求項 1に記載のポリペプチドの検出又は定量方 法。 [数 1] +― + EL >ι (1) XI Xn (式(1)において、 XIは水一有機溶媒 1混合溶液におけるポリペプチド Aの相転移 臨界値(%)、 Xnは水一有機溶媒 n混合溶液におけるポリペプチド Aの相転移臨界 値(%)、 xlは OFF相溶液における有機溶媒 1の容積比(%)、 xnは OFF相溶液に おける有機溶媒 nの容積比(%)をそれぞれ示す) [3] ON相ポリペプチド Aが以下の群より選ばれる溶液に存在するポリペプチド Aである 、請求項 1に記載のポリペプチドの検出又は定量方法;
(1)有機溶媒を含まない水溶液、及び (2)ァセトニトリル、メタノール、エタノール、イソプロピルアルコール、アセトン、 DMS 0、 THF、酢酸、ギ酸及び TFAカゝら選ばれる 1種又は 2種以上の有機溶媒 (有機溶 媒 1、 · · ·、有機溶媒 n (nは 1以上 7以下の整数))を含む溶液であって、下記式 (2) が成立して 、る溶液 (ON相溶液)。
[数 2] xl +— <ι (2)
XI Xn
(式(2)において、 XIは水一有機溶媒 1混合溶液におけるポリペプチド Aの相転移 臨界値(%)、 Xnは水一有機溶媒 n混合溶液におけるポリペプチド Aの相転移臨界 値(%)、 xlは ON相溶液における有機溶媒 1の容積比(%)、 xnは ON相溶液にお ける有機溶媒 nの容積比(%)をそれぞれ示す)
OFF相ポリペプチド Aが下記 (A)で示されるポリペプチド Aであって、かつ、 ON相 ポリペプチド Aが下記 (B)で示されるポリペプチド Aである、請求項 1に記載のポリべ プチドの検出又は定量方法;
(A)ァセトニトリル、メタノール、エタノール、イソプロピルアルコール、アセトン、 DMS 0、 THF、酢酸、ギ酸及び TFAカゝら選ばれる 1種又は 2種以上の有機溶媒 (有機溶 媒 1、 · · ·、有機溶媒 n (nは 1以上 7以下の整数))を含む溶液に存在するポリべプチ ド Aであって、下記式(1)が成立している溶液 (OFF相溶液)に存在するポリペプチド A、
[数 3]
++ EL >ι (1)
XI Xn
(式(1)において、 XIは水一有機溶媒 1混合溶液におけるポリペプチド Aの相転移 臨界値(%)、 Xnは水一有機溶媒 n混合溶液におけるポリペプチド Aの相転移臨界 値(%)、 xlは OFF相溶液における有機溶媒 1の容積比(%)、 xnは OFF相溶液に おける有機溶媒 nの容積比(%)をそれぞれ示す)及び (B)有機溶媒を含まない水溶液、又は、ァセトニトリル、メタノール、エタノール、イソ プロピルアルコール、アセトン、 DMSO、 THF、酢酸、ギ酸及び TFAから選ばれる 1 種又は 2種以上の有機溶媒 (有機溶媒 1、 · · ·、有機溶媒 n (nは 1以上 7以下の整数) )を含む溶液であって、下記式(2)が成立して ヽる溶液 (ON相溶液)に存在するポリ ペプチド A。
[数 4]
+— + <1 (2)
XI Xn
(式(2)において、 XIは水一有機溶媒 1混合溶液におけるポリペプチド Aの相転移 臨界値(%)、 Xnは水一有機溶媒 n混合溶液におけるポリペプチド Aの相転移臨界 値(%)、 xlは ON相溶液における有機溶媒 1の容積比(%)、 xnは ON相溶液にお ける有機溶媒 nの容積比(%)をそれぞれ示す)
[5] OFF相溶液に含まれる有機溶媒及び ON相溶液に含まれる有機溶媒カゝら選ばれ る各々の有機溶媒と水の混合溶液におけるポリペプチド Aの逆相カラム充填剤への 吸着能の相転移臨界値を決定する工程を含む、請求項 4に記載のポリペプチドの検 出又は定量方法。
[6] ポリペプチド Aの分子量が 1万 Da以下である、請求項 1から 5のうちいずれか 1項に 記載のポリペプチドの検出又は定量方法。
[7] ポリペプチド Aが、以下の群より選ばれるいずれか 1のポリペプチドである、請求項 1 力 5のうちいずれか 1項に記載のポリペプチドの検出又は定量方法;
(1)副腎皮質刺激ホルモンのアミノ酸配列第 1番目力も第 24番目からなるポリべプチ ド、、
(2) βアミロイドのアミノ酸配列第 1番目から第 16番目力もなるポリペプチド、
(3) βアミロイドのアミノ酸配列第 1番目力も第 28番目力もなるポリペプチド、
(4) βアミロイドのアミノ酸配列第 1番目力も第 38番目力もなるポリペプチド、
(5) βアミロイドのアミノ酸配列第 1番目力も第 40番目力もなるポリペプチド、
(6) βアミロイドのアミノ酸配列第 1番目力も第 42番目力もなるポリペプチド、 (7) βアミロイドのアミノ酸配列第 1番目力も第 43番目力もなるポリペプチド、
(8)成長ホルモン放出因子、
(9)イソ口イシルーセリル一ブラジキュン、
(10)インスリン、
( 11)脳性ナトリウム利尿ペプチド (ΒΝΡ - 32) ,
( 12) C型ナトリウム利尿ペプチド(CNP - 53) ,
(13)ミツドカインのアミノ酸配列第 60番目から第 121番目力もなるポリペプチド、
(14)二ユーロメジン C、
(15)ニューロペプチド Y (NPY)、
(16)ノシセプチン、
(17)ォキシトシン、
(18)ゥロコルチン、
(19)ミツドカイン、
(20)インターフェロン γ、
(21)心房性ナトリウム利尿ペプチド (ΑΝΡ (1— 28) )、
(22)ラット好中球走ィ匕性因子— 1 (CINC lZgro)、
(23)副甲状腺ホルモン (PTH (1 -84) ) ,
(24)ォバルブミンのアミノ酸配列第 323番目力も第 339番目力もなるポリペプチド、
(25)ォバルブミン、
(26)アンジォテンシン II、及び
(27)アミノ酸配列第 4番目のチロシンがリン酸化されたアンジォテンシン II。
[8] ポリペプチド Aを検出又は定量する工程力 逆相液体クロマトグラフに接続されてい る質量分析計に備わるポリペプチドの検出又は定量手段によりポリペプチド Aを検出 又は定量する工程である、請求項 1から 7のうちいずれ力 1項に記載のポリペプチドの 検出又は定量方法。
[9] 少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移 動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移 動相 1供給器と送液管を介して接続する試料注入器、該移動相 2供給器と該試料注 入器とを送液管を介して接続する移動相混合器、該移動相混合器と送液管を介して 接続する逆相分析カラム、並びに該逆相分析カラムと接続されるポリペプチドの検出 又は定量器を有する逆相液体クロマトグラフ。
[10] 少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移 動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移 動相 1供給器と送液管を介して接続する試料注入器、該移動相 2供給器と該試料注 入器とを送液管を介して接続する移動相混合器、該移動相混合器と送液管を介して 接続する逆相分析カラム、並びに該逆相分析カラムと送液管を介して接続される質 量分析計を有する液体クロマトグラフ Z質量分析計 (LC MS)又は液体クロマトグ ラフ Zタンデム質量分析計 (LC MS/MS)。
[11] 少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移 動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移 動相 1供給器と送液管を介して接続する試料注入器、該移動相 2供給器と該試料注 入器とを送液管を介して接続する移動相混合器、該移動相混合器と送液管を介して 接続する逆相分析カラム、該逆相分析カラムと送液管を介して接続されるスィッチン グノ レブ、並びに該スイッチングノ レブと接続される質量分析計を有する、液体クロ マトグラフ Z質量分析計 (LC MS)又は液体クロマトグラフ Zタンデム質量分析計( LC MSZMS)。
[12] 少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移 動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移 動相 1及び 2とはそれぞれ異なる移動相 (移動相 3)を供給する移動相供給器 (移動 相 3供給器)、移動相 1供給器と移動相 2供給器とを送液管を介して接続する移動相 混合器 (混合器 A)、混合器 Aと送液管を介して接続する試料注入器、該移動相 3供 給器と該試料注入器とを送液管を介して接続する移動相混合器 (混合器 B)、混合 器 Bと送液管を介して接続する逆相分析カラム、該逆相分析カラムと送液管を介して 接続される質量分析計を有する、液体クロマトグラフ Z質量分析計 (LC MS)又は 液体クロマトグラフ Zタンデム質量分析計 (LC MS/MS)。
[13] 少なくとも、ある移動相 (移動相 1)を供給する移動相供給器 (移動相 1供給器)、移 動相 1とは異なる移動相 (移動相 2)を供給する移動相供給器 (移動相 2供給器)、移 動相 1及び 2とはそれぞれ異なる移動相 (移動相 3)を供給する移動相供給器 (移動 相 3供給器)、移動相 1供給器と移動相 2供給器とを送液管を介して接続する混合器 (混合器 A)、混合器 Aと送液管を介して接続する試料注入器、該移動相 3供給器と 該試料注入器とを送液管を介して接続する移動相混合器 (混合器 B)、混合器 Bと送 液管を介して接続する逆相分析カラム、該逆相分析カラムと送液管を介して接続さ れるスイッチングバルブ、並びに該スイッチングバルブと接続される質量分析計を有 する、液体クロマトグラフ Z質量分析計 (LC MS)又は液体クロマトグラフ Zタンデ ム質量分析計 (LC MS/MS)。
[14] 生体由来試料に酢酸を添加する工程を含む、該試料に含まれるあるポリペプチド の溶解度を向上させる方法。
[15] 血漿由来試料に酢酸を添加する工程を含む、該試料に含まれるあるポリペプチド の溶解度を向上させる方法。
[16] インビト口において、酢酸を用いることを手段とする、あるポリペプチドと血漿ポリべ プチドの相互作用を阻害する方法。
[17] インビト口において、酢酸を用いることを手段とする、あるポリペプチドと血漿ポリべ プチドとの凝集を抑制する方法。
[18] 血漿由来試料に酢酸を添加する工程を含む、該試料に含まれるあるポリペプチドと 該ポリペプチドと同一又は異なるある血漿ポリペプチドとの相互作用を阻害する方法
[19] 血漿由来試料に酢酸を添加する工程を含む、該試料に含まれるあるポリペプチドと 該ポリペプチドと同一又は異なるある血漿ポリペプチドとの凝集を抑制する方法。
[20] あるポリペプチド (ポリペプチド A)を含む血漿由来試料に、ァセトニトリル、メタノー ル、エタノール及びイソプロピルアルコール力 選ばれる 1種又は 2種以上の有機溶 媒と酢酸とを添加する工程を含む、 OFF相ポリペプチド A試料の調製方法。
[21] あるポリペプチドが 13アミロイド又はその部分ポリペプチドである、請求項 14〜20の いずれか 1項に記載の方法。
[22] あるポリペプチドが下記の群より選ばれる少なくともいずれか 1のポリペプチドである 、請求項 14〜20のいずれ力 1項に記載の方法:
(1) βアミロイドのアミノ酸配列第 1番目力も第 38番目までからなるポリペプチド、
(2) βアミロイドのアミノ酸配列第 1番目力も第 40番目までからなるポリペプチド、
(3) βアミロイドのアミノ酸配列第 1番目力も第 42番目までからなるポリペプチド、及 び
(4) βアミロイドのアミノ酸配列第 1番目力も第 43番目までからなるポリペプチド。
[23] 血漿ポリペプチドが分子量 1万 Da以上のポリペプチドである、請求項 15〜22のい ずれか 1項に記載の方法。
[24] インビト口において、酢酸を用いることを手段とする、ポリペプチド間相互作用を阻 害する方法。
PCT/JP2006/322593 2005-11-14 2006-11-13 ポリペプチドの検出又は定量方法、及び装置 WO2007055362A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007544226A JP5144273B2 (ja) 2005-11-14 2006-11-13 ポリペプチドの検出又は定量方法、及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005328710 2005-11-14
JP2005-328710 2005-11-14

Publications (1)

Publication Number Publication Date
WO2007055362A1 true WO2007055362A1 (ja) 2007-05-18

Family

ID=38023354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322593 WO2007055362A1 (ja) 2005-11-14 2006-11-13 ポリペプチドの検出又は定量方法、及び装置

Country Status (2)

Country Link
JP (1) JP5144273B2 (ja)
WO (1) WO2007055362A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288669A (zh) * 2011-05-04 2011-12-21 青岛大学 一种基于石墨烯修饰电极同时测定芦丁和槲皮素的电化学方法
JP2015501932A (ja) * 2011-11-23 2015-01-19 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド タンデム質量分析によるキスペプチン−54の検出
JP2015534635A (ja) * 2012-08-31 2015-12-03 西安奥▲嵐▼科技▲開▼▲発▼有限▲責▼任公司 タンパク質分離用多次元の液体クロマトグラフィーの分離システム及分離方法
CN107703244A (zh) * 2017-09-25 2018-02-16 天津中医药大学 一种中药组合物中14种化学成分含量的测定方法
CN107698674A (zh) * 2017-05-04 2018-02-16 苏州强耀生物科技有限公司 一种淀粉样多肽的纯化方法
CN109696451A (zh) * 2019-03-03 2019-04-30 中国科学院山西煤炭化学研究所 一种pamam对客体小分子吸附量的nmr测定方法
WO2023124924A1 (zh) * 2021-12-31 2023-07-06 河北省药品医疗器械检验研究院(河北省化妆品检验研究中心) 一种盐酸平阳霉素原料药中残留溶剂的检测方法
CN117871740A (zh) * 2024-03-11 2024-04-12 炉霍雪域俄色有限责任公司 俄色果原浆液相色谱品质检测方法
CN117871740B (zh) * 2024-03-11 2024-05-10 炉霍雪域俄色有限责任公司 俄色果原浆液相色谱品质检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712797A (ja) * 1993-06-24 1995-01-17 Hitachi Ltd 質量分析装置
JP2001343373A (ja) * 2000-06-05 2001-12-14 Shimadzu Corp 液体クロマトグラフ
JP2003270232A (ja) * 2002-03-14 2003-09-25 Shimadzu Corp ミクロシスチン類の分析法
JP2004101477A (ja) * 2002-09-12 2004-04-02 Yoshio Yamauchi 2次元高速液体クロマトグラフ装置及びそれを用いた蛋白質分析装置
JP2005069817A (ja) * 2003-08-22 2005-03-17 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2005181183A (ja) * 2003-12-22 2005-07-07 Olympus Corp 蛋白質同定のための測定方法及び測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712797A (ja) * 1993-06-24 1995-01-17 Hitachi Ltd 質量分析装置
JP2001343373A (ja) * 2000-06-05 2001-12-14 Shimadzu Corp 液体クロマトグラフ
JP2003270232A (ja) * 2002-03-14 2003-09-25 Shimadzu Corp ミクロシスチン類の分析法
JP2004101477A (ja) * 2002-09-12 2004-04-02 Yoshio Yamauchi 2次元高速液体クロマトグラフ装置及びそれを用いた蛋白質分析装置
JP2005069817A (ja) * 2003-08-22 2005-03-17 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2005181183A (ja) * 2003-12-22 2005-07-07 Olympus Corp 蛋白質同定のための測定方法及び測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI ZENG ET AL.: "High-throughput liquid chromatography for drug analysis in biological fluids: investigation of extraction column life", JOURNAL OF CHROMATOGRAPHY, vol. 806, no. 2, 5 July 2005 (2005-07-05), pages 177 - 183, XP004510902 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288669B (zh) * 2011-05-04 2013-06-26 青岛大学 一种基于石墨烯修饰电极同时测定芦丁和槲皮素的电化学方法
CN102288669A (zh) * 2011-05-04 2011-12-21 青岛大学 一种基于石墨烯修饰电极同时测定芦丁和槲皮素的电化学方法
US10712348B2 (en) 2011-11-23 2020-07-14 Quest Diagnostics Investments Incorporated Kisspeptin-54 detection by tandem mass spectrometry
JP2015501932A (ja) * 2011-11-23 2015-01-19 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド タンデム質量分析によるキスペプチン−54の検出
US9583322B2 (en) 2011-11-23 2017-02-28 Quest Diagnostics Investments Incorporated Kisspeptin-54 detection by tandem mass spectrometry
US9874569B2 (en) 2011-11-23 2018-01-23 Quest Diagnostics Investments Incorporated Kisspeptin-54 detection by tandem mass spectrometry
US10203337B2 (en) 2011-11-23 2019-02-12 Quest Diagnostics Investments Incorporated Kisspeptin-54 detection by tandem mass spectrometry
JP2015534635A (ja) * 2012-08-31 2015-12-03 西安奥▲嵐▼科技▲開▼▲発▼有限▲責▼任公司 タンパク質分離用多次元の液体クロマトグラフィーの分離システム及分離方法
CN107698674A (zh) * 2017-05-04 2018-02-16 苏州强耀生物科技有限公司 一种淀粉样多肽的纯化方法
CN107703244A (zh) * 2017-09-25 2018-02-16 天津中医药大学 一种中药组合物中14种化学成分含量的测定方法
CN109696451A (zh) * 2019-03-03 2019-04-30 中国科学院山西煤炭化学研究所 一种pamam对客体小分子吸附量的nmr测定方法
CN109696451B (zh) * 2019-03-03 2020-08-28 中国科学院山西煤炭化学研究所 一种pamam对客体小分子吸附量的nmr测定方法
WO2023124924A1 (zh) * 2021-12-31 2023-07-06 河北省药品医疗器械检验研究院(河北省化妆品检验研究中心) 一种盐酸平阳霉素原料药中残留溶剂的检测方法
CN117871740A (zh) * 2024-03-11 2024-04-12 炉霍雪域俄色有限责任公司 俄色果原浆液相色谱品质检测方法
CN117871740B (zh) * 2024-03-11 2024-05-10 炉霍雪域俄色有限责任公司 俄色果原浆液相色谱品质检测方法

Also Published As

Publication number Publication date
JPWO2007055362A1 (ja) 2009-04-30
JP5144273B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
Maes et al. Strategies to reduce aspecific adsorption of peptides and proteins in liquid chromatography–mass spectrometry based bioanalyses: An overview
JP2008309778A (ja) ポリペプチドの検出又は定量方法、及び装置
Zhou et al. Critical review of development, validation, and transfer for high throughput bioanalytical LC-MS/MS methods
van den Broek et al. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry
WO2007055362A1 (ja) ポリペプチドの検出又は定量方法、及び装置
Meiring et al. Nanoscale LC–MS (n): technical design and applications to peptide and protein analysis
Said et al. Determination of four immunosuppressive drugs in whole blood using MEPS and LC–MS/MS allowing automated sample work-up and analysis
JP2021119345A (ja) 標識化グリコシルアミンの迅速調製およびそれを生成するグリコシル化生体分子の分析方法
Meng et al. Simultaneous quantitation of polymyxin B1, polymyxin B2 and polymyxin B1-1 in human plasma and treated human urine using solid phase extraction and liquid chromatography–tandem mass spectrometry
Abdel-Rehim et al. MEPS as a rapid sample preparation method to handle unstable compounds in a complex matrix: determination of AZD3409 in plasma samples utilizing MEPS-LC-MS-MS
Van Eeckhaut et al. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples
CN108072712A (zh) 一种sd大鼠血浆中新化合物wsj-557的血药浓度定量分析方法
CN103293255B (zh) 一种艾塞那肽及其杂质超高效液相色谱检测方法
TWI761660B (zh) 雙重管柱lc-ms系統及其使用方法
Rieux et al. Restricted-access material-based high-molecular-weight protein depletion coupled on-line with nano-liquid chromatography–mass spectrometry for proteomics applications
JP2015206740A (ja) タンパク質に対する親和性評価のための分析方法及びその装置
Apostolou et al. Comparison of hydrophilic interaction and reversed‐phase liquid chromatography coupled with tandem mass spectrometric detection for the determination of three pharmaceuticals in human plasma
Mazzoccanti et al. Boosting basic-peptide separation through dynamic electrostatic-repulsion reversed-phase (d-ERRP) liquid chromatography
JP6933343B2 (ja) 液体クロマトグラフ質量分析による試料分析方法
CN114981653A (zh) 用于肽图分析的低结合表面
Souverain et al. Use of monolithic supports for fast analysis of drugs and metabolites in plasma by direct injection
EP3182131B1 (en) Separating and quantifying thiamine pyrophosphate and pyridoxal 5-phosphate in human whole blood
CN110568112A (zh) 一种直接检测艾塞那肽融合蛋白的方法
Chambers Quantitative analysis of therapeutic and endogenous peptides using LC/MS/MS methods
Dunér et al. Determination of ximelagatran, melagatran and two intermediary metabolites in plasma by mixed-mode solid phase extraction and LC–MS/MS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823367

Country of ref document: EP

Kind code of ref document: A1